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Financial Instruments Toolbox Product Description
Design, price, and hedge complex financial instruments

Financial Instruments Toolbox provides functions for pricing, modeling, hedging, and analyzing cash
flows, fixed-income securities, and derivative instruments (including equity, interest-rate, credit, and
energy instruments). For interest-rate instruments, you can calculate price, yield, spread, and
sensitivity values for various instrument types, including convertible bonds, mortgage-backed
securities, treasury bills, bonds, swaps, caps, floors, and floating-rate notes. For derivative
instruments, you can compute price, implied volatility, and Greeks using binomial trees, trinomial
trees, Shifted SABR, Heston, Monte Carlo simulation, and other models. You can also connect to
Numerix® CrossAsset Integration Layer for the valuation and risk management of fixed-income
securities, OTC derivatives, structured products, and variable annuity products.
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Interest-Rate-Based Derivatives
The toolbox provides functionality that supports the creation on page 1-6 and management on page
1-15 of these interest-rate-based instruments:

• Bonds
• Bond options (puts and calls)
• Bond with embedded options
• Caps
• Convertible bonds
• Fixed-rate notes
• Floating-rate notes
• Floors
• Swaps
• Swaption

Additionally, the toolbox provides functions to create arbitrary cash flow instruments. The toolbox
provides pricing and sensitivity routines for these instruments. For more information, see “Pricing
Using Interest-Rate Term Structure” on page 2-61,“Pricing Using Interest-Rate Tree Models” on
page 2-81, and“Interest-Rate Derivatives Using Closed-Form Solutions” on page 2-100.

See Also
instbond | instcap | instcbond | instcf | instfixed | instfloat | instfloor | instoptbnd
| instoptembnd | instoptfloat | instoptemfloat | instrangefloat | instswap |
instswaption

Related Examples
• “Creating Instruments or Properties” on page 1-16

More About
• “Supported Interest-Rate Instrument Functions” on page 2-3
• “Supported Equity Derivative Functions” on page 3-19
• “Supported Energy Derivative Functions” on page 3-34
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Equity-Based Derivatives
The toolbox also provides functions to create and manage various equity-based derivatives, including
the following:

• Asian options
• Barrier options
• Basket options
• Compound options
• Convertible bonds
• Digital options
• Lookback options
• Rainbow options
• Vanilla stock options (put and call options)

The toolbox also provides pricing and sensitivity routines for these instruments. (See “Pricing Equity
Derivatives Using Trees” on page 3-64, “Equity Derivatives Using Closed-Form Solutions” on page 3-
79, and “Basket Option” on page 3-22.)

See Also
instasian | instbarrier | instcbond | instcompound | instlookback | instoptstock

Related Examples
• “Creating Instruments or Properties” on page 1-16
• “Pricing Equity Derivatives Using Trees” on page 3-64

More About
• “Supported Equity Derivative Functions” on page 3-19
• “Supported Interest-Rate Instrument Functions” on page 2-3
• “Supported Energy Derivative Functions” on page 3-34
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Expected Users
In general, this guide assumes experience working with financial derivatives and some familiarity
with the underlying models.

In designing Financial Instruments Toolbox documentation, we assume that your title is similar to one
of these:

• Analyst, quantitative analyst
• Risk manager
• Portfolio manager
• Fund manager, asset manager
• Financial engineer
• Trader
• Student, professor, or other academic

We also assume that your background, education, training, and responsibilities match some aspects
of this profile:

• Finance, economics, perhaps accounting
• Engineering, mathematics, physics, other quantitative sciences
• Bachelor's degree minimum; MS or MBA likely; Ph.D. perhaps; CFA
• Comfortable with probability theory, statistics, and algebra
• Understand linear or matrix algebra, calculus, and differential equations
• Previously done traditional programming (C, Fortran, and so on)
• Responsible for instruments or analyses involving large sums of money
• Perhaps new to MATLAB®
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Portfolio Creation Using Functions
In this section...
“Introduction” on page 1-6
“Interest-Rate-Based Derivatives” on page 1-6
“Equity Derivatives” on page 1-7

Introduction
The instadd function creates a set of instruments (portfolio) or adds instruments to an existing
instrument collection. The TypeString argument specifies the type of the investment instrument.
For interest-rate-based derivatives, the types are: Bond, OptBond, CashFlow, Fixed, Float, Cap,
Floor, and Swap. For equity derivatives, the types are Asian, Barrier, Compound, Lookback, and
OptStock.

The input arguments following TypeString are specific to the type of investment instrument. Thus,
the TypeString argument determines how the remainder of the input arguments is interpreted. For
example, instadd with the type character vector for Bond creates a portfolio of bond instruments.

InstSet = instadd('Bond', CouponRate, Settle, Maturity, Period,
Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate, Face)

Interest-Rate-Based Derivatives
In addition to the bond instrument already described, the toolbox can create portfolios containing the
following set of functions for interest-rate-based derivatives:

• Bond option
InstSet = instadd('OptBond', BondIndex, OptSpec, Strike, ExerciseDates, AmericanOpt)

• Arbitrary cash flow instrument
InstSet = instadd('CashFlow', CFlowAmounts, CFlowDates, Settle, Basis)

• Fixed-rate note instrument
InstSet = instadd('Fixed', CouponRate, Settle, Maturity, FixedReset, Basis, Principal)

• Floating-rate note instrument
InstSet = instadd('Float', Spread, Settle, Maturity, FloatReset, Basis, Principal)

• Cap instrument
InstSet = instadd('Cap', Strike, Settle, Maturity, CapReset, Basis, Principal)

• Convertible bond instrument
InstSet = instcbond(CouponRate,Settle,Maturity,ConvRatio)

• Floor instrument
InstSet = instadd('Floor', Strike, Settle, Maturity, FloorReset, Basis, Principal)

• Swap instrument
InstSet = instadd('Swap', LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType)

• Swaption instrument
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InstSet = instadd('Swaption', OptSpec, Strike, ExerciseDates, Spread, ...
Settle, Maturity, AmericanOpt, SwapReset, Basis, Principal)

• Bond with embedded option instrument
InstSet = instadd('OptEmBond', CouponRate, Settle, Maturity, OptSpec, Strike, ...
ExerciseDates, 'AmericanOpt', AmericanOpt, 'Period', Period,'Basis', Basis, ...
'EndMonthRule', EndMonthRule,'Face',Face,'IssueDate', IssueDate, 'FirstCouponDate', ...
FirstCouponDate, 'LastCouponDate', LastCouponDate,'StartDate', StartDate)

Equity Derivatives
The toolbox can create portfolios containing the following set of functions for equity derivatives:

• Asian instrument
InstSet = instadd('Asian', OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, ...
AvgType, AvgPrice, AvgDate)

• Barrier instrument
InstSet = instadd('Barrier', OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, ...
BarrierType, Barrier, Rebate)

• Compound instrument
InstSet = instadd('Compound', UOptSpec, UStrike, USettle, UExerciseDates, UAmericanOpt, ...
COptSpec, CStrike, CSettle, CExerciseDates, CAmericanOpt)

• Convertible bond instrument

InstSet = instcbond(CouponRate,Settle,Maturity,ConvRatio)

• Lookback instrument
InstSet = instadd('Lookback', OptSpec, Strike, Settle, ExerciseDates, AmericanOpt)

• Stock option instrument

InstSet = instadd('OptStock', OptSpec, Strike, Settle, Maturity, AmericanOpt)

See Also
instadd | instaddfield | instdelete | instdisp | instfields | instfind | instget |
instgetcell | instlength | instselect | instsetfield | insttypes | intenvset | hedgeopt
| hedgeslf

Related Examples
• “Creating Instruments or Properties” on page 1-16
• “Adding Instruments to an Existing Portfolio Using Functions” on page 1-8
• “Instrument Construction and Portfolio Management Using Functions” on page 1-15

More About
• “Supported Interest-Rate Instrument Functions” on page 2-3
• “Supported Equity Derivative Functions” on page 3-19
• “Supported Energy Derivative Functions” on page 3-34
• “Price an Instrument Portfolio”
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Adding Instruments to an Existing Portfolio Using Functions
To use the instadd function to add additional instruments to an existing instrument portfolio,
provide the name of an existing portfolio as the first argument to the instadd function.

Consider, for example, a portfolio containing two cap instruments only:

Strike = [0.06; 0.07];
Settle = '08-Feb-2000';
Maturity = '15-Jan-2003';

Port_1 = instadd('Cap', Strike, Settle, Maturity);

These commands create a portfolio containing two cap instruments with the same settlement and
maturity dates, but with different strikes. In general, the input arguments describing an instrument
can be either a scalar, or a number of instruments (NumInst)-by-1 vector in which each element
corresponds to an instrument. Using a scalar assigns the same value to all instruments passed in the
call to instadd.

Use the instdisp command to display the contents of the instrument set:
instdisp(Port_1)

Index Type Strike Settle      Maturity    CapReset Basis Principal
1     Cap  0.06   08-Feb-2000 15-Jan-2003 1        0     100 
2     Cap  0.07   08-Feb-2000 15-Jan-2003 1        0     100 

Now add a single bond instrument to Port_1. The bond has a 4.0% coupon and the same settlement
and maturity dates as the cap instruments.
CouponRate = 0.04;
Port_1 = instadd(Port_1, 'Bond', CouponRate, Settle, Maturity);

Use instdisp again to see the resulting instrument set:
instdisp(Port_1)

Index Type Strike Settle         Maturity       CapReset Basis Principal
1     Cap  0.06   08-Feb-2000    15-Jan-2003    1        0     100      
2     Cap  0.07   08-Feb-2000    15-Jan-2003    1        0     100      
 
Index Type CouponRate Settle         Maturity     Period Basis EndMonthRule IssueDate ... Face
3     Bond 0.04       08-Feb-2000    15-Jan-2003  2      0     1            NaN       ... 100

See Also
instadd | instaddfield | instdelete | instdisp | instfields | instfind | instget |
instgetcell | instlength | instselect | instsetfield | insttypes | intenvset | hedgeopt
| hedgeslf

Related Examples
• “Portfolio Creation Using Functions” on page 1-6
• “Instrument Construction and Portfolio Management Using Functions” on page 1-15

More About
• “Supported Interest-Rate Instrument Functions” on page 2-3
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• “Supported Equity Derivative Functions” on page 3-19
• “Supported Energy Derivative Functions” on page 3-34
• “Price an Instrument Portfolio”
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Pricing a Portfolio Using the Black-Derman-Toy Model
This example illustrates how the Financial Instruments Toolbox™ is used to create a Black-Derman-
Toy (BDT) tree and price a portfolio of instruments using the BDT model.

Create the Interest Rate Term Structure

The structure RateSpec is an interest-rate term structure that defines the initial forward-rate
specification from which the tree rates are derived. Use the information of annualized zero coupon
rates in the table below to populate the RateSpec structure.

From To Rate

01 Jan 2005 01 Jan 2006 0.0275

01 Jan 2005 01 Jan 2007 0.0312

01 Jan 2005 01 Jan 2008 0.0363

01 Jan 2005 01 Jan 2009 0.0415

01 Jan 2005 01 Jan 2010 0.0458

StartDates = ['01 Jan 2005'];
          
EndDates =   ['01 Jan 2006';
              '01 Jan 2007'; 
              '01 Jan 2008';
              '01 Jan 2009';
              '01 Jan 2010'];
          
ValuationDate = ['01 Jan 2005'];
Rates = [0.0275; 0.0312; 0.0363; 0.0415; 0.0458];
Compounding = 1;

RateSpec = intenvset('Compounding',Compounding,'StartDates', StartDates,...
                     'EndDates', EndDates, 'Rates', Rates,'ValuationDate', ValuationDate)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [5x1 double]
            Rates: [5x1 double]
         EndTimes: [5x1 double]
       StartTimes: [5x1 double]
         EndDates: [5x1 double]
       StartDates: 732313
    ValuationDate: 732313
            Basis: 0
     EndMonthRule: 1

Specify the Volatility Model

Create the structure VolSpec that specifies the volatility process with the following data.

Volatility = [0.005; 0.0055; 0.006; 0.0065; 0.007];
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility)
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BDTVolSpec = struct with fields:
             FinObj: 'BDTVolSpec'
      ValuationDate: 732313
           VolDates: [5x1 double]
           VolCurve: [5x1 double]
    VolInterpMethod: 'linear'

Specify the Time Structure of the Tree

The structure TimeSpec specifies the time structure for an interest-rate tree. This structure defines
the mapping between the observation times at each level of the tree and the corresponding dates.

Maturity = EndDates;
BDTTimeSpec = bdttimespec(ValuationDate, Maturity, Compounding)

BDTTimeSpec = struct with fields:
           FinObj: 'BDTTimeSpec'
    ValuationDate: 732313
         Maturity: [5x1 double]
      Compounding: 1
            Basis: 0
     EndMonthRule: 1

Create the BDT Tree

Use the previously computed values for RateSpec, VolSpec, and TimeSpec to create the BDTTree.

BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec)

BDTTree = struct with fields:
      FinObj: 'BDTFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3 4]
        dObs: [732313 732678 733043 733408 733774]
        TFwd: {[5x1 double]  [4x1 double]  [3x1 double]  [2x1 double]  [4]}
      CFlowT: {[5x1 double]  [4x1 double]  [3x1 double]  [2x1 double]  [5]}
     FwdTree: {1x5 cell}

Observe the Interest Rate Tree

Visualize the interest-rate evolution along the tree by looking at the output structure BDTTree.
BDTTree returns an inverse discount tree, which you can convert into an interest-rate tree with the
cvtree function.

BDTTreeR = cvtree(BDTTree);

Look at the upper branch and lower branch paths of the tree:

%Rate at root node:
RateRoot      = treepath(BDTTreeR.RateTree, [0]) 

RateRoot = 0.0275
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%Rates along upper branch:
RatePathUp    = treepath(BDTTreeR.RateTree, [1 1 1 1]) 

RatePathUp = 5×1

    0.0275
    0.0347
    0.0460
    0.0560
    0.0612

%Rates along lower branch:
RatePathDown = treepath(BDTTreeR.RateTree, [2 2 2 2])

RatePathDown = 5×1

    0.0275
    0.0351
    0.0472
    0.0585
    0.0653

You can also display a graphical representation of the tree to examine interactively the rates on the
nodes of the tree until maturity. The function treeviewer displays the structure of the rate tree in
the left pane. The tree visualization in the right pane is blank, but by selecting Diagram and clicking
on the nodes you can examine the rates along the paths.

treeviewer(BDTTreeR)
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Create an Instrument Portfolio

Create a portfolio consisting of two bond instruments and a option on the 5% Bond.

% Bonds
CouponRate = [0.04;0.05]; 
Settle = '01 Jan 2005'; 
Maturity = ['01 Jan 2009';'01 Jan 2010'];
Period = 1;

% Option
OptSpec = {'call'};
Strike = 98;
ExerciseDates = ['01 Jan 2010'];
AmericanOpt = 1;

InstSet = instadd('Bond',CouponRate, Settle,  Maturity, Period);
InstSet = instadd(InstSet,'OptBond', 2, OptSpec, Strike, ExerciseDates, AmericanOpt);

Examine the set of instruments contained in the variable InstSet.

instdisp(InstSet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face
1     Bond 0.04       01-Jan-2005    01-Jan-2009    1      0     1            NaN       NaN             NaN            NaN       100 
2     Bond 0.05       01-Jan-2005    01-Jan-2010    1      0     1            NaN       NaN             NaN            NaN       100 
 
Index Type    UnderInd OptSpec Strike ExerciseDates  AmericanOpt
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3     OptBond 2        call    98     01-Jan-2010    1          
 

Price the Portfolio Using a BDT Tree

Calculate the price of each instrument in the instrument set (InstSet) using bdtprice.

Price = bdtprice(BDTTree, InstSet)

Price = 3×1

   99.6374
  102.2460
    4.2460

The prices in the output vector Price correspond to the prices at observation time zero (tObs = 0),
which is defined as the Valuation Date of the interest-rate tree.

In the Price vector, the first element, 99.6374, represents the price of the first instrument (4%
Bond); the second element, 102.2460, represents the price of the second instrument (5% Bond), and
4.2460 represents the price of the Option.

See Also
instadd | instaddfield | instdelete | instdisp | instfields | instfind | instget |
instgetcell | instlength | instselect | instsetfield | insttypes | intenvset | hedgeopt
| hedgeslf

Related Examples
• “Portfolio Creation Using Functions” on page 1-6
• “Instrument Construction and Portfolio Management Using Functions” on page 1-15

More About
• “Supported Interest-Rate Instrument Functions” on page 2-3
• “Supported Equity Derivative Functions” on page 3-19
• “Supported Energy Derivative Functions” on page 3-34
• “Price an Instrument Portfolio”
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Instrument Construction and Portfolio Management Using
Functions

In this section...
“Instrument Constructors” on page 1-15
“Creating Instruments or Properties” on page 1-16
“Searching or Subsetting a Portfolio” on page 1-17

Instrument Constructors
The toolbox provides constructors for the most common financial instruments. A constructor is a
function that builds a structure dedicated to a certain type of object; in this toolbox, an object is a
type of market instrument.

The instruments and their constructor functions are listed below.

Instrument Constructor Function
Asian option instasian
Barrier option instbarrier
Bond instbond
Bond option instoptbnd
Arbitrary cash flow instcf
Compound option instcompound
Convertible bond instcbond
Fixed-rate note instfixed
Floating-rate note instfloat
Cap instcap
Floor instfloor
Lookback option instlookback
Stock option instoptstock
Swap instswap
Swaption instswaption

Each instrument has parameters (fields) that describe the instrument. The toolbox functions let you
do the following:

• Create an instrument or portfolio of instruments.
• Enumerate stored instrument types and information fields.
• Enumerate instrument field data.
• Search and select instruments.

The instrument structure consists of various fields according to instrument type. A field is an element
of data associated with the instrument. For example, a bond instrument contains the fields:
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CouponRate, Settle, Maturity. Also, each instrument has a field that identifies the investment
type (bond, cap, floor, and so on).

In reality, the set of parameters for each instrument is not fixed. You have the ability to add additional
parameters. These additional fields are ignored by the toolbox functions. They may be used to attach
additional information to each instrument, such as an internal code describing the bond.

Parameters not specified when creating an instrument default to NaN, which, in general, means that
the functions using the instrument set (such as intenvprice or hjmprice) will use default values.
At the time of pricing, an error occurs if any of the required fields is missing, such as Strike in a cap
or CouponRate in a bond.

Creating Instruments or Properties
Use the instaddfield function to create a kind of instrument or to add new properties to the
instruments in an existing instrument collection.

To create a kind of instrument with instaddfield, you must specify three arguments:

• Type
• FieldName
• Data

Type defines the type of the new instrument, for example, Future. FieldName names the fields
uniquely associated with the new type of instrument. Data contains the data for the fields of the new
instrument.

An optional fourth argument is ClassList. ClassList specifies the data types of the contents of
each unique field for the new instrument.

Use either syntax to create a kind of instrument using instaddfield:
InstSet = instaddfield('FieldName', FieldList, 'Data', DataList,...
'Type', TypeString)
InstSet = instaddfield('FieldName', FieldList, 'FieldClass',...
ClassList, 'Data' , DataList, 'Type', TypeString)

To add new instruments to an existing set, use:
InstSetNew = instaddfield(InstSetOld, 'FieldName', FieldList,...
'Data', DataList, 'Type', TypeString)

As an example, consider a futures contract with a delivery date of July 15, 2000, and a quoted price of
$104.40. Since Financial Instruments Toolbox software does not directly support this instrument, you
must create it using the function instaddfield. Use these parameters to create instruments:

• Type: Future
• Field names: Delivery and Price
• Data: Delivery is July 15, 2000, and price is $104.40.

Enter the data into MATLAB software:

Type = 'Future';
FieldName = {'Delivery', 'Price'};
Data = {'Jul-15-2000', 104.4};
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Finally, create the portfolio with a single instrument:

Port = instaddfield('Type', Type, 'FieldName', FieldName,... 
'Data', Data);

Now use the function instdisp to examine the resulting single-instrument portfolio:

instdisp(Port)

Index Type   Delivery    Price
1     Future Jul-15-2000 104.4

Because your portfolio Port has the same structure as those created using the function instadd,
you can combine portfolios created using instadd with portfolios created using instaddfield. For
example, you can now add two cap instruments to Port with instadd.
Strike = [0.06; 0.07];
Settle = '08-Feb-2000';
Maturity = '15-Jan-2003';
 
Port = instadd(Port, 'Cap', Strike, Settle, Maturity);

View the resulting portfolio using instdisp.
instdisp(Port)

Index   Type   Delivery      Price
1       Future 15-Jul-2000   104.4
 
Index Type Strike Settle      Maturity    CapReset  Basis Principal
2     Cap  0.06   08-Feb-2000 15-Jan-2003 1         0     100 
3     Cap  0.07   08-Feb-2000 15-Jan-2003 1         0     100 

Searching or Subsetting a Portfolio
Financial Instruments Toolbox provides functions that enable you to:

• Find specific instruments within a portfolio.
• Create a subset portfolio consisting of instruments selected from a larger portfolio.

The instfind function finds instruments with a specific parameter value; it returns an instrument
index (position) in a large instrument set. The instselect function, on the other hand, subsets a
large instrument set into a portfolio of instruments with designated parameter values; it returns an
instrument set (portfolio) rather than an index.

instfind

The general syntax for instfind is
IndexMatch = instfind(InstSet, 'FieldName', FieldList, 'Data',...
DataList, 'Index', IndexSet, 'Type', TypeList)

InstSet is the instrument set to search. Within InstSet instruments categorized by type, each type
can have different data fields. The stored data field is a row vector or character vector for each
instrument.

The FieldList, DataList, and TypeList arguments indicate values to search for in the
FieldName, Data, and Type data fields of the instrument set. FieldList is a cell array of field
names specific to the instruments. DataList is a cell array or matrix of acceptable values for one or
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more parameters specified in FieldList. FieldName and Data (therefore, FieldList and
DataList) parameters must appear together or not at all.

IndexSet is a vector of integer indexes designating positions of instruments in the instrument set to
check for matches; the default is all indices available in the instrument set. TypeList is a character
vector or cell array of character vectors restricting instruments to match one of the TypeList types;
the default is all types in the instrument set.

IndexMatch is a vector of positions of instruments matching the input criteria. Instruments are
returned in IndexMatch if all the FieldName, Data, Index, and Type conditions are met. An
instrument meets an individual field condition if the stored FieldName data matches any of the rows
listed in the DataList for that FieldName.

instfind Examples

The examples use the provided MAT-file deriv.mat.

The MAT-file contains an instrument set, HJMInstSet, that contains eight instruments of seven
types.

load deriv.mat
instdisp(HJMInstSet)

Index Type CouponRate Settle       Maturity     Period Basis ...  Name      Quantity
1    Bond 0.04       01-Jan-2000  01-Jan-2003    1     NaN   ... 4% bond     100 
2    Bond 0.04       01-Jan-2000  01-Jan-2004    2     NaN   ... 4% bond      50 

Index Type    UnderInd OptSpec Strike ExerciseDates  AmericanOpt Name        Quantity
3     OptBond 2        call    101    01-Jan-2003    NaN         Option 101   -50     
 
Index Type  CouponRate Settle      Maturity     FixedReset Basis Principal Name     Quantity
4     Fixed 0.04       01-Jan-2000 01-Jan-2003    1        NaN    NaN     4% Fixed   80 
 
Index Type  Spread Settle      Maturity   FloatReset  Basis Principal Name        Quantity
5     Float 20     01-Jan-2000 01-Jan-2003 1           NaN   NaN       20BP Float   8  
 
Index Type Strike Settle         Maturity      CapReset Basis Principal Name     Quantity
6     Cap  0.03   01-Jan-2000    01-Jan-2004    1        NaN   NaN       3% Cap   30  
 
Index Type  Strike Settle      Maturity     FloorReset Basis Principal Name       Quantity
7     Floor 0.03 01-Jan-2000 01-Jan-2004    1          NaN   NaN         3% Floor   40 
 
Index Type LegRate   Settle     Maturity     LegReset Basis Principal LegType  Name   Quantity

8     Swap [0.06 20] 01-Jan-2000  01-Jan-2003  [1  1]   NaN   NaN     [NaN]  6%/20BP Swap  10

Find all instruments with a maturity date of January 01, 2003.

Mat2003 = ... 
instfind(HJMInstSet,'FieldName','Maturity','Data','01-Jan-2003')

Mat2003 =

     1
     4
     5
     8

Find all cap and floor instruments with a maturity date of January 01, 2004.

CapFloor = instfind(HJMInstSet,... 
'FieldName','Maturity','Data','01-Jan-2004', 'Type',... 
{'Cap';'Floor'})
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CapFloor =

     6
     7

Find all instruments where the portfolio is long or short a quantity of 50.

Pos50 = instfind(HJMInstSet,'FieldName',... 
'Quantity','Data',{'50';'-50'})

Pos50 =

     2
     3

instselect

The syntax for instselect is the same syntax as for instfind. instselect returns a full portfolio
instead of indexes into the original portfolio. Compare the values returned by both functions by
calling them equivalently.

Previously you used instfind to find all instruments in HJMInstSet with a maturity date of January
01, 2003.

Mat2003 = ... 
instfind(HJMInstSet,'FieldName','Maturity','Data','01-Jan-2003')

Mat2003 =

     1
     4
     5
     8

Now use the same instrument set as a starting point, but execute the instselect function instead,
to produce a new instrument set matching the identical search criteria.

Select2003 = ... 
instselect(HJMInstSet,'FieldName','Maturity','Data',... 
'01-Jan-2003')

instdisp(Select2003)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face Name    Quantity
1     Bond 0.04       01-Jan-2000    01-Jan-2003    1      NaN   NaN          NaN       NaN             NaN            NaN       NaN  4% bond 100     
 
Index Type  CouponRate Settle         Maturity       FixedReset Basis Principal Name     Quantity
2     Fixed 0.04       01-Jan-2000    01-Jan-2003    1          NaN   NaN       4% Fixed 80      
 
Index Type  Spread Settle         Maturity       FloatReset Basis Principal Name       Quantity
3     Float 20     01-Jan-2000    01-Jan-2003    1          NaN   NaN       20BP Float 8       
 
Index Type LegRate    Settle         Maturity       LegReset Basis Principal LegType Name         Quantity
4     Swap [0.06  20] 01-Jan-2000    01-Jan-2003    [1  1]   NaN   NaN       [NaN]   6%/20BP Swap 10      

instselect Examples

These examples use the portfolio ExampleInst provided with the MAT-file InstSetExamples.mat.

load InstSetExamples.mat
instdisp(ExampleInst)
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Index Type   Strike Price Opt  Contracts
1     Option  95    12.2  Call     0    
2     Option 100     9.2  Call     0    
3     Option 105     6.8  Call  1000    
 
Index Type    Delivery       F     Contracts
4     Futures 01-Jul-1999    104.4 -1000    
 
Index Type   Strike Price Opt  Contracts
5     Option 105     7.4  Put  -1000    
6     Option  95     2.9  Put      0    
 
Index Type  Price Maturity       Contracts
7     TBill 99    01-Jul-1999    6        

The instrument set contains three instrument types: Option, Futures, and TBill. Use instselect
to make a new instrument set containing only options struck at 95. In other words, select all
instruments containing the field Strike and with the data value for that field equal to 95.
InstSet = instselect(ExampleInst,'FieldName','Strike','Data',95);

instdisp(InstSet)

Index Type   Strike Price Opt  Contracts
1     Option  95    12.2  Call     0    
2     Option  95     2.9  Put      0    

You can use all the various forms of instselect and instfind to locate specific instruments within
this instrument set.

See Also
instadd | instaddfield | instdelete | instdisp | instfields | instfind | instget |
instgetcell | instlength | instselect | instsetfield | insttypes | intenvset | hedgeopt
| hedgeslf

Related Examples
• “Portfolio Creation Using Functions” on page 1-6
• “Hedging Functions” on page 4-3
• “Hedging with hedgeopt” on page 4-4
• “Self-Financing Hedges with hedgeslf” on page 4-9
• “Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-10
• “Pricing and Hedging a Portfolio Using the Black-Karasinski Model” on page 4-13
• “Specifying Constraints with ConSet” on page 4-24
• “Portfolio Rebalancing” on page 4-26
• “Hedging with Constrained Portfolios” on page 4-28

More About
• “Hedging” on page 4-2
• “Supported Interest-Rate Instrument Functions” on page 2-3
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• “Supported Equity Derivative Functions” on page 3-19
• “Supported Energy Derivative Functions” on page 3-34
• “Choose Instruments, Models, and Pricers” on page 1-53
• “Price an Instrument Portfolio”
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Get Started with Workflows Using Object-Based Framework for
Pricing Financial Instruments

Object-Based Framework Workflow

Financial Instruments Toolbox supports an object framework for pricing financial instruments. There
are three types of object constructors in the framework: fininstrument to create an instrument
object, finmodel to create a model object, and finpricer to create a pricer object. The canonical
workflow to price an instrument is:

1 Create an instrument object using fininstrument.

myInst = fininstrument(InstType,…)
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2 Create a model object using finmodel.

myModel = finmodel(ModelType,…)
3 Create a ratecurve object using ratecurve.

myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)
4 Create a pricer object using finpricer.

myPricer = finpricer(PricerType,myModel,myRC,...)
5 Price the instrument using an associated price function.

[Price, PriceResult] = price(myPricer, myInst,…)

For examples showing how to use this workflow to create different types of instruments, see:

• “Workflow to Price an Interest-Rate Instrument” on page 1-25
• “Workflow to Price an Inflation Instrument” on page 1-28
• “Workflow to Price an Equity, Commodity, or FX Instrument” on page 1-37
• “Workflow to Price a Credit Derivative Instrument” on page 1-40
• “Workflow for Creating and Analyzing a ratecurve and parametercurve” on page 1-46

You can also price an entire portfolio. After creating instrument objects and pricer objects, you can
add the instrument and pricer objects to a finportfolio object and then price the portfolio using
this workflow:

1 Create instrument objects using fininstrument.

myInst1 = fininstrument(InstType,…)
myInst2 = fininstrument(InstType,…)

2 Create model objects using finmodel.

myModel = finmodel(ModelType,…)
myModel2 = finmodel(ModelType,…)

3 Create one or more ratecurve objects using ratecurve.

myRC1 = ratecurve('zero',Settle,ZeroDates,ZeroRates)
myRC2 = ratecurve('zero',Settle,ZeroDates,ZeroRates)

4 Create a pricer object using finpricer.

myPricer1 = finpricer(PricerType,myModel,myRC1,...)
myPricer2 = finpricer(PricerType,myModel,myRC2,...)

5 Create a portfolio object using finportfolio.

IP = finportfolio([MyInst1,MyInst2],[MyPricer1,MyPricer2],...)
6 Price the portfolio using pricePortfolio.

[portPrice, portSens, instPrice, instSens] = price(IP)

For an example showing how to use this workflow to create a portfolio, see “Workflow to Create and
Price a Portfolio of Instruments” on page 1-42.

See Also
fininstrument | finmodel | finpricer
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More About
• “Choose Instruments, Models, and Pricers” on page 1-53
• “Mapping Financial Instruments Toolbox Functions to Object-Based Framework for Instruments,

Models, and Pricers” on page 1-70
• “Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework” on page

1-93
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Workflow to Price an Interest-Rate Instrument
Price a financial instrument with a zero curve. Such an instrument has no embedded optionality, in
other words, the cash flows are deterministic and valuing the instrument is simply a matter of
generating the cash flows and then computing the present value of the cash flows by generating
corresponding discount factors from the zero curve. For more information on the supported interest-
rate instruments, see “Choose Instruments, Models, and Pricers” on page 1-53.

Price Vanilla Fixed Bond Instrument Using ratecurve and Discount
Pricer
This example shows the workflow to price a vanilla FixedBond instrument when you use a
ratecurve and a Discount pricing method.

Create FixedBond Instrument Object

Use fininstrument to create a FixedBond instrument object.

FixB = fininstrument("FixedBond",'Maturity',datetime(2022,9,15),'CouponRate',0.021,'Period',2,'Basis',1,'Principal',100,'Name',"fixed_bond_instrument")

FixB = 
  FixedBond with properties:

                  CouponRate: 0.0210
                      Period: 2
                       Basis: 1
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 15-Sep-2022
                        Name: "fixed_bond_instrument"

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
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                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Discount Pricer Object

Use finpricer to create a Discount pricer object and use the ratecurve object with the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("Discount",'DiscountCurve',myRC)

outPricer = 
  Discount with properties:

    DiscountCurve: [1x1 ratecurve]

Price FixedBond Instrument

Use price to compute the price and sensitivities for the FixedBond instrument.

[Price, outPR] = price(outPricer, FixB,["all"])

Price = 104.5679

outPR = 
  priceresult with properties:

       Results: [1x2 table]
    PricerData: []

outPR.Results

ans=1×2 table
    Price       DV01  
    ______    ________

    104.57    0.040397

See Also
fininstrument | finmodel | finpricer

Related Examples
• “Calibrate Shifted SABR Model Parameters for Swaption Instrument” on page 2-168

More About
• “Choose Instruments, Models, and Pricers” on page 1-53
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• “Mapping Financial Instruments Toolbox Functions to Object-Based Framework for Instruments,
Models, and Pricers” on page 1-70

• “Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework” on page
1-93
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Workflow to Price an Inflation Instrument
When pricing inflation derivatives and building inflation curves, incorporating seasonality can be a
critical factor. The zero-coupon inflation swap rates typically have maturities that increase in whole
number of years. As a result, the inflation curve is typically built from zero-coupon inflation swap
rates on an annual basis. For more information on the supported inflation instruments, see “Choose
Instruments, Models, and Pricers” on page 1-53.

Analyze Inflation-Indexed Instruments
This example shows how to analyze inflation-indexed instruments using Financial Toolbox™ and
Financial Instruments Toolbox™.

Compute Real Prices and Yields for Inflation-Indexed Bonds

While inflation-indexed bonds have a great deal of variation in the design, for example, the length of
the indexation lag, the majority of inflation-indexed bonds now have a three month lag. They are also
capital-indexed, that is, the principal of the bond is indexed to inflation. Therefore, the coupon rate of
the bond is constant, but the actual coupon payments vary as the principal of the bond is indexed to
inflation.

Specifically, the indexation is done with the following ratio:

IndexRatio =
CPIRef
CPIBase

where CPIBase is the level of the consumer price index (or equivalent price measure) at the time of
the bond's issue and CPIRef  is the reference CPI.

Typically, you compute the CPIRef  by interpolating between the index data of a known inflation-index
curve. To compute the cash flows for an inflation-indexed bond, you simply compute the appropriate
reference CPI and Index Ratio.

The market convention for inflation-indexed bonds is to quote the price and yield using the actual
(that is, unadjusted) coupon, which means that your quote is a real price and yield. To get a real price
and yield, you can use the Financial Toolbox™ functions bndprice and bndyield. For example:

Price = 124 + 9/32;
Settle = datetime(2009,9,28);
Coupon = .03375;
Maturity = datetime(2032,4,15);

RealYield = bndyield(Price,Coupon,Settle,Maturity);
disp(['Real Yield: ', num2str(RealYield*100) '%'])

Real Yield: 2.0278%

Construct Nominal, Real, and Inflation Curves

With the advent of the inflation-indexed bond market, real curves can be constructed in a similar
fashion to nominal curves. Using the available market data, you can construct the real curve and
compare it to the nominal curve.

Note that one issue relates to the indexation lag of the bonds. As stated previously, typically the
indexation lag is three months, which means that the inflation compensation is not actually matched
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up with the maturity or the coupon payments of the bond. While Anderson and Sleath [1] discuss an
approach to resolving this discrepancy, for this example, the lag is simply noted.

You can use the fitNelsonSiegel and fitSvensson functions in the Financial Instruments
Toolbox™ to create parametercurve objects that fit Nelson-Siegel and Svensson models to real and
nominal yield curves in the US. The Nelson-Siegel model typically places restrictions on the model
parameters to ensure that the interest rates are always positive. However, real interest rates can be
negative, which means that these Nelson-Siegel restrictions are not used in the case below.

% Load the data.
load usbond_02Sep2008
Settle = datetime(2008, 9, 2);
NominalTimeToMaturity = yearfrac(Settle,NominalMaturity);
TIPSTimeToMaturity = yearfrac(Settle,TIPSMaturity);

% Compute the yields.
NominalYield = bndyield(NominalPrice,NominalCoupon,Settle,NominalMaturity);
TIPSYield = bndyield(TIPSPrice,TIPSCoupon,Settle,TIPSMaturity);

% Plot the yields.
scatter(NominalTimeToMaturity,NominalYield*100,'r');
hold on;
scatter(TIPSTimeToMaturity,TIPSYield*100,'b');

% Fit the real yield curve using fitNelsonSiegel.
nInst = numel(TIPSCoupon);
TIPSBonds(nInst,1) = fininstrument.FinInstrument;
for ii=1:nInst
    TIPSBonds(ii) = fininstrument("FixedBond",'Maturity',TIPSMaturity(ii),...
        'CouponRate',TIPSCoupon(ii));
end

TIPSNelsonSiegel = fitNelsonSiegel(Settle,TIPSBonds,TIPSPrice);

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to 
its initial value is less than the value of the function tolerance.

% Fit the nominal yield curve using fitSvensson.
nInst = numel(NominalCoupon);
NominalBonds(nInst,1) = fininstrument.FinInstrument;
for ii=1:nInst
    NominalBonds(ii) = fininstrument("FixedBond",'Maturity',NominalMaturity(ii),...
        'CouponRate',NominalCoupon(ii));
end

NominalSvensson = fitSvensson(Settle,NominalBonds,NominalPrice);

Solver stopped prematurely.

lsqnonlin stopped because it exceeded the function evaluation limit,
options.MaxFunctionEvaluations = 6.000000e+02.

% Plot the nominal and real yield curves.
PlotDates = (Settle+calmonths(1):calmonths(1):Settle+calyears(30)-1)';
PlotTimeToMaturity = yearfrac(Settle,PlotDates);
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TIPSNelsonSiegelZeroRates = zerorates(TIPSNelsonSiegel,PlotDates);
TIPSNelsonSiegelParYields = zero2pyld(TIPSNelsonSiegelZeroRates,PlotDates,Settle, ...
    'InputCompounding', -1, 'OutputCompounding', 2);

NominalSvenssonZeroRates = zerorates(NominalSvensson,PlotDates);
NominalSvenssonParYields = zero2pyld(NominalSvenssonZeroRates,PlotDates,Settle, ...
    'InputCompounding', -1, 'OutputCompounding', 2);

plot(PlotTimeToMaturity,NominalSvenssonParYields*100,'r')
plot(PlotTimeToMaturity,TIPSNelsonSiegelParYields*100,'b')
hold off;

title('Nominal and Real Yield Curves for US Data, September 2, 2008')
xlabel('Time (Years)')
ylabel('Yield (%)')
legend({'Nominal yields','TIPS yields','Svensson fit to nominal yields',...
    'Nelson-Siegel fit to TIPS yields'},'location','southeast')

% Create an inflation-rate curve by subtracting the real curve from the
% nominal curve.
InflationRateCurve = ratecurve("zero", Settle, PlotDates, ...
    NominalSvenssonZeroRates - TIPSNelsonSiegelZeroRates);

figure
plot(PlotTimeToMaturity, zero2pyld(...
    zerorates(InflationRateCurve, PlotDates), PlotDates, Settle, ...
    'InputCompounding', -1, 'OutputCompounding', 2)*100,'b');
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title('Inflation-Rate Curve for US Data, September 2, 2008')
xlabel('Time (Years)')
ylabel('Inflation Rate (%)')
legend({'Inflation-rate curve computed from bond yields'},'location','southeast')

Constructing Inflation Curves from Zero-Coupon Inflation Swaps

Inflation-linked derivatives have also experienced growth in the market. Some of the most liquidly
traded inflation derivatives are zero coupon inflation swaps (ZeroCouponInflationSwap) and year-
on-year inflation swaps (YearYearInflationSwap).

In a zero-coupon inflation swap, the inflation payer agrees to pay the rate of inflation at maturity
(lagged by a certain amount) compounded by the number of years. The inflation receiver typically
pays a fixed rate, again compounded by the tenor of the instrument. At the inception of the zero-
coupon inflation swap, the fixed rate is set to the projected inflation rate for the life of the swap. This
rate is called the "breakeven inflation swap rate" and it is quoted in the market [6].

Using the notation from Hurd and Relleen, you compute the rate as:

(1 + Rateswap)T = (1 + Inf lationt − L, t + T − L)T

where t is the current time, T is the tenor, and L is the lag. [5]

At maturity, the actual cash flows of the zero-coupon inflation swap are:

FixedLeg = N × [(1 + k)M − 1]
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Inf lationLeg = N ×
I(TM)

I0
− 1

where

• Nis the reference notional of the swap.
• k is the fixed inflation rate.
• Mis the number of years for the life of the swap.
• I(TM)is the inflation index at the maturity date with some lag (for example, three months).
• I0 is the inflation index at the start date with some lag (for example, three months).

While the fixed-leg cash flow might be different from the actual inflation-leg cash flow at maturity, the
fixed breakeven inflation swap rate of the zero-coupon inflation swap represents the projected
inflation rate for the tenor of the swap at inception. You can build an inflation curve from a series of
breakeven zero-coupon inflation swap rates starting on the same date and maturing on different
dates. Here, the dates are already adjusted with the appropriate indexation lag to simplify the
notation:

I(0, T1Y) = I(T0)(1 + b(0; T0, T1Y))T1Y − T0

I(0, T2Y) = I(T0)(1 + b(0; T0, T2Y))T2Y − T0

I(0, T3Y) = I(T0)(1 + b(0; T0, T3Y))T3Y − T0

. . .

I(0, Ti) = I(T0)(1 + b(0; T0, Ti))
Ti− T0

where

• I(0, Ti) is the breakeven inflation index reference number for maturity date Ti.
• I(T0) is the base inflation index value for the starting date T0.
• b(0; T0, Ti) is the breakeven inflation rate for the zero-coupon inflation swap maturing on Ti.

You can get your inflation curve this by using the inflationbuild function to create an
inflationcurve object. To build an inflationcurve from zero-coupon inflation swap rates, first
define the base inflation date and the corresponding base inflation-index value.

% Define the base inflation date and index value for the inflation-index
% curve.
BaseDate = datetime(2020,6,1);
BaseIndexValue = 100;

Then, define the zero-coupon inflation swap rates and the corresponding maturity dates already
adjusted with the appropriate indexation lag.

% Define the zero-coupon inflation swap rates and maturity dates.
ZCISTimes = (calyears([1 2 3 4 5 7 10 20 30]))';
ZCISRates = [0.42 0.54 0.76 0.87 0.92 1.39 1.71 2.01 2.46]'./100

ZCISRates = 9×1
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    0.0042
    0.0054
    0.0076
    0.0087
    0.0092
    0.0139
    0.0171
    0.0201
    0.0246

ZCISDates = BaseDate + ZCISTimes

ZCISDates = 9x1 datetime
   01-Jun-2021
   01-Jun-2022
   01-Jun-2023
   01-Jun-2024
   01-Jun-2025
   01-Jun-2027
   01-Jun-2030
   01-Jun-2040
   01-Jun-2050

In pricing inflation derivatives and building inflation curves, incorporating seasonality can be a
critical factor. The zero-coupon inflation swap rates typically have maturities that increase in whole
number of years. As a result, the inflation curve is typically built from zero-coupon inflation swap
rates on an annual basis. However, when computing inflation-index values for monthly periods that
are not whole number of years, you can make seasonal adjustments to reflect the seasonal patterns of
inflation within the year. These 12 monthly seasonal rates are annualized and they add up to zero to
ensure that the cumulative seasonal adjustments are reset to zero every year. In the
inflationbuild function and the inflationcurve object, you define these seasonal rates using
the 'Seasonality' name-value pair argument and they are internally corrected to ensure that they
add to zero.

% Define the 12 monthly seasonal rates.
%
% Months:
%    Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec
%     1     2     3     4     5     6     7     8     9    10    11    12
% Seasonal Rates (percent):
%   -6.34 -3.00 -1.34  3.34  5.34  3.66  8.66  5.66 -2.34 -2.66 -4.66 -6.32
SeasonalRates = [-6.34 -3.00 -1.34 3.34 5.34 3.66 8.66 5.66 -2.34 -2.66 -4.66 -6.32]./100

SeasonalRates = 1×12

   -0.0634   -0.0300   -0.0134    0.0334    0.0534    0.0366    0.0866    0.0566   -0.0234   -0.0266   -0.0466   -0.0632

% Build an inflation-index curve from zero-coupon inflation swap rates.
myInflationCurve = inflationbuild(BaseDate, BaseIndexValue, ...
    ZCISDates, ZCISRates, 'Seasonality', SeasonalRates)

myInflationCurve = 
  inflationcurve with properties:

                    Basis: 0
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                    Dates: [10x1 datetime]
     InflationIndexValues: [10x1 double]
    ForwardInflationRates: [9x1 double]
              Seasonality: [12x1 double]

Once you have created the inflationcurve object, compute the inflation-index values for each
month using indexvalues.

% Compute the inflation-index values.
IndexPlotDates = (BaseDate:calmonths(1):BaseDate+calyears(10))';
IndexPlotValues = indexvalues(myInflationCurve, IndexPlotDates);

To visualize the seasonal patterns of inflation that occur within each year, plot the computed inflation-
index values.

% Plot the inflation-index curve.
figure; plot(IndexPlotDates, IndexPlotValues)
hold on;
plot(myInflationCurve.Dates(1:8), myInflationCurve.InflationIndexValues(1:8), 'o')
hold off;

title('Inflation-Index Curve Built from Zero-Coupon Inflation Swaps (ZCIS)')
xlabel('Years')
ylabel('Inflation-Index Values')
legend({'Interpolated inflation-index values','ZCIS inflation-index values'},'location','northwest')
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Price Inflation-Indexed Instruments Using an Inflation Curve

With the inflationcurve object created, you can price inflation-indexed instruments such as zero-
coupon inflation swaps (ZeroCouponInflationSwap), year-on-year inflation swaps
(YearYearInflationSwap), and inflation-indexed bonds (InflationBond).

First, create a ratecurve object using ratecurve.

Settle = datetime(2020,9,25);
Type = "zero";
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0043 0.0051 0.0062 0.0072 0.0096 0.0121 0.0172 0.0241 0.0302 0.0308]';
ZeroDates = Settle + ZeroTimes;
ZeroCurve = ratecurve('zero',Settle,ZeroDates,ZeroRates)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 25-Sep-2020
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Using the ratecurve and inflationcurve objects as inputs, create an Inflation pricer object
using finpricer.

outPricer = finpricer("Inflation",'DiscountCurve',ZeroCurve,'InflationCurve',myInflationCurve)

outPricer = 
  Inflation with properties:

     DiscountCurve: [1x1 ratecurve]
    InflationCurve: [1x1 inflationcurve]

Create an InflationBond instrument using fininstrument.

IssueDate = datetime(2020,9,20);
Maturity = datetime(2025,9,20);
CouponRate = 0.023;

InflationBond = fininstrument("InflationBond",'IssueDate',IssueDate,'Maturity',Maturity,'CouponRate',CouponRate) 

InflationBond = 
  InflationBond with properties:

                  CouponRate: 0.0230
                      Period: 2
                       Basis: 0
                   Principal: 100
    DaycountAdjustedCashFlow: 0
                         Lag: 3
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       BusinessDayConvention: "actual"
                    Holidays: NaT
                EndMonthRule: 1
                   IssueDate: 20-Sep-2020
             FirstCouponDate: NaT
              LastCouponDate: NaT
                    Maturity: 20-Sep-2025
                        Name: ""

Here, the default indexation lag is three months and the bond issue date is 20-Sep-2020. The first
date on the inflation curve of the pricer must be on or before 20-Jun-2020 to price this instrument.
In this example, the first date on the inflation curve of the pricer is 01-Jun-2020.

Price the InflationBond instrument by using the price function for the Inflation pricer.

InflationBondPrice = price(outPricer, InflationBond)

InflationBondPrice = 110.1314
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[1] Anderson N. and J. Sleath. "New Estimates of the UK Real and Nominal Yield Curves." Bank of
England, working paper 126, 2001.

[2] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice: With Smile, Inflation and
Credit. Springer, 2006.

[3] Deacon, M., A. Derry, and D. Mirfendereski. Inflation-Indexed Securities: Bonds, Swaps, and Other
Derivatives. Wiley Finance, 2004.

[4] Gurkaynak, R. S., B.P. Sack, and J.H. Wright. "The TIPS Yield Curve and Inflation Compensation."
FEDS Working Paper No. 2008-05, October 2008.

[5] Hurd, M. and J. Relleen. "New Information from Inflation Swaps and Index-linked Bonds."
Quarterly Bulletin, Spring 2006.

[6] Kerkhof, J. "Inflation Derivatives Explained." Lehman Brothers, 2005.

See Also
fininstrument | finmodel | finpricer

More About
• “Choose Instruments, Models, and Pricers” on page 1-53
• “Mapping Financial Instruments Toolbox Functions to Object-Based Framework for Instruments,

Models, and Pricers” on page 1-70
• “Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework” on page

1-93
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Workflow to Price an Equity, Commodity, or FX Instrument
Price a Vanilla option with the Black-Scholes closed form formula. For more information on the
supported equity, commodity, or FX instruments, see “Choose Instruments, Models, and Pricers” on
page 1-53.

Price Vanilla Instrument Using Black-Scholes Model and Black-Scholes
Pricer
This example shows the workflow to price a Vanilla instrument when you use a BlackScholes
model and a BlackScholes pricing method.

Create Vanilla Instrument Object

Use fininstrument to create a Vanilla instrument object.

VanillaOpt = fininstrument("Vanilla",'ExerciseDate',datetime(2018,5,1),'Strike',29,'OptionType',"put",'ExerciseStyle',"european",'Name',"vanilla_option")

VanillaOpt = 
  Vanilla with properties:

       OptionType: "put"
    ExerciseStyle: "european"
     ExerciseDate: 01-May-2018
           Strike: 29
             Name: "vanilla_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',0.25)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.2500
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,1,1);
Maturity = datetime(2019,1,1);
Rate = 0.05;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',1)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 1
                Dates: 01-Jan-2019
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                Rates: 0.0500
               Settle: 01-Jan-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create BlackScholes Pricer Object

Use finpricer to create a BlackScholes pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'DiscountCurve',myRC,'Model',BlackScholesModel,'SpotPrice',30,'DividendValue',0.045)

outPricer = 
  BlackScholes with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 30
    DividendValue: 0.0450
     DividendType: "continuous"

Price Vanilla Instrument

Use price to compute the price and sensitivities for the Vanilla instrument.

[Price, outPR] = price(outPricer,VanillaOpt,["all"])

Price = 1.2046

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []

outPR.Results

ans=1×7 table
    Price      Delta       Gamma      Lambda      Vega       Rho       Theta 
    ______    ________    ________    _______    ______    _______    _______

    1.2046    -0.36943    0.086269    -9.3396    6.4702    -4.0959    -2.3107

See Also
fininstrument | finmodel | finpricer

Related Examples
• “Price Vanilla Instrument Using Heston Model and Multiple Different Pricers” on page 3-125
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More About
• “Choose Instruments, Models, and Pricers” on page 1-53
• “Mapping Financial Instruments Toolbox Functions to Object-Based Framework for Instruments,

Models, and Pricers” on page 1-70
• “Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework” on page

1-93
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Workflow to Price a Credit Derivative Instrument
Price and analyze a credit default swap. For more information on the supported credit derivative
instruments, see “Choose Instruments, Models, and Pricers” on page 1-53.

Price CDS Instrument Using Default Probability Curve and Credit
Pricer
This example shows the workflow to price a CDS instrument when you use a defprobcurve model
and a Credit pricing method.

Create CDS Instrument Object

Use fininstrument to create a CDS instrument object.

CDS = fininstrument("CDS",'Maturity',datetime(2021,9,15),'ContractSpread',15,'Notional',20000,'Period',4,'Basis',3,'BusinessDayConvention',"follow",'Name',"CDS_instrument")

CDS = 
  CDS with properties:

           ContractSpread: 15
                 Maturity: 15-Sep-2021
                   Period: 4
                    Basis: 3
             RecoveryRate: 0.4000
    BusinessDayConvention: "follow"
                 Holidays: NaT
        PayAccruedPremium: 1
                 Notional: 20000
                     Name: "CDS_instrument"

Create defprobcurve Object

Create a defprobcurve object using defprobcurve.

Settle = datetime(2020,9,20);
DefProbTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])];
DefaultProbabilities = [0.005 0.007 0.01 0.015 0.026 0.04 0.077 0.093 0.15 0.20]';
ProbDates = Settle + DefProbTimes;
DefaultProbCurve = defprobcurve(Settle,ProbDates,DefaultProbabilities,'Basis',5)

DefaultProbCurve = 
  defprobcurve with properties:

                  Settle: 20-Sep-2020
                   Basis: 5
                   Dates: [10x1 datetime]
    DefaultProbabilities: [10x1 double]

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2020,9,15);
Type = 'zero';
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ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2020
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Credit Pricer Object

Use finpricer to create a Credit pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("credit",'DefaultProbabilityCurve',DefaultProbCurve,'DiscountCurve',myRC)

outPricer = 
  Credit with properties:

              DiscountCurve: [1x1 ratecurve]
                   TimeStep: 10
    DefaultProbabilityCurve: [1x1 defprobcurve]

Price CDS Instrument

Use price to compute the price for the CDS instrument.

Price = price(outPricer,CDS)

Price = 52.7426

See Also
fininstrument | finmodel | finpricer

More About
• “Choose Instruments, Models, and Pricers” on page 1-53
• “Mapping Financial Instruments Toolbox Functions to Object-Based Framework for Instruments,

Models, and Pricers” on page 1-70
• “Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework” on page

1-93
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Workflow to Create and Price a Portfolio of Instruments
Price a portfolio of instruments — each with their own associated pricer. This workflow is common in
risk situations where you may have a portfolio of securities that need to be valued.

Create and Price Portfolio of Instruments
Use finportfolio and pricePortfolio to create and price a portfolio of interest-rate and equity
instruments. The portfolio contains a vanilla FixedBond, an OptionEmbeddedFixedBond, a
Vanilla European call option, a Vanilla American call option, and an Asian call option.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates);

Create the Instrument Objects

Use fininstrument to create the instrument objects.

% Vanilla FixedBond
CouponRate = 0.0325;
Maturity = datetime(2038,3,15);
Period = 1;
VanillaBond = fininstrument("FixedBond",'Maturity',Maturity,'CouponRate',CouponRate,...
    'Period',Period,'Name',"VanillaBond")

VanillaBond = 
  FixedBond with properties:

                  CouponRate: 0.0325
                      Period: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 15-Mar-2038
                        Name: "VanillaBond"

% OptionEmbeddedBond
Maturity = datetime(2024,9,15);
CouponRate = 0.035;
Strike = 100;
ExerciseDates = datetime(2023,9,15);
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CallSchedule =  timetable(ExerciseDates,Strike,'VariableNames',{'Strike Schedule'});
Period = 1;
CallableBond = fininstrument("OptionEmbeddedFixedBond", "Maturity",Maturity,...
    'CouponRate',CouponRate,'Period',Period, ...
    'CallSchedule',CallSchedule,...
    'Name',"CallableBond");

% Vanilla European call option
ExerciseDate = datetime(2022,1,1);
Strike = 96;
OptionType = 'call';
CallOpt = fininstrument("Vanilla",'ExerciseDate',ExerciseDate,'Strike',Strike,...
    'OptionType',OptionType, 'Name',"EuropeanCallOption")

CallOpt = 
  Vanilla with properties:

       OptionType: "call"
    ExerciseStyle: "european"
     ExerciseDate: 01-Jan-2022
           Strike: 96
             Name: "EuropeanCallOption"

% Vanilla American call option
ExerciseDate = datetime(2023,1,1);
Strike = 97;
OptionType = 'call';
CallOpt_American = fininstrument("Vanilla",'ExerciseDate',ExerciseDate,'Strike',Strike,...
    'OptionType',OptionType, 'ExerciseStyle', "american", ...
    'Name',"AmericanCallOption")

CallOpt_American = 
  Vanilla with properties:

       OptionType: "call"
    ExerciseStyle: "american"
     ExerciseDate: 01-Jan-2023
           Strike: 97
             Name: "AmericanCallOption"

% Asian call option
ExerciseDate = datetime(2023,1,1);
Strike = 102;
OptionType = 'call';
CallOpt_Asian = fininstrument("Asian",'ExerciseDate',ExerciseDate,'Strike',Strike,...
    'OptionType',OptionType,'Name',"AsianCall")

CallOpt_Asian = 
  Asian with properties:

          OptionType: "call"
              Strike: 102
         AverageType: "arithmetic"
        AveragePrice: 0
    AverageStartDate: NaT
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       ExerciseStyle: "european"
        ExerciseDate: 01-Jan-2023
                Name: "AsianCall"

Create Model Objects

Use finmodel to create HullWhite and BlackScholes model objects.

% Create Hull-White model
Vol = 0.01;
Alpha = 0.1;
HWModel = finmodel("hullwhite",'alpha',Alpha,'sigma',Vol);

% Create Black-Scholes model
Vol = .1;
SpotPrice = 95;
BlackScholesModel = finmodel("BlackScholes",'Volatility',Vol);

Create Pricer Objects

Use finpricer to create Discount, IRTree, BlackScholes, Levy, and BjerksundStensland
pricer objects and use the ratecurve object for the 'DiscountCurve' name-value pair argument.

% Create Discount pricer
DiscPricer = finpricer("Discount","DiscountCurve",ZeroCurve);

% Create Hull-White tree pricer
TreeDates = Settle + calyears(1:30);
HWTreePricer = finpricer("IRTree",'Model',HWModel,'DiscountCurve',ZeroCurve,...
    'TreeDates',TreeDates');

% Create BlackScholes, Levy, and BjerksundStensland pricers
BLSPricer = finpricer("analytic",'DiscountCurve',ZeroCurve,'Model',BlackScholesModel,'SpotPrice',SpotPrice);
LevyPricer = finpricer("analytic",'DiscountCurve',ZeroCurve,'Model',BlackScholesModel,...
                        'SpotPrice',SpotPrice,'PricingMethod',"Levy");
BJSpricer = finpricer("analytic",'DiscountCurve',ZeroCurve,'Model',BlackScholesModel,...
                        'SpotPrice',SpotPrice,'PricingMethod',"BjerksundStensland");

Create finportfolio Object

Create a finportfolio object that contains all of the instrument and pricer objects using
finportfolio.

myPort = finportfolio([VanillaBond CallableBond CallOpt CallOpt_American CallOpt_Asian]',...
                            [DiscPricer HWTreePricer BLSPricer BJSpricer LevyPricer]')

myPort = 
  finportfolio with properties:

    Instruments: [5x1 fininstrument.FinInstrument]
        Pricers: [5x1 finpricer.FinPricer]
    PricerIndex: [5x1 double]
       Quantity: [5x1 double]
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Price Portfolio

Use pricePortfolio to compute the price and sensitivities for the portfolio and the instruments in
the portfolio.

[PortPrice,InstPrice,PortSens,InstSens] = pricePortfolio(myPort)

PortPrice = 237.3275

InstPrice = 5×1

  107.4220
  110.8389
    7.5838
    8.8705
    2.6123

PortSens=1×8 table
    Price      Delta     Gamma    Lambda     Vega      Theta      Rho       DV01 
    ______    _______    _____    ______    ______    _______    ______    ______

    237.33    -546.39    2840     26.354    124.28    -4.0673    418.68    0.1579

InstSens=5×8 table
                          Price      Delta      Gamma      Lambda     Vega       Theta       Rho       DV01 
                          ______    _______    ________    ______    _______    ________    ______    ______

    VanillaBond           107.42        NaN         NaN       NaN        NaN         NaN       NaN    0.1579
    CallableBond          110.84     -547.9      2839.9       NaN    -62.532         NaN       NaN       NaN
    EuropeanCallOption    7.5838    0.57026    0.022762    7.1435     67.763     -1.3962    153.68       NaN
    AmericanCallOption    8.8705     0.5845    0.019797    6.2597     76.808     -1.8677    200.68       NaN
    AsianCall             2.6123    0.35611    0.032053     12.95     42.238    -0.80342     64.31       NaN

See Also
fininstrument | finmodel | finpricer

Related Examples
• “Price Portfolio of Bond and Bond Option Instruments” on page 2-173

More About
• “Choose Instruments, Models, and Pricers” on page 1-53
• “Mapping Financial Instruments Toolbox Functions to Object-Based Framework for Instruments,

Models, and Pricers” on page 1-70
• “Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework” on page

1-93
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Workflow for Creating and Analyzing a ratecurve and
parametercurve

Use ratecurve or irbootstrap to create a ratecurve object.
% Create a ratecurve
Settle = datetime(2019,9,15);
Type = "zero";
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 

  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10×1 datetime]
                Rates: [10×1 double]
               Settle: 15-Sep-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Use zerorates, forwardrates, or discountfactors with the ratecurve object.

CurveSettle = datetime(2019,9,15);

% zerorates
outZeroRates = zerorates(myRC,CurveSettle+30:30:CurveSettle+720)

% forwardrates
outForwardRates = forwardrates(myRC,datetime(2019,12,15),datetime(2021,9,15),6,7)

% discountfactors
outDiscountFactors = discountfactors(myRC,CurveSettle+30:30:CurveSettle+720)

outZeroRates =

  Columns 1 through 14

    0.0052    0.0052    0.0052    0.0052    0.0052    0.0052    0.0052    0.0053    0.0053    0.0054    0.0054    0.0055    0.0055    0.0056

  Columns 15 through 24

    0.0056    0.0057    0.0057    0.0058    0.0058    0.0059    0.0059    0.0060    0.0060    0.0061

outForwardRates =

    0.0062

outDiscountFactors =

  Columns 1 through 14
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    0.9996    0.9991    0.9987    0.9983    0.9979    0.9974    0.9970    0.9965    0.9961    0.9956    0.9951    0.9946    0.9941    0.9936

  Columns 15 through 24

    0.9931    0.9926    0.9920    0.9915    0.9910    0.9904    0.9898    0.9893    0.9887    0.9881

Use parametercurve, fitNelsonSiegel, or fitSvensson to create a parametercurve object.

% parametercurve
myPC = parametercurve('zero',datetime(2019,9,15),@(t) polyval([-0.0001 0.003 0.02],t),'Parameters',[-0.0001 0.003 0.02])

myPC = 

  parametercurve with properties:

              Type: "zero"
            Settle: 15-Sep-2019
       Compounding: -1
             Basis: 0
    FunctionHandle: @(t)polyval([-0.0001,0.003,0.02],t)
        Parameters: [-1.0000e-04 0.0030 0.0200]

% fitNelsonSiegel
Settle = datetime(2017,9,15);
  Maturity = [datetime(2019,9,15);datetime(2021,9,15);...
      datetime(2023,9,15);datetime(2026,9,7);...
      datetime(2035,9,15);datetime(2047,9,15)];
  
  CleanPrice = [100.1;100.1;100.8;96.6;103.3;96.3];
  CouponRate = [0.0400;0.0425;0.0450;0.0400;0.0500;0.0425];
  
  nInst = numel(CouponRate);
Bonds(nInst,1) = fininstrument.FinInstrument;
for ii=1:nInst
    Bonds(ii) = fininstrument("FixedBond","Maturity",Maturity(ii),...
        "CouponRate",CouponRate(ii));
end

NSModel = fitNelsonSiegel(Settle,Bonds,CleanPrice)

NSModel = 

  parametercurve with properties:

              Type: "zero"
            Settle: 15-Sep-2017
       Compounding: -1
             Basis: 0
    FunctionHandle: @(t)fitF(Params,t)
        Parameters: [1.2473e-05 0.0362 0.0903 16.4263]

% fitSvensson
Settle = datetime(2017,9,15);
  Maturity = [datetime(2019,9,15);datetime(2021,9,15);...
      datetime(2023,9,15);datetime(2026,9,7);...
      datetime(2035,9,15);datetime(2047,9,15)];
  
  CleanPrice = [100.1;100.1;100.8;96.6;103.3;96.3];
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  CouponRate = [0.0400;0.0425;0.0450;0.0400;0.0500;0.0425];
  
  nInst = numel(CouponRate);
Bonds(nInst,1) = fininstrument.FinInstrument;
for ii=1:nInst
    Bonds(ii) = fininstrument("FixedBond","Maturity",Maturity(ii),...
        "CouponRate",CouponRate(ii));
end

SvenModel = fitSvensson(Settle,Bonds,CleanPrice)

SvenModel = 

  parametercurve with properties:

              Type: "zero"
            Settle: 15-Sep-2017
       Compounding: -1
             Basis: 0
    FunctionHandle: @(t)fitF(Params,t)
        Parameters: [2.2821 -41.8873 41.4090 -5.9589 0.3255 3.2356]

Use zerorates, discountfactors, forwardrates with the myPC parametercurve object.

% zerorates
CurveSettle = datetime('15-Sep-2019');
outZeroRates = zerorates(myPC,CurveSettle+30:30:CurveSettle+720)

% discountfactors
CurveSettle = datetime('15-Sep-2019');
outDiscountFactors = discountfactors(myPC,CurveSettle+30:30:CurveSettle+720)

% forwardrates
outForwardRates = forwardrates(myPC,datetime(2019,9,15),datetime(2020,9,15),6,7)

outZeroRates =

  Columns 1 through 14

    0.0202    0.0205    0.0207    0.0210    0.0212    0.0215    0.0217    0.0219    0.0222    0.0224    0.0226    0.0229    0.0231    0.0233

  Columns 15 through 24

    0.0235    0.0238    0.0240    0.0242    0.0244    0.0246    0.0249    0.0251    0.0253    0.0255

outDiscountFactors =

  Columns 1 through 14

    0.9983    0.9966    0.9949    0.9931    0.9913    0.9895    0.9876    0.9857    0.9838    0.9818    0.9798    0.9778    0.9757    0.9736

  Columns 15 through 24

    0.9715    0.9693    0.9671    0.9649    0.9627    0.9604    0.9581    0.9558    0.9534    0.9510

outForwardRates =

1 Getting Started

1-48



    0.0229

Convert RateSpec to a ratecurve Object
You can create a RateSpec using intenvset or toRateSpec from an IRDataCurve object. Then,
you can covert this previously created RateSpec to a ratecurve object.

% Assume there is a RateSpec
Settle = datetime('01-Oct-2019');
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
Basis = 1;
RateSpec = intenvset('StartDates', Settle, 'EndDates', ZeroDates, ...
    'Rates', ZeroRates, 'Basis', Basis)

RateSpec = 

  struct with fields:

           FinObj: 'RateSpec'
      Compounding: 2
             Disc: [10×1 double]
            Rates: [10×1 double]
         EndTimes: [10×1 double]
       StartTimes: [10×1 double]
         EndDates: [10×1 double]
       StartDates: 737699
    ValuationDate: 737699
            Basis: 1
     EndMonthRule: 1

% Convert the RateSpec to a ratecurve
myRC = ratecurve("zero",RateSpec.ValuationDate,RateSpec.EndDates,RateSpec.Rates,...
"Compounding",RateSpec.Compounding,"Basis",RateSpec.Basis)

myRC = 

  ratecurve with properties:

                 Type: "zero"
          Compounding: 2
                Basis: 1
                Dates: [10×1 datetime]
                Rates: [10×1 double]
               Settle: 01-Oct-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

% Check the discount factors
OldDF = intenvget(intenvset(RateSpec,'EndDates',datetime('01-Oct-2024')),'Disc')
NewDF = discountfactors(myRC,datetime('01-Oct-2024'))

OldDF =

    0.9424
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NewDF =

    0.9424

In this case, the RateSpec and ratecurve are identical. This may not always be the case because
yearfrac is used to compute times in ratecurve while date2time is used in computing a
RateSpec. For more information, see “Difference Between yearfrac and date2time”.

See Also
fininstrument | finmodel | finpricer

More About
• “Choose Instruments, Models, and Pricers” on page 1-53
• “Mapping Financial Instruments Toolbox Functions to Object-Based Framework for Instruments,

Models, and Pricers” on page 1-70
• “Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework” on page

1-93
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Workflow for Creating and Analyzing a defprobcurve
You can use defprobcurve or defprobstrip to create a defprobcurve object.
% defprobcurve
Settle = datetime(2019,9,20);
DefProbTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])];
DefaultProbabilities = [0.005 0.007 0.01 0.015 0.026 0.04 0.077 0.093 0.15 0.20]';
ProbDates = Settle + DefProbTimes;
DefaultProbCurve = defprobcurve(Settle,ProbDates,DefaultProbabilities)

DefaultProbCurve = 

  defprobcurve with properties:

                  Settle: 20-Sep-2019
                   Basis: 2
                   Dates: [10×1 datetime]
    DefaultProbabilities: [10×1 double]

You can then use the defprobcurve object with survprobshazardrates.
% hazardrates 
hazardrates(DefaultProbCurve)

ans =

    0.0099
    0.0039
    0.0030
    0.0050
    0.0111
    0.0142
    0.0194
    0.0057
    0.0064
    0.0060

% survprobs
Settle = datetime(2019,9,20);
SurvProbTimes = [calmonths([6 12 18])];
SurvProbDates = Settle + SurvProbTimes;
outSurvProb = survprobs(DefaultProbCurve, SurvProbDates)

outSurvProb =

    0.9950
    0.9930
    0.9915

See Also
fininstrument | finmodel | finpricer

More About
• “Choose Instruments, Models, and Pricers” on page 1-53
• “Mapping Financial Instruments Toolbox Functions to Object-Based Framework for Instruments,

Models, and Pricers” on page 1-70
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• “Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework” on page
1-93
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Choose Instruments, Models, and Pricers
The object-based framework supports a workflow for creating instruments, models, and pricer objects
to price financial instruments. Using these objects, you can price interest-rate instruments; inflation
instruments; equity, commodity, or FX instruments; or credit derivative instruments.

Interest-Rate Instruments with Associated Models and Pricers
The following table lists the interest-rate instrument objects with models and pricers.

Interest-Rate Instrument
Type

Available Models Available Pricers

Cap • HullWhite
• BlackKarasinski
• Black
• Normal
• BraceGatarekMusiela
• SABRBraceGatarekMusiel

a
• LinearGaussian2F

• HullWhite for HullWhite
model

• Black for Black model
• Normal for Normal model
• IRTree for HullWhite or

BlackKarasinski models
• IRMonteCarlo for

HullWhite,
BraceGatarekMusiela,
SABRBraceGatarekMusiel
a, or LinearGaussian2F
models

Floor • HullWhite
• BlackKarasinski
• Black
• Normal
• BraceGatarekMusiela
• SABRBraceGatarekMusiel

a
• LinearGaussian2F

• HullWhite for HullWhite
model

• Black for Black model
• Normal for Normal model
• IRTree for HullWhite or

BlackKarasinski models
• IRMonteCarlo for

HullWhite,
BraceGatarekMusiela,
SABRBraceGatarekMusiel
a, or LinearGaussian2F
models
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Interest-Rate Instrument
Type

Available Models Available Pricers

Swaption • HullWhite
• BlackKarasinski
• Black
• SABR
• Normal
• LinearGaussian2F

• HullWhite for HullWhite
model

• Black for Black model
• SABR for SABR model
• Normal for Normal model
• IRTree for HullWhite or

BlackKarasinski models
• IRMonteCarlo for

HullWhite or
LinearGaussian2F models

FixedBondOption • HullWhite
• BlackKarasinski
• BraceGatarekMusiela
• SABRBraceGatarekMusiel

a
• LinearGaussian2F

• IRTree for HullWhite or
BlackKarasinski models

• IRMonteCarlo for
HullWhite,
BraceGatarekMusiela,
SABRBraceGatarekMusiel
a, or LinearGaussian2F
models

OptionEmbeddedFixedBond • HullWhite
• BlackKarasinski
• BraceGatarekMusiela
• SABRBraceGatarekMusiel

a
• LinearGaussian2F

• IRTree for HullWhite or
BlackKarasinski models

• IRMonteCarlo for
HullWhite,
BraceGatarekMusiela,
SABRBraceGatarekMusiel
a, or LinearGaussian2F
models

OptionEmbeddedFloatBond • HullWhite
• BlackKarasinski
• BraceGatarekMusiela
• SABRBraceGatarekMusiel

a
• LinearGaussian2F

• IRTree for HullWhite or
BlackKarasinski models

• IRMonteCarlo for
HullWhite,
BraceGatarekMusiela,
SABRBraceGatarekMusiel
a, or LinearGaussian2F
models

Swap • ratecurve object
• HullWhite
• BlackKarasinski
• LinearGaussian2F

• Discount
• IRTree for HullWhite or

BlackKarasinski models
• IRMonteCarlo for

HullWhite or
LinearGaussian2F models
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Interest-Rate Instrument
Type

Available Models Available Pricers

FixedBond • Use a ratecurve object for
a Discount pricer.

• Use a HullWhite or
BlackKarasinski model
for an IRTree pricer.

• BraceGatarekMusiela
• SABRBraceGatarekMusiel

a
• LinearGaussian2F

• Discount
• IRTree for HullWhite or

BlackKarasinski models
• IRMonteCarlo for

HullWhite,
BraceGatarekMusiela,
SABRBraceGatarekMusiel
a, or LinearGaussian2F
models

FloatBond • Use a ratecurve object for
a Discount pricer.

• Use a HullWhite or
BlackKarasinski model
for an IRTree pricer.

• BraceGatarekMusiela
• SABRBraceGatarekMusiel

a
• LinearGaussian2F

• Discount
• IRTree for HullWhite or

BlackKarasinski models
• IRMonteCarlo for

HullWhite,
BraceGatarekMusiela,
SABRBraceGatarekMusiel
a, or LinearGaussian2F
models

FloatBondOption • Use a ratecurve object for
a Discount pricer.

• Use a HullWhite or
BlackKarasinski model
for an IRTree pricer.

• BraceGatarekMusiela
• SABRBraceGatarekMusiel

a
• LinearGaussian2F

• Discount
• IRTree for HullWhite or

BlackKarasinski models
• IRMonteCarlo for

HullWhite,
BraceGatarekMusiela,
SABRBraceGatarekMusiel
a, or LinearGaussian2F
models

ConvertibleBond • BlackScholes • FiniteDifference for
BlackScholes model

Deposit Use a ratecurve object. • Discount
FRA Use a ratecurve object. • Discount
OvernightIndexedSwap Use a ratecurve object. • Discount

• irbootstrap for curve
construction

STIRFuture Use a ratecurve object. • Discount
• irbootstrap for curve

construction
OISFuture Use a ratecurve object. • Discount

• irbootstrap for curve
construction

BondFuture Use a ratecurve object. • Future
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Equity, Commodity, FX, and Energy Instruments with Associated
Models and Pricers
The following table lists the equity, commodity, FX , and energy instrument objects with models and
pricers.

Equity, Commodity, FX
Instrument Type

Available Models Available Pricers

Asian • BlackScholes
• Heston
• Merton
• Bates

• Levy for BlackScholes
model

• AssetTree for a Cox-Ross-
Rubinstein (CRR), equal-
probability (EQP), Leisen-
Reimer (LR), or Standard
Trinomial (ST) lattice tree
using a BlackScholes
model

• KemnaVorst for
BlackScholes model

• TurnbullWakeman or
BlackScholes model

• AssetMonteCarlo for
BlackScholes, Heston,
Merton, Bates models

Barrier • BlackScholes
• Heston
• Merton
• Bates

• BlackScholes for
BlackScholes model

• AssetTree for a Cox-Ross-
Rubinstein (CRR), equal-
probability (EQP), Leisen-
Reimer (LR), or Standard
Trinomial (ST) lattice tree
using a BlackScholes
model

• VannaVolga for
BlackScholes model

• FiniteDifference for
BlackScholes, Heston,
Merton, Bates models

• AssetMonteCarlo for
BlackScholes, Heston,
Merton, Bates models
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Equity, Commodity, FX
Instrument Type

Available Models Available Pricers

DoubleBarrier • BlackScholes
• Heston
• Merton
• Bates

• IkedaKunitomo for
BlackScholes model

• VannaVolga for
BlackScholes model

• FiniteDifference for
BlackScholes,
Heston,,Merton, or Bates
model

• AssetMonteCarlo for
BlackScholes, Heston,
Merton, Bates models

Lookback • BlackScholes
• Heston
• Merton
• Bates

• ConzeViswanathan for
BlackScholes model

• AssetTree for a Cox-Ross-
Rubinstein (CRR), equal-
probability (EQP), Leisen-
Reimer (LR), or Standard
Trinomial (ST) lattice tree
using a BlackScholes
model

• GoldmanSosinGatto for
BlackScholes model

• AssetMonteCarlo for
BlackScholes, Heston,
Merton, Bates models

PartialLookback • BlackScholes
• Heston
• Merton
• Bates

• HeynenKat for
BlackScholes model

• AssetMonteCarlo for
BlackScholes, Heston,
Merton, Bates models

Spread • BlackScholes
• Bachelier

For BlackScholes model:

• Kirk
• BjerksundStensland
• AssetMonteCarlo

For Bachelier model:

• AssetMonteCarlo
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Equity, Commodity, FX
Instrument Type

Available Models Available Pricers

VarianceSwap • ratecurve object
• Heston

For ratecurve object:

• ReplicatingVarianceSwa
p

For Heston model:

• Heston
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Equity, Commodity, FX
Instrument Type

Available Models Available Pricers

Vanilla • BlackScholes
• Bachelier
• Heston
• Merton
• Bates
• Dupire

For BlackScholes model:

• BlackScholes
• VannaVolga
• BjerksundStensland
• RollGeskeWhaley
• FiniteDifference
• AssetMonteCarlo
• AssetTree for a Cox-Ross-

Rubinstein (CRR), equal-
probability (EQP), Leisen-
Reimer (LR), or Standard
Trinomial (ST) lattice tree

For Heston model:

• FFT
• FiniteDifference
• NumericalIntegration
• AssetMonteCarlo

For Merton model:

• FFT
• FiniteDifference
• NumericalIntegration
• AssetMonteCarlo

For Bates model:

• FFT
• FiniteDifference
• NumericalIntegration
• AssetMonteCarlo

For Dupire model:

• FiniteDifference

For Bachelier model:

• AssetMonteCarlo
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Equity, Commodity, FX
Instrument Type

Available Models Available Pricers

Touch • BlackScholes
• Heston
• Merton
• Bates

• BlackScholes for
BlackScholes model

• VannaVolga for
BlackScholes model

• AssetMonteCarlo for
Bachelier model

DoubleTouch • BlackScholes
• Heston
• Merton
• Bates

• BlackScholes for
BlackScholes model

• VannaVolga for
BlackScholes model

• AssetMonteCarlo for
BlackScholes, Heston,
Merton, or Bates models

Cliquet • BlackScholes
• Heston
• Merton
• Bates

• Rubinstein for
BlackScholes model

• AssetMonteCarlo for
BlackScholes, Heston,
Merton, or Bates models

Binary • BlackScholes
• Bachelier
• Heston
• Merton
• Bates

• BlackScholes for
BlackScholes model

• AssetMonteCarlo for
BlackScholes, Heston,
Merton, Bachelier, or
Bates models

CommodityFuture Use a ratecurve object. • Future
FXFuture Use a ratecurve object. • Future
EquityIndexFuture Use a ratecurve object. • Future
ConvertibleBond • BlackScholes • FiniteDifference for

BlackScholes model

Inflation Instruments with Associated Models and Pricers
The following table lists the inflation instrument objects with models and pricers.

Inflation Instrument Type Available Models Available Pricers
InflationBond Use an inflationcurve object

and a ratecurve object.
• Inflation

YearYearInflationSwap Use an inflationcurve object
and a ratecurve object.

• Inflation

ZeroCouponInflationSwap Use an inflationcurve object
and a ratecurve object.

• Inflation
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Credit Derivative Instruments with Associated Models and Pricers
The following table lists the credit derivative instrument objects with models and pricers.

Credit Derivative Instrument
Type

Available Models Available Pricers

CDS Use a defprobcurve object
and a ratecurve object.

• Credit

CDSOption CDSBlack • CDSBlack

See Also
fininstrument | finmodel | finpricer

More About
• “Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments”

on page 1-22
• “Supported Exercise Styles” on page 1-62
• “Mapping Financial Instruments Toolbox Functions to Object-Based Framework for Instruments,

Models, and Pricers” on page 1-70
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Supported Exercise Styles
The following table lists the interest-rate instrument objects with their associated models and pricers
and supported Exercise styles.

Interest-Rate Instrument Type Exercise Styles
Swaption • "European" — HullWhite pricer for

HullWhite model
• "European" — Black pricer for Black

model
• "European" — SABR pricer for SABR model
• "European" — Normal pricer for Normal

model
• "European" or "American" — IRTree

pricer for HullWhite or BlackKarasinski
models

• "European" or "American" —
IRMonteCarlo pricer for HullWhite, or
LinearGaussian2F models

FixedBondOption • "European", "American", or "Bermudan"
— IRTree pricer for HullWhite or
BlackKarasinski models

• "European", "American", or "Bermudan"
— IRMonteCarlo pricer for HullWhite,
BraceGatarekMusiela,
SABRBraceGatarekMusiela, or
LinearGaussian2F models

FloatBondOption • "European", "American", or "Bermudan"
— IRTree pricer for HullWhite or
BlackKarasinski models

• "European", "American", or "Bermudan"
— IRMonteCarlo pricer for HullWhite,
BraceGatarekMusiela,
SABRBraceGatarekMusiela, or
LinearGaussian2F models

OptionEmbeddedFixedBond • "European", "American", or "Bermudan"
— IRTree pricer for HullWhite or
BlackKarasinski models

• "European", "American", or "Bermudan"
— IRMonteCarlo pricer for HullWhite,
BraceGatarekMusiela,
SABRBraceGatarekMusiela, or
LinearGaussian2F models
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Interest-Rate Instrument Type Exercise Styles
OptionEmbeddedFloatBond • "European", "American", or "Bermudan"

— IRTree pricer for HullWhite or
BlackKarasinski models

• "European", "American", or "Bermudan"
— IRMonteCarlo pricer for HullWhite,
BraceGatarekMusiela,
SABRBraceGatarekMusiela, or
LinearGaussian2F models

ConvertibleBond For BlackScholes model:

• "European", "American", or "Bermudan"
— FiniteDifference pricer

The following table lists the equity, commodity, or FX instrument objects with their associated models
and pricers and the supported Exercise styles.

Equity, Commodity, FX Instrument Type Exercise Styles
Asian For BlackScholes model:

• "European" — Levy pricer
• "European" — KemnaVorst pricer
• "European" — TurnbullWakeman pricer
• "European" or "American" —

AssetMonteCarlo pricer
• "European" or "American" — AssetTree

pricer

For Bates model:

• "European" or "American" —
AssetMonteCarlo pricer

For Merton model:

• "European" or "American" —
AssetMonteCarlo pricer

For Heston model:

• "European" or "American" —
AssetMonteCarlo pricer

 Supported Exercise Styles

1-63



Equity, Commodity, FX Instrument Type Exercise Styles
Barrier For BlackScholes model:

• "European" — BlackScholes pricer
• "European" or "American" —

FiniteDifference pricer
• "European" or "American" —

AssetMonteCarlo pricer
• "European" or "American" — AssetTree

pricer

For Bates model:

• "European" or "American" —
FiniteDifference pricer

• "European" or "American" —
AssetMonteCarlo pricer

For Merton model:

• "European" or "American" —
FiniteDifference pricer

• "European" or "American" —
AssetMonteCarlo pricer

For Heston model:

• "European" or "American" —
FiniteDifference pricer

• "European" or "American" —
AssetMonteCarlo pricer
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Equity, Commodity, FX Instrument Type Exercise Styles
DoubleBarrier For BlackScholes model:

• "European" — IkedaKunitomo pricer
• "European" or "American" —

FiniteDifference pricer
• "European" or "American" —

AssetMonteCarlo pricer

For Bates model:

• "European" or "American" —
FiniteDifference pricer

• "European" or "American" —
AssetMonteCarlo pricer

For Merton model:

• "European" or "American" —
FiniteDifference pricer

• "European" or "American" —
AssetMonteCarlo pricer

For Heston model:

• "European" or "American" —
FiniteDifference pricer

• "European" or "American" —
AssetMonteCarlo pricer
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Equity, Commodity, FX Instrument Type Exercise Styles
Lookback For BlackScholes model:

• "European" — ConzeViswanathan pricer
• "European" — GoldmanSosinGatto pricer
• "European" or "American" —

AssetMonteCarlo pricer
• "European" or "American" — AssetTree

pricer

For Bates model:

• "European" or "American" —
AssetMonteCarlo pricer

For Merton model:

• "European" or "American" —
AssetMonteCarlo pricer

For Heston model:

• "European" or "American" —
AssetMonteCarlo pricer

PartialLookback For BlackScholes model:

• "European" — HeynenKat pricer
• "European" or "American" —

AssetMonteCarlo pricer

For Bates model:

• "European" or "American" —
AssetMonteCarlo pricer

For Merton model:

• "European" or "American" —
AssetMonteCarlo pricer

For Heston model:

• "European" or "American" —
AssetMonteCarlo pricer

1 Getting Started

1-66



Equity, Commodity, FX Instrument Type Exercise Styles
Spread For BlackScholes model:

• "European" — Kirk pricer
• "European" — BjerksundStensland pricer
• "European" or "American" —

AssetMonteCarlo pricer

For Bachelier model:

• "European" or "American" —
AssetMonteCarlo pricer
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Equity, Commodity, FX Instrument Type Exercise Styles
Vanilla For BlackScholes model:

• "European" — BlackScholes pricer
• "American" — BjerksundStensland pricer
• "American" — RollGeskeWhaley pricer
• "European", "American", or "Bermudan"

—FiniteDifference pricer
• "European", "American", or "Bermudan"

— AssetMonteCarlo pricer
• "European", "American", or "Bermudan"

— AssetTree pricer

For Heston model:

• "European" — FFT pricer
• "European", "American", or "Bermudan"

— FiniteDifference pricer
• "European" — NumericalIntegration

pricer
• "European", "American", or "Bermudan"

— AssetMonteCarlo pricer

For Merton model:

• "European" — FFT pricer
• "European", "American", or "Bermudan"

— FiniteDifference pricer
• "European" — NumericalIntegration

pricer
• "European", "American", or "Bermudan"

— AssetMonteCarlo pricer

For Bates model:

• "European" — FFT pricer
• "European", "American", or "Bermudan"

— FiniteDifference pricer
• "European" — NumericalIntegration

pricer
• "European", "American", or "Bermudan"

— AssetMonteCarlo pricer

For Dupire model:

• "European", "American", or "Bermudan"
— FiniteDifference pricer

For Bachelier model:
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Equity, Commodity, FX Instrument Type Exercise Styles
• "European", "American", "Bermudan" —

AssetMonteCarlo pricer
Binary For BlackScholes model:

• "European" — BlackScholes pricer

For Heston, Bates, and Merton models:

• "European" — AssetMonteCarlo pricer

For Bachelier model:

• "European" — AssetMonteCarlo pricer
Cliquet For BlackScholes model:

• "European" — Rubinstein pricer

For BlackScholes, Heston, Bates, and
Merton models:

• "European" — AssetMonteCarlo pricer
ConvertibleBond For BlackScholes model:

• "European", "American", or "Bermudan"
— FiniteDifference pricer

See Also
fininstrument | finmodel | finpricer

More About
• “Choose Instruments, Models, and Pricers” on page 1-53
• “Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments”

on page 1-22
• “Mapping Financial Instruments Toolbox Functions to Object-Based Framework for Instruments,

Models, and Pricers” on page 1-70
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Mapping Financial Instruments Toolbox Functions to Object-
Based Framework for Instruments, Models, and Pricers

Financial Instruments Toolbox allows you to use either a function-based framework or an alternative
object-based framework to price financial instruments.

In the function-based framework, a typical workflow to price a bond with embedded options is as
follows.

1 Create a RateSpec instrument using intenvset.

% Zero Data
Settle = datetime(2018,9,15);
Type = "zero";
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
Compounding = -1;
Basis = 1;

% Instrument parameters
Maturity = datetime(2024,9,15);
CouponRate = 0.035;
Strike = 100;
ExerciseDates = datetime(2022,9,15);
CallSchedule =  timetable(ExerciseDates,Strike,'VariableNames',{'Strike Schedule'});
Period = 1;

% HW Parameters
Vol = 0.01;
Alpha = 0.1;
TreeDates = Settle + calyears(1:10);

RateSpec = intenvset('Compounding', Compounding,'StartDates', Settle,...
    'EndDates', ZeroDates,'Rates', ZeroRates,'Basis',Basis);

2 Create a Hull-White tree object using hwvolspec, hwtimespec, and hwtree.

HWVolSpec = hwvolspec(Settle, TreeDates, Vol,TreeDates, Alpha);
HWTimeSpec = hwtimespec(Settle, TreeDates, 1);
HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec);
OldPrice = optembndbyhw(HWTree,CouponRate,Settle,Maturity,'call',Strike,ExerciseDates,'Period',Period)

3 Price the bond with embedded options using an Hull-White interest-rate tree with
optembndbyhw.

OldPrice = optembndbyhw(HWTree,CouponRate,Settle,Maturity,'call',Strike,ExerciseDates,'Period',Period)

OldPrice =

  109.4814

By contrast, in the Financial Instruments Toolbox object-based workflow, you price an instrument
using instrument, model, and pricer objects:

1 Create an OptionEmbeddedFixedBond instrument using OptionEmbeddedFixedBond.

% Zero Data
Settle = datetime(2018,9,15);
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Type = "zero";
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
Compounding = -1;
Basis = 1;

% Instrument parameters
Maturity = datetime(2024,9,15);
CouponRate = 0.035;
Strike = 100;
ExerciseDates = datetime(2022,9,15);
CallSchedule =  timetable(ExerciseDates,Strike,'VariableNames',{'Strike Schedule'});
Period = 1;

% HW Parameters
Vol = 0.01;
Alpha = 0.1;
TreeDates = Settle + calyears(1:10);

CallableBond = fininstrument("OptionEmbeddedFixedBond", "Maturity",Maturity,...
    'CouponRate',CouponRate,'Period',Period, ...
    'CallSchedule',CallSchedule,'Name',"CallableBond",'Basis',Basis);

2 Create a ratecurve object using ratecurve.

myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates,'Basis',Basis);
3 Create a HullWhite model object using HullWhite.

HWModel = finmodel("HullWhite","Alpha",Alpha,"Sigma",Vol);
4 Create an IRTree pricer object using IRTree.

HWPricer = finpricer("IRTree",'Model',HWModel,'DiscountCurve',myRC,'TreeDates',TreeDates');
5 Price the bond instrument using price.

NewPrice = price(HWPricer, CallableBond)

NewPrice =

  109.4814

Note The function-based and object-based workflows can return different instrument prices even if
you use the same data. The difference is because the existing Financial Instruments Toolbox functions
internally use datetime and the object-based framework use yearfrac for date handling.

For a mapping of function-based instrument pricing to the object-based instrument pricing, see:

• “Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on page
1-73

• “Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument Objects”
on page 1-82

• “Mapping Financial Instruments Toolbox Functions for Credit Derivative Instrument Objects” on
page 1-92
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• “Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework” on page 1-
93

See Also

More About
• “Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments”

on page 1-22
• “Choose Instruments, Models, and Pricers” on page 1-53
• “Supported Exercise Styles” on page 1-62
• “Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework” on page

1-93
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Mapping Financial Instruments Toolbox Functions for Interest-
Rate Instrument Objects

The following table lists the Financial Instruments Toolbox functions for interest-rate instruments
mapped to the associated workflow using the object-based framework for instruments, models, and
pricers.

Financial Instruments Toolbox Function Object-Based Workflow
capbyblk Create the following objects:

1 Cap instrument
2 Black model
3 ratecurve
4 Black pricer

Compute the price of the Cap instrument using
price.

capbynormal Create the following objects:

1 Cap instrument
2 Normal model
3 ratecurve
4 Normal pricer

Compute the price of the Cap instrument using
price.

capbybk Create the following objects:

1 Cap instrument
2 BlackKarasinski model
3 ratecurve
4 IRTree pricer

Compute the price of the Cap instrument using
price.

capbyhw Create the following objects:

1 Cap instrument
2 BlackKarasinski model
3 ratecurve
4 IRTree pricer

Compute the price of the Cap instrument using
price.
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Financial Instruments Toolbox Function Object-Based Workflow
capbylg2f Create the following objects:

1 Cap instrument
2 LinearGaussian2F model
3 ratecurve
4 IRMonteCarlo pricer

Compute the price of the Cap instrument using
price.

floorbyblk Create the following objects:

1 Floor instrument
2 Black model
3 ratecurve
4 Black pricer

Compute the price of the Floor instrument using
price.

floorbynormal Create the following objects:

1 Floor instrument
2 Normal model
3 ratecurve
4 Normal pricer

Compute the price of the Floor instrument using
price.

floorbybk Create the following objects:

1 Floor instrument
2 BlackKarasinski model
3 ratecurve
4 IRTree pricer

Compute the price of the Floor instrument using
price.

floorbyhw Create the following objects:

1 Floor instrument
2 BlackKarasinski model
3 ratecurve
4 IRTree pricer

Compute the price of the Floor instrument using
price.
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Financial Instruments Toolbox Function Object-Based Workflow
floorbylg2f Create the following objects:

1 Floor instrument
2 LinearGaussian2F model
3 ratecurve
4 IRMonteCarlo pricer

Compute the price of the associated instrument
using price.

swaptionbyblk Create the following objects:

1 Swaption instrument
2 Black model
3 ratecurve
4 Black pricer

Compute the price of the Swaption instrument
using price.

swaptionbynormal Create the following objects:

1 Swaption instrument
2 Normal model
3 ratecurve
4 Normal pricer

Compute the price of the Swaption instrument
using price.

swaptionbybk Create the following objects:

1 Swaption instrument
2 BlackKarasinski model
3 ratecurve
4 IRTree pricer

Compute the price of the Swaption instrument
using price.

swaptionbyhw Create the following objects:

1 Swaption instrument
2 BlackKarasinski model
3 ratecurve
4 IRTree pricer

Compute the price of the Swaption instrument
using price.
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Financial Instruments Toolbox Function Object-Based Workflow
swaptionbylg2f Create the following objects:

1 Swaption instrument
2 LinearGaussian2F model
3 ratecurve
4 IRMonteCarlo pricer

Compute the price of the associated instrument
using price.

fixedbyzero Create the following objects:

1 FixedBond instrument
2 ratecurve
3 Discount pricer

Compute the price of the FixedBond instrument
using price.

fixedbybk Create the following objects:

1 FixedBond instrument
2 BlackKarasinski model
3 ratecurve
4 IRTree pricer

Compute the price of the FixedBond instrument
using price.

fixedbyhw Create the following objects:

1 FixedBond instrument
2 HullWhite model
3 ratecurve
4 IRTree pricer

Compute the price of the FixedBond instrument
using price.

bondbyzero Create the following objects:

1 FixedBond instrument
2 ratecurve
3 Discount pricer

Compute the price of the FixedBond instrument
using price.
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Financial Instruments Toolbox Function Object-Based Workflow
tfutbyprice Create the following objects:

1 BondFuture instrument
2 ratecurve
3 Future pricer

Compute the price of the BondFuture
instrument using price.

floatbyzero Create the following objects:

1 FloatBond instrument
2 ratecurve
3 Discount pricer

Compute the price of the FloatBond instrument
using price.

floatbybk Create the following objects:

1 FloatBond instrument
2 BlackKarasinski model
3 ratecurve
4 IRTree pricer

Compute the price of the FloatBond instrument
using price.

floatbyhw Create the following objects:

1 FloatBond instrument
2 HullWhite model
3 ratecurve
4 IRTree pricer

Compute the price of the FloatBond instrument
using price.

optbndbyhw Create the following objects:

1 FixedBondOption instrument
2 HullWhite model
3 ratecurve
4 IRTree pricer

Compute the price of the FixedBondOption
instrument using price.
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Financial Instruments Toolbox Function Object-Based Workflow
optbndbybk Create the following objects:

1 FixedBondOption instrument
2 BlackKarasinski model
3 ratecurve
4 IRTree pricer

Compute the price of the FixedBondOption
instrument using price.

optfloatbybk Create the following objects:

1 FloatBondOption instrument
2 BlackKarasinski model
3 ratecurve
4 IRTree pricer

Compute the price of the FloatBondOption
instrument using price.

optfloatbyhw Create the following objects:

1 FloatBondOption instrument
2 BlackKarasinski model
3 ratecurve
4 IRTree pricer

Compute the price of the FloatBondOption
instrument using price.

optembndbyhw Create the following objects:

1 OptionEmbeddedFixedBond instrument
2 HullWhite model
3 ratecurve
4 IRTree pricer

Compute the price of the
OptionEmbeddedFixedBond instrument using
price.
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Financial Instruments Toolbox Function Object-Based Workflow
optembndbybk Create the following objects:

1 OptionEmbeddedFixedBond instrument
2 BlackKarasinski model
3 ratecurve
4 IRTree pricer

Compute the price of the
OptionEmbeddedFixedBond instrument using
price.

optemfloatbybk Create the following objects:

1 OptionEmbeddedFloatBond instrument
2 BlackKarasinski model
3 ratecurve
4 IRTree pricer

Compute the price of the
OptionEmbeddedFloatBond instrument using
price.

optemfloatbyhw Create the following objects:

1 OptionEmbeddedFloatBond instrument
2 BlackKarasinski model
3 ratecurve
4 IRTree pricer

Compute the price of the
OptionEmbeddedFloatBond instrument using
price.

swapbyzero Create the following objects:

1 Swap instrument
2 ratecurve
3 Discount pricer

Compute the price of the Swap instrument using
price.
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Financial Instruments Toolbox Function Object-Based Workflow
swapbybk Create the following objects:

1 Swap instrument
2 BlackKarasinski model
3 ratecurve
4 IRTree pricer

Compute the price of the Swap instrument using
price.

swapbyhw Create the following objects:

1 Swap instrument
2 BlackKarasinski model
3 ratecurve
4 IRTree pricer

Compute the price of the Swap instrument using
price.

LiborMarketModel Create the following objects:

1 Cap, Floor, FixedBond, FloatBond,
FloatBondOption FixedBondOption,
OptionEmbeddedFixedBond, or
OptionEmbeddedFloatBond instrument

2 SABRBraceGatarekMusiela or
BraceGatarekMusiela model

3 ratecurve
4 IRMonteCarlo pricer

Compute the price of the associated instrument
using price.

LinearGaussian2F Create the following objects:

1 Cap, Floor, Swap, Swaption, FixedBond,
FloatBond, FloatBondOption
FixedBondOption,
OptionEmbeddedFixedBond, or
OptionEmbeddedFloatBond instrument

2 LinearGaussian2F model
3 ratecurve
4 IRMonteCarlo pricer

Compute the price of the associated instrument
using price.
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See Also
fininstrument | finmodel | finpricer

More About
• “Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments”

on page 1-22
• “Choose Instruments, Models, and Pricers” on page 1-53
• “Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument

Objects” on page 1-82
• “Mapping Financial Instruments Toolbox Functions for Credit Derivative Instrument Objects” on

page 1-92
• “Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework” on page

1-93
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Mapping Financial Instruments Toolbox Functions for Equity,
Commodity, FX Instrument Objects

The following table lists the Financial Instruments Toolbox functions for equity, FX, or commodity
instruments mapped to the associated workflow using the object-based framework for instruments,
models, and pricers.

Financial Instruments Toolbox Function Object-Based Workflow
asianbycrr Create the following objects:

1 Asian instrument
2 BlackScholes model
3 ratecurve
4 AssetTree pricer

Compute the price of the Asian instrument using
price.

asianbyeqp Create the following objects:

1 Asian instrument
2 BlackScholes model
3 ratecurve
4 AssetTree pricer

Compute the price of the Asian instrument using
price.

asianbykv and asiansensbykv Create the following objects:

1 Asian instrument
2 BlackScholes model
3 ratecurve
4 KemnaVorst pricer

Compute the price of the Asian instrument using
price.

asianbylevy and asiansensbylevy Create the following objects:

1 Asian instrument
2 BlackScholes model
3 ratecurve
4 Levy pricer

Compute the price of the Asian instrument using
price.
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Financial Instruments Toolbox Function Object-Based Workflow
asianbytw and asiansensbytw Create the following objects:

1 Asian instrument
2 BlackScholes model
3 ratecurve
4 TurnbullWakeman pricer

Compute the price of the Asian instrument using
price.

asianbyls and asiansensbyls Create the following objects:

1 Asian instrument
2 BlackScholes, Merton, Bates, or Heston

model
3 ratecurve
4 AssetMonteCarlo pricer

Compute the price of the Asian instrument using
price.

asianbystt Create the following objects:

1 Asian instrument
2 BlackScholes model
3 ratecurve
4 AssetTree pricer

Compute the price of the Asian instrument using
price.

barrierbycrr Create the following objects:

1 Barrier instrument
2 BlackScholes model
3 ratecurve
4 AssetTree pricer

Compute the price of the Barrier instrument
using price.

barrierbyeqp Create the following objects:

1 Barrier instrument
2 BlackScholes model
3 ratecurve
4 AssetTree pricer

Compute the price of the Barrier instrument
using price.
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Financial Instruments Toolbox Function Object-Based Workflow
barrierbybls and barriersensbybls Create the following objects:

1 Barrier instrument
2 BlackScholes model
3 ratecurve
4 BlackScholes pricer

Compute the price of the Barrier instrument
using price.

barrierbyfd and barriersensbyfd Create the following objects:

1 Barrier instrument
2 BlackScholes model
3 ratecurve
4 FiniteDifference pricer

Compute the price of the Barrier instrument
using price.

barrierbyls and barriersensbyls Create the following objects:

1 Barrier instrument
2 BlackScholes, Merton, Bates, or Heston

model
3 ratecurve
4 AssetMonteCarlo pricer

Compute the price of the Barrier instrument
using price.

barrierbystt Create the following objects:

1 Barrier instrument
2 BlackScholes model
3 ratecurve
4 AssetTree pricer

Compute the price of the Barrier instrument
using price.

dblbarrierbybls and dblbarriersensbybls Create the following objects:

1 DoubleBarrier instrument
2 BlackScholes model
3 ratecurve
4 BlackScholes pricer

Compute the price of the DoubleBarrier
instrument using price.
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Financial Instruments Toolbox Function Object-Based Workflow
dblbarrierbyfd and dblbarriersensbyfd Create the following objects:

1 DoubleBarrier instrument
2 BlackScholes model
3 ratecurve
4 FiniteDifference pricer

Compute the price of the DoubleBarrier
instrument using price.

touchbybls and touchsensbybls Create the following objects:

1 Touch instrument
2 BlackScholes model
3 ratecurve
4 BlackScholes pricer

Compute the price of the Touch instrument using
price.

dbltouchbybls and dbltouchsensbybls Create the following objects:

1 DoubleTouch instrument
2 BlackScholes model
3 ratecurve
4 BlackScholes pricer

Compute the price of the DoubleTouch
instrument using price.

cashbybls and cashsensbybls Create the following objects:

1 Binary instrument
2 BlackScholes model
3 ratecurve
4 BlackScholes pricer

assetbybls and assetsensbybls Create the following objects:

1 Binary instrument
2 BlackScholes model
3 ratecurve
4 BlackScholes pricer
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Financial Instruments Toolbox Function Object-Based Workflow
lookbackbycrr Create the following objects:

1 Lookback instrument
2 BlackScholes model
3 ratecurve
4 AssetTree pricer

Compute the price of the Lookback instrument
using price.

lookbackbyeqp Create the following objects:

1 Lookback instrument
2 BlackScholes model
3 ratecurve
4 AssetTree pricer

Compute the price of the Lookback instrument
using price.

lookbackbycvgsg and lookbacksensbycvgsg Create the following objects:

1 Lookback instrument
2 BlackScholes model
3 ratecurve
4 ConzeViswanathan or

GoldmanSosinGatto pricer

Compute the price of the Lookback instrument
using price.

lookbackbyls and lookbacksensbyls Create the following objects:

1 Lookback instrument
2 BlackScholes, Merton, Bates, or Heston

model
3 ratecurve
4 AssetMonteCarlo pricer

Compute the price of the Lookback instrument
using price.
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Financial Instruments Toolbox Function Object-Based Workflow
lookbackbystt Create the following objects:

1 Lookback instrument
2 BlackScholes model
3 ratecurve
4 AssetTree pricer

Compute the price of the Lookback instrument
using price.

spreadbykirk and spreadsensbykirk Create the following objects:

1 Spread instrument
2 BlackScholes model
3 ratecurve
4 Kirk pricer

Compute the price of the Spread instrument
using price.

spreadbybjs and spreadsensbybjs Create the following objects:

1 Spread instrument
2 BlackScholes model
3 ratecurve
4 BjerksundStensland pricer

Compute the price of the Spread instrument
using price.

spreadbyls and spreadsensbyls Create the following objects:

1 Spread instrument
2 BlackScholes model
3 ratecurve
4 AssetMonteCarlo pricer

Compute the price of the Spread instrument
using price.

optstockbycrr Create the following objects:

1 Vanilla instrument
2 BlackScholes model
3 ratecurve
4 AssetTree pricer

Compute the price of the Vanilla instrument
using price
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Financial Instruments Toolbox Function Object-Based Workflow
optstockbyeqp Create the following objects:

1 Vanilla instrument
2 BlackScholes model
3 ratecurve
4 AssetTree pricer

Compute the price of the Vanilla instrument
using price

optstockbylr and optstocksensbylr Create the following objects:

1 Vanilla instrument
2 BlackScholes model
3 ratecurve
4 AssetTree pricer

Compute the price of the Vanilla instrument
using price

optstockbybls and optstocksensbybls Create the following objects:

1 Vanilla instrument
2 BlackScholes model
3 ratecurve
4 BlackScholes pricer

Compute the price of the Vanilla instrument
using price.

optstockbybjs and optstocksensbybjs Create the following objects:

1 Vanilla instrument
2 BlackScholes model
3 ratecurve
4 BjerksundStensland pricer

Compute the price of the Vanilla instrument
using price.

optstockbyrgw and optstocksensbyrgw Create the following objects:

1 Vanilla instrument
2 BlackScholes model
3 ratecurve
4 RollGeskeWhaley pricer

Compute the price of the Vanilla instrument
using price.
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Financial Instruments Toolbox Function Object-Based Workflow
optstockbyfd and optstocksensbyfd Create the following objects:

1 Vanilla instrument
2 BlackScholes model
3 ratecurve
4 FiniteDifference pricer

Compute the price of the Vanilla instrument
using price.

optstockbyls and optstocksensbyls Create the following objects:

1 Vanilla instrument
2 BlackScholes, Merton, Bates, or Heston

model
3 ratecurve
4 AssetMonteCarlo pricer

Compute the price of the Vanilla instrument
using price.

optstockbystt Create the following objects:

1 Vanilla instrument
2 BlackScholes model
3 ratecurve
4 AssetTree pricer

Compute the price of the Vanilla instrument
using price.

optByHestonFFT and optSensByHestonFFT Create the following objects:

1 Vanilla instrument
2 Heston model
3 ratecurve
4 FFT pricer

Compute the price of the Vanilla instrument
using price.

optByHestonFD and optSensByHestonFD Create the following objects:

1 Vanilla instrument
2 Heston model
3 ratecurve
4 FiniteDifference pricer

Compute the price of the Vanilla instrument
using price.
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Financial Instruments Toolbox Function Object-Based Workflow
optByHestonNI and optSensByHestonNI Create the following objects:

1 Vanilla instrument
2 Heston model
3 ratecurve
4 NumericalIntegration pricer

Compute the price of the Vanilla instrument
using price.

optByBatesFFT and optSensByBatesFFT Create the following objects:

1 Vanilla instrument
2 Bates model
3 ratecurve
4 FFT pricer

Compute the price of the Vanilla instrument
using price.

optByBatesFD and optSensByBatesFD Create the following objects:

1 Vanilla instrument
2 Bates model
3 ratecurve
4 FiniteDifference pricer

Compute the price of the Vanilla instrument
using price.

optByBatesNI and optSensByBatesNI Create the following objects:

1 Vanilla instrument
2 Bates model
3 ratecurve
4 NumericalIntegration pricer

Compute the price of the Vanilla instrument
using price.

optByMertonFFT and optSensByMertonFFT Create the following objects:

1 Vanilla instrument
2 Merton model
3 ratecurve
4 FFT pricer

Compute the price of the Vanilla instrument
using price.
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Financial Instruments Toolbox Function Object-Based Workflow
optByMertonFD and optSensByMertonFD Create the following objects:

1 Vanilla instrument
2 Merton model
3 ratecurve
4 FiniteDifference pricer

Compute the price of the Vanilla instrument
using price.

optByMertonNI and optSensByMertonNI Create the following objects:

1 Vanilla instrument
2 Merton model
3 ratecurve
4 NumericalIntegration pricer

Compute the price of the Vanilla instrument
using price.

optByLocalVolFD and optSensByLocalVolFD Create the following objects:

1 Vanilla instrument
2 Dupire model
3 ratecurve
4 FiniteDifference pricer

Compute the price of the Vanilla instrument
using price.

See Also
fininstrument | finmodel | finpricer

More About
• “Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments”

on page 1-22
• “Choose Instruments, Models, and Pricers” on page 1-53
• “Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on

page 1-73
• “Mapping Financial Instruments Toolbox Functions for Credit Derivative Instrument Objects” on

page 1-92
• “Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework” on page

1-93
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Mapping Financial Instruments Toolbox Functions for Credit
Derivative Instrument Objects

The following table lists the Financial Instruments Toolbox functions for credit derivative instruments
mapped to the associated workflow using the object-based framework for instruments, models, and
pricers.

Financial Instruments Toolbox Function Object-Based Workflow
cdsprice Create the following objects:

1 CDS instrument
2 defprobcurve
3 ratecurve
4 Credit pricer

Compute the price of the CDS instrument using
price.

cdsoptprice Create the following objects:

1 CDSOption instrument
2 CDSBlack model
3 ratecurve
4 CDSBlack pricer

Compute the price of the CDSOption instrument
using price.

See Also
fininstrument | finmodel | finpricer

More About
• “Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments”

on page 1-22
• “Choose Instruments, Models, and Pricers” on page 1-53
• “Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on

page 1-73
• “Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument

Objects” on page 1-82
• “Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework” on page

1-93
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Mapping Financial Instruments Toolbox Curve Functions to
Object-Based Framework

Financial Instruments Toolbox allows you to use either a function-based framework or an alternative
object-based framework to create and analyze financial curves.

In the function-based framework, a typical workflow to create an interest-rate curve uses intenvset
or IRDataCurve.

CurveSettle = datenum('2-Mar-2016');
Data = [2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;
Dates = datemnth(CurveSettle,12*[1 2 3 5 7 10 20 30]);
irdc = IRDataCurve('Zero',CurveSettle,Dates,Data)

irdc = 

             Type: Zero
           Settle: 736391 (02-Mar-2016)
      Compounding: 2
            Basis: 0 (actual/actual)
     InterpMethod: linear
            Dates: [8x1 double]
             Data: [8x1 double]

By contrast, in the Financial Instruments Toolbox object-based workflow, you create a ratecurve
object:

Settle = datetime("15-Sep-2017");
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])];
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates)

ZeroCurve = 

  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10×1 datetime]
                Rates: [10×1 double]
               Settle: 15-Sep-2017
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Note The function-based and object-based workflows can return different prices even if you use the
same data. This is because the existing Financial Instruments Toolbox curve functions use
date2time and the object-based framework use yearfrac for date handling.

The following table lists the Financial Instruments Toolbox curve functions mapped to the associated
object-based framework.
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Financial Instruments Toolbox Curve
Function

Object-Based Framework

IRDataCurve ratecurve
getForwardRates forwardrates
getZeroRates zerorates
getDiscountFactors discountfactors
bootstrap irbootstrap
IRFunctionCurve parametercurve
getForwardRates forwardrates
getZeroRates zerorates
getDiscountFactors discountfactors
fitNelsonSiegel fitNelsonSiegel
fitSvensson fitSvensson
cdsbootstrap defprobstrip
Not supported defprobcurve
Not supported survprobs
Not supported hazardrates
Not supported STIRFuture using irbootstrap to create

ratecurve object
Not supported OISFuture using irbootstrap to create

ratecurve object
Not supported OvernightIndexedSwap using irbootstrap to

create ratecurve object

See Also

More About
• “Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments”

on page 1-22
• “Choose Instruments, Models, and Pricers” on page 1-53
• “Convert RateSpec to a ratecurve Object” on page 1-49
• “Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on

page 1-73
• “Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument

Objects” on page 1-82
• “Mapping Financial Instruments Toolbox Functions for Credit Derivative Instrument Objects” on

page 1-92
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Price European Vanilla Call Options Using Black-Scholes Model
and Different Equity Pricers

This example shows how to compare European Vanilla instrument call option prices using a
BlackScholes model and different pricing methods. The pricing methods for this comparison are
the Cox-Ross-Rubinstein, Leisen-Reimer, finite difference, and the Black-Scholes analytical formula.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2019,01,01);
Maturity = datetime(2022,01,01);
Rate = 0.0111;
Compounding = -1;
ZeroCurve = ratecurve('zero',Settle,Maturity,Rate,'Compounding',Compounding);

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

Volatility = .35;
BSModel = finmodel("BlackScholes",'Volatility',Volatility);

Create Vanilla Instrument Object

Use fininstrument to create a Vanilla instrument object.

ExerciseDates = datetime(2019,09,01);
Strike = 30;
OptionType = 'call';

EuropeanCallOption = fininstrument("Vanilla",'ExerciseDate',ExerciseDates,'Strike',Strike,...
    'OptionType',OptionType,'Name',"vanilla_call_option");

Create Analytic, AssetTree, and FiniteDifference Pricer Objects

Create two scenarios for the Vanilla option. In the first scenario, the option is out of the money
(OTM). In the second scenario the option is at the money (ATM).

% Define the number of levels of the tree for AssetTree pricer 
NumPeriods = 55;

Calculate Vanilla Option Price for OTM Option

Use finpricer to create an BlackScholes, AssetTree, and FiniteDifference pricer objects
for the OTM option and use the ratecurve object for the 'DiscountCurve' name-value pair
argument.

SpotPriceOTM = 25;

% Analytic Pricer
AnalyticPricerOTM = finpricer('Analytic', 'Model', BSModel, 'SpotPrice', SpotPriceOTM, 'DiscountCurve', ZeroCurve);
PriceBLSOTM = price(AnalyticPricerOTM, EuropeanCallOption);

% AssetTree Pricer
CRRPricerOTM = finpricer("AssetTree",'DiscountCurve',ZeroCurve,'Model',BSModel, 'SpotPrice',SpotPriceOTM, ...
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                         'PricingMethod',"CoxRossRubinstein",'NumPeriods', NumPeriods, 'Maturity', ExerciseDates);
PriceCRROTM = price(CRRPricerOTM, EuropeanCallOption);

LRPricerOTM = finpricer("AssetTree",'DiscountCurve',ZeroCurve,'Model',BSModel, 'SpotPrice',SpotPriceOTM, ...
                        'PricingMethod',"LeisenReimer",'NumPeriods', NumPeriods, 'Maturity', ExerciseDates, 'Strike', Strike);
PriceLROTM = price(LRPricerOTM, EuropeanCallOption);

% FiniteDifference Pricer
FDPricerOTM = finpricer('FiniteDifference', 'Model', BSModel, 'SpotPrice', SpotPriceOTM, 'DiscountCurve', ZeroCurve);
PriceFDOTM = price(FDPricerOTM, EuropeanCallOption);

Calculate Vanilla Option Price for ATM Option

Use finpricer to create an BlackScholes, AssetTree, and FiniteDifference pricer objects
for the ATM option and use the ratecurve object for the 'DiscountCurve' name-value pair
argument.

SpotPriceATM = 30;

% Analytic Pricer
AnalyticPricerATM = finpricer('Analytic', 'Model', BSModel, 'SpotPrice', SpotPriceATM, 'DiscountCurve', ZeroCurve);
PriceBLSATM = price(AnalyticPricerATM, EuropeanCallOption);

% AsetTree Pricer
CRRPricerATM = finpricer("AssetTree",'DiscountCurve',ZeroCurve,'Model',BSModel, 'SpotPrice',SpotPriceATM, ...
                         'PricingMethod',"CoxRossRubinstein",'NumPeriods', NumPeriods, 'Maturity', ExerciseDates);
PriceCRRATM = price(CRRPricerATM, EuropeanCallOption);

LRPricerATM = finpricer("AssetTree",'DiscountCurve',ZeroCurve,'Model',BSModel, 'SpotPrice',SpotPriceATM, ...
                        'PricingMethod',"LeisenReimer",'NumPeriods', NumPeriods, 'Maturity', ExerciseDates, 'Strike', Strike);
PriceLRATM = price(LRPricerATM, EuropeanCallOption);

% FiniteDifference Pricer
FDPricerATM = finpricer('FiniteDifference', 'Model', BSModel, 'SpotPrice', SpotPriceATM, 'DiscountCurve', ZeroCurve);
PriceFDATM = price(FDPricerATM, EuropeanCallOption);

Vanilla Option Price Comparison When Option Is OTM

Use the displayPricesVanillaCallOption in Local Functions on page 1-0  to compare the
Vanilla call prices for OTM.

displayPricesVanillaCallOption("OTM", PriceBLSOTM, PriceCRROTM, PriceLROTM, PriceFDOTM)

Comparison of Vanilla Call Option Prices OTM:

Black-Scholes:        1.280591
Cox-Ross-Rubinstein:  1.278306
Leisen-Reimer:        1.280651
Finite-Difference:    1.280599

Vanilla Option Price Comparison When Option Is ATM

Use the displayPricesVanillaCallOption in Local Functions on page 1-0  to compare the
Vanilla call prices for ATM.

displayPricesVanillaCallOption("ATM", PriceBLSATM, PriceCRRATM, PriceLRATM, PriceFDATM)

1 Getting Started

1-96



Comparison of Vanilla Call Option Prices ATM:

Black-Scholes:        3.505323
Cox-Ross-Rubinstein:  3.520559
Leisen-Reimer:        3.505377
Finite-Difference:    3.505452

Analyze Effect of Number of Tree Levels on Price of Options When Using AssetTree Pricer

Create graphs to visualize how convergence changes as the number of steps in the binomial
calculation increases for the Cox-Ross-Rubinstein and Leisen-Reimer tree models, as well as the
impact on convergence to changes to the asset price.

% Define the number of time steps of the tree
NPoints = 240;

% Cox-Ross-Rubinstein
NumPeriodCRR  = 5 : 1 : NPoints;
NbStepCRR     = length(NumPeriodCRR);
PriceOTMCRR = nan(NbStepCRR, 1);
PriceATMCRR = PriceOTMCRR;

for i = 1 : NbStepCRR

    PricerCRROTM = finpricer("AssetTree",'DiscountCurve',ZeroCurve,'Model',BSModel, 'SpotPrice',SpotPriceOTM, ...
                   'PricingMethod',"CoxRossRubinstein",'NumPeriods', NumPeriodCRR(i), 'Maturity', ExerciseDates);
    PriceOTMCRR(i) = price(PricerCRROTM, EuropeanCallOption);

    PricerCRRATM = finpricer("AssetTree",'DiscountCurve',ZeroCurve,'Model',BSModel, 'SpotPrice',SpotPriceATM, ...
                   'PricingMethod',"CoxRossRubinstein",'NumPeriods', NumPeriodCRR(i), 'Maturity', ExerciseDates);
    PriceATMCRR(i) = price(PricerCRRATM, EuropeanCallOption);

end

% Leisen-Reimer
NumPeriodLR  = 5 : 2 : NPoints;
NbStepLR     = length(NumPeriodLR);
PriceOTMLR = nan(NbStepLR, 1);
PriceATMLR = PriceOTMLR;

for i = 1 : NbStepLR
    PricerLROTM = finpricer("AssetTree",'DiscountCurve',ZeroCurve,'Model',BSModel, 'SpotPrice',SpotPriceOTM, ...
                   'PricingMethod',"LeisenReimer",'NumPeriods', NumPeriodLR(i), 'Maturity', ExerciseDates, 'Strike', Strike);
    PriceOTMLR(i) = price(PricerLROTM, EuropeanCallOption);

    PricerLRATM = finpricer("AssetTree",'DiscountCurve',ZeroCurve,'Model',BSModel, 'SpotPrice',SpotPriceATM, ...
                   'PricingMethod',"LeisenReimer",'NumPeriods', NumPeriodLR(i), 'Maturity', ExerciseDates, 'Strike', Strike);
    PriceATMLR(i) = price(PricerLRATM, EuropeanCallOption);
end

First Scenario: OTM Vanilla Call Option

Plot the convergence of CRR and LR models to a Black-Scholes solution for an OTM option.

% Cox-Ross-Rubinstein
plot(NumPeriodCRR, PriceOTMCRR);
hold on;
plot(NumPeriodCRR, PriceBLSOTM*ones(NbStepCRR,1),'Color',[0 0.9 0], 'linewidth', 1.5);
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% Leisen-Reimer
plot(NumPeriodLR, PriceOTMLR, 'Color',[0.9 0 0], 'linewidth', 1.5);

% Concentrate the area of interest by clipping on the Y axis at five times the
% LR price:
YLimDelta = 5*abs(PriceOTMLR(1) - PriceBLSOTM);
ax = gca;
ax.YLim = [PriceBLSOTM - YLimDelta PriceBLSOTM + YLimDelta];
ax.XLim = [5 NPoints];

% Annotate plot
titleString = sprintf('\nConvergence of CRR and LR Models to a BLS Solution (OTM)\nStrike = %d,  Asset Price = %d', Strike , SpotPriceOTM);
title(titleString)
ylabel('Option Price')
xlabel('Number of Steps')
legend('CRR', 'BLS', 'LR', 'Location', 'NorthEast')

Observe that the Leisen-Reimer model removes the oscillation and produces estimates close to the
Black-Scholes model using only a small number of steps.

Second Scenario: ATM Vanilla Call Option

Plot the convergence of CRR and LR models to a Black-Scholes solution for an ATM option.

% Cox-Ross-Rubinstein
figure;
plot(NumPeriodCRR, PriceATMCRR);
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hold on;
plot(NumPeriodCRR, PriceBLSATM*ones(NbStepCRR,1),'Color',[0 0.9 0], 'linewidth', 1.5);

% Leisen-Reimer
plot(NumPeriodLR, PriceATMLR, 'Color',[0.9 0 0], 'linewidth', 1.5);

% Concentrate the area of interest by clipping on the Y axis at five times the
% LR price:
YLimDelta = 5*abs(PriceATMLR(1) - PriceBLSATM);
ax = gca;
ax.YLim = [PriceBLSATM - YLimDelta PriceBLSATM + YLimDelta];
ax.XLim = [5 NPoints];
% Annotate plot
titleString = sprintf('\nConvergence of CRR and LR Models to a BLS Solution (ATM)\nStrike = %d,  Asset Price = %d', Strike , SpotPriceATM);
title(titleString)
ylabel('Option Price')
xlabel('Number of Steps')
legend('CRR', 'BLS', 'LR', 'Location', 'NorthEast')

While the CRR binomial model and the Black-Scholes model converge as the number of time steps
increases, this convergence, except for the at-the-money options, is anything but smooth or uniform.

Local Functions
function displayPricesVanillaCallOption(type, PriceBLS, PriceCRR, PriceLR, PriceFD)
fprintf('Comparison of Vanilla Call Option Prices %s:\n', type);
fprintf('\n');
fprintf('Black-Scholes:        %f\n', PriceBLS);
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fprintf('Cox-Ross-Rubinstein:  %f\n', PriceCRR);
fprintf('Leisen-Reimer:        %f\n', PriceLR);
fprintf('Finite-Difference:    %f\n', PriceFD);
fprintf('\n');
end

See Also
FiniteDifference | AssetTree | BlackScholes | Vanilla

Related Examples
• “Price Spread Instrument for a Commodity Using Black-Scholes Model and Analytic Pricers” on

page 3-123

More About
• “Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments”

on page 1-22
• “Choose Instruments, Models, and Pricers” on page 1-53
• “Supported Exercise Styles” on page 1-62

External Websites
• Object-Based Framework for Pricing Financial Instruments (2 min 42 sec)
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Interest-Rate Derivatives

• “Supported Interest-Rate Instrument Functions” on page 2-3
• “Work with Negative Interest Rates Using Functions” on page 2-18
• “Work with Negative Interest Rates Using Objects” on page 2-22
• “Price Swaptions with Negative Strikes Using the Shifted SABR Model” on page 2-26
• “Calibrate the SABR Model” on page 2-33
• “Price a Swaption Using the SABR Model” on page 2-38
• “Overview of Interest-Rate Tree Models” on page 2-44
• “Understanding the Interest-Rate Term Structure” on page 2-48
• “Interest-Rate Term Conversions” on page 2-53
• “Modeling the Interest-Rate Term Structure” on page 2-57
• “Pricing Using Interest-Rate Term Structure” on page 2-61
• “Understanding Interest-Rate Tree Models” on page 2-66
• “Pricing Using Interest-Rate Tree Models” on page 2-81
• “Computing Instrument Sensitivities” on page 2-89
• “Calibrating Hull-White Model Using Market Data” on page 2-92
• “Interest-Rate Derivatives Using Closed-Form Solutions” on page 2-100
• “Price Swaptions with Interest-Rate Models Using Simulation” on page 2-101
• “Pricing Bermudan Swaptions with Monte Carlo Simulation” on page 2-115
• “Managing Interest-Rate Risk with Bond Futures” on page 2-126
• “Analyze Inflation-Indexed Instruments” on page 2-133
• “Bootstrapping a Swap Curve” on page 2-142
• “Fitting Interest-Rate Curve Functions” on page 2-145
• “Fitting the Diebold Li Model” on page 2-151
• “Calibrating Caplets Using the Normal (Bachelier) Model” on page 2-156
• “Calibrating Floorlets Using the Normal (Bachelier) Model” on page 2-160
• “Calibrate the SABR Model Using Normal (Bachelier) Volatilities with Negative Strikes”

on page 2-164
• “Calibrate Shifted SABR Model Parameters for Swaption Instrument ” on page 2-168
• “Price Portfolio of Bond and Bond Option Instruments” on page 2-173
• “Calibrate SABR Model Using Normal (Bachelier) Volatilities with Analytic Pricer” on page 2-178
• “Calibrate SABR Model Using Analytic Pricer” on page 2-182
• “Price a Swaption Using SABR Model and Analytic Pricer” on page 2-186
• “Compute LIBOR Fallback” on page 2-193
• “Use treeviewer to Examine HWTree and PriceTree When Pricing European Callable Bond”

on page 2-195
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• “Select Cheapest-to-Deliver Bond Using BondFuture Instrument” on page 2-213
• “Graphical Representation of Trees” on page 2-220
• “Basis” on page 2-229
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Supported Interest-Rate Instrument Functions
In this section...
“Bond” on page 2-3
“Convertible Bond” on page 2-4
“Stepped Coupon Bonds” on page 2-5
“Sinking Fund Bonds” on page 2-5
“Bonds with an Amortization Schedule” on page 2-6
“Bond Options” on page 2-6
“Bond with Embedded Options” on page 2-7
“Stepped Coupon Bonds with Calls and Puts” on page 2-8
“Sinking Fund Bonds with an Embedded Option” on page 2-8
“Amortizing Callable or Puttable Bond” on page 2-9
“Fixed-Rate Note” on page 2-9
“Floating-Rate Note” on page 2-10
“Floating-Rate Note with an Amortization Schedule” on page 2-10
“Floating-Rate Note with Caps, Collars, and Floors” on page 2-10
“Floating-Rate Note Options” on page 2-11
“Floating-Rate Note with Embedded Options” on page 2-11
“Cap” on page 2-12
“Floor” on page 2-12
“Range Note” on page 2-13
“Swap” on page 2-13
“Swap with an Amortization Schedule” on page 2-14
“Forward Swap” on page 2-14
“Swaption” on page 2-14
“Bond Futures” on page 2-15

Bond
A bond is a long-term debt security with a preset interest-rate and maturity. At maturity, you must pay
the principal and interest.

The price or value of a bond is determined by discounting the expected cash flows of the bond to the
present, using the appropriate discount rate. The following equation represents the relationship of
the expected cash flows and discount rate:

B0 = C
2

1− 1 + r
2
−2t

r
2

+ F
1 + r

2
2t

where:
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B0 is the bond value.

C is the annual coupon payment.

F is the face value of the bond.

r is the required return on the bond.

t is the number of years remaining until maturity.

Financial Instruments Toolbox supports the following for pricing and specifying a bond.

Function Purpose
bondbybdt Price a bond using a BDT interest-rate tree.
bondbyhw Price a bond using an HW interest-rate tree.
bondbybk Price a bond using a BK interest-rate tree.
bondbyhjm Price a bond using an HJM interest-rate tree.
bondbycir Price bonds using a CIR tree model.
bondbyzero Price a bond using a set of zero curves.
instbond Construct a bond instrument.

Convertible Bond
A convertible bond is a financial instrument that combines equity and debt features. It is a bond with
the embedded option to turn it into a fixed number of shares. The holder of a convertible bond has
the right, but not the obligation, to exchange the convertible security for a predetermined number of
equity shares at a preset price. The debt component is derived from the coupon payments and the
principal. The equity component is provided by the conversion feature.

Convertible bonds have several defining features:

• Coupon — The coupon in convertible bonds are typically lower than coupons in vanilla bonds since
investors are willing to take the lower coupon for the opportunity to participate in the company’s
stock via the conversion.

• Maturity — Most convertible bonds are issued with long-stated maturities. Short-term maturity
convertible bonds usually do not have call or put provisions.

• Conversion ratio — Conversion ratio is the number of shares that the holder of the convertible
bond receives from exercising the call option of the convertible bond:

Conversion ratio = par value convertible bond/conversion price of equity

For example, a conversion ratio of 25 means a bond can be exchanged for 25 shares of stock. This
also implies a conversion price of $40 (1000/25). This, $40, would be the price at which the owner
would buy the shares. This can be expressed as a ratio or as the conversion price and is specified
in the contract along with other provisions.

• Option type:

• Callable Convertible: a convertible bond that is callable by the issuer. The issuer of the bond
forces conversion, removing the advantage that conversion is at the discretion of the
bondholder. Upon call, the bondholder can either convert the bond or redeem at the call price.
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This option enables the issuer to control the price of the convertible bond and if necessary
refinance the debt with a new cheaper one.

• Puttable Convertible: a convertible bond with a put feature that allows the bondholder to sell
back the bond at a premium on a specific date. This option protects the holder against rising
interest rates by reducing the year to maturity.

Function Purpose
cbondbycrr Price convertible bonds using a CRR binomial tree with the Tsiveriotis

and Fernandes model.
cbondbyeqp Price convertible bonds using an EQP binomial tree with the Tsiveriotis

and Fernandes model.
cbondbyitt Price convertible bonds using an implied trinomial tree with the

Tsiveriotis and Fernandes model.
cbondbystt Price convertible bonds using a standard trinomial tree with the

Tsiveriotis and Fernandes model.
instcbond Construct a cbond instrument for a convertible bond.

Stepped Coupon Bonds
A step-up and step-down bond is a debt security with a predetermined coupon structure over time.
With these instruments, coupons increase (step up) or decrease (step down) at specific times during
the life of the bond. For more information on options features (call and puts), see “Stepped Coupon
Bonds with Calls and Puts” on page 2-8. The following functions have a modified CouponRate
argument to support a new variable coupon schedule allowing pricing of stepped coupon bonds.

Function Purpose
bondbyzero Price bonds using a term structure model.
bondbybdt Price bonds using a BDT tree model.
bondbyhjm Price bonds using an HJM tree model.
bondbyhw Price bonds using an HW tree model.
bondbybk Price bonds using a BK tree model.
bondbycir Price bonds using a CIR tree model.
instbond Construct a bond instrument.
instoptbnd Construct a bond option instrument.
instdisp Display instruments stored in a variable.

Sinking Fund Bonds
A sinking fund bond is a coupon bond with a sinking fund provision. This provision obligates the
issuer to amortize portions of the principal before maturity, affecting bond prices since the time of the
principal repayment changes. This means that investors receive the coupon and a portion of the
principal paid back over time. These types of bonds reduce credit risk, since it lowers the probability
of investors not receiving their principal payment at maturity. For more information on options
support for sinking fund bonds, see “Sinking Fund Bonds with an Embedded Option” on page 2-8.
The following functions have a modified Face argument to support a variable face schedule for
pricing bonds with a sinking provisions.
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Function Purpose
bondbyzero Price bonds using a term structure model.
bondbybdt Price bonds using a BDT tree model.
bondbyhjm Price bonds using an HJM tree model.
bondbyhw Price bonds using an HW tree model.
bondbybk Price bonds using a BK tree model.
bondbycir Price bonds using a CIR tree model.
instoptbnd Construct a bond option instrument.
instbond Construct a bond instrument.
instdisp Display instruments stored in a variable.

Bonds with an Amortization Schedule
A bond with an amortization schedule repays part of the principal (face value) along with the coupon
payments. An amortizing bond is a special case of a sinking fund bond when there is no market
purchase option and no call provision. The following functions have a modified Face argument to
support an amortization schedule.

Function Purpose
bondbyzero Price bonds using a term structure model.
bondbybdt Price bonds using a BDT tree model.
bondbyhjm Price bonds using an HJM tree model.
bondbyhw Price bonds using an HW tree model.
bondbybk Price bonds using a BK tree model.
bondbycir Price bonds using a CIR tree model.

Bond Options
Financial Instruments Toolbox supports three types of put and call options on bonds:

• American option: An option that you exercise any time until its expiration date.
• European option: An option that you exercise only on its expiration date.
• Bermuda option: A Bermuda option resembles a hybrid of American and European options. You

can exercise it on predetermined dates only, usually monthly.

Financial Instruments Toolbox supports the following for pricing and specifying a bond option.

Function Purpose
optbndbybdt Price a bond option price using a BDT interest-rate tree.
optbndbyhw Price a bond option price using an HW interest-rate tree.
optbndbybk Price a bond option price using a BK interest-rate tree.
optbndbyhjm Price a bond option price using an HJM interest-rate tree.
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Function Purpose
optbndbycir Price a bond option price using a CIR interest-rate tree.
instoptbnd Construct a bond option instrument.

Bond with Embedded Options
A bond with embedded options allows the issuer to buy back (callable) or redeem (puttable) the bond
at a predetermined price at specified future dates. Financial Instruments Toolbox supports American,
European, and Bermuda callable and puttable bonds.

The pricing for a bond with embedded options is as follows:

• For a callable bond:PriceCallableBond = BondPrice− BondCallOption

In the callable case, the holder bought a bond and sold a call option to the issuer. For example, if
interest rates go down by the time of the call date, the issuer is able to refinance its debt at a
cheaper level and can call the bond.

• For a puttable bond: PricePuttableBond = PriceBond + PricePutOption

In the puttable case, the holder bought a bond and a put option. For example, if interest rates rise,
the future value of coupon payments becomes less valuable. Therefore, the investor can sell the
bond back to the issuer and then lend proceeds elsewhere at a higher rate.

In addition, Option Adjusted Spread (OAS) is a useful way to value and compare securities with
embedded options, like callable or puttable bonds. For more information on OAS, see “OAS for
Callable and Puttable Bonds” on page 2-64.

Financial Instruments Toolbox supports the following for pricing and specifying a bond with
embedded options.

Function Purpose
optembndbybdt Price a bond with embedded options using a BDT interest-rate

tree.
optembndbyhw Price a bond with embedded options using an HW interest rate

tree.
optembndbybk Price a bond with embedded options using a BK interest-rate

tree.
optembndbyhjm Price a bond with embedded options using an HJM interest-

rate tree.
optembndbycir Price a bond with embedded options using a CIR interest-rate

tree.
instoptembnd Construct a bond-with-embedded-options instrument.
oasbybdt Determine an option adjusted spread using Black-Derman-Toy

model.
oasbybk Determine an option adjusted spread using Black-Karasinski

model.
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Function Purpose
oasbyhjm Determine an option adjusted spread using Heath-Jarrow-

Morton model.
oasbyhw Determine an option adjusted spread using Hull-White model.
oasbycir Determine an option adjusted spread using Cox-Ingersoll-Ross

model.
agencyoas Compute the OAS of the callable bond using the Agency OAS

model.
agencyprice Price the callable bond OAS using the Agency OAS model.

Stepped Coupon Bonds with Calls and Puts
A step-up and step-down bond is a debt security with a predetermined coupon structure over time.
For more information on stepped coupon bonds, see “Stepped Coupon Bonds” on page 2-5. Stepped
coupon bonds can have options features (call and puts). The following functions have a modified
CouponRate argument to support a new variable coupon schedule allowing pricing stepped coupon
bonds with callable and puttable features:

Function Purpose
optembndbybdt Price bonds with embedded options using a BDT model tree.
optembndbyhjm Price bonds with embedded options using an HJM model tree.
optembndbybk Price bonds with embedded options using a BK model tree.
optembndbyhw Price bonds with embedded options using an HW model tree.
optembndbycir Price bonds with embedded options using a CIR model tree.
instbond Construct a bond instrument.
instoptbnd Construct a bond option instrument.
instoptembnd Construct a bond with an embedded option instrument.
instdisp Display instruments stored in a variable.

Sinking Fund Bonds with an Embedded Option
A sinking fund bond is a coupon bond with a sinking fund provision. For more information on sinking
fund bonds, see “Sinking Fund Bonds” on page 2-5. The sinking fund bond can have a sinking fund
option provision allowing the issuer to retire the sinking fund obligation either by purchasing the
bonds to be redeemed from the market or by calling the bond via a sinking fund call, whichever is
cheaper.

If interest rates are high, then the issuer buys back the required amount of bonds from the market
since bonds are cheap. But if interest rates are low (bond prices are high), then most likely the issuer
buys the bonds at the call price. Unlike a call feature, however, if a bond has a sinking fund option
provision, it is an obligation, not an option, for the issuer to buy back the increments of the issue as
stated. Because of this, a sinking fund bond trades at a lower price than a nonsinking fund bond. The
following functions have a modified Face argument to support a variable face schedule for pricing
bonds with a sinking fund option provision.
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Function Purpose
optembndbybdt Price bonds with embedded options using a BDT model tree.
optembndbyhjm Price bonds with embedded options using an HJM model tree.
optembndbybk Price bonds with embedded options using a BK model tree.
optembndbyhw Price bonds with embedded options using an HW model tree.
optembndbycir Price bonds with embedded options using a CIR model tree.
instbond Construct a bond instrument.
instoptbnd Construct a bond option instrument.
instdisp Display instruments stored in a variable.

Amortizing Callable or Puttable Bond
Amortizing callable or puttable bonds work under a scheduled Face input argument. An amortizing
callable bond give the issuer the right to call back the bond, but instead of paying the Face amount
at maturity, it repays part of the principal along with the coupon payments. An amortizing puttable
bond, repays part of the principal along with the coupon payments and gives the bondholder the right
to sell the bond back to the issuer.

Function Purpose
optembndbybdt Price bonds with embedded options using a BDT model tree.
optembndbyhjm Price bonds with embedded options using an HJM model tree.
optembndbybk Price bonds with embedded options using a BK model tree.
optembndbyhw Price bonds with embedded options using an HW model tree.
optembndbycir Price bonds with embedded options using a CIR model tree.
oasbybdt Determine an option adjusted spread using Black-Derman-Toy model.
oasbybk Determine an option adjusted spread using Black-Karasinski model.
oasbyhjm Determine an option adjusted spread using Heath-Jarrow-Morton

model.
oasbyhw Determine an option adjusted spread using Hull-White model.
oasbycir Determine an option adjusted spread using Cox-Ingersoll-Ross model.

Fixed-Rate Note
A fixed-rate note is a long-term debt security with a preset interest rate and maturity, by which the
interest must be paid. The principal may or may not be paid at maturity. In Financial Instruments
Toolbox, the principal is always paid at maturity.

Function Purpose
fixedbybdt Price a fixed-rate note using a BDT interest-rate tree.
fixedbyhw Price a fixed-rate note using an HW interest-rate tree.
fixedbybk Price a fixed-rate note using a BK interest-rate tree.
fixedbyhjm Price a fixed-rate note using an HJM interest-rate tree.
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Function Purpose
fixedbycir Price a fixed-rate note using a CIR interest-rate tree.
fixedbyzero Price a fixed-rate note using a set of zero curves.
instfixed Construct a fixed-rate instrument.

Floating-Rate Note
A floating-rate note is a security like a bond, but the interest rate of the note is reset periodically,
relative to a reference index rate, to reflect fluctuations in market interest rates.

Function Purpose
floatbybdt Price a floating-rate note using a BDT interest-rate tree.
floatbyhw Price a floating-rate note using an HW interest-rate tree.
floatbybk Price a floating-rate note using a BK interest-rate tree.
floatbyhjm Price a floating-rate note using an HJM interest-rate tree.
floatbycir Price a floating-rate note using a CIR interest-rate tree.
floatbyzero Price a floating-rate note using a set of zero curves.
instfloat Construct a floating-rate note instrument.

Floating-Rate Note with an Amortization Schedule
A floating-rate note with an amortization schedule repays part of the principal (face value) along with
the coupon payments. The following functions have a Principal argument to support an
amortization schedule.

Function Purpose
floatbyzero Price floating-rate note from set of zero curves.
floatbybdt Price floating-rate note from Black-Derman-Toy interest-rate tree.
floatbyhjm Price floating-rate note from Heath-Jarrow-Morton interest-rate tree.
floatbyhw Price floating-rate note from Hull-White interest-rate tree.
floatbybk Price floating-rate note from Black-Karasinski interest-rate tree.
floatbycir Price a floating-rate note using a CIR interest-rate tree.

Floating-Rate Note with Caps, Collars, and Floors
A floating-rate note with caps, collars, and floors. This type of instrument can carry restrictions on the
maximum (cap) or minimum (floor) coupon rate paid. A cap is an unattractive feature for an investor,
since they constrain the coupon rates from increasing. A floor is an attractive feature, since it allows
investors to get a minimum coupon rate when market rates decrease below a certain level. Also, a
floating-rate note can have a collar which is a combination of a cap and a floor together. The following
functions have a CapRate and FloorRate argument to support a capped, collared, or floored
floating-rate note.
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Function Purpose
floatbybdt Price a capped floating-rate note from a Black-Derman-Toy interest-rate

tree.
floatbyhjm Price a capped floating-rate note from a Heath-Jarrow-Morton interest-

rate tree.
floatbyhw Price a capped floating-rate note from a Hull-White interest-rate tree.
floatbybk Price a capped floating-rate note from a Black-Karasinski interest-rate

tree.
floatbycir Price a floating-rate note using a CIR interest-rate tree.
instfloat Create a capped floating-rate note instrument.
instadd Add a capped floating-rate note instrument to a portfolio.

Floating-Rate Note Options
Financial Instruments Toolbox supports three types of put and call options on floating-rate notes:

• American option — An option that you exercise any time until its expiration date.
• European option — An option that you exercise only on its expiration date.
• Bermuda option — A Bermuda option resembles a hybrid of American and European options; you

can only exercise it on predetermined dates, usually monthly.

Financial Instruments Toolbox supports the following for pricing and specifying a floating-rate note
option:

Function Purpose
optfloatbybdt Price an option for floating-rate note using a Black-Derman-Toy interest-

rate tree.
optfloatbyhjm Price an option for floating-rate note using a Heath-Jarrow-Morton

interest-rate tree.
optfloatbyhw Price an option for floating-rate note using a Hull-White interest-rate

tree.
optfloatbycir Price an option for floating-rate note using a Cox-Ingersoll-Ross

interest-rate tree.
optfloatbybk Price an option for floating-rate note using a Black-Karasinski interest-

rate tree.
instoptfloat Define the option instrument for floating-rate note.

Floating-Rate Note with Embedded Options
A floating-rate note with an embedded option enables floating-rate notes to have early redemption
features. An FRN with an embedded option gives investors or issuers the option to retire the
outstanding principal prior to maturity. An embedded call option gives the right to retire the note
prior to the maturity date (callable floater), and an embedded put option gives the right to sell the
note back at a specific price (puttable floater).
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Financial Instruments Toolbox supports the following for pricing and specifying a floating-rate note
with an embedded option:

Function Purpose
optemfloatbybdt Price an embedded option for floating-rate note using a Black-Derman-

Toy interest-rate tree.
optemfloatbybk Price an embedded option for floating-rate note using a Black-

Karasinski interest-rate tree.
optemfloatbyhjm Price an embedded option for floating-rate note using a Heath-Jarrow-

Morton interest-rate tree.
optemfloatbyhw Price an embedded option for floating-rate note using a Hull-White

interest-rate tree.
optemfloatbycir Price an embedded option for floating-rate note using a Cox-Ingersoll-

Ross interest-rate tree.
instoptemfloat Define the floating-rate note with embedded option instrument.

Cap
A cap is a contract that includes a guarantee that sets the maximum interest rate to be paid by the
holder, based on an otherwise floating interest rate. The payoff for a cap is:

max(CurrentRate− CapRate, 0)

Function Purpose
capbybdt Price a cap instrument using a BDT interest-rate tree.
capbyhw Price a cap instrument using an HW interest-rate tree.
capbybk Price a cap instrument using a BK interest-rate tree.
capbyhjm Price a cap instrument using an HJM interest-rate tree.
capbycir Price a cap instrument using a CIR interest-rate tree.
capbyblk Price a cap instrument using the Black option pricing model.
capbylg2f Price a cap using Linear Gaussian two-factor model.
capbynormal Price a cap instrument with negative rates using the Normal

(Bachelier) option pricing model.
capvolstrip Strip caplet volatilities from flat cap volatilities.
instcap Construct a cap instrument.

Floor
A floor is a contract that includes a guarantee setting the minimum interest rate to be received by the
holder, based on an otherwise floating interest rate. The payoff for a floor is:

max(FloorRate− CurrentRate, 0)
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Function Purpose
floorbybdt Price a floor instrument using a BDT interest-rate tree.
floorbyhw Price a floor instrument using an HW interest-rate tree.
floorbybk Price a floor instrument using a BK interest-rate tree.
floorbyhjm Price a floor instrument using an HJM interest-rate tree.
floorbycir Price a floor instrument using a CIR interest-rate tree.
floorbyblk Price a floor instrument using the Black option pricing model.
floorbylg2f Price a floor using Linear Gaussian two-factor model.
floorbynormal Price a floor instrument with negative rates using the Normal

(Bachelier) option pricing model.
floorvolstrip Strip floorlet volatilities from flat floor volatilities.
instfloor Construct a floor instrument.

Range Note
A range note is a structured (market-linked) security whose coupon-rate is equal to the reference rate
as long as the reference rate is within a certain range. If the reference rate is outside of the range,
the coupon-rate is 0 for that period. This type of instrument entitles the holder to cash flows that
depend on the level of some reference interest-rate that is floored to be positive and gives the holder
of the note direct exposure to the reference rate. This type of instrument is useful for cases where
you believe that interest rates will stay within a certain range. In return for the drawback that no
interest is paid for the time the range is left, a range note offers higher coupon rates than comparable
standard products, like vanilla floating notes.

Function Purpose
instrangefloat Create a range note instrument.
rangefloatbybdt Price range floating note using a BDT tree.
rangefloatbybk Price range floating note using a BK tree.
rangefloatbyhjm Price range floating note using an HJM tree.
rangefloatbyhw Price range floating note using an HW tree.
rangefloatbycir Price range floating note using a CIR tree.

Swap
A swap is contract between two parties obligating the parties to exchange future cash flows. A vanilla
swap is composed of a floating-rate leg and a fixed-rate leg.

Function Purpose
swapbybdt Price a swap instrument using a BDT interest-rate tree.
swapbyhw Price a swap instrument using an HW interest-rate tree.
swapbybk Price a swap instrument using a BK interest-rate tree.
swapbyhjm Price a swap instrument using an HJM interest-rate tree.
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Function Purpose
swapbycir Price a swap instrument using a CIR interest-rate tree.
swapbyzero Price a swap instrument using a set of zero curves and price

cross currency swaps.
instswap Construct a swap instrument.

Swap with an Amortization Schedule
A swap with an amortization schedule repays part of the principal (face value) along with the coupon
payments. A swap with an amortization schedule is used to manage interest rate risk and serve as a
cash flow management tool. For this particular type of swap, the notional amount decreases over
time. This means that interest payments decrease not only on the floating leg but also on the fixed
leg. The following swap functions have a Principal argument to support an amortization schedule.

Function Purpose
swapbyzero Price swap instrument from set of zero curves.
swapbybdt Price swap instrument from Black-Derman-Toy interest-rate tree.
swapbyhjm Price swap instrument from Heath-Jarrow-Morton interest-rate tree.
swapbyhw Price swap instrument from Hull-White interest-rate tree.
swapbybk Price swap instrument from Black-Karasinski interest-rate tree.
swapbycir Price a swap instrument using a CIR interest-rate tree.
instswap Construct swap instrument.

Forward Swap
In a forward interest-rate swap, a fixed interest-rate loan is exchanged for a floating interest-rate loan
at a future specified date. The following functions have a StartDate argument to support the future
date for the forward swap.

Function Purpose
swapbyzero Price a forward swap from a zero curve.
swapbybdt Price a forward swap from a Black-Derman-Toy interest-rate tree.
swapbyhjm Price a forward swap from a Heath-Jarrow-Morton interest-rate tree.
swapbyhw Price a forward swap from a Hull-White interest-rate tree.
swapbybk Price a forward swap from a Black-Karasinski interest-rate tree.
swapbycir Price a swap instrument using a CIR interest-rate tree.
instswap Create a forward swap instrument.
instadd Add a capped floating-rate note instrument to a portfolio.

Swaption
A swaption is an option to enter into an interest-rate swap contract. A call swaption allows the option
buyer to enter into an interest-rate swap where the buyer of the option pays the fixed-rate and
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receives the floating-rate. A put swaption allows the option buyer to enter into an interest-rate swap
where the buyer of the option receives the fixed-rate and pays the floating-rate.

Function Purpose
swaptionbybdt Price a swaption instrument using a BDT interest-rate tree.
swaptionbyhw Price a swaption instrument using an HW interest-rate tree.
swaptionbybk Price a swaption instrument using a BK interest-rate tree.
swaptionbyhjm Price a swaption instrument using an HJM interest-rate tree.
swaptionbycir Price a swaption instrument using a CIR interest-rate tree.
swaptionbyblk Price swaptions using the Black model with a forward on a

swap.
swaptionbylg2f Price European swaptions using Linear Gaussian two-factor

model.
swaptionbynormal Price swaptions for negative rates using the Normal

(Bachelier) model with a forward on a swap.
instswaption Construct a swaption instrument.

Use swaptionbyblk to price a swaption using the Black model. The Black model is standard model
used in the swaption market when pricing European swaptions. This type of model is widely used by
when speed is important to quickly obtain a price at settlement date, even if the price is less accurate
than other swaption pricing models based on interest-rate tree models.

Bond Futures
Bond futures are futures contracts where the commodity for delivery is a government bond. There are
established global markets for government bond futures. Bond futures provide a liquid alternative for
managing interest-rate risk.

In the US market, the Chicago Mercantile Exchange (CME) offers futures on Treasury bonds and
notes with maturities of 2, 5, 10, and 30 years. Typically, the following bond future contracts from the
CME have maturities of 3, 6, 9, and 12 months:

• 30-year U.S. Treasury bond
• 10-year U.S. Treasury bond
• 5-year U.S. Treasury bond
• 2-year U.S. Treasury bond

The short position in a Treasury bond or note future contract must deliver to the long position in one
of many possible existing Treasury bonds. For example, in a 30-year Treasury bond future, the short
position must deliver a Treasury bond with at least 15 years to maturity. Because these bonds have
different values, the bond future contract is standardized by computing a conversion factor. The
conversion factor normalizes the price of a bond to a theoretical bond with a coupon of 6%. The price
of a bond future contract is represented as:

InvoicePrice = FutPrice × CF + AI

where:

FutPrice is the price of the bond future.
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CF is the conversion factor for a bond to deliver in a futures contract.

AI is the accrued interest.

The short position in a futures contract has the option of which bond to deliver and, in the US bond
market, when in the delivery month to deliver the bond. The short position typically chooses to
deliver the bond known as the Cheapest to Deliver (CTD). The CTD bond most often delivers on the
last delivery day of the month.

Financial Instruments Toolbox supports the following bond futures:

• US Treasury bonds and notes
• German Bobl, Bund, Buxl, and Schatz
• UK gilts
• Japanese government bonds (JGBs)

The functions supporting all bond futures are:

Function Purpose
convfactor Calculates bond conversion factors for US Treasury bonds, German

Bobl, Bund, Buxl, and Schatz, UK gilts, and JGBs.
bndfutprice Prices bond future given repo rates.
bndfutimprepo Calculates implied repo rates for a bond future given price.

The functions supporting US Treasury bond futures are:

Function Purpose
tfutbyprice Calculates future prices of Treasury bonds given the spot price.
tfutbyyield Calculates future prices of Treasury bonds given current yield.
tfutimprepo Calculates implied repo rates for the Treasury bond future given price.
tfutpricebyrepo Calculates Treasury bond futures price given the implied repo rates.
tfutyieldbyrepo Calculates Treasury bond futures yield given the implied repo rates.

For more information on bond futures, see “Bond Futures” on page 7-10.

See Also
instbond | instcap | instcf | instfixed | instfloat | instfloor | instoptbnd |
instoptembnd | instoptfloat | instoptemfloat | instrangefloat | instswap |
instswaption | intenvset | bondbyzero | cfbyzero | fixedbyzero | floatbyzero |
intenvprice | intenvsens | swapbyzero | floatmargin | floatdiscmargin | hjmtimespec |
hjmtree | hjmvolspec | bondbyhjm | capbyhjm | cfbyhjm | fixedbyhjm | floatbyhjm |
floorbyhjm | hjmprice | hjmsens | mmktbyhjm | oasbyhjm | optbndbyhjm | optfloatbyhjm |
optembndbyhjm | optemfloatbyhjm | rangefloatbyhjm | swapbyhjm | swaptionbyhjm |
bdttimespec | bdttree | bdtvolspec | bdtprice | bdtsens | bondbybdt | capbybdt | cfbybdt
| fixedbybdt | floatbybdt | floorbybdt | mmktbybdt | oasbybdt | optbndbybdt |
optfloatbybdt | optembndbybdt | optemfloatbybdt | rangefloatbybdt | swapbybdt |
swaptionbybdt | hwtimespec | hwtree | hwvolspec | bondbyhw | capbyhw | cfbyhw |
fixedbyhw | floatbyhw | floorbyhw | hwcalbycap | hwcalbyfloor | hwprice | hwsens |
oasbyhw | optbndbyhw | optfloatbyhw | optembndbyhw | optemfloatbyhw | rangefloatbyhw |
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swapbyhw | swaptionbyhw | bktimespec | bktree | bkvolspec | bkprice | bksens | bondbybk |
capbybk | cfbybk | fixedbybk | floatbybk | floorbybk | oasbybk | optbndbybk |
optfloatbybk | optembndbybk | optemfloatbybk | rangefloatbybk | swapbybk |
swaptionbybk | capbyblk | floorbyblk | swaptionbyblk | blackvolbysabr | optsensbysabr
| agencyoas | agencyprice | bndfutimprepo | bndfutprice | convfactor | tfutbyprice |
tfutbyyield | tfutimprepo | tfutpricebyrepo | tfutyieldbyrepo | capbylg2f |
floorbylg2f | swaptionbylg2f | blackvolbyrebonato | hwcalbycap | hwcalbyfloor

Related Examples
• “Overview of Interest-Rate Tree Models” on page 2-44
• “Pricing Using Interest-Rate Term Structure” on page 2-61
• “Graphical Representation of Trees” on page 2-220
• “Pricing Using Interest-Rate Tree Models” on page 2-81
• “Understanding Interest-Rate Tree Models” on page 2-66
• “Understanding the Interest-Rate Term Structure” on page 2-48

More About
• “Supported Equity Derivative Functions” on page 3-19
• “Supported Energy Derivative Functions” on page 3-34
• “Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on

page 1-73
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Work with Negative Interest Rates Using Functions

Interest-Rate Modeling Options for Negative Rates
Financial Instruments Toolbox computes prices for caps, floors, and swaptions when modeling for
negative interest-rates using a Normal volatility model, shifted Black model, or shifted SABR model:

• Normal volatility model (Bachelier model) for interest-rate options to handle negative rates with
the following:

• swaptionbynormal
• capbynormal
• floorbynormal
• normalvolbysabr

• Shifted Black model and the shifted SABR model for interest-rate options using an optional Shift
argument to handle negative rates with the following:

• blackvolbysabr (Shifted SABR)
• optsensbysabr (Shifted SABR)
• swaptionbyblk (Shifted Black)
• capbyblk (Shifted Black)
• floorbyblk (Shifted Black)
• capvolstrip (Shifted Black)
• floorvolstrip (Shifted Black)

Modeling Negative Rates
The original authors of the SABR model provided a closed form approximation of the implied Black
volatility in terms of the SABR model parameters (known as “Hagan’s formula”), so that the option
price could be computed by inserting the computed SABR Black volatility into the Black formula:

Call(K, T) = Blackcall(F, K, r, T, σBlack(α, β, ρ, ν, F, K, T))

However, these methods started to break down with the introduction of negative interest rates, due
to the assumption of the Black model that the underlying rates are lognormally distributed (and
therefore cannot be negative).

In addition, even when the underlying rate is positive, the closed form approximation of the SABR
implied Black volatility (Hagan et al., 2002) is known to become increasingly inaccurate as the strike
approaches zero. Even without crossing the zero strike boundary, the implied probability density of
the underlying rate at option expiry can become negative at low positive strikes, although probability
densities clearly should not be negative:
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Options with negative strikes cannot be represented by Black volatilities. To work around this
problem, the market started to quote the cap, floor, and swaption prices also in terms of either
Normal volatilities or Shifted Black volatilities. Instead of the Black model, both types of volatilities
come from alternative models that allow negative rates.

Normal Model

The Normal volatilities are associated with the Normal model (also known as the Bachelier model):

where the underlying rates are assumed to be normally distributed. Unlike in a lognormal model
(where rates have a lower bound), the rates in the Normal model can be both infinitely positive and
infinitely negative.

Shifted Black

The Shifted Black volatilities are associated with the Shifted Black model (also known as “Displaced
Diffusion” or “Shifted Lognormal” model):

The Shifted Black model is essentially the same as the Black model, except that it models the
movements of (F + Shift) as the underlying asset, instead of F (where F is the forward swap rate in
the case of swaptions, and the forward rate in the case of caplets and floorlets). So, the Shifted Black
model allows negative rates, with a fixed negative lower bound defined by the amount of shift, that is,
the zero lower bound of the Black model has been shifted.

 Work with Negative Interest Rates Using Functions

2-19



Shifted SABR

The introduction of negative interest rates also called for an update in the method for interpolating
the volatilities quoted in the market. The following shows the connections between the volatilities and
the SABR models:

As shown, the Black and Normal volatility approximations allow you to use the SABR model with the
Black and Normal model option pricing formulas. However, although the Normal model itself allows
negative rates and the SABR model has an implied Normal volatility approximation, the underlying
dynamics of the SABR model do not allow negative rates, unless β = 0. In the Shifted SABR model,
the Shifted Black volatility approximation can be used to allow negative rates with a fixed negative
lower bound defined by the amount of shift.

Implied Normal Volatility and SABR

You can compute the implied Normal volatility in terms of the SABR model parameters, for either β =
0 (Normal SABR), or any other value of β allowed by the SABR model (0 ≤ β ≤ 1) using
normalvolbysabr.

normalvolbysabrcomputes the implied Normal volatility σ N in terms of the SABR model
parameters. Using normalvolbysabr to compute σ N, you can then you this with other functions for
Normal model pricing (for example, capbynormal, floorbynormal, and swaptionbyblk).
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See Also
swaptionbynormal | capbynormal | floorbynormal | swaptionbyblk | capbyblk |
floorbyblk | normalvolbysabr

Related Examples
• “Price Swaptions with Negative Strikes Using the Shifted SABR Model” on page 2-26
• “Calibrate the SABR Model Using Normal (Bachelier) Volatilities with Negative Strikes” on page

2-164

More About
• “Supported Interest-Rate Instrument Functions” on page 2-3
• “Work with Negative Interest Rates Using Objects” on page 2-22
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Work with Negative Interest Rates Using Objects

Interest-Rate Modeling Options for Negative Rates
Financial Instruments Toolbox computes prices for a Cap, Floor, or Swaption instrument when
modeling for negative interest-rates using a Normal volatility model, shifted Black model, or shifted
SABR model:

• Normal volatility model (Bachelier model) for interest-rate options to handle negative rates with
the following:

• Normal model object
• Normal pricer object
• SABR model object
• SABR pricer object

• Shifted Black model and the shifted SABR model for interest-rate options to handle negative rates
with the following:

• Black model object (Shifted Black model, specified by the 'Shift' name-value argument set
to a positive value.)

• Black pricer object (Shifted Black model, specified by the 'Shift' name-value argument set
to a positive value.)

• SABR model object (Shifted SABR model, specified by the 'VolatilityType' name-value
argument set to "Black" and the 'Shift' name-value argument set to a positive value.)

• SABR pricer object (Shifted SABR model, specified by the 'VolatilityType' name-value
argument set to "Black" and the 'Shift' name-value argument set to a positive value.)

Modeling Negative Rates
The original authors of the SABR model provided a closed form approximation of the implied Black
volatility in terms of the SABR model parameters (known as “Hagan’s formula”), so that the option
price could be computed by inserting the computed SABR Black volatility into the Black formula:

Call(K, T) = Blackcall(F, K, r, T, σBlack(α, β, ρ, ν, F, K, T))

However, these methods started to break down with the introduction of negative interest rates, due
to the assumption of the Black model that the underlying rates are lognormally distributed (and
therefore cannot be negative).

In addition, even when the underlying rate is positive, the closed form approximation of the SABR
implied Black volatility (Hagan et al., 2002) is known to become increasingly inaccurate as the strike
approaches zero. Even without crossing the zero strike boundary, the implied probability density of
the underlying rate at option expiry can become negative at low positive strikes, although probability
densities clearly should not be negative:
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Options with negative strikes cannot be represented by Black volatilities. To work around this
problem, the market started to quote the cap, floor, and swaption prices also in terms of either
Normal volatilities or Shifted Black volatilities. Instead of the Black model, both types of volatilities
come from alternative models that allow negative rates.

Normal Model

The Normal volatilities are associated with the Normal model (also known as the Bachelier model):

where the underlying rates are assumed to be normally distributed. Unlike in a lognormal model
(where rates have a lower bound), the rates in the Normal model can be both infinitely positive and
infinitely negative.

Shifted Black

The Shifted Black volatilities are associated with the Shifted Black model (also known as “Displaced
Diffusion” or “Shifted Lognormal” model):

The Shifted Black model is essentially the same as the Black model, except that it models the
movements of (F + Shift) as the underlying asset, instead of F (where F is the forward swap rate in
the case of swaptions, and the forward rate in the case of caplets and floorlets). So, the Shifted Black
model allows negative rates, with a fixed negative lower bound defined by the amount of shift, that is,
the zero lower bound of the Black model has been shifted.
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Normal SABR and Shifted SABR

The introduction of negative interest rates also called for an update in the method for interpolating
the volatilities quoted in the market. The following shows the connections between the volatilities and
the SABR models:

As shown, the Black and Normal volatility approximations allow you to use the SABR model with the
Black and Normal model option pricing formulas. However, although the Normal model itself allows
negative rates and the SABR model has an implied Normal volatility approximation, the underlying
dynamics of the SABR model do not allow negative rates, unless β = 0. When the β (Beta) parameter
of the SABR model is set to zero, the model is a Normal SABR model, which allows computing the
implied Normal volatilities for negative rates.

In the Shifted SABR model, the Shifted Black volatility approximation can be used to allow negative
rates with a fixed negative lower bound defined by the amount of shift. This is achieved by setting the
'Shift' name-value argument of the SABR model to a positive value.

Implied Volatilities and SABR

You can compute the implied volatilities in terms of the SABR model parameters, for either β = 0
(Normal SABR), or any other value of β allowed by the SABR model (0 ≤ β ≤ 1) using the
volatilities function for the SABR analytic pricer.

The following three types of implied volatilities are supported by the SABR analytic pricer, and the
type of implied volatilities computed by the volatilities function depends on the parameters of
the SABR model when using the SABR analytic pricer:

• Implied Black volatilities — The SABR model 'VolatilityType' name-value argument is set to
"Black" and the 'Shift' name-value argument is set to zero. Negative rates are not allowed.

• Implied Sifted Black volatilities — The SABR model 'VolatilityType' name-value argument is
set to "Black" and the 'Shift' name-value argument is set to a positive value. Negative rates
are allowed with lower bound defined by the amount of shift.

• Implied Normal (Bachelier) volatilities — The SABR model 'VolatilityType' name-value
argument is set to "Black" and the 'Shift' name-value argument is set to zero. Negative rates
are allowed when the Beta input argument is set to zero.

See Also
Cap | Floor | Swaption
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Related Examples
• “Calibrate Shifted SABR Model Parameters for Swaption Instrument” on page 2-168
• “Calibrate SABR Model Using Normal (Bachelier) Volatilities with Analytic Pricer” on page 2-

178

More About
• “Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments”

on page 1-22
• “Choose Instruments, Models, and Pricers” on page 1-53
• “Work with Negative Interest Rates Using Functions” on page 2-18
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Price Swaptions with Negative Strikes Using the Shifted SABR
Model

This example shows how to price swaptions with negative strikes by using the Shifted SABR model.
The market Shifted Black volatilities are used to calibrate the Shifted SABR model parameters. The
calibrated Shifted SABR model is then used to compute the Shifted Black volatilities for negative
strikes.

The swaptions with negative strikes are then priced using the computed Shifted Black volatilities and
the swaptionbyblk function with the 'Shift' parameter set to the prespecified shift. Similarly,
Shifted SABR Greeks can be computed by using the optsensbysabr function by setting the
'Shift' parameter. Finally, from the swaption prices, the probability density of the underlying asset
is computed to show that the swaption prices imply positive probability densities for some negative
strikes.

Load the market data.

First, load the market interest rates and swaption volatility data. The market swaption volatilities are
quoted in terms of Shifted Black volatilities with a 0.8 percent shift.

Define RateSpec.

ValuationDate = '5-Apr-2016';
EndDates = datemnth(ValuationDate,[1 2 3 6 9 12*[1 2 3 4 5 6 7 8 9 10 12]])';
ZeroRates = [-0.34 -0.29 -0.25 -0.13 -0.07 -0.02 0.010 0.025 ...
    0.031 0.040 0.052 0.090 0.190 0.290 0.410 0.520]'/100;
Compounding = 1;
RateSpec = intenvset('ValuationDate',ValuationDate,'StartDates',ValuationDate, ...
'EndDates',EndDates,'Rates',ZeroRates,'Compounding',Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [16x1 double]
            Rates: [16x1 double]
         EndTimes: [16x1 double]
       StartTimes: [16x1 double]
         EndDates: [16x1 double]
       StartDates: 736425
    ValuationDate: 736425
            Basis: 0
     EndMonthRule: 1

Define the swaption.

SwaptionSettle = '5-Apr-2016';
SwaptionExerciseDate = '5-Apr-2017';
SwapMaturity = '5-Apr-2022';
Reset = 1;
OptSpec = 'call';
TimeToExercise = yearfrac(SwaptionSettle,SwaptionExerciseDate);

Use swapbyzero to compute the forward swap rate.
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LegRate = [NaN 0];  % To compute the forward swap rate, set the fixed rate to NaN.
[~, CurrentForwardValue] = swapbyzero(RateSpec,LegRate,SwaptionSettle,SwapMaturity,...
'StartDate',SwaptionExerciseDate)

CurrentForwardValue = 6.6384e-04

Specify amount of shift in decimals for Shifted Black and Shifted SABR models.

Shift = 0.008;  % 0.8 percent shift

Load the market implied Shifted Black volatility data for swaptions.

MarketShiftedBlackVolatilities = [21.1; 15.3; 14.0; 14.6; 16.0; 17.7; 19.8; 23.9; 26.2]/100;
StrikeGrid = [-0.5; -0.25; -0.125; 0; 0.125; 0.25; 0.5; 1.0; 1.5]/100;
MarketStrikes = CurrentForwardValue + StrikeGrid;
ATMShiftedBlackVolatility = MarketShiftedBlackVolatilities(StrikeGrid==0);

Calibrate the Shifted SABR model parameters.

To better represent the market at-the-money volatility, the Alpha parameter value is implied by the
market at-the-money volatility. This is similar to the "Method 2" in “Calibrate the SABR Model” on
page 2-33. However, note the addition of Shift to CurrentForwardValue and the use of the
'Shift' parameter with blackvolbysabr. The Beta parameter is predetermined at 0.5.

Beta = 0.5;

This function solves the Shifted SABR at-the-money volatility equation as a polynomial of Alpha. Note
the addition of Shift to CurrentForwardValue.

alpharoots = @(Rho,Nu) roots([...
    (1 - Beta)^2*TimeToExercise/24/(CurrentForwardValue + Shift)^(2 - 2*Beta) ...
    Rho*Beta*Nu*TimeToExercise/4/(CurrentForwardValue + Shift)^(1 - Beta) ...
    (1 + (2 - 3*Rho^2)*Nu^2*TimeToExercise/24) ...
    -ATMShiftedBlackVolatility*(CurrentForwardValue + Shift)^(1 - Beta)]);

This function converts at-the-money volatility into Alpha by picking the smallest positive real root.

atmVol2ShiftedSabrAlpha = @(Rho,Nu) min(real(arrayfun(@(x) ...
    x*(x>0) + realmax*(x<0 || abs(imag(x))>1e-6), alpharoots(Rho,Nu))));

Fit Rho and Nu (while converting at-the-money volatility into Alpha). Note the 'Shift' parameter of 
blackvolbysabr is set to the prespecified shift.

objFun = @(X) MarketShiftedBlackVolatilities - ...
    blackvolbysabr(atmVol2ShiftedSabrAlpha(X(1), X(2)), ...
    Beta, X(1), X(2), SwaptionSettle, SwaptionExerciseDate, CurrentForwardValue, ...
    MarketStrikes, 'Shift', Shift);

options = optimoptions('lsqnonlin','Display','none');
X = lsqnonlin(objFun, [0 0.5], [-1 0], [1 Inf], options);
Rho = X(1);
Nu = X(2);

Get the final Alpha from the calibrated parameters.

Alpha = atmVol2ShiftedSabrAlpha(Rho, Nu)

Alpha = 0.0133
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Show the calibrated Shifted SABR parameters.

CalibratedPrameters = array2table([Shift Alpha Beta Rho Nu],...
    'VariableNames',{'Shift' 'Alpha' 'Beta' 'Rho' 'Nu'},...
    'RowNames',{'1Y into 5Y'})

CalibratedPrameters=1×5 table
                  Shift     Alpha      Beta      Rho        Nu   
                  _____    ________    ____    _______    _______

    1Y into 5Y    0.008    0.013345    0.5     0.46698    0.49816

Compute the swaption volatilities using the calibrated Shifted SABR model.

Use blackvolbysabr with the 'Shift' parameter.

Strikes = (-0.6:0.01:1.6)'/100; % Include negative strikes.
SABRShiftedBlackVolatilities = blackvolbysabr(Alpha, Beta, Rho, Nu, SwaptionSettle, ...
    SwaptionExerciseDate, CurrentForwardValue, Strikes, 'Shift', Shift);

figure;
plot(MarketStrikes, MarketShiftedBlackVolatilities, 'o', ...
    Strikes, SABRShiftedBlackVolatilities);
h = gca;
line([0,0],[min(h.YLim),max(h.YLim)],'LineStyle','--');
ylim([0.13 0.31])
xlabel('Strike');
legend('Market quotes','Shifted SABR', 'location', 'southeast');
title (['Shifted Black Volatility (',num2str(Shift*100),' percent shift)']);
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Price the swaptions, including those with negative strikes.

Use swaptionbyblk with the 'Shift' parameter to compute swaption prices using the Shifted
Black model.

SwaptionPrices = swaptionbyblk(RateSpec, OptSpec, Strikes, SwaptionSettle, SwaptionExerciseDate, ...
    SwapMaturity, SABRShiftedBlackVolatilities, 'Reset', Reset, 'Shift', Shift);
figure;
plot(Strikes, SwaptionPrices, 'r');
h = gca;
line([0,0],[min(h.YLim),max(h.YLim)],'LineStyle','--');
xlabel('Strike');
title ('Swaption Price');
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Compute Shifted SABR Delta.

Use optsensbysabr with the 'Shift' parameter to compute Delta using the Shifted SABR model.

ShiftedSABRDelta = optsensbysabr(RateSpec, Alpha, Beta, Rho, Nu, SwaptionSettle, ...
SwaptionExerciseDate, CurrentForwardValue, Strikes, OptSpec, 'Shift', Shift);

figure;
plot(Strikes,ShiftedSABRDelta,'r-');
ylim([-0.002 1.002]);
h = gca;
line([0,0],[min(h.YLim),max(h.YLim)],'LineStyle','--');
xlabel('Strike');
title ('Delta');
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Compute the probability density.

The risk-neutral probability density of the terminal underlying asset prices can be approximated as
the second derivative of swaption prices with respect to strike (Breeden and Litzenberger, 1978). As
can be seen in the plot below, the computed probability density is positive for some negative rates
above -0.8 percent (the lower bound determined by 'Shift').

NumGrids = length(Strikes);
ProbDensity = zeros(NumGrids-2,1);
dStrike = mean(diff(Strikes));

for k = 2:(NumGrids-1)
    ProbDensity(k-1) = (SwaptionPrices(k-1) - 2*SwaptionPrices(k) + SwaptionPrices(k+1))/dStrike^2;
end

ProbDensity = ProbDensity./sum(ProbDensity);
ProbStrikes = Strikes(2:end-1);

figure;
plot(ProbStrikes,ProbDensity,'r-');
h = gca;
line([0,0],[min(h.YLim),max(h.YLim)],'LineStyle','--');
xlabel('Strike');
title ('Probability Density');
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See Also
optsensbysabr | capbyblk | floorbyblk | capvolstrip | floorvolstrip | swaptionbyblk |
capbynormal | floorbynormal | swaptionbynormal

Related Examples
• “Calibrate the SABR Model” on page 2-33
• “Price a Swaption Using the SABR Model” on page 2-38

More About
• “Work with Negative Interest Rates Using Functions” on page 2-18
• “Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on

page 1-73
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Calibrate the SABR Model
This example shows how to use two different methods to calibrate the SABR stochastic volatility
model from market implied Black volatilities. Both approaches use blackvolbysabr.

In this section...
“Load Market Implied Black Volatility Data” on page 2-33
“Method 1: Calibrate Alpha, Rho, and Nu Directly” on page 2-33
“Method 2: Calibrate Rho and Nu by Implying Alpha from At-The-Money Volatility” on page 2-34
“Use the Calibrated Models” on page 2-35
“References” on page 2-36

Load Market Implied Black Volatility Data
This example shows how to set up hypothetical market implied Black volatilities for European
swaptions over a range of strikes before calibration. The swaptions expire in three years from the
Settle date and have 10-year swaps as the underlying instrument. The rates are expressed in
decimals. (Changing the units affect the numerical value and interpretation of the Alpha input
parameter to the function blackvolbysabr.)

Load the market implied Black volatility data for swaptions expiring in three years.

Settle = '12-Jun-2013';
ExerciseDate = '12-Jun-2016';

MarketStrikes = [2.0 2.5 3.0 3.5 4.0 4.5 5.0]'/100;
MarketVolatilities = [45.6 41.6 37.9 36.6 37.8 39.2 40.0]'/100;

At the time of Settle, define the underlying forward rate and the at-the-money volatility.

CurrentForwardValue = MarketStrikes(4)
ATMVolatility = MarketVolatilities(4)

CurrentForwardValue =

    0.0350

ATMVolatility =

    0.3660

Method 1: Calibrate Alpha, Rho, and Nu Directly
This example shows how to calibrate the Alpha, Rho, and Nu input parameters directly. The value of
Beta is predetermined either by fitting historical market volatility data or by choosing a value
deemed appropriate for that market [1].

Define the predetermined Beta.

Beta1 = 0.5;
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After fixing the value of β (Beta), the parameters α (Alpha), ρ (Rho), and υ(Nu) are all fitted directly.
The Optimization Toolbox™ function lsqnonlin generates the parameter values that minimize the
squared error between the market volatilities and the volatilities computed by blackvolbysabr.

% Calibrate Alpha, Rho, and Nu
objFun = @(X) MarketVolatilities - ...
    blackvolbysabr(X(1), Beta1, X(2), X(3), Settle, ...
    ExerciseDate, CurrentForwardValue, MarketStrikes);

X = lsqnonlin(objFun, [0.5 0 0.5], [0 -1 0], [Inf 1 Inf]);

Alpha1 = X(1);
Rho1 = X(2);
Nu1 = X(3);

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to 
its initial value is less than the default value of the function tolerance.

Method 2: Calibrate Rho and Nu by Implying Alpha from At-The-Money
Volatility
This example shows how to use an alternative calibration method where the value of β (Beta) is again
predetermined as in Method 1.

Define the predetermined Beta.

Beta2 = 0.5;

However, after fixing the value of β (Beta), the parameters ρ (Rho), and υ (Nu) are fitted directly
while α (Alpha) is implied from the market at-the-money volatility. Models calibrated using this
method produce at-the-money volatilities that are equal to market quotes. This approach is widely
used in swaptions, where at-the-money volatilities are quoted most frequently and are important to
match. To imply α (Alpha) from market at-the-money volatility (σATM), the following cubic polynomial
is solved for α (Alpha), and the smallest positive real root is selected [2].

(1− β)2T
24F(2− 2β)α

3 + ρβυT
4F(1− β)α

2 + 1 + 2− 3ρ2

24 υ2T α− σATMF(1− β) = 0

where:

• F is the current forward value.
• T is the year fraction to maturity.

To accomplish this, define an anonymous function as:

% Year fraction from Settle to option maturity
T = yearfrac(Settle, ExerciseDate, 1);

% This function solves the SABR at-the-money volatility equation as a
% polynomial of Alpha
alpharoots = @(Rho,Nu) roots([...
    (1 - Beta2)^2*T/24/CurrentForwardValue^(2 - 2*Beta2) ...
    Rho*Beta2*Nu*T/4/CurrentForwardValue^(1 - Beta2) ...
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    (1 + (2 - 3*Rho^2)*Nu^2*T/24) ...
    -ATMVolatility*CurrentForwardValue^(1 - Beta2)]);

% This function converts at-the-money volatility into Alpha by picking the
% smallest positive real root 
atmVol2SabrAlpha = @(Rho,Nu) min(real(arrayfun(@(x) ...
    x*(x>0) + realmax*(x<0 || abs(imag(x))>1e-6), alpharoots(Rho,Nu))));

The function atmVol2SabrAlpha converts at-the-money volatility into α (Alpha) for a given set of ρ
(Rho) and υ (Nu). This function is then used in the objective function to fit parameters ρ (Rho) and υ
(Nu).

% Calibrate Rho and Nu (while converting at-the-money volatility into Alpha
% using atmVol2SabrAlpha)
objFun = @(X) MarketVolatilities - ...
    blackvolbysabr(atmVol2SabrAlpha(X(1), X(2)), ...
    Beta2, X(1), X(2), Settle, ExerciseDate, CurrentForwardValue, ...
    MarketStrikes);

X = lsqnonlin(objFun, [0 0.5], [-1 0], [1 Inf]);

Rho2 = X(1);
Nu2 = X(2);

Local minimum found.

Optimization completed because the size of the gradient is less than
the default value of the function tolerance.

The calibrated parameter α (Alpha) is computed using the calibrated parameters ρ (Rho) and υ (Nu).

% Obtain final Alpha from at-the-money volatility using calibrated parameters
Alpha2 = atmVol2SabrAlpha(Rho2, Nu2);

% Display calibrated parameters
C = {Alpha1 Beta1 Rho1 Nu1;Alpha2 Beta2 Rho2 Nu2};
CalibratedPrameters = cell2table(C,...
    'VariableNames',{'Alpha' 'Beta' 'Rho' 'Nu'},...
    'RowNames',{'Method 1';'Method 2'})

CalibratedPrameters = 

                 Alpha      Beta      Rho        Nu   
                ________    ____    _______    _______

    Method 1    0.060277    0.5      0.2097    0.75091
    Method 2    0.058484    0.5     0.20568    0.79647

Use the Calibrated Models
This example shows how to use the calibrated models to compute new volatilities at any strike value.

Compute volatilities for models calibrated using Method 1 and Method 2 and plot the results.

PlottingStrikes = (1.75:0.1:5.50)'/100;

% Compute volatilities for model calibrated by Method 1
ComputedVols1 = blackvolbysabr(Alpha1, Beta1, Rho1, Nu1, Settle, ...
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    ExerciseDate, CurrentForwardValue, PlottingStrikes);

% Compute volatilities for model calibrated by Method 2
ComputedVols2 = blackvolbysabr(Alpha2, Beta2, Rho2, Nu2, Settle, ...
    ExerciseDate, CurrentForwardValue, PlottingStrikes);

figure;
plot(MarketStrikes,MarketVolatilities,'xk',...
    PlottingStrikes,ComputedVols1,'b', ...
    PlottingStrikes,ComputedVols2,'r', ...
    CurrentForwardValue,ATMVolatility,'ok',...
    'MarkerSize',10);
xlim([0.01 0.06]);
ylim([0.35 0.5]);
xlabel('Strike', 'FontWeight', 'bold');
ylabel('Implied Black Volatility', 'FontWeight', 'bold');
legend('Market Volatilities', 'SABR Model (Method 1)',...
    'SABR Model (Method 2)', 'At-the-money volatility');

The model calibrated using Method 2 reproduces the market at-the-money volatility (marked with a
circle) exactly.

References
[1] Hagan, P. S., Kumar, D., Lesniewski, A. S. and Woodward, D. E., Managing smile risk, Wilmott
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See Also
blackvolbysabr | optsensbysabr | swaptionbyblk
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Related Examples
• “Price a Swaption Using the SABR Model” on page 2-38

More About
• “Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on

page 1-73
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Price a Swaption Using the SABR Model
This example shows how to price a swaption using the SABR model. First, a swaption volatility
surface is constructed from market volatilities. This is done by calibrating the SABR model
parameters separately for each swaption maturity. The swaption price is then computed by using the
implied Black volatility on the surface as an input to the swaptionbyblk function.

Step 1. Load market swaption volatility data.

Load the market implied Black volatility data for swaptions.

Settle = '12-Jun-2013';
ExerciseDates = {'12-Sep-2013';'12-Jun-2014';'12-Jun-2015';...
    '12-Jun-2016';'12-Jun-2017';'12-Jun-2018';'12-Jun-2020';...
    '12-Jun-2023'};

YearsToExercise = yearfrac(Settle, ExerciseDates, 1);
NumMaturities = length(YearsToExercise);

MarketVolatilities = [ ...
   57.6 53.7 49.4 45.6 44.1 41.1 35.2 32.0
   46.6 46.9 44.8 41.6 39.8 37.4 33.4 31.0
   35.9 39.3 39.6 37.9 37.2 34.7 30.5 28.9
   34.1 36.5 37.8 36.6 35.0 31.9 28.1 26.6
   41.0 41.3 39.5 37.8 36.0 32.6 29.0 26.0
   45.8 43.4 41.9 39.2 36.9 33.2 29.6 26.3
   50.3 46.9 44.0 40.0 37.5 33.8 30.2 27.3]/100;

MarketStrikes = [ ...
  1.00 1.25 1.68 2.00 2.26 2.41 2.58 2.62;
  1.50 1.75 2.18 2.50 2.76 2.91 3.08 3.12;
  2.00 2.25 2.68 3.00 3.26 3.41 3.58 3.62;
  2.50 2.75 3.18 3.50 3.76 3.91 4.08 4.12;
  3.00 3.25 3.68 4.00 4.26 4.41 4.58 4.62;
  3.50 3.75 4.18 4.50 4.76 4.91 5.08 5.12;
  4.00 4.25 4.68 5.00 5.26 5.41 5.58 5.62]/100;

CurrentForwardValues = MarketStrikes(4,:)

CurrentForwardValues = 1×8

    0.0250    0.0275    0.0318    0.0350    0.0376    0.0391    0.0408    0.0412

ATMVolatilities = MarketVolatilities(4,:)

ATMVolatilities = 1×8

    0.3410    0.3650    0.3780    0.3660    0.3500    0.3190    0.2810    0.2660

The current underlying forward rates and the corresponding at-the-money volatilities across the eight
swaption maturities are represented in the fourth rows of the two matrices.

Step 2. Calibrate the SABR model parameters for each swaption maturity.

Using a model implemented in the function blackvolbysabr, a static SABR model, where the model
parameters are assumed to be constant with respect to time, the parameters are calibrated
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separately for each swaption maturity (years to exercise) in a for loop. To better represent market
at-the-money volatilities, the Alpha parameter values are implied by the market at-the-money
volatilities (see "Method 2" for “Calibrate the SABR Model” on page 2-33).

Define the predetermined Beta, calibrate SABR model parameters for each swaption maturity and
display calibrated parameters in a table.

Beta = 0.5;
Betas = repmat(Beta, NumMaturities, 1);
Alphas = zeros(NumMaturities, 1);
Rhos = zeros(NumMaturities, 1);
Nus = zeros(NumMaturities, 1);

options = optimoptions('lsqnonlin','Display','none');

for k = 1:NumMaturities
    % This function solves the SABR at-the-money volatility equation as a
    % polynomial of Alpha
    alpharoots = @(Rho,Nu) roots([...
        (1 - Beta)^2*YearsToExercise(k)/24/CurrentForwardValues(k)^(2 - 2*Beta) ...
        Rho*Beta*Nu*YearsToExercise(k)/4/CurrentForwardValues(k)^(1 - Beta) ...
        (1 + (2 - 3*Rho^2)*Nu^2*YearsToExercise(k)/24) ...
        -ATMVolatilities(k)*CurrentForwardValues(k)^(1 - Beta)]);

    % This function converts at-the-money volatility into Alpha by picking the
    % smallest positive real root
    atmVol2SabrAlpha = @(Rho,Nu) min(real(arrayfun(@(x) ...
        x*(x>0) + realmax*(x<0 || abs(imag(x))>1e-6), alpharoots(Rho,Nu))));

    % Fit Rho and Nu (while converting at-the-money volatility into Alpha)
    objFun = @(X) MarketVolatilities(:,k) - ...
        blackvolbysabr(atmVol2SabrAlpha(X(1), X(2)), ...
        Beta, X(1), X(2), Settle, ExerciseDates(k), CurrentForwardValues(k), ...
        MarketStrikes(:,k));

    X = lsqnonlin(objFun, [0 0.5], [-1 0], [1 Inf], options);
    Rho = X(1);
    Nu = X(2);

    % Get final Alpha from the calibrated parameters
    Alpha = atmVol2SabrAlpha(Rho, Nu);

    Alphas(k) = Alpha;
    Rhos(k) = Rho;
    Nus(k) = Nu;
end

CalibratedPrameters = array2table([Alphas Betas Rhos Nus],...
    'VariableNames',{'Alpha' 'Beta' 'Rho' 'Nu'},...
    'RowNames',{'3M into 10Y';'1Y into 10Y';...
    '2Y into 10Y';'3Y into 10Y';'4Y into 10Y';...
    '5Y into 10Y';'7Y into 10Y';'10Y into 10Y'})

CalibratedPrameters=8×4 table
                     Alpha      Beta      Rho         Nu   
                    ________    ____    ________    _______

    3M into 10Y     0.051947    0.5      0.39572     1.4146
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    1Y into 10Y     0.054697    0.5       0.2955     1.1257
    2Y into 10Y     0.058433    0.5      0.24175    0.93463
    3Y into 10Y     0.058484    0.5      0.20568    0.79647
    4Y into 10Y     0.056054    0.5      0.13685    0.76993
    5Y into 10Y     0.051072    0.5     0.060285    0.73595
    7Y into 10Y      0.04475    0.5     0.083385    0.66341
    10Y into 10Y    0.044548    0.5      0.02261    0.49487

Step 3. Construct a volatility surface.

Use the calibrated model to compute new volatilities at any strike value to produce a smooth smile for
a given maturity. This can be repeated for each maturity to form a volatility surface

Compute volatilities using the calibrated models for each maturity and plot the volatility surface.

PlottingStrikes = (0.95:0.1:5.8)'/100;
ComputedVols = zeros(length(PlottingStrikes), NumMaturities);

for k = 1:NumMaturities
ComputedVols(:,k) = blackvolbysabr(Alphas(k), Betas(k), Rhos(k), Nus(k), Settle, ...
    ExerciseDates(k), CurrentForwardValues(k), PlottingStrikes);
end

figure;
surf(YearsToExercise, PlottingStrikes, ComputedVols);
xlim([0 10]); ylim([0.0095 0.06]); zlim([0.2 0.8]);
view(113,32);
set(gca, 'Position', [0.13 0.11 0.775 0.815], ...
    'PlotBoxAspectRatioMode', 'manual');
xlabel('Years to exercise', 'Fontweight', 'bold');
ylabel('Strike', 'Fontweight', 'bold');
zlabel('Implied Black volatility', 'Fontweight', 'bold');
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Note, in this volatility surface, the smiles tend to get flatter for longer swaption maturities (years to
exercise). This is consistent with the Nu parameter values tending to decrease with swaption
maturity, as shown previously in the table for CalibratedPrameters.

Step 4. Use swaptionbyblk to price a swaption.

Use the volatility surface to price a swaption that matures in five years. Define a swaption (for a 10-
year swap) that matures in five years and use the interest-rate term structure at the time of the
swaption Settle date to define the RateSpec. Use the RateSpec to compute the current forward
swap rate using the swapbyzero function. Compute the SABR implied Black volatility for this
swaption using the blackvolbysabr function (and it is marked with a red arrow in the figure that
follows). Price the swaption using the SABR implied Black volatility as an input to the 
swaptionbyblk function.

% Define the swaption
SwaptionSettle = '12-Jun-2013';
SwaptionExerciseDate = '12-Jun-2018';
SwapMaturity = '12-Jun-2028';
Reset = 1;
OptSpec = 'call';
Strike = 0.0263;

% Define RateSpec
ValuationDate = '12-Jun-2013';
EndDates = {'12-Jul-2013';'12-Sep-2013';'12-Dec-2013';'12-Jun-2014';...
    '12-Jun-2015';'12-Jun-2016';'12-Jun-2017';'12-Jun-2018';...
    '12-Jun-2019';'12-Jun-2020';'12-Jun-2021';'12-Jun-2022';...
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    '12-Jun-2023';'12-Jun-2025';'12-Jun-2028';'12-Jun-2033'};
Rates = [0.2 0.3 0.4 0.7 0.5 0.7 1.0 1.4 1.7 1.9 ...
    2.1 2.3 2.5 2.8 3.1 3.3]'/100;
Compounding = 1;

RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, ...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [16x1 double]
            Rates: [16x1 double]
         EndTimes: [16x1 double]
       StartTimes: [16x1 double]
         EndDates: [16x1 double]
       StartDates: 735397
    ValuationDate: 735397
            Basis: 0
     EndMonthRule: 1

% Use swapbyzero
LegRate = [NaN 0]; % To compute the forward swap rate, set the coupon rate to NaN.
[~, CurrentForwardSwapRate] = swapbyzero(RateSpec, LegRate, SwaptionSettle, SwapMaturity,...
'StartDate', SwaptionExerciseDate);

% Use blackvolbysabr
SABRBlackVolatility = blackvolbysabr(Alphas(6), Betas(6), Rhos(6), Nus(6), SwaptionSettle, ...
    SwaptionExerciseDate, CurrentForwardSwapRate, Strike)

SABRBlackVolatility = 0.3932

text (YearsToExercise(6), Strike, SABRBlackVolatility, '\leftarrow',...
    'Color', 'r', 'FontWeight', 'bold', 'FontSize', 22);
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% Use swaptionbyblk
Price = swaptionbyblk(RateSpec, OptSpec, Strike, SwaptionSettle, SwaptionExerciseDate, ...
SwapMaturity, SABRBlackVolatility, 'Reset', Reset)

Price = 14.2403

[1] Hagan, P. S., Kumar, D., Lesniewski, A. S. and Woodward, D. E., “Managing Smile Risk,” Wilmott
Magazine, 2002.

[2] West, G., “Calibration of the SABR Model in Illiquid Markets,” Applied Mathematical Finance,
12(4), pp. 371–385, 2004.

See Also
blackvolbysabr | swaptionbyblk | swapbyzero

Related Examples
• “Calibrate the SABR Model” on page 2-33

More About
• “Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on

page 1-73
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Overview of Interest-Rate Tree Models
In this section...
“Interest-Rate Modeling” on page 2-44
“Rate and Price Trees” on page 2-45
“Viewing Rate or Price Movement” on page 2-45

Interest-Rate Modeling
Financial Instruments Toolbox computes prices and sensitivities of interest-rate contingent claims
based on several methods of modeling changes in interest rates over time:

• The interest-rate term structure

This model uses sets of zero-coupon bonds to predict changes in interest rates. A zero-coupon
bond is a bond that, instead of carrying a coupon, is sold at a discount from its face value, pays no
interest during its life, and pays the principal only at maturity.

• Heath-Jarrow-Morton (HJM) model

The HJM model considers a given initial term structure of interest rates and a specification of the
volatility of forward rates to build a tree representing the evolution of the interest rates, based on
a statistical process.

• Black-Derman-Toy (BDT) model

In the BDT model, all security prices and rates depend on the short rate (annualized one-period
interest rate). The model uses long rates (the yield on a zero-coupon Treasury bond) and their
volatilities to construct a tree of possible future short rates. The resulting tree can then be used to
determine the value of interest-rate sensitive securities from this tree.

• Hull-White (HW) model

The Hull-White model incorporates the initial term structure of interest rates and the volatility
term structure to build a trinomial recombining tree of short rates. The resulting tree is used to
value interest-rate dependent securities. The implementation of the HW model in Financial
Instruments Toolbox is limited to one factor.

• Black-Karasinski (BK) model

The BK model is a single-factor, log-normal version of the HW model.

For detailed information about interest-rate models, see:

• “Pricing Using Interest-Rate Term Structure” on page 2-61 for a discussion of price and
sensitivity based on portfolios of zero-coupon bonds

• “Pricing Using Interest-Rate Tree Models” on page 2-81 for a discussion of price and sensitivity
based on the HJM and BDT interest-rate models

Note Historically, the initial version of Financial Instruments Toolbox provided only the HJM
interest-rate model. A later version added the BDT model. The current version adds both the HW
and BK models. This section provides extensive examples of using the HJM and BDT models to
compute prices and sensitivities of interest-rate based financial derivatives.
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The HW and BK tree structures are similar to the BDT tree structure. To avoid needless repetition
throughout this section, documentation is provided only where significant deviations from the BDT
structure exist. Specifically, “HW and BK Tree Structures” on page 2-77 explains the few
noteworthy differences among the various formats.

Rate and Price Trees
The interest-rate or price trees can be either binomial (two branches per node) or trinomial (three
branches per node). Typically, binomial trees assume that underlying interest rates or prices can only
either increase or decrease at each node. Trinomial trees allow for a more complex movement of
rates or prices. With trinomial trees, the movement of rates or prices at each node is unrestricted (for
example, up-up-up or unchanged-down-down). At any time step, the price or rate direction can be
upward, neutral, or downward.

Types of Trees

Financial Instruments Toolbox trees can be classified as bushy or recombining. A bushy tree is a tree
in which the number of branches increases exponentially relative to observation times; branches
never recombine. In this context, a recombining tree is the opposite of a bushy tree. A recombining
tree has branches that recombine over time. From any given node, the node reached by taking the
path up-down is the same node reached by taking the path down-up. A bushy tree and a recombining
binomial tree are illustrated next.

The Heath-Jarrow-Morton model works with bushy trees. The Black-Derman-Toy model, on the other
hand, works with recombining binomial trees. The Hull-White and Black-Karasinsk interest-rate
models work with recombining trinomial trees.

Viewing Rate or Price Movement
This toolbox provides the data file deriv.mat that contains four interest-rate based trees:

• HJMTree — A bushy binomial tree
• BDTTree — A recombining binomial tree
• HWTree and BKTree — Recombining trinomial trees
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The toolbox also provides the treeviewer function, which graphically displays the shape and data of
price, interest rate, and cash flow trees. Viewed with treeviewer, the bushy shape of an HJM tree
and the recombining shape of a BDT tree are apparent.

With treeviewer, you can also see the recombining shape of HW and BK trinomial trees.

See Also
instbond | instcap | instcf | instfixed | instfloat | instfloor | instoptbnd |
instoptembnd | instoptfloat | instoptemfloat | instrangefloat | instswap |
instswaption | intenvset | bondbyzero | cfbyzero | fixedbyzero | floatbyzero |
intenvprice | intenvsens | swapbyzero | floatmargin | floatdiscmargin | hjmtimespec |
hjmtree | hjmvolspec | bondbyhjm | capbyhjm | cfbyhjm | fixedbyhjm | floatbyhjm |
floorbyhjm | hjmprice | hjmsens | mmktbyhjm | oasbyhjm | optbndbyhjm | optfloatbyhjm |
optembndbyhjm | optemfloatbyhjm | rangefloatbyhjm | swapbyhjm | swaptionbyhjm |
bdttimespec | bdttree | bdtvolspec | bdtprice | bdtsens | bondbybdt | capbybdt | cfbybdt
| fixedbybdt | floatbybdt | floorbybdt | mmktbybdt | oasbybdt | optbndbybdt |
optfloatbybdt | optembndbybdt | optemfloatbybdt | rangefloatbybdt | swapbybdt |
swaptionbybdt | hwtimespec | hwtree | hwvolspec | bondbyhw | capbyhw | cfbyhw |
fixedbyhw | floatbyhw | floorbyhw | hwcalbycap | hwcalbyfloor | hwprice | hwsens |
oasbyhw | optbndbyhw | optfloatbyhw | optembndbyhw | optemfloatbyhw | rangefloatbyhw |

2 Interest-Rate Derivatives

2-46



swapbyhw | swaptionbyhw | bktimespec | bktree | bkvolspec | bkprice | bksens | bondbybk |
capbybk | cfbybk | fixedbybk | floatbybk | floorbybk | oasbybk | optbndbybk |
optfloatbybk | optembndbybk | optemfloatbybk | rangefloatbybk | swapbybk |
swaptionbybk | capbyblk | floorbyblk | swaptionbyblk

Related Examples
• “Pricing Using Interest-Rate Term Structure” on page 2-61
• “Pricing Using Interest-Rate Tree Models” on page 2-81
• “Pricing Using Interest-Rate Term Structure” on page 2-61
• “Graphical Representation of Trees” on page 2-220
• “Understanding the Interest-Rate Term Structure” on page 2-48

More About
• “Supported Interest-Rate Instrument Functions” on page 2-3
• “Supported Equity Derivative Functions” on page 3-19
• “Supported Energy Derivative Functions” on page 3-34
• “Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on

page 1-73
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Understanding the Interest-Rate Term Structure
In this section...
“Introduction” on page 2-48
“Interest Rates Versus Discount Factors” on page 2-48

Introduction
The interest-rate term structure represents the evolution of interest rates through time. In MATLAB,
the interest-rate environment is encapsulated in a structure called RateSpec (rate specification).
This structure holds all information required to completely identify the evolution of interest rates.
Several functions included in Financial Instruments Toolbox software are dedicated to the creating
and managing of the RateSpec structure. Many others take this structure as an input argument
representing the evolution of interest rates.

Before looking further at the RateSpec structure, examine three functions that provide key
functionality for working with interest rates: disc2rate, its opposite, rate2disc, and ratetimes.
The first two functions map between discount factors and interest rates. The third function,
ratetimes, calculates the effect of term changes on the interest rates.

Interest Rates Versus Discount Factors
Discount factors are coefficients commonly used to find the current value of future cash flows. As
such, there is a direct mapping between the rate applicable to a period of time, and the
corresponding discount factor. The function disc2rate converts discount factors for a given term
(period) into interest rates. The function rate2disc does the opposite; it converts interest rates
applicable to a given term (period) into the corresponding discount factors.

Calculating Discount Factors from Rates

As an example, consider these annualized zero-coupon bond rates.

From To Rate
15 Feb 2000 15 Aug 2000 0.05
15 Feb 2000 15 Feb 2001 0.056
15 Feb 2000 15 Aug 2001 0.06
15 Feb 2000 15 Feb 2002 0.065
15 Feb 2000 15 Aug 2002 0.075

To calculate the discount factors corresponding to these interest rates, call rate2disc using the
syntax

Disc = rate2disc(Compounding, Rates, EndDates, StartDates, 
ValuationDate)

where:

• Compounding represents the frequency at which the zero rates are compounded when
annualized. For this example, assume this value to be 2.
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• Rates is a vector of annualized percentage rates representing the interest rate applicable to each
time interval.

• EndDates is a vector of dates representing the end of each interest-rate term (period).
• StartDates is a vector of dates representing the beginning of each interest-rate term.
• ValuationDate is the date of observation for which the discount factors are calculated. In this

particular example, use February 15, 2000 as the beginning date for all interest-rate terms.

Next, set the variables in MATLAB.

StartDates = ['15-Feb-2000'];
EndDates  = ['15-Aug-2000'; '15-Feb-2001'; '15-Aug-2001';... 
'15-Feb-2002'; '15-Aug-2002'];
Compounding = 2;
ValuationDate = ['15-Feb-2000'];
Rates = [0.05; 0.056; 0.06; 0.065; 0.075];

Finally, compute the discount factors.

Disc = rate2disc(Compounding, Rates, EndDates, StartDates,... 
ValuationDate)

Disc =

    0.9756
    0.9463
    0.9151
    0.8799
    0.8319

By adding a fourth column to the rates table (see “Calculating Discount Factors from Rates” on page
2-48) to include the corresponding discounts, you can see the evolution of the discount factors.

From To Rate Discount
15 Feb 2000 15 Aug 2000 0.05 0.9756
15 Feb 2000 15 Feb 2001 0.056 0.9463
15 Feb 2000 15 Aug 2001 0.06 0.9151
15 Feb 2000 15 Feb 2002 0.065 0.8799
15 Feb 2000 15 Aug 2002 0.075 0.8319

Optional Time Factor Outputs

The function rate2disc optionally returns two additional output arguments: EndTimes and
StartTimes. These vectors of time factors represent the start dates and end dates in discount
periodic units. The scale of these units is determined by the value of the input variable
Compounding.

To examine the time factor outputs, find the corresponding values in the previous example.

[Disc, EndTimes, StartTimes] = rate2disc(Compounding, Rates,... 
EndDates, StartDates, ValuationDate);

Arrange the two vectors into a single array for easier visualization.

Times = [StartTimes, EndTimes]
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Times =

     0     1
     0     2
     0     3
     0     4
     0     5

Because the valuation date is equal to the start date for all periods, the StartTimes vector is
composed of 0s. Also, since the value of Compounding is 2, the rates are compounded semiannually,
which sets the units of periodic discount to six months. The vector EndDates is composed of dates
separated by intervals of six months from the valuation date. This explains why the EndTimes vector
is a progression of integers from 1 to 5.

Alternative Syntax (rate2disc)

The function rate2disc also accommodates an alternative syntax that uses periodic discount units
instead of dates. Since the relationship between discount factors and interest rates is based on time
periods and not on absolute dates, this form of rate2disc allows you to work directly with time
periods. In this mode, the valuation date corresponds to 0, and the vectors StartTimes and
EndTimes are used as input arguments instead of their date equivalents, StartDates and
EndDates. This syntax for rate2disc is:

Disc = rate2disc(Compounding, Rates, EndTimes, StartTimes)

Using as input the StartTimes and EndTimes vectors computed previously, you should obtain the
previous results for the discount factors.

Disc = rate2disc(Compounding, Rates, EndTimes, StartTimes)

Disc =

    0.9756
    0.9463
    0.9151
    0.8799
    0.8319

Calculating Rates from Discounts

The function disc2rate is the complement to rate2disc. It finds the rates applicable to a set of
compounding periods, given the discount factor in those periods. The syntax for calling this function
is:

Rates = disc2rate(Compounding, Disc, EndDates, StartDates, ValuationDate)

Each argument to this function has the same meaning as in rate2disc. Use the results found in the
previous example to return the rate values you started with.

Rates = disc2rate(Compounding, Disc, EndDates, StartDates,ValuationDate)

Rates =

    0.0500
    0.0560
    0.0600
    0.0650
    0.0750
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Alternative Syntax (disc2rate)

As in the case of rate2disc, disc2rate optionally returns StartTimes and EndTimes vectors
representing the start and end times measured in discount periodic units. Again, working with the
same values as before, you should obtain the same numbers.

[Rates, EndTimes, StartTimes] = disc2rate(Compounding, Disc,... 
EndDates, StartDates, ValuationDate);

Arrange the results in a matrix convenient to display.

Result = [StartTimes, EndTimes, Rates]

Result =

         0    1.0000    0.0500
         0    2.0000    0.0560
         0    3.0000    0.0600
         0    4.0000    0.0650
         0    5.0000    0.0750

As with rate2disc, the relationship between rates and discount factors is determined by time
periods and not by absolute dates. So, the alternate syntax for disc2rate uses time vectors instead
of dates, and it assumes that the valuation date corresponds to time = 0. The time-based calling
syntax is:

Rates = disc2rate(Compounding, Disc, EndTimes, StartTimes);

Using this syntax, you again obtain the original values for the interest rates.

Rates = disc2rate(Compounding, Disc, EndTimes, StartTimes)

Rates =

    0.0500
    0.0560
    0.0600
    0.0650
    0.0750

See Also
instbond | instcap | instcf | instfixed | instfloat | instfloor | instoptbnd |
instoptembnd | instoptfloat | instoptemfloat | instrangefloat | instswap |
instswaption | intenvset | bondbyzero | cfbyzero | fixedbyzero | floatbyzero |
intenvprice | intenvsens | swapbyzero | floatmargin | floatdiscmargin | hjmtimespec |
hjmtree | hjmvolspec | bondbyhjm | capbyhjm | cfbyhjm | fixedbyhjm | floatbyhjm |
floorbyhjm | hjmprice | hjmsens | mmktbyhjm | oasbyhjm | optbndbyhjm | optfloatbyhjm |
optembndbyhjm | optemfloatbyhjm | rangefloatbyhjm | swapbyhjm | swaptionbyhjm |
bdttimespec | bdttree | bdtvolspec | bdtprice | bdtsens | bondbybdt | capbybdt | cfbybdt
| fixedbybdt | floatbybdt | floorbybdt | mmktbybdt | oasbybdt | optbndbybdt |
optfloatbybdt | optembndbybdt | optemfloatbybdt | rangefloatbybdt | swapbybdt |
swaptionbybdt | hwtimespec | hwtree | hwvolspec | bondbyhw | capbyhw | cfbyhw |
fixedbyhw | floatbyhw | floorbyhw | hwcalbycap | hwcalbyfloor | hwprice | hwsens |
oasbyhw | optbndbyhw | optfloatbyhw | optembndbyhw | optemfloatbyhw | rangefloatbyhw |
swapbyhw | swaptionbyhw | bktimespec | bktree | bkvolspec | bkprice | bksens | bondbybk |
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capbybk | cfbybk | fixedbybk | floatbybk | floorbybk | oasbybk | optbndbybk |
optfloatbybk | optembndbybk | optemfloatbybk | rangefloatbybk | swapbybk |
swaptionbybk | capbyblk | floorbyblk | swaptionbyblk

Related Examples
• “Modeling the Interest-Rate Term Structure” on page 2-57
• “Pricing Using Interest-Rate Term Structure” on page 2-61
• “Pricing Using Interest-Rate Term Structure” on page 2-61
• “Pricing Using Interest-Rate Tree Models” on page 2-81
• “Graphical Representation of Trees” on page 2-220

More About
• “Supported Interest-Rate Instrument Functions” on page 2-3
• “Supported Equity Derivative Functions” on page 3-19
• “Supported Energy Derivative Functions” on page 3-34
• “Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on

page 1-73
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Interest-Rate Term Conversions
Interest-rate evolution is typically represented by a set of interest rates, including the beginning and
end of the periods the rates apply to. For zero rates, the start dates are typically at the valuation date,
with the rates extending from that valuation date until their respective maturity dates.

Spot Curve to Forward Curve Conversion
Frequently, given a set of rates including their start and end dates, you may be interested in finding
the rates applicable to different terms (periods). This problem is addressed by the function
ratetimes. This function interpolates the interest rates given a change in the original terms. The
syntax for calling ratetimes is
[Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates, ...
RefEndDates, RefStartDates, EndDates, StartDates, ValuationDate);

where:

• Compounding represents the frequency at which the zero rates are compounded when
annualized.

• RefRates is a vector of initial interest rates representing the interest rates applicable to the
initial time intervals.

• RefEndDates is a vector of dates representing the end of the interest rate terms (period)
applicable to RefRates.

• RefStartDates is a vector of dates representing the beginning of the interest rate terms
applicable to RefRates.

• EndDates represent the maturity dates for which the interest rates are interpolated.
• StartDates represent the starting dates for which the interest rates are interpolated.
• ValuationDate is the date of observation, from which the StartTimes and EndTimes are

calculated. This date represents time = 0.

The input arguments to this function can be separated into two groups:

• The initial or reference interest rates, including the terms for which they are valid
• Terms for which the new interest rates are calculated

As an example, consider the rate table specified in “Calculating Discount Factors from Rates” on page
2-48.

From To Rate
15 Feb 2000 15 Aug 2000 0.05
15 Feb 2000 15 Feb 2001 0.056
15 Feb 2000 15 Aug 2001 0.06
15 Feb 2000 15 Feb 2002 0.065
15 Feb 2000 15 Aug 2002 0.075

Assuming that the valuation date is February 15, 2000, these rates represent zero-coupon bond rates
with maturities specified in the second column. Use the function ratetimes to calculate the forward
rates at the beginning of all periods implied in the table. Assume a compounding value of 2.
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% Reference Rates.
RefStartDates = ['15-Feb-2000'];
RefEndDates  = ['15-Aug-2000'; '15-Feb-2001'; '15-Aug-2001';... 
'15-Feb-2002'; '15-Aug-2002'];
Compounding = 2;
ValuationDate = ['15-Feb-2000'];
RefRates = [0.05; 0.056; 0.06; 0.065; 0.075];

% New Terms.
StartDates = ['15-Feb-2000'; '15-Aug-2000'; '15-Feb-2001';... 
'15-Aug-2001'; '15-Feb-2002'];
EndDates =   ['15-Aug-2000'; '15-Feb-2001'; '15-Aug-2001';... 
'15-Feb-2002'; '15-Aug-2002'];
% Find the new rates.
Rates = ratetimes(Compounding, RefRates, RefEndDates,... 
RefStartDates, EndDates, StartDates, ValuationDate)

Rates =

    0.0500
    0.0620
    0.0680
    0.0801
    0.1155

Place these values in a table like the previous one. Observe the evolution of the forward rates based
on the initial zero-coupon rates.

From To Rate
15 Feb 2000 15 Aug 2000 0.0500
15 Aug 2000 15 Feb 2001 0.0620
15 Feb 2001 15 Aug 2001 0.0680
15 Aug 2001 15 Feb 2002 0.0801
15 Feb 2002 15 Aug 2002 0.1155

Alternative Syntax (ratetimes)
The ratetimes function can provide the additional output arguments StartTimes and EndTimes,
which represent the time factor equivalents to the StartDates and EndDates vectors. The
ratetimes function uses time factors for interpolating the rates. These time factors are calculated
from the start and end dates, and the valuation date, which are passed as input arguments.
ratetimes can also use time factors directly, assuming time = 0 as the valuation date. This alternate
syntax is:

[Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates, RefEndTimes,
RefStartTimes, EndTimes, StartTimes);

Use this alternate version of ratetimes to find the forward rates again. In this case, you must first
find the time factors of the reference curve. Use date2time for this.

RefEndTimes = date2time(ValuationDate, RefEndDates, Compounding)

RefEndTimes =
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     1
     2
     3
     4
     5

RefStartTimes = date2time(ValuationDate, RefStartDates, ... 
Compounding)

RefStartTimes =

     0

These are the expected values, given semiannual discounts (as denoted by a value of 2 in the variable
Compounding), end dates separated by six-month periods, and the valuation date equal to the date
marking beginning of the first period (time factor = 0).

Now call ratetimes with the alternate syntax.

StartDates = ['15-Feb-2000'];
EndDates  = ['15-Aug-2000'; '15-Feb-2001'; '15-Aug-2001';... 
'15-Feb-2002'; '15-Aug-2002'];
Compounding = 2;
ValuationDate = ['15-Feb-2000'];
Rates = [0.05; 0.056; 0.06; 0.065; 0.075];
[Disc, EndTimes, StartTimes] = rate2disc(Compounding, Rates,... 
EndDates, StartDates, ValuationDate);

[Rates, EndTimes, StartTimes] = ratetimes(Compounding,... 
RefRates, RefEndTimes, RefStartTimes, EndTimes, StartTimes)

Rates =

    0.0500
    0.0560
    0.0600
    0.0650
    0.0750

EndTimes =

     1
     2
     3
     4
     5

StartTimes =

     0
     0
     0
     0
     0

EndTimes and StartTimes have, as expected, the same values they had as input arguments.
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Times = [StartTimes, EndTimes]

Times =

     0     1
     1     2
     2     3
     3     4
     4     5

See Also
instbond | instcap | instcf | instfixed | instfloat | instfloor | instoptbnd |
instoptembnd | instoptfloat | instoptemfloat | instrangefloat | instswap |
instswaption | intenvset | bondbyzero | cfbyzero | fixedbyzero | floatbyzero |
intenvprice | intenvsens | swapbyzero | floatmargin | floatdiscmargin | hjmtimespec |
hjmtree | hjmvolspec | bondbyhjm | capbyhjm | cfbyhjm | fixedbyhjm | floatbyhjm |
floorbyhjm | hjmprice | hjmsens | mmktbyhjm | oasbyhjm | optbndbyhjm | optfloatbyhjm |
optembndbyhjm | optemfloatbyhjm | rangefloatbyhjm | swapbyhjm | swaptionbyhjm |
bdttimespec | bdttree | bdtvolspec | bdtprice | bdtsens | bondbybdt | capbybdt | cfbybdt
| fixedbybdt | floatbybdt | floorbybdt | mmktbybdt | oasbybdt | optbndbybdt |
optfloatbybdt | optembndbybdt | optemfloatbybdt | rangefloatbybdt | swapbybdt |
swaptionbybdt | hwtimespec | hwtree | hwvolspec | bondbyhw | capbyhw | cfbyhw |
fixedbyhw | floatbyhw | floorbyhw | hwcalbycap | hwcalbyfloor | hwprice | hwsens |
oasbyhw | optbndbyhw | optfloatbyhw | optembndbyhw | optemfloatbyhw | rangefloatbyhw |
swapbyhw | swaptionbyhw | bktimespec | bktree | bkvolspec | bkprice | bksens | bondbybk |
capbybk | cfbybk | fixedbybk | floatbybk | floorbybk | oasbybk | optbndbybk |
optfloatbybk | optembndbybk | optemfloatbybk | rangefloatbybk | swapbybk |
swaptionbybk | capbyblk | floorbyblk | swaptionbyblk

Related Examples
• “Modeling the Interest-Rate Term Structure” on page 2-57
• “Pricing Using Interest-Rate Term Structure” on page 2-61
• “Pricing Using Interest-Rate Term Structure” on page 2-61
• “Pricing Using Interest-Rate Tree Models” on page 2-81
• “Graphical Representation of Trees” on page 2-220

More About
• “Understanding the Interest-Rate Term Structure” on page 2-48
• “Supported Interest-Rate Instrument Functions” on page 2-3
• “Supported Equity Derivative Functions” on page 3-19
• “Supported Energy Derivative Functions” on page 3-34
• “Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on

page 1-73

2 Interest-Rate Derivatives

2-56



Modeling the Interest-Rate Term Structure
Financial Instruments Toolbox includes a set of functions to encapsulate interest-rate term
information into a single structure. These functions present a convenient way to package all
information related to interest-rate terms into a common format, and to resolve interdependencies
when one or more of the parameters is modified. For information, see:

• “Creating or Modifying (intenvset)” on page 2-57 for a discussion of how to create or modify an
interest-rate term structure (RateSpec) using the intenvset function

• “Obtaining Specific Properties (intenvget)” on page 2-58 for a discussion of how to extract
specific properties from a RateSpec

Creating or Modifying (intenvset)
The main function to create or modify an interest-rate term structure RateSpec (rates specification)
is intenvset. If the first argument to this function is a previously created RateSpec, the function
modifies the existing rate specification and returns a new one. Otherwise, it creates a RateSpec.

When using RateSpec to specify the rate term structure to price instruments based on yields (zero
coupon rates) or forward rates, specify zero rates or forward rates as the input argument. However,
the RateSpec structure is not limited or specific to this problem domain. RateSpec is an
encapsulation of rates-times relationships; intenvset acts as either a constructor or a modifier, and
intenvget as an accessor. The interest rate models supported by the Financial Instruments Toolbox
software work either with zero coupon rates or forward rates.

The other intenvset arguments are name-value pairs. The name-value pair arguments that can be
specified or modified are:

• Basis
• Compounding
• Disc
• EndDates
• EndMonthRule
• Rates
• StartDates
• ValuationDate

For more information on Basis, see “Basis” on page 2-229.

Consider again the original table of interest rates (see “Calculating Discount Factors from Rates” on
page 2-48).

From To Rate
15 Feb 2000 15 Aug 2000 0.05
15 Feb 2000 15 Feb 2001 0.056
15 Feb 2000 15 Aug 2001 0.06
15 Feb 2000 15 Feb 2002 0.065
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From To Rate
15 Feb 2000 15 Aug 2002 0.075

Use the information in this table to populate the RateSpec structure.

StartDates = ['15-Feb-2000'];
EndDates =   ['15-Aug-2000';
              '15-Feb-2001'; 
              '15-Aug-2001';
              '15-Feb-2002';
              '15-Aug-2002'];
Compounding = 2;
ValuationDate = ['15-Feb-2000'];
Rates = [0.05; 0.056; 0.06; 0.065; 0.075];

rs = intenvset('Compounding',Compounding,'StartDates',... 
StartDates, 'EndDates', EndDates, 'Rates', Rates,... 
'ValuationDate', ValuationDate)

rs = 

       FinObj:    'RateSpec'
  Compounding:    2
         Disc:    [5x1 double]
        Rates:    [5x1 double]
     EndTimes:    [5x1 double]
   StartTimes:    [5x1 double]
     EndDates:    [5x1 double]
   StartDates:    730531
ValuationDate:    730531
        Basis: 0
 EndMonthRule: 1

Some of the properties filled in the structure were not passed explicitly in the call to RateSpec. The
values of the automatically completed properties depend on the properties that are explicitly passed.
Consider for example the StartTimes and EndTimes vectors. Since the StartDates and
EndDates vectors are passed in, and the ValuationDate, intenvset has all the information
required to calculate StartTimes and EndTimes. Hence, these two properties are read-only.

Obtaining Specific Properties (intenvget)
The complementary function to intenvset is intenvget, which gets function-specific properties
from the interest-rate term structure. Its syntax is:

ParameterValue = intenvget(RateSpec, 'ParameterName')

To obtain the vector EndTimes from the RateSpec structure, enter:

EndTimes = intenvget(rs, 'EndTimes')

EndTimes =

     1
     2
     3

2 Interest-Rate Derivatives

2-58



     4
     5

To obtain Disc, the values for the discount factors that were calculated automatically by intenvset,
type:

Disc = intenvget(rs, 'Disc')

Disc =

    0.9756
    0.9463
    0.9151
    0.8799
    0.8319

These discount factors correspond to the periods starting from StartDates and ending in
EndDates.

Caution Although you can directly access these fields within the structure instead of using
intenvget, it is advised not to do so. The format of the interest-rate term structure could change in
future versions of the toolbox. Should that happen, any code accessing the RateSpec fields directly
would stop working.

Now use the RateSpec structure with its functions to examine how changes in specific properties of
the interest-rate term structure affect those depending on it. As an exercise, change the value of
Compounding from 2 (semiannual) to 1 (annual).

rs = intenvset(rs, 'Compounding', 1);

Since StartTimes and EndTimes are measured in units of periodic discount, a change in
Compounding from 2 to 1 redefines the basic unit from semiannual to annual. This means that a
period of six months is represented with a value of 0.5, and a period of one year is represented by 1.
To obtain the vectors StartTimes and EndTimes, enter:

StartTimes = intenvget(rs, 'StartTimes');
EndTimes = intenvget(rs, 'EndTimes');
Times = [StartTimes, EndTimes]

Times =

         0    0.5000
         0    1.0000
         0    1.5000
         0    2.0000
         0    2.5000

Since all the values in StartDates are the same as the valuation date, all StartTimes values are 0.
On the other hand, the values in the EndDates vector are dates separated by six-month periods.
Since the redefined value of compounding is 1, EndTimes becomes a sequence of numbers separated
by increments of 0.5.

See Also
instbond | instcap | instcf | instfixed | instfloat | instfloor | instoptbnd |
instoptembnd | instoptfloat | instoptemfloat | instrangefloat | instswap |
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instswaption | intenvset | bondbyzero | cfbyzero | fixedbyzero | floatbyzero |
intenvprice | intenvsens | swapbyzero | floatmargin | floatdiscmargin | hjmtimespec |
hjmtree | hjmvolspec | bondbyhjm | capbyhjm | cfbyhjm | fixedbyhjm | floatbyhjm |
floorbyhjm | hjmprice | hjmsens | mmktbyhjm | oasbyhjm | optbndbyhjm | optfloatbyhjm |
optembndbyhjm | optemfloatbyhjm | rangefloatbyhjm | swapbyhjm | swaptionbyhjm |
bdttimespec | bdttree | bdtvolspec | bdtprice | bdtsens | bondbybdt | capbybdt | cfbybdt
| fixedbybdt | floatbybdt | floorbybdt | mmktbybdt | oasbybdt | optbndbybdt |
optfloatbybdt | optembndbybdt | optemfloatbybdt | rangefloatbybdt | swapbybdt |
swaptionbybdt | hwtimespec | hwtree | hwvolspec | bondbyhw | capbyhw | cfbyhw |
fixedbyhw | floatbyhw | floorbyhw | hwcalbycap | hwcalbyfloor | hwprice | hwsens |
oasbyhw | optbndbyhw | optfloatbyhw | optembndbyhw | optemfloatbyhw | rangefloatbyhw |
swapbyhw | swaptionbyhw | bktimespec | bktree | bkvolspec | bkprice | bksens | bondbybk |
capbybk | cfbybk | fixedbybk | floatbybk | floorbybk | oasbybk | optbndbybk |
optfloatbybk | optembndbybk | optemfloatbybk | rangefloatbybk | swapbybk |
swaptionbybk | capbyblk | floorbyblk | swaptionbyblk

Related Examples
• “Pricing Using Interest-Rate Term Structure” on page 2-61
• “Pricing Using Interest-Rate Term Structure” on page 2-61
• “Pricing Using Interest-Rate Tree Models” on page 2-81
• “Graphical Representation of Trees” on page 2-220

More About
• “Understanding the Interest-Rate Term Structure” on page 2-48
• “Supported Interest-Rate Instrument Functions” on page 2-3
• “Supported Equity Derivative Functions” on page 3-19
• “Supported Energy Derivative Functions” on page 3-34
• “Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on

page 1-73
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Pricing Using Interest-Rate Term Structure
In this section...
“Introduction” on page 2-61
“Computing Instrument Prices” on page 2-61
“Computing Instrument Sensitivities” on page 2-63
“OAS for Callable and Puttable Bonds” on page 2-64
“Agency OAS” on page 2-64

Introduction
The instruments can be presented to the functions as a portfolio of different types of instruments or
as groups of instruments of the same type. The current version of the toolbox can compute price and
sensitivities for five instrument types of using interest-rate curves:

• Bonds
• Fixed-rate notes
• Floating-rate notes
• Swaps
• OAS for callable and puttable bonds
• Agency OAS

In addition to these instruments, the toolbox also supports the calculation of price and sensitivities of
arbitrary sets of cash flows.

Options and interest-rate floors and caps are absent from the above list of supported instruments.
These instruments are not supported because their pricing and sensitivity function require a
stochastic model for the evolution of interest rates. The interest-rate term structure used for pricing
is treated as deterministic, and as such is not adequate for pricing these instruments.

Financial Instruments Toolbox also contains functions that use the Heath-Jarrow-Morton (HJM) and
Black-Derman-Toy (BDT) models to compute prices and sensitivities for financial instruments. These
models support computations involving options and interest-rate floors and caps. See “Pricing Using
Interest-Rate Tree Models” on page 2-81 for information on computing price and sensitivities of
financial instruments using the HJM and BDT models.

Computing Instrument Prices
The main function used for pricing portfolios of instruments is intenvprice. This function works
with the family of functions that calculate the prices of individual types of instruments. When called,
intenvprice classifies the portfolio contained in InstSet by instrument type, and calls the
appropriate pricing functions. The map between instrument types and the pricing function
intenvprice calls is

bondbyzero: Price a bond by a set of zero curves
fixedbyzero: Price a fixed-rate note by a set of zero curves
floatbyzero: Price a floating-rate note by a set of zero curves
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swapbyzero: Price a swap by a set of zero curves

You can use each of these functions individually to price an instrument. Consult the reference pages
for specific information on using these functions.

intenvprice takes as input an interest-rate term structure created with intenvset, and a portfolio
of interest-rate contingent derivatives instruments created with instadd.

The syntax for using intenvprice to price an entire portfolio is

Price = intenvprice(RateSpec, InstSet)

where:

• RateSpec is the interest-rate term structure.
• InstSet is the name of the portfolio.

Example: Pricing a Portfolio of Instruments

Consider this example of using the intenvprice function to price a portfolio of instruments supplied
with Financial Instruments Toolbox software.

The provided MAT-file deriv.mat stores a portfolio as an instrument set variable ZeroInstSet. The
MAT-file also contains the interest-rate term structure ZeroRateSpec. You can display the
instruments with the function instdisp.
load deriv.mat;
instdisp(ZeroInstSet)

Index Type CouponRate Settle         Maturity       Period Basis...
1     Bond 0.04       01-Jan-2000    01-Jan-2003    1      NaN... 
2     Bond 0.04       01-Jan-2000    01-Jan-2004    2      NaN... 
 
Index Type  CouponRate Settle      Maturity    FixedReset Basis...
3     Fixed 0.04       01-Jan-2000 01-Jan-2003 1          NaN... 
 
Index Type  Spread Settle         Maturity       FloatReset Basis...
4     Float 20     01-Jan-2000    01-Jan-2003    1          NaN... 
 
Index Type LegRate    Settle         Maturity       LegReset Basis...
5     Swap [0.06 20]  01-Jan-2000    01-Jan-2003    [1  1]   NaN...

Use intenvprice to calculate the prices for the instruments contained in the portfolio
ZeroInstSet.

format bank
Prices = intenvprice(ZeroRateSpec, ZeroInstSet)

Prices =

         98.72
         97.53
         98.72
        100.55
          3.69

The output Prices is a vector containing the prices of all the instruments in the portfolio in the order
indicated by the Index column displayed by instdisp. So, the first two elements in Prices
correspond to the first two bonds; the third element corresponds to the fixed-rate note; the fourth to
the floating-rate note; and the fifth element corresponds to the price of the swap.
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Computing Instrument Sensitivities
In general, you can compute sensitivities either as dollar price changes or as percentage price
changes. The toolbox reports all sensitivities as dollar sensitivities.

Using the interest-rate term structure, you can calculate two types of derivative price sensitivities,
delta and gamma. Delta represents the dollar sensitivity of prices to shifts in the observed forward
yield curve. Gamma represents the dollar sensitivity of delta to shifts in the observed forward yield
curve.

The intenvsens function computes instrument sensitivities and instrument prices. If you need both
the prices and sensitivity measures, use intenvsens. A separate call to intenvprice is not
required.

Here is the syntax

[Delta, Gamma, Price] = intenvsens(RateSpec, InstSet)

where, as before:

• RateSpec is the interest-rate term structure.
• InstSet is the name of the portfolio.

Example: Sensitivities and Prices

Here is an example that uses intenvsens to calculate both sensitivities and prices.

format bank
load deriv.mat;
[Delta, Gamma, Price] = intenvsens(ZeroRateSpec, ZeroInstSet);

Display the results in a single matrix in bank format.

All = [Delta Gamma Price]

All =

       -272.64       1029.84       98.72
       -347.44       1622.65       97.53
       -272.64       1029.84       98.72
         -1.04          3.31      100.55
       -282.04       1059.62        3.69

To view the per-dollar sensitivity, divide the first two columns by the last one.

[Delta./Price, Gamma./Price, Price]

ans =

         -2.76         10.43         98.72
         -3.56         16.64         97.53
         -2.76         10.43         98.72
         -0.01          0.03        100.55
        -76.39        286.98          3.69
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OAS for Callable and Puttable Bonds
Option Adjusted Spread (OAS) is a useful way to value and compare securities with embedded
options, like callable or puttable bonds. Basically, when the constant or flat spread is added to the
interest-rate curve/rates in the tree, the pricing model value equals the market price. Financial
Instruments Toolbox supports pricing American, European, and Bermuda callable and puttable bonds
using different interest rate models. The pricing for a bond with embedded options is:

• For a callable bond, where the holder has bought a bond and sold a call option to the issuer:

Price callable bond = Price Option free bond − Price call option
• For a puttable bond, where the holder has bought a bond and a put option:

Price puttable bond = Price Option free bond + Price put option

There are two additional sensitivities related to OAS for bonds with embedded options: Option
Adjusted Duration and Option Adjusted Convexity. These are similar to the concepts of modified
duration and convexity for option-free bonds. The measure Duration is a general term that describes
how sensitive a bond’s price is to a parallel shift in the yield curve. Modified Duration and Modified
Convexity assume that the bond’s cash flows do not change when the yield curve shifts. This is not
true for OA Duration or OA Convexity because the cash flows may change due to the option risk
component of the bond.

Function Purpose
oasbybdt Compute OAS using a BDT model.
oasbybk Compute OAS using a BK model.
oasbyhjm Compute OAS using an HJM model.
oasbyhw Compute OAS using an HW model.

Agency OAS
Often bonds are issued with embedded options, which then makes standard price/yield or spread
measures irrelevant. For example, a municipality concerned about the chance that interest rates may
fall in the future might issue bonds with a provision that allows the bond to be repaid before the
bond’s maturity. This is a call option on the bond and must be incorporated into the valuation of the
bond. Option-adjusted spread (OAS), which adjusts a bond spread for the value of the option, is the
standard measure for valuing bonds with embedded options. Financial Instruments Toolbox supports
computing option-adjusted spreads for bonds with single embedded options using the agency model.

The Securities Industry and Financial Markets Association (SIFMA) has a simplified approach to
compute OAS for agency issues (Government Sponsored Entities like Fannie Mae and Freddie Mac)
termed “Agency OAS.” In this approach, the bond has only one call date (European call) and uses
Black’s model (see The BMA European Callable Securities Formula at https://www.sifma.org) to value
the bond option. The price of the bond is computed as follows:

PriceCallable = PriceNonCallable – PriceOption

where

PriceCallable is the price of the callable bond.

PriceNonCallable is the price of the noncallable bond, that is, price of the bond using bndspread.
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PriceOption is the price of the option, that is, price of the option using Black’s model.

The Agency OAS is the spread, when used in the previous formula, yields the market price. Financial
Instruments Toolbox supports these functions:

Agency OAS

Agency OAS Functions Purpose
agencyoas Compute the OAS of the callable bond using the Agency OAS

model.
agencyprice Price the callable bond OAS using the Agency OAS model.

For more information on agency OAS, see “Agency Option-Adjusted Spreads” on page 6-2.

See Also
instbond | instcap | instcf | instfixed | instfloat | instfloor | instoptbnd |
instoptembnd | instoptfloat | instoptemfloat | instrangefloat | instswap |
instswaption | intenvset | bondbyzero | cfbyzero | fixedbyzero | floatbyzero |
intenvprice | intenvsens | swapbyzero | floatmargin | floatdiscmargin | hjmtimespec |
hjmtree | hjmvolspec | bondbyhjm | capbyhjm | cfbyhjm | fixedbyhjm | floatbyhjm |
floorbyhjm | hjmprice | hjmsens | mmktbyhjm | oasbyhjm | optbndbyhjm | optfloatbyhjm |
optembndbyhjm | optemfloatbyhjm | rangefloatbyhjm | swapbyhjm | swaptionbyhjm |
bdttimespec | bdttree | bdtvolspec | bdtprice | bdtsens | bondbybdt | capbybdt | cfbybdt
| fixedbybdt | floatbybdt | floorbybdt | mmktbybdt | oasbybdt | optbndbybdt |
optfloatbybdt | optembndbybdt | optemfloatbybdt | rangefloatbybdt | swapbybdt |
swaptionbybdt | hwtimespec | hwtree | hwvolspec | bondbyhw | capbyhw | cfbyhw |
fixedbyhw | floatbyhw | floorbyhw | hwcalbycap | hwcalbyfloor | hwprice | hwsens |
oasbyhw | optbndbyhw | optfloatbyhw | optembndbyhw | optemfloatbyhw | rangefloatbyhw |
swapbyhw | swaptionbyhw | bktimespec | bktree | bkvolspec | bkprice | bksens | bondbybk |
capbybk | cfbybk | fixedbybk | floatbybk | floorbybk | oasbybk | optbndbybk |
optfloatbybk | optembndbybk | optemfloatbybk | rangefloatbybk | swapbybk |
swaptionbybk | capbyblk | floorbyblk | swaptionbyblk

Related Examples
• “Pricing Using Interest-Rate Term Structure” on page 2-61
• “Understanding the Interest-Rate Term Structure” on page 2-48

More About
• “Supported Interest-Rate Instrument Functions” on page 2-3
• “Supported Equity Derivative Functions” on page 3-19
• “Supported Energy Derivative Functions” on page 3-34
• “Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on

page 1-73
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Understanding Interest-Rate Tree Models
In this section...
“Introduction” on page 2-66
“Building a Tree of Forward Rates” on page 2-66
“Specifying the Volatility Model (VolSpec)” on page 2-68
“Specifying the Interest-Rate Term Structure (RateSpec)” on page 2-70
“Specifying the Time Structure (TimeSpec)” on page 2-70
“Creating Trees” on page 2-72
“Examining Trees” on page 2-72

Introduction
Financial Instruments Toolbox supports the following interest-rate trees:

• Black-Derman-Toy (BDT)
• Black-Karasinski (BK)
• Heath-Jarrow-Morton (HJM)
• Hull-White (HW)
• Cox-Ingersoll-Ross (CIR)

The Heath-Jarrow-Morton model is one of the most widely used models for pricing interest-rate
derivatives. The model considers a given initial term structure of interest rates and a specification of
the volatility of forward rates to build a tree representing the evolution of the interest rates, based on
a statistical process. For further explanation, see the book Modelling Fixed Income Securities and
Interest Rate Options by Robert A. Jarrow.

The Black-Derman-Toy model is another analytical model commonly used for pricing interest-rate
derivatives. The model considers a given initial zero rate term structure of interest rates and a
specification of the yield volatilities of long rates to build a tree representing the evolution of the
interest rates. For further explanation, see the paper “A One Factor Model of Interest Rates and its
Application to Treasury Bond Options” by Fischer Black, Emanuel Derman, and William Toy.

The Hull-White model incorporates the initial term structure of interest rates and the volatility term
structure to build a trinomial recombining tree of short rates. The resulting tree is used to value
interest rate-dependent securities. The implementation of the Hull-White model in Financial
Instruments Toolbox software is limited to one factor.

The Black-Karasinski model is a single factor, log-normal version of the Hull-White model.

For further information on the Hull-White and Black-Karasinski models, see the book Options,
Futures, and Other Derivatives by John C. Hull.

Building a Tree of Forward Rates
The tree of forward rates is the fundamental unit representing the evolution of interest rates in a
given period of time. This section explains how to create a forward-rate tree using Financial
Instruments Toolbox.
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Note To avoid needless repetition, this document uses the HJM and BDT models to illustrate the
creation and use of interest-rate trees. The HW and BK models are similar to the BDT model. Where
specific differences exist, they are documented in “HW and BK Tree Structures” on page 2-77.

The MATLAB functions that create rate trees are hjmtree and bdttree. The hjmtree function
creates the structure, HJMTree, containing time and forward-rate information for a bushy tree. The
bdttree function creates a similar structure, BDTTree, for a recombining tree.

This structure is a self-contained unit that includes the tree of rates (found in the FwdTree field of
the structure) and the volatility, rate, and time specifications used in building this tree.

These functions take three structures as input arguments:

• The volatility model VolSpec. (See “Specifying the Volatility Model (VolSpec)” on page 2-68.)
• The interest-rate term structure RateSpec. (See “Specifying the Interest-Rate Term Structure

(RateSpec)” on page 2-70.)
• The tree time layout TimeSpec. (See “Specifying the Time Structure (TimeSpec)” on page 2-70.)

An easy way to visualize any trees you create is with the treeviewer function, which displays trees
in a graphical manner. See “Graphical Representation of Trees” on page 2-220 for information about
treeviewer.

Calling Sequence

The calling syntax for hjmtree is HJMTree = hjmtree(VolSpec, RateSpec, TimeSpec).

Similarly, the calling syntax for bdttree is BDTTree = bdttree(VolSpec, RateSpec,
TimeSpec).

Each of these functions requires VolSpec, RateSpec, and TimeSpec input arguments:

• VolSpec is a structure that specifies the forward-rate volatility process. You create VolSpec
using either of the functions hjmvolspec or bdtvolspec.

The hjmvolspec function supports the specification of up to three factors. It handles these
models for the volatility of the interest-rate term structure:

• Constant
• Stationary
• Exponential
• Vasicek
• Proportional

A one-factor model assumes that the interest term structure is affected by a single source of
uncertainty. Incorporating multiple factors allows you to specify different types of shifts in the
shape and location of the interest-rate structure. See hjmvolspec for details.

The bdtvolspec function supports only a single volatility factor. The volatility remains constant
between pairs of nodes on the tree. You supply the input volatility values in a vector of decimal
values. See bdtvolspec for details.

• RateSpec is the interest-rate specification of the initial rate curve. You create this structure with
the function intenvset. (See “Modeling the Interest-Rate Term Structure” on page 2-57.)
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• TimeSpec is the tree time layout specification. You create this variable with the functions
hjmtimespec or bdttimespec. It represents the mapping between level times and level dates
for rate quoting. This structure indirectly determines the number of levels in the tree.

Specifying the Volatility Model (VolSpec)
Because HJM supports multifactor (up to 3) volatility models while BDT (also, BK and HW) supports
only a single volatility factor, the hjmvolspec and bdtvolspec functions require different inputs
and generate slightly different outputs. For examples, see “Creating an HJM Volatility Model” on page
2-68. For BDT examples, see “Creating a BDT Volatility Model” on page 2-69.

Creating an HJM Volatility Model

The function hjmvolspec generates the structure VolSpec, which specifies the volatility process
σ t, T  used in the creation of the forward-rate trees. In this context capital T represents the starting
time of the forward rate, and t represents the observation time. The volatility process can be
constructed from a combination of factors specified sequentially in the call to function that creates it.
Each factor specification starts with a character vector specifying the name of the factor, followed by
the pertinent parameters.
HJM Volatility Specification Example

Consider an example that uses a single factor, specifically, a constant-sigma factor. The constant
factor specification requires only one parameter, the value of σ. In this case, the value corresponds to
0.10.

HJMVolSpec = hjmvolspec('Constant', 0.10)

HJMVolSpec = 

      FinObj: 'HJMVolSpec'
FactorModels: {'Constant'}
  FactorArgs: {{1x1 cell}}
  SigmaShift: 0
  NumFactors: 1
   NumBranch: 2
     PBranch: [0.5000 0.5000]
 Fact2Branch: [-1 1]

The NumFactors field of the VolSpec structure, VolSpec.NumFactors = 1, reveals that the
number of factors used to generate VolSpec was one. The FactorModels field indicates that it is a
Constant factor, and the NumBranches field indicates the number of branches. As a consequence,
each node of the resulting tree has two branches, one going up, and the other going down.

Consider now a two-factor volatility process made from a proportional factor and an exponential
factor.
% Exponential factor
Sigma_0 = 0.1;
Lambda = 1;
% Proportional factor
CurveProp = [0.11765; 0.08825; 0.06865];
CurveTerm = [   1   ;    2   ;    3   ];
% Build VolSpec
HJMVolSpec = hjmvolspec('Proportional', CurveProp, CurveTerm,...
1e6,'Exponential', Sigma_0, Lambda)

HJMVolSpec = 
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      FinObj: 'HJMVolSpec'
FactorModels: {'Proportional'  'Exponential'}
  FactorArgs: {{1x3 cell}  {1x2 cell}}
  SigmaShift: 0
  NumFactors: 2
   NumBranch: 3
     PBranch: [0.2500 0.2500 0.5000]
 Fact2Branch: [2x3 double]

The output shows that the volatility specification was generated using two factors. The tree has three
branches per node. Each branch has probabilities of 0.25, 0.25, and 0.5, going from top to bottom.

Creating a BDT Volatility Model

The function bdtvolspec generates the structure VolSpec, which specifies the volatility process.
The function requires three input arguments:

• The valuation date ValuationDate
• The yield volatility end dates VolDates
• The yield volatility values VolCurve

An optional fourth argument InterpMethod, specifying the interpolation method, can be included.

The syntax used for calling bdtvolspec is:

BDTVolSpec = bdtvolspec(ValuationDate, VolDates, VolCurve,... InterpMethod)

where:

• ValuationDate is the first observation date in the tree.
• VolDates is a vector of dates representing yield volatility end dates.
• VolCurve is a vector of yield volatility values.
• InterpMethod is the method of interpolation to use. The default is linear.

BDT Volatility Specification Example

Consider the following example:

ValuationDate = datenum('01-01-2000');
EndDates = datenum(['01-01-2001'; '01-01-2002'; '01-01-2003'; 
'01-01-2004'; '01-01-2005']);
Volatility = [.2; .19; .18; .17; .16];

Use bdtvolspec to create a volatility specification. Because no interpolation method is explicitly
specified, the function uses the linear default.

BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility)

BDTVolSpec = 
             FinObj: 'BDTVolSpec'
      ValuationDate: 730486
           VolDates: [5x1 double]
           VolCurve: [5x1 double]
    VolInterpMethod: 'linear'
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Specifying the Interest-Rate Term Structure (RateSpec)
The structure RateSpec is an interest term structure that defines the initial forward-rate
specification from which the tree rates are derived. “Modeling the Interest-Rate Term Structure” on
page 2-57 explains how to create these structures using the function intenvset, given the interest
rates, the starting and ending dates for each rate, and the compounding value.

Rate Specification Creation Example

Consider the following example:

Compounding = 1;
Rates = [0.02; 0.02; 0.02; 0.02];
StartDates = ['01-Jan-2000';   
              '01-Jan-2001';  
              '01-Jan-2002';  
              '01-Jan-2003'];
EndDates =   ['01-Jan-2001'; 
              '01-Jan-2002';  
              '01-Jan-2003'; 
              '01-Jan-2004'];
ValuationDate = '01-Jan-2000';

RateSpec = intenvset('Compounding',1,'Rates', Rates,... 
'StartDates', StartDates, 'EndDates', EndDates,... 
'ValuationDate', ValuationDate)

RateSpec = 

        FinObj: 'RateSpec'
   Compounding: 1
          Disc: [4x1 double]
         Rates: [4x1 double]
      EndTimes: [4x1 double]
    StartTimes: [4x1 double]
      EndDates: [4x1 double]
    StartDates: [4x1 double]
 ValuationDate: 730486
         Basis: 0
  EndMonthRule: 1

Use the function datedisp to examine the dates defined in the variable RateSpec. For example:

datedisp(RateSpec.ValuationDate)

01-Jan-2000

Specifying the Time Structure (TimeSpec)
The structure TimeSpec specifies the time structure for an interest-rate tree. This structure defines
the mapping between the observation times at each level of the tree and the corresponding dates.

TimeSpec is built using either the hjmtimespec or bdttimespec function. These functions require
three input arguments:

• The valuation date ValuationDate
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• The maturity date Maturity
• The compounding rate Compounding

For example, the syntax used for calling hjmtimespec is

TimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding)

where:

• ValuationDate is the first observation date in the tree.
• Maturity is a vector of dates representing the cash flow dates of the tree. Any instrument cash
flows with these maturities fall on tree nodes.

• Compounding is the frequency at which the rates are compounded when annualized.

Creating a Time Specification

Calling the time specification creation functions with the same data used to create the interest-rate
term structure, RateSpec on page 2-70 builds the structure that specifies the time layout for the
tree.

HJM Time Specification Example

Consider the following example:

Maturity = EndDates;
HJMTimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding)

HJMTimeSpec = 

       FinObj: 'HJMTimeSpec'
ValuationDate: 730486
     Maturity: [4x1 double]
  Compounding: 1
        Basis: 0
 EndMonthRule: 1

Maturities specified when building TimeSpec need not coincide with the EndDates of the rate
intervals in RateSpec. Since TimeSpec defines the time-date mapping of the tree, the rates in
RateSpec are interpolated to obtain the initial rates with maturities equal to those in TimeSpec.

Creating a BDT Time Specification

Consider the following example:

Maturity = EndDates;
BDTTimeSpec = bdttimespec(ValuationDate, Maturity, Compounding)

BDTTimeSpec = 

           FinObj: 'BDTTimeSpec'
    ValuationDate: 730486
         Maturity: [4x1 double]
      Compounding: 1
            Basis: 0
     EndMonthRule: 1
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Creating Trees
Use the VolSpec, RateSpec, and TimeSpec you have previously created as inputs to the functions
used to create HJM and BDT trees.

Creating an HJM Tree
% Reset the volatility factor to the Constant case
HJMVolSpec = hjmvolspec('Constant', 0.10);

HJMTree = hjmtree(HJMVolSpec, RateSpec, HJMTimeSpec)

HJMTree = 

  FinObj: 'HJMFwdTree'
 VolSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
    tObs: [0 1 2 3]
    TFwd: {[4x1 double] [3x1 double] [2x1 double] [3]}
  CFlowT: {[4x1 double] [3x1 double] [2x1 double] [4]}
 FwdTree:{[4x1 double][3x1x2 double][2x2x2 double][1x4x2 double]}

Creating a BDT Tree

Now use the previously computed values for VolSpec, RateSpec, and TimeSpec as input to the
function bdttree to create a BDT tree.
BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec)

BDTTree = 

  FinObj: 'BDTFwdTree'
 VolSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
    tObs: [0 1.00 2.00 3.00]
    TFwd: {[4x1 double]  [3x1 double]  [2x1 double]  [3.00]}
  CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4.00]}
 FwdTree: {[1.02] [1.02 1.02] [1.01 1.02 1.03] [1.01 1.02 1.02 1.03]}

Examining Trees
When working with the models, Financial Instruments Toolbox uses trees to represent forward rates,
prices, and so on. At the highest level, these trees have structures wrapped around them. The
structures encapsulate information required to interpret completely the information contained in a
tree.

Consider this example, which uses the interest rate and portfolio data in the MAT-file deriv.mat
included in the toolbox.

Load the data into the MATLAB workspace.

load deriv.mat

Display the list of the variables loaded from the MAT-file.

whos

 Name              Size            Bytes  Class     Attributes
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  BDTInstSet        1x1             15956  struct              
  BDTTree           1x1              5138  struct              
  BKInstSet         1x1             15946  struct              
  BKTree            1x1              5904  struct              
  CRRInstSet        1x1             12434  struct              
  CRRTree           1x1              5058  struct              
  EQPInstSet        1x1             12434  struct              
  EQPTree           1x1              5058  struct              
  HJMInstSet        1x1             15948  struct              
  HJMTree           1x1              5838  struct              
  HWInstSet         1x1             15946  struct              
  HWTree            1x1              5904  struct              
  ITTInstSet        1x1             12438  struct              
  ITTTree           1x1              8862  struct              
  ZeroInstSet       1x1             10282  struct              
  ZeroRateSpec      1x1              1580  struct         

HJM Tree Structure

You can now examine in some detail the contents of the HJMTree structure contained in this file.

HJMTree

HJMTree = 

  FinObj: 'HJMFwdTree'
 VolSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
    tObs: [0 1 2 3]
    TFwd: {[4x1 double]  [3x1 double]  [2x1 double]  [3]}
  CFlowT: {[4x1 double]  [3x1 double]  [2x1 double] [4]}
 FwdTree:{[4x1 double][3x1x2 double][2x2x2 double][1x4x2 double]}

FwdTree contains the actual forward-rate tree. MATLAB represents it as a cell array with each cell
array element containing a tree level.

The other fields contain other information relevant to interpreting the values in FwdTree. The most
important are VolSpec, TimeSpec, and RateSpec, which contain the volatility, time structure, and
rate structure information respectively.

First Node

Observe the forward rates in FwdTree. The first node represents the valuation date, tObs = 0.

HJMTree.FwdTree{1}

ans =

   1.0356
   1.0468
   1.0523
   1.0563

Note Financial Instruments Toolbox uses inverse discount notation for forward rates in the tree. An
inverse discount represents a factor by which the current value of an asset is multiplied to find its
future value. In general, these forward factors are reciprocals of the discount factors.

Look closely at the RateSpec structure used in generating this tree to see where these values
originate. Arrange the values in a single array.

[HJMTree.RateSpec.StartTimes HJMTree.RateSpec.EndTimes... 
HJMTree.RateSpec.Rates]
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ans =

         0    1.0000    0.0356
    1.0000    2.0000    0.0468
    2.0000    3.0000    0.0523
    3.0000    4.0000    0.0563

If you find the corresponding inverse discounts of the interest rates in the third column, you have the
values at the first node of the tree. You can turn interest rates into inverse discounts using the
function rate2disc.

Disc = rate2disc(HJMTree.TimeSpec.Compounding,... 
HJMTree.RateSpec.Rates, HJMTree.RateSpec.EndTimes,... 
HJMTree.RateSpec.StartTimes);
FRates = 1./Disc

FRates =
    1.0356
    1.0468
    1.0523
    1.0563

Second Node

The second node represents the first-rate observation time, tObs = 1. This node displays two states:
one representing the branch going up and the other representing the branch going down.

Note that HJMTree.VolSpec.NumBranch = 2.

HJMTree.VolSpec

ans = 

          FinObj: 'HJMVolSpec'
    FactorModels: {'Constant'}
      FactorArgs: {{1x1 cell}}
      SigmaShift: 0
      NumFactors: 1
       NumBranch: 2
         PBranch: [0.5000 0.5000]
     Fact2Branch: [-1 1]

Examine the rates of the node corresponding to the up branch.

HJMTree.FwdTree{2}(:,:,1)

ans =

    1.0364
    1.0420
    1.0461

Now examine the corresponding down branch.

HJMTree.FwdTree{2}(:,:,2)

ans =

    1.0574
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    1.0631
    1.0672

Third Node

The third node represents the second observation time, tObs = 2. This node contains a total of four
states, two representing the branches going up and the other two representing the branches going
down. Examine the rates of the node corresponding to the up states.

HJMTree.FwdTree{3}(:,:,1)

ans =

    1.0317    1.0526
    1.0358    1.0568

Next examine the corresponding down states.

HJMTree.FwdTree{3}(:,:,2)

ans =

    1.0526    1.0738
    1.0568    1.0781

Isolating a Specific Node

Starting at the third level, indexing within the tree cell array becomes complex, and isolating a
specific node can be difficult. The function bushpath isolates a specific node by specifying the path
to the node as a vector of branches taken to reach that node. As an example, consider the node
reached by starting from the root node, taking the branch up, then the branch down, and then
another branch down. Given that the tree has only two branches per node, branches going up
correspond to a 1, and branches going down correspond to a 2. The path up-down-down becomes the
vector [1 2 2].

FRates = bushpath(HJMTree.FwdTree, [1 2 2])

FRates =

    1.0356
    1.0364
    1.0526
    1.0674

bushpath returns the spot rates for all the nodes tapped by the path specified in the input argument,
the first one corresponding to the root node, and the last one corresponding to the target node.

Isolating the same node using direct indexing obtains

HJMTree.FwdTree{4}(:, 3, 2)

ans =

    1.0674

As expected, this single value corresponds to the last element of the rates returned by bushpath.

You can use these techniques with any type of tree generated with Financial Instruments Toolbox,
such as forward-rate trees or price trees.
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BDT Tree Structure

You can now examine in some detail the contents of the BDTTree structure.

BDTTree 

BDTTree = 

      FinObj: 'BDTFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1.00 2.00 3.00]
        TFwd: {[4x1 double]  [3x1 double]  [2x1 double]  [3.00]}
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4.00]}
     FwdTree: {[1.10]  [1.10 1.14]  [1.10 1.14 1.19]  [1.09 1.12 1.16 1.22]}

FwdTree contains the actual rate tree. MATLAB represents it as a cell array with each cell array
element containing a tree level.

The other fields contain other information relevant to interpreting the values in FwdTree. The most
important are VolSpec, TimeSpec, and RateSpec, which contain the volatility, time structure, and
rate structure information respectively.

Look at the RateSpec structure used in generating this tree to see where these values originate.
Arrange the values in a single array.

[BDTTree.RateSpec.StartTimes BDTTree.RateSpec.EndTimes... 
BDTTree.RateSpec.Rates]

ans =

         0    1.0000    0.1000
         0    2.0000    0.1100
         0    3.0000    0.1200
         0    4.0000    0.1250

Look at the rates in FwdTree. The first node represents the valuation date, tObs = 0. The second
node represents tObs = 1. Examine the rates at the second, third, and fourth nodes.

BDTTree.FwdTree{2}  

ans =

      1.0979    1.1432

The second node represents the first observation time, tObs = 1. This node contains a total of two
states, one representing the branch going up (1.0979) and the other representing the branch going
down (1.1432).

Note The convention in this document is to display prices going up on the upper branch. So, when
displaying rates, rates are falling on the upper branch and increasing on the lower branch.

BDTTree.FwdTree{3}

ans =

    1.0976    1.1377    1.1942
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The third node represents the second observation time, tObs = 2. This node contains a total of three
states, one representing the branch going up (1.0976), one representing the branch in the middle
(1.1377) and the other representing the branch going down (1.1942).

BDTTree.FwdTree{4}

ans =

    1.0872    1.1183    1.1606    1.2179

The fourth node represents the third observation time, tObs = 3. This node contains a total of four
states, one representing the branch going up (1.0872), two representing the branches in the middle
(1.1183 and 1.1606), and the other representing the branch going down (1.2179).

Isolating a Specific Node

The function treepath isolates a specific node by specifying the path to the node as a vector of
branches taken to reach that node. As an example, consider the node reached by starting from the
root node, taking the branch up, then the branch down, and finally another branch down. Given that
the tree has only two branches per node, branches going up correspond to a 1, and branches going
down correspond to a 2. The path up-down-down becomes the vector [1 2 2].

FRates = treepath(BDTTree.FwdTree, [1 2 2]) 

FRates =

    1.1000
    1.0979
    1.1377
    1.1606

treepath returns the short rates for all the nodes tapped by the path specified in the input
argument, the first one corresponding to the root node, and the last one corresponding to the target
node.

HW and BK Tree Structures

The HW and BK tree structures are similar to the BDT tree structure. You can see this if you examine
the sample HW tree contained in the file deriv.mat.

load deriv.mat;
HWTree

HWTree = 

      FinObj: 'HWFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1.00 2.00 3.00]
        dObs: [731947.00 732313.00 732678.00 733043.00]
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4.00]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}
     Connect: {[2.00]  [2.00 3.00 4.00]  [2.00 2.00 3.00 4.00 4.00]}
     FwdTree: {[1.03]  [1.05 1.04 1.02]  [1.08 1.07 1.05 1.03 1.01]  [1.09 1.08 1.06 1.04 1.02]

All fields of this structure are similar to their BDT counterparts. There are two additional fields not
present in BDT: Probs and Connect. The Probs field represents the occurrence probabilities at
each branch of each node in the tree. The Connect field describes the connectivity of the nodes of a
given tree level to nodes to the next tree level.
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Probs Field

While BDT and one-factor HJM models have equal probabilities for each branch at a node, HW and
BK do not. For HW and BK trees, the Probs field indicates the likelihood that a particular branch will
be taken in moving from one node to another node on the next level.

The Probs field consists of a cell array with one cell per tree level. Each cell is a 3-by-NUMNODES
array with the top row representing the probability of an up movement, the middle row representing
the probability of a middle movement, and the last row the probability of a down movement.

As an illustration, consider the first two elements of the Probs field of the structure, corresponding
to the first (root) and second levels of the tree.

HWTree.Probs{1}

0.16666666666667
0.66666666666667
0.16666666666667

HWTree.Probs{2}

0.12361333418768   0.16666666666667   0.21877591615172
0.65761074966060   0.66666666666667   0.65761074966060
0.21877591615172   0.16666666666667   0.12361333418768

Reading from top to bottom, the values in HWTree.Probs{1} correspond to the up, middle, and
down probabilities at the root node.

HWTree.Probs{2} is a 3-by-3 matrix of values. The first column represents the top node, the second
column represents the middle node, and the last column represents the bottom node. As with the root
node, the first, second, and third rows hold the values for up, middle, and down branching off each
node.

As expected, the sum of all the probabilities at any node equals 1.

sum(HWTree.Probs{2})

1.0000    1.0000    1.0000

Connect Field

The other field that distinguishes HW and BK tree structures from the BDT tree structure is
Connect. This field describes how each node in a given level connects to the nodes of the next level.
The need for this field arises from the possibility of nonstandard branching in a tree.

The Connect field of the HW tree structure consists of a cell array with one cell per tree level.

HWTree.Connect

ans = 

    [2]    [1x3 double]    [1x5 double]

Each cell contains a 1-by-NUMNODES vector. Each value in the vector relates to a node in the
corresponding tree level and represents the index of the node in the next tree level that the middle
branch of the node connects to.
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If you subtract 1 from the values contained in Connect, you reveal the index of the nodes in the next
level that the up branch connects to. If you add 1 to the values, you reveal the index of the
corresponding down branch.

As an illustration, consider HWTree.Connect{1}:

HWTree.Connect{1}

ans =

     2

This indicates that the middle branch of the root node connects to the second (from the top) node of
the next level, as expected. If you subtract 1 from this value, you obtain 1, which tells you that the up
branch goes to the top node. If you add 1, you obtain 3, which points to the last node of the second
level of the tree.

Now consider level 3 in this example:

HWTree.Connect{3}

2     2     3     4     4

On this level, there is nonstandard branching. This can be easily recognized because the middle
branch of two nodes is connected to the same node on the next level.

To visualize this, consider the following illustration of the tree.

Here it becomes apparent that there is nonstandard branching at the third level of the tree, on the
top and bottom nodes. The first and second nodes connect to the same trio of nodes on the next level.
Similar branching occurs at the bottom and next-to-bottom nodes of the tree.

See Also
instbond | instcap | instcf | instfixed | instfloat | instfloor | instoptbnd |
instoptembnd | instoptfloat | instoptemfloat | instrangefloat | instswap |
instswaption | intenvset | bondbyzero | cfbyzero | fixedbyzero | floatbyzero |
intenvprice | intenvsens | swapbyzero | floatmargin | floatdiscmargin | hjmtimespec |
hjmtree | hjmvolspec | bondbyhjm | capbyhjm | cfbyhjm | fixedbyhjm | floatbyhjm |
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floorbyhjm | hjmprice | hjmsens | mmktbyhjm | oasbyhjm | optbndbyhjm | optfloatbyhjm |
optembndbyhjm | optemfloatbyhjm | rangefloatbyhjm | swapbyhjm | swaptionbyhjm |
bdttimespec | bdttree | bdtvolspec | bdtprice | bdtsens | bondbybdt | capbybdt | cfbybdt
| fixedbybdt | floatbybdt | floorbybdt | mmktbybdt | oasbybdt | optbndbybdt |
optfloatbybdt | optembndbybdt | optemfloatbybdt | rangefloatbybdt | swapbybdt |
swaptionbybdt | hwtimespec | hwtree | hwvolspec | bondbyhw | capbyhw | cfbyhw |
fixedbyhw | floatbyhw | floorbyhw | hwcalbycap | hwcalbyfloor | hwprice | hwsens |
oasbyhw | optbndbyhw | optfloatbyhw | optembndbyhw | optemfloatbyhw | rangefloatbyhw |
swapbyhw | swaptionbyhw | bktimespec | bktree | bkvolspec | bkprice | bksens | bondbybk |
capbybk | cfbybk | fixedbybk | floatbybk | floorbybk | oasbybk | optbndbybk |
optfloatbybk | optembndbybk | optemfloatbybk | rangefloatbybk | swapbybk |
swaptionbybk | capbyblk | floorbyblk | swaptionbyblk

Related Examples
• “Overview of Interest-Rate Tree Models” on page 2-44
• “Pricing Using Interest-Rate Term Structure” on page 2-61
• “Pricing Using Interest-Rate Tree Models” on page 2-81
• “Graphical Representation of Trees” on page 2-220
• “Use treeviewer to Examine HWTree and PriceTree When Pricing European Callable Bond” on

page 2-195

More About
• “Supported Interest-Rate Instrument Functions” on page 2-3
• “Supported Equity Derivative Functions” on page 3-19
• “Supported Energy Derivative Functions” on page 3-34
• “Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on

page 1-73

2 Interest-Rate Derivatives

2-80



Pricing Using Interest-Rate Tree Models
In this section...
“Introduction” on page 2-81
“Computing Instrument Prices” on page 2-81

Introduction
For purposes of illustration, this section relies on the HJM and BDT models. The HW and BK functions
that perform price and sensitivity computations are not explicitly shown here. Functions that use the
HW and BK models operate similarly to the BDT model.

Computing Instrument Prices
The portfolio pricing functions hjmprice and bdtprice calculate the price of any set of supported
instruments, based on an interest-rate tree. The functions are capable of pricing these instrument
types:

• Bonds
• Bond options
• Bond with embedded options
• Arbitrary cash flows
• Fixed-rate notes
• Floating-rate notes
• Floating-rate notes with options or embedded options
• Caps
• Floors
• Range Notes
• Swaps
• Swaptions

For example, the syntax for calling hjmprice is:

[Price, PriceTree] = hjmprice(HJMTree, InstSet, Options)

Similarly, the calling syntax for bdtprice is:

[Price, PriceTree] = bdtprice(BDTTree, InstSet, Options)

Each function requires two input arguments: the interest-rate tree and the set of instruments,
InstSet. An optional argument, Options, further controls the pricing and the output displayed.
(See “Pricing Options Structure” on page A-2 for information about the Options argument.)

HJMTree is the Heath-Jarrow-Morton tree sampling of a forward-rate process, created using
hjmtree. BDTTree is the Black-Derman-Toy tree sampling of an interest-rate process, created using
bdttree. See “Building a Tree of Forward Rates” on page 2-66 to learn how to create these
structures.
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InstSet is the set of instruments to be priced. This structure represents the set of instruments to be
priced independently using the model.

Options is an options structure created with the function derivset. This structure defines how the
tree is used to find the price of instruments in the portfolio, and how much additional information is
displayed in the command window when calling the pricing function. If this input argument is not
specified in the call to the pricing function, a default Options structure is used. The pricing options
structure is described in “Pricing Options Structure” on page A-2.

The portfolio pricing functions classify the instruments and call the appropriate instrument-specific
pricing function for each of the instrument types. The HJM instrument-specific pricing functions are
bondbyhjm, cfbyhjm, fixedbyhjm, floatbyhjm, optbndbyhjm, rangefloatbyhjm, swapbyhjm,
and swaptionbyhjm. A similarly named set of functions exists for BDT models. You can also use
these functions directly to calculate the price of sets of instruments of the same type.

HJM Pricing Example

Consider the following example, which uses the portfolio and interest-rate data in the MAT-file
deriv.mat included in the toolbox. Load the data into the MATLAB workspace.

load deriv.mat

Use the MATLAB whos command to display a list of the variables loaded from the MAT-file.

whos

Name              Size            Bytes  Class     Attributes

  BDTInstSet        1x1             15956  struct              
  BDTTree           1x1              5138  struct              
  BKInstSet         1x1             15946  struct              
  BKTree            1x1              5904  struct              
  CRRInstSet        1x1             12434  struct              
  CRRTree           1x1              5058  struct              
  EQPInstSet        1x1             12434  struct              
  EQPTree           1x1              5058  struct              
  HJMInstSet        1x1             15948  struct              
  HJMTree           1x1              5838  struct              
  HWInstSet         1x1             15946  struct              
  HWTree            1x1              5904  struct              
  ITTInstSet        1x1             12438  struct              
  ITTTree           1x1              8862  struct              
  ZeroInstSet       1x1             10282  struct              
  ZeroRateSpec      1x1              1580  struct         

HJMTree and HJMInstSet are the input arguments required to call the function hjmprice.

Use the function instdisp to examine the set of instruments contained in the variable HJMInstSet.
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instdisp(HJMInstSet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face Name    Quantity
1     Bond 0.04       01-Jan-2000    01-Jan-2003    1      NaN   NaN          NaN       NaN             NaN            NaN       NaN  4% bond 100     
2     Bond 0.04       01-Jan-2000    01-Jan-2004    2      NaN   NaN          NaN       NaN             NaN            NaN       NaN  4% bond  50     
 
Index Type    UnderInd OptSpec Strike ExerciseDates  AmericanOpt Name       Quantity
3     OptBond 2        call    101    01-Jan-2003    NaN         Option 101 -50     
 
Index Type  CouponRate Settle         Maturity       FixedReset Basis Principal Name     Quantity
4     Fixed 0.04       01-Jan-2000    01-Jan-2003    1          NaN   NaN       4% Fixed 80      
 
Index Type  Spread Settle         Maturity       FloatReset Basis Principal Name       Quantity
5     Float 20     01-Jan-2000    01-Jan-2003    1          NaN   NaN       20BP Float 8       
 
Index Type Strike Settle         Maturity       CapReset Basis Principal Name   Quantity
6     Cap  0.03   01-Jan-2000    01-Jan-2004    1        NaN   NaN       3% Cap 30      
 
Index Type  Strike Settle         Maturity       FloorReset Basis Principal Name     Quantity
7     Floor 0.03   01-Jan-2000    01-Jan-2004    1          NaN   NaN       3% Floor 40      
 
Index Type LegRate    Settle         Maturity       LegReset Basis Principal LegType Name         Quantity
8     Swap [0.06  20] 01-Jan-2000    01-Jan-2003    [1  1]   NaN   NaN       [NaN]   6%/20BP Swap 10      

Index Type CouponRate Settle       Maturity     Period Basis  ...  Name      Quantity
1     Bond 0.04       01-Jan-2000  01-Jan-2003  1      NaN    ...  4% bond   100 
2     Bond 0.04       01-Jan-2000  01-Jan-2004  2      NaN    ...  4% bond    50  

There are eight instruments in this portfolio set: two bonds, one bond option, one fixed-rate note, one
floating-rate note, one cap, one floor, and one swap. Each instrument has a corresponding index that
identifies the instrument prices in the price vector returned by hjmprice.

Now use hjmprice to calculate the price of each instrument in the instrument set.

Price = hjmprice(HJMTree, HJMInstSet)

Warning: Not all cash flows are aligned with the tree. Result will 
be approximated.

Price =

   98.7159
   97.5280
    0.0486
   98.7159
  100.5529
    6.2831
    0.0486
    3.6923

Note The warning shown above appears because some of the cash flows for the second bond do not
fall exactly on a tree node.

BDT Pricing Example

Load the MAT-file deriv.mat into the MATLAB workspace.

load deriv.mat

Use the MATLAB whos command to display a list of the variables loaded from the MAT-file.

whos

 Name              Size            Bytes  Class     Attributes

  BDTInstSet        1x1             15956  struct              

 Pricing Using Interest-Rate Tree Models

2-83



  BDTTree           1x1              5138  struct              
  BKInstSet         1x1             15946  struct              
  BKTree            1x1              5904  struct              
  CRRInstSet        1x1             12434  struct              
  CRRTree           1x1              5058  struct              
  EQPInstSet        1x1             12434  struct              
  EQPTree           1x1              5058  struct              
  HJMInstSet        1x1             15948  struct              
  HJMTree           1x1              5838  struct              
  HWInstSet         1x1             15946  struct              
  HWTree            1x1              5904  struct              
  ITTInstSet        1x1             12438  struct              
  ITTTree           1x1              8862  struct              
  ZeroInstSet       1x1             10282  struct              
  ZeroRateSpec      1x1              1580  struct         

BDTTree and BDTInstSet are the input arguments required to call the function bdtprice.

Use the function instdisp to examine the set of instruments contained in the variable BDTInstSet.

instdisp(BDTInstSet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face Name     Quantity
1     Bond 0.1        01-Jan-2000    01-Jan-2003    1      NaN   NaN          NaN       NaN             NaN            NaN       NaN  10% Bond 100     
2     Bond 0.1        01-Jan-2000    01-Jan-2004    2      NaN   NaN          NaN       NaN             NaN            NaN       NaN  10% Bond  50     
 
Index Type    UnderInd OptSpec Strike ExerciseDates  AmericanOpt Name      Quantity
3     OptBond 1        call    95     01-Jan-2002    NaN         Option 95 -50     
 
Index Type  CouponRate Settle         Maturity       FixedReset Basis Principal Name      Quantity
4     Fixed 0.1        01-Jan-2000    01-Jan-2003    1          NaN   NaN       10% Fixed 80      
 
Index Type  Spread Settle         Maturity       FloatReset Basis Principal Name       Quantity
5     Float 20     01-Jan-2000    01-Jan-2003    1          NaN   NaN       20BP Float 8       
 
Index Type Strike Settle         Maturity       CapReset Basis Principal Name    Quantity
6     Cap  0.15   01-Jan-2000    01-Jan-2004    1        NaN   NaN       15% Cap 30      
 
Index Type  Strike Settle         Maturity       FloorReset Basis Principal Name     Quantity
7     Floor 0.09   01-Jan-2000    01-Jan-2004    1          NaN   NaN       9% Floor 40      
 
Index Type LegRate    Settle         Maturity       LegReset Basis Principal LegType Name          Quantity
8     Swap [0.15  10] 01-Jan-2000    01-Jan-2003    [1  1]   NaN   NaN       [NaN]   15%/10BP Swap 10  

There are eight instruments in this portfolio set: two bonds, one bond option, one fixed-rate note, one
floating-rate note, one cap, one floor, and one swap. Each instrument has a corresponding index that
identifies the instrument prices in the price vector returned by bdtprice.

Now use bdtprice to calculate the price of each instrument in the instrument set.

Price = bdtprice(BDTTree, BDTInstSet)

Warning: Not all cash flows are aligned with the tree. Result will 
be approximated.

Price =

   95.5030
   93.9079
    1.7657
   95.5030
  100.4865
    1.4863
    0.0245
    7.4222
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Price Vector Output

The prices in the output vector Price correspond to the prices at observation time zero
(tObs = 0), which is defined as the valuation date of the interest-rate tree. The instrument indexing
within Price is the same as the indexing within InstSet.

In the HJM example, the prices in the Price vector correspond to the instruments in this order.

InstNames = instget(HJMInstSet, 'FieldName','Name')

InstNames =

4% bond     
4% bond     
Option 101  
4% Fixed    
20BP Float  
3% Cap      
3% Floor    
6%/20BP Swap

So, in the Price vector, the fourth element, 98.7159, represents the price of the fourth instrument
(4% fixed-rate note); the sixth element, 6.2831, represents the price of the sixth instrument (3% cap).

In the BDT example, the prices in the Price vector correspond to the instruments in this order.

InstNames = instget(BDTInstSet, 'FieldName','Name')

InstNames =

10% Bond     
10% Bond     
Option 95    
10% Fixed    
20BP Float   
15% Cap      
9% Floor     
15%/10BP Swap

So, in the Price vector, the fourth element, 95.5030, represents the price of the fourth instrument
(10% fixed-rate note); the sixth element, 1.4863, represents the price of the sixth instrument (15%
cap).

Price Tree Structure Output

If you call a pricing function with two output arguments, for example,

[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet) 

Warning: Not all cash flows are aligned with the tree. Result will be approximated. 
> In checktree (line 292)
In hjmprice (line 85) 

Price =

   98.7159
   97.5280
    0.0486
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   98.7159
  100.5529
    6.2831
    0.0486
    3.6923

PriceTree = 

  struct with fields:

    FinObj: 'HJMPriceTree'
     PBush: {[8×1 double]  [8×1×2 double]  [8×2×2 double]  [8×4×2 double]  [8×8 double]}
    AIBush: {[8×1 double]  [8×1×2 double]  [8×2×2 double]  [8×4×2 double]  [8×8 double]}
    ExBush: {[8×1 double]  [8×1×2 double]  [8×2×2 double]  [8×4×2 double]  [8×8 double]}
      tObs: [0 1 2 3 4]

you generate a price tree along with the price information.

The optional output price tree structure PriceTree holds all the pricing information.

HJM Price Tree

In the HJM example, the first field of this structure, FinObj, indicates that this structure represents a
price tree. The second field, PBush, is the tree holding the price of the instruments in each node of
the tree. The third field, AIBush, is the tree holding the accrued interest of the instruments in each
node of the tree. Finally, the fourth field, tObs, represents the observation time of each level of
PBush and AIBush, with units in terms of compounding periods.

In this example, the price tree looks like this:

FinObj: 'HJMPriceTree'
 PBush: {[8x1 double]  [8x1x2 double]  ...[8x8 double]}
AIBush: {[8x1 double]  [8x1x2 double] ... [8x8 double]}
  tObs: [0 1 2 3 4]

Both PBush and AIBush are 1-by-5 cell arrays, consistent with the five observation times of tObs.
The data display has been shortened here to fit on a single line.

Using the command-line interface, you can directly examine PriceTree.PBush, the field within the
PriceTree structure that contains the price tree with the price vectors at every state. The first node
represents tObs = 0, corresponding to the valuation date.

PriceTree.PBush{1}

ans =

   98.7159
   97.5280
    0.0486
   98.7159
  100.5529
    6.2831
    0.0486
    3.6923

With this interface, you can observe the prices for all instruments in the portfolio at a specific time.
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BDT Price Tree

The BDT output price tree structure PriceTree holds all the pricing information. The first field of
this structure, FinObj, indicates that this structure represents a price tree. The second field, PTree,
is the tree holding the price of the instruments in each node of the tree. The third field, AITree, is
the tree holding the accrued interest of the instruments in each node of the tree. The fourth field,
tObs, represents the observation time of each level of PTree and AITree, with units in terms of
compounding periods.

You can directly examine the field within the PriceTree structure, which contains the price tree
with the price vectors at every state. The first node represents tObs = 0, corresponding to the
valuation date.

[Price, PriceTree] = bdtprice(BDTTree, BDTInstSet)

PriceTree.PTree{1}

ans =

   95.5030
   93.9079
    1.7657
   95.5030
  100.4865
    1.4863
    0.0245
    7.4222

See Also
instbond | instcap | instcf | instfixed | instfloat | instfloor | instoptbnd |
instoptembnd | instoptfloat | instoptemfloat | instrangefloat | instswap |
instswaption | intenvset | bondbyzero | cfbyzero | fixedbyzero | floatbyzero |
intenvprice | intenvsens | swapbyzero | floatmargin | floatdiscmargin | hjmtimespec |
hjmtree | hjmvolspec | bondbyhjm | capbyhjm | cfbyhjm | fixedbyhjm | floatbyhjm |
floorbyhjm | hjmprice | hjmsens | mmktbyhjm | oasbyhjm | optbndbyhjm | optfloatbyhjm |
optembndbyhjm | optemfloatbyhjm | rangefloatbyhjm | swapbyhjm | swaptionbyhjm |
bdttimespec | bdttree | bdtvolspec | bdtprice | bdtsens | bondbybdt | capbybdt | cfbybdt
| fixedbybdt | floatbybdt | floorbybdt | mmktbybdt | oasbybdt | optbndbybdt |
optfloatbybdt | optembndbybdt | optemfloatbybdt | rangefloatbybdt | swapbybdt |
swaptionbybdt | hwtimespec | hwtree | hwvolspec | bondbyhw | capbyhw | cfbyhw |
fixedbyhw | floatbyhw | floorbyhw | hwcalbycap | hwcalbyfloor | hwprice | hwsens |
oasbyhw | optbndbyhw | optfloatbyhw | optembndbyhw | optemfloatbyhw | rangefloatbyhw |
swapbyhw | swaptionbyhw | bktimespec | bktree | bkvolspec | bkprice | bksens | bondbybk |
capbybk | cfbybk | fixedbybk | floatbybk | floorbybk | oasbybk | optbndbybk |
optfloatbybk | optembndbybk | optemfloatbybk | rangefloatbybk | swapbybk |
swaptionbybk | capbyblk | floorbyblk | swaptionbyblk

Related Examples
• “Overview of Interest-Rate Tree Models” on page 2-44
• “Computing Instrument Sensitivities” on page 2-89
• “Graphical Representation of Trees” on page 2-220
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• “Use treeviewer to Examine HWTree and PriceTree When Pricing European Callable Bond” on
page 2-195

• “Understanding Interest-Rate Tree Models” on page 2-66
• “Understanding the Interest-Rate Term Structure” on page 2-48
• “Pricing Using Interest-Rate Term Structure” on page 2-61

More About
• “Supported Interest-Rate Instrument Functions” on page 2-3
• “Supported Equity Derivative Functions” on page 3-19
• “Supported Energy Derivative Functions” on page 3-34
• “Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on

page 1-73
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Computing Instrument Sensitivities
Sensitivities can be reported either as dollar price changes or percentage price changes. The delta,
gamma, and vega sensitivities that the toolbox computes are dollar sensitivities.

The functions hjmsens and bdtsens compute the delta, gamma, and vega sensitivities of
instruments using an interest-rate tree. They also optionally return the calculated price for each
instrument. The sensitivity functions require the same two input arguments used by the pricing
functions (HJMTree and HJMInstSet for HJM; BDTTree and BDTInstSet for BDT).

Sensitivity functions calculate the dollar value of delta and gamma by shifting the observed forward
yield curve by 100 basis points in each direction, and the dollar value of vega by shifting the volatility
process by 1%. To obtain the per-dollar value of the sensitivities, divide the dollar sensitivity by the
price of the corresponding instrument.

HJM Sensitivities Example
The calling syntax for the function is:

[Delta, Gamma, Vega, Price] = hjmsens(HJMTree, HJMInstSet)

Use the previous example data to calculate the price of instruments.
load deriv.mat
[Delta, Gamma, Vega, Price] = hjmsens(HJMTree, HJMInstSet);

Warning: Not all cash flows are aligned with the tree. Result will
be approximated.

Note The warning appears because some of the cash flows for the second bond do not fall exactly on
a tree node.

You can conveniently examine the sensitivities and the prices by arranging them into a single matrix.

All = [Delta, Gamma, Vega, Price]

All =

       -272.65       1029.90          0.00         98.72
       -347.43       1622.69         -0.04         97.53
         -8.08        643.40         34.07          0.05
       -272.65       1029.90          0.00         98.72
         -1.04          3.31             0        100.55
        294.97       6852.56         93.69          6.28
        -47.16       8459.99         93.69          0.05
       -282.05       1059.68          0.00          3.69

As with the prices, each row of the sensitivity vectors corresponds to the similarly indexed instrument
in HJMInstSet. To view the per-dollar sensitivities, divide each dollar sensitivity by the
corresponding instrument price.

BDT Sensitivities Example
The calling syntax for the function is:

[Delta, Gamma, Vega, Price] = bdtsens(BDTTree, BDTInstSet);
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Arrange the sensitivities and prices into a single matrix.

All = [Delta, Gamma, Vega, Price]

All =

     -232.67       803.71      -0.00       95.50
     -281.05      1181.93      -0.01       93.91
      -50.54       246.02       5.31        1.77
     -232.67       803.71          0       95.50
        0.84         2.45          0      100.49
       78.38       748.98      13.54        1.49
       -4.36       382.06       2.50        0.02
     -253.23       863.81          0        7.42

To view the per-dollar sensitivities, divide each dollar sensitivity by the corresponding instrument
price.

All = [Delta ./ Price, Gamma ./ Price, Vega ./ Price, Price]

All =

       -2.44         8.42      -0.00       95.50
       -2.99        12.59      -0.00       93.91
      -28.63       139.34       3.01        1.77
       -2.44         8.42          0       95.50
        0.01         0.02          0      100.49
       52.73       503.92       9.11        1.49
     -177.89     15577.42     101.87        0.02
      -34.12       116.38          0        7.42

See Also
instbond | instcap | instcf | instfixed | instfloat | instfloor | instoptbnd |
instoptembnd | instoptfloat | instoptemfloat | instrangefloat | instswap |
instswaption | intenvset | bondbyzero | cfbyzero | fixedbyzero | floatbyzero |
intenvprice | intenvsens | swapbyzero | floatmargin | floatdiscmargin | hjmtimespec |
hjmtree | hjmvolspec | bondbyhjm | capbyhjm | cfbyhjm | fixedbyhjm | floatbyhjm |
floorbyhjm | hjmprice | hjmsens | mmktbyhjm | oasbyhjm | optbndbyhjm | optfloatbyhjm |
optembndbyhjm | optemfloatbyhjm | rangefloatbyhjm | swapbyhjm | swaptionbyhjm |
bdttimespec | bdttree | bdtvolspec | bdtprice | bdtsens | bondbybdt | capbybdt | cfbybdt
| fixedbybdt | floatbybdt | floorbybdt | mmktbybdt | oasbybdt | optbndbybdt |
optfloatbybdt | optembndbybdt | optemfloatbybdt | rangefloatbybdt | swapbybdt |
swaptionbybdt | hwtimespec | hwtree | hwvolspec | bondbyhw | capbyhw | cfbyhw |
fixedbyhw | floatbyhw | floorbyhw | hwcalbycap | hwcalbyfloor | hwprice | hwsens |
oasbyhw | optbndbyhw | optfloatbyhw | optembndbyhw | optemfloatbyhw | rangefloatbyhw |
swapbyhw | swaptionbyhw | bktimespec | bktree | bkvolspec | bkprice | bksens | bondbybk |
capbybk | cfbybk | fixedbybk | floatbybk | floorbybk | oasbybk | optbndbybk |
optfloatbybk | optembndbybk | optemfloatbybk | rangefloatbybk | swapbybk |
swaptionbybk | capbyblk | floorbyblk | swaptionbyblk

Related Examples
• “Overview of Interest-Rate Tree Models” on page 2-44
• “Pricing Using Interest-Rate Tree Models” on page 2-81
• “Graphical Representation of Trees” on page 2-220
• “Understanding Interest-Rate Tree Models” on page 2-66
• “Understanding the Interest-Rate Term Structure” on page 2-48
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• “Pricing Using Interest-Rate Term Structure” on page 2-61

More About
• “Supported Interest-Rate Instrument Functions” on page 2-3
• “Supported Equity Derivative Functions” on page 3-19
• “Supported Energy Derivative Functions” on page 3-34
• “Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on

page 1-73
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Calibrating Hull-White Model Using Market Data
The pricing of interest-rate derivative securities relies on models that describe the underlying
process. These interest rate models depend on one or more parameters that you must determine by
matching the model predictions to the existing data available in the market. In the Hull-White model,
there are two parameters related to the short rate process: mean reversion and volatility. Calibration
is used to determine these parameters, such that the model can reproduce, as close as possible, the
prices of caps or floors observed in the market. The calibration routines find the parameters that
minimize the difference between the model price predictions and the market prices for caps and
floors.

For a Hull-White model, the minimization is two dimensional, with respect to mean reversion (α) and
volatility (σ). That is, calibrating the Hull-White model minimizes the difference between the model’s
predicted prices and the observed market prices of the corresponding caplets or floorlets.

Hull-White Model Calibration Example
Use market data to identify the implied volatility (σ) and mean reversion (α) coefficients needed to
build a Hull-White tree to price an instrument. The ideal case is to use the volatilities of the caps or
floors used to calculate Alpha (α) and Sigma (σ). This will most likely not be the case, so market data
must be interpolated to obtain the required values.

Consider a cap with these parameters:

Settle = ' Jan-21-2008';
Maturity = 'Mar-21-2011';
Strike = 0.0690;
Reset = 4;
Principal = 1000;
Basis = 0;

The caplets for this example would fall in:

capletDates = cfdates(Settle, Maturity, Reset, Basis);
datestr(capletDates')

ans =

21-Mar-2008
21-Jun-2008
21-Sep-2008
21-Dec-2008
21-Mar-2009
21-Jun-2009
21-Sep-2009
21-Dec-2009
21-Mar-2010
21-Jun-2010
21-Sep-2010
21-Dec-2010
21-Mar-2011

In the best case, look up the market volatilities for caplets with a Strike = 0.0690, and maturities
in each reset date listed, but the likelihood of finding these exact instruments is low. As a
consequence, use data that is available in the market and interpolate to find appropriate values for
the caplets.
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Based on the market data, you have the cap information for different dates and strikes. Assume that
instead of having the data for Strike = 0.0690, you have the data for Strike1 = 0.0590 and
Strike2 = 0.0790.

Maturity Strike1 = 0.0590 Strike2 = 0.0790
21-Mar-2008 0.1533 0. 1526
21-Jun-2008 0.1731 0. 1730
21-Sep-2008 0. 1727 0. 1726
21-Dec-2008 0. 1752 0. 1747
21-Mar-2009 0. 1809 0. 1808
21-Jun-2009 0. 1809 0. 1792
21-Sep-2009 0. 1805 0. 1797
21-Dec-2009 0. 1802 0. 1794
21-Mar-2010 0. 1802 0. 1733
21-Jun-2010 0. 1757 0. 1751
21-Sep-2010 0. 1755 0. 1750
21-Dec-2010 0. 1755 0. 1745
21-Mar-2011 0. 1726 0. 1719

The nature of this data lends itself to matrix nomenclature, which is perfect for MATLAB.
hwcalbycap requires that the dates, the strikes, and the actual volatility be separated into three
variables: MarketStrike, MarketMat, and MarketVol.
MarketStrike = [0.0590; 0.0790];
MarketMat = {'21-Mar-2008';   
'21-Jun-2008'; 
'21-Sep-2008';  
'21-Dec-2008';  
'21-Mar-2009';  
'21-Jun-2009';  
'21-Sep-2009';  
'21-Dec-2009';  
'21-Mar-2010';  
'21-Jun-2010';  
'21-Sep-2010';  
'21-Dec-2010'; 
'21-Mar-2011'};

MarketVol = [0.1533 0.1731 0.1727 0.1752 0.1809 0.1800 0.1805 0.1802 0.1735 0.1757 ... 
             0.1755 0.1755 0.1726; % First row in table corresponding to Strike1 
             0.1526 0.1730 0.1726 0.1747 0.1808 0.1792 0.1797 0.1794 0.1733 0.1751 ... 
             0.1750 0.1745 0.1719]; % Second row in table corresponding to Strike2

Complete the input arguments using this data for RateSpec:
Rates = [0.0627;
0.0657;
0.0691;
0.0717;
0.0739;
0.0755;
0.0765;
0.0772;
0.0779;
0.0783;
0.0786;
0.0789;
0.0792;
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0.0793];

ValuationDate = '21-Jan-2008';
EndDates = {'21-Mar-2008';'21-Jun-2008';'21-Sep-2008';'21-Dec-2008';...
            '21-Mar-2009';'21-Jun-2009';'21-Sep-2009';'21-Dec-2009';....
            '21-Mar-2010';'21-Jun-2010';'21-Sep-2010';'21-Dec-2010';....
            '21-Mar-2011';'21-Jun-2011'};
Compounding = 4;
Basis = 0;

RateSpec = intenvset('ValuationDate', ValuationDate, ...
'StartDates', ValuationDate, 'EndDates', EndDates, ...
'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis)

RateSpec = 

           FinObj: 'RateSpec'
      Compounding: 4
             Disc: [14x1 double]
            Rates: [14x1 double]
         EndTimes: [14x1 double]
       StartTimes: [14x1 double]
         EndDates: [14x1 double]
       StartDates: 733428
    ValuationDate: 733428
            Basis: 0
     EndMonthRule: 1

Call the calibration routine to find values for volatility parameters Alpha and Sigma

Use hwcalbycap to calculate the values of Alpha and Sigma based on market data. Internally,
hwcalbycap calls the function lsqnonlin. You can customize lsqnonlin by passing an
optimization options structure created by optimoptions and then this can be passed to
hwcalbycap using the name-value pair argument for OptimOptions. For example, optimoptions
defines the target objective function tolerance as 100*eps and then calls hwcalbycap:

o=optimoptions('lsqnonlin','TolFun',100*eps);

[Alpha, Sigma] = hwcalbycap(RateSpec, MarketStrike, MarketMat, MarketVol,...
Strike, Settle, Maturity, 'Reset', Reset, 'Principal', Principal, 'Basis',... 
Basis, 'OptimOptions', o)

Local minimum possible.

lsqnonlin stopped because the size of the current step is less than
the default value of the step size tolerance.

Warning: LSQNONLIN did not converge to an optimal solution. It exited with exitflag = 2.
 
> In hwcalbycapfloor at 93
  In hwcalbycap at 75 

Alpha =

   1.0000e-06

Sigma =

    0.0127

The previous warning indicates that the conversion was not optimal. The search algorithm used by
the Optimization Toolbox™ function lsqnonlin did not find a solution that conforms to all the
constraints. To discern whether the solution is acceptable, look at the results of the optimization by
specifying a third output (OptimOut) for hwcalbycap:
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[Alpha, Sigma, OptimOut] = hwcalbycap(RateSpec, MarketStrike, MarketMat,...
MarketVol, Strike, Settle, Maturity, 'Reset', Reset, 'Principal', Principal,...
'Basis', Basis, 'OptimOptions', o);

The OptimOut.residual field of the OptimOut structure is the optimization residual. This value
contains the difference between the Black caplets and those calculated during the optimization. You
can use the OptimOut.residual value to calculate the percentual difference (error) compared to
Black caplet prices and then decide whether the residual is acceptable. There is almost always some
residual, so decide if it is acceptable to parameterize the market with a single value of Alpha and
Sigma.

Price caplets using market data and Black's formula to obtain reference caplet values

To determine the effectiveness of the optimization, calculate reference caplet values using Black’s
formula and the market data. Note, you must first interpolate the market data to obtain the caplets
for calculation:
MarketMatNum = datenum(MarketMat);
[Mats, Strikes] = meshgrid(MarketMatNum, MarketStrike);
FlatVol = interp2(Mats, Strikes, MarketVol, datenum(Maturity), Strike, 'spline');

Compute the price of the cap using the Black model:
[CapPrice, Caplets] = capbyblk(RateSpec, Strike, Settle, Maturity, FlatVol,...
'Reset', Reset, 'Basis', Basis, 'Principal', Principal); 
Caplets = Caplets(2:end)';

Caplets =

    0.3210
    1.6355
    2.4863
    3.1903
    3.4110
    3.2685
    3.2385
    3.4803
    3.2419
    3.1949
    3.2991
    3.3750

Compare optimized values and Black values and display graphically

After calculating the reference values for the caplets, compare the values, analytically and
graphically, to determine whether the calculated single values of Alpha and Sigma provide an
adequate approximation:
OptimCaplets = Caplets+OptimOut.residual;

disp('   ');
disp('    Black76   Calibrated Caplets');
disp([Caplets                   OptimCaplets])

plot(MarketMatNum(2:end), Caplets, 'or', MarketMatNum(2:end), OptimCaplets, '*b');
datetick('x', 2)
xlabel('Caplet Maturity');
ylabel('Caplet Price');
title('Black and Calibrated Caplets');
h = legend('Black Caplets', 'Calibrated Caplets');
set(h, 'color', [0.9 0.9 0.9]);
set(h, 'Location', 'SouthEast');
set(gcf, 'NumberTitle', 'off')
grid on
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 Black76   Calibrated Caplets
    0.3210    0.3636
    1.6355    1.6603
    2.4863    2.4974
    3.1903    3.1874
    3.4110    3.4040
    3.2685    3.2639
    3.2385    3.2364
    3.4803    3.4683
    3.2419    3.2408
    3.1949    3.1957
    3.2991    3.2960
    3.3750    3.3663

Compare cap prices using the Black, HW analytical, and HW tree models

Using the calculated caplet values, compare the prices of the corresponding cap using the Black
model, Hull-White analytical, and Hull-White tree models. To calculate a Hull-White tree based on
Alpha and Sigma, use these calibration routines:

• Black model:

CapPriceBLK = CapPrice;
• HW analytical model:

CapPriceHWAnalytical = sum(OptimCaplets);
• HW tree model to price the cap derived from the calibration process:

1 Create VolSpec from the calibration parameters Alpha and Sigma:
VolDates    = EndDates;
VolCurve    = Sigma*ones(14,1);
AlphaDates  = EndDates;
AlphaCurve  = Alpha*ones(14,1);
HWVolSpec = hwvolspec(ValuationDate, VolDates, VolCurve,AlphaDates, AlphaCurve);

2 Create the TimeSpec:
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HWTimeSpec = hwtimespec(ValuationDate, EndDates, Compounding);
3 Build the HW tree using the HW2000 method:

HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec, 'Method', 'HW2000');

4 Price the cap:
Price = capbyhw(HWTree, Strike, Settle, Maturity, Reset, Basis, Principal); 

disp('   ');
disp(['  CapPrice Black76 ..................:  ', num2str(CapPriceBLK,'%15.5f')]);
disp(['  CapPrice HW analytical..........:  ', num2str(CapPriceHWAnalytical,'%15.5f')]);
disp(['  CapPrice HW from capbyhw ..:  ', num2str(Price,'%15.5f')]);
disp('   ');

CapPrice Black76 ..........: 34.14220
CapPrice HW analytical.....: 34.18008
CapPrice HW from capbyhw ..: 34.14192

Price a portfolio of instruments using the calibrated HW tree

After building a Hull-White tree, based on parameters calibrated from market data, use HWTree to
price a portfolio of these instruments:

• Two bonds

CouponRate = [0.07; 0.09];
Settle = ' Jan-21-2008';
Maturity = {'Mar-21-2010';'Mar-21-2011'};
Period = 1;
Face = 1000;
Basis = 0;

• Bond with an embedded American call option

CouponRateOEB = 0.08;
SettleOEB = ' Jan-21-2008';
MaturityOEB = 'Mar-21-2011';
OptSpec = 'call';
StrikeOEB = 950;
ExerciseDatesOEB = 'Mar-21-2011';
AmericanOpt = 1;
Period = 1;
Face = 1000;
Basis = 0;

To price this portfolio of instruments using the calibrated HWTree:

1 Use instadd to create the portfolio InstSet:
InstSet = instadd('Bond', CouponRate, Settle,  Maturity, Period, Basis, [], [], [], [], [], Face);
InstSet = instadd(InstSet,'OptEmBond',  CouponRateOEB, SettleOEB, MaturityOEB, OptSpec,...
StrikeOEB,   ExerciseDatesOEB, 'AmericanOpt', AmericanOpt, 'Period', Period,...
'Face',Face,  'Basis', Basis);

2 Add the cap instrument used in the calibration:
SettleCap = ' Jan-21-2008';
MaturityCap = 'Mar-21-2011';
StrikeCap = 0.0690;
Reset = 4;
Principal = 1000;

InstSet = instadd(InstSet,'Cap', StrikeCap, SettleCap, MaturityCap, Reset, Basis, Principal);

3 Assign names to the portfolio instruments:
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Names = {'7% Bond'; '8% Bond'; 'BondEmbCall'; '6.9% Cap'};
InstSet = instsetfield(InstSet, 'Index',1:4, 'FieldName', {'Name'}, 'Data', Names );

4 Examine the set of instruments contained in InstSet:

instdisp(InstSet)

IdxType CoupRate Settle Mature Period Basis EOMRule IssueDate 1stCoupDate LastCoupDate StartDate Face Name

1 Bond 0.07       21-Jan-2008    21-Mar-2010    1  0  NaN  NaN     NaN   NaN  NaN  1000    7% Bond
2 Bond 0.09       21-Jan-2008    21-Mar-2011    1  0  NaN  NaN     NaN   NaN  NaN  1000    8% Bond

IdxType CoupRate Settle Mature OptSpec Stke ExDate Per Basis EOMRule IssDate 1stCoupDate LstCoupDate StrtDate Face AmerOpt Name
3 OptEmBond 0.08 21-Jan-2008 21-Mar-2011 call 950  21-Jan-2008  21-Mar-2011  1  0  1  NaN  NaN NaN  NaN  1000 1 BondEmbCall
 
Index Type Strike Settle     Maturity   CapReset Basis Principal Name 
4 Cap  0.069  21-Jan-2008    21-Mar-2011    4      0     1000    6.9% Cap   

5 Use hwprice to price the portfolio using the calibrated HWTree:
format bank
PricePortfolio = hwprice(HWTree, InstSet)

PricePortfolio =
        980.45
       1023.05
        945.73
         34.14

See Also
instbond | instcap | instcf | instfixed | instfloat | instfloor | instoptbnd |
instoptembnd | instoptfloat | instoptemfloat | instrangefloat | instswap |
instswaption | intenvset | bondbyzero | cfbyzero | fixedbyzero | floatbyzero |
intenvprice | intenvsens | swapbyzero | floatmargin | floatdiscmargin | hjmtimespec |
hjmtree | hjmvolspec | bondbyhjm | capbyhjm | cfbyhjm | fixedbyhjm | floatbyhjm |
floorbyhjm | hjmprice | hjmsens | mmktbyhjm | oasbyhjm | optbndbyhjm | optfloatbyhjm |
optembndbyhjm | optemfloatbyhjm | rangefloatbyhjm | swapbyhjm | swaptionbyhjm |
bdttimespec | bdttree | bdtvolspec | bdtprice | bdtsens | bondbybdt | capbybdt | cfbybdt
| fixedbybdt | floatbybdt | floorbybdt | mmktbybdt | oasbybdt | optbndbybdt |
optfloatbybdt | optembndbybdt | optemfloatbybdt | rangefloatbybdt | swapbybdt |
swaptionbybdt | hwtimespec | hwtree | hwvolspec | bondbyhw | capbyhw | cfbyhw |
fixedbyhw | floatbyhw | floorbyhw | hwcalbycap | hwcalbyfloor | hwprice | hwsens |
oasbyhw | optbndbyhw | optfloatbyhw | optembndbyhw | optemfloatbyhw | rangefloatbyhw |
swapbyhw | swaptionbyhw | bktimespec | bktree | bkvolspec | bkprice | bksens | bondbybk |
capbybk | cfbybk | fixedbybk | floatbybk | floorbybk | oasbybk | optbndbybk |
optfloatbybk | optembndbybk | optemfloatbybk | rangefloatbybk | swapbybk |
swaptionbybk | capbyblk | floorbyblk | swaptionbyblk

Related Examples
• “Overview of Interest-Rate Tree Models” on page 2-44
• “Pricing Using Interest-Rate Tree Models” on page 2-81
• “Graphical Representation of Trees” on page 2-220
• “Understanding Interest-Rate Tree Models” on page 2-66
• “Understanding the Interest-Rate Term Structure” on page 2-48
• “Pricing Using Interest-Rate Term Structure” on page 2-61
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More About
• “Supported Interest-Rate Instrument Functions” on page 2-3
• “Supported Equity Derivative Functions” on page 3-19
• “Supported Energy Derivative Functions” on page 3-34
• “Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on

page 1-73
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Interest-Rate Derivatives Using Closed-Form Solutions

Pricing Caps and Floors Using the Black Option Model
Caps and floors are contracts that allow the holder to be protected if interest rates rise or decrease.
The Black model uses a forward price as an underlier in place of a spot price. The assumption is that
the forward price at maturity of the option is log-normally distributed.

Closed-form solutions for pricing caps and floors using the Black model support the following tasks:

Task Function
Price the interest rate caps using the Black option pricing
model.

capbyblk

Price the interest rate floors using the Black option pricing
model.

floorbyblk

See Also
capbyblk | floorbyblk | swaptionbyblk | blackvolbysabr | optsensbysabr | agencyoas |
agencyprice | bndfutimprepo | bndfutprice | convfactor | tfutbyprice | tfutbyyield |
tfutimprepo | tfutpricebyrepo | tfutyieldbyrepo | capbylg2f | floorbylg2f |
swaptionbylg2f | blackvolbyrebonato | hwcalbycap | hwcalbyfloor

Related Examples
• “Calibrate the SABR Model” on page 2-33
• “Price a Swaption Using the SABR Model” on page 2-38
• “Computing the Agency OAS for Bonds” on page 6-2
• “Analysis of Bond Futures” on page 7-12
• “Managing Interest-Rate Risk with Bond Futures” on page 2-126
• “Fitting the Diebold Li Model” on page 7-15
• “Price Swaptions with Interest-Rate Models Using Simulation” on page 2-101
• “Pricing Bermudan Swaptions with Monte Carlo Simulation” on page 2-115

More About
• “Managing Present Value with Bond Futures” on page 7-14
• “Supported Interest-Rate Instrument Functions” on page 2-3
• “Supported Equity Derivative Functions” on page 3-19
• “Supported Energy Derivative Functions” on page 3-34
• “Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on

page 1-73
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Price Swaptions with Interest-Rate Models Using Simulation
In this section...
“Introduction” on page 2-101
“Construct a Zero Curve” on page 2-101
“Define Swaption Parameters” on page 2-103
“Compute the Black Model and the Swaption Volatility Matrix” on page 2-103
“Select Calibration Instruments” on page 2-103
“Compute Swaption Prices Using Black's Model” on page 2-103
“Define Simulation Parameters” on page 2-104
“Simulate Interest-Rate Paths Using the Hull-White One-Factor Model” on page 2-104
“Simulate Interest-Rate Paths Using the Linear Gaussian Two-Factor Model” on page 2-107
“Simulate Interest-Rate Paths Using the LIBOR Market Model” on page 2-109
“Compare Interest-Rate Modeling Results” on page 2-113
“References” on page 2-114

Introduction
This example shows how to price European swaptions using interest-rate models in Financial
Instruments Toolbox. Specifically, a Hull-White one factor model, a Linear Gaussian two-factor model,
and a LIBOR Market Model are calibrated to market data and then used to generate interest-rate
paths using Monte Carlo simulation.

The following sections set up the data that is then used with examples for “Simulate Interest-Rate
Paths Using the Hull-White One-Factor Model” on page 2-104, “Simulate Interest-Rate Paths Using
the Linear Gaussian Two-Factor Model” on page 2-107, and “Simulate Interest-Rate Paths Using the
LIBOR Market Model” on page 2-109:

• “Construct a Zero Curve” on page 2-101
• “Define Swaption Parameters” on page 2-103
• “Compute the Black Model and the Swaption Volatility Matrix” on page 2-103
• “Select Calibration Instruments” on page 2-103
• “Compute Swaption Prices Using Black's Model” on page 2-103
• “Define Simulation Parameters” on page 2-104

Construct a Zero Curve
This example shows how to use ZeroRates for a zero curve that is hard-coded. You can also create a
zero curve by bootstrapping the zero curve from market data (for example, deposits, futures/
forwards, and swaps)

The hard-coded data for the zero curve is defined as:

Settle = datenum('21-Jul-2008');

% Zero Curve
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CurveDates = daysadd(Settle,360*([1 3 5 7 10 20]),1);
ZeroRates = [1.9 2.6 3.1 3.5 4 4.3]'/100;

plot(CurveDates,ZeroRates)
datetick
title(['Zero Curve for ' datestr(Settle)]);

Construct an IRDataCurve object.

irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);

Create the RateSpec using intenvset.

RateSpec = intenvset('Rates',ZeroRates,'EndDates',CurveDates,'StartDate',Settle)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 2
             Disc: [6x1 double]
            Rates: [6x1 double]
         EndTimes: [6x1 double]
       StartTimes: [6x1 double]
         EndDates: [6x1 double]
       StartDates: 733610
    ValuationDate: 733610
            Basis: 0
     EndMonthRule: 1
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Define Swaption Parameters
While Monte Carlo simulation is typically used to value more sophisticated derivatives (for example,
Bermudan swaptions), in this example, the price of a European swaption is computed with an
exercise date of five years and an underlying swap of five years.
InstrumentExerciseDate = datenum('21-Jul-2013');
InstrumentMaturity = datenum('21-Jul-2018');
InstrumentStrike = .045;

Compute the Black Model and the Swaption Volatility Matrix
Black's model is often used to price and quote European exercise interest-rate options, that is, caps,
floors and swaptions. In the case of swaptions, Black's model is used to imply a volatility given the
current observed market price. The following matrix shows the Black implied volatility for a range of
swaption exercise dates (columns) and underlying swap maturities (rows).
SwaptionBlackVol = [22 21 19 17 15 13 12
    21 19 17 16 15 13 11
    20 18 16 15 14 12 11
    19 17 15 14 13 12 10
    18 16 14 13 12 11 10
    15 14 13 12 12 11 10
    13 13 12 11 11 10 9]/100;
ExerciseDates = [1:5 7 10];
Tenors = [1:5 7 10];

EurExDatesFull = repmat(daysadd(Settle,ExerciseDates*360,1)',...
    length(Tenors),1);
EurMatFull = reshape(daysadd(EurExDatesFull,...
    repmat(360*Tenors,1,length(ExerciseDates)),1),size(EurExDatesFull));

Select Calibration Instruments
Selecting the instruments to calibrate the model to is one of the tasks in calibration. For Bermudan
swaptions, it is typical to calibrate to European swaptions that are co-terminal with the Bermudan
swaption to be priced. In this case, all swaptions having an underlying tenor that matures before the
maturity of the swaption to be priced (21-Jul-2018) are used in the calibration.
% Find the swaptions that expire on or before the maturity date of the
% sample swaption
relidx = find(EurMatFull <= InstrumentMaturity);

Compute Swaption Prices Using Black's Model
This example shows how to compute swaption prices using Black's Model. The swaption prices are
then used to compare the model’s predicted values that are obtained from the calibration process.

To compute the swaption prices using Black's model:
SwaptionBlackPrices = zeros(size(SwaptionBlackVol));
SwaptionStrike = zeros(size(SwaptionBlackVol));

for iSwaption=1:length(ExerciseDates)
    for iTenor=1:length(Tenors)
        [~,SwaptionStrike(iTenor,iSwaption)] = swapbyzero(RateSpec,[NaN 0], Settle, EurMatFull(iTenor,iSwaption),...
            'StartDate',EurExDatesFull(iTenor,iSwaption),'LegReset',[1 1]);
        SwaptionBlackPrices(iTenor,iSwaption) = swaptionbyblk(RateSpec, 'call', SwaptionStrike(iTenor,iSwaption),Settle, ...
            EurExDatesFull(iTenor,iSwaption), EurMatFull(iTenor,iSwaption), SwaptionBlackVol(iTenor,iSwaption));
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    end
end

Define Simulation Parameters
This example shows how to use the simTermStructs method with HullWhite1F,
LinearGaussian2F, and LiborMarketModel objects.

To demonstrate using the simTermStructs method with HullWhite1F, LinearGaussian2F, and
LiborMarketModel objects, use the following simulation parameters:
nPeriods = 5;
DeltaTime = 1;
nTrials = 1000;

Tenor = (1:10)';

SimDates = daysadd(Settle,360*DeltaTime*(0:nPeriods),1)
SimTimes = diff(yearfrac(SimDates(1),SimDates))

% For 1 year periods and an evenly spaced tenor, the exercise row will be
% the 5th row and the swaption maturity will be the 5th column
exRow = 5;
endCol = 5;

SimDates =

      733610
      733975
      734340
      734705
      735071
      735436

SimTimes =

    1.0000
    1.0000
    1.0000
    1.0027
    1.0000

Simulate Interest-Rate Paths Using the Hull-White One-Factor Model
This example shows how to simulate interest-rate paths using the Hull-White one-factor model. Before
beginning this example that uses a HullWhite1F model, make sure that you have set up the data as
described in:

• “Construct a Zero Curve” on page 2-101
• “Define Swaption Parameters” on page 2-103
• “Compute the Black Model and the Swaption Volatility Matrix” on page 2-103
• “Select Calibration Instruments” on page 2-103
• “Compute Swaption Prices Using Black's Model” on page 2-103
• “Define Simulation Parameters” on page 2-104

The Hull-White one-factor model describes the evolution of the short rate and is specified using the
zero curve, alpha, and sigma parameters for the equation

dr = [θ(t)− a(t)r]dt + σ(t)dW

where:
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dr is the change in the short-term interest rate over a small interval, dt.

r is the short-term interest rate.

Θ(t) is a function of time determining the average direction in which r moves, chosen such that
movements in r are consistent with today's zero coupon yield curve.

α is the mean reversion rate.

dt is a small change in time.

σ is the annual standard deviation of the short rate.

W is the Brownian motion.

The Hull-White model is calibrated using the function swaptionbyhw, which constructs a trinomial
tree to price the swaptions. Calibration consists of minimizing the difference between the observed
market prices (computed above using the Black's implied swaption volatility matrix, see “Compute
the Black Model and the Swaption Volatility Matrix” on page 2-103) and the model’s predicted prices.

In this example, the Optimization Toolbox function lsqnonlin is used to find the parameter set that
minimizes the difference between the observed and predicted values. However, other approaches (for
example, simulated annealing) may be appropriate. Starting parameters and constraints for α and σ
are set in the variables x0, lb, and ub; these could also be varied depending upon the particular
calibration approach.

Calibrate the set of parameters that minimize the difference between the observed and predicted
values using swaptionbyhw and lsqnonlin.
TimeSpec = hwtimespec(Settle,daysadd(Settle,360*(1:11),1), 2);
HW1Fobjfun = @(x) SwaptionBlackPrices(relidx) - ...
    swaptionbyhw(hwtree(hwvolspec(Settle,'11-Aug-2015',x(2),'11-Aug-2015',x(1)), RateSpec, TimeSpec), 'call', SwaptionStrike(relidx),...
    EurExDatesFull(relidx), 0, EurExDatesFull(relidx), EurMatFull(relidx));
options = optimset('disp','iter','MaxFunEvals',1000,'TolFun',1e-5);

% Find the parameters that minimize the difference between the observed and
% predicted prices
x0 = [.1 .01];
lb = [0 0];
ub = [1 1];
HW1Fparams = lsqnonlin(HW1Fobjfun,x0,lb,ub,options);

HW_alpha = HW1Fparams(1)
HW_sigma = HW1Fparams(2)

                                        Norm of      First-order 
 Iteration  Func-count     f(x)          step          optimality
     0          3        0.953772                          20.5
     1          6        0.142828      0.0169199           1.53
     2          9        0.123022      0.0146705           2.31
     3         12        0.122222      0.0154098          0.482
     4         15        0.122217     0.00131297        0.00409 

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to 
its initial value is less than the selected value of the function tolerance.

HW_alpha =

    0.0967

HW_sigma =

    0.0088

Construct the HullWhite1F model using the HullWhite1F constructor.
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HW1F = HullWhite1F(RateSpec,HW_alpha,HW_sigma)

HW1F = 

  HullWhite1F with properties:

    ZeroCurve: [1x1 IRDataCurve]
        Alpha: @(t,V)inAlpha
        Sigma: @(t,V)inSigma

Use Monte Carlo simulation to generate the interest-rate paths with
HullWhite1F.simTermStructs.
HW1FSimPaths = HW1F.simTermStructs(nPeriods,'NTRIALS',nTrials,...
    'DeltaTime',DeltaTime,'Tenor',Tenor,'antithetic',true);
trialIdx = 1;
figure
surf(Tenor,SimDates,HW1FSimPaths(:,:,trialIdx))
datetick y keepticks keeplimits
title(['Evolution of the Zero Curve for Trial:' num2str(trialIdx) ' of Hull White Model'])
xlabel('Tenor (Years)')

Price the European swaption.
DF = exp(bsxfun(@times,-HW1FSimPaths,repmat(Tenor',[nPeriods+1 1])));
SwapRate = (1 - DF(exRow,endCol,:))./sum(bsxfun(@times,1,DF(exRow,1:endCol,:)));
PayoffValue = 100*max(SwapRate-InstrumentStrike,0).*sum(bsxfun(@times,1,DF(exRow,1:endCol,:)));
RealizedDF = prod(exp(bsxfun(@times,-HW1FSimPaths(1:exRow,1,:),SimTimes(1:exRow))),1);
HW1F_SwaptionPrice = mean(RealizedDF.*PayoffValue)
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HW1F_SwaptionPrice =

    2.1839                    

Simulate Interest-Rate Paths Using the Linear Gaussian Two-Factor
Model
This example shows how to simulate interest-rate paths using the Linear Gaussian two-factor model.
Before beginning this example that uses a LinearGaussian2F model, make sure that you have set
up the data as described in:

• “Construct a Zero Curve” on page 2-101
• “Define Swaption Parameters” on page 2-103
• “Compute the Black Model and the Swaption Volatility Matrix” on page 2-103
• “Select Calibration Instruments” on page 2-103
• “Compute Swaption Prices Using Black's Model” on page 2-103
• “Define Simulation Parameters” on page 2-104

The Linear Gaussian two-factor model (called the G2++ by Brigo and Mercurio, see “Interest-Rate
Modeling Using Monte Carlo Simulation” on page B-4) is also a short rate model, but involves two
factors. Specifically:

r(t) = x(t) + y(t) + ϕ(t)

dx(t) = − a(t)x(t)dt + σ(t)dW1(t), x(0) = 0

dy(t) = − b(t)y(t)dt + η(t)dW2(t), y(0) = 0

where dW1(t)dW2(t) = ρdt is a two-dimensional Brownian motion with correlation ρ, and ϕ is a
function chosen to match the initial zero curve.

The function swaptionbylg2f is used to compute analytic values of the swaption price for model
parameters, and therefore can be used to calibrate the model. Calibration consists of minimizing the
difference between the observed market prices (computed above using the Black's implied swaption
volatility matrix, see “Compute the Black Model and the Swaption Volatility Matrix” on page 2-103)
and the model’s predicted prices.

In this example, the approach is similar to “Simulate Interest-Rate Paths Using the Hull-White One-
Factor Model” on page 2-104 and the Optimization Toolbox function lsqnonlin is used to minimize
the difference between the observed swaption prices and the predicted swaption prices. However,
other approaches (for example, simulated annealing) may also be appropriate. Starting parameters
and constraints for a, b, η, ρ, and σ are set in the variables x0, lb, and ub; these could also be varied
depending upon the particular calibration approach.

Calibrate the set of parameters that minimize the difference between the observed and predicted
values using swaptionbylg2f and lsqnonlin.
G2PPobjfun = @(x) SwaptionBlackPrices(relidx) - swaptionbylg2f(irdc,x(1),x(2),x(3),x(4),x(5),SwaptionStrike(relidx),...
    EurExDatesFull(relidx),EurMatFull(relidx),'Reset',1);

options = optimset('disp','iter','MaxFunEvals',1000,'TolFun',1e-5);
x0 = [.2 .1 .02 .01 -.5];
lb = [0 0 0 0 -1];
ub = [1 1 1 1 1];
LG2Fparams = lsqnonlin(G2PPobjfun,x0,lb,ub,options)
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                                         Norm of      First-order 
 Iteration  Func-count     f(x)          step          optimality
     0          6         12.3547                          67.6
     1         12         1.37984      0.0979743           8.59      
     2         18         1.37984       0.112847           8.59      
     3         24        0.445202      0.0282118           1.31      
     4         30        0.236746      0.0564236           3.02      
     5         36        0.134678      0.0843366           7.78      
     6         42       0.0398816       0.015084           6.34      
     7         48       0.0287731       0.038967          0.732      
     8         54       0.0273025       0.112847          0.881      
     9         60       0.0241689       0.213033           1.06      
    10         66       0.0241689       0.125602           1.06      
    11         72       0.0239103      0.0314005           9.78      
    12         78       0.0234246      0.0286685           1.21      
    13         84       0.0234246      0.0491135           1.21      
    14         90        0.023304      0.0122784           1.67      
    15         96       0.0231931      0.0245568           5.92      
    16        102       0.0230898     0.00785421          0.434      
    17        108       0.0230898      0.0245568          0.434      
    18        114        0.023083     0.00613919          0.255    

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to 
its initial value is less than the selected value of the function tolerance.

LG2Fparams =

    0.5752    0.1181    0.0146    0.0119   -0.7895

Create the G2PP object using LinearGaussian2F and use Monte Carlo simulation to generate the
interest-rate paths with LinearGaussian2F.simTermStructs.
LG2f_a = LG2Fparams(1);
LG2f_b = LG2Fparams(2);
LG2f_sigma = LG2Fparams(3);
LG2f_eta = LG2Fparams(4);
LG2f_rho = LG2Fparams(5);

G2PP = LinearGaussian2F(RateSpec,LG2f_a,LG2f_b,LG2f_sigma,LG2f_eta,LG2f_rho);

G2PPSimPaths = G2PP.simTermStructs(nPeriods,'NTRIALS',nTrials,...
    'DeltaTime',DeltaTime,'Tenor',Tenor,'antithetic',true);

trialIdx = 1;
figure
surf(Tenor,SimDates,G2PPSimPaths(:,:,trialIdx))
datetick y keepticks keeplimits
title(['Evolution of the Zero Curve for Trial:' num2str(trialIdx) ' of G2++ Model'])
xlabel('Tenor (Years)')
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Price the European swaption.
DF = exp(bsxfun(@times,-G2PPSimPaths,repmat(Tenor',[nPeriods+1 1])));
SwapRate = (1 - DF(exRow,endCol,:))./sum(bsxfun(@times,1,DF(exRow,1:endCol,:)));
PayoffValue = 100*max(SwapRate-InstrumentStrike,0).*sum(bsxfun(@times,1,DF(exRow,1:endCol,:)));
RealizedDF = prod(exp(bsxfun(@times,-G2PPSimPaths(1:exRow,1,:),SimTimes(1:exRow))),1);
G2PP_SwaptionPrice = mean(RealizedDF.*PayoffValue)

G2PP_SwaptionPrice =

    2.0988

Simulate Interest-Rate Paths Using the LIBOR Market Model
This example shows how to simulate interest-rate paths using the LIBOR market model. Before
beginning this example that uses a LiborMarketModel, make sure that you have set up the data as
described in:

• “Construct a Zero Curve” on page 2-101
• “Define Swaption Parameters” on page 2-103
• “Compute the Black Model and the Swaption Volatility Matrix” on page 2-103
• “Select Calibration Instruments” on page 2-103
• “Compute Swaption Prices Using Black's Model” on page 2-103
• “Define Simulation Parameters” on page 2-104

The LIBOR Market Model (LMM) differs from short rate models in that it evolves a set of discrete
forward rates. Specifically, the lognormal LMM specifies the following diffusion equation for each
forward rate

dFi(t)
Fi

= − μidt + σi(t)dWi
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where:

W is an N-dimensional geometric Brownian motion with

dWi(t)dW j(t) = ρi j

The LMM relates the drifts of the forward rates based on no-arbitrage arguments. Specifically, under
the Spot LIBOR measure, the drifts are expressed as

μi(t) = − σi(t) ∑
j = q(t)

i τ jρi, jσ j(t)F j(t)
1 + τ jF j(t)

where:

τi is the time fraction associated with the ith forward rate

q(t) is an index defined by the relation

Tq(t)− 1 < t < Tq(t)

and the Spot LIBOR numeraire is defined as

B(t) = P(t, Tq(t)) ∏
n = 0

q(t)− 1
(1 + τnFn(Tn))

The choice with the LMM is how to model volatility and correlation and how to estimate the
parameters of these models for volatility and correlation. In practice, you may use a combination of
historical data (for example, observed correlation between forward rates) and current market data.
For this example, only swaption data is used. Further, many different parameterizations of the
volatility and correlation exist. For this example, two relatively straightforward parameterizations are
used.

One of the most popular functional forms in the literature for volatility is:

σi(t) = φi(a(Ti− t) + b)ec(Ti− t) + d

where ϕ adjusts the curve to match the volatility for the i th forward rate. For this example, all of the
ϕ’s are taken to be 1. For the correlation, the following functional form is used:

ρi, j = e−β i− j

Once the functional forms have been specified, these parameters must be estimated using market
data. One useful approximation, initially developed by Rebonato, is the following, which relates the
Black volatility for a European swaption, given a set of volatility functions and a correlation matrix

(υα, β
LFM)2 = ∑

i, j = α + 1

β wi(0)w j(0)Fi(0)F j(0)ρi, j

Sα, β(0)2 ∫
0

Tα
σi(t)σ j(t)dt

where:

wi(t) =
τiP(t, Ti)

∑
k = α + 1

β
τκP(t, tκ)
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This calculation is done using the function blackvolbyrebonato to compute analytic values of the
swaption price for model parameters, and therefore, is then used to calibrate the model. Calibration
consists of minimizing the difference between the observed implied swaption Black volatilities and
the predicted Black volatilities.

In this example, the approach is similar to “Simulate Interest-Rate Paths Using the Hull-White One-
Factor Model” on page 2-104 and “Simulate Interest-Rate Paths Using the Linear Gaussian Two-
Factor Model” on page 2-107 where the Optimization Toolbox function lsqnonlin is used to
minimize the difference between the observed swaption prices and the predicted swaption prices.
However, other approaches (for example, simulated annealing) may also be appropriate. Starting
parameters and constraints for a, b, d, and β are set in the variables x0, lb, and ub; these could also
be varied depending upon the particular calibration approach.

Calibrate the set of parameters that minimize the difference between the observed and predicted
values using blackvolbyrebonato and lsqnonlin.
nRates = 10;

CorrFunc = @(i,j,Beta) exp(-Beta*abs(i-j));

objfun = @(x) SwaptionBlackVol(relidx) - blackvolbyrebonato(RateSpec,...
    repmat({@(t) ones(size(t)).*(x(1)*t + x(2)).*exp(-x(3)*t) + x(4)},nRates-1,1),...
    CorrFunc(meshgrid(1:nRates-1)',meshgrid(1:nRates-1),x(5)),...
    EurExDatesFull(relidx),EurMatFull(relidx),'Period',1);

options = optimset('disp','iter','MaxFunEvals',1000,'TolFun',1e-5);

x0 = [.2 .05 1 .05 .2];
lb = [0 0 .5 0 .01];
ub = [1 1 2 .3 1];
LMMparams = lsqnonlin(objfun,x0,lb,ub,options)

                                        Norm of      First-order 
 Iteration  Func-count     f(x)          step          optimality
     0          6        0.156251                         0.483
     1         12      0.00870177       0.188164         0.0339      
     2         18      0.00463441       0.165527        0.00095      
     3         24      0.00331055       0.351017         0.0154      
     4         30      0.00294775      0.0892617       7.47e-05      
     5         36      0.00281565       0.385779        0.00917      
     6         42      0.00278988      0.0145632       4.15e-05      
     7         48      0.00278522       0.115042        0.00116    
Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to 
its initial value is less than the selected value of the function tolerance.

LMMparams =

    0.0781    0.1656    0.5121    0.0617    0.0100

Calculate VolFunc for the LMM object.

a = LMMparams(1);
b = LMMparams(2);
c = LMMparams(3);
d = LMMparams(4);

Beta = LMMparams(5);

VolFunc = repmat({@(t) ones(size(t)).*(a*t + b).*exp(-c*t) + d},nRates-1,1);

Plot the volatility function.
figure
fplot(VolFunc{1},[0 20])
title('Volatility Function')

CorrelationMatrix = CorrFunc(meshgrid(1:nRates-1)',meshgrid(1:nRates-1),Beta);
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Inspect the correlation matrix.
disp('Correlation Matrix')
fprintf([repmat('%1.3f ',1,length(CorrelationMatrix)) ' \n'],CorrelationMatrix)

Correlation Matrix
1.000 0.990 0.980 0.970 0.961 0.951 0.942 0.932 0.923  
0.990 1.000 0.990 0.980 0.970 0.961 0.951 0.942 0.932  
0.980 0.990 1.000 0.990 0.980 0.970 0.961 0.951 0.942  
0.970 0.980 0.990 1.000 0.990 0.980 0.970 0.961 0.951  
0.961 0.970 0.980 0.990 1.000 0.990 0.980 0.970 0.961  
0.951 0.961 0.970 0.980 0.990 1.000 0.990 0.980 0.970  
0.942 0.951 0.961 0.970 0.980 0.990 1.000 0.990 0.980  
0.932 0.942 0.951 0.961 0.970 0.980 0.990 1.000 0.990  
0.923 0.932 0.942 0.951 0.961 0.970 0.980 0.990 1.000  

Create the LMM object using LiborMarketModel and use Monte Carlo simulation to generate the
interest-rate paths with LiborMarketModel.simTermStructs.
LMM = LiborMarketModel(irdc,VolFunc,CorrelationMatrix,'Period',1);

[LMMZeroRates, ForwardRates] = LMM.simTermStructs(nPeriods,'nTrials',nTrials);

trialIdx = 1;
figure
tmpPlotData = LMMZeroRates(:,:,trialIdx);
tmpPlotData(tmpPlotData == 0) = NaN;
surf(Tenor,SimDates,tmpPlotData)
title(['Evolution of the Zero Curve for Trial:' num2str(trialIdx) ' of LIBOR Market Model'])
xlabel('Tenor (Years)')
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Price the European swaption.
DF = exp(bsxfun(@times,-LMMZeroRates,repmat(Tenor',[nPeriods+1 1])));
SwapRate = (1 - DF(exRow,endCol,:))./sum(bsxfun(@times,1,DF(exRow,1:endCol,:)));
PayoffValue = 100*max(SwapRate-InstrumentStrike,0).*sum(bsxfun(@times,1,DF(exRow,1:endCol,:)));
RealizedDF = prod(exp(bsxfun(@times,-LMMZeroRates(2:exRow+1,1,:),SimTimes(1:exRow))),1);
LMM_SwaptionPrice = mean(RealizedDF.*PayoffValue)

LMM_SwaptionPrice =

    1.9915

Compare Interest-Rate Modeling Results
This example shows how to compare the results for pricing a European swaption with different
interest-rate models.

Compare the results for pricing a European swaption with interest-rate models using Monte Carlo
simulation.
disp(' ')
fprintf('     # of Monte Carlo Trials: %8d\n'    , nTrials)
fprintf('     # of Time Periods/Trial: %8d\n\n'  , nPeriods)
fprintf('HW1F European Swaption Price: %8.4f\n', HW1F_SwaptionPrice)
fprintf('LG2F Europesn Swaption Price: %8.4f\n', G2PP_SwaptionPrice)
fprintf(' LMM European Swaption Price: %8.4f\n', LMM_SwaptionPrice)

 # of Monte Carlo Trials:     1000
     # of Time Periods/Trial:        5

HW1F European Swaption Price:   2.1839
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LG2F Europesn Swaption Price:   2.0988
 LMM European Swaption Price:   1.9915
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See Also
HullWhite1F | LinearGaussian2F | LiborMarketModel | simTermStructs | simTermStructs
| simTermStructs | capbylg2f | floorbylg2f | swaptionbylg2f | swaptionbyhw |
blackvolbyrebonato | lsqnonlin

Related Examples
• “Pricing Bermudan Swaptions with Monte Carlo Simulation” on page 2-115

More About
• “Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on

page 1-73
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Pricing Bermudan Swaptions with Monte Carlo Simulation
This example shows how to price Bermudan swaptions using interest-rate models in Financial
Instruments Toolbox™. Specifically, a Hull-White one factor model, a Linear Gaussian two-factor
model, and a LIBOR Market Model are calibrated to market data and then used to generate interest-
rate paths using Monte Carlo simulation.

Zero Curve

In this example, the ZeroRates for a zero curve is hard-coded. You can also create a zero curve by
bootstrapping the zero curve from market data (for example, deposits, futures/forwards, and swaps).
The hard-coded data for the zero curve is defined as:

Settle = datenum('21-Jul-2008');

% Zero Curve
CurveDates = daysadd(Settle,360*([1 3 5 7 10 20]),1);
ZeroRates = [1.9 2.6 3.1 3.5 4 4.3]'/100;

plot(CurveDates,ZeroRates)
datetick
title(['Zero Curve for ' datestr(Settle)]);

RateSpec = intenvset('Rates',ZeroRates,'EndDates',CurveDates,'StartDate',Settle);

 Pricing Bermudan Swaptions with Monte Carlo Simulation

2-115



Define Swaption Parameters

For this example, you compute the price of a 10-no-call-1 Bermudan swaption.

BermudanExerciseDates = daysadd(Settle,360*(1:9),1);
BermudanMaturity = datenum('21-Jul-2018');
BermudanStrike = .045;

Black's Model and the Swaption Volatility Matrix

Black's model is often used to price and quote European exercise interest-rate options, that is, caps,
floors, and swaptions. In the case of swaptions, Black's model is used to imply a volatility given the
current observed market price. The following matrix shows the Black implied volatility for a range of
swaption exercise dates (columns) and underlying swap maturities (rows).

SwaptionBlackVol = [22 21 19 17 15 13 12
    21 19 17 16 15 13 11
    20 18 16 15 14 12 11
    19 17 15 14 13 12 10
    18 16 14 13 12 11 10
    15 14 13 12 12 11 10
    13 13 12 11 11 10 9]/100;
ExerciseDates = [1:5 7 10];
Tenors = [1:5 7 10];

EurExDatesFull = repmat(daysadd(Settle,ExerciseDates*360,1)',...
    length(Tenors),1);
EurMatFull = reshape(daysadd(EurExDatesFull,...
    repmat(360*Tenors,1,length(ExerciseDates)),1),size(EurExDatesFull));

Selecting the Calibration Instruments

Selecting the instruments to calibrate the model to is one of the tasks in calibration. For Bermudan
swaptions, it is typical to calibrate to European swaptions that are co-terminal with the Bermudan
swaption that you want to price. In this case, all swaptions having an underlying tenor that matures
before the maturity of the swaption to be priced are used in the calibration.

% Find the swaptions that expire on or before the maturity date of the
% sample swaption
relidx = find(EurMatFull <= BermudanMaturity);

Compute Swaption Prices Using Black's Model

Swaption prices are computed using Black's Model. You can then use the swaption prices to compare
the model's predicted values. To compute the swaption prices using Black's model:

% Compute Swaption Prices using Black's model
SwaptionBlackPrices = zeros(size(SwaptionBlackVol));
SwaptionStrike = zeros(size(SwaptionBlackVol));

for iSwaption=1:length(ExerciseDates)
    for iTenor=1:length(Tenors)
        [~,SwaptionStrike(iTenor,iSwaption)] = swapbyzero(RateSpec,[NaN 0], Settle, EurMatFull(iTenor,iSwaption),...
            'StartDate',EurExDatesFull(iTenor,iSwaption),'LegReset',[1 1]);
        SwaptionBlackPrices(iTenor,iSwaption) = swaptionbyblk(RateSpec, 'call', SwaptionStrike(iTenor,iSwaption),Settle, ...
            EurExDatesFull(iTenor,iSwaption), EurMatFull(iTenor,iSwaption), SwaptionBlackVol(iTenor,iSwaption));
    end
end
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Simulation Parameters

The following parameters are used where each exercise date is a simulation date.

nPeriods = 9;
DeltaTime = 1;
nTrials = 1000;

Tenor = (1:10)';

SimDates = daysadd(Settle,360*DeltaTime*(0:nPeriods),1);
SimTimes = diff(yearfrac(SimDates(1),SimDates));

Hull White 1 Factor Model

The Hull-White one-factor model describes the evolution of the short rate and is specified by the
following:

dr = [θ(t)− αr]dt + σdW

The Hull-White model is calibrated using the function swaptionbyhw, which constructs a trinomial
tree to price the swaptions. Calibration consists of minimizing the difference between the observed
market prices (computed above using the Black's implied swaption volatility matrix) and the model's
predicted prices.

This example uses the Optimization Toolbox™ function lsqnonlin to find the parameter set that
minimizes the difference between the observed and predicted values. However, other approaches (for
example, simulated annealing) may be appropriate. Starting parameters and constraints for α and σ
are set in the variables x0 , lb, and ub; these could also be varied depending upon the particular
calibration approach.

warnId = 'fininst:swaptionbyirtree:IgnoredSettle';
warnStruct = warning('off',warnId); % Turn warning off

TimeSpec = hwtimespec(Settle,daysadd(Settle,360*(1:11),1), 2);
HW1Fobjfun = @(x) SwaptionBlackPrices(relidx) - ...
    swaptionbyhw(hwtree(hwvolspec(Settle,'11-Aug-2015',x(2),'11-Aug-2015',x(1)), RateSpec, TimeSpec), 'call', SwaptionStrike(relidx),...
    EurExDatesFull(relidx), 0, EurExDatesFull(relidx), EurMatFull(relidx));
options = optimset('disp','iter','MaxFunEvals',1000,'TolFun',1e-5);

% Find the parameters that minimize the difference between the observed and
% predicted prices
x0 = [.1 .01];
lb = [0 0];
ub = [1 1];

HW1Fparams = lsqnonlin(HW1Fobjfun,x0,lb,ub,options);

                                         Norm of      First-order 
 Iteration  Func-count     f(x)          step          optimality
     0          3        0.953772                          20.5
     1          6        0.142828      0.0169199           1.53      
     2          9        0.123022      0.0146705           2.31      
     3         12        0.122222      0.0154097          0.482      
     4         15        0.122217     0.00131299        0.00409      

Local minimum possible.
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lsqnonlin stopped because the final change in the sum of squares relative to 
its initial value is less than the value of the function tolerance.

warning(warnStruct); % Turn warnings on

HW_alpha = HW1Fparams(1);
HW_sigma = HW1Fparams(2);

% Construct the HullWhite1F model using the HullWhite1F constructor.
HW1F = HullWhite1F(RateSpec,HW_alpha,HW_sigma);

% Use Monte Carlo simulation to generate the interest-rate paths with
% HullWhite1F.simTermStructs.
HW1FSimPaths = HW1F.simTermStructs(nPeriods,'NTRIALS',nTrials,...
    'DeltaTime',DeltaTime,'Tenor',Tenor,'antithetic',true);

% Examine one simulation
trialIdx = 1;
figure
surf(Tenor,SimDates,HW1FSimPaths(:,:,trialIdx))
datetick y keepticks keeplimits
title(['Evolution of the Zero Curve for Trial:' num2str(trialIdx) ' of Hull White Model'])
xlabel('Tenor (Years)')

% Price the swaption using the helper function hBermudanSwaption
HW1FBermPrice = hBermudanSwaption(HW1FSimPaths,SimDates,Tenor,BermudanStrike,...
    BermudanExerciseDates,BermudanMaturity);
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Linear Gaussian 2 Factor Model

The Linear Gaussian two-factor model (called the G2++ by Brigo and Mercurio) is also a short rate
model, but involves two factors. Specifically:

r(t) = x(t) + y(t) + φ(t)

dx(t) = − ax(t)dt + σdW1(t)

dy(t) = − by(t)dt + ηdW2(t)

where dW1(t)dW2(t) is a two-dimensional Brownian motion with correlation ρ

dW1(t)dW2(t) = ρ

and φ is a function chosen to match the initial zero curve.

You can use the function swaptionbylg2f to compute analytic values of the swaption price for
model parameters and to calibrate the model. Calibration consists of minimizing the difference
between the observed market prices and the model's predicted prices.

% Calibrate the set of parameters that minimize the difference between the
% observed and predicted values using swaptionbylg2f and lsqnonlin.
G2PPobjfun = @(x) SwaptionBlackPrices(relidx) - ...
    swaptionbylg2f(RateSpec,x(1),x(2),x(3),x(4),x(5),SwaptionStrike(relidx),...
    EurExDatesFull(relidx),EurMatFull(relidx),'Reset',1);
x0 = [.2 .1 .02 .01 -.5];
lb = [0 0 0 0 -1];
ub = [1 1 1 1 1];
LG2Fparams = lsqnonlin(G2PPobjfun,x0,lb,ub,options);

                                         Norm of      First-order 
 Iteration  Func-count     f(x)          step          optimality
     0          6         11.9838                          66.5
     1         12         1.35076      0.0967223           8.47      
     2         18         1.35076       0.111744           8.47      
     3         24        0.439341      0.0279361           1.29      
     4         30        0.237917      0.0558721           3.49      
     5         36        0.126732      0.0836846           7.51      
     6         42       0.0395759      0.0137735           7.43      
     7         48       0.0265828      0.0355772          0.787      
     8         54       0.0252764       0.111744            0.5      
     9         60       0.0228937       0.196793          0.338      
    10         66       0.0222739       0.106678         0.0946      
    11         72       0.0221799      0.0380101          0.912      
    12         78       0.0221726      0.0163245           1.37      

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to 
its initial value is less than the value of the function tolerance.

LG2f_a = LG2Fparams(1);
LG2f_b = LG2Fparams(2);
LG2f_sigma = LG2Fparams(3);
LG2f_eta = LG2Fparams(4);
LG2f_rho = LG2Fparams(5);
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% Create the G2PP object and use Monte Carlo simulation to generate the
% interest-rate paths with LinearGaussian2F.simTermStructs.
G2PP = LinearGaussian2F(RateSpec,LG2f_a,LG2f_b,LG2f_sigma,LG2f_eta,LG2f_rho);

G2PPSimPaths = G2PP.simTermStructs(nPeriods,'NTRIALS',nTrials,...
    'DeltaTime',DeltaTime,'Tenor',Tenor,'antithetic',true);

% Examine one simulation
trialIdx = 1;
figure
surf(Tenor,SimDates,G2PPSimPaths(:,:,trialIdx))
datetick y keepticks keeplimits
title(['Evolution of the Zero Curve for Trial:' num2str(trialIdx) ' of G2++ Model'])
xlabel('Tenor (Years)')

% Price the swaption using the helper function hBermudanSwaption
LG2FBermPrice = hBermudanSwaption(G2PPSimPaths,SimDates,Tenor,BermudanStrike,BermudanExerciseDates,BermudanMaturity);

LIBOR Market Model

The LIBOR Market Model (LMM) differs from short rate models in that it evolves a set of discrete
forward rates. Specifically, the lognormal LMM specifies the following diffusion equation for each
forward rate

dFi(t)
Fi

= − μidt + σi(t)dWi
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where

σi is the volatility function for each rate and dW is an N dimensional geometric Brownian motion with:

dWi(t)dW j(t) = ρi j

The LMM relates the drifts of the forward rates based on no-arbitrage arguments.

The choice with the LMM is how to model volatility and correlation and how to estimate the
parameters of these models for volatility and correlation. In practice, you might use a combination of
historical data (for example, observed correlation between forward rates) and current market data.
For this example, only swaption data is used. Furthermore, many different parameterizations of the
volatility and correlation exist. This example uses two relatively straightforward parameterizations.

One of the most popular functional forms in the literature for volatility is:

σi(t) = ϕi(a(Ti− t) + b)ec(Ti− t) + d

where ϕ adjusts the curve to match the volatility for the ith forward rate. For this example, all of the
Phi's will be taken to be 1.

For the correlation, the following functional form is used:

ρi, j = e−β | i− j|

Once the functional forms are specified, the parameters need to be estimated using market data. One
useful approximation, initially developed by Rebonato, is the following, which computes the Black
volatility for a European swaption, given a LMM with a set of volatility functions and a correlation
matrix.

(vα, β
LFM)2 = ∑

i, j = α + 1

β wi(0)w j(0)Fi(0)F j(0)ρi, j

Sα, β(0)2 ∫0
Tα

σi(t)σ j(t)dt

where

wi(t) =
τiP(t, Ti)

∑k = α + 1
β τkP(t, tk)

This calculation is done using blackvolbyrebonato to compute analytic values of the swaption
price for model parameters and also to calibrate the model. Calibration consists of minimizing the
difference between the observed implied swaption Black volatilities and the predicted Black
volatilities.

nRates = 10;

CorrFunc = @(i,j,Beta) exp(-Beta*abs(i-j));

objfun = @(x) SwaptionBlackVol(relidx) - blackvolbyrebonato(RateSpec,...
    repmat({@(t) ones(size(t)).*(x(1)*t + x(2)).*exp(-x(3)*t) + x(4)},nRates-1,1),...
    CorrFunc(meshgrid(1:nRates-1)',meshgrid(1:nRates-1),x(5)),...
    EurExDatesFull(relidx),EurMatFull(relidx),'Period',1);

x0 = [.2 .05 1 .05 .2];
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lb = [0 0 .5 0 .01];
ub = [1 1 2 .3 1];
LMMparams = lsqnonlin(objfun,x0,lb,ub,options);

                                         Norm of      First-order 
 Iteration  Func-count     f(x)          step          optimality
     0          6        0.156251                         0.483
     1         12      0.00870177       0.188164         0.0339      
     2         18      0.00463441       0.165527        0.00095      
     3         24      0.00331055       0.351017         0.0154      
     4         30      0.00294775      0.0892616       7.47e-05      
     5         36      0.00281565       0.385779        0.00917      
     6         42      0.00278988      0.0145632       4.15e-05      
     7         48      0.00278522       0.115043        0.00116      

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to 
its initial value is less than the value of the function tolerance.

% Calculate VolFunc for the LMM object.
a = LMMparams(1);
b = LMMparams(2);
c = LMMparams(3);
d = LMMparams(4);

Beta = LMMparams(5);

VolFunc = repmat({@(t) ones(size(t)).*(a*t + b).*exp(-c*t) + d},nRates-1,1);

% Plot the volatility function
figure
fplot(VolFunc{1},[0 20])
title('Volatility Function')
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% Inspect the correlation matrix
CorrelationMatrix = CorrFunc(meshgrid(1:nRates-1)',meshgrid(1:nRates-1),Beta);
displayCorrelationMatrix(CorrelationMatrix);

Correlation Matrix
1.000 0.990 0.980 0.970 0.961 0.951 0.942 0.932 0.923  
0.990 1.000 0.990 0.980 0.970 0.961 0.951 0.942 0.932  
0.980 0.990 1.000 0.990 0.980 0.970 0.961 0.951 0.942  
0.970 0.980 0.990 1.000 0.990 0.980 0.970 0.961 0.951  
0.961 0.970 0.980 0.990 1.000 0.990 0.980 0.970 0.961  
0.951 0.961 0.970 0.980 0.990 1.000 0.990 0.980 0.970  
0.942 0.951 0.961 0.970 0.980 0.990 1.000 0.990 0.980  
0.932 0.942 0.951 0.961 0.970 0.980 0.990 1.000 0.990  
0.923 0.932 0.942 0.951 0.961 0.970 0.980 0.990 1.000  

% Create the LMM object and use Monte Carlo simulation to generate the 
% interest-rate paths with LiborMarketModel.simTermStructs.
LMM = LiborMarketModel(RateSpec,VolFunc,CorrelationMatrix,'Period',1);

[LMMZeroRates, ForwardRates] = LMM.simTermStructs(nPeriods,'nTrials',nTrials);

% Examine one simulation
trialIdx = 1;
figure
tmpPlotData = LMMZeroRates(:,:,trialIdx);
tmpPlotData(tmpPlotData == 0) = NaN;
surf(Tenor,SimDates,tmpPlotData)
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title(['Evolution of the Zero Curve for Trial:' num2str(trialIdx) ' of LIBOR Market Model'])
xlabel('Tenor (Years)')

% Price the swaption using the helper function hBermudanSwaption
LMMTenor = 1:10;
LMMBermPrice = hBermudanSwaption(LMMZeroRates,SimDates,LMMTenor,.045,BermudanExerciseDates,BermudanMaturity);

Results

displayResults(nTrials, nPeriods, HW1FBermPrice, LG2FBermPrice, LMMBermPrice);

     # of Monte Carlo Trials:     1000
     # of Time Periods/Trial:        9

HW1F Bermudan Swaption Price:   3.7577
LG2F Bermudan Swaption Price:   3.5576
 LMM Bermudan Swaption Price:   3.4911
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Utility Functions

function displayCorrelationMatrix(CorrelationMatrix)
fprintf('Correlation Matrix\n');
fprintf([repmat('%1.3f ',1,length(CorrelationMatrix)) ' \n'],CorrelationMatrix);
end

function displayResults(nTrials, nPeriods, HW1FBermPrice, LG2FBermPrice, LMMBermPrice)
fprintf('     # of Monte Carlo Trials: %8d\n'    , nTrials);
fprintf('     # of Time Periods/Trial: %8d\n\n'  , nPeriods);
fprintf('HW1F Bermudan Swaption Price: %8.4f\n', HW1FBermPrice);
fprintf('LG2F Bermudan Swaption Price: %8.4f\n', LG2FBermPrice);
fprintf(' LMM Bermudan Swaption Price: %8.4f\n', LMMBermPrice);
end

See Also
capbyblk | floorbyblk | swaptionbyblk | blackvolbysabr | optsensbysabr | agencyoas |
agencyprice | bndfutimprepo | bndfutprice | convfactor | tfutbyprice | tfutbyyield |
tfutimprepo | tfutpricebyrepo | tfutyieldbyrepo | capbylg2f | floorbylg2f |
swaptionbylg2f | blackvolbyrebonato | hwcalbycap | hwcalbyfloor

Related Examples
• “Calibrate the SABR Model” on page 2-33
• “Price a Swaption Using the SABR Model” on page 2-38
• “Computing the Agency OAS for Bonds” on page 6-2
• “Analysis of Bond Futures” on page 7-12
• “Managing Interest-Rate Risk with Bond Futures” on page 2-126
• “Fitting the Diebold Li Model” on page 7-15
• “Price Swaptions with Interest-Rate Models Using Simulation” on page 2-101

More About
• “Managing Present Value with Bond Futures” on page 7-14
• “Supported Interest-Rate Instrument Functions” on page 2-3
• “Supported Equity Derivative Functions” on page 3-19
• “Supported Energy Derivative Functions” on page 3-34
• “Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on

page 1-73
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Managing Interest-Rate Risk with Bond Futures
This example shows how to hedge the interest-rate risk of a portfolio using bond futures.

Modifying the Duration of a Portfolio with Bond Futures

In managing a bond portfolio, you can use a benchmark portfolio to evaluate performance. Sometimes
a manager is constrained to keep the portfolio's duration within a particular band of the duration of
the benchmark. One way to modify the duration of the portfolio is to buy and sell bonds, however,
there may be reasons why a portfolio manager wishes to maintain the existing composition of the
portfolio (for example, the current holdings reflect fundamental research/views about future returns).
Therefore, another option for modifying the duration is to buy and sell bond futures.

Bond futures are futures contracts where the commodity to be delivered is a government bond that
meets the standard outlined in the futures contract (for example, the bond has a specified remaining
time to maturity). Since often many bonds are available, and each bond may have a different coupon,
you can use a conversion factor to normalize the payment by the long to the short.

There exist well developed markets for government bond futures. Specifically, the Chicago Board of
Trade offers futures on the following:

• 2 Year Note
• 3 Year Note
• 5 Year Note
• 10 Year Note
• 30 Year Bond

https://www.cmegroup.com/trading/interest-rates/

Eurex offers futures on the following:

• Euro-Schatz Futures 1.75 to 2.25
• Euro-Bobl Futures 4.5 to 5.5
• Euro-Bund Futures 8.5 to 10.5
• Euro-Buxl Futures 24.0 to 35

https://www.eurex.com/ex-en/

Bond futures can be used to modify the duration of a portfolio. Since bond futures derive their value
from the underlying instrument, the duration of a bond futures contract is related to the duration of
the underlying bond.

There are two challenges in computing this duration:

• Since there are many available bonds for delivery, the short in the contract has a choice in which
bond to deliver.

• Some contracts allow the short flexibility in choosing the delivery date.

Typically, the bond used for analysis is the bond that is cheapest for the short to deliver (CTD). One
approach is to compute duration measures using the CTD's duration and the conversion factor.

For example, the Present Value of a Basis Point (PVBP) can be computed from the following:
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PVBPFutures =
PVBPCTD

ConversionFactorCTD

PVBPCTD =
DurationCTD * PriceCTD

100

Note that these definitions of duration for the futures contract are approximate, and do not account
for the value of the delivery options for the short.

If the goal is to modify the duration of a portfolio, use the following:

NumContracts =
(DurTarget− DurInitial) * ValuePortfolio

DurCTD * PriceCTD * ContractSize * ConvFactorCTD

Note that the contract size is typically for 100,000 face value of a bond -- so the contract size is
typically 1000, as the bond face value is 100.

The following example assumes an initial duration, portfolio value, and target duration for a portfolio
with exposure to the Euro interest rate. The June Euro-Bund Futures contract is used to modify the
duration of the portfolio. Note that typically futures contracts are offered for March, June, September
and December.

% Assume the following for the portfolio and target
PortfolioDuration = 6.4;
PortfolioValue = 100000000;
BenchmarkDuration = 4.8;

% Deliverable Bunds -- note that these conversion factors may also be
% computed with the MATLAB(R) function convfactor
BondPrice = [106.46;108.67;104.30];
BondMaturity = datenum({'04-Jan-2018','04-Jul-2018','04-Jan-2019'});
BondCoupon = [.04;.0425;.0375];
ConversionFactor = [.868688;.880218;.839275];

% Futures data -- found from http://www.eurex.com
FuturesPrice = 122.17;
FuturesSettle = '23-Apr-2009';
FuturesDelivery = '10-Jun-2009';

% To find the CTD bond we can compute the implied repo rate
ImpliedRepo = bndfutimprepo(BondPrice,FuturesPrice,FuturesSettle,...
    FuturesDelivery,ConversionFactor,BondCoupon,BondMaturity);

% Note that the bond with the highest implied repo rate is the CTD
[CTDImpRepo,CTDIndex] = max(ImpliedRepo);

% Compute the CTD's Duration -- note the period and basis for German Bunds
Duration = bnddurp(BondPrice,BondCoupon,FuturesSettle,BondMaturity,1,8);

ContractSize = 1000;

% Use the formula above to compute the number of contracts to sell
NumContracts = (BenchmarkDuration - PortfolioDuration)*PortfolioValue./...
    (BondPrice(CTDIndex)*ContractSize*Duration(CTDIndex))*ConversionFactor(CTDIndex);

disp(['To achieve the target duration, ' num2str(abs(round(NumContracts))) ...
    ' Euro-Bund Futures must be sold.'])
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To achieve the target duration, 180 Euro-Bund Futures must be sold.

Modifying the Key Rate Durations of a Portfolio with Bond Futures

One of the shortcomings of using duration as a risk measure is that it assumes parallel shifts in the
yield curve. While many studies have shown that this explains roughly 85% of the movement in the
yield curve, changes in the slope or shape of the yield curve are not captured by duration, and
therefore, hedging strategies are not successful at addressing these dynamics. One approach is to
use key rate duration -- this is particularly relevant when using bond futures with multiple maturities,
like Treasury futures.

The following example uses 2, 5, 10 and 30 year Treasury Bond futures to hedge the key rate
duration of a portfolio. Computing key rate durations requires a zero curve. This example uses the
zero curve published by the Treasury and found at the following location:

https://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?
data=yield

Note that this zero curve could also be derived using the Interest-Rate Curve functionality found in
IRDataCurve and IRFunctionCurve.

% Assume the following for the portfolio and target, where the duration
% vectors are key rate durations at 2, 5, 10, and 30 years.
PortfolioDuration = [.5 1 2 6];
PortfolioValue = 100000000;
BenchmarkDuration = [.4 .8 1.6 5];

% The following are the CTD Bonds for the 30, 10, 5 and 2 year futures
% contracts -- these were determined using the procedure outlined in the
% previous section.
CTDCoupon = [4.75 3.125 5.125 7.5]'/100;
CTDMaturity = datenum({'3/31/2011','08/31/2013','05/15/2016','11/15/2024'});
CTDConversion = [0.9794 0.8953 0.9519 1.1484]';
CTDPrice = [107.34 105.91 117.00 144.18]';

ZeroRates = [0.07 0.10 0.31 0.50 0.99 1.38 1.96 2.56 3.03 3.99 3.89]'/100;
ZeroDates = daysadd(FuturesSettle,[30 360 360*2 360*3 360*5 ...
    360*7 360*10 360*15 360*20 360*25 360*30],1);

% Compute the key rate durations for each of the CTD bonds.
CTDKRD = bndkrdur([ZeroDates ZeroRates], CTDCoupon,FuturesSettle,...
    CTDMaturity,'KeyRates',[2 5 10 30]);

% Note that the contract size for the 2 Year Note Future is $200,000
ContractSize = [2000;1000;1000;1000];

NumContracts = (bsxfun(@times,CTDPrice.*ContractSize./CTDConversion,CTDKRD))\...
    (BenchmarkDuration - PortfolioDuration)'*PortfolioValue;

sprintf(['To achieve the target duration, \n' ...
    num2str(-round(NumContracts(1))) ' 2 Year Treasury Note Futures must be sold, \n' ...
    num2str(-round(NumContracts(2))) ' 5 Year Treasury Note Futures must be sold, \n' ...
    num2str(-round(NumContracts(3))) ' 10 Year Treasury Note Futures must be sold, \n' ...
    num2str(-round(NumContracts(4))) ' Treasury Bond Futures must be sold, \n'])

ans = 
    'To achieve the target duration, 
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     24 2 Year Treasury Note Futures must be sold, 
     47 5 Year Treasury Note Futures must be sold, 
     68 10 Year Treasury Note Futures must be sold, 
     120 Treasury Bond Futures must be sold, 
     '

Improving the Performance of a Hedge with Regression

An additional component to consider in hedging interest-rate risk with bond futures, again related to
movements in the yield curve, is that typically the yield curve moves more at the short end than at the
long end.

Therefore, if a position is hedged with a future where the CTD bond has a maturity that is different
than the portfolio this could lead to a situation where the hedge under- or over-compensates for the
actual interest-rate risk of the portfolio One approach is to perform a regression on historical yields
at different maturities to determine a Yield Beta, which is a value that represents how much more the
yield changes for different maturities.

This example shows how to use this approach with UK Long Gilt futures and historical data on Gilt
Yields.

Market data on Gilt futures is found at the following:

https://www.euronext.com

Historical data on gilts is found at the following;

https://www.dmo.gov.uk

Note that while this approach does offer the possibility of improving the performance of a hedge, any
analysis using historical data depends on historical relationships remaining consistent.

Also note that an additional enhancement takes into consideration the correlation between different
maturities. While this approach is outside the scope of this example, you can use this to implement a
minimum variance hedge.

% Assume the following for the portfolio and target
PortfolioDuration = 6.4;
PortfolioValue = 100000000;
BenchmarkDuration = 4.8;

% This is the CTD Bond for the Long Gilt Futures contract
CTDBondPrice = 113.40;
CTDBondMaturity = datenum('7-Mar-2018');
CTDBondCoupon = .05;
CTDConversionFactor = 0.9325024;

% Market data for the Long Gilt Futures contract
FuturesPrice = 120.80;
FuturesSettle = '23-Apr-2009';
FuturesDelivery = '10-Jun-2009';

CTDDuration = bnddurp(CTDBondPrice,CTDBondCoupon,FuturesSettle,CTDBondMaturity);

ContractSize = 1000;
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NumContracts = (BenchmarkDuration - PortfolioDuration)*PortfolioValue./...
    (CTDBondPrice*ContractSize*CTDDuration)*CTDConversionFactor;

disp(['To achieve the target duration with a conventional hedge ' ...
    num2str(-round(NumContracts)) ...
    ' Long Gilt Futures must be sold.'])

To achieve the target duration with a conventional hedge 182 Long Gilt Futures must be sold.

To improve the accuracy of this hedge, historical data is used to determine a relationship between the
standard deviation of the yields. Specifically, standard deviation of yields is plotted and regressed vs
bond duration. This relationship is then used to compute a Yield Beta for the hedge.

% Load data from XLS spreadsheet
load ukbonddata_20072008

Duration = bnddury(Yield(1,:)',Coupon,Dates(1,:),Maturity);

scatter(Duration,100*std(Yield))
title('Standard Deviation of Yields for UK Gilts 2007-2008')
ylabel('Standard Deviation of Yields (%)')
xlabel('Duration')
annotation(gcf,'textbox',[0.4067 0.685 0.4801 0.0989],...
    'String',{'Note that the Standard Deviation',...
    'of Yields is greater at shorter maturities.'},...
    'FitBoxToText','off',...
    'EdgeColor','none');
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stats = regstats(std(Yield),Duration);
YieldBeta = (stats.beta'*[1 PortfolioDuration]')./(stats.beta'*[1 CTDDuration]');

Now the Yield Beta is used to compute a new value for the number of contracts to be sold. Note that
since the duration of the portfolio was less than the duration of the CTD Gilt, the number of futures to
sell is actually greater than in the first case.

NumContracts = (BenchmarkDuration - PortfolioDuration)*PortfolioValue./...
    (CTDBondPrice*ContractSize*CTDDuration)*CTDConversionFactor*YieldBeta;

disp(['To achieve the target duration using a Yield Beta-modified hedge, ' ...
    num2str(abs(round(NumContracts))) ...
    ' Long Gilt Futures must be sold.'])

To achieve the target duration using a Yield Beta-modified hedge, 193 Long Gilt Futures must be sold.
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Analyze Inflation-Indexed Instruments
This example shows how to analyze inflation-indexed instruments using Financial Toolbox™ and
Financial Instruments Toolbox™.

Compute Real Prices and Yields for Inflation-Indexed Bonds

While inflation-indexed bonds have a great deal of variation in the design, for example, the length of
the indexation lag, the majority of inflation-indexed bonds now have a three month lag. They are also
capital-indexed, that is, the principal of the bond is indexed to inflation. Therefore, the coupon rate of
the bond is constant, but the actual coupon payments vary as the principal of the bond is indexed to
inflation.

Specifically, the indexation is done with the following ratio:

IndexRatio =
CPIRef
CPIBase

where CPIBase is the level of the consumer price index (or equivalent price measure) at the time of
the bond's issue and CPIRef  is the reference CPI.

Typically, you compute the CPIRef  by interpolating between the index data of a known inflation-index
curve. To compute the cash flows for an inflation-indexed bond, you simply compute the appropriate
reference CPI and Index Ratio.

The market convention for inflation-indexed bonds is to quote the price and yield using the actual
(that is, unadjusted) coupon, which means that your quote is a real price and yield. To get a real price
and yield, you can use the Financial Toolbox™ functions bndprice and bndyield. For example:

Price = 124 + 9/32;
Settle = datetime(2009,9,28);
Coupon = .03375;
Maturity = datetime(2032,4,15);

RealYield = bndyield(Price,Coupon,Settle,Maturity);
disp(['Real Yield: ', num2str(RealYield*100) '%'])

Real Yield: 2.0278%

Construct Nominal, Real, and Inflation Curves

With the advent of the inflation-indexed bond market, real curves can be constructed in a similar
fashion to nominal curves. Using the available market data, you can construct the real curve and
compare it to the nominal curve.

Note that one issue relates to the indexation lag of the bonds. As stated previously, typically the
indexation lag is three months, which means that the inflation compensation is not actually matched
up with the maturity or the coupon payments of the bond. While Anderson and Sleath [1] discuss an
approach to resolving this discrepancy, for this example, the lag is simply noted.

You can use the fitNelsonSiegel and fitSvensson functions in the Financial Instruments
Toolbox™ to create parametercurve objects that fit Nelson-Siegel and Svensson models to real and
nominal yield curves in the US. The Nelson-Siegel model typically places restrictions on the model
parameters to ensure that the interest rates are always positive. However, real interest rates can be
negative, which means that these Nelson-Siegel restrictions are not used in the case below.
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% Load the data.
load usbond_02Sep2008
Settle = datetime(2008, 9, 2);
NominalTimeToMaturity = yearfrac(Settle,NominalMaturity);
TIPSTimeToMaturity = yearfrac(Settle,TIPSMaturity);

% Compute the yields.
NominalYield = bndyield(NominalPrice,NominalCoupon,Settle,NominalMaturity);
TIPSYield = bndyield(TIPSPrice,TIPSCoupon,Settle,TIPSMaturity);

% Plot the yields.
scatter(NominalTimeToMaturity,NominalYield*100,'r');
hold on;
scatter(TIPSTimeToMaturity,TIPSYield*100,'b');

% Fit the real yield curve using fitNelsonSiegel.
nInst = numel(TIPSCoupon);
TIPSBonds(nInst,1) = fininstrument.FinInstrument;
for ii=1:nInst
    TIPSBonds(ii) = fininstrument("FixedBond",'Maturity',TIPSMaturity(ii),...
        'CouponRate',TIPSCoupon(ii));
end

TIPSNelsonSiegel = fitNelsonSiegel(Settle,TIPSBonds,TIPSPrice);

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to 
its initial value is less than the value of the function tolerance.

% Fit the nominal yield curve using fitSvensson.
nInst = numel(NominalCoupon);
NominalBonds(nInst,1) = fininstrument.FinInstrument;
for ii=1:nInst
    NominalBonds(ii) = fininstrument("FixedBond",'Maturity',NominalMaturity(ii),...
        'CouponRate',NominalCoupon(ii));
end

NominalSvensson = fitSvensson(Settle,NominalBonds,NominalPrice);

Solver stopped prematurely.

lsqnonlin stopped because it exceeded the function evaluation limit,
options.MaxFunctionEvaluations = 6.000000e+02.

% Plot the nominal and real yield curves.
PlotDates = (Settle+calmonths(1):calmonths(1):Settle+calyears(30)-1)';
PlotTimeToMaturity = yearfrac(Settle,PlotDates);

TIPSNelsonSiegelZeroRates = zerorates(TIPSNelsonSiegel,PlotDates);
TIPSNelsonSiegelParYields = zero2pyld(TIPSNelsonSiegelZeroRates,PlotDates,Settle, ...
    'InputCompounding', -1, 'OutputCompounding', 2);

NominalSvenssonZeroRates = zerorates(NominalSvensson,PlotDates);
NominalSvenssonParYields = zero2pyld(NominalSvenssonZeroRates,PlotDates,Settle, ...
    'InputCompounding', -1, 'OutputCompounding', 2);

plot(PlotTimeToMaturity,NominalSvenssonParYields*100,'r')
plot(PlotTimeToMaturity,TIPSNelsonSiegelParYields*100,'b')
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hold off;

title('Nominal and Real Yield Curves for US Data, September 2, 2008')
xlabel('Time (Years)')
ylabel('Yield (%)')
legend({'Nominal yields','TIPS yields','Svensson fit to nominal yields',...
    'Nelson-Siegel fit to TIPS yields'},'location','southeast')

% Create an inflation-rate curve by subtracting the real curve from the
% nominal curve.
InflationRateCurve = ratecurve("zero", Settle, PlotDates, ...
    NominalSvenssonZeroRates - TIPSNelsonSiegelZeroRates);

figure
plot(PlotTimeToMaturity, zero2pyld(...
    zerorates(InflationRateCurve, PlotDates), PlotDates, Settle, ...
    'InputCompounding', -1, 'OutputCompounding', 2)*100,'b');

title('Inflation-Rate Curve for US Data, September 2, 2008')
xlabel('Time (Years)')
ylabel('Inflation Rate (%)')
legend({'Inflation-rate curve computed from bond yields'},'location','southeast')
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Constructing Inflation Curves from Zero-Coupon Inflation Swaps

Inflation-linked derivatives have also experienced growth in the market. Some of the most liquidly
traded inflation derivatives are zero coupon inflation swaps (ZeroCouponInflationSwap) and year-
on-year inflation swaps (YearYearInflationSwap).

In a zero-coupon inflation swap, the inflation payer agrees to pay the rate of inflation at maturity
(lagged by a certain amount) compounded by the number of years. The inflation receiver typically
pays a fixed rate, again compounded by the tenor of the instrument. At the inception of the zero-
coupon inflation swap, the fixed rate is set to the projected inflation rate for the life of the swap. This
rate is called the "breakeven inflation swap rate" and it is quoted in the market [6].

Using the notation from Hurd and Relleen, you compute the rate as:

(1 + Rateswap)T = (1 + Inf lationt − L, t + T − L)T

where t is the current time, T is the tenor, and L is the lag. [5]

At maturity, the actual cash flows of the zero-coupon inflation swap are:

FixedLeg = N × [(1 + k)M − 1]

Inf lationLeg = N ×
I(TM)

I0
− 1

where
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• Nis the reference notional of the swap.
• k is the fixed inflation rate.
• Mis the number of years for the life of the swap.
• I(TM)is the inflation index at the maturity date with some lag (for example, three months).
• I0 is the inflation index at the start date with some lag (for example, three months).

While the fixed-leg cash flow might be different from the actual inflation-leg cash flow at maturity, the
fixed breakeven inflation swap rate of the zero-coupon inflation swap represents the projected
inflation rate for the tenor of the swap at inception. You can build an inflation curve from a series of
breakeven zero-coupon inflation swap rates starting on the same date and maturing on different
dates. Here, the dates are already adjusted with the appropriate indexation lag to simplify the
notation:

I(0, T1Y) = I(T0)(1 + b(0; T0, T1Y))T1Y − T0

I(0, T2Y) = I(T0)(1 + b(0; T0, T2Y))T2Y − T0

I(0, T3Y) = I(T0)(1 + b(0; T0, T3Y))T3Y − T0

. . .

I(0, Ti) = I(T0)(1 + b(0; T0, Ti))
Ti− T0

where

• I(0, Ti) is the breakeven inflation index reference number for maturity date Ti.
• I(T0) is the base inflation index value for the starting date T0.
• b(0; T0, Ti) is the breakeven inflation rate for the zero-coupon inflation swap maturing on Ti.

You can get your inflation curve this by using the inflationbuild function to create an
inflationcurve object. To build an inflationcurve from zero-coupon inflation swap rates, first
define the base inflation date and the corresponding base inflation-index value.

% Define the base inflation date and index value for the inflation-index
% curve.
BaseDate = datetime(2020,6,1);
BaseIndexValue = 100;

Then, define the zero-coupon inflation swap rates and the corresponding maturity dates already
adjusted with the appropriate indexation lag.

% Define the zero-coupon inflation swap rates and maturity dates.
ZCISTimes = (calyears([1 2 3 4 5 7 10 20 30]))';
ZCISRates = [0.42 0.54 0.76 0.87 0.92 1.39 1.71 2.01 2.46]'./100

ZCISRates = 9×1

    0.0042
    0.0054
    0.0076
    0.0087
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    0.0092
    0.0139
    0.0171
    0.0201
    0.0246

ZCISDates = BaseDate + ZCISTimes

ZCISDates = 9x1 datetime
   01-Jun-2021
   01-Jun-2022
   01-Jun-2023
   01-Jun-2024
   01-Jun-2025
   01-Jun-2027
   01-Jun-2030
   01-Jun-2040
   01-Jun-2050

In pricing inflation derivatives and building inflation curves, incorporating seasonality can be a
critical factor. The zero-coupon inflation swap rates typically have maturities that increase in whole
number of years. As a result, the inflation curve is typically built from zero-coupon inflation swap
rates on an annual basis. However, when computing inflation-index values for monthly periods that
are not whole number of years, you can make seasonal adjustments to reflect the seasonal patterns of
inflation within the year. These 12 monthly seasonal rates are annualized and they add up to zero to
ensure that the cumulative seasonal adjustments are reset to zero every year. In the
inflationbuild function and the inflationcurve object, you define these seasonal rates using
the 'Seasonality' name-value pair argument and they are internally corrected to ensure that they
add to zero.

% Define the 12 monthly seasonal rates.
%
% Months:
%    Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec
%     1     2     3     4     5     6     7     8     9    10    11    12
% Seasonal Rates (percent):
%   -6.34 -3.00 -1.34  3.34  5.34  3.66  8.66  5.66 -2.34 -2.66 -4.66 -6.32
SeasonalRates = [-6.34 -3.00 -1.34 3.34 5.34 3.66 8.66 5.66 -2.34 -2.66 -4.66 -6.32]./100

SeasonalRates = 1×12

   -0.0634   -0.0300   -0.0134    0.0334    0.0534    0.0366    0.0866    0.0566   -0.0234   -0.0266   -0.0466   -0.0632

% Build an inflation-index curve from zero-coupon inflation swap rates.
myInflationCurve = inflationbuild(BaseDate, BaseIndexValue, ...
    ZCISDates, ZCISRates, 'Seasonality', SeasonalRates)

myInflationCurve = 
  inflationcurve with properties:

                    Basis: 0
                    Dates: [10x1 datetime]
     InflationIndexValues: [10x1 double]
    ForwardInflationRates: [9x1 double]
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              Seasonality: [12x1 double]

Once you have created the inflationcurve object, compute the inflation-index values for each
month using indexvalues.

% Compute the inflation-index values.
IndexPlotDates = (BaseDate:calmonths(1):BaseDate+calyears(10))';
IndexPlotValues = indexvalues(myInflationCurve, IndexPlotDates);

To visualize the seasonal patterns of inflation that occur within each year, plot the computed inflation-
index values.

% Plot the inflation-index curve.
figure; plot(IndexPlotDates, IndexPlotValues)
hold on;
plot(myInflationCurve.Dates(1:8), myInflationCurve.InflationIndexValues(1:8), 'o')
hold off;

title('Inflation-Index Curve Built from Zero-Coupon Inflation Swaps (ZCIS)')
xlabel('Years')
ylabel('Inflation-Index Values')
legend({'Interpolated inflation-index values','ZCIS inflation-index values'},'location','northwest')
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Price Inflation-Indexed Instruments Using an Inflation Curve

With the inflationcurve object created, you can price inflation-indexed instruments such as zero-
coupon inflation swaps (ZeroCouponInflationSwap), year-on-year inflation swaps
(YearYearInflationSwap), and inflation-indexed bonds (InflationBond).

First, create a ratecurve object using ratecurve.

Settle = datetime(2020,9,25);
Type = "zero";
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0043 0.0051 0.0062 0.0072 0.0096 0.0121 0.0172 0.0241 0.0302 0.0308]';
ZeroDates = Settle + ZeroTimes;
ZeroCurve = ratecurve('zero',Settle,ZeroDates,ZeroRates)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 25-Sep-2020
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Using the ratecurve and inflationcurve objects as inputs, create an Inflation pricer object
using finpricer.

outPricer = finpricer("Inflation",'DiscountCurve',ZeroCurve,'InflationCurve',myInflationCurve)

outPricer = 
  Inflation with properties:

     DiscountCurve: [1x1 ratecurve]
    InflationCurve: [1x1 inflationcurve]

Create an InflationBond instrument using fininstrument.

IssueDate = datetime(2020,9,20);
Maturity = datetime(2025,9,20);
CouponRate = 0.023;

InflationBond = fininstrument("InflationBond",'IssueDate',IssueDate,'Maturity',Maturity,'CouponRate',CouponRate) 

InflationBond = 
  InflationBond with properties:

                  CouponRate: 0.0230
                      Period: 2
                       Basis: 0
                   Principal: 100
    DaycountAdjustedCashFlow: 0
                         Lag: 3
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       BusinessDayConvention: "actual"
                    Holidays: NaT
                EndMonthRule: 1
                   IssueDate: 20-Sep-2020
             FirstCouponDate: NaT
              LastCouponDate: NaT
                    Maturity: 20-Sep-2025
                        Name: ""

Here, the default indexation lag is three months and the bond issue date is 20-Sep-2020. The first
date on the inflation curve of the pricer must be on or before 20-Jun-2020 to price this instrument.
In this example, the first date on the inflation curve of the pricer is 01-Jun-2020.

Price the InflationBond instrument by using the price function for the Inflation pricer.

InflationBondPrice = price(outPricer, InflationBond)

InflationBondPrice = 110.1314
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Bootstrapping a Swap Curve
This example shows how to bootstrap an interest-rate curve, often referred to as a swap curve, using
the IRDataCurve object. The static bootstrap method takes as inputs a cell array of market
instruments (which can be deposits, interest-rate futures, swaps, and bonds) and bootstraps an
interest-rate curve of either the forward or the zero curve. It is also possible to specify multiple
interpolation methods, including piecewise constant, linear, and Piecewise Cubic Hermite
Interpolating Polynomial (PCHIP).

Obtain Data

A curve is bootstrapped from market data. In this example, you bootstrap a swap curve from deposits,
Eurodollar Futures, and swaps.

For this example, the input market data is hard-coded and specified as 2 cell arrays of data, one
which indicates the type of instrument and a second cell array containing the Settle, Maturity,
and Market Quote for the instrument. For deposits and swaps, the quote is a rate, and for the
EuroDollar Futures, the quote is a price. Although bonds are not used in this example, a bond would
be quoted with a price.

InstrumentTypes = {'Deposit';'Deposit';'Deposit';'Deposit';'Deposit'; ...
    'Futures';'Futures'; ...
    'Futures';'Futures';'Futures'; ...
    'Futures';'Futures';'Futures'; ...
    'Futures';'Futures';'Futures'; ...
    'Futures';'Futures';'Futures'; ...
    'Futures';'Futures';'Futures'; ...
    'Swap';'Swap';'Swap';'Swap';'Swap';'Swap';'Swap'};

Instruments = [datenum('08/10/2007'),datenum('08/17/2007'),.0532063; ...
    datenum('08/10/2007'),datenum('08/24/2007'),.0532000; ...
    datenum('08/10/2007'),datenum('09/17/2007'),.0532000; ...
    datenum('08/10/2007'),datenum('10/17/2007'),.0534000; ...
    datenum('08/10/2007'),datenum('11/17/2007'),.0535866; ...
    datenum('08/08/2007'),datenum('19-Dec-2007'),9485; ...
    datenum('08/08/2007'),datenum('19-Mar-2008'),9502; ...
    datenum('08/08/2007'),datenum('18-Jun-2008'),9509.5; ...
    datenum('08/08/2007'),datenum('17-Sep-2008'),9509; ...
    datenum('08/08/2007'),datenum('17-Dec-2008'),9505.5; ...
    datenum('08/08/2007'),datenum('18-Mar-2009'),9501; ...
    datenum('08/08/2007'),datenum('17-Jun-2009'),9494.5; ...
    datenum('08/08/2007'),datenum('16-Sep-2009'),9489; ...
    datenum('08/08/2007'),datenum('16-Dec-2009'),9481.5; ...
    datenum('08/08/2007'),datenum('17-Mar-2010'),9478; ...
    datenum('08/08/2007'),datenum('16-Jun-2010'),9474; ...
    datenum('08/08/2007'),datenum('15-Sep-2010'),9469.5; ...
    datenum('08/08/2007'),datenum('15-Dec-2010'),9464.5; ...
    datenum('08/08/2007'),datenum('16-Mar-2011'),9462.5; ...
    datenum('08/08/2007'),datenum('15-Jun-2011'),9456.5; ...
    datenum('08/08/2007'),datenum('21-Sep-2011'),9454; ...
    datenum('08/08/2007'),datenum('21-Dec-2011'),9449.5; ...
    datenum('08/08/2007'),datenum('08/08/2014'),.0530; ...
    datenum('08/08/2007'),datenum('08/08/2017'),.0545; ...
    datenum('08/08/2007'),datenum('08/08/2019'),.0551; ...
    datenum('08/08/2007'),datenum('08/08/2022'),.0559; ...
    datenum('08/08/2007'),datenum('08/08/2027'),.0565; ...
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    datenum('08/08/2007'),datenum('08/08/2032'),.0566; ...
    datenum('08/08/2007'),datenum('08/08/2037'),.0566];

Construct the Curve Using Bootstrapping

The bootstrap method is called as a static method of the IRDataCurve class. Inputs to this method
include the curve type (Zero or Forward), settle date, instrument types, instrument data, and optional
arguments including an interpolation method, compounding, and an options structure for
bootstrapping. Note that in this example, you pass in an IRBootstrapOptions object which
includes information for the convexity adjustment to forward rates.

IRsigma = .01;
CurveSettle = datenum('08/10/2007');
bootModel = IRDataCurve.bootstrap('Forward', CurveSettle, ...
    InstrumentTypes, Instruments,'InterpMethod','pchip',...
    'Compounding',-1,'IRBootstrapOptions',...
    IRBootstrapOptions('ConvexityAdjustment',@(t) .5*IRsigma^2.*t.^2));

Plot Curves

Plot both the forward and zero curves.

PlottingDates = (CurveSettle+20:30:CurveSettle+365*25)';
TimeToMaturity = yearfrac(CurveSettle,PlottingDates);
BootstrappedForwardRates = bootModel.getForwardRates(PlottingDates);
BootstrappedZeroRates = bootModel.getZeroRates(PlottingDates);

figure
hold on
plot(TimeToMaturity,BootstrappedForwardRates,'r')
plot(TimeToMaturity,BootstrappedZeroRates,'g')
title('Bootstrapped Curve')
xlabel('Time')
legend({'Forward','Zero'})
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Fitting Interest-Rate Curve Functions
This example shows how to use IRFunctionCurve objects to model the term structure of interest
rates (also referred to as the yield curve). This can be contrasted with modeling the term structure
with vectors of dates and data and interpolating between the points (which can currently be done
with the function prbyzero). The term structure can refer to at least three different curves: the
discount curve, zero curve, or forward curve.

The IRFunctionCurve object allows you to model an interest-rate curve as a function.

This example explores using an IRFunctionCurve object to model the default-free term structure of
interest rates in the United Kingdom. Three different forms for the term structure are implemented
and are discussed in more detail later:

• Nelson-Siegel
• Svensson
• Smoothing Cubic Spline with a so-called Variable Roughness Penalty (VRP)

Choosing the Data

The first question in modeling the yield curve is what data should be used. To model a default-free
yield curve, default-free, option-free market instruments must be used. The most significant
component of the data is UK Government Bonds (known as Gilts). Historical data is retrieved from
the following site:

https://www.dmo.gov.uk

Repo data is used to construct the short end of the yield curve. Repo data is retrieved from the
following site:

https://www.ukfinance.org.uk/

Note also that the data must be specified as a matrix where the columns are Settle, Maturity,
CleanPrice, and CouponRate and that instruments must be bonds or synthetically converted to
bonds.

Market data for a close date of April 30, 2008, has been downloaded and saved to the following data
file (ukdata20080430), which is loaded into MATLAB® with the following command:

% Load the data
load ukdata20080430

% Convert repo rates to be equivalent zero coupon bonds
RepoCouponRate = repmat(0,size(RepoRates));
RepoPrice = bndprice(RepoRates, RepoCouponRate, RepoSettle, RepoMaturity);

% Aggregate the data
Settle = [RepoSettle;BondSettle];
Maturity = [RepoMaturity;BondMaturity];
CleanPrice = [RepoPrice;BondCleanPrice];
CouponRate = [RepoCouponRate;BondCouponRate];
Instruments = [Settle Maturity CleanPrice CouponRate];
InstrumentPeriod = [repmat(0,6,1);repmat(2,31,1)];

CurveSettle = datenum('30-Apr-2008');
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Fit Nelson-Siegel Model to Market Data

The Nelson-Siegel model proposes that the instantaneous forward curve can be modeled with the
following:

f = β0 + β1e
−m

τ + β2e
−m

τ
m
τ

This can be integrated to derive an equation for the zero curve (see [6] for more information on the
equations and the derivation):

s = β0 + (β1 + β2) τ
m (1− e

−m
τ )− β2e

−m
τ

See [1 on page 2-0 ] for more information.

The IRFunctionCurve object provides the capability to fit a Nelson Siegel curve to observed market
data with the fitNelsonSiegel method. The fitting is done by calling the Optimization Toolbox™
function lsqnonlin.

The fitNelsonSiegel function has required inputs for Curve Type, Curve Settle, and a matrix of
instrument data.

Optional input arguments, specified in name-value pair argument, are:

• IRFitOptions structure: Provides the capability to choose which quantity to be minimized
(price, yield, or duration weighted price) and other optimization parameters (for example, upper
and lower bounds for parameters).

• Curve Compounding and Basis (day-count convention)
• Additional instrument parameters, Period, Basis, FirstCouponDate, and so on.

NSModel = IRFunctionCurve.fitNelsonSiegel('Zero',CurveSettle,...
    Instruments,'InstrumentPeriod',InstrumentPeriod);

Fit Svensson Model

A very similar model to the Nelson-Siegel model is the Svensson model, which adds two additional
parameters to account for greater flexibility in the term structure. This model proposes that the
forward rate can be modeled with the following form:

f = β0 + β1e
−m
τ1 + β2e

−m
τ1

m
τ1

+ β3e
−m
τ2

m
τ2

As above, this can be integrated to derive an equation for the zero curve:

s = β0 + β1(1− e
−m
τ1 )(−

τ1
m ) + β2((1− e

−m
τ1 )

τ1
m − e

m
τ1) + β3((1− e

−m
τ2 )

τ2
m − e

m
τ2)

See [2 on page 2-0 ] for more information.

Fitting the parameters to this model proceeds in a similar fashion to the Nelson-Siegel model using
the fitSvensson function.

SvenssonModel = IRFunctionCurve.fitSvensson('Zero',CurveSettle,...
    Instruments,'InstrumentPeriod',InstrumentPeriod);
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Fit Smoothing Spline

The term structure can also be modeled with a spline, specifically, one way to model the term
structure is by representing the forward curve with a cubic spline. To ensure that the spline is
sufficiently smooth, a penalty is imposed relating to the curvature (second derivative) of the spline:

∑
i = 1

N
[
Pi− Pi(f )

Di
]2 +∫0 M

λt(m)[f ′′(m)]2dm

where the first term is the difference between the observed price P and the predicted price, P_hat,
(weighted by the bond's duration, D) summed over all bonds in the data set, and the second term is
the penalty term (where lambda is a penalty function and f is the spline).

See [3 on page 2-0 ], [4 on page 2-0 ], [5 on page 2-0 ] below.

There have been different proposals for the specification of the penalty function lambda. One
approach, advocated by [4 on page 2-0 ], and currently used by the UK Debt Management Office, is
a penalty function of the following form:

log(λ(m)) = L− (L− S)e
−m
μ

The parameters L, S, and mu are typically estimated from historical data.

The IRFunctionCurve object can be used to fit a smoothing spline representation of the forward
curve with a penalty function using the function fitSmoothingSpline.

Required inputs, like for the functions above, are a CurveType, CurveSettle, Instruments matrix,
and a function handle (Lambdafun) containing the penalty function.

The optional parameters are similar to fitNelsonSiegel and fitSvensson.

% Parameters chosen to be roughly similar to [4] below.
L = 9.2;
S = -1;
mu = 1;

lambdafun = @(t) exp(L - (L-S)*exp(-t/mu)); % Construct penalty function
t = 0:.1:25; % Construct data to plot penalty function
y = lambdafun(t);
figure
semilogy(t,y);
title('Penalty Function for VRP Approach')
ylabel('Penalty')
xlabel('Time')
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VRPModel = IRFunctionCurve.fitSmoothingSpline('Forward',CurveSettle,...
    Instruments,lambdafun,'Compounding',-1,...
    'InstrumentPeriod',InstrumentPeriod);

Use Fitted Curves and Plot Results

Once a curve is created, functions are used to extract the Forward and Zero Rates and the Discount
Factors. This curve can also be converted into a RateSpec structure using the toRateSpec function.
The RateSpec can then be used with many other functions in the Financial Instruments Toolbox™

PlottingDates = CurveSettle+20:30:CurveSettle+365*25;
TimeToMaturity = yearfrac(CurveSettle,PlottingDates);

NSForwardRates = NSModel.getForwardRates(PlottingDates);
SvenssonForwardRates = SvenssonModel.getForwardRates(PlottingDates);
VRPForwardRates = VRPModel.getForwardRates(PlottingDates);

figure
hold on
plot(TimeToMaturity,NSForwardRates,'r')
plot(TimeToMaturity,SvenssonForwardRates,'g')
plot(TimeToMaturity,VRPForwardRates,'b')
title('UK Instantaneous Nominal Forward Curve')
xlabel('Years Ahead')
legend({'Nelson Siegel','Svensson','VRP'})
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Compare with this Link

This link provides a live look at the derived yield curve published by the UK

https://www.bankofengland.co.uk

Bibliography

This example is based on the following papers and journal articles:

[1] Nelson, C.R., Siegel, A.F. "Parsimonious Modelling of Yield Curves." Journal of Business. 60, pp
473-89, 1987.

[2] Svensson, L.E.O. "Estimating and Interpreting Forward Interest Rates: Sweden 1992-4."
International Monetary Fund, IMF Working Paper, 1994/114, 1994.

[3] Fisher, M., Nychka, D., Zervos, D. "Fitting the Term Structure of Interest Rates with Smoothing
Splines." Board of Governors of the Federal Reserve System, Federal Reserve Board Working Paper,
95-1, 1995.

[4] Anderson, N., Sleath, J. "New Estimates of the UK Real and Nominal Yield Curves." Bank of
England Quarterly Bulletin. November, pp 384-92, 1999.

[5] Waggoner, D. "Spline Methods for Extracting Interest Rate Curves from Coupon Bond Prices."
Federal Reserve Board Working Paper, 97-10, 1997.

[6] "Zero-Coupon Yield Curves: Technical Documentation." BIS Papers No. 25, October 2005.

 Fitting Interest-Rate Curve Functions

2-149

https://www.bankofengland.co.uk


[7] Bolder, D.J., Gusba,S. "Exponentials, Polynomials, and Fourier Series: More Yield Curve Modelling
at the Bank of Canada." Working Papers 02-29, Bank of Canada, 2002.

[8] Bolder, D.J., Streliski, D. "Yield Curve Modelling at the Bank of Canada." Technical Reports 84,
Bank of Canada, 1999.

See Also

More About
• “Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework” on page

1-93

2 Interest-Rate Derivatives

2-150



Fitting the Diebold Li Model
This example shows how to construct a Diebold Li model of the US yield curve for each month from
1990 to 2010. This example also demonstrates how to forecast future yield curves by fitting an
autoregressive model to the time series of each parameter.

The paper can be found here:

https://www.nber.org/papers/w10048

Load the Data

The data used are monthly Treasury yields from 1990 through 2010 for tenors of 1 Mo, 3 Mo, 6 Mo, 1
Yr, 2 Yr, 3 Yr, 5 Yr, 7 Yr, 10 Yr, 20 Yr, 30 Yr.

Daily data can be found here:

https://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?
data=yieldAll

Data is stored in a MATLAB® data file as a MATLAB dataset object.

load Data_USYieldCurve

% Extract data for the last day of each month
MonthYearMat = repmat((1990:2010)',1,12)';
EOMDates = lbusdate(MonthYearMat(:),repmat((1:12)',21,1));
MonthlyIndex = find(ismember(Dataset.Properties.ObsNames,datestr(EOMDates)));
Estimationdataset = Dataset(MonthlyIndex,:);
EstimationData = double(Estimationdataset);

Diebold Li Model

Diebold and Li start with the Nelson Siegel model

y = β0 + (β1 + β2) τ
m (1− e

−m
τ )− β2e

−m
τ

and rewrite it to be the following:

yt(τ) = β1t + β2t
1− e−λtτ

λtτ
+ β3t

1− e−λtτ

λtτ
− e−λtτ

The above model allows the factors to be interpreted in the following way: Beta1 corresponds to the
long term/level of the yield curve, Beta2 corresponds to the short term/slope, and Beta3 corresponds
to the medium term/curvature. λ determines the maturity at which the loading on the curvature is
maximized, and governs the exponential decay rate of the model.

Diebold and Li advocate setting λ to maximize the loading on the medium term factor, Beta3, at 30
months. This also transforms the problem from a nonlinear fitting to a simple linear regression.

% Explicitly set the time factor lambda
lambda_t = .0609;

% Construct a matrix of the factor loadings
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% Tenors associated with data
TimeToMat = [3 6 9 12 24 36 60 84 120 240 360]';
X = [ones(size(TimeToMat)) (1 - exp(-lambda_t*TimeToMat))./(lambda_t*TimeToMat) ...
    ((1 - exp(-lambda_t*TimeToMat))./(lambda_t*TimeToMat) - exp(-lambda_t*TimeToMat))];

% Plot the factor loadings
plot(TimeToMat,X)
title('Factor Loadings for Diebold Li Model with time factor of .0609')
xlabel('Maturity (months)')
ylim([0 1.1])
legend({'Beta1','Beta2','Beta3'},'location','east')

Fit the Model

A DieboldLi object is developed to facilitate fitting the model from yield data. The DieboldLi
object inherits from the IRCurve object, so the getZeroRates, getDiscountFactors,
getParYields, getForwardRates, and toRateSpec methods are all implemented. Additionally,
the method fitYieldsFromBetas is implemented to estimate the Beta parameters given a lambda
parameter for observed market yields.

The DieboldLi object is used to fit a Diebold Li model for each month from 1990 through 2010.

% Preallocate the Betas
Beta = zeros(size(EstimationData,1),3);

% Loop through and fit each end of month yield curve
for jdx = 1:size(EstimationData,1)
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    tmpCurveModel = DieboldLi.fitBetasFromYields(EOMDates(jdx),lambda_t*12,daysadd(EOMDates(jdx),30*TimeToMat),EstimationData(jdx,:)');
    Beta(jdx,:) = [tmpCurveModel.Beta1 tmpCurveModel.Beta2 tmpCurveModel.Beta3];
end

The Diebold Li fits on selected dates are included here

PlotSettles = datenum({'30-May-1997','31-Aug-1998','29-Jun-2001','31-Oct-2005'});
figure
for jdx = 1:length(PlotSettles)
    subplot(2,2,jdx)
    tmpIdx = find(strcmpi(Estimationdataset.Properties.ObsNames,datestr(PlotSettles(jdx))));
    tmpCurveModel = DieboldLi.fitBetasFromYields(PlotSettles(jdx),lambda_t*12,...
        daysadd(PlotSettles(jdx),30*TimeToMat),EstimationData(tmpIdx,:)');
    scatter(daysadd(PlotSettles(jdx),30*TimeToMat),EstimationData(tmpIdx,:))
    hold on
    PlottingDates = (PlotSettles(jdx)+30:30:PlotSettles(jdx)+30*360)';
    plot(PlottingDates,tmpCurveModel.getParYields(PlottingDates),'r-')
    title(['Yield Curve on ' datestr(PlotSettles(jdx))])
    datetick
end

Forecasting

The Diebold Li model can be used to forecast future yield curves. Diebold and Li propose fitting an
AR(1) model to the time series of each Beta parameter. This fitted model can then be used to forecast
future values of each parameter, and by extension, future yield curves.
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For this example the MATLAB function regress is used to estimate the parameters for an AR(1)
model for each Beta.

The confidence intervals for the regression fit are also used to generate two additional yield curve
forecasts that serve as additional possible scenarios for the yield curve.

The MonthsLag variable can be adjusted to make different period ahead forecasts. For example,
changing the value from 1 to 6 would change the forecast from a 1 month ahead to 6 month ahead
forecast.

MonthsLag = 1;

[tmpBeta,bint] = regress(Beta(MonthsLag+1:end,1),[ones(size(Beta(MonthsLag+1:end,1))) Beta(1:end-MonthsLag,1)]);
ForecastBeta(1,1) = [1 Beta(end,1)]*tmpBeta;
ForecastBeta_Down(1,1) = [1 Beta(end,1)]*bint(:,1);
ForecastBeta_Up(1,1) = [1 Beta(end,1)]*bint(:,2);
[tmpBeta,bint]  = regress(Beta(MonthsLag+1:end,2),[ones(size(Beta(MonthsLag+1:end,2))) Beta(1:end-MonthsLag,2)]);
ForecastBeta(1,2) = [1 Beta(end,2)]*tmpBeta;
ForecastBeta_Down(1,2) = [1 Beta(end,2)]*bint(:,1);
ForecastBeta_Up(1,2) = [1 Beta(end,2)]*bint(:,2);
[tmpBeta,bint]  = regress(Beta(MonthsLag+1:end,3),[ones(size(Beta(MonthsLag+1:end,3))) Beta(1:end-MonthsLag,3)]);
ForecastBeta(1,3) = [1 Beta(end,3)]*tmpBeta;
ForecastBeta_Down(1,3) = [1 Beta(end,3)]*bint(:,1);
ForecastBeta_Up(1,3) = [1 Beta(end,3)]*bint(:,2);

% Forecasted yield curve
figure
Settle = daysadd(EOMDates(end),30*MonthsLag);
DieboldLi_Forecast = DieboldLi('ParYield',Settle,[ForecastBeta lambda_t*12]);
DieboldLi_Forecast_Up = DieboldLi('ParYield',Settle,[ForecastBeta_Up lambda_t*12]);
DieboldLi_Forecast_Down = DieboldLi('ParYield',Settle,[ForecastBeta_Down lambda_t*12]);
PlottingDates = (Settle+30:30:Settle+30*360)';
plot(PlottingDates,DieboldLi_Forecast.getParYields(PlottingDates),'b-')
hold on
plot(PlottingDates,DieboldLi_Forecast_Up.getParYields(PlottingDates),'r-')
plot(PlottingDates,DieboldLi_Forecast_Down.getParYields(PlottingDates),'r-')
title(['Diebold Li Forecasted Yield Curves on ' datestr(EOMDates(end)) ' for '  datestr(Settle)])
legend({'Forecasted Curve','Additional Scenarios'},'location','southeast')
datetick
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Calibrating Caplets Using the Normal (Bachelier) Model
This example shows how to use hwcalbycap to calibrate market data with the Normal (Bachelier)
model to price caplets. Use the Normal (Bachelier) model to perform calibrations when working with
negative interest rates, strikes, and normal implied volatilities.

Consider a cap with these parameters:

Settle = 'Dec-30-2016';
Maturity = 'Dec-30-2019';
Strike = -0.001075;
Reset = 2;
Principal = 100;
Basis = 0;

The caplets and market data for this example are defined as:

capletDates = cfdates(Settle, Maturity, Reset, Basis);
datestr(capletDates')

ans = 6x11 char array
    '30-Jun-2017'
    '30-Dec-2017'
    '30-Jun-2018'
    '30-Dec-2018'
    '30-Jun-2019'
    '30-Dec-2019'

% Market data information
MarketStrike = [-0.0013; 0];
MarketMat =  {'30-Jun-2017';'30-Dec-2017';'30-Jun-2018'; '30-Dec-2018';'30-Jun-2019'; '30-Dec-2019'};
MarketVol = [0.184 0.2329 0.2398 0.2467 0.2906 0.3348;   % First row in table corresponding to Strike 1 
             0.217 0.2707 0.2760 0.2814 0.3160 0.3508];  % Second row in table corresponding to Strike 2

Define the RateSpec using intenvset.

Rates= [-0.002210;-0.002020;-0.00182;-0.001343;-0.001075];
ValuationDate = 'Dec-30-2016';
EndDates = {'30-Jun-2017';'Dec-30-2017';'30-Jun-2018';'Dec-30-2018';'Dec-30-2019'};
Compounding = 2;
Basis = 0;

RateSpec = intenvset('ValuationDate', ValuationDate, ...
'StartDates', ValuationDate, 'EndDates', EndDates, ...
'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis);

Use hwcalbycap to find values for the volatility parameters Alpha and Sigma using the Normal
(Bachelier) model.

format short
o=optimoptions('lsqnonlin','TolFun',100*eps);
warning ('off','fininst:hwcalbycapfloor:NoConverge')
[Alpha, Sigma, OptimOut] = hwcalbycap(RateSpec, MarketStrike, MarketMat,...
MarketVol, Strike, Settle, Maturity, 'Reset', Reset, 'Principal', Principal,...
'Basis', Basis, 'OptimOptions', o, 'model', 'normal')
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Local minimum possible.
lsqnonlin stopped because the size of the current step is less than
the value of the step size tolerance.

Alpha = 1.0000e-06

Sigma = 0.3384

OptimOut = struct with fields:
     resnorm: 1.5181e-04
    residual: [5x1 double]
    exitflag: 2
      output: [1x1 struct]
      lambda: [1x1 struct]
    jacobian: [5x2 double]

The OptimOut.residual field of the OptimOut structure is the optimization residual. This value
contains the difference between the Normal (Bachelier) caplets and those calculated during the
optimization. Use the OptimOut.residual value to calculate the percentual difference (error)
compared to Normal (Bachelier) caplet prices, and then decide whether the residual is acceptable.
There is almost always some residual, so decide if it is acceptable to parameterize the market with a
single value of Alpha and Sigma.

Price the caplets using the market data and Normal (Bachelier) model to obtain the reference caplet
values. To determine the effectiveness of the optimization, calculate reference caplet values using the
Normal (Bachelier) formula and the market data. Note, you must first interpolate the market data to
obtain the caplets for calculation.

MarketMatNum = datenum(MarketMat);
[Mats, Strikes] = meshgrid(MarketMatNum, MarketStrike);
FlatVol = interp2(Mats, Strikes, MarketVol, datenum(Maturity), Strike, 'spline');

[CapPrice, Caplets] = capbynormal(RateSpec, Strike, Settle, Maturity, FlatVol,...
'Reset', Reset, 'Basis', Basis, 'Principal', Principal); 
Caplets = Caplets(2:end)'

Caplets = 5×1

    4.7392
    6.7799
    8.2609
    9.6136
   10.6455

Compare the optimized values and Normal (Bachelier) values, and display the results graphically.
After calculating the reference values for the caplets, compare the values analytically and graphically
to determine whether the calculated single values of Alpha and Sigma provide an adequate
approximation.

OptimCaplets = Caplets+OptimOut.residual;

disp('   ');

   

disp(' Bachelier   Calibrated Caplets');
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 Bachelier   Calibrated Caplets

disp([Caplets        OptimCaplets])

    4.7392    4.7453
    6.7799    6.7851
    8.2609    8.2657
    9.6136    9.6112
   10.6455   10.6379

plot(MarketMatNum(2:end), Caplets, 'or', MarketMatNum(2:end), OptimCaplets, '*b');
datetick('x', 2)
xlabel('Caplet Maturity');
ylabel('Caplet Price');
ylim ([0 16]);
title('Bachelier and Calibrated Caplets');
h = legend('Bachelier Caplets', 'Calibrated Caplets');
set(h, 'color', [0.9 0.9 0.9]);
set(h, 'Location', 'SouthEast');
set(gcf, 'NumberTitle', 'off')
grid on
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Calibrating Floorlets Using the Normal (Bachelier) Model
This example shows how to use hwcalbyfloor to calibrate market data with the Normal (Bachelier)
model to price floorlets. Use the Normal (Bachelier) model to perform calibrations when working with
negative interest rates, strikes, and normal implied volatilities.

Consider a floor with these parameters:

Settle = 'Dec-30-2016';
Maturity = 'Dec-30-2019';
Strike = -0.004075;
Reset = 2;
Principal = 100;
Basis = 0;

The floorlets and market data for this example are defined as:

floorletDates = cfdates(Settle, Maturity, Reset, Basis);
datestr(floorletDates')

ans = 6x11 char array
    '30-Jun-2017'
    '30-Dec-2017'
    '30-Jun-2018'
    '30-Dec-2018'
    '30-Jun-2019'
    '30-Dec-2019'

% Market data information
MarketStrike = [-0.00595; 0];
MarketMat =  {'30-Jun-2017';'30-Dec-2017';'30-Jun-2018'; '30-Dec-2018';'30-Jun-2019'; '30-Dec-2019'};
MarketVol = [0.184 0.2329 0.2398 0.2467 0.2906 0.3348;   % First row in table corresponding to Strike 1 
             0.217 0.2707 0.2760 0.2814 0.3160 0.3508];  % Second row in table corresponding to Strike 2

Define the RateSpec using intenvset.

Rates= [-0.003210;-0.003020;-0.00182;-0.001343;-0.001075];
ValuationDate = 'Dec-30-2016';
EndDates = {'30-Jun-2017';'Dec-30-2017';'30-Jun-2018';'Dec-30-2018';'Dec-30-2019'};
Compounding = 2;
Basis = 0;

RateSpec = intenvset('ValuationDate', ValuationDate, ...
'StartDates', ValuationDate, 'EndDates', EndDates, ...
'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis);

Use hwcalbyfloor to find values for the volatility parameters Alpha and Sigma using the Normal
(Bachelier) model.

format short
o=optimoptions('lsqnonlin','TolFun',100*eps);
warning ('off','fininst:hwcalbycapfloor:NoConverge')
[Alpha, Sigma, OptimOut] = hwcalbyfloor(RateSpec, MarketStrike, MarketMat,...
MarketVol, Strike, Settle, Maturity, 'Reset', Reset, 'Principal', Principal,...
'Basis', Basis, 'OptimOptions', o, 'model', 'normal')
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Local minimum possible.
lsqnonlin stopped because the size of the current step is less than
the value of the step size tolerance.

Alpha = 1.0000e-06

Sigma = 0.3410

OptimOut = struct with fields:
     resnorm: 1.9233e-04
    residual: [5x1 double]
    exitflag: 2
      output: [1x1 struct]
      lambda: [1x1 struct]
    jacobian: [5x2 double]

The OptimOut.residual field of the OptimOut structure is the optimization residual. This value
contains the difference between the Normal (Bachelier) floorlets and those calculated during the
optimization. Use the OptimOut.residual value to calculate the percentual difference (error)
compared to Normal (Bachelier) floorlet prices, and then decide whether the residual is acceptable.
There is almost always some residual, so decide if it is acceptable to parameterize the market with a
single value of Alpha and Sigma.

Price the floorlets using the market data and Normal (Bachelier) model to obtain the reference
floorlet values. To determine the effectiveness of the optimization, calculate reference floorlet values
using the Normal (Bachelier) formula and the market data. Note, you must first interpolate the
market data to obtain the floorlets for calculation.

MarketMatNum = datenum(MarketMat);
[Mats, Strikes] = meshgrid(MarketMatNum, MarketStrike);
FlatVol = interp2(Mats, Strikes, MarketVol, datenum(Maturity), Strike, 'spline');

[FloorPrice, Floorlets] = floorbynormal(RateSpec, Strike, Settle, Maturity, FlatVol,...
'Reset', Reset, 'Basis', Basis, 'Principal', Principal); 
Floorlets = Floorlets(2:end)'

Floorlets = 5×1

    4.7637
    6.7180
    8.1833
    9.5825
   10.6090

Compare the optimized values and Normal (Bachelier) values, and display the results graphically.
After calculating the reference values for the floorlets, compare the values analytically and
graphically to determine whether the calculated single values of Alpha and Sigma provide an
adequate approximation.

OptimFloorlets = Floorlets+OptimOut.residual;

disp('   ');

   

disp(' Bachelier   Calibrated Floorlets');
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 Bachelier   Calibrated Floorlets

disp([Floorlets        OptimFloorlets])

    4.7637    4.7685
    6.7180    6.7263
    8.1833    8.1878
    9.5825    9.5795
   10.6090   10.6007

plot(MarketMatNum(2:end), Floorlets, 'or', MarketMatNum(2:end), OptimFloorlets, '*b');
datetick('x', 2)
xlabel('Floorlet Maturity');
ylabel('Floorlet Price');
ylim ([0 16]);
title('Bachelier and Calibrated Floorlets');
h = legend('Bachelier Floorlets', 'Calibrated Floorlets');
set(h, 'color', [0.9 0.9 0.9]);
set(h, 'Location', 'SouthEast');
set(gcf, 'NumberTitle', 'off')
grid on
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See Also

More About
• “Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on
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Calibrate the SABR Model Using Normal (Bachelier) Volatilities
with Negative Strikes

This example shows how to use two different methods to calibrate the SABR stochastic volatility
model from market implied Normal (Bachelier) volatilities with negative strikes. Both approaches use
normalvolbysabr, which computes the implied Normal volatilities by using the SABR model. When
the Beta parameter of the SABR model is set to zero, the model is a Normal SABR model, which
allows computing the implied Normal volatilities for negative strikes.

Load the Market Implied Normal (Bachelier) Volatility Data

Set up hypothetical market implied Normal volatilities for European swaptions over a range of strikes
before calibration. The swaptions expire in one year from the Settle date and have two-year swaps
as the underlying instrument. The rates are expressed in decimals. The market implied Normal
volatilities are converted from basis points to decimals. (Changing the units affects the numerical
value and interpretation of the Alpha parameter input to the function normalvolbysabr.)

% Load the market implied Normal volatility data for swaptions expiring in one year.
Settle = '20-Sep-2017';
ExerciseDate = '20-Sep-2018';
Basis = 1;

ATMStrike = -0.174/100;
MarketStrikes = ATMStrike + ((-0.5:0.25:1.5)')./100;
MarketVolatilities = [20.58 17.64 16.93 18.01 20.46 22.90 26.11 28.89 31.91]'/10000;

% At the time of Settle, define the underlying forward rate and the at-the-money volatility.
CurrentForwardValue = MarketStrikes(3)

CurrentForwardValue = -0.0017

ATMVolatility = MarketVolatilities(3)

ATMVolatility = 0.0017

Method 1: Calibrate Alpha, Rho, and Nu Directly

This section demonstrates how to calibrate the Alpha, Rho, and Nu parameters directly. The value of
the Beta parameter is set to zero in order to allow negative rates in the SABR model (Normal SABR).
After fixing the value of β(Beta), the parameters α (Alpha), ρ (Rho), and ν (Nu) are all fitted directly.
The Optimization Toolbox™ function lsqnonlin generates the parameter values that minimize the
squared error between the market volatilities and the volatilities computed by normalvolbysabr.

% Define the predetermined Beta
Beta1 = 0; % Setting Beta to zero allows negative rates for Normal volatilities

% Calibrate Alpha, Rho, and Nu
objFun = @(X) MarketVolatilities - ...
    normalvolbysabr(X(1), Beta1, X(2), X(3), Settle, ...
    ExerciseDate, CurrentForwardValue, MarketStrikes, 'Basis', Basis);

% If necessary, tolerances and stopping criteria can be adjusted for lsqnonlin 
X = lsqnonlin(objFun, [ATMVolatility 0 0.5], [0 -1 0], [Inf 1 Inf]);

Local minimum found.
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Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

Alpha1 = X(1);
Rho1 = X(2);
Nu1 = X(3);

Method 2: Calibrate Rho and Nu by Implying Alpha from At-The-Money Volatility

This section demonstrates how to use an alternative calibration method where the value of β is again
predetermined to be zero in order to allow negative rates. However, after fixing the value of β (Beta),
the parameters ρ (Rho), and ν (Nu) are fitted directly while α (Alpha) is implied from the market at-
the-money volatility. Models calibrated using this method produce at-the-money volatilities that are
equal to market quotes. This approach can be useful when at-the-money volatilities are quoted most
frequently and are important to match. In order to imply α (Alpha) from market at-the-money Normal
volatility (σNormal, ATM), the following cubic polynomial is solved for α (Alpha), and the smallest
positive real root is selected. This is similar to the approach used for implying α (Alpha) from market
at-the-money Black volatility [2]. However, note that the following expression that is used for Normal
volatilities is different from another expression that is used for Black volatilities.

β(β− 2)T
24F(2− 2β)α

3 + ρβνT
4F(1− β)α

2 + 1 + 2− 3ρ2

24 ν2T α− σNormal, ATMF−β = 0

% Define the predetermined Beta
Beta2 = 0; % Setting Beta to zero allows negative rates for Normal volatilities

% Year fraction from Settle to option maturity
T = yearfrac(Settle, ExerciseDate, Basis);

% This function solves the SABR at-the-money volatility equation as a
% polynomial of Alpha
alpharootsNormal = @(Rho,Nu) roots([...
    Beta2.*(Beta2 - 2)*T/24/CurrentForwardValue^(2 - 2*Beta2) ...
    Rho*Beta2*Nu*T/4/CurrentForwardValue^(1 - Beta2) ...
    (1 + (2 - 3*Rho^2)*Nu^2*T/24) ...
    -ATMVolatility*CurrentForwardValue^(-Beta2)]);

% This function converts at-the-money volatility into Alpha by picking the
% smallest positive real root 
atmNormalVol2SabrAlpha = @(Rho,Nu) min(real(arrayfun(@(x) ...
    x*(x>0) + realmax*(x<0 || abs(imag(x))>1e-6), alpharootsNormal(Rho,Nu))));

% Calibrate Rho and Nu (while converting at-the-money volatility into Alpha
% using atmVol2NormalSabrAlpha)
objFun = @(X) MarketVolatilities - ...
    normalvolbysabr(atmNormalVol2SabrAlpha(X(1), X(2)), ...
    Beta2, X(1), X(2), Settle, ExerciseDate, CurrentForwardValue, ...
    MarketStrikes, 'Basis', Basis);

% If necessary, tolerances and stopping criteria can be adjusted for lsqnonlin 
X = lsqnonlin(objFun, [0 0.5], [-1 0], [1 Inf]);

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.
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Rho2 = X(1);
Nu2 = X(2);

% Obtain final Alpha from at-the-money volatility using calibrated parameters
Alpha2 = atmNormalVol2SabrAlpha(Rho2, Nu2);

% Display calibrated parameters
C = {Alpha1 Beta1 Rho1 Nu1;Alpha2 Beta2 Rho2 Nu2};
format;
CalibratedPrameters = cell2table(C,...
    'VariableNames',{'Alpha' 'Beta' 'Rho' 'Nu'},...
    'RowNames',{'Method 1';'Method 2'})

CalibratedPrameters=2×4 table
                  Alpha      Beta       Rho         Nu   
                _________    ____    _________    _______

    Method 1    0.0016332     0      -0.034233    0.45877
    Method 2    0.0016652     0        -0.0318    0.44812

Use the Calibrated Models

Use the calibrated models to compute new volatilities at any strike value, including negative strikes.

Compute volatilities for models calibrated using Method 1 and Method 2, then plot the results. The
model calibrated using Method 2 reproduces the market at-the-money volatility (marked with a
circle) exactly.

PlottingStrikes = (min(MarketStrikes)-0.0025:0.0001:max(MarketStrikes)+0.0025)';

% Compute volatilities for model calibrated by Method 1
ComputedVols1 = normalvolbysabr(Alpha1, Beta1, Rho1, Nu1, Settle, ...
    ExerciseDate, CurrentForwardValue, PlottingStrikes, 'Basis', Basis);

% Compute volatilities for model calibrated by Method 2
ComputedVols2 = normalvolbysabr(Alpha2, Beta2, Rho2, Nu2, Settle, ...
    ExerciseDate, CurrentForwardValue, PlottingStrikes, 'Basis', Basis);

figure;
plot(MarketStrikes,MarketVolatilities*10000,'xk',...
    PlottingStrikes,ComputedVols1*10000,'b', ...  
    PlottingStrikes,ComputedVols2*10000,'r', ...
    CurrentForwardValue,ATMVolatility*10000,'ok',...
    'MarkerSize',10);

h = gca;
line([0,0],[min(h.YLim),max(h.YLim)],'LineStyle','--');

xlabel('Strike', 'FontWeight', 'bold');
ylabel('Implied Normal Volatility (bps)', 'FontWeight', 'bold');
legend('Market Volatilities', 'Normal SABR Model (Method 1)', ...
    'Normal SABR Model (Method 2)', 'At-the-money volatility', ...
    'Location', 'northwest');
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Calibrate Shifted SABR Model Parameters for Swaption
Instrument

This example shows how to calibrate the shifted SABR model parameters for a Swaption instrument
when you use a SABR pricing method.

Load Market Data

% Zero curve
ValuationDate = datetime("5-Mar-2016", 'Locale', 'en_US');
ZeroDates = datemnth(ValuationDate,[1 2 3 6 9 12*[1 2 3 4 5 6 7 8 9 10 12]])';
ZeroRates = [-0.33 -0.28 -0.24 -0.12 -0.08 -0.03 0.015 0.028 ...
    0.033 0.042 0.056 0.095 0.194 0.299 0.415 0.525]'/100;
Compounding = 1;
ZeroCurve = ratecurve("zero",ValuationDate,ZeroDates,ZeroRates,'Compounding',Compounding)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: 1
                Basis: 0
                Dates: [16x1 datetime]
                Rates: [16x1 double]
               Settle: 05-Mar-2016
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

% Define the swaptions
SwaptionSettle = datetime("5-Mar-2016", 'Locale', 'en_US');
SwaptionExerciseDate = datetime("5-Mar-2017", 'Locale', 'en_US');
SwaptionStrikes = (-0.6:0.01:1.6)'/100; % Include negative strikes
SwapMaturity = datetime("5-Mar-2022", 'Locale', 'en_US'); % Maturity of underlying swap
OptSpec = 'call';

Compute Forward Swap Rate by Creating Swap Instrument

Use fininstrument to create a Swap instrument object.

LegRate = [0 0];
Swap = fininstrument("Swap", 'Maturity', SwapMaturity, 'LegRate', LegRate, "LegType",["fixed" "float"],...
    "ProjectionCurve", ZeroCurve, "StartDate", SwaptionExerciseDate)

Swap = 
  Swap with properties:

                     LegRate: [0 0]
                     LegType: ["fixed"    "float"]
                       Reset: [2 2]
                       Basis: [0 0]
                    Notional: 100
          LatestFloatingRate: [NaN NaN]
                 ResetOffset: [0 0]
    DaycountAdjustedCashFlow: [0 0]
             ProjectionCurve: [1x2 ratecurve]
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       BusinessDayConvention: ["actual"    "actual"]
                    Holidays: NaT
                EndMonthRule: [1 1]
                   StartDate: 05-Mar-2017
                    Maturity: 05-Mar-2022
                        Name: ""

ForwardValue = parswaprate(Swap,ZeroCurve)

ForwardValue = 7.3271e-04

Load the Market Implied Volatility Data

The market swaption volatilities are quoted in terms of shifted Black volatilities with a 0.8 percent
shift.

StrikeGrid = [-0.5; -0.25; -0.125; 0; 0.125; 0.25; 0.5; 1.0; 1.5]/100;
MarketStrikes = ForwardValue + StrikeGrid;
Shift = 0.008;  % 0.8 percent shift
MarketShiftedBlackVolatilities = [21.1; 15.3; 14.0; 14.6; 16.0; 17.7; 19.8; 23.9; 26.2]/100;
ATMShiftedBlackVolatility = MarketShiftedBlackVolatilities(StrikeGrid==0);

Calibrate Shifted SABR Model Parameters

The Beta parameter is predetermined at 0.5. Use volatilities to compute the implied volatility.

Beta = 0.5;

% Calibrate Alpha, Rho, and Nu
objFun = @(X) MarketShiftedBlackVolatilities - volatilities(finpricer("Analytic", 'Model', ...
    finmodel("SABR", 'Alpha', X(1), 'Beta', Beta, 'Rho', X(2), 'Nu', X(3), 'Shift', Shift), ...
    'DiscountCurve', ZeroCurve), SwaptionExerciseDate, ForwardValue, MarketStrikes);

X = lsqnonlin(objFun, [0.5 0 0.5], [0 -1 0], [Inf 1 Inf]);

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to 
its initial value is less than the value of the function tolerance.

Alpha = X(1);
Rho = X(2);
Nu = X(3);

Create SABR Model Using the Calibrated Parameters

Use finmodel to create a SABR model object.

SABRModel = finmodel("SABR",'Alpha',Alpha,'Beta',Beta,'Rho',Rho,'Nu',Nu,'Shift',Shift)

SABRModel = 
  SABR with properties:

             Alpha: 0.0135
              Beta: 0.5000
               Rho: 0.4654
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                Nu: 0.4957
             Shift: 0.0080
    VolatilityType: "black"

Create SABR Pricer Using Calibrated SABR Model and Compute Volatilities

Use finpricer to create a SABR pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

SABRPricer = finpricer("Analytic", 'Model', SABRModel, 'DiscountCurve', ZeroCurve)

SABRPricer = 
  SABR with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.SABR]

SABRShiftedBlackVolatilities = volatilities(SABRPricer, SwaptionExerciseDate, ForwardValue, SwaptionStrikes)

SABRShiftedBlackVolatilities = 221×1

    0.2978
    0.2911
    0.2848
    0.2787
    0.2729
    0.2673
    0.2620
    0.2568
    0.2518
    0.2470
      ⋮

figure;
plot(MarketStrikes, MarketShiftedBlackVolatilities, 'o', ...
    SwaptionStrikes, SABRShiftedBlackVolatilities);
h = gca;
line([0,0],[min(h.YLim),max(h.YLim)],'LineStyle','--');
ylim([0.13 0.31])
xlabel('Strike');
legend('Market quotes','Shifted SABR', 'location', 'southeast');
title (['Shifted Black Volatility (',num2str(Shift*100),' percent shift)']);
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Price Swaption Instruments Using Calibrated SABR Model and SABR Pricer

% Create swaption instruments
NumInst = length(SwaptionStrikes);
Swaptions(NumInst, 1) = fininstrument("Swaption", ...
    'Strike', SwaptionStrikes(1), 'ExerciseDate', SwaptionExerciseDate(1), 'Swap', Swap);
for k = 1:NumInst
    Swaptions(k) = fininstrument("Swaption", 'Strike', SwaptionStrikes(k), ...
        'ExerciseDate', SwaptionExerciseDate, 'Swap', Swap, 'OptionType', OptSpec);
end
Swaptions

Swaptions=221×1 object
  16x1 Swaption array with properties:

    OptionType
    ExerciseStyle
    ExerciseDate
    Strike
    Swap
    Name
      ⋮

% Price swaptions using the SABR pricer
SwaptionPrices = price(SABRPricer,Swaptions);

figure;
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plot(SwaptionStrikes, SwaptionPrices, 'r');
h = gca;
line([0,0],[min(h.YLim),max(h.YLim)],'LineStyle','--');
xlabel('Strike');
title ('Swaption Price');
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Price Portfolio of Bond and Bond Option Instruments
This example shows the workflow to create and price a portfolio of bond and bond option
instruments. You can use finportfolio and pricePortfolio to price FixedBond,
FixedBondOption, OptionEmbeddedFixedBond, and FloatBond instruments using an IRTree
pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018, 1, 1);
 ZeroTimes = calyears(1:4)';
 ZeroRates = [0.035; 0.042147; 0.047345; 0.052707];
 ZeroDates = Settle + ZeroTimes;
 Compounding = 1;
 ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates, "Compounding",Compounding)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: 1
                Basis: 0
                Dates: [4x1 datetime]
                Rates: [4x1 double]
               Settle: 01-Jan-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Bond and Option Instruments

Use fininstrument to create a FixedBond, FixedBondOption, OptionEmbeddedFixedBond,
and FloatBond instrument objects.

CDates = datetime([2020,1,1 ; 2022,1,1]);
CRates = [.0425; .0750];
CouponRate = timetable(CDates,CRates);
Maturity = datetime(2022,1,1);
Period = 1;

% Vanilla FixedBond
VBond = fininstrument("FixedBond",'Maturity',Maturity,'CouponRate',0.0425,'Period',Period,'Name',"vanilla_fixed") 

VBond = 
  FixedBond with properties:

                  CouponRate: 0.0425
                      Period: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
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                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 01-Jan-2022
                        Name: "vanilla_fixed"

 % Stepped coupon bond
SBond = fininstrument("FixedBond",'Maturity',Maturity,'CouponRate',CouponRate,'Period',Period,'Name',"stepped_coupon_bond") 

SBond = 
  FixedBond with properties:

                  CouponRate: [2x1 timetable]
                      Period: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 01-Jan-2022
                        Name: "stepped_coupon_bond"

% FloatBond
Spread = 0;
Reset = 1;
Float = fininstrument("FloatBond",'Maturity',Maturity,'Spread',Spread,'Reset', Reset,...
                      'ProjectionCurve',ZeroCurve,'Name',"floatbond")

Float = 
  FloatBond with properties:

                      Spread: 0
             ProjectionCurve: [1x1 ratecurve]
                 ResetOffset: 0
                       Reset: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
          LatestFloatingRate: NaN
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 01-Jan-2022
                        Name: "floatbond"
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% Call option
Strike = 100;
ExerciseDates = datetime(2020,1,1); 
OptionType ='call';
Period = 1;
CallOption = fininstrument("FixedBondOption",'Strike',Strike,'ExerciseDate',ExerciseDates,...
                   'OptionType',OptionType,'ExerciseStyle',"american",'Bond', VBond,'Name',"fixed_bond_option")    

CallOption = 
  FixedBondOption with properties:

       OptionType: "call"
    ExerciseStyle: "american"
     ExerciseDate: 01-Jan-2020
           Strike: 100
             Bond: [1x1 fininstrument.FixedBond]
             Name: "fixed_bond_option"

% Option for embedded bond (callable bond)
CDates = datetime([2020,1,1 ; 2022,1,1]);
CRates = [.0425; .0750];
CouponRate = timetable(CDates,CRates);
StrikeOE = [100; 100];
ExerciseDatesOE = [datetime(2020,1,1); datetime(2021,1,1)];
CallSchedule =  timetable(ExerciseDatesOE,StrikeOE,'VariableNames',{'Strike Schedule'}); 
CallableBond = fininstrument("OptionEmbeddedFixedBond", 'Maturity',Maturity,...
                              'CouponRate',CouponRate,'Period', Period, ...
                              'CallSchedule',CallSchedule,'Name',"option_embedded_fixedbond")

CallableBond = 
  OptionEmbeddedFixedBond with properties:

                  CouponRate: [2x1 timetable]
                      Period: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 01-Jan-2022
                   CallDates: [2x1 datetime]
                    PutDates: [0x1 datetime]
                CallSchedule: [2x1 timetable]
                 PutSchedule: [0x0 timetable]
           CallExerciseStyle: "american"
            PutExerciseStyle: [0x0 string]
                        Name: "option_embedded_fixedbond"

Create HullWhite Model

Use finmodel to create a HullWhite model object.
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VolCurve = 0.01;
AlphaCurve = 0.1;

HWModel = finmodel("hullwhite",'alpha',AlphaCurve,'sigma',VolCurve)

HWModel = 
  HullWhite with properties:

    Alpha: 0.1000
    Sigma: 0.0100

Create IRTree Pricer for HullWhite Model

Use finpricer to create an IRTree pricer object for a HullWhite model and use the ratecurve
object for the 'DiscountCurve' name-value pair argument.

HWTreePricer = finpricer("IRTree",'Model',HWModel,'DiscountCurve',ZeroCurve,'TreeDates',ZeroDates)

HWTreePricer = 
  HWBKTree with properties:

             Tree: [1x1 struct]
        TreeDates: [4x1 datetime]
            Model: [1x1 finmodel.HullWhite]
    DiscountCurve: [1x1 ratecurve]

Create finportfolio Object and Add Callable Bond Instrument

Create a finportfolio object with the vanilla bond, stepped coupon bond, float bond, and the call
option.

myportfolio = finportfolio([VBond,SBond,Float,CallOption],HWTreePricer, [1,2,2,1])

myportfolio = 
  finportfolio with properties:

    Instruments: [4x1 fininstrument.FinInstrument]
        Pricers: [1x1 finpricer.irtree.HWBKTree]
    PricerIndex: [4x1 double]
       Quantity: [4x1 double]

Use addInstrument to add the callable bond instrument to the existing portfolio.

myportfolio = addInstrument(myportfolio,CallableBond,HWTreePricer,1)

myportfolio = 
  finportfolio with properties:

    Instruments: [5x1 fininstrument.FinInstrument]
        Pricers: [1x1 finpricer.irtree.HWBKTree]
    PricerIndex: [5x1 double]
       Quantity: [5x1 double]

myportfolio.PricerIndex
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ans = 5×1

     1
     1
     1
     1
     1

The PricerIndex property has a length equal to the length of instrument objects in the
finportfolio object and stores the index of which pricer is used for each instrument object. In this
case, because there is only one pricer, each instrument must use that pricer.

Price Portfolio

Use pricePortfolio to compute the price and sensitivities for the portfolio and the bond and
option instruments in the portfolio.

format bank
[PortPrice,InstPrice,PortSens,InstSens] = pricePortfolio(myportfolio)

PortPrice = 
        600.55

InstPrice = 5×1

         96.59
        204.14
        200.00
          0.05
         99.77

PortSens=1×4 table
    Price      Vega      Gamma      Delta  
    ______    ______    _______    ________

    600.55    -63.40    5759.65    -1297.48

InstSens=5×4 table
                                 Price      Vega      Gamma      Delta 
                                 ______    ______    _______    _______

    vanilla_fixed                 96.59     -0.00    1603.49    -344.81
    stepped_coupon_bond          204.14      0.00    3364.60    -725.96
    floatbond                    200.00     -0.00      -0.00       0.00
    fixed_bond_option              0.05     12.48      24.15      -3.69
    option_embedded_fixedbond     99.77    -75.88     767.41    -223.03
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Calibrate SABR Model Using Normal (Bachelier) Volatilities
with Analytic Pricer

This example shows how to use two different methods to calibrate the SABR stochastic volatility
model from market implied Normal (Bachelier) volatilities with negative strikes. Both approaches use
the SABR analytic pricer. When the Beta parameter of the SABR model is set to zero, the model is a
Normal SABR model, which allows computing the implied Normal volatilities for negative strikes.

Load Market Implied Normal (Bachelier) Volatility Data

Set up hypothetical market implied Normal volatilities for European swaptions over a range of strikes
before calibration. The swaptions expire in one year from the Settle date and have two-year swaps
as the underlying instrument. The rates are expressed in decimals. The market implied Normal
volatilities are converted from basis points to decimals. (Changing the units affects the numerical
value and interpretation of the Alpha parameter in the SABR model.)

% Load the market implied Normal volatility data for swaptions expiring in one year.
Settle = datetime(2020, 4, 24);
ExerciseDate = datetime(2021, 4, 24);
Basis = 1;
ZeroDates = Settle + [calmonths([3 6 9]) calyears([1 2 3 4 5 ...
    6 7 10 15 20])]';
ZeroRates = [-.54 -.57 -.60 -.62 -.67 -.67 -.65 -.61 ...
    -.56 -.51 -.36 -.19 -.10]'/100;
Compounding = 1;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates,'Compounding',Compounding);

ATMStrike = -0.70/100;
MarketStrikes = ATMStrike + ((-0.5:0.25:1.5)')./100;
MarketVolatilities = [29.89 25.47 23.21 26.17 29.59 33.12 37.81 41.88 46.24]'/10000;

% At the time of Settle, define the underlying forward rate and the at-the-money volatility.
CurrentForwardValue = MarketStrikes(3)

CurrentForwardValue = -0.0070

ATMVolatility = MarketVolatilities(3)

ATMVolatility = 0.0023

Method 1: Calibrate Alpha, Rho, and Nu Directly

You can calibrate the Alpha, Rho, and Nu parameters directly. Set the value of the Beta parameter to
zero in order to allow negative rates in the SABR model (Normal SABR). After you fix the value of β
(Beta), you fit the parameters α (Alpha), ρ (Rho), and ν (Nu) directly. The Optimization Toolbox™
function lsqnonlin generates the parameter values that minimize the squared error between the
market volatilities and the volatilities computed by the SABR analytic pricer.

% Define the predetermined Beta
Beta1 = 0; % Setting Beta to zero allows negative rates for Normal volatilities

% Calibrate Alpha, Rho, and Nu
objFun = @(X) MarketVolatilities - ...
    volatilities(finpricer("Analytic", 'Model', ...
    finmodel("SABR", 'Alpha', X(1), 'Beta', Beta1, 'Rho', X(2), ...
    'Nu', X(3), 'VolatilityType', 'Normal'), 'DiscountCurve', ZeroCurve), ...
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    ExerciseDate, CurrentForwardValue, MarketStrikes);

% If necessary, adjust the tolerances and stopping criteria for lsqnonlin 
X = lsqnonlin(objFun, [ATMVolatility 0 0.5], [0 -1 0], [Inf 1 Inf]);

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

Alpha1 = X(1);
Rho1 = X(2);
Nu1 = X(3);

Method 2: Calibrate Rho and Nu by Implying Alpha from At-The-Money Volatility

Another method is to use an alternative calibration method. As in the first method, you set the value
of β (Beta) to zero to allow negative rates. However, after fixing the value of β (Beta), you fit the
parameters ρ (Rho) and ν (Nu) directly while α (Alpha) is implied from the market at-the-money
volatility. Models calibrated using this method produce at-the-money volatilities that are equal to
market quotes. This approach can be useful when at-the-money volatilities are quoted most
frequently and are important to match. To imply α (Alpha) from market at-the-money Normal
volatility (σNormal, ATM), solve the following cubic polynomial for α (Alpha), and select the smallest
positive real root. This is similar to the approach used for implying α (Alpha) from market at-the-
money Black volatility [2 on page 2-0 ]. However, note that the following expression that is used for
Normal volatilities is different from the expression that is used for Black volatilities.

β(β− 2)T
24F(2− 2β)α

3 + ρβνT
4F(1− β)α

2 + 1 + 2− 3ρ2

24 ν2T α− σNormal, ATMF−β = 0

% Define the predetermined Beta
Beta2 = 0; % Setting Beta to zero allows negative rates for Normal volatilities

% Year fraction from Settle date to option maturity
T = yearfrac(Settle, ExerciseDate, Basis);

% This function solves the SABR at-the-money volatility equation as a
% polynomial of Alpha
alpharootsNormal = @(Rho,Nu) roots([...
    Beta2.*(Beta2 - 2)*T/24/CurrentForwardValue^(2 - 2*Beta2) ...
    Rho*Beta2*Nu*T/4/CurrentForwardValue^(1 - Beta2) ...
    (1 + (2 - 3*Rho^2)*Nu^2*T/24) ...
    -ATMVolatility*CurrentForwardValue^(-Beta2)]);

% This function converts at-the-money volatility into Alpha by picking the
% smallest positive real root 
atmNormalVol2SabrAlpha = @(Rho,Nu) min(real(arrayfun(@(x) ...
    x*(x>0) + realmax*(x<0 || abs(imag(x))>1e-6), alpharootsNormal(Rho,Nu))));

% Calibrate Rho and Nu (while converting at-the-money volatility into Alpha
% using atmNormalVol2SabrAlpha)
objFun = @(X) MarketVolatilities - ...
    volatilities(finpricer("Analytic", 'Model', ...
    finmodel("SABR", 'Alpha', atmNormalVol2SabrAlpha(X(1), X(2)), ...
    'Beta', Beta2, 'Rho', X(1), 'Nu', X(2), 'VolatilityType', 'Normal'), ...
    'DiscountCurve', ZeroCurve), ...
    ExerciseDate, CurrentForwardValue, MarketStrikes);
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% If necessary, adjust the tolerances and stopping criteria for lsqnonlin 
X = lsqnonlin(objFun, [0 0.5], [-1 0], [1 Inf]);

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

Rho2 = X(1);
Nu2 = X(2);

% Obtain final Alpha from at-the-money volatility using calibrated parameters
Alpha2 = atmNormalVol2SabrAlpha(Rho2, Nu2);

% Display calibrated parameters
C = {Alpha1 Beta1 Rho1 Nu1;Alpha2 Beta2 Rho2 Nu2};
format;
CalibratedPrameters = cell2table(C,...
    'VariableNames',{'Alpha' 'Beta' 'Rho' 'Nu'},...
    'RowNames',{'Method 1';'Method 2'})

CalibratedPrameters=2×4 table
                  Alpha      Beta       Rho         Nu   
                _________    ____    _________    _______

    Method 1    0.0023279     0      -0.010078    0.63538
    Method 2    0.0022389     0      -0.019029    0.66368

Use the Calibrated Models

Use the calibrated models to compute new volatilities at any strike value, including negative strikes.

Compute volatilities for models calibrated using Method 1 and Method 2, then plot the results. The
model calibrated using Method 2 reproduces the market at-the-money volatility (marked with a
circle) exactly.

PlottingStrikes = (min(MarketStrikes)-0.0025:0.0001:max(MarketStrikes)+0.0025)';

% Compute volatilities for model calibrated by Method 1
SABR_Model_Method_1 = finmodel("SABR", ...
    'Alpha', Alpha1, 'Beta', Beta1, 'Rho', Rho1, 'Nu', Nu1, ...
    'VolatilityType', 'Normal');

ComputedVols1 = volatilities(finpricer("Analytic", ...
    'Model', SABR_Model_Method_1, 'DiscountCurve', ZeroCurve), ...
    ExerciseDate, CurrentForwardValue, PlottingStrikes);

% Compute volatilities for model calibrated by Method 2
SABR_Model_Method_2 = finmodel("SABR", ...
    'Alpha', Alpha2, 'Beta', Beta2, 'Rho', Rho2, 'Nu', Nu2, ...
    'VolatilityType', 'Normal');

ComputedVols2 = volatilities(finpricer("Analytic", ...
    'Model', SABR_Model_Method_2, 'DiscountCurve', ZeroCurve), ...
    ExerciseDate, CurrentForwardValue, PlottingStrikes);
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figure;
plot(MarketStrikes,MarketVolatilities*10000,'xk',...
    PlottingStrikes,ComputedVols1*10000,'b', ...  
    PlottingStrikes,ComputedVols2*10000,'r', ...
    CurrentForwardValue,ATMVolatility*10000,'ok',...
    'MarkerSize',10);

h = gca;
line([0,0],[min(h.YLim),max(h.YLim)],'LineStyle','--');

xlabel('Strike', 'FontWeight', 'bold');
ylabel('Implied Normal Volatility (bps)', 'FontWeight', 'bold');
legend('Market Volatilities', 'Normal SABR Model (Method 1)', ...
    'Normal SABR Model (Method 2)', 'At-the-money volatility', ...
    'Location', 'northwest');
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Calibrate SABR Model Using Analytic Pricer
This example shows how to use two different methods to calibrate a SABR stochastic volatility model
from market implied Black volatilities. Both approaches use the SABR analytic pricer.

Load Market Implied Black Volatility Data

This example sets up hypothetical market implied Black volatilities for European swaptions over a
range of strikes before calibration. The swaptions expire in three years from the Settle date and
have five-year swaps as the underlying instrument. The rates are expressed in decimals. (Changing
the units affects the numerical value and interpretation of the Alpha parameter in the SABR model.)

Load the market implied Black volatility data for swaptions expiring in three years.

Settle = datetime(2013, 7, 10);
ZeroDates = Settle + [calmonths([1 2 3 6 9]) calyears([1 2 3 4 5 6 7 8 9 10 12])]';
ZeroRates = [0.25 0.3 0.33 0.42 0.8 0.9 1.1 1.2 ...
    1.8 2.2 2.4 2.71 2.95 3.02 3.24 3.58]'/100;
Compounding = 1;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates,'Compounding',Compounding);
ExerciseDate = datetime(2016, 7, 10);
MarketStrikes = [2.46 2.96 3.46 3.96 4.46 4.96 5.46]'/100;
MarketVolatilities = [44.3 40.2 36.7 35.7 37.2 38.1 39.8]'/100;

At the time of Settle, define the underlying forward rate and the at-the-money volatility.

CurrentForwardValue = MarketStrikes(4)

CurrentForwardValue = 0.0396

ATMVolatility = MarketVolatilities(4)

ATMVolatility = 0.3570

Method 1: Calibrate Alpha, Rho, and Nu Directly

You can calibrate the Alpha, Rho, and Nu model parameters directly. Set the value of Beta either by
fitting historical market volatility data or by choosing a value appropriate for the market [1 on page 2-
0 ]. For this example, use the value 0.5.

% Define the predetermined Beta.
Beta1 = 0.5;

After fixing the value of β (Beta), fit the parameters α (Alpha), ρ (Rho), and ν (Nu) directly. The
Optimization Toolbox™ function lsqnonlin generates the parameter values that minimize the
squared error between the market volatilities and the volatilities computed by the SABR analytic
pricer.

% Calibrate Alpha, Rho, and Nu.
objFun = @(X) MarketVolatilities - ...
    volatilities(finpricer("Analytic", 'Model', ...
    finmodel("SABR", 'Alpha', X(1), 'Beta', Beta1, 'Rho', X(2), 'Nu', X(3)), ...
    'DiscountCurve', ZeroCurve), ExerciseDate, CurrentForwardValue, MarketStrikes);

X = lsqnonlin(objFun, [0.5 0 0.5], [0 -1 0], [Inf 1 Inf]);

Local minimum found.
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Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

Alpha1 = X(1);
Rho1 = X(2);
Nu1 = X(3);

Method 2: Calibrating Rho and Nu by Implying Alpha from At-The-Money Volatility

You can also use an alternative calibration method. Set the value of β (Beta) as in the first method.

Beta2 = 0.5;

Next you fit the parameters ρ (Rho) and ν (Nu) directly while α (Alpha) is implied from the market at-
the-money volatility. Models calibrated using this method produce at-the-money volatilities that are
equal to market quotes. This approach is widely used in swaptions, where at-the-money volatilities
are quoted most frequently and are important to match. To imply α (Alpha) from market at-the-
money volatility (σATM), the following cubic polynomial is solved for α (Alpha), and the smallest
positive real root is selected [2 on page 2-0 ].

(1− β)2T
24F(2− 2β)α

3 + ρβνT
4F(1− β)α

2 + 1 + 2− 3ρ2

24 ν2T α− σATMF(1− β) = 0

Here:

F is the current forward value

T is the year fraction to maturity.

Fit the parameters by defining an anonymous function.

% Year fraction from Settle to option maturity.
T = yearfrac(Settle, ExerciseDate, 1);

% This function solves the SABR at-the-money volatility equation as a
% polynomial of Alpha. 
alpharoots = @(Rho,Nu) roots([...
    (1 - Beta2)^2*T/24/CurrentForwardValue^(2 - 2*Beta2) ...
    Rho*Beta2*Nu*T/4/CurrentForwardValue^(1 - Beta2) ...
    (1 + (2 - 3*Rho^2)*Nu^2*T/24) ...
    -ATMVolatility*CurrentForwardValue^(1 - Beta2)]);

% This function converts at-the-money volatility into Alpha by picking the
% smallest positive real root. 
atmVol2SabrAlpha = @(Rho,Nu) min(real(arrayfun(@(x) ...
    x*(x>0) + realmax*(x<0 || abs(imag(x))>1e-6), alpharoots(Rho,Nu))));

The function atmVol2SabrAlpha converts at-the-money volatility into α (Alpha) for a given set of ρ
(Rho) and ν (Nu). This function is then used in the objective function to fit the parameters ρ (Rho) and
ν (Nu).

% Calibrate Rho and Nu (while converting at-the-money volatility into Alpha
% using atmVol2SabrAlpha).

objFun = @(X) MarketVolatilities - ...
    volatilities(finpricer("Analytic", 'Model', finmodel("SABR", ...
    'Alpha', atmVol2SabrAlpha(X(1), X(2)), 'Beta', Beta2, 'Rho', X(1), 'Nu', X(2)), ...
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    'DiscountCurve', ZeroCurve), ExerciseDate, CurrentForwardValue, MarketStrikes);

X = lsqnonlin(objFun, [0 0.5], [-1 0], [1 Inf]);

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

Rho2 = X(1);
Nu2 = X(2);

The calibrated parameter α (Alpha) is computed using the calibrated parameters ρ (Rho) and ν (Nu).

% Obtain final Alpha from at-the-money volatility using calibrated
% parameters.
Alpha2 = atmVol2SabrAlpha(Rho2, Nu2);

% Display calibrated parameters.
C = {Alpha1 Beta1 Rho1 Nu1;Alpha2 Beta2 Rho2 Nu2};
CalibratedPrameters = cell2table(C,...
    'VariableNames',{'Alpha' 'Beta' 'Rho' 'Nu'},...
    'RowNames',{'Method 1';'Method 2'})

CalibratedPrameters=2×4 table
                 Alpha      Beta      Rho        Nu   
                ________    ____    _______    _______

    Method 1    0.060203    0.5     0.19131    0.85327
    Method 2    0.058851    0.5     0.18901    0.88627

Use Calibrated Models

Use the calibrated models to compute new volatilities at any strike value.

Compute volatilities for models calibrated using Method 1 and Method 2 and plot the results.

PlottingStrikes = (1.75:0.1:5.50)'/100;

% Compute volatilities for model calibrated by Method 1.
SABR_Model_Method_1 = finmodel("SABR", ...
    'Alpha', Alpha1, 'Beta', Beta1, 'Rho', Rho1, 'Nu', Nu1);

ComputedVols1 = volatilities(finpricer("Analytic", ...
    'Model', SABR_Model_Method_1, 'DiscountCurve', ZeroCurve), ...
    ExerciseDate, CurrentForwardValue, PlottingStrikes);

% Compute volatilities for model calibrated by Method 2.
SABR_Model_Method_2 = finmodel("SABR", ...
    'Alpha', Alpha2, 'Beta', Beta2, 'Rho', Rho2, 'Nu', Nu2);

ComputedVols2 = volatilities(finpricer("Analytic", ...
    'Model', SABR_Model_Method_2, 'DiscountCurve', ZeroCurve), ...
    ExerciseDate, CurrentForwardValue, PlottingStrikes);

figure;
plot(MarketStrikes,MarketVolatilities,'xk',...
    PlottingStrikes,ComputedVols1,'b', ...
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    PlottingStrikes,ComputedVols2,'r', ...
    CurrentForwardValue,ATMVolatility,'ok',...
    'MarkerSize',10);
xlim([0.01 0.06]);
ylim([0.35 0.5]);
xlabel('Strike', 'FontWeight', 'bold');
ylabel('Implied Black Volatility', 'FontWeight', 'bold');
legend('Market Volatilities', 'SABR Model (Method 1)',...
    'SABR Model (Method 2)', 'At-the-money volatility');

The model calibrated using Method 2 reproduces the market at-the-money volatility (marked with a
circle) exactly.
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Price a Swaption Using SABR Model and Analytic Pricer
This example shows how to price a swaption using the SABR model. First, you construct a swaption
volatility surface from market volatilities by calibrating the SABR model parameters separately for
each swaption maturity using the SABR analytic pricer. You then compute the swaption price by using
the implied Black volatility on the surface with the SABR analytic pricer.

Step 1. Load market swaption volatility data.

Load the zero curve and market implied Black volatility data for swaptions.

Settle = datetime(2013, 6, 14);
ZeroDates = Settle + [calmonths([1 3 6]) calyears([1 2 3 4 5 6 7 8 9 10 12 15 20])]';
ZeroRates = [0.22 0.31 0.45 0.73 0.54 0.72 1.22 1.54 1.83 1.92 ...
    2.16 2.32 2.52 2.93 3.12 3.36]'/100;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates,'Compounding',1);
ExerciseDates =  Settle + [calmonths(3) calyears([1 2 3 4 5 7 10])]';           
YearsToExercise = yearfrac(Settle,ExerciseDates,1);
NumMaturities = length(YearsToExercise);

MarketVolatilities = [ ...    
   56.5 52.7 49.1 44.9 43.5 40.5 34.8 32.2
   45.8 46.2 44.2 41.1 39.1 36.1 33.2 31.3
   34.7 38.8 39.0 37.2 36.8 33.2 30.1 28.1
   33.9 35.9 36.9 35.8 34.2 30.5 29.0 27.0
   40.8 41.2 38.6 37.0 35.3 32.0 29.5 26.5
   45.1 42.8 41.2 38.3 37.2 33.2 30.3 27.2
   50.2 45.4 43.2 39.9 38.0 34.1 31.5 28.3]/100;

MarketStrikes = [ ...
  1.02 1.31 1.78 2.08 2.21 2.34 2.60 2.69;
  1.52 1.81 2.28 2.58 2.71 2.84 3.10 3.19;
  2.02 2.31 2.78 3.08 3.21 3.34 3.60 3.69;
  2.52 2.81 3.28 3.58 3.71 3.84 4.10 4.19;
  3.02 3.31 3.78 4.08 4.21 4.34 4.60 4.69;
  3.52 3.81 4.28 4.58 4.71 4.84 5.10 5.19;
  4.02 4.31 4.78 5.08 5.21 5.34 5.60 5.69]/100;

CurrentForwardValues = MarketStrikes(4,:)

CurrentForwardValues = 1×8

    0.0252    0.0281    0.0328    0.0358    0.0371    0.0384    0.0410    0.0419

ATMVolatilities = MarketVolatilities(4,:)

ATMVolatilities = 1×8

    0.3390    0.3590    0.3690    0.3580    0.3420    0.3050    0.2900    0.2700

The current underlying forward rates and the corresponding at-the-money volatilities across the eight
swaption maturities are represented in the fourth rows of the two matrices.
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Step 2. Calibrate the SABR model parameters for each swaption maturity.

When you use a static SABR model, where the model parameters are assumed to be constant with
respect to time, the parameters are calibrated separately for each swaption maturity (years to
exercise) in a for loop using the SABR analytic pricer. To better represent market at-the-money
volatilities, the Alpha parameter values are implied by the market at-the-money volatilities (for
details, see Method 2 in “Calibrate SABR Model Using Analytic Pricer” on page 2-182).

% Define the predetermined Beta, calibrate SABR model parameters for each
% swaption maturity, and display the calibrated parameters in a table.  
Beta = 0.5;
Betas = repmat(Beta, NumMaturities, 1);
Alphas = zeros(NumMaturities, 1);
Rhos = zeros(NumMaturities, 1);
Nus = zeros(NumMaturities, 1);

options = optimoptions('lsqnonlin','Display','none');

for k = 1:NumMaturities  
    % This function solves the SABR at-the-money volatility equation as a
    % polynomial of Alpha.
    alpharoots = @(Rho,Nu) roots([...
        (1 - Beta)^2*YearsToExercise(k)/24/CurrentForwardValues(k)^(2 - 2*Beta) ...
        Rho*Beta*Nu*YearsToExercise(k)/4/CurrentForwardValues(k)^(1 - Beta) ...
        (1 + (2 - 3*Rho^2)*Nu^2*YearsToExercise(k)/24) ...
        -ATMVolatilities(k)*CurrentForwardValues(k)^(1 - Beta)]);
    
    % This function converts at-the-money volatility into Alpha by picking the
    % smallest positive real root.
    atmVol2SabrAlpha = @(Rho,Nu) min(real(arrayfun(@(x) ...
        x*(x>0) + realmax*(x<0 || abs(imag(x))>1e-6), alpharoots(Rho,Nu))));
    
    % Fit Rho and Nu (while converting at-the-money volatility into Alpha).   
    objFun = @(X) MarketVolatilities(:,k) - ...
    volatilities(finpricer("Analytic", 'Model', finmodel("SABR", ...
    'Alpha', atmVol2SabrAlpha(X(1), X(2)), 'Beta', Beta, 'Rho', X(1), 'Nu', X(2)), ...
    'DiscountCurve', ZeroCurve), ExerciseDates(k), CurrentForwardValues(k), MarketStrikes(:,k));
    
    X = lsqnonlin(objFun, [0 0.5], [-1 0], [1 Inf], options);
    Rho = X(1);
    Nu = X(2);
    
    % Get final Alpha from the calibrated parameters.
    Alpha = atmVol2SabrAlpha(Rho, Nu);
    
    Alphas(k) = Alpha;
    Rhos(k) = Rho;
    Nus(k) = Nu;
end

CalibratedParameters = array2table([Alphas Betas Rhos Nus],...
    'VariableNames',{'Alpha' 'Beta' 'Rho' 'Nu'},...
    'RowNames',{'3M into 10Y';'1Y into 10Y';...
    '2Y into 10Y';'3Y into 10Y';'4Y into 10Y';...
    '5Y into 10Y';'7Y into 10Y';'10Y into 10Y'})

CalibratedParameters=8×4 table
                     Alpha      Beta      Rho         Nu   
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                    ________    ____    ________    _______

    3M into 10Y     0.051895    0.5      0.40869     1.4054
    1Y into 10Y     0.054381    0.5      0.28066     1.1234
    2Y into 10Y     0.057325    0.5       0.2166    0.97407
    3Y into 10Y     0.057243    0.5      0.19837    0.82932
    4Y into 10Y     0.053387    0.5      0.17304    0.81441
    5Y into 10Y      0.04673    0.5      0.11618    0.80138
    7Y into 10Y     0.046986    0.5       0.1554    0.63377
    10Y into 10Y     0.04443    0.5     0.080169    0.52515

Step 3. Construct a volatility surface.

Use the calibrated SABR model to compute new volatilities at any strike value to produce a smooth
smile for a given maturity. This can be repeated for each maturity to form a volatility surface.

Compute volatilities using the calibrated models for each maturity and plot the volatility surface.

PlottingStrikes = (0.95:0.1:5.8)'/100;
ComputedVols = zeros(length(PlottingStrikes), NumMaturities);

for k = 1:NumMaturities
    SABRModel = finmodel("SABR", ...
        'Alpha', Alphas(k), 'Beta', Betas(k), 'Rho', Rhos(k), 'Nu', Nus(k));
    
    ComputedVols(:,k) = volatilities(finpricer("Analytic", ...
        'Model', SABRModel, 'DiscountCurve', ZeroCurve), ...
        ExerciseDates(k), CurrentForwardValues(k), PlottingStrikes);
end

figure;
surf(YearsToExercise, PlottingStrikes, ComputedVols);
xlim([0 10]); ylim([0.0095 0.06]); zlim([0.2 0.8]);
view(113,32);
set(gca, 'Position', [0.13 0.11 0.775 0.815], ...
    'PlotBoxAspectRatioMode', 'manual');
xlabel('Years to exercise', 'Fontweight', 'bold');
ylabel('Strike', 'Fontweight', 'bold');
zlabel('Implied Black volatility', 'Fontweight', 'bold');
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Note that in this volatility surface, the smiles tend to get flatter for longer swaption maturities (years
to exercise). This is consistent with the Nu parameter values tending to decrease with swaption
maturity, as shown in the table for CalibratedParameters.

Step 4. Use the SABR analytic pricer to price a swaption.

Use the SABR analytic pricer to price a swaption that matures in five years. First, create the
underlying 10-year swap instrument starting in five years and create the Swaption instrument for
this underlying Swap. Then create the SABR model for this swaption maturing in five years, which is
used for creating the SABR analytic pricer.

% Create the underlying 10-year swap starting in 5 years.
MaturityIdx = 6;
SwapStartDate = ExerciseDates(MaturityIdx);
SwapMaturity = SwapStartDate + calyears(10);
Swap = fininstrument("Swap", 'Maturity', SwapMaturity, ...
    'LegRate', [0 0], "LegType",["fixed" "float"],...
    "ProjectionCurve", ZeroCurve, "StartDate", SwapStartDate)

Swap = 
  Swap with properties:

                     LegRate: [0 0]
                     LegType: ["fixed"    "float"]
                       Reset: [2 2]
                       Basis: [0 0]
                    Notional: 100
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          LatestFloatingRate: [NaN NaN]
                 ResetOffset: [0 0]
    DaycountAdjustedCashFlow: [0 0]
             ProjectionCurve: [1x2 ratecurve]
       BusinessDayConvention: ["actual"    "actual"]
                    Holidays: NaT
                EndMonthRule: [1 1]
                   StartDate: 14-Jun-2018
                    Maturity: 14-Jun-2028
                        Name: ""

% Create the swaption (for the underlying 10-year swap) maturing in five
% years.
SwaptionExerciseDate = SwapStartDate;
Reset = 1; 
OptSpec = 'call';
Strike = 0.0272;
Swaption = fininstrument("Swaption", 'Strike', Strike, ...
    'ExerciseDate', SwaptionExerciseDate, 'Swap', Swap, 'OptionType', OptSpec)

Swaption = 
  Swaption with properties:

       OptionType: "call"
    ExerciseStyle: "european"
     ExerciseDate: 14-Jun-2018
           Strike: 0.0272
             Swap: [1x1 fininstrument.Swap]
             Name: ""

% Create the SABR model for the swaption maturing in five years.
SABRModel = finmodel("SABR", ...
        'Alpha', Alphas(MaturityIdx), 'Beta', Betas(MaturityIdx), ...
        'Rho', Rhos(MaturityIdx), 'Nu', Nus(MaturityIdx))

SABRModel = 
  SABR with properties:

             Alpha: 0.0467
              Beta: 0.5000
               Rho: 0.1162
                Nu: 0.8014
             Shift: 0
    VolatilityType: "black"

% Create the SABR analytic pricer.
SABRPricer = finpricer("Analytic", 'Model', SABRModel, 'DiscountCurve', ZeroCurve)

SABRPricer = 
  SABR with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.SABR]
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To visualize the SABR implied Black volatility used in pricing the swaption, first compute the current
forward swap rate by using the parswaprate function.

CurrentForwardSwapRate = parswaprate(Swap,ZeroCurve)

CurrentForwardSwapRate = 0.0384

Next, compute the SABR implied Black volatility for this Swaption by using the volatilities
function, and it is marked with a red arrow in the figure at the bottom.

SABRBlackVolatility = volatilities(SABRPricer, ...
         SwaptionExerciseDate, CurrentForwardSwapRate, Strike)

SABRBlackVolatility = 0.3665

text (YearsToExercise(MaturityIdx), Strike, SABRBlackVolatility, ...
    '\leftarrow', 'Color', 'r', 'FontWeight', 'bold', 'FontSize', 22);

Finally, price the swaption using the price function of the SABR analytic pricer.

SwaptionPrice = price(SABRPricer, Swaption)

SwaptionPrice = 13.0141
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Compute LIBOR Fallback
This example shows how to compute a USD LIBOR fallback. Regulators and industry groups have
recommended that firms transition away from the London inter-bank offered rate (LIBOR) and
prepare to replace them with overnight Alternative Reference Rates (ARRs). What happens to
contracts with a notional value of trillions of dollars if they refer to a benchmark that no longer
exists? If the LIBOR benchmark is no longer published, references to that benchmark rate must
change and benchmark rates “fall back” to a new benchmark in contracts. For example, if a 30-year
floating-rate instrument with a three-month coupon based on the LIBOR rate is created in 2008 and
expires in 2038, then the rate will need to change in 2023 because in 2023, the publication of a
LIBOR rate permanently ceases. To calculate three-month coupon payments after 2023, you must use
a LIBOR fallback. This example is based on the ISDA® 2020 IBOR Fallbacks Protocol.

Spread Adjustments

Use spread adjustments from the ISDA® website at LIBOR Cessation and the Impact on Fallbacks
Protocol.

Adjustment = [.00644 .03839 .11448 .18456 .26161 .42826 .71513]'/100;
TenorLabel = ["ON","1W","1M","2M","3M","6M","12M"]';
Tenors = [caldays(1) calweeks(1) calmonths([1 2 3 6 12])];
SpreadAdjustmentTable = table(TenorLabel,Adjustment);
nTenors = height(SpreadAdjustmentTable);

Example Data

Run this example using the following example data.

RateRecordDate = datetime(2021,2,26);
RateTenor = "1M";
ARR_DC = 360;

Obtain Calculation Date

Use RateRecordDate and Tenors to calculate CalculationDate.

CalculationDate = RateRecordDate + Tenors(RateTenor == TenorLabel);
if ~isbusday(CalculationDate)
    CalculationDate = busdate(CalculationDate);
end

Obtain Historical Data

For this example, the historical data is hard-coded. However, you can also use Datafeed Toolbox™
with Federal Reserve Economic Data (FRED®) to obtain the historical data.

getFredData = false;
if getFredData
    ARR_ID = 'SOFR';
    c = fred;
    c.DataReturnFormat = 'timetable';
    c.DatetimeType = 'datetime';
    FredData = fetch(c,ARR_ID,RateRecordDate,CalculationDate);
    SOFRData = FredData.Data{1};
    SOFRData(isnan(SOFRData{:,1}),:) = [];
else
    SOFRRates = [0.01 0.02 0.04 0.04 0.02 0.02 0.02 0.02 0.02 0.01 ...
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        0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01]';
    SOFRDates = busdays(RateRecordDate,CalculationDate);
    SOFRData = timetable(SOFRDates,SOFRRates);
end

Compute Spread Adjustment

Obtain the spread adjustment from SpreadAdjustmentTable.

SpreadAdj = Adjustment(RateTenor == TenorLabel);

Compute ARR

Compute the alternative reference rate (ARR) using the relevant reference rate data.

tau = days(diff(SOFRData.Properties.RowTimes))/ARR_DC;
relRate = SOFRData{1:end-1,1};
CompRate = prod(1 + tau.*1/100.*relRate) - 1;
ARR = ARR_DC/days(CalculationDate - RateRecordDate)*CompRate;
ARR = round(ARR,7);

Compute Fallback Rate

FallbackRate is the sum of ARR and SpreadAdj.

FallbackRate = ARR + SpreadAdj

FallbackRate = 0.0013
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Use treeviewer to Examine HWTree and PriceTree When Pricing
European Callable Bond

This example demonstrates how to use treeviewer to examine tree information for a Hull-White
tree when you price a Europrean callable bond.

Specify Input Parameters

Define the interest-rate curve information.

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2019';
EndDates = {'Jan-1-2020'; 'Jan-1-2021'; 'Jan-1-2022'; 'Jan-1-2023'};
Compounding = 1;

Define the callable bond instruments. The first instrument is the first entry in the arrays. So, for
example, the first instrument has a strike price of $98 and a maturity of January 1, 2022.

Settle = '01-Jan-2019';
Maturity = {'01-Jan-2022'; '01-Jan-2023'};
CouponRate = {{'01-Jan-2021' .0425; '01-Jan-2023' .0450}};  
OptType = 'call';
Strike = [98; 95];
ExerciseDates= {'01-Jan-2021'; '01-Jan-2022'};
Basis = 1;

Define the volatility information and HW one-factor parameters.

VolDates = ['1-Jan-2020'; '1-Jan-2021'; '1-Jan-2022'; '1-Jan-2023'];
VolCurve = 0.05;
AlphaDates = '01-01-2023';
AlphaCurve = 0.05; 

Build Hull-White One-Factor Tree

Use hwtree to build a one-factor tree.

RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis); 
HWVolSpec = hwvolspec(RateSpec.ValuationDate, VolDates, VolCurve, AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RateSpec.ValuationDate, VolDates, Compounding);
HWTimeSpec.Basis = Basis;

HWT = hwtree(HWVolSpec, RateSpec, HWTimeSpec);

Price Both Callable Instruments

Use optembndbyhw to price the callable bond with embedded options.

[Price, PriceTree] = optembndbyhw(HWT, CouponRate,  Settle, Maturity, OptType, Strike,...
ExerciseDates, 'Period', 1, 'Basis', Basis)

Price = 2×1

   96.4131
   92.9341
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PriceTree = struct with fields:
                FinObj: 'HWPriceTree'
                  tObs: [0 1 2 3 4]
                 PTree: {1x5 cell}
              ProbTree: {1x5 cell}
                ExTree: {1x5 cell}
            ExProbTree: {1x5 cell}
    ExProbsByTreeLevel: [2x5 double]
               Connect: {[2]  [2 3 4]  [2 3 4 5 6]}

Examine Hull-White Tree Structure

Use treeviewer to examine the Hull-White interest-rate tree that is the input for the embedded
option pricer.

treeviewer(HWT)

The Hull-White tree has 4 levels of nodes. The root node is at t = 0, three nodes are at t = 1, five
nodes are at t = 2, and seven nodes are at t = 3. Each node represents a particular state. In this case,
the state is defined by the forward interest-rate curve, HWT.FwdTree. The combination of
HWT.FwdTree and HWT.Connect defines the tree structure. FwdTree contains the values of the
forward interest rate at each node. The other fields contain other information relevant to interpreting
the values in FwdTree. The most important are VolSpec, TimeSpec, and RateSpec, which contain
the volatility, time structure, and rate structure information, respectively.

For example, HWT.FwdTree is:
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HWT.FwdTree

ans=1×4 cell array
    {[1.0350]}    {[1.1457 ... ]}    {[1.2639 ... ]}    {[1.4003 ... ]}

If you display the nodes graphically with the forward rates superimposed it looks like:

You can use the treeviewer function to visualize the rates in the tree with treeviewer(HWT). This
function displays the structure of a Hull-White tree (HWT) in the left pane. The tree visualization in the
right pane is blank. Visualize the actual interest-rate tree:

1. In the Tree Visualization pane, click Path and Diagram.

2. Select the first path by clicking the first node of the up branch at t = 1.

3. Continue by clicking the up branch at the next node at t = 2.

The following figures show the treeviewer path diagrams for these selections.
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4. Continue clicking all nodes in succession until you reach the end of the branch. The entire path you
selected is highlighted in red.

5. Select a second path by clicking the first node of the lower branch at t = 1. Continue clicking lower
nodes as you did on the first branch. The second branch is highlighted in purple.
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Hull-White trees have two additional properties called Probs and Connect. The Probs property
represents the transition probabilities and the Connect property defines how the nodes are
connected together.

Connect Field

HWT.Connect describes the connectivity of the nodes of a given tree level to the nodes at the next
tree level.

HWT.Connect

ans=1×3 cell array
    {[2]}    {[2 3 4]}    {[2 3 4 5 6]}

The first value of HWT.Connect corresponds to t = 0 for the root node and indicates that the root
node connects to node 2 of the next level at t = 1. To visualize this, consider the following connection
illustration of the tree, where the node numbers have been superimposed above each node.
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Specifically, HWT.Connect represents the index of the node in the next tree level (t + 1) that the
middle branch of the node connects to.

The next entry in HWT.Connect at t = 1 is [2,3,4]. This means that node 1 at t = 1 has a middle
branch with node 2 at t = 2, node 2 at t = 1 has a middle branch with node 3 at t = 2, and node 3 at t
= 1 has a middle branch with node 4 at t = 2. A graphic representation follows.

 Use treeviewer to Examine HWTree and PriceTree When Pricing European Callable Bond

2-201



The middle branch path, as explicitly defined in HWT.Connect, is colored red and the implicit upper
and lower branch paths are colored yellow. Overlaying all paths defined in HWT.Connect as red and
the implicit upper and lower branches as yellow produces the following tree structure.
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The shape in the figure is the same shape obtained by running the function treeviewer(HWT).

Probs Field

Using the following illustration, consider that you want to know the probability at t = 1 (second level
of the tree) that the top node takes of one of the three paths.
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HWT.Probs gives the probabilities that a particular branch has of moving from a given node to a
node on the next level of the tree.

HWT.Probs

ans=1×3 cell array
    {3x1 double}    {3x3 double}    {3x5 double}

The Probs field consists of a cell array with one cell per level of the tree. Find the probabilities of all
three nodes at t = 1, which corresponds to the second level of the tree.

HWT.Probs{2}

ans = 3×3

    0.1429    0.1667    0.1929
    0.6642    0.6667    0.6642
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    0.1929    0.1667    0.1429

Each column represents a different node. The first node at t = 1 corresponds to the first column and
the probabilities are 14.29%, 66.42%, and 19.30%.

The probability of moving up (path 1) is the top value (14.29%), the middle path is the middle value
(66.42%), and the path going down (path 3) is the bottom value in the array (19.30%). The following
diagram summarizes this information.
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Examine the PriceTree Structure

The output of the pricing function is PriceTree. PriceTree has the following fields.

• PriceTree.PTree — contains the clean prices of each instrument.
• PriceTree.ExTree — contains the exercise indicator arrays where a value of 1 indicates the

option has been exercised and a value of 0 indicates the option has not been exercised.
• PriceTree.ExProbTree — contains the exercise probabilities. A value of 0 indicates there was

no exercise and a nonzero value gives the probability of reaching that node where the exercise
happens.

• PriceTree.ProbTree — contains the probability tree indicating how likely any node is reached
from the root node.

• PriceTree.ExProbsByTreeLevel — contains the exercise probability for a given option at each
tree observation time. This is an aggregated view of PriceTree.ExProbTree that sums the
values along all nodes at a particular time.

Note that for ProbTree, PTree, ExTree, and ExProbTree, each cell represents a different time in
the tree, and inside each cell is an array. Each column in the array represents a different node on the
tree at that particular tree level. This structure is the same as in HWT.Probs. However, for PTree,
ExTree, and ExProbTree each row represents a different instrument. Because this example prices
two instruments, there are only two rows. ProbTree contains only one row as the probability of
reaching a particular node is independent of the instrument being priced.

Looking at PriceTree.ProbTree, examine the probabilities of reaching each of the five nodes from
the root node at t = 2, which is the third level of the tree.

PriceTree.ProbTree{3}

ans = 1×5

    0.0238    0.2218    0.5087    0.2218    0.0238

These results are displayed in the following diagram, where all nodes are overlayed with their
probabilities. The root node at t = 0 always has a probability of being reached, hence, it has a value
of 1.
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By looking at PriceTree.ExTree, you can determine if the options are exercised. If either of the
two instruments has options exercised at t = 2, which is the third level of the tree, the values in
ExTree are 1; otherwise, the value is 0.

PriceTree.ExTree{3}

ans = 2×5
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     0     0     1     1     1
     0     0     0     0     0

At t = 2, the first instrument has its option exercised at some nodes, while there is no exercise for the
second instrument. The following diagram summarizes the exercise indicators on the tree.
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Examine ExProbTree, which contains the exercise probabilities. These values indicate the
probability of exercising the option.

PriceTree.ExProbTree{3}
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ans = 2×5

         0         0    0.5087    0.2218    0.0238
         0         0         0         0         0
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ExProbsByTreeLevel is an aggregated view of ExProbTrees. Examine the exercise probabilities
for the two options at each tree observation time.

PriceTree.ExProbsByTreeLevel

ans = 2×5

         0         0    0.7544         0         0
         0         0         0    0.7124         0

The first row corresponds to instrument 1, and the second row corresponds to instrument 2.

You can use treeviewer to examine the tree and PriceTree structures for any of the following
tree types:

• bdttree
• bktree
• hjmtree
• hwtree
• cirtree
• crrtree
• itttree
• stttree
• lrtree
• eqptree
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Select Cheapest-to-Deliver Bond Using BondFuture Instrument
This example shows how to select the cheapest-to-deliver (CTD) bond for Treasury bond future
contracts using a BondFuture instrument. It demonstrates two workflows for selecting the CTD
bond:

• Select the CTD bond at the time of delivery on page 2-0 .
• Select the CTD bond months before the delivery date on page 2-0 .

When a Treasury bond future contract matures, the party that is in the short position of the contract
can deliver the underlying bond to the party that is in the long position of the contract. Typically,
there can be many different bonds that satisfy the terms of the contract during the delivery month.
For example, you can meet the delivery obligation for a 30-year US Treasury bond future contract
with any US Treasury bond that has at least 15 years to maturity at the time of delivery.
Furthrermore, these deliverable bonds can have different coupons and maturities. Since the party in
the short position has the option to choose which bond to deliver from these deliverable bonds, it is in
the interest of that party to select the CTD bond that minimizes the delivery cost. You can select the
CTD bond at the time of delivery during the delivery month of the future contract using the current
market prices. Alternatively, you can predict the CTD bond several months before the delivery month
based on the current zero curve.

Select CTD Bond at Time of Delivery

In this workflow, you determine the delivery cost by comparing the invoice price that the short
position receives from the long position against the price of the deliverable bond. For a particular
deliverable bond, the invoice price that the short position receives from the long position is:

InvoicePrice = (QuotedFuturePrice x ConversionFactor + AccruedInterest)/BondPrincipal x FutureNotional

For example, in the 30-year US Treasury bond futures market, typically, BondPrincipal is $100 and
FutureNotional is $100,000. In return, the short position delivers the bond to the long position by
buying the deliverable bond that has the following purchase cost in the market:

PurchaseCost = (SpotPrice + AccruedInterest)/BondPrincipal x FutureNotional

Here, SpotPrice is the clean market price of the bond at the time of delivery. From this purchase
cost, subtracting the invoice amount to be received by the short position from the long position gives
the following formula for the overall delivery cost:

OverallDeliveryCost = (SpotPrice - QuotedFuturePrice x ConversionFactor)/BondPrincipal x FutureNotional

You can compute the delivery cost for every deliverable bond and determine the CTD bond by
selecting the bond with the lowest delivery cost. The OverallDeliveryCost formula applies only at
the time of delivery. This method is equivalent to using the cashsettle method of the BondFuture
instrument at the time of delivery. To demonstrate this workflow, the following example uses fictitious
data, and selects the CTD bond using the BondFuture instrument on the delivery day of a
hypothetical 30-year US Treasury bond future contract maturing in December 2021.

% Create a zero curve.
Settle = datetime(2021,12,21);
ZeroDates = Settle + [calmonths([1 2 3 6]) calyears([1 2 3 5 7 10 20 30])]';
ZeroRates = [0.06 0.04 0.06 0.07 0.21 0.60 0.95 1.34 1.60 1.69 2.15 2.05]'./100;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates,Compounding=2);

% Define the data for the deliverable bonds.
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ReferenceDate = datetime(2021,12,1);
BondMaturity = datetime(datevec(["2/15/2045","2/15/2037","8/15/2040",...
    "5/15/2041","5/15/2037","2/15/2042","11/15/2043","11/15/2044",...
    "5/15/2038","2/15/2041"],'mm/dd/yyyy'));
CouponRate = [2.5 4.75 3.875 2.25 5.0 3.125 3.75 3.0 4.5 4.75]'/100;
IssueDate = datetime(datevec(["2/17/2015","2/15/2007","8/16/2010",...
    "6/1/2021","8/15/2007","2/15/2012","11/15/2013","11/17/2014",...
    "8/15/2008","2/15/2011"],'mm/dd/yyyy'));
SpotPrice = [109.06;140.78;130.60;104.04;144.02;119.03;131.05;118.23;138.08;145.25];
NumBonds = length(BondMaturity);
BondID = (1:NumBonds)';

% Use convfactor to compute the conversion factors.
ConversionFactor = convfactor(ReferenceDate,BondMaturity,CouponRate)

ConversionFactor = 10×1

    0.5664
    0.8775
    0.7645
    0.5752
    0.9009
    0.6677
    0.7286
    0.6302
    0.8456
    0.8594

% Create a vector of FixedBond instruments.
BondPrincipal = 100;
DeliverableBonds = fininstrument("FixedBond",Maturity=BondMaturity,...
    CouponRate=CouponRate,IssueDate=IssueDate,Principal=BondPrincipal)

DeliverableBonds=10×1 object
  10x1 FixedBond array with properties:

    CouponRate
    Period
    Basis
    EndMonthRule
    Principal
    DaycountAdjustedCashFlow
    BusinessDayConvention
    Holidays
    IssueDate
    FirstCouponDate
    LastCouponDate
    StartDate
    Maturity
    Name

% Create a vector of BondFuture instruments.
FutureMaturity = datetime(2021,12,21);
QuotedFuturePrice = 159.53;
FutureNotional = 100000;
BondFutureContracts = fininstrument("BondFuture",Maturity=FutureMaturity,...
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    QuotedPrice=QuotedFuturePrice,Bond=DeliverableBonds,...
    ConversionFactor=ConversionFactor,Notional=FutureNotional)

BondFutureContracts=10×1 object
  10x1 BondFuture array with properties:

    Maturity
    QuotedPrice
    Bond
    ConversionFactor
    Notional
    Name

To compute the delivery cost, use the cashsettle method of the BondFuture instrument to
compute the delivery cost because this method estimates the undiscounted net cash settlement
amount that could be paid by the short position to the long position at future maturity instead of
physical delivery.

% Use the cashsettle method to compute the delivery costs.
DeliveryCost = nan(NumBonds,1);
for k=1:NumBonds
    outCS = cashsettle(BondFutureContracts(k), SpotPrice(k), ZeroCurve);
    DeliveryCost(k) = outCS.CashSettleAmount;
end

% List the deliverable bonds and delivery costs in a table.
DeliverableBondTable = table(BondID, BondMaturity, IssueDate, ...
    CouponRate, SpotPrice, ConversionFactor, DeliveryCost)

DeliverableBondTable=10×7 table
    BondID    BondMaturity     IssueDate     CouponRate    SpotPrice    ConversionFactor    DeliveryCost
    ______    ____________    ___________    __________    _________    ________________    ____________

       1      15-Feb-2045     17-Feb-2015       0.025       109.06          0.56643             18697   
       2      15-Feb-2037     15-Feb-2007      0.0475       140.78           0.8775            792.87   
       3      15-Aug-2040     16-Aug-2010     0.03875        130.6          0.76447            8643.6   
       4      15-May-2041     01-Jun-2021      0.0225       104.04          0.57524             12272   
       5      15-May-2037     15-Aug-2007        0.05       144.02           0.9009            299.73   
       6      15-Feb-2042     15-Feb-2012     0.03125       119.03          0.66773             12508   
       7      15-Nov-2043     15-Nov-2013      0.0375       131.05          0.72859             14818   
       8      15-Nov-2044     17-Nov-2014        0.03       118.23          0.63022             17690   
       9      15-May-2038     15-Aug-2008       0.045       138.08          0.84558            3185.1   
      10      15-Feb-2041     15-Feb-2011      0.0475       145.25          0.85942            8146.4   

Once you have computed the delivery costs for all of the deliverable bonds, you can determine the
CTD bond by selecting the bond with the lowest delivery cost.

% Determine the CTD bond with the lowest delivery cost.
[~,CTDBondIdx] = min(DeliverableBondTable.DeliveryCost);
CTDBondTableDecember2021 = DeliverableBondTable(CTDBondIdx,:)

CTDBondTableDecember2021=1×7 table
    BondID    BondMaturity     IssueDate     CouponRate    SpotPrice    ConversionFactor    DeliveryCost
    ______    ____________    ___________    __________    _________    ________________    ____________

      5       15-May-2037     15-Aug-2007       0.05        144.02           0.9009            299.73   
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BondFutureContracts(CTDBondIdx)

ans = 
  BondFuture with properties:

            Maturity: 21-Dec-2021
         QuotedPrice: 159.5300
                Bond: [1x1 fininstrument.FixedBond]
    ConversionFactor: 0.9009
            Notional: 100000
                Name: ""

Among the ten deliverable bonds, the CTD bond with the lowest delivery cost for the December 2021
future contract is the bond with a 5% coupon rate maturing on May 15, 2037. This CTD bond is
determined at the time of delivery on December 21, 2021.

Since the delivery costs in this example are computed at the time of delivery, the delivery costs
computed by the cashsettle method of the BondFuture instrument for this future contract are in
agreement with those computed using the following formula for the overall delivery cost at delivery:

OverallDeliveryCost = (SpotPrice - QuotedFuturePrice x ConversionFactor)/BondPrincipal x FutureNotional

% Compare calculated delivery cost using cashsettle with the delivery cost formula.
DeliveryCostFormula = ...
    (SpotPrice - QuotedFuturePrice.*ConversionFactor)/BondPrincipal*FutureNotional;
table(DeliveryCostFormula, DeliveryCost)

ans=10×2 table
    DeliveryCostFormula    DeliveryCost
    ___________________    ____________

           18697               18697   
          792.87              792.87   
          8643.6              8643.6   
           12272               12272   
          299.73              299.73   
           12508               12508   
           14818               14818   
           17690               17690   
          3185.1              3185.1   
          8146.4              8146.4   

Select CTD Bond Months Before Delivery Month

The previous overall delivery cost formula on page 2-0  applies only at the time of delivery.
However, if a current zero curve is available, you can still compute the estimated delivery cost using
the cashsettle method of the BondFuture instrument, even when it is several months before the
delivery month. In the following example, you select the CTD bond using the BondFuture instrument
in November 2021 for a hypothetical 30-year US Treasury bond future contract maturing several
months later in June 2022. The overall workflow is similar to the workflow in Select CTD Bond at
Time of Delivery on page 2-0 , except that you select the CTD bond several months before the
delivery month and the overall delivery cost formula no longer applies.

% Create a zero curve.
Settle = datetime(2021,11,22);
ZeroDates = Settle + [calmonths([1 2 3 6]) calyears([1 2 3 5 7 10 20 30])]';
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ZeroRates = [0.07 0.04 0.05 0.07 0.20 0.63 0.95 1.34 1.57 1.65 2.09 2.01]'./100;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates,Compounding=2);

% Define the data for the deliverable bonds.
ReferenceDate = datetime(2022,6,1);
BondMaturity = datetime(datevec(["11/15/2046","2/15/2038","11/15/2040",...
    "11/15/2041","5/15/2044","5/15/2042","5/15/2045","8/15/2041",...
    "8/15/2043","8/15/2039"],'mm/dd/yyyy'));
CouponRate = [2.875 4.375 4.25 3.125 3.375 3.0 3.0 1.75 3.625 4.5]'/100;
IssueDate = datetime(datevec(["11/15/2016","2/15/2008","11/15/2010",...
    " 11/15/2011","5/15/2014","5/15/2012","5/15/2015","8/31/2021",...
    "8/15/2013","8/17/2009"],'mm/dd/yyyy'));
SpotPrice = [117.84;137.13;137.53;119.17;125.03;117.34;119.03;95.97;128.84;140.56];
NumBonds = length(BondMaturity);
BondID = 10+(1:NumBonds)';

% Use convfactor to compute the conversion factors.
ConversionFactor = convfactor(ReferenceDate,BondMaturity,CouponRate)

ConversionFactor = 10×1

    0.6033
    0.8375
    0.8074
    0.6743
    0.6834
    0.6555
    0.6302
    0.5220
    0.7185
    0.8415

% Create a vector of FixedBond instruments.
BondPrincipal = 100;
DeliverableBonds = fininstrument("FixedBond",Maturity=BondMaturity, ...
    CouponRate=CouponRate,IssueDate=IssueDate,Principal=BondPrincipal)

DeliverableBonds=10×1 object
  10x1 FixedBond array with properties:

    CouponRate
    Period
    Basis
    EndMonthRule
    Principal
    DaycountAdjustedCashFlow
    BusinessDayConvention
    Holidays
    IssueDate
    FirstCouponDate
    LastCouponDate
    StartDate
    Maturity
    Name

% Create a vector of BondFuture instruments.
FutureMaturity = datetime(2022,6,21);

 Select Cheapest-to-Deliver Bond Using BondFuture Instrument

2-217



QuotedFuturePrice = 160.31;
FutureNotional = 100000;
BondFutureContracts = fininstrument("BondFuture",Maturity=FutureMaturity, ...
    QuotedPrice=QuotedFuturePrice,Bond=DeliverableBonds, ...
    ConversionFactor=ConversionFactor,Notional=FutureNotional)

BondFutureContracts=10×1 object
  10x1 BondFuture array with properties:

    Maturity
    QuotedPrice
    Bond
    ConversionFactor
    Notional
    Name

% Use the cashsettle method to compute the delivery costs.
DeliveryCost = nan(NumBonds,1);
for k=1:NumBonds
    outCS = cashsettle(BondFutureContracts(k), SpotPrice(k), ZeroCurve);
    DeliveryCost(k) = outCS.CashSettleAmount;
end

% List the deliverable bonds and delivery costs in a table.
DeliverableBondTable = table(BondID, BondMaturity, IssueDate, ...
    CouponRate, SpotPrice, ConversionFactor, DeliveryCost)

DeliverableBondTable=10×7 table
    BondID    BondMaturity     IssueDate     CouponRate    SpotPrice    ConversionFactor    DeliveryCost
    ______    ____________    ___________    __________    _________    ________________    ____________

      11      15-Nov-2046     15-Nov-2016     0.02875       117.84          0.60331             19515   
      12      15-Feb-2038     15-Feb-2008     0.04375       137.13           0.8375            409.62   
      13      15-Nov-2040     15-Nov-2010      0.0425       137.53          0.80741            5695.6   
      14      15-Nov-2041     15-Nov-2011     0.03125       119.17          0.67433            9314.9   
      15      15-May-2044     15-May-2014     0.03375       125.03          0.68337             13582   
      16      15-May-2042     15-May-2012        0.03       117.34          0.65551             10574   
      17      15-May-2045     15-May-2015        0.03       119.03          0.63022             16318   
      18      15-Aug-2041     31-Aug-2021      0.0175        95.97          0.52204             11320   
      19      15-Aug-2043     15-Aug-2013     0.03625       128.84          0.71855             11618   
      20      15-Aug-2039     17-Aug-2009       0.045       140.56          0.84151            3125.4   

% Determine the CTD bond with the lowest delivery cost.
[~,CTDBondIdx] = min(DeliverableBondTable.DeliveryCost);
CTDBondTableJune2022 = DeliverableBondTable(CTDBondIdx,:)

CTDBondTableJune2022=1×7 table
    BondID    BondMaturity     IssueDate     CouponRate    SpotPrice    ConversionFactor    DeliveryCost
    ______    ____________    ___________    __________    _________    ________________    ____________

      12      15-Feb-2038     15-Feb-2008     0.04375       137.13           0.8375            409.62   

BondFutureContracts(CTDBondIdx)

ans = 
  BondFuture with properties:

2 Interest-Rate Derivatives

2-218



            Maturity: 21-Jun-2022
         QuotedPrice: 160.3100
                Bond: [1x1 fininstrument.FixedBond]
    ConversionFactor: 0.8375
            Notional: 100000
                Name: ""

Among the ten deliverable bonds, the CTD bond with the lowest delivery cost for the June 2022 future
contract is the bond with a 4.375% coupon rate maturing on February 15, 2038. This CTD bond is
predicted using the zero curve available on November 22, 2021, which is several months before the
delivery month in June 2022.

See Also
Functions
finmodel | finpricer | convfactor | BondFuture | ratecurve | cashsettle
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Graphical Representation of Trees
In this section...
“Introduction” on page 2-220
“Observing Interest Rates” on page 2-220
“Observing Instrument Prices” on page 2-223

Introduction
You can use the function treeviewer to display a graphical representation of a tree, allowing you to
examine interactively the prices and rates on the nodes of the tree until maturity. To get started with
this process, first load the data file deriv.mat included in this toolbox.

load deriv.mat

Note treeviewer price tree diagrams follow the convention that increasing prices appear on the
upper branch of a tree and, consequently, decreasing prices appear on the lower branch. Conversely,
for interest rate displays, decreasing interest rates appear on the upper branch (prices are rising)
and increasing interest rates on the lower branch (prices are falling).

For information on the use of treeviewer to observe interest rate movement, see “Observing
Interest Rates” on page 2-220. For information on using treeviewer to observe the movement of
prices, see “Observing Instrument Prices” on page 2-223.

Observing Interest Rates
If you provide the name of an interest rate tree to the treeviewer function, it displays a graphical
view of the path of interest rates. For example, here is the treeviewer representation of all the
rates along both the up and down branches of HJMTree.

treeviewer(HJMTree)
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The example in “Isolating a Specific Node” on page 2-75 used bushpath to find the path of forward
rates along an HJM tree by taking the first branch up and then two branches down the rate tree.

FRates = bushpath(HJMTree.FwdTree, [1 2 2])

FRates =

    1.0356
    1.0364
    1.0526
    1.0674

With the treeviewer function you can display the identical information by clicking along the same
sequence of nodes, as shown next.
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Next is a treeviewer representation of interest rates along several branches of BDTTree.

treeviewer(BDTTree)

Note When using treeviewer with recombining trees, such as BDT, BK, and HW, you must click
each node in succession from the beginning to the end. Because these trees can recombine,
treeviewer is unable to complete the path automatically.

The example in “Isolating a Specific Node” on page 2-75 used treepath to find the path of interest
rates taking the first branch up and then two branches down the rate tree.

FRates = treepath(BDTTree.FwdTree, [1 2 2])

FRates =

    1.1000
    1.0979
    1.1377
    1.1606

You can display the identical information by clicking along the same sequence of nodes, as shown
next.
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Observing Instrument Prices
To use treeviewer to display a tree of instrument prices, provide the name of an instrument set
along with the name of a price tree in your call to treeviewer, for example:

load deriv.mat
[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet);
treeviewer(PriceTree, HJMInstSet)

With treeviewer you select each instrument individually in the instrument portfolio for display.

You can use an analogous process to view instrument prices based on the BDT interest rate tree
included in deriv.mat.
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load deriv.mat
[BDTPrice, BDTPriceTree] = bdtprice(BDTTree, BDTInstSet);
treeviewer(BDTPriceTree, BDTInstSet)

Valuation Date Prices

You can use treeviewer instrument-by-instrument to observe instrument prices through time. For
the first 4% bond in the HJM instrument portfolio, treeviewer indicates a valuation date price of
98.72, the same value obtained by accessing the PriceTree structure directly.

As a further example, look at the sixth instrument in the price vector, the 3% cap. At the valuation
date, its value obtained directly from the structure is 6.2831. Use treeviewer on this instrument to
confirm this price.
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Additional Observation Times

The second node represents the first-rate observation time, tObs = 1. This node displays two states,
one representing the branch going up and the other one representing the branch going down.

Examine the prices of the node corresponding to the up branch.

PriceTree.PBush{2}(:,:,1)

ans =

  100.1563
   99.7309
    0.1007
  100.1563
  100.3782
    3.2594
    0.1007
    3.5597

As before, you can use treeviewer, this time to examine the price for the 4% bond on the up
branch. treeviewer displays a price of 100.2 for the first node of the up branch, as expected.
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Now examine the corresponding down branch.

PriceTree.PBush{2}(:,:,2)

ans =

   96.3041
   94.1986
         0
   96.3041
  100.3671
    8.6342
         0
   -0.3923

Use treeviewer once again, now to observe the price of the 4% bond on the down branch. The
displayed price of 96.3 conforms to the price obtained from direct access of the PriceTree
structure. You may continue this process as far along the price tree as you want.
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See Also
instbond | instcap | instcf | instfixed | instfloat | instfloor | instoptbnd |
instoptembnd | instoptfloat | instoptemfloat | instrangefloat | instswap |
instswaption | intenvset | bondbyzero | cfbyzero | fixedbyzero | floatbyzero |
intenvprice | intenvsens | swapbyzero | floatmargin | floatdiscmargin | hjmtimespec |
hjmtree | hjmvolspec | bondbyhjm | capbyhjm | cfbyhjm | fixedbyhjm | floatbyhjm |
floorbyhjm | hjmprice | hjmsens | mmktbyhjm | oasbyhjm | optbndbyhjm | optfloatbyhjm |
optembndbyhjm | optemfloatbyhjm | rangefloatbyhjm | swapbyhjm | swaptionbyhjm |
bdttimespec | bdttree | bdtvolspec | bdtprice | bdtsens | bondbybdt | capbybdt | cfbybdt
| fixedbybdt | floatbybdt | floorbybdt | mmktbybdt | oasbybdt | optbndbybdt |
optfloatbybdt | optembndbybdt | optemfloatbybdt | rangefloatbybdt | swapbybdt |
swaptionbybdt | hwtimespec | hwtree | hwvolspec | bondbyhw | capbyhw | cfbyhw |
fixedbyhw | floatbyhw | floorbyhw | hwcalbycap | hwcalbyfloor | hwprice | hwsens |
oasbyhw | optbndbyhw | optfloatbyhw | optembndbyhw | optemfloatbyhw | rangefloatbyhw |
swapbyhw | swaptionbyhw | bktimespec | bktree | bkvolspec | bkprice | bksens | bondbybk |
capbybk | cfbybk | fixedbybk | floatbybk | floorbybk | oasbybk | optbndbybk |
optfloatbybk | optembndbybk | optemfloatbybk | rangefloatbybk | swapbybk |
swaptionbybk | capbyblk | floorbyblk | swaptionbyblk

Related Examples
• “Overview of Interest-Rate Tree Models” on page 2-44
• “Pricing Using Interest-Rate Term Structure” on page 2-61
• “Pricing Using Interest-Rate Tree Models” on page 2-81
• “Understanding Interest-Rate Tree Models” on page 2-66
• “Understanding the Interest-Rate Term Structure” on page 2-48

More About
• “Supported Interest-Rate Instrument Functions” on page 2-3
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• “Supported Equity Derivative Functions” on page 3-19
• “Supported Energy Derivative Functions” on page 3-34
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Basis
Day count basis determines how interest accrues over time for various instruments and the amount
transferred on interest payment dates. The calculation of accrued interest for dates between
payments also uses day count basis. Day count basis is a fraction of Number of interest
accrual days / Days in the relevant coupon period. Supported day count conventions and
basis values are:

Basis
Value

Day Count Convention

0 actual/actual (default) — Number of days in both a period and a year is the actual
number of days.

1 30/360 SIA — Year fraction is calculated based on a 360 day year with 30-day months,
after applying the following rules: If the first date and the second date are the last day
of February, the second date is changed to the 30th. If the first date falls on the 31st or
is the last day of February, it is changed to the 30th. If after the preceding test, the first
day is the 30th and the second day is the 31st, then the second day is changed to the
30th.

2 actual/360 — Number of days in a period is equal to the actual number of days, however
the number of days in a year is 360.

3 actual/365 — Number of days in a period is equal to the actual number of days, however
the number of days in a year is 365 (even in a leap year).

4 30/360 PSA — Number of days in every month is set to 30 (including February). If the
start date of the period is either the 31st of a month or the last day of February, the start
date is set to the 30th, while if the start date is the 30th of a month and the end date is
the 31st, the end date is set to the 30th. The number of days in a year is 360.

5 30/360 ISDA — Number of days in every month is set to 30, except for February where it
is the actual number of days. If the start date of the period is the 31st of a month, the
start date is set to the 30th while if the start date is the 30th of a month and the end
date is the 31st, the end date is set to the 30th. The number of days in a year is 360.

6 30E /360 — Number of days in every month is set to 30 except for February where it is
equal to the actual number of days. If the start date or the end date of the period is the
31st of a month, that date is set to the 30th. The number of days in a year is 360.

7 actual/365 Japanese — Number of days in a period is equal to the actual number of days,
except for leap days (29th February) which are ignored. The number of days in a year is
365 (even in a leap year).

8 actual/actual ICMA — Number of days in both a period and a year is the actual number
of days and the compounding frequency is annual.

9 actual/360 ICMA — Number of days in a period is equal to the actual number of days,
however the number of days in a year is 360 and the compounding frequency is annual.

10 actual/365 ICMA — Number of days in a period is equal to the actual number of days,
however the number of days in a year is 365 (even in a leap year) and the compounding
frequency is annual.

11 30/360 ICMA — Number of days in every month is set to 30, except for February where
it is equal to the actual number of days. If the start date or the end date of the period is
the 31st of a month, that date is set to the 30th. The number of days in a year is 360 and
the compounding frequency is annual.
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Basis
Value

Day Count Convention

12 actual/365 ISDA — The day count fraction is calculated using the following formula:
(Actual number of days in period that fall in a leap year / 366) +
(Actual number of days in period that fall in a normal year / 365 ).

13 bus/252 — The number of days in a period is equal to the actual number of business
days. The number of business days in a year is 252.
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Equity Derivatives

• “Understanding Equity Trees” on page 3-2
• “Supported Equity Derivative Functions” on page 3-19
• “Supported Energy Derivative Functions” on page 3-34
• “Pricing Swing Options Using the Longstaff-Schwartz Method” on page 3-43
• “Simulating Electricity Prices with Mean-Reversion and Jump-Diffusion” on page 3-53
• “Pricing Equity Derivatives Using Trees” on page 3-64
• “Computing Equity Instrument Sensitivities” on page 3-75
• “Equity Derivatives Using Closed-Form Solutions” on page 3-79
• “Pricing European Call Options Using Different Equity Models” on page 3-88
• “Compute the Option Price on a Future” on page 3-95
• “Pricing European and American Spread Options” on page 3-97
• “Pricing Asian Options” on page 3-110
• “Price Spread Instrument for a Commodity Using Black-Scholes Model and Analytic Pricers”

on page 3-123
• “Price Vanilla Instrument Using Heston Model and Multiple Different Pricers” on page 3-125
• “Create and Price Portfolio of Instruments ” on page 3-131
• “Use Black-Scholes Model to Price Asian Options with Several Equity Pricers” on page 3-135
• “Calibrate Option Pricing Model Using Heston Model” on page 3-143
• “Use Deep Learning to Approximate Barrier Option Prices with Heston Model” on page 3-149
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Understanding Equity Trees
In this section...
“Introduction” on page 3-2
“Building Equity Binary Trees” on page 3-3
“Building Implied Trinomial Trees” on page 3-6
“Building Standard Trinomial Trees” on page 3-11
“Examining Equity Trees” on page 3-14
“Differences Between CRR and EQP Tree Structures” on page 3-17

Introduction
Financial Instruments Toolbox supports five types of recombining tree models to represent the
evolution of stock prices:

• Cox-Ross-Rubinstein (CRR) model
• Equal probabilities (EQP) model
• Leisen-Reimer (LR) model
• Implied trinomial tree (ITT) model
• Standard trinomial tree (STT) model

For a discussion of recombining trees, see “Rate and Price Trees” on page 2-45.

The CRR, EQP, LR, STT, and ITT models are examples of discrete time models. A discrete time model
divides time into discrete bits; prices can only be computed at these specific times.

The CRR model is one of the most common methods used to model the evolution of stock processes.
The strength of the CRR model lies in its simplicity. It is a good model when dealing with many tree
levels. The CRR model yields the correct expected value for each node of the tree and provides a
good approximation for the corresponding local volatility. The approximation becomes better as the
number of time steps represented in the tree is increased.

The EQP model is another discrete time model. It has the advantage of building a tree with the exact
volatility in each tree node, even with small numbers of time steps. It also provides better results
than CRR in some given trading environments, for example, when stock volatility is low and interest
rates are high. However, this additional precision causes increased complexity, which is reflected in
the number of calculations required to build a tree.

The LR model is another discrete time model. It has the advantage of producing estimates close to
the Black-Scholes model using only a few steps, while also minimizing the oscillation.

The ITT model is a CRR-style implied trinomial tree which takes advantage of prices quoted from
liquid options in the market with varying strikes and maturities to build a tree that more accurately
represents the market. An ITT model is commonly used to price exotic options in such a way that they
are consistent with the market prices of standard options.

The STT model is another discrete time model. It is considered to produce more accurate results than
the binomial model when fewer time steps are modeled. The STT model is sometimes more stable and
accurate than the binomial model when pricing exotic options.
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Building Equity Binary Trees
The tree of stock prices is the fundamental unit representing the evolution of the price of a stock over
a given period of time. The MATLAB functions crrtree, eqptree, and lrtree create CRR trees,
EQP trees, and LR trees, respectively. These functions create an output tree structure along with
information about the parameters used for creating the tree.

The functions crrtree, eqptree, and lrtree take three structures as input arguments:

• The stock parameter structure StockSpec
• The interest-rate term structure RateSpec
• The tree time layout structure TimeSpec

Calling Sequence for Equity Binary Trees

The calling syntax for crrtree is:

CRRTree = crrtree (StockSpec, RateSpec, TimeSpec)

Similarly, the calling syntax for eqptree is:

EQPTree = eqptree (StockSpec, RateSpec, TimeSpec)

And, the calling syntax for lrtree is:

LRTree = lrtree(StockSpec, RateSpec, TimeSpec, Strike)

All three functions require the structures StockSpec, RateSpec, and TimeSpec as input arguments:

• StockSpec is a structure that specifies parameters of the stock whose price evolution is
represented by the tree. This structure, created using the function stockspec, contains
information such as the stock's original price, its volatility, and its dividend payment information.

• RateSpec is the interest-rate specification of the initial rate curve. Create this structure with the
function intenvset.

• TimeSpec is the tree time layout specification. Create these structures with the functions
crrtimespec, eqptimespec, and lrtimespec. The structures contain information regarding
the mapping of relevant dates into the tree structure, plus the number of time steps used for
building the tree.

Specifying the Stock Structure for Equity Binary Trees

The structure StockSpec encapsulates the stock-specific information required for building the
binary tree of an individual stock's price movement.

You generate StockSpec with the function stockspec. This function requires two input arguments
and accepts up to three additional input arguments that depend on the existence and type of dividend
payments.

The syntax for calling stockspec is:

StockSpec = stockspec(Sigma, AssetPrice, DividendType, ...
DividendAmounts, ExDividendDates)

where:
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• Sigma is the decimal annual volatility of the underlying security.
• AssetPrice is the price of the stock at the valuation date.
• DividendType is a character vector specifying the type of dividend paid by the stock. Allowed

values are cash, constant, or continuous.
• DividendAmounts has a value that depends on the specification of DividendType. For

DividendType cash, DividendAmounts is a vector of cash dividends. For DividendType
constant, it is a vector of constant annualized dividend yields. For DividendType continuous,
it is a scalar representing a continuously annualized dividend yield.

• ExDividendDates also has a value that depends on the nature of DividendType. For
DividendType cash or constant, ExDividendDates is vector of dividend dates. For
DividendType continuous, ExDividendDates is ignored.

Stock Structure Example Using a Binary Tree

Consider a stock with a price of $100 and an annual volatility of 15%. Assume that the stock pays
three cash $5.00 dividends on dates January 01, 2004, July 01, 2005, and January 01, 2006. You
specify these parameters in MATLAB as:
Sigma = 0.15;
AssetPrice = 100;
DividendType = 'cash';
DividendAmounts = [5; 5; 5];
ExDividendDates = {'jan-01-2004', 'july-01-2005', 'jan-01-2006'};

StockSpec = stockspec(Sigma, AssetPrice, DividendType, ... 
DividendAmounts, ExDividendDates)

StockSpec = 

               FinObj: 'StockSpec'
                Sigma: 0.1500
           AssetPrice: 100
         DividendType: 'cash'
      DividendAmounts: [3x1 double]
      ExDividendDates: [3x1 double]

Specifying the Interest-Rate Term Structure for Equity Binary Trees

The RateSpec structure defines the interest rate environment used when building the stock price
binary tree. “Modeling the Interest-Rate Term Structure” on page 2-57 explains how to create these
structures using the function intenvset, given the interest rates, the starting and ending dates for
each rate, and the compounding value.

Specifying the Tree-Time Term Structure for Equity Binary Trees

The TimeSpec structure defines the tree layout of the binary tree:

• It maps the valuation and maturity dates to their corresponding times.
• It defines the time of the levels of the tree by dividing the time span between valuation and

maturity into equally spaced intervals. By specifying the number of intervals, you define the
granularity of the tree time structure.

The syntax for building a TimeSpec structure is:

TimeSpec = crrtimespec(ValuationDate, Maturity, NumPeriods)
TimeSpec = eqptimespec(ValuationDate, Maturity, NumPeriods)
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TimeSpec = lrtimespec(ValuationDate, Maturity, NumPeriods)

where:

• ValuationDate is a scalar date marking the pricing date and first observation in the tree
(location of the root node). You enter ValuationDate either as a serial date number (generated
with datenum) or a date character vector.

• Maturity is a scalar date marking the maturity of the tree, entered as a serial date number or a
date character vector.

• NumPeriods is a scalar defining the number of time steps in the tree; for example, NumPeriods
= 10 implies 10 time steps and 11 tree levels (0, 1, 2, ..., 9, 10).

TimeSpec Example Using a Binary Tree

Consider building a CRR tree, with a valuation date of January 1, 2003, a maturity date of January 1,
2008, and 20 time steps. You specify these parameters in MATLAB as:

ValuationDate = 'Jan-1-2003';
Maturity = 'Jan-1-2008';
NumPeriods = 20;
TimeSpec = crrtimespec(ValuationDate, Maturity, NumPeriods)

TimeSpec = 

           FinObj: 'BinTimeSpec'
    ValuationDate: 731582
         Maturity: 733408
       NumPeriods: 20
            Basis: 0
     EndMonthRule: 1
             tObs: [1x21 double]
             dObs: [1x21 double]

Two vector fields in the TimeSpec structure are of particular interest: dObs and tObs. These two
fields represent the observation times and corresponding dates of all tree levels, with dObs(1) and
tObs(1), respectively, representing the root node (ValuationDate), and dObs(end) and
tObs(end) representing the last tree level (Maturity).

Note There is no relationship between the dates specified for the tree and the implied tree level
times, and the maturities specified in the interest-rate term structure. The rates in RateSpec are
interpolated or extrapolated as required to meet the time distribution of the tree.

Examples of Binary Tree Creation

You can now use the StockSpec and TimeSpec structures described previously to build an equal
probability tree (EQPTree), a CRR tree (CRRTree), or an LR tree (LRTree). First, you must define the
interest-rate term structure. For this example, assume that the interest rate is fixed at 10% annually
between the valuation date of the tree (January 1, 2003) until its maturity.

ValuationDate = 'Jan-1-2003';
Maturity = 'Jan-1-2008';
Rate = 0.1;
RateSpec = intenvset('Rates', Rate, 'StartDates', ... 
ValuationDate, 'EndDates', Maturity, 'Compounding', -1);
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To build a CRRTree, enter:

CRRTree = crrtree(StockSpec, RateSpec, TimeSpec)

CRRTree = 

       FinObj: 'BinStockTree'
       Method: 'CRR'
    StockSpec: [1x1 struct]
     TimeSpec: [1x1 struct]
     RateSpec: [1x1 struct]
         tObs: [1x21 double]
         dObs: [1x21 double]
        STree: {1x21 cell}
      UpProbs: [1x20 double]

To build an EQPTree, enter:

EQPTree = eqptree(StockSpec, RateSpec, TimeSpec)

EQPTree = 

       FinObj: 'BinStockTree'
       Method: 'EQP'
    StockSpec: [1x1 struct]
     TimeSpec: [1x1 struct]
     RateSpec: [1x1 struct]
         tObs: [1x21 double]
         dObs: [1x21 double]
        STree: {1x21 cell}
      UpProbs: [1x20 double]

Building Implied Trinomial Trees
The tree of stock prices is the fundamental unit representing the evolution of the price of a stock over
a given period of time. The function itttree creates an output tree structure along with the
information about the parameters used to create the tree.

The function itttree takes four structures as input arguments:

• The stock parameter structure StockSpec
• The interest-rate term structure RateSpec
• The tree time layout structure TimeSpec
• The stock option specification structure StockOptSpec

Calling Sequence for Implied Trinomial Trees

The calling syntax for itttree is:

ITTTree = itttree (StockSpec,RateSpec,TimeSpec,StockOptSpec)

• StockSpec is a structure that specifies parameters of the stock whose price evolution is
represented by the tree. This structure, created using the function stockspec, contains
information such as the stock's original price, its volatility, and its dividend payment information.

• RateSpec is the interest-rate specification of the initial rate curve. Create this structure with the
function intenvset.
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• TimeSpec is the tree time layout specification. Create these structures with the function
itttimespec. This structure contains information regarding the mapping of relevant dates into
the tree structure, plus the number of time steps used for building the tree.

• StockOptSpec is a structure containing parameters of European stock options instruments.
Create this structure with the function stockoptspec.

Specifying the Stock Structure for Implied Trinomial Trees

The structure StockSpec encapsulates the stock-specific information required for building the
trinomial tree of an individual stock's price movement.

You generate StockSpec with the function stockspec. This function requires two input arguments
and accepts up to three additional input arguments that depend on the existence and type of dividend
payments.

The syntax for calling stockspec is:

StockSpec = stockspec(Sigma, AssetPrice, DividendType, ...
DividendAmounts, ExDividendDates)

where:

• Sigma is the decimal annual volatility of the underlying security.
• AssetPrice is the price of the stock at the valuation date.
• DividendType is a character vector specifying the type of dividend paid by the stock. Allowed

values are cash, constant, or continuous.
• DividendAmounts has a value that depends on the specification of DividendType. For

DividendType cash, DividendAmounts is a vector of cash dividends. For DividendType
constant, it is a vector of constant annualized dividend yields. For DividendType continuous,
it is a scalar representing a continuously annualized dividend yield.

• ExDividendDates also has a value that depends on the nature of DividendType. For
DividendType cash or constant, ExDividendDates is vector of dividend dates. For
DividendType continuous, ExDividendDates is ignored.

Stock Structure Example Using an Implied Trinomial Tree

Consider a stock with a price of $100 and an annual volatility of 12%. Assume that the stock is
expected to pay a dividend yield of 6%. You specify these parameters in MATLAB as:
So = 100;
DividendYield = 0.06; 
Sigma = .12;

StockSpec = stockspec(Sigma, So, 'continuous', DividendYield)

StockSpec = 

             FinObj: 'StockSpec'
              Sigma: 0.1200
         AssetPrice: 100
       DividendType: 'continuous'
    DividendAmounts: 0.0600
    ExDividendDates: []
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Specifying the Interest-Rate Term Structure for Implied Trinomial Trees

The structure RateSpec defines the interest rate environment used when building the stock price
binary tree. “Modeling the Interest-Rate Term Structure” on page 2-57 explains how to create these
structures using the function intenvset, given the interest rates, the starting and ending dates for
each rate, and the compounding value.

Specifying the Tree-Time Term Structure for Implied Trinomial Trees

The TimeSpec structure defines the tree layout of the trinomial tree:

• It maps the valuation and maturity dates to their corresponding times.
• It defines the time of the levels of the tree by dividing the time span between valuation and

maturity into equally spaced intervals. By specifying the number of intervals, you define the
granularity of the tree time structure.

The syntax for building a TimeSpec structure is:

TimeSpec = itttimespec(ValuationDate, Maturity, NumPeriods)

where:

• ValuationDate is a scalar date marking the pricing date and first observation in the tree
(location of the root node). You enter ValuationDate either as a serial date number (generated
with datenum) or a date character vector.

• Maturity is a scalar date marking the maturity of the tree, entered as a serial date number or a
date character vector.

• NumPeriods is a scalar defining the number of time steps in the tree; for example, NumPeriods
= 10 implies 10 time steps and 11 tree levels (0, 1, 2, ..., 9, 10).

TimeSpec Example Using an Implied Trinomial Tree

Consider building an ITT tree, with a valuation date of January 1, 2006, a maturity date of January 1,
2008, and four time steps. You specify these parameters in MATLAB as:

ValuationDate = '01-01-2006';
EndDate = '01-01-2008';
NumPeriods = 4;
 
TimeSpec = itttimespec(ValuationDate, EndDate, NumPeriods)

TimeSpec = 

           FinObj: 'ITTTimeSpec'
    ValuationDate: 732678
         Maturity: 733408
       NumPeriods: 4
            Basis: 0
     EndMonthRule: 1
             tObs: [0 0.5000 1 1.5000 2]
             dObs: [732678 732860 733043 733225 733408]

Two vector fields in the TimeSpec structure are of particular interest: dObs and tObs. These two
fields represent the observation times and corresponding dates of all tree levels, with dObs(1) and
tObs(1), respectively, representing the root node (ValuationDate), and dObs(end) and
tObs(end) representing the last tree level (Maturity).
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Specifying the Option Stock Structure for Implied Trinomial Trees

The StockOptSpec structure encapsulates the option-stock-specific information required for
building the implied trinomial tree. You generate StockOptSpec with the function stockoptspec.
This function requires five input arguments. An optional sixth argument InterpMethod, specifying
the interpolation method, can be included. The syntax for calling stockoptspec is:
[StockOptSpec] = stockoptspec(OptPrice, Strike, Settle, Maturity, OptSpec)

where:

• Optprice is a NINST-by-1 vector of European option prices.
• Strike is a NINST-by-1 vector of strike prices.
• Settle is a scalar date marking the settlement date.
• Maturity is a NINST-by-1 vector of maturity dates.
• OptSpec is a NINST-by-1 cell array of character vectors for the values 'call' or 'put'.

Option Stock Structure Example Using an Implied Trinomial Tree

Consider the following data quoted from liquid options in the market with varying strikes and
maturity. You specify these parameters in MATLAB as:
Settle =   '01/01/06';

Maturity =    ['07/01/06';
    '07/01/06';
    '07/01/06';
    '07/01/06';
    '01/01/07';
    '01/01/07';
    '01/01/07';
    '01/01/07';
    '07/01/07';
    '07/01/07';
    '07/01/07';
    '07/01/07';
    '01/01/08';
    '01/01/08';
    '01/01/08';
    '01/01/08'];

Strike = [113;
   101;
   100;
    88;
   128;
   112;
   100;
    78;
   144;
   112;
   100;
    69;
   162;
   112;
   100;
    61];

OptPrice = [                 0;
   4.807905472659144;
   1.306321897011867;
   0.048039195057173;
                   0;
   2.310953054191461;
   1.421950392866235;
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   0.020414826276740;
                   0;
   5.091986935627730;
   1.346534812295291;
   0.005101325584140;
                   0;
   8.047628153217246;
   1.219653432150932;
   0.001041436654748];

OptSpec = { 'call';
    'call';
    'put';
    'put';
    'call';
    'call';
    'put';
    'put';
    'call';
    'call';
    'put';
    'put';
    'call';
    'call';
    'put';
    'put'};
    
StockOptSpec = stockoptspec(OptPrice, Strike, Settle, Maturity, OptSpec)

StockOptSpec = 

          FinObj: 'StockOptSpec'
        OptPrice: [16x1 double]
          Strike: [16x1 double]
          Settle: 732678
        Maturity: [16x1 double]
         OptSpec: {16x1 cell}
    InterpMethod: 'price'

Note The algorithm for building the ITT tree requires specifying option prices for all tree nodes. The
maturities of those options correspond to those of the tree levels, and the strike to the prices on the
tree nodes. The types of option are Calls for the nodes above the central nodes, and Puts for those
below and including the central nodes.

Clearly, all these options will not be available in the market, hence making interpolation, and
extrapolation necessary to obtain the node option prices. The degree to which the tree reflects the
market will unavoidably be tied to the results of these interpolations and extrapolations. Keeping in
mind that extrapolation is less accurate than interpolation, and more so the further away the
extrapolated points are from the data points, the function itttree issues a warning with a list of the
options for which extrapolation was necessary.

Sometimes, it may be desirable to view a list of ideal option prices to form an idea of the ranges
needed. This can be achieved by calling the function itttree specifying only the first three input
arguments. The second output argument is a structure array containing the list of ideal options
needed.

Creating an Implied Trinomial Tree

You can now use the StockSpec, TimeSpec, and StockOptSpec structures described in “Stock
Structure Example Using an Implied Trinomial Tree” on page 3-7, “TimeSpec Example Using an
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Implied Trinomial Tree” on page 3-8, and “Option Stock Structure Example Using an Implied
Trinomial Tree” on page 3-9 to build an implied trinomial tree (ITT). First, you must define the
interest rate term structure. For this example, assume that the interest rate is fixed at 8% annually
between the valuation date of the tree (January 1, 2006) until its maturity.
Rate = 0.08;
ValuationDate = '01-01-2006';
EndDate = '01-01-2008';

RateSpec = intenvset('StartDates', ValuationDate, 'EndDates', EndDate, ...
    'ValuationDate', ValuationDate, 'Rates', Rate, 'Compounding', -1)

RateSpec = 

  struct with fields:

           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.8521
            Rates: 0.0800
         EndTimes: 2
       StartTimes: 0
         EndDates: 733408
       StartDates: 732678
    ValuationDate: 732678
            Basis: 0
     EndMonthRule: 1

To build an ITTTree, enter:
ITTTree = itttree(StockSpec, RateSpec, TimeSpec, StockOptSpec)

ITTTree = 

          FinObj: 'ITStockTree'
       StockSpec: [1x1 struct]
    StockOptSpec: [1x1 struct]
        TimeSpec: [1x1 struct]
        RateSpec: [1x1 struct]
            tObs: [0 0.500000000000000 1 1.500000000000000 2]
            dObs: [732678 732860 733043 733225 733408]
           STree: {1x5 cell}
           Probs: {[3x1 double]  [3x3 double]  [3x5 double]  [3x7 double]}

Building Standard Trinomial Trees
The tree of stock prices is the fundamental unit representing the evolution of the price of a stock over
a given period of time. The function stttree creates an output tree structure along with the
information about the parameters used to create the tree.

The function stttree takes three structures as input arguments:

• The stock parameter structure StockSpec
• The interest-rate term structure RateSpec
• The tree time layout structure TimeSpec

Calling Sequence for Standard Trinomial Trees

The calling syntax for stttree is:

STTTree = stttree (StockSpec,RateSpec,TimeSpec)
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• StockSpec is a structure that specifies parameters of the stock whose price evolution is
represented by the tree. This structure, created using the function stockspec, contains
information such as the stock's original price, its volatility, and its dividend payment information.

• RateSpec is the interest-rate specification of the initial rate curve. Create this structure with the
function intenvset.

• TimeSpec is the tree time layout specification. Create these structures with the function
stttimespec. This structure contains information regarding the mapping of relevant dates into
the tree structure, plus the number of time steps used for building the tree.

Specifying the Stock Structure for Standard Trinomial Trees

The structure StockSpec encapsulates the stock-specific information required for building the
trinomial tree of an individual stock's price movement.

You generate StockSpec with the function stockspec. This function requires two input arguments
and accepts up to three additional input arguments that depend on the existence and type of dividend
payments.

The syntax for calling stockspec is:

StockSpec = stockspec(Sigma, AssetPrice, DividendType, ...
DividendAmounts, ExDividendDates)

where:

• Sigma is the decimal annual volatility of the underlying security.
• AssetPrice is the price of the stock at the valuation date.
• DividendType is a character vector specifying the type of dividend paid by the stock. Allowed

values are cash, constant, or continuous.
• DividendAmounts has a value that depends on the specification of DividendType. For

DividendType cash, DividendAmounts is a vector of cash dividends. For DividendType
constant, it is a vector of constant annualized dividend yields. For DividendType continuous,
it is a scalar representing a continuously annualized dividend yield.

• ExDividendDates also has a value that depends on the nature of DividendType. For
DividendType cash or constant, ExDividendDates is vector of dividend dates. For
DividendType continuous, ExDividendDates is ignored.

Stock Structure Example Using a Standard Trinomial Tree

Consider a stock with a price of $100 and an annual volatility of 12%. Assume that the stock is
expected to pay a dividend yield of 6%. You specify these parameters in MATLAB as:
So = 100;
DividendYield = 0.06; 
Sigma = .12;

StockSpec = stockspec(Sigma, So, 'continuous', DividendYield)

StockSpec = 

             FinObj: 'StockSpec'
              Sigma: 0.1200
         AssetPrice: 100
       DividendType: 'continuous'
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    DividendAmounts: 0.0600
    ExDividendDates: []

Specifying the Interest-Rate Term Structure for Standard Trinomial Trees

The structure RateSpec defines the interest rate environment used when building the stock price
binary tree. “Modeling the Interest-Rate Term Structure” on page 2-57 explains how to create these
structures using the function intenvset, given the interest rates, the starting and ending dates for
each rate, and the compounding value.

Specifying the Tree-Time Term Structure for Standard Trinomial Trees

The TimeSpec structure defines the tree layout of the trinomial tree:

• It maps the valuation and maturity dates to their corresponding times.
• It defines the time of the levels of the tree by dividing the time span between valuation and

maturity into equally spaced intervals. By specifying the number of intervals, you define the
granularity of the tree time structure.

The syntax for building a TimeSpec structure is:

TimeSpec = stttimespec(ValuationDate, Maturity, NumPeriods)

where:

• ValuationDate is a scalar date marking the pricing date and first observation in the tree
(location of the root node). You enter ValuationDate either as a serial date number (generated
with datenum) or a date character vector.

• Maturity is a scalar date marking the maturity of the tree, entered as a serial date number or a
date character vector.

• NumPeriods is a scalar defining the number of time steps in the tree; for example, NumPeriods
= 10 implies 10 time steps and 11 tree levels (0, 1, 2, ..., 9, 10).

TimeSpec Example Using a Standard Trinomial Tree

Consider building an STT tree, with a valuation date of January 1, 2006, a maturity date of January 1,
2008, and four time steps. You specify these parameters in MATLAB as:

ValuationDate = '01-01-2006';
EndDate = '01-01-2008';
NumPeriods = 4;
 
TimeSpec = stttimespec(ValuationDate, EndDate, NumPeriods)

TimeSpec = 

           FinObj: 'STTTimeSpec'
    ValuationDate: 732678
         Maturity: 733408
       NumPeriods: 4
            Basis: 0
     EndMonthRule: 1
             tObs: [0 0.5000 1 1.5000 2]
             dObs: [732678 732860 733043 733225 733408]

Two vector fields in the TimeSpec structure are of particular interest: dObs and tObs. These two
fields represent the observation times and corresponding dates of all tree levels, with dObs(1) and
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tObs(1), respectively, representing the root node (ValuationDate), and dObs(end) and
tObs(end) representing the last tree level (Maturity).

Creating a Standard Trinomial Tree

You can now use the StockSpec, TimeSpec structures described in “Stock Structure Example Using
an Implied Trinomial Tree” on page 3-7 and “TimeSpec Example Using an Implied Trinomial Tree” on
page 3-8, to build a standard trinomial tree (STT). First, you must define the interest rate term
structure. For this example, assume that the interest rate is fixed at 8% annually between the
valuation date of the tree (January 1, 2006) until its maturity.
Rate = 0.08;
ValuationDate = '01-01-2006';
EndDate = '01-01-2008';

RateSpec = intenvset('StartDates', ValuationDate, 'EndDates', EndDate, ...
    'ValuationDate', ValuationDate, 'Rates', Rate, 'Compounding', -1)

RateSpec = 

  struct with fields:

           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.8521
            Rates: 0.0800
         EndTimes: 2
       StartTimes: 0
         EndDates: 733408
       StartDates: 732678
    ValuationDate: 732678
            Basis: 0
     EndMonthRule: 1

To build an STTTree, enter:
STTTree = stttree(StockSpec, RateSpec, TimeSpec)

STTTree = 

       FinObj: 'STStockTree'
    StockSpec: [1x1 struct]
     TimeSpec: [1x1 struct]
     RateSpec: [1x1 struct]
         tObs: [0 0.5000 1 1.5000 2]
         dObs: [732678 732860 733043 733225 733408]
        STree: {1x5 cell}
        Probs: {[3x1 double]  [3x3 double]  [3x5 double]  [3x7 double]}

Examining Equity Trees
Financial Instruments Toolbox uses equity binary and trinomial trees to represent prices of equity
options and of underlying stocks. At the highest level, these trees have structures wrapped around
them. The structures encapsulate information required to interpret information in the tree.

To examine an equity, binary, or trinomial tree, load the data in the MAT-file deriv.mat into the
MATLAB workspace.

load deriv.mat

Display the list of variables loaded from the MAT-file with the whos command.
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Name              Size            Bytes  Class     Attributes

  BDTInstSet        1x1             27344  struct              
  BDTTree           1x1              7322  struct              
  BKInstSet         1x1             27334  struct              
  BKTree            1x1              8532  struct              
  CRRInstSet        1x1             21066  struct              
  CRRTree           1x1              7086  struct              
  EQPInstSet        1x1             21066  struct              
  EQPTree           1x1              7086  struct              
  HJMInstSet        1x1             27336  struct              
  HJMTree           1x1              8334  struct              
  HWInstSet         1x1             27334  struct              
  HWTree            1x1              8532  struct              
  ITTInstSet        1x1             21070  struct              
  ITTTree           1x1             12660  struct              
  STTInstSet        1x1             21070  struct              
  STTTree           1x1              7782  struct              
  ZeroInstSet       1x1             17458  struct              
  ZeroRateSpec      1x1              2152  struct     

Examining a CRRTree

You can examine in some detail the contents of the CRRTree structure contained in this file.
CRRTree

CRRTree = 

       FinObj: 'BinStockTree'
       Method: 'CRR'
    StockSpec: [1x1 struct]
     TimeSpec: [1x1 struct]
     RateSpec: [1x1 struct]
         tObs: [0 1 2 3 4]
         dObs: [731582 731947 732313 732678 733043]
        STree: {[100]  [110.5171 90.4837]  [122.1403 100 81.8731]  [1x4 double]  [1x5 double]}
      UpProbs: [0.7309 0.7309 0.7309 0.7309]

The Method field of the structure indicates that this is a CRR tree, not an EQP tree.

The fields StockSpec, TimeSpec, and RateSpec hold the original structures passed into the
function crrtree. They contain all the context information required to interpret the tree data.

The fields tObs and dObs are vectors containing the observation times and dates, that is, the times
and dates of the levels of the tree. In this particular case, tObs reveals that the tree has a maturity of
four years (tObs(end) = 4) and that it has four time steps (the length of tObs is five).

The field dObs shows the specific dates for the tree levels, with a granularity of one day. This means
that all values in tObs that correspond to a given day from 00:00 hours to 24:00 hours are mapped to
the corresponding value in dObs. You can use the function datestr to convert these MATLAB serial
dates into their character vector representations.

The field UpProbs is a vector representing the probabilities for up movements from any node in each
level. This vector has one element per tree level. All nodes for a given level have the same probability
of an up movement. In the specific case being examined, the probability of an up movement is 0.7309
for all levels, and the probability for a down movement is 0.2691 (1 − 0.7309).

Finally, the field STree contains the actual stock tree. It is represented in MATLAB as a cell array
with each cell array element containing a vector of prices corresponding to a tree level. The prices
are in descending order, that is, CRRTree.STree{3}(1) represents the topmost element of the third
level of the tree, and CRRTree.STree{3}(end) represents the bottom element of the same level of
the tree.

Examining an ITTTree

You can examine in some detail the contents of the ITTTree structure contained in this file.

 Understanding Equity Trees

3-15



ITTTree 

ITTTree = 

          FinObj: 'ITStockTree'
       StockSpec: [1x1 struct]
    StockOptSpec: [1x1 struct]
        TimeSpec: [1x1 struct]
        RateSpec: [1x1 struct]
            tObs: [0 1 2 3 4]
            dObs: [732678 733043 733408 733773 734139]
           STree: {1x5 cell}
           Probs: {[3x1 double]  [3x3 double]  [3x5 double]  [3x7 double]}

The fields StockSpec, StockOptSpec, TimeSpec, and RateSpec hold the original structures
passed into the function itttree. They contain all the context information required to interpret the
tree data.

The fields tObs and dObs are vectors containing the observation times and dates and the times and
dates of the levels of the tree. In this particular case, tObs reveals that the tree has a maturity of four
years (tObs(end) = 4) and that it has four time steps (the length of tObs is five).

The field dObs shows the specific dates for the tree levels, with a granularity of one day. This means
that all values in tObs that correspond to a given day from 00:00 hours to 24:00 hours are mapped to
the corresponding value in dObs. You can use the function datestr to convert these MATLAB serial
dates into their character vector representations.

The field Probs is a vector representing the probabilities for movements from any node in each level.
This vector has three elements per tree node. In the specific case being examined, at tObs= 1, the
probability for an up movement is 0.4675, and the probability for a down movement is 0.1934.

Finally, the field STree contains the actual stock tree. It is represented in MATLAB as a cell array
with each cell array element containing a vector of prices corresponding to a tree level. The prices
are in descending order, that is, ITTTree.STree{4}(1) represents the top element of the fourth
level of the tree, and ITTTree.STree{4}(end) represents the bottom element of the same level of
the tree.

Isolating a Specific Node for a CRRTree

The function treepath can isolate a specific set of nodes of a binary tree by specifying the path used
to reach the final node. As an example, consider the nodes tapped by starting from the root node,
then following a down movement, then an up movement, and finally a down movement. You use a
vector to specify the path, with 1 corresponding to an up movement and 2 corresponding to a down
movement. An up-down-up path is then represented as [2 1 2]. To obtain the values of all nodes
tapped by this path, enter:

SVals = treepath(CRRTree.STree, [2 1 2])

SVals =

  100.0000
   90.4837
  100.0000
   90.4837

The first value in the vector SVals corresponds to the root node, and the last value corresponds to
the final node reached by following the path indicated.
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Isolating a Specific Node for an ITTTree

The function trintreepath can isolate a specific set of nodes of a trinomial tree by specifying the
path used to reach the final node. As an example, consider the nodes tapped by starting from the root
node, then following an up movement, then a middle movement, and finally a down movement. You
use a vector to specify the path, with 1 corresponding to an up movement, 2 corresponding to a
middle movement, and 3 corresponding to a down movement. An up-down-middle-down path is then
represented as [1 3 2 3]. To obtain the values of all nodes tapped by this path, enter:

pathSVals = trintreepath(ITTTree, [1 3 2 3])

pathSVals =

   50.0000
   66.3448
   50.0000
   50.0000
   37.6819

The first value in the vector pathSVals corresponds to the root node, and the last value corresponds
to the final node reached by following the path indicated.

Differences Between CRR and EQP Tree Structures
In essence, the structures representing CRR trees and EQP trees are similar. If you create a CRR or
an EQP tree using identical input arguments, only a few of the tree structure fields differ:

• The Method field has a value of 'CRR' or 'EQP' indicating the method used to build the
structure.

• The prices in the STree cell array have the same structure, but the prices within the cell array are
different.

• For EQP, the structure field UpProb always holds a vector with all elements set to 0.5, while for
CRR, these probabilities are calculated based on the input arguments passed when building the
tree.

See Also
crrtree | eqptree | lrtree | stockspec | intenvset | crrtimespec | eqptimespec |
lrtimespec | itttree | itttimespec | stockoptspec | treepath | trintreepath

Related Examples
• “Pricing Equity Derivatives Using Trees” on page 3-64
• “Creating Instruments or Properties” on page 1-16
• “Graphical Representation of Equity Derivative Trees” on page 3-73

More About
• “Supported Equity Derivative Functions” on page 3-19
• “Supported Energy Derivative Functions” on page 3-34
• “Supported Interest-Rate Instrument Functions” on page 2-3
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• “Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument
Objects” on page 1-82
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Supported Equity Derivative Functions
In this section...
“Asian Option” on page 3-19
“Barrier Option” on page 3-20
“Double Barrier Option” on page 3-21
“Basket Option” on page 3-22
“Chooser Option” on page 3-23
“Compound Option” on page 3-23
“Convertible Bond” on page 3-24
“Lookback Option” on page 3-25
“Digital Option” on page 3-26
“Rainbow Option” on page 3-27
“Vanilla Option” on page 3-27
“Spread Option” on page 3-30
“One-Touch and Double One-Touch Options” on page 3-30
“Forwards Option” on page 3-31
“Futures Option” on page 3-32

Asian Option
An Asian option is a path-dependent option with a payoff linked to the average value of the underlying
asset during the life (or some part of the life) of the option. They are similar to lookback options in
that there are two types of Asian options: fixed (average price option) and floating (average strike
option). Fixed Asian options have a specified strike, while floating Asian options have a strike equal to
the average value of the underlying asset over the life of the option.

There are four Asian option types, each with its own characteristic payoff formula:

• Fixed call (average price option): max(0, Sav− X)
• Fixed put (average price option): max(0, X − Sav)
• Floating call (average strike option): max(0, S− Sav)
• Floating put (average strike option): max(0, Sav− S)

where:

Sav is the average price of underlying asset.

S is the price of the underlying asset.

X is the strike price (applicable only to fixed Asian options).

Sav is defined using either a geometric or an arithmetic average.

The following functions support Asian options.
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Function Purpose
asianbycrr Price Asian options from a CRR binomial tree.
asianbyeqp Price Asian options from an EQP binomial tree.
asianbyitt Price Asian options using an implied trinomial tree (ITT).
asianbystt Price Asian options using a standard trinomial tree (STT).
instasian Construct an Asian option.
asianbyls Price European or American Asian options using the Longstaff-Schwartz

model.
asiansensbyls Calculate prices and sensitivities of European or American Asian

options using the Longstaff-Schwartz model.
asianbykv Price European geometric Asian options using the Kemna Vorst model.
asiansensbykv Calculate prices and sensitivities of European geometric Asian options

using the Kemna Vorst model.
asianbylevy Price European arithmetic Asian options using the Levy model.
asiansensbylevy Calculate prices and sensitivities of European arithmetic Asian options

using the Levy model.
asianbyhhm Calculate prices of European discrete arithmetic fixed Asian options

using the Haug, Haug, Margrabe model.
asiansensbyhhm Calculate prices and sensitivities of European discrete arithmetic fixed

Asian options using the Haug, Haug, Margrabe model
asianbytw Calculate prices of European arithmetic fixed Asian options using the

Turnbull Wakeman model.
asiansensbytw Calculate prices and sensitivities of European arithmetic fixed Asian

options using the Turnbull Wakeman model.

Barrier Option
A barrier option is similar to a vanilla put or call option, but its life either begins or ends when the
price of the underlying stock passes a predetermined barrier value. There are four types of barrier
options.

Up Knock-In

This option becomes effective when the price of the underlying stock passes above a barrier that is
above the initial stock price. Once the barrier has knocked in, it will not knock out even if the price of
the underlying instrument moves below the barrier again.

Up Knock-Out

This option terminates when the price of the underlying stock passes above a barrier that is above
the initial stock price. Once the barrier has knocked out, it will not knock in even if the price of the
underlying instrument moves below the barrier again.
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Down Knock-In

This option becomes effective when the price of the underlying stock passes below a barrier that is
below the initial stock price. Once the barrier has knocked in, it will not knock out even if the price of
the underlying instrument moves above the barrier again.

Down Knock-Out

This option terminates when the price of the underlying stock passes below a barrier that is below
the initial stock price. Once the barrier has knocked out, it will not knock in even if the price of the
underlying instrument moves above the barrier again.

Rebates

If a barrier option fails to exercise, the seller may pay a rebate to the buyer of the option. Knock-outs
may pay a rebate when they are knocked out, and knock-ins may pay a rebate if they expire without
ever knocking in.

The following functions support barrier options.

Function Purpose
barrierbycrr Price barrier options from a CRR binomial tree.
barrierbyeqp Price barrier options from an EQP binomial tree.
barrierbyitt Price barrier options using an implied trinomial tree (ITT).
barrierbystt Price barrier options using a standard trinomial tree (STT).
barrierbyfd Price barrier option using finite difference method.
barriersensbyfd Calculate barrier option price and sensitivities using finite difference

method.
barrierbybls Price a European barrier option using Black-Scholes option pricing

model.
barriersensbybls Calculate price and sensitivities for a European barrier option using

Black-Scholes option pricing model.
barrierbyls Price a barrier option using Longstaff-Schwartz model.
barriersensbyls Calculate price and sensitivities for a barrier option using Longstaff-

Schwartz model.
instbarrier Construct a barrier option.

Double Barrier Option
A double barrier option is similar to the standard single barrier option except that they have two
barrier levels: a lower barrier (LB) and an upper barrier (UB). The payoff for a double barrier option
depends on whether the underlying asset remains between the barrier levels during the life of the
option. Double barrier options are less expensive than single barrier options as the probability of
being knocked out is higher. Because of this, double barrier options allow investors to achieve
reduction in the option premiums as and match an investor’s belief about the future movement of the
underlying price process.

There are two types of double barrier options:
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• Double Knock-in

This option becomes effective when the price of the underlying asset reaches one of the barriers.
It gives the option holder, the right but not the obligation to buy or sell the underlying security at
the strike price, if the underlying asset goes above or below the barrier levels during the life of
the option.

• Double Knock-out

This option gives the option holder, the right but not the obligation to buy or sell the underlying
security at the strike price, as long as the underlying asset remains between the barrier levels
during the life of the option. This option terminates when the price of the underlying asset passes
one of the barriers.

The following functions support double barrier options.

Function Purpose
dblbarrierbybls Price European double barrier options using the Black-Scholes option

pricing model.
dblbarriersensbybls Calculate the price and sensitivities for a European double barrier

options using the Black-Scholes option pricing model.
dblbarrierbyfd Price double barrier option prices using the finite difference method.
dblbarriersensbyfd Calculate the price and sensitivities for a double barrier option using

the finite difference method.

Basket Option
A basket option is an option on a portfolio of several underlying equity assets. Payout for a basket
option depends on the cumulative performance of the collection of the individual assets. A basket
option tends to be cheaper than the corresponding portfolio of plain vanilla options for these reasons:

• If the basket components correlate negatively, movements in the value of one component
neutralize opposite movements of another component. Unless all the components correlate
perfectly, the basket option is cheaper than a series of individual options on each of the assets in
the basket.

• A basket option minimizes transaction costs because an investor has to purchase only one option
instead of several individual options.

The payoff for a basket option is as follows:

• For a call: max(∑Wi ∗ Si− K; 0)

• For a put: max(∑K −Wi ∗ Si; 0)

where:

Si is the price of asset i in the basket.

Wi is the quantity of asset i in the basket.

K is the strike price.
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Financial Instruments Toolbox software supports Longstaff-Schwartz and Nengiu Ju models for
pricing basket options. The Longstaff-Schwartz model supports both European, Bermuda, and
American basket options. The Nengiu Ju model only supports European basket options. If you want to
price either an American or Bermuda basket option, use the functions for the Longstaff-Schwartz
model. To price a European basket option, use either the functions for the Longstaff-Schwartz model
or the Nengiu Ju model.

Function Purpose
basketbyls Price basket options using the Longstaff-Schwartz model.
basketsensbyls Calculate price and sensitivities for basket options using the Longstaff-

Schwartz model.
basketbyju Price European basket options using the Nengjiu Ju approximation

model.
basketsensbyju Calculate European basket options price and sensitivity using the

Nengjiu Ju approximation model.
basketstockspec Specify a basket stock structure.

Chooser Option
A chooser option enables the holder to decide before the option expiration date whether the option is
a call or put.

A chooser option has a specified decision time t1 where the holder has to make the decision whether
the option is a call or put. At the expiration time t2 the option expires. If the holder chooses a call
option, the payout is max ( S − K , 0). For the choice of a put option, the payout is max ( K − S , 0)
where K is the strike price of the option and S is the equity price at expiry.

Function Purpose
chooserbybls Price a European simple chooser options using Black-Scholes model.

Compound Option
A compound option is basically an option on an option; it gives the holder the right to buy or sell
another option. With a compound option, a vanilla stock option serves as the underlying instrument.
Compound options thus have two strike prices and two exercise dates.

There are four types of compound options:

• Call on a call
• Put on a put
• Call on a put
• Put on a call

Note The payoff formulas for compound options are too complex for this discussion. If you are
interested in the details, consult the paper by Mark Rubinstein entitled “Double Trouble,”
published in Risk 5 (1991).

Consider the third type, a call on a put. It gives the holder the right to buy a put option. In this case,
on the first exercise date, the holder of the compound option pay the first strike price and receives a
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put option. The put option gives the holder the right to sell the underlying asset for the second strike
price on the second exercise date.

The following functions support compound options.

Function Purpose
compoundbycrr Price compound options from a CRR binomial tree.
compoundbyeqp Price compound options from an EQP binomial tree.
compoundbyitt Price compound options using an implied trinomial tree (ITT).
compoundbystt Price compound options using a standard trinomial tree (STT).
instcompound Construct a compound option.

Convertible Bond
A convertible bond is a financial instrument that combines equity and debt features. It is a bond with
the embedded option to turn it into a fixed number of shares. The holder of a convertible bond has
the right, but not the obligation, to exchange the convertible security for a predetermined number of
equity shares at a preset price. The debt component is derived from the coupon payments and the
principal. The equity component is provided by the conversion feature.

Convertible bonds have several defining features:

• Coupon — The coupon in convertible bonds are typically lower than coupons in vanilla bonds since
investors are willing to take the lower coupon for the opportunity to participate in the company’s
stock via the conversion.

• Maturity — Most convertible bonds are issued with long-stated maturities. Short-term maturity
convertible bonds usually do not have call or put provisions.

• Conversion ratio — Conversion ratio is the number of shares that the holder of the convertible
bond will receive from exercising the call option of the convertible bond:

Conversion ratio = par value convertible bond/conversion price of equity

For example, a conversion ratio of 25 means a bond can be exchanged for 25 shares of stock. This
also implies a conversion price of $40 (1000/25). This, $40, would be the price at which the owner
would buy the shares. This can be expressed as a ratio or as the conversion price and is specified
in the contract along with other provisions.

• Option type:

• Callable Convertible: a convertible bond that is callable by the issuer. The issuer of the bond
forces conversion, removing the advantage that conversion is at the discretion of the
bondholder. Upon call, the bondholder can either convert the bond or redeem at the call price.
This option enables the issuer to control the price of the convertible bond and if necessary
refinance the debt with a new cheaper one.

• Puttable Convertible: a convertible bond with a put feature that allows the bondholder to sell
back the bond at a premium on a specific date. This option protects the holder against rising
interest rates by reducing the year to maturity.
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Function Purpose
cbondbycrr Price convertible bonds using a CRR binomial tree with the Tsiveriotis

and Fernandes model.
cbondbyeqp Price convertible bonds using an EQP binomial tree with the Tsiveriotis

and Fernandes model.
cbondbyitt Price convertible bonds using an implied trinomial tree with the

Tsiveriotis and Fernandes model.
cbondbystt Price convertible bonds using a standard trinomial tree with the

Tsiveriotis and Fernandes model.
instcbond Construct a cbond instrument for a convertible bond.

Lookback Option
A lookback option is a path-dependent option based on the maximum or minimum value the
underlying asset achieves during the entire life of the option.

Financial Instruments Toolbox software supports two types of lookback options: fixed and floating.
Fixed lookback options have a specified strike price, while floating lookback options have a strike
price determined by the asset path. So, there are a total of four lookback option types, each with its
own characteristic payoff formula:

• Fixed call: max(0, Smax− X)

• Fixed put: max(0, X − Smin)

• Floating call: max(0, S− Smin)

• Floating put: max(0, Smax− S)

where:

Smax is the maximum price of underlying stock found along the particular path followed to the node.

Smin is the minimum price of underlying stock found along the particular path followed to the node.

S is the price of the underlying stock on the node.

X is the strike price (applicable only to fixed lookback options).

The following functions support lookback options.

Function Purpose
lookbackbycrr Price lookback options from a CRR binomial tree.
lookbackbyeqp Price lookback options from an EQP binomial tree.
lookbackbyitt Price lookback options using an implied trinomial tree (ITT).
lookbackbystt Price lookback options using standard trinomial tree.
instlookback Construct a lookback option based on an equity tree model.
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Function Purpose
lookbackbycvgsg Calculate prices of European lookback fixed and floating strike options

using the Conze-Viswanathan and Goldman-Sosin-Gatto models. For
more information, see “Lookback Option” on page 3-39.

lookbacksensbycvgsg Calculate prices and sensitivities of European fixed and floating strike
lookback options using the Conze-Viswanathan and Goldman-Sosin-
Gatto models. For more information, see “Lookback Option” on page 3-
39.

lookbackbyls Calculate prices of lookback fixed and floating strike options using the
Longstaff-Schwartz model. For more information, see “Lookback
Option” on page 3-39.

lookbacksensbyls Calculate prices and sensitivities of lookback fixed and floating strike
options using the Longstaff-Schwartz model. For more information, see
“Lookback Option” on page 3-39.

Digital Option
A digital option is an option whose payoff is characterized as having only two potential values: a fixed
payout, when the option is in the money or a zero payout otherwise. This is the case irrespective of
how far the asset price at maturity is above (call) or below (put) the strike.

Digital options are attractive to sellers because they guarantee a known maximum loss when the
option is exercised. This overcomes a fundamental problem with the vanilla options, where the
potential loss is unlimited. Digital options are attractive to buyers because the option payoff is a
known constant amount, and this amount can be adjusted to provide the exact quantity of protection
required.

Financial Instruments Toolbox supports four types of digital options:

• Cash-or-nothing option — Pays some fixed amount of cash if the option expires in the money.
• Asset-or-nothing option — Pays the value of the underlying security if the option expires in the

money.
• Gap option — One strike decides if the option is in or out of money; another strike decides the size

of the payoff.
• Supershare — Pays out a proportion of the assets underlying a portfolio if the asset lies between a

lower and an upper bound at the expiry of the option.
• One-touch and double one-touch — (also known as binary barrier options or American digitals) are

path-dependent options in which the existence and payment of the options depend on the
movement of the underlying spot through their option life. For more information, see “One-Touch
and Double One-Touch Options” on page 3-30.

The following functions calculate pricing and sensitivity for digital options.

Function Purpose
cashbybls Calculate the price of cash-or-nothing digital options using

the Black-Scholes model.
assetbybls Calculate the price of asset-or-nothing digital options using

the Black-Scholes model.
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Function Purpose
gapbybls Calculate the price of gap digital options using the Black-

Scholes model.
supersharebybls Calculate the price of supershare digital options using the

Black-Scholes model.
cashsensbybls Calculate the price and sensitivities of cash-or-nothing

digital options using the Black-Scholes model.
assetsensbybls Calculate the price and sensitivities of asset-or-nothing

digital options using the Black-Scholes model.
gapsensbybls Calculate the price and sensitivities of gap digital options

using the Black-Scholes model.
supersharesensbybls Calculate the price and sensitivities of supershare digital

options using the Black-Scholes model.

Rainbow Option
A rainbow option payoff depends on the relative price performance of two or more assets. A rainbow
option gives the holder the right to buy or sell the best or worst of two securities, or options that pay
the best or worst of two assets.

Rainbow options are popular because of the lower premium cost of the structure relative to the
purchase of two separate options. The lower cost reflects the fact that the payoff is generally lower
than the payoff of the two separate options.

Financial Instruments Toolbox supports two types of rainbow options:

• Minimum of two assets — The option holder has the right to buy(sell) one of two risky assets,
whichever one is worth less.

• Maximum of two assets — The option holder has the right to buy(sell) one of two risky assets,
whichever one is worth more.

The following rainbow options speculate/hedge on two equity assets.

Function Purpose
minassetbystulz Calculate the European rainbow option price on minimum of

two risky assets using the Stulz option pricing model.
minassetsensbystulz Calculate the European rainbow option prices and sensitivities

on minimum of two risky assets using the Stulz pricing model.
maxassetbystulz Calculate the European rainbow option price on maximum of

two risky assets using the Stulz option pricing model.
maxassetsensbystulz Calculate the European rainbow option prices and sensitivities

on maximum of two risky assets using the Stulz pricing model.

Vanilla Option
A vanilla option is a category of options that includes only the most standard components. A vanilla
option has an expiration date and straightforward strike price. American-style options and European-
style options are both categorized as vanilla options.

 Supported Equity Derivative Functions

3-27



The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

The following functions support specifying or pricing a vanilla option.

Function Purpose
optstockbybaw Calculate the American options prices using the Barone-Adesi-

Whaley option pricing model.
optstocksensbybaw Calculate the American options prices and sensitivities using

the Barone-Adesi-Whaley option pricing model.
optstockbycrr Calculate the price of a European, Bermuda, or American stock

option using a CRR tree.
optstockbyeqp Calculate the price of a European, Bermuda, or American stock

option using an EQP tree.
optstockbyfd Calculate vanilla option prices using finite difference method.
optstocksensbyfd Calculate vanilla option prices and sensitivities using finite

difference method.
optByLocalVolFD Calculate vanilla option price by local volatility model, using

finite differences.
optSensByLocalVolFD Calculate vanilla option price or sensitivities by local volatility

model, using finite differences.
optByHestonFD Calculate vanilla option price by Heston model using finite

differences.
optSensByHestonFD Calculate vanilla option price and sensitivities by Heston model

using finite differences.
optByBatesFD Calculates vanilla European option price by Bates model using

finite differences.
optSensByBatesFD Calculates vanilla European option price and sensitivities by

Bates model using finite differences.
optByMertonFD Calculates vanilla European option price by Merton76 model

using finite differences.
optSensByMertonFD Calculates vanilla European option price and sensitivities by

Merton76 model using finite differences.
optstockbyitt Calculate the price of a European, Bermuda, or American stock

option using an ITT tree.
optstockbystt Calculate the price of a European, Bermuda, or American stock

option using an STT tree.
optstockbylr Calculate the price of a European, Bermuda, or American stock

option using the Leisen-Reimer (LR) binomial tree model.
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Function Purpose
optstocksensbylr Calculate the price and sensitivities of a European, Bermuda,

or American stock option using the Leisen-Reimer (LR)
binomial tree model.

optstockbybls Price options using the Black-Scholes option pricing model.
optstocksensbybls Calculate option prices and sensitivities using the Black-

Scholes option pricing model.
optstockbyrgw Calculate American call option prices using the Roll-Geske-

Whaley option pricing model.
optstocksensbyrgw Calculate American call option prices and sensitivities using

the Roll-Geske-Whaley option pricing model.
optstockbybjs Price American options using the Bjerksund-Stensland 2002

option pricing model.
optstocksensbybjs Calculate American option prices and sensitivities using the

Bjerksund-Stensland 2002 option pricing model.
optstockbyls Price vanilla options using the Longstaff-Schwartz model.
optstocksensbyls Calculate vanilla option prices and sensitivities using the

Longstaff-Schwartz model.
optByHestonFFT Calculate option price by Heston model using FFT and FRFT.
optSensByHestonFFT Calculate option price and sensitivities by Heston model using

FFT and FRFT.
optByHestonNI Calculate option price by Heston model using numerical

integration.
optSensByHestonNI Calculate option price and sensitivities by Heston model using

numerical integration.
optByBatesFFT Calculate option price by Bates model using FFT and FRFT.
optSensByBatesFFT Calculate option price and sensitivities by Bates model using

FFT and FRFT.
optByBatesNI Calculate option price by Bates model using numerical

integration.
optSensByBatesNI Calculate option price or sensitivities by Bates model using

numerical integration.
optByMertonFFT Calculate option price by Merton76 model using FFT and

FRFT.
optSensByMertonFFT Calculate option price and sensitivities by Merton76 model

using FFT and FRFT.
optByMertonNI Calculate option price by Merton76 model using numerical

integration.
optSensByMertonNI Calculate option price and sensitivities by Merton76 model

using numerical integration.
instoptstock Specify a European or Bermuda option.
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Bermuda Put and Call Schedule

A Bermuda option resembles a hybrid of American and European options. You exercise it on
predetermined dates only, usually monthly. In Financial Instruments Toolbox software, you indicate
the relevant information for a Bermuda option in two input matrices:

• Strike — Contains the strike price values for the option.
• ExerciseDates — Contains the schedule when you can exercise the option.

Spread Option
A spread option is an option written on the difference of two underlying assets. For example, a
European call on the difference of two assets X1 and X2 would have the following pay off at maturity:

max(X1− X2− K, 0)

where:

K is the strike price.

The following functions support spread options.

Function Purpose
spreadbykirk Price European spread options using the Kirk pricing model.
spreadsensbykirk Calculate European spread option prices and sensitivities using the Kirk

pricing model.
spreadbybjs Price European spread options using the Bjerksund-Stensland pricing

model.
spreadsensbybjs Calculate European spread option prices and sensitivities using the

Bjerksund-Stensland pricing model.
spreadbyfd Price European or American spread options using the Alternate

Direction Implicit (ADI) finite difference method.
spreadsensbyfd Calculate price and sensitivities of European or American spread

options using the Alternate Direction Implicit (ADI) finite difference
method.

spreadbyls Price European or American spread options using Monte Carlo
simulations.

spreadsensbyls Calculate price and sensitivities for European or American spread
options using Monte Carlo simulations.

One-Touch and Double One-Touch Options
A touch option (also known as binary barrier options or American digitals) are path-dependent
options in which the existence and payment of the options depend on the movement of the underlying
spot through their option life.

There are two types of touch options:

• One-Touch
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The one-touch (no-touch) option provides a payoff if the underlying spot ever (never) trades at or
beyond the barrier level and zero otherwise.

• Double One-Touch

The double one-touch and double no-touch option works the same way as a one-touch option, but
has two barriers. A double one-touch (double no-touch) option provides a payoff if the underlying
spot ever (never) touches either the upper or lower barriers levels.

The following functions support touch options.

Function Purpose
touchbybls Price one-touch and no-touch binary options using the Black-Scholes

option pricing model.
touchsensbybls Calculate price and sensitivities for one-touch and no-touch binary

options using the Black-Scholes option pricing model.
dbltouchbybls Price double one-touch and double no-touch binary options using the

Black-Scholes option pricing model
dbltouchsensbybls Calculate price and sensitivities for double one-touch and double no-

touch binary options using the Black-Scholes option pricing model

Forwards Option
A forward option is a non-standardized contract between two parties to buy or to sell an asset at a
specified future time at a price agreed upon today. The buyer of a forward option contract has the
right to hold a particular forward position at a specific price any time before the option expires. The
forward option seller holds the opposite forward position when the buyer exercises the option. A call
option is the right to enter into a long forward position and a put option is the right to enter into a
short forward position. A closely related contract is a futures contract. A forward is like a futures in
that it specifies the exchange of goods for a specified price at a specified future date. The table below
displays some of the characteristics of forward and futures contracts.

Forwards Futures
Customized contracts Standardized contracts
Over the counter traded Exchange traded
Exposed to default risk Clearing house reduces default risk
Mostly used for hedging Mostly used by hedgers and speculators
Settlement at the end of contract (no Margin
required)

Daily changes are settled day by day (Margin
required)

Delivery usually takes place Delivery usually never happens

The payoff for a forward option, where the value of a forward position at maturity depends on the
relationship between the delivery price (K) and the underlying price (ST) at that time, is:

• For a long position: fT = ST − K
• For a short position: fT = K − ST

The following functions support pricing a forwards option.
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Function Purpose
optstockbyblk Price options on forwards using the Black option pricing

model.
optstocksensbyblk Determine option prices and sensitivities on forwards using the

Black pricing model.

Futures Option
A future option is a standardized contract between two parties to buy or sell a specified asset of
standardized quantity and quality for a price agreed upon today (the futures price) with delivery and
payment occurring at a specified future date, the delivery date. The contracts are negotiated at a
futures exchange, which acts as an intermediary between the two parties. The party agreeing to buy
the underlying asset in the future, the "buyer" of the contract, is said to be "long", and the party
agreeing to sell the asset in the future, the "seller" of the contract, is said to be "short."

Forwards Futures
Customized contracts Standardized contracts
Over the counter traded Exchange traded
Exposed to default risk Clearing house reduces default risk
Mostly used for hedging Mostly used by hedgers and speculators
Settlement at the end of contract (no Margin
required)

Daily changes are settled day by day (Margin
required)

Delivery usually takes place Delivery usually never happens

A futures contract is the delivery of item J at time T and:

• There exists in the market a quoted price F(t, T), which is known as the futures price at time t for
delivery of J at time T.

• The price of entering a futures contract is equal to zero.
• During any time interval [t,s], the holder receives the amount F(s, T)− F(t, T) (this reflects

instantaneous marking to market).
• At time T, the holder pays F(T, T) and is entitled to receive J. Note that F(T, T) should be the spot

price of J at time T.

The following functions support pricing a futures option.

Function Purpose
optstockbyblk Price options on futures using the Black option pricing model.
optstocksensbyblk Determine option prices and sensitivities on futures using the

Black pricing model.

See Also
crrtree | eqptree | lrtree | stockspec | crrtimespec | eqptimespec | lrtimespec |
itttree | itttimespec | treepath | trintreepath | asianbycrr | barrierbycrr |
compoundbycrr | crrprice | crrsens | lookbackbycrr | optstockbycrr | instasian |
instbarrier | instcompound | instlookback | instoptstock | asianbyeqp | barrierbyeqp |
compoundbyeqp | eqpprice | eqpsens | lookbackbyeqp | optstockbyeqp | optstockbylr |
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optstocksensbylr | asianbyitt | barrierbyitt | compoundbyitt | ittprice | ittsens |
lookbackbyitt | optstockbyitt | assetbybls | assetsensbybls | cashbybls |
cashsensbybls | chooserbybls | gapbybls | gapsensbybls | impvbybls | optstockbybls |
optstocksensbybls | supersharebybls | supersharesensbybls | impvbyblk |
optstockbyblk | optstocksensbyblk | impvbyrgw | optstockbyrgw | optstocksensbyrgw |
impvbybjs | optstockbybjs | optstocksensbybjs | spreadbybjs | spreadsensbybjs |
basketbyju | basketsensbyju | basketstockspec | maxassetbystulz |
maxassetsensbystulz | minassetbystulz | minassetsensbystulz | spreadbykirk |
spreadsensbykirk | asianbykv | asiansensbykv | asianbylevy | asiansensbylevy |
lookbackbycvgsg | lookbacksensbycvgsg | basketbyls | basketsensbyls |
basketstockspec | asianbyls | asiansensbyls | lookbackbyls | lookbacksensbyls |
lookbackbyls | lookbacksensbyls | spreadbyls | spreadsensbyls | optstockbyls |
optstocksensbyls | optpricebysim

Related Examples
• “Understanding Equity Trees” on page 3-2
• “Pricing Equity Derivatives Using Trees” on page 3-64
• “Creating Instruments or Properties” on page 1-16
• “Graphical Representation of Equity Derivative Trees” on page 3-73
• “Compute Option Prices on a Forward” on page 11-1497
• “Compute Forward Option Prices and Delta Sensitivities” on page 11-1554
• “Compute the Option Price on a Future” on page 11-1498
• “Pricing European Call Options Using Different Equity Models” on page 3-88
• “Pricing Asian Options” on page 3-110
• “Equity Derivatives Using Closed-Form Solutions” on page 3-79
• “Pricing Using the Bjerksund-Stensland Model” on page 3-84

More About
• “Basket Option” on page 3-22
• “Asian Option” on page 3-19
• “Spread Option” on page 3-30
• “Vanilla Option” on page 3-27
• “Rainbow Option” on page 3-27
• “Bjerksund-Stensland 2002 Model” on page 3-81
• “Roll-Geske-Whaley Model” on page 3-80
• “Black Model” on page 3-80
• “Digital Option” on page 3-26
• “Supported Energy Derivative Functions” on page 3-34
• “Supported Interest-Rate Instrument Functions” on page 2-3
• “Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument

Objects” on page 1-82
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Supported Energy Derivative Functions
In this section...
“Asian Option” on page 3-34
“Barrier Option” on page 3-35
“Double Barrier Option” on page 3-36
“Vanilla Option” on page 3-37
“Spread Option” on page 3-38
“Lookback Option” on page 3-39
“Forwards Option” on page 3-40
“Futures Option” on page 3-41

Asian Option
An Asian option is a path-dependent option with a payoff linked to the average value of the underlying
asset during the life (or some part of the life) of the option. They are similar to lookback options in
that there are two types of Asian options: fixed (average price option) and floating (average strike
option). Fixed Asian options have a specified strike, while floating Asian options have a strike equal to
the average value of the underlying asset over the life of the option.

There are four Asian option types, each with its own characteristic payoff formula:

• Fixed call (average price option): max(0, Sav− X)
• Fixed put (average price option): max(0, X − Sav)
• Floating call (average strike option): max(0, S− Sav)
• Floating put (average strike option): max(0, Sav− S)

where:

Sav is the average price of underlying asset.

S is the price of the underlying asset.

X is the strike price (applicable only to fixed Asian options).

Sav is defined using either a geometric or an arithmetic average.

The following functions support Asian options.

Function Purpose
asianbyls Price European or American Asian options using the Longstaff-Schwartz

model.
asiansensbyls Calculate prices and sensitivities of European or American Asian

options using the Longstaff-Schwartz model.
asianbykv Price European geometric Asian options using the Kemna Vorst model.
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Function Purpose
asiansensbykv Calculate prices and sensitivities of European geometric Asian options

using the Kemna Vorst model.
asianbylevy Price European arithmetic Asian options using the Levy model.
asiansensbylevy Calculate prices and sensitivities of European arithmetic Asian options

using the Levy model.
asianbyhhm Calculate prices of European discrete arithmetic fixed Asian options

using the Haug, Haug, Margrabe model.
asiansensbyhhm Calculate prices and sensitivities of European discrete arithmetic fixed

Asian options using the Haug, Haug, Margrabe model
asianbytw Calculate prices of European arithmetic fixed Asian options using the

Turnbull Wakeman model.
asiansensbytw Calculate prices and sensitivities of European arithmetic fixed Asian

options using the Turnbull Wakeman model.
asianbycrr Price an Asian option from a Cox-Ross-Rubinstein binomial tree.
asianbyeqp Price an Asian option from an Equal Probabilities binomial tree.
asianbyitt Price an Asian option using an implied trinomial tree (ITT).
asianbystt Price an Asian option using a standard trinomial tree.
instasian Construct an Asian option.

Barrier Option
A barrier option is similar to a vanilla put or call option, but its life either begins or ends when the
price of the underlying asset passes a predetermined barrier value. There are four types of barrier
options.

Up Knock-In

This option becomes effective when the price of the underlying asset passes above a barrier that is
above the initial asset price. Once the barrier has knocked in, it will not knock out even if the price of
the underlying instrument moves below the barrier again.

Up Knock-Out

This option terminates when the price of the underlying asset passes above a barrier that is above the
initial stock price. Once the barrier has knocked out, it will not knock in even if the price of the
underlying instrument moves below the barrier again.

Down Knock-In

This option becomes effective when the price of the underlying asset passes below a barrier that is
below the initial stock price. Once the barrier has knocked in, it will not knock out even if the price of
the underlying instrument moves above the barrier again.

Down Knock-Out

This option terminates when the price of the underlying asset passes below a barrier that is below the
initial stock price. Once the barrier has knocked out, it will not knock in even if the price of the
underlying instrument moves above the barrier again.
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Rebates

If a barrier option fails to exercise, the seller may pay a rebate to the buyer of the option. Knock-outs
may pay a rebate when they are knocked out, and knock-ins may pay a rebate if they expire without
ever knocking in.

The following functions support barrier options.

Function Purpose
barrierbyfd Price barrier option using finite difference method.
barriersensbyfd Calculate barrier option price and sensitivities using finite difference

method.
barrierbyls Price European or American barrier options using Monte Carlo

simulations.
barrierbybls Price European barrier options using Black-Scholes option pricing

model.
barrierbycrr Price a barrier option from a Cox-Ross-Rubinstein binomial tree.
barrierbyeqp Price a barrier option from an Equal Probabilities binomial tree.
barrierbyitt Price a barrier option using an implied trinomial tree (ITT).
barrierbystt Price a barrier options using a standard trinomial tree.

Double Barrier Option
A double barrier option is similar to the standard single barrier option except that they have two
barrier levels: a lower barrier (LB) and an upper barrier (UB). The payoff for a double barrier option
depends on whether the underlying asset remains between the barrier levels during the life of the
option. Double barrier options are less expensive than single barrier options as the probability of
being knocked out is higher. Because of this, double barrier options allow investors to achieve
reduction in the option premiums as and match an investor’s belief about the future movement of the
underlying price process.

There are two types of double barrier options:

• Double Knock-in

This option becomes effective when the price of the underlying asset reaches one of the barriers.
It gives the option holder, the right but not the obligation to buy or sell the underlying security at
the strike price, if the underlying asset goes above or below the barrier levels during the life of
the option.

• Double Knock-out

This option gives the option holder, the right but not the obligation to buy or sell the underlying
security at the strike price, as long as the underlying asset remains between the barrier levels
during the life of the option. This option terminates when the price of the underlying asset passes
one of the barriers.

The following functions support double barrier options.
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Function Purpose
dblbarrierbybls Price European double barrier options using the Black-Scholes option

pricing model.
dblbarriersensbybls Calculate the price and sensitivities for a European double barrier

options using the Black-Scholes option pricing model.
dblbarrierbyfd Price double barrier option prices using the finite difference method.
dblbarriersensbyfd Calculate the price and sensitivities for a double barrier option using

the finite difference method.

Vanilla Option
A vanilla option is a category of options that includes only the most standard components. A vanilla
option has an expiration date and straightforward strike price. American-style options and European-
style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

The following functions support specifying or pricing a vanilla option.

Function Purpose
optstockbyls Price European, Bermudan, or American vanilla options using

the Longstaff-Schwartz model.
optstocksensbyls Calculate European, Bermudan, or American vanilla option

prices and sensitivities using the Longstaff-Schwartz model.
optstockbyfd Calculate vanilla option prices using finite difference method.
optstocksensbyfd Calculate vanilla option prices and sensitivities using finite

difference method.
optstockbybaw Calculate American options prices using Barone-Adesi and

Whaley option pricing model.
optstocksensbybaw Calculate American options prices and sensitivities using

Barone-Adesi and Whaley option pricing model.
optstockbyrgw Calculate American call option prices using Roll-Geske-Whaley

option pricing model.
optstocksensbyrgw Calculate American call option prices or sensitivities using

Roll-Geske-Whaley option pricing model.
optByLocalVolFD Calculate vanilla option price by local volatility model, using

finite differences.
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Function Purpose
optstockbybjs Price American options using Bjerksund-Stensland 2002 option

pricing model.
optstocksensbybjs Determine American option prices or sensitivities using

Bjerksund-Stensland 2002 option pricing model.
optSensByLocalVolFD Calculate vanilla option price or sensitivities by local volatility

model, using finite differences.
optByHestonFD Calculate vanilla option price by Heston model using finite

differences.
optSensByHestonFD Calculate vanilla option price and sensitivities by Heston model

using finite differences.
optByBatesFD Calculates vanilla European option price by Bates model using

finite differences.
optSensByBatesFD Calculates vanilla European option price and sensitivities by

Bates model using finite differences.
optByMertonFD Calculates vanilla European option price by Merton76 model

using finite differences.
optSensByMertonFD Calculates vanilla European option price and sensitivities by

Merton76 model using finite differences.
optByBatesFFT Calculate option price by Bates model using FFT and FRFT.
optByHestonFFT Calculate option price by Heston model using FFT and FRFT.
optByMertonFFT Calculate option price by Merton76 model using FFT and

FRFT.
optstockbycrr Price an option from a Cox-Ross-Rubinstein binomial tree.
optstockbyeqp Price an option from an Equal Probabilities binomial tree.
optstockbyitt Price an option using an implied trinomial tree (ITT).
optstockbystt Price an option using a standard trinomial tree.

Spread Option
A spread option is an option written on the difference of two underlying assets. For example, a
European call on the difference of two assets X1 and X2 would have the following pay off at maturity:

max(X1− X2− K, 0)

where:

K is the strike price.

The following functions support spread options.

Function Purpose
spreadbykirk Price European spread options using the Kirk pricing model.
spreadsensbykirk Calculate European spread option prices and sensitivities using the Kirk

pricing model.
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Function Purpose
spreadbybjs Price European spread options using the Bjerksund-Stensland pricing

model.
spreadsensbybjs Calculate European spread option prices and sensitivities using the

Bjerksund-Stensland pricing model.
spreadbyfd Price European or American spread options using the Alternate

Direction Implicit (ADI) and Crank-Nicolson finite difference methods.
spreadsensbyfd Calculate price and sensitivities of European or American spread

options using the Alternate Direction Implicit (ADI) and Crank-Nicolson
finite difference methods.

spreadbyls Price European or American spread options using Monte Carlo
simulations.

spreadsensbyls Calculate price and sensitivities for European or American spread
options using Monte Carlo simulations.

For more information on using spread options, see “Pricing European and American Spread Options”
on page 3-97.

Lookback Option
A lookback option is a path-dependent option based on the maximum or minimum value the
underlying asset (e.g. electricity, stock) achieves during the entire life of the option. Basically the
holder of the option can ‘look back’ over time to determine the payoff. This type of option provides
price protection over a selected period, reduces uncertainties with the timing of market entry,
moderates the need for the ongoing management, and therefore, is usually more expensive than
vanilla options.

Lookback call options give the holder the right to buy the underlying asset at the lowest price.
Lookback put options give the right to sell the underlying asset at the highest price.

Financial Instruments Toolbox software supports two types of lookback options: fixed and floating.
The difference is related to how the strike price is set in the contract. Fixed lookback options have a
specified strike price and the option pays out the maximum of the difference between the highest
(lowest) observed price of the underlying during the life of the option and the strike. Floating
lookback options have a strike price determined at maturity, and it is set at the lowest (highest) price
of the underlying reached during the life of the option. This means that for a floating strike lookback
call (put), the holder has the right to buy (sell) the underlying asset at its lowest (highest) price
observed during the life of the option. So, there are a total of four lookback option types, each with its
own characteristic payoff formula:

• Fixed call: max(0, Smax− X)
• Fixed put: max(0, X − Smin)
• Floating call: max(0, S− Smin)
• Floating put: max(0, Smax− S)

where:

Smax is the maximum price of underlying asset.
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Smin is the minimum price of underlying asset.

S is the price of the underlying asset at maturity.

X is the strike price.

The following functions support lookback options.

Function Purpose
lookbackbycvgsg Calculate prices of European lookback fixed and floating strike options

using the Conze-Viswanathan and Goldman-Sosin-Gatto models.
lookbacksensbycvgsg Calculate prices and sensitivities of European fixed and floating strike

lookback options using the Conze-Viswanathan and Goldman-Sosin-
Gatto models.

lookbackbyls Calculate prices of lookback fixed and floating strike options using the
Longstaff-Schwartz model.

lookbacksensbyls Calculate prices and sensitivities of lookback fixed and floating strike
options using the Longstaff-Schwartz model.

lookbackbycrr Price a lookback option from a Cox-Ross-Rubinstein binomial tree.
lookbackbyeqp Price a lookback option from an Equal Probabilities binomial tree.
lookbackbyitt Price a lookback option using an implied trinomial tree (ITT).
lookbackbystt Price a lookback option using a standard trinomial tree.

Lookback options and Asian options are instruments used in the electricity market to manage
purchase timing risk. Electricity purchasers cover part of their expected electricity consumption on
the forward market to avoid the volatility and limited liquidity of the spot market. Using Asian options
as a hedging tool is a passive approach to solving the purchase timing problem. An Asian option
instrument diminishes the wrong timing risk but it also reduces any potential benefit to the buyer
from falling prices. On the other hand, lookback options allow the purchasers to buy electricity at the
lowest price, but as mentioned before, this instrument is more expensive than Asian and vanilla
options.

Forwards Option
A forward option is a non-standardized contract between two parties to buy or to sell an asset at a
specified future time at a price agreed upon today. The buyer of a forward option contract has the
right to hold a particular forward position at a specific price any time before the option expires. The
forward option seller holds the opposite forward position when the buyer exercises the option. A call
option is the right to enter into a long forward position and a put option is the right to enter into a
short forward position. A closely related contract is a futures contract. A forward is like a futures in
that it specifies the exchange of goods for a specified price at a specified future date. The following
table displays some of the characteristics of forward and futures contracts.

Forwards Futures
Customized contracts Standardized contracts
Over the counter traded Exchange traded
Exposed to default risk Clearing house reduces default risk
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Forwards Futures
Mostly used for hedging Mostly used by hedgers and speculators
Settlement at the end of contract (no Margin
required)

Daily changes are settled day by day (Margin
required)

Delivery usually takes place Delivery usually never happens

The payoff for a forward option, where the value of a forward position at maturity depends on the
relationship between the delivery price (K) and the underlying price (ST) at that time, is:

• For a long position: fT = ST − K
• For a short position: fT = K − ST

The following functions support pricing a forwards option.

Function Purpose
optstockbyblk Price options on forwards using the Black option pricing

model.
optstocksensbyblk Determine option prices and sensitivities on forwards using the

Black pricing model.

Futures Option
A future option is a standardized contract between two parties to buy or sell a specified asset of
standardized quantity and quality for a price agreed upon today (the futures price) with delivery and
payment occurring at a specified future date, the delivery date. The contracts are negotiated at a
futures exchange, which acts as an intermediary between the two parties. The party agreeing to buy
the underlying asset in the future, the "buyer" of the contract, is said to be "long", and the party
agreeing to sell the asset in the future, the "seller" of the contract, is said to be "short."

Forwards Futures
Customized contracts Standardized contracts
Over the counter traded Exchange traded
Exposed to default risk Clearing house reduces default risk
Mostly used for hedging Mostly used by hedgers and speculators
Settlement at the end of contract (no Margin
required)

Daily changes are settled day by day (Margin
required)

Delivery usually takes place Delivery usually never happens

A futures contract is the delivery of item J at time T and:

• There exists in the market a quoted price F(t, T), which is known as the futures price at time t for
delivery of J at time T.

• The price of entering a futures contract is equal to zero.
• During any time interval [t,s], the holder receives the amount F(s, T)− F(t, T) (this reflects

instantaneous marking to market).
• At time T, the holder pays F(T, T) and is entitled to receive J. Note that F(T, T) should be the spot

price of J at time T.
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The following functions support pricing a futures option.

Function Purpose
optstockbyblk Price options on futures using the Black option pricing model.
optstocksensbyblk Determine option prices and sensitivities on futures using the

Black pricing model.

See Also
spreadbyls | spreadsensbyls | asianbyls | asiansensbyls | lookbackbyls |
lookbacksensbyls | optstockbyls | optstocksensbyls | optpricebysim | spreadbykirk |
spreadsensbykirk | spreadbybjs | spreadsensbybjs | asianbykv | asiansensbykv |
asianbylevy | asiansensbylevy | lookbackbycvgsg | lookbacksensbycvgsg |
optstockbyblk | optstocksensbyblk | spreadbyfd | spreadsensbyfd

Related Examples
• “Pricing European and American Spread Options” on page 3-97
• “Hedging Strategies Using Spread Options” on page 4-35
• “Pricing Swing Options Using the Longstaff-Schwartz Method” on page 3-43
• “Compute Option Prices on a Forward” on page 11-1497
• “Compute Forward Option Prices and Delta Sensitivities” on page 11-1554
• “Compute the Option Price on a Future” on page 11-1498
• “Simulating Electricity Prices with Mean-Reversion and Jump-Diffusion” on page 3-53
• “Pricing Asian Options” on page 3-110

More About
• “Forwards Option” on page 3-40
• “Futures Option” on page 3-41
• “Spread Option” on page 3-38
• “Asian Option” on page 3-34
• “Vanilla Option” on page 3-37
• “Lookback Option” on page 3-39
• “Supported Equity Derivative Functions” on page 3-19
• “Supported Interest-Rate Instrument Functions” on page 2-3
• “Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument

Objects” on page 1-82
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Pricing Swing Options Using the Longstaff-Schwartz Method
This example shows how to price a swing option using a Monte Carlo simulation and the Longstaff-
Schwartz method. A risk-neutral simulation of the underlying natural gas price is conducted using a
mean-reverting model. The simulation results are used to price a swing option based on the
Longstaff-Schwartz method [6 on page 3-0 ]. This approach uses a regression technique to
approximate the continuation value of the option. A comparison is made between a polynomial and
spline basis to fit the regression. Finally, the resulting prices are analyzed against lower and upper
price boundaries derived from standard European and American options.

Overview of Swing Options

Swing options are popular financial instruments in the energy market, which provide flexibility in the
volume of the delivered asset. In order for energy consumers to protect themselves against
fluctuations in energy prices, they want to lock in a price by purchasing a forward contract, called the
baseload forward contract. However, consumers do not know exactly how much energy will be used
in the future, and energy commodities such as electricity and gas cannot easily be stored. Therefore,
the consumer wants the flexibility to change the amount of energy that is delivered at each delivery
date. Swing options provide this flexibility. Thus, the full contract is composed of two parts: the
baseload forward contract, and the swing option component.

Swing options are generally over-the-counter (OTC) contracts that can be highly customized.
Therefore, there are many different types of constraints and penalties (see [5 on page 3-0 ] for more
details). In this example, a swing option is priced where the only constraint is the daily volume, which
is known as the Daily Contract Quantity (DCQ). When a swing right is exercised, the volume cannot
go below the minimum DCQ (minDCQ), or go above the maximum DCQ (maxDCQ).

There are several methods to price swing options, such as finite differences, simulation, and dynamic
programming based on trees [5 on page 3-0 ]. This example uses the simulation-based approach
with the Longstaff-Schwartz method. The benefit of the simulation-based approach is that the
dynamics used to simulate the underlying asset price are separated from the pricing algorithm. In the
finite difference and tree based methods, the pricing algorithm must be changed in order to consider
pricing with a different underlying price dynamic.

Risk-Neutral Simulation of Natural Gas Price

In this example, natural gas is used as the underlying asset with the following mean-reverting
dynamic [8]:

dSt = κ(μ− log(St))Stdt + σStdWt

where Wt is a standard Brownian motion. Applying Ito's Lemma to the logarithm of the price leads to
an Orstein-Uhlenbeck process:

dXt = κ(θ− Xt)dt + σdWt

where Xt = log(St), κ > 0, and θ is defined as:

θ = μ− σ2

2κ

θ is the mean-reversion level that determines the value at which the simulated values will revert to in
the long run. κ is the mean-reversion speed that determines how fast this reversion occurs. σ is the
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volatility of X. We first proceed by simulating the logarithm of the price. Afterwards, the exponential
of the simulated values are taken to obtain the prices.

The length of the simulation is for a one year period, with the initial price of 3.9 dollars per MMBtu.
The Monte Carlo simulation is conducted for 1,000 trials, with daily periods. In practice, these
parameters are calibrated against market data. In this example, κ = 1 . 2, θ = 1 . 7, and σ = 59 %. The
hwv object from the Financial Toolbox™ is used to simulate the mean-reverting dynamics of the
natural gas price.

% Settlement date
Settle = '01-Jun-2014';

% Maturity Date
Maturity = '01-Jun-2015';

% Actual/Actual basis
Basis = 0;

% Initial log(price in $/MMBtu)
X0 = log(3.9);

% Volatility of log(price)
Sigma = 0.59;

% Number of trials in the Monte Carlo simulation
NumTrials =1000;

% Number of periods (daily)
NumPeriods = daysdif(Settle, Maturity, Basis);

% Daily time step
dt = 1/NumPeriods;

% Mean reversion speed of log(price)
Kappa = 1.2;

% Mean reversion level of log(price)
Theta = 1.7;

% Create HWV object
hwvobj = hwv(Kappa, Theta, Sigma, 'StartState', X0);

The simulation is run and plotted.

% Set random number generator seed
savedState = rng(0, 'twister');

% Simulate gas prices
[Paths, Times] = hwvobj.simBySolution(NumPeriods, 'NTRIALS', NumTrials, ...
    'DeltaTime', dt);
Paths = squeeze(exp(Paths));

% Restore random number generator state
rng(savedState);

% Plot paths
figure;
plot(Times, Paths);
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title('Natural Gas Risk-Neutral Price Simulation');
xlabel('Time');
ylabel('Price');

In this example, natural gas is used as the underlying asset with a mean-reverting dynamic. However,
the Longstaff-Schwartz algorithm can be used for other underlying assets, such as electricity, with
any underlying price dynamic.

Pricing the Swing Option

We consider a swing option with five swing rights at the strike of $4.69/MMBtu, which can be
exercised daily between the day after the settlement date and the maturity date. The Daily Contract
Quantity (DCQ) is 10,000 MMBtu, which is the average amount of natural gas that the consumer
expects to purchase on a given day. The consumer has the flexibility to reduce the purchase amount
(downswing) in one day to the minimum DCQ of 2,500 MMBtu, or increase the purchase (upswing) to
15,000 MMBtu. The continuously compounded annual risk-free rate is 1%.

RateSpec is used to represent the interest-rate term structure. For the sake of simplicity, we
consider a flat interest-rate term structure in this example. The values of RateSpec can be modified
to accommodate any interest-rate curve. The function hswingbyls in this example assumes a daily
exercise if the ExerciseDates input is empty.

% Define RateSpec
rfrate = 0.01;
Compounding = -1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
                     'EndDates', Maturity, 'Rates', rfrate, ...
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                     'Compounding', Compounding, 'Basis', Basis);

% Daily exercise
% hswingbyls assumes daily exercise for empty ExerciseDates
ExerciseDates = [];

% Number of swings
NumSwings = 5;

% Daily Contract Quantity in MMBtu
DCQ = 10000;

% Minimum DCQ constraint in MMBtu
minDCQ = 2500;

% Maximum DCQ constraint in MMBtu
maxDCQ = 15000;

% Strike
Strike = 4.69;

The Longstaff-Schwartz method is a backward iteration algorithm, which steps backward in time from
the maturity date. At each exercise date, the algorithm approximates the continuation value, which is
the value of the option if it is not exercised. This is done by fitting a regression against the values of
the simulated prices and the discounted future value of the option at the next exercise date. The
future value of the option is known as the algorithm moves backward in time. The continuation value
is compared to the sum of the payoff from immediate exercise (a downswing or upswing) and the
continuation value of a swing option with one less swing right. If this sum is smaller, the option
holder's optimal strategy is to not exercise on that date. The function hswingbyls in this example
uses this method to determine the optimal exercise strategy and the price for swing options [1 on
page 3-0 ,2 on page 3-0 ,7 on page 3-0 ].

As discussed earlier, the only constraint considered in this example is the minimum and maximum
DCQ. In this case, the optimal early exercise strategy is of a "bang-bang" type. This means that when
it is optimal to upswing or downswing at a certain exercise date, the option holder should always
exercise at the maximum or minimum DCQ to maximize profit. The "bang-bang" exercise would not
be the optimal strategy if, for example, there is a terminal penalty based on volume. The pricing
algorithm would then need to additionally keep track of all possible volume levels, which significantly
adds to the runtime performance cost.

First, the swing option is priced using a third order polynomial to fit the regression of the Longstaff-
Schwartz method. The function hswingbyls also generates a plot of the regression between the
underlying price and the continuation value at the exercise date before maturity.

% Price swing option using 3rd order polynomial to fit Longstaff-Schwartz
% regression
tic;
useSpline = false;
SwingPrice = hswingbyls(Paths, Times, RateSpec, Settle, Maturity, ...
    Strike, ExerciseDates, NumSwings, DCQ, minDCQ, maxDCQ, useSpline, ...
    [], true)
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SwingPrice = 5.6943e+04

lsPolyTime = toc;

The above plot of the regression fit shows that the third order polynomial does not fit the
continuation value perfectly, especially near the hinge and at the extreme points. Use the csaps
function to fit the regression using a cubic smoothing spline with a smoothing parameter of 0.7. The
Curve Fitting Toolbox™ is required to run the remainder of the example.

% Price swing option using smoothed splines to fit Longstaff-Schwartz
% regression
tic;
useSpline = true;
smoothingParam = 0.7;
SwingPriceSpline = hswingbyls(Paths, Times, RateSpec, Settle, Maturity, ...
    Strike, ExerciseDates, NumSwings, DCQ, minDCQ, maxDCQ, useSpline, ...
    smoothingParam, true)
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SwingPriceSpline = 6.0729e+04

lsSplineTime = toc;

The plot of the regression shows that the cubic smoothing spline has a better fit against the data,
thus obtaining a more accurate value for the continuation values. However, the comparison below
shows that using a cubic smoothing spline takes longer than a third order polynomial.

% Print comparison of running times
displayRunningTimes(lsPolyTime, lsSplineTime)

Comparison of running times:

3rd order polynomial: 3.26 sec
Spline              : 10.31 sec

Also, it is important to note that the price represents solely the optionality component. Hence, the
price of the baseload forward contract is not included in the above calculated price. Because we used
a fixed strike price, the baseload contract has a non-zero value, which can be calculated by:

BaseLoadPrice = ∑
i = 1

N
e−rtiE(Sti− K)

where ti, i = 1, . . . , N, are the exercise dates (see [3 on page 3-0 ] for more details). The full price
of the contract, including the baseload and the swing option, is calculated below using the swing
option price from the smoothed cubic spline.
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% Obtain discount factors
RS2 = intenvset(RateSpec, 'StartTimes', 0, 'EndTimes', Times(2:end));
D = intenvget(RS2,'Disc');

% Calculate baseload price
BaseLoadPrice = DCQ.*mean(Paths(2:end,:)-Strike,2)'*D;

% Calculate full contract price, based on results from cubic spline LS
FullContractPrice = BaseLoadPrice + SwingPriceSpline

FullContractPrice = 1.2479e+05

Price Bounds

A lower bound for the swing option is a strip of European options, and the upper bound is a strip of
American options [4 on page 3-0 ]. Compared to European options, swing options have an early
exercise premium at each exercise date, thus the price should be higher. The price is lower than the
American option strips, because only a single swing right can be exercised at each exercise date.
More than one strip can be exercised in a single day using American options.

The prices for the strips of the lower and upper bounds are calculated below to check that the swing
option prices are within these bounds. The European strip prices are calculated against the last five
exercise dates.

% Obtain discount factor for the last NumSwings exercise dates
D = D(end-NumSwings+1:end);

% European lower bound
idx = size(Paths, 1):-1:(size(Paths, 1) - NumSwings + 1);
putEuro = D'*mean(max(Strike - Paths(idx,:), 0),2);
callEuro = D'*mean(max(Paths(idx,:) - Strike, 0),2);
lowerBound = ((DCQ-minDCQ).*putEuro+(maxDCQ-DCQ).*callEuro);

% American upper bound
[putAmer, callAmer] = hamericanPrice(Paths, Times, RateSpec, Strike);
upperBound = NumSwings.*((DCQ-minDCQ).*putAmer+(maxDCQ-DCQ).*callAmer);

% Print price and lower/upper bounds
displaySummary(SwingPriceSpline, lowerBound, upperBound);

Comparison to lower and upper bounds:

Lower bound (European) : 44412.14
Swing Option Price     : 60729.00
Upper bound (American) : 68181.42

The prices calculated using the Longstaff-Schwartz algorithm are within the lower and upper bounds.
The plot below shows a comparison between the swing option and the upper and lower bounds as the
number of swings increases. When the number of swings is 1, the swing option is equivalent to an
American option. In the case of daily exercise opportunity (NumSwings = 365), the swing option is
equivalent to the strip of European options with daily maturity.
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Conclusion

The example shows the use of the Longstaff-Schwartz method to price a swing option where the
underlying asset follows a mean-reverting dynamic. A 3rd order polynomial and a smoothed cubic
spline are used to fit the regression in the Longstaff-Schwartz algorithm to approximate the
continuation value. It was shown that the smoothed cubic spline fits the data better at the cost of
slower performance. Finally, the resulting swing option prices were checked against the lower bound
of a strip of European options and an upper bound of a strip of American options.
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Utility Functions

function displaySummary(SwingPriceSpline, lowerBound, upperBound)
fprintf('Comparison to lower and upper bounds:\n');
fprintf('\n')
fprintf('Lower bound (European) : %.2f\n', lowerBound);
fprintf('Swing Option Price     : %.2f\n', SwingPriceSpline);
fprintf('Upper bound (American) : %.2f\n\n', upperBound); 
end

function displayRunningTimes(lsPolyTime, lsSplineTime)
fprintf('Comparison of running times:\n');
fprintf('\n')
fprintf('3rd order polynomial: %.2f sec\n', lsPolyTime);
fprintf('Spline              : %.2f sec\n\n', lsSplineTime);
end

See Also
spreadbyls | spreadsensbyls | asianbyls | asiansensbyls | lookbackbyls |
lookbacksensbyls | optstockbyls | optstocksensbyls | optpricebysim | spreadbykirk |
spreadsensbykirk | spreadbybjs | spreadsensbybjs | asianbykv | asiansensbykv |
asianbylevy | asiansensbylevy | lookbackbycvgsg | lookbacksensbycvgsg |
optstockbyblk | optstocksensbyblk | spreadbyfd | spreadsensbyfd

Related Examples
• “Pricing European and American Spread Options” on page 3-97
• “Hedging Strategies Using Spread Options” on page 4-35
• “Compute Option Prices on a Forward” on page 11-1497
• “Compute Forward Option Prices and Delta Sensitivities” on page 11-1554
• “Compute the Option Price on a Future” on page 11-1498
• “Simulating Electricity Prices with Mean-Reversion and Jump-Diffusion” on page 3-53
• “Pricing Asian Options” on page 3-110

More About
• “Forwards Option” on page 3-40
• “Futures Option” on page 3-41
• “Spread Option” on page 3-38
• “Asian Option” on page 3-34
• “Vanilla Option” on page 3-37
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• “Lookback Option” on page 3-39
• “Supported Equity Derivative Functions” on page 3-19
• “Supported Interest-Rate Instrument Functions” on page 2-3
• “Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument

Objects” on page 1-82
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• Energy Trading & Risk Management with MATLAB (47 min 31 sec)
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Simulating Electricity Prices with Mean-Reversion and Jump-
Diffusion

This example shows how to simulate electricity prices using a mean-reverting model with seasonality
and a jump component. The model is calibrated under the real-world probability using historical
electricity prices. The market price of risk is obtained from futures prices. A risk-neutral Monte Carlo
simulation is conducted using the calibrated model and the market price of risk. The simulation
results are used to price a Bermudan option with electricity prices as the underlying.

Overview of the Model

Electricity prices exhibit jumps in prices at periods of high demand when additional, less efficient
electricity generation methods, are brought on-line to provide a sufficient supply of electricity. In
addition, they have a prominent seasonal component, along with reversion to mean levels. Therefore,
these characteristics should be incorporated into a model of electricity prices [2 on page 3-0 ].

In this example, electricity price is modeled as:

log(Pt) = f (t) + Xt

where Pt is the spot price of electricity. The logarithm of electricity price is modeled with two
components: f (t) and Xt. The component f (t) is the deterministic seasonal part of the model, and Xt is
the stochastic part of the model. Trigonometric functions are used to model f (t) as follows [3]:

f (t) = s1sin(2πt) + s2cos(2πt) + s3sin(4πt) + s4cos(4πt) + s5

where si, i = 1, . . . , 5 are constant parameters, and t is the annualized time factors. The stochastic
component Xt is modeled as an Ornstein-Uhlenbeck process (mean-reverting) with jumps:

dXt = (α− κXt)dt + σdWt + J(μJ, σ J)dΠ(λ)

The parameters α and κ are the mean-reversion parameters. Parameter σ is the volatility, and Wt is a
standard Brownian motion. The jump size is J(μJ, σ J), with a normally distributed mean μJ, and a
standard deviation σ J. The Poisson process Π(λ) has a jump intensity of λ.

Electricity Prices

Sample electricity prices from January 1, 2010 to November 11, 2013 are loaded and plotted below.
Prices contain the electricity prices, and PriceDates contain the dates associated with the prices.
The logarithm of the prices and annual time factors are calculated.

% Load the electricity prices and futures prices.
load('electricity_prices.mat');
PriceDates = datetime(PriceDates,'ConvertFrom','datenum');
FutExpiry = datetime(FutExpiry,'ConvertFrom','datenum');
FutValuationDate = datetime(FutValuationDate,'ConvertFrom','datenum');
% Plot the electricity prices.
figure;
plot(PriceDates, Prices);
title('Electricity Prices');
xlabel('Date');
ylabel('Price ($)');
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% Obtain the log of prices.
logPrices = log(Prices);

% Obtain the annual time factors from dates.
PriceTimes = yearfrac(PriceDates(1), PriceDates);

Calibration

First, the deterministic seasonality part is calibrated using the least squares method. Since the
seasonality function is linear with respect to the parameters si, the backslash operator (mldivide) is
used. After the calibration, the seasonality is removed from the logarithm of price. The logarithm of
price and seasonality trends are plotted below. Also, the de-seasonalized logarithm of price is plotted.

% Calibrate parameters for the seasonality model.
seasonMatrix = @(t) [sin(2.*pi.*t) cos(2.*pi.*t) sin(4.*pi.*t) ...
    cos(4.*pi.*t) t ones(size(t, 1), 1)];
C = seasonMatrix(PriceTimes);
seasonParam = C\logPrices;

% Plot the log price and seasonality line.
figure;
subplot(2, 1, 1);
plot(PriceDates, logPrices);
title('log(price) and Seasonality');
xlabel('Date');
ylabel('log(Prices)');
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hold on;
plot(PriceDates, C*seasonParam, 'r');
hold off;
legend('log(Price)', 'seasonality');

% Plot de-seasonalized log price
X = logPrices-C*seasonParam;
subplot(2, 1, 2);
plot(PriceDates, X);
title('log(price) with Seasonality Removed');
xlabel('Date');
ylabel('log(Prices)');

The second stage is to calibrate the stochastic part. The model for Xt needs to be discretized to
conduct the calibration. To discretize, assume that there is a Bernoulli process for the jump events.
That is, there is at most one jump per day since this example is calibrating against daily electricity
prices. The discretized equation is:

Xt = αΔt + ϕXt − 1 + σξ

with probability (1− λΔt) and,

Xt = αΔt + ϕXt − 1 + σξ + μJ + σ Jξ J

with probability λΔt, where ξ and ξ J are independent standard normal random variables, and
ϕ = 1− κΔt. The density function of Xt given Xt − 1 is [1 on page 3-0 ,4 on page 3-0 ]:
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f (Xt | Xt − 1) = (λΔt)N1(Xt | Xt − 1) + (1− λΔt)N2(Xt | Xt − 1)

N1(Xt | Xt − 1) = (2π(σ2 + σ J
2))−

1
2exp(

−(Xt − αΔt − ϕXt − 1− μJ)2

2(σ2 + σ J
2)

)

N2(Xt | Xt − 1) = (2πσ2)−
1
2exp(

−(Xt− αΔt − ϕXt − 1)2

2σ2 )

The parameters θ = {α, ϕ, μJ, σ2, σ J
2, λ} can be calibrated by minimizing the negative log likelihood

function:

minθ− ∑
t = 1

T
log(f (Xt | Xt − 1))

sub ject to ϕ < 1, σ2 > 0, σ J
2 > 0, 0 ≤ λΔt ≤ 1

The first inequality constraint, ϕ < 1, is equivalent to κ > 0. The volatilities σ and σ J must be positive.
In the last inequality, λΔt is between 0 and 1, because it represents the probability of a jump
occurring in Δt time. In this example, assume that Δt is one day. Therefore, there is at most 365
jumps in one year. The mle function from the Statistics and Machine Learning Toolbox™ is well suited
to solve the above maximum likelihood problem.

% Prices at t, X(t).
Pt = X(2:end);

% Prices at t-1, X(t-1).
Pt_1 = X(1:end-1);

% Discretization for the daily prices.
dt = 1/365;

% PDF for the discretized model.
mrjpdf = @(Pt, a, phi, mu_J, sigmaSq, sigmaSq_J, lambda) ...
    lambda.*exp((-(Pt-a-phi.*Pt_1-mu_J).^2)./ ...
    (2.*(sigmaSq+sigmaSq_J))).* (1/sqrt(2.*pi.*(sigmaSq+sigmaSq_J))) + ...
    (1-lambda).*exp((-(Pt-a-phi.*Pt_1).^2)/(2.*sigmaSq)).* ...
    (1/sqrt(2.*pi.*sigmaSq));

% Constraints: 
% phi < 1 (k > 0)
% sigmaSq > 0
% sigmaSq_J > 0
% 0 <= lambda <= 1
lb = [-Inf -Inf -Inf 0 0 0];
ub = [Inf 1 Inf Inf Inf 1];

% Initial values.
x0 = [0 0 0 var(X) var(X) 0.5];

% Solve the maximum likelihood.
params = mle(Pt,'pdf',mrjpdf,'start',x0,'lowerbound',lb,'upperbound',ub,...
    'optimfun','fmincon');
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% Obtain the calibrated parameters.
alpha = params(1)/dt

alpha = -20.1060

kappa = (1-params(2))/dt

kappa = 188.2535

mu_J = params(3)

mu_J = 0.2044

sigma = sqrt(params(4)/dt);
sigma_J = sqrt(params(5))

sigma_J = 0.2659

lambda = params(6)/dt

lambda = 98.3358

Monte Carlo Simulation

The calibrated parameters and the discretized model allow us to simulate electricity prices under the
real-world probability. The simulation is conducted for approximately 2 years with 10,000 trials. It
exceeds 2 years to include all the dates in the last month of simulation. This is because the expected
simulation prices for the futures contract expiry date is required in the next section to calculate the
market price of risk. The seasonality is added back on the simulated paths. A plot for a single
simulation path is plotted below.

rng default;

% Simulate for about 2 years.
nPeriods = 365*2+20;
nTrials = 10000;
n1 = randn(nPeriods,nTrials);
n2 = randn(nPeriods, nTrials);
j = binornd(1, lambda*dt, nPeriods, nTrials);
SimPrices = zeros(nPeriods, nTrials);
SimPrices(1,:) = X(end);
for i=2:nPeriods
    SimPrices(i,:) = alpha*dt + (1-kappa*dt)*SimPrices(i-1,:) + ...
                sigma*sqrt(dt)*n1(i,:) + j(i,:).*(mu_J+sigma_J*n2(i,:));
end

% Add back seasonality.
SimPriceDates = PriceDates(end) + days(0:(nPeriods-1))';
SimPriceTimes = yearfrac(PriceDates(1), SimPriceDates);
CSim = seasonMatrix(SimPriceTimes);
logSimPrices = SimPrices + repmat(CSim*seasonParam,1,nTrials);

% Plot the logarithm of Prices and simulated logarithm of Prices.
figure;
subplot(2, 1, 1);
plot(PriceDates, logPrices);
hold on;
plot(SimPriceDates(2:end), logSimPrices(2:end,1), 'red');
seasonLine = seasonMatrix([PriceTimes; SimPriceTimes(2:end)])*seasonParam;
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plot([PriceDates; SimPriceDates(2:end)], seasonLine, 'green');
hold off;
title('Actual log(price) and Simulated log(price)');
xlabel('Date');
ylabel('log(price)');
legend('market', 'simulation');

% Plot the prices and simulated prices.
PricesSim = exp(logSimPrices);
subplot(2, 1, 2);
plot(PriceDates, Prices);
hold on;
plot(SimPriceDates, PricesSim(:,1), 'red');
hold off;
title('Actual Prices and Simulated Prices');
xlabel('Date');
ylabel('Price ($)');
legend('market', 'simulation');

Calibration of the Market Price of Risk

Up to this point, the parameters were calibrated under the real-world probability. However, to price
options, you need the simulation under the risk-neutral probability. To obtain this, calculate the
market price of risk from futures prices to derive the risk-neutral parameters. Suppose that there are
monthly futures contracts available on the market, which are settled daily during the contract month.
For example, such futures for the PJM electricity market are listed on the Chicago Mercantile
Exchange [5 on page 3-0 ].
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The futures are settled daily during the contract month. Therefore, you can obtain daily futures
values by assuming the futures value is constant for the contract month. The expected futures prices
from the real-world measure are also needed to calculate the market price of risk. This can be
obtained from the simulation conducted in the previous section.

% Obtain the daily futures prices.
FutPricesDaily = zeros(size(SimPriceDates));
for i=1:nPeriods
    idx = find(year(SimPriceDates(i)) == year(FutExpiry) & ...
        month(SimPriceDates(i)) == month(FutExpiry));
    FutPricesDaily(i) = FutPrices(idx);
end

% Calculate the expected futures price under real-world measure.
SimPricesExp = mean(PricesSim, 2);

To calibrate the market price of risk against market futures values, use the following equation:

log(
Ft
Et

) = − σe−kt∫0 t
eksmsds

where Ft is the observed futures value at time t, and Et is the expected value under the real-world
measure at time t. The equation was obtained using the same methodology as described in [3 on page
3-0 ]. This example assumes that the market price of risk is fully driven by the Brownian motion.
The market price of risk, mt, can be solved by discretizing the above equation and solving a system of
linear equations.

% Setup system of equations.
t0 = yearfrac(PriceDates(1), FutValuationDate);
tz = SimPriceTimes-t0;
b = -log(FutPricesDaily(2:end) ./ SimPricesExp(2:end)) ./ ...
    (sigma.*exp(-kappa.*tz(2:end)));
A = (1/kappa).*(exp(kappa.*tz(2:end)) - exp(kappa.*tz(1:end-1)));
A = tril(repmat(A', size(A,1), 1));

% Precondition to stabilize numerical inversion.
P = diag(1./diag(A));
b = P*b;
A = P*A;

% Solve for the market price of risk.
riskPremium = A\b;

Simulation of Risk-Neutral Prices

Once mt is obtained, risk-neutral simulation can be conducted using the following dynamics:

Xt = αΔt + ϕXt − 1− σmt − 1Δt + σξ

with probability (1− λΔt) and

Xt = αΔt + ϕXt − 1− σmt − 1Δt + σξ + μJ + σ Jξ J

with probability λΔt.

nTrials = 10000;
n1 = randn(nPeriods, nTrials);
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n2 = randn(nPeriods, nTrials);
j = binornd(1, lambda*dt, nPeriods, nTrials);

SimPrices = zeros(nPeriods, nTrials);
SimPrices(1,:) = X(end);
for i=2:nPeriods
    SimPrices(i,:) = alpha*dt + (1-kappa*dt)*SimPrices(i-1,:) + ...
        sigma*sqrt(dt)*n1(i,:) - sigma*dt*riskPremium(i-1) + ...
        j(i,:).*(mu_J+sigma_J*n2(i,:));
end

% Add back seasonality.
CSim = seasonMatrix(SimPriceTimes);
logSimPrices = SimPrices + repmat(CSim*seasonParam,1,nTrials);

% Convert the log(Price) to Price.
PricesSim = exp(logSimPrices);

The expected values from the risk-neutral simulation are plotted against the market futures values.
This confirms that the risk-neutral simulation closely reproduces the market futures values.

% Obtain expected values from the risk-neutral simulation.
SimPricesExp = mean(PricesSim,2);
fexp = zeros(size(FutExpiry));
for i = 1:size(FutExpiry,1)
    idx = SimPriceDates == FutExpiry(i);    
    if sum(idx)==1
        fexp(i) = SimPricesExp(idx);
    end
end

% Plot expected values from the simulation against market futures prices.
figure;
subplot(2,1,1);
plot(FutExpiry, FutPrices(1:size(FutExpiry,1)),'-*');
hold on;
plot(FutExpiry, fexp, '*r');
hold off;
title('Market Futures Prices and Simulated Futures Prices');
xlabel('Date');
ylabel('Price');
legend('market', 'simulation', 'Location', 'NorthWest');
subplot(2,1,2);
plot(SimPriceDates(2:end), riskPremium);
title('Market Price of Risk');
xlabel('Date');
ylabel('Market Price of Risk');
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Pricing a Bermudan Option

The risk-neutral simulated values are used as input into the function optpricebysim in the
Financial Instruments Toolbox™ to price a European, Bermudan, or American option on electricity
prices. Below, the price is calculated for a two-year Bermudan call option with two exercise
opportunities. The first exercise is after one year, and the second is at the maturity of the option.

% Settle, maturity of option.
Settle = FutValuationDate;
Maturity = FutValuationDate + calyears(2);

% Create the interest-rate term structure.
riskFreeRate = 0.01;
Basis = 0;
Compounding = -1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
    'EndDates', Maturity, 'Rate', riskFreeRate, 'Compounding', ...
    Compounding, 'Basis', Basis);

% Cutoff the simulation at maturity.
endIdx = find(SimPriceDates == Maturity);
SimPrices = PricesSim(1:endIdx,:);
Times = SimPriceTimes(1:endIdx) - SimPriceTimes(1);

% Bermudan call option with strike 60, two exercise opportunities, after
% one year and at maturity.
OptSpec = 'call';
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Strike = 60;
ExerciseTimes = [Times(366) Times(end)];
Price = optpricebysim(RateSpec, SimPrices, Times, OptSpec, Strike, ...
    ExerciseTimes)

Price = 1.1085
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• “Hedging Strategies Using Spread Options” on page 4-35
• “Pricing Swing Options Using the Longstaff-Schwartz Method” on page 3-43
• “Compute Option Prices on a Forward” on page 11-1497
• “Compute Forward Option Prices and Delta Sensitivities” on page 11-1554
• “Compute the Option Price on a Future” on page 11-1498
• “Pricing Asian Options” on page 3-110

More About
• “Forwards Option” on page 3-40
• “Futures Option” on page 3-41
• “Spread Option” on page 3-38
• “Asian Option” on page 3-34
• “Vanilla Option” on page 3-37
• “Lookback Option” on page 3-39
• “Supported Equity Derivative Functions” on page 3-19
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• “Supported Interest-Rate Instrument Functions” on page 2-3
• “Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument

Objects” on page 1-82

External Websites
• Energy Trading & Risk Management with MATLAB (47 min 31 sec)
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Pricing Equity Derivatives Using Trees
In this section...
“Computing Instrument Prices” on page 3-64
“Computing Prices Using CRR” on page 3-65
“Computing Prices Using EQP” on page 3-66
“Computing Prices Using ITT” on page 3-68
“Computing Prices Using STT” on page 3-69
“Examining Output from the Pricing Functions” on page 3-70
“Graphical Representation of Equity Derivative Trees” on page 3-73

Computing Instrument Prices
The portfolio pricing functions crrprice, eqpprice, and ittprice calculate the price of any set of
supported instruments based on a binary equity price tree, an implied trinomial price tree, or a
standard trinomial tree. These functions are capable of pricing the following instrument types:

• Vanilla stock options

• American and European puts and calls
• Exotic options

• Asian
• Barrier
• Compound
• Lookback
• Stock options (Bermuda put and call schedules)

The syntax for calling the function crrprice is:

[Price, PriceTree] = crrprice(CRRTree, InstSet, Options)

The syntax for eqpprice is:

[Price, PriceTree] = eqpprice(EQPTree, InstSet, Options)

The syntax for ittprice is:

Price = ittprice(ITTTree, ITTInstSet, Options)

The syntax for sttprice is:

[Price, PriceTree] = sttprice(STTTree, InstSet, Name, Value)

These functions require two input arguments: the equity price tree and the set of instruments,
InstSet, and allow a third optional argument.

Required Arguments

CRRTree is a CRR equity price tree created using crrtree. EQPTree is an equal probability equity
price tree created using eqptree. ITTTree is an ITT equity price tree created using itttree.
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STTTree is a standard trinomial equity price tree created using stttree. See “Building Equity
Binary Trees” on page 3-3 and “Building Implied Trinomial Trees” on page 3-6 to learn how to create
these structures.

InstSet is a structure that represents the set of instruments to be priced independently using the
model.

Optional Argument

You can enter a third optional argument, Options, used when pricing barrier options. For more
specific information, see “Pricing Options Structure” on page A-2.

These pricing functions internally classify the instruments and call the appropriate individual
instrument pricing function for each of the instrument types. The CRR pricing functions are
asianbycrr, barrierbycrr, compoundbycrr, lookbackbycrr, and optstockbycrr. A similar
set of functions exists for EQP, ITT, and STT pricing. You can also use these functions directly to
calculate the price of sets of instruments of the same type. See the reference pages for these
individual functions for further information.

Computing Prices Using CRR
Consider the following example, which uses the portfolio and stock price data in the MAT-file
deriv.mat included in the toolbox. Load the data into the MATLAB workspace.

load deriv.mat

Use the MATLAB whos command to display a list of the variables loaded from the MAT-file.
Name              Size            Bytes  Class     Attributes

  BDTInstSet        1x1             27344  struct              
  BDTTree           1x1              7322  struct              
  BKInstSet         1x1             27334  struct              
  BKTree            1x1              8532  struct              
  CRRInstSet        1x1             21066  struct              
  CRRTree           1x1              7086  struct              
  EQPInstSet        1x1             21066  struct              
  EQPTree           1x1              7086  struct              
  HJMInstSet        1x1             27336  struct              
  HJMTree           1x1              8334  struct              
  HWInstSet         1x1             27334  struct              
  HWTree            1x1              8532  struct              
  ITTInstSet        1x1             21070  struct              
  ITTTree           1x1             12660  struct              
  STTInstSet        1x1             21070  struct              
  STTTree           1x1              7782  struct              
  ZeroInstSet       1x1             17458  struct              
  ZeroRateSpec      1x1              2152  struct     

CRRTree and CRRInstSet are the required input arguments to call the function crrprice.

Use instdisp to examine the set of instruments contained in the variable CRRInstSet.

instdisp(CRRInstSet)

Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name  Quantity
1     OptStock call    105    01-Jan-2003    01-Jan-2005    1           Call1 10      
2     OptStock put     105    01-Jan-2003    01-Jan-2006    0           Put1   5      
 
Index Type    OptSpec Strike Settle         ExerciseDates  AmericanOpt BarrierSpec Barrier Rebate Name     Quantity
3     Barrier call    105    01-Jan-2003    01-Jan-2006    1           ui          102     0      Barrier1 1       
 
Index Type     UOptSpec UStrike USettle        UExerciseDates UAmericanOpt COptSpec CStrike CSettle        CExerciseDates CAmericanOpt Name      Quantity
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4     Compound call     130     01-Jan-2003    01-Jan-2006    1            put      5       01-Jan-2003    01-Jan-2005    1            Compound1 3       
 
Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name      Quantity
5     Lookback call    115    01-Jan-2003    01-Jan-2006    0           Lookback1 7       
6     Lookback call    115    01-Jan-2003    01-Jan-2007    0           Lookback2 9       
 
Index Type  OptSpec Strike Settle         ExerciseDates  AmericanOpt AvgType    AvgPrice AvgDate Name   Quantity
7     Asian put     110    01-Jan-2003    01-Jan-2006    0           arithmetic NaN      NaN     Asian1 4       
8     Asian put     110    01-Jan-2003    01-Jan-2007    0           arithmetic NaN      NaN     Asian2 6       

Note Because of space considerations, the compound option above (Index 4) has been condensed
to fit the page. The instdisp command displays all compound option fields on your computer
screen.

The instrument set contains eight instruments:

• Two vanilla options (Call1, Put1)
• One barrier option (Barrier1)
• One compound option (Compound1)
• Two lookback options (Lookback1, Lookback2)
• Two Asian options (Asian1, Asian2)

Each instrument has a corresponding index that identifies the instrument prices in the price vector
returned by crrprice.

Now use crrprice to calculate the price of each instrument in the instrument set.

Price = crrprice(CRRTree, CRRInstSet)

Price =

    8.2863
    2.5016
   12.1272
    3.3241
    7.6015
   11.7772
    4.1797
    3.4219

Computing Prices Using EQP
Load the data into the MATLAB workspace.

load deriv.mat

Use the MATLAB whos command to display a list of the variables loaded from the MAT-file.
Name              Size            Bytes  Class     Attributes

  BDTInstSet        1x1             27344  struct              
  BDTTree           1x1              7322  struct              
  BKInstSet         1x1             27334  struct              
  BKTree            1x1              8532  struct              
  CRRInstSet        1x1             21066  struct              
  CRRTree           1x1              7086  struct              
  EQPInstSet        1x1             21066  struct              
  EQPTree           1x1              7086  struct              
  HJMInstSet        1x1             27336  struct              
  HJMTree           1x1              8334  struct              
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  HWInstSet         1x1             27334  struct              
  HWTree            1x1              8532  struct              
  ITTInstSet        1x1             21070  struct              
  ITTTree           1x1             12660  struct              
  STTInstSet        1x1             21070  struct              
  STTTree           1x1              7782  struct              
  ZeroInstSet       1x1             17458  struct              
  ZeroRateSpec      1x1              2152  struct     

EQPTree and EQPInstSet are the input arguments required to call the function eqpprice.

Use the command instdisp to examine the set of instruments contained in the variable
EQPInstSet.

instdisp(EQPInstSet)

Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name  Quantity
1     OptStock call    105    01-Jan-2003    01-Jan-2005    1           Call1 10      
2     OptStock put     105    01-Jan-2003    01-Jan-2006    0           Put1   5      
 
Index Type    OptSpec Strike Settle         ExerciseDates  AmericanOpt BarrierSpec Barrier Rebate Name     Quantity
3     Barrier call    105    01-Jan-2003    01-Jan-2006    1           ui          102     0      Barrier1 1       
 
Index Type     UOptSpec UStrike USettle        UExerciseDates UAmericanOpt COptSpec CStrike CSettle        CExerciseDates CAmericanOpt Name      Quantity
4     Compound call     130     01-Jan-2003    01-Jan-2006    1            put      5       01-Jan-2003    01-Jan-2005    1            Compound1 3       
 
Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name      Quantity
5     Lookback call    115    01-Jan-2003    01-Jan-2006    0           Lookback1 7       
6     Lookback call    115    01-Jan-2003    01-Jan-2007    0           Lookback2 9       
 
Index Type  OptSpec Strike Settle         ExerciseDates  AmericanOpt AvgType    AvgPrice AvgDate Name   Quantity
7     Asian put     110    01-Jan-2003    01-Jan-2006    0           arithmetic NaN      NaN     Asian1 4       
8     Asian put     110    01-Jan-2003    01-Jan-2007    0           arithmetic NaN      NaN     Asian2 6       
 
>> instdisp(EQPInstSet)
Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name  Quantity
1     OptStock call    105    01-Jan-2003    01-Jan-2005    1           Call1 10      
2     OptStock put     105    01-Jan-2003    01-Jan-2006    0           Put1   5      
 
Index Type    OptSpec Strike Settle         ExerciseDates  AmericanOpt BarrierSpec Barrier Rebate Name     Quantity
3     Barrier call    105    01-Jan-2003    01-Jan-2006    1           ui          102     0      Barrier1 1       
 
Index Type     UOptSpec UStrike USettle        UExerciseDates UAmericanOpt COptSpec CStrike CSettle        CExerciseDates CAmericanOpt Name      Quantity
4     Compound call     130     01-Jan-2003    01-Jan-2006    1            put      5       01-Jan-2003    01-Jan-2005    1            Compound1 3       
 
Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name      Quantity
5     Lookback call    115    01-Jan-2003    01-Jan-2006    0           Lookback1 7       
6     Lookback call    115    01-Jan-2003    01-Jan-2007    0           Lookback2 9       
 
Index Type  OptSpec Strike Settle         ExerciseDates  AmericanOpt AvgType    AvgPrice AvgDate Name   Quantity
7     Asian put     110    01-Jan-2003    01-Jan-2006    0           arithmetic NaN      NaN     Asian1 4       
8     Asian put     110    01-Jan-2003    01-Jan-2007    0           arithmetic NaN      NaN     Asian2 6       
 

Note Because of space considerations, the compound option above (Index 4) has been condensed
to fit the page. The instdisp command displays all compound option fields on your computer
screen.

The instrument set contains eight instruments:

• Two vanilla options (Call1, Put1)
• One barrier option (Barrier1)
• One compound option (Compound1)
• Two lookback options (Lookback1, Lookback2)
• Two Asian options (Asian1, Asian2)

Each instrument has a corresponding index that identifies the instrument prices in the price vector
returned by eqpprice.
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Now use eqpprice to calculate the price of each instrument in the instrument set.

Price = eqpprice(EQPTree, EQPInstSet)

Price =

    8.4791
    2.6375
   12.2632
    3.5091
    8.7941
   12.9577
    4.7444
    3.9178

Computing Prices Using ITT
Consider the following example, which uses the portfolio and stock price data in the MAT-file
deriv.mat included in the toolbox. Load the data into the MATLAB workspace.

load deriv.mat

Use the MATLAB whos command to display a list of the variables loaded from the MAT-file.
Name              Size            Bytes  Class     Attributes

  BDTInstSet        1x1             27344  struct              
  BDTTree           1x1              7322  struct              
  BKInstSet         1x1             27334  struct              
  BKTree            1x1              8532  struct              
  CRRInstSet        1x1             21066  struct              
  CRRTree           1x1              7086  struct              
  EQPInstSet        1x1             21066  struct              
  EQPTree           1x1              7086  struct              
  HJMInstSet        1x1             27336  struct              
  HJMTree           1x1              8334  struct              
  HWInstSet         1x1             27334  struct              
  HWTree            1x1              8532  struct              
  ITTInstSet        1x1             21070  struct              
  ITTTree           1x1             12660  struct              
  STTInstSet        1x1             21070  struct              
  STTTree           1x1              7782  struct              
  ZeroInstSet       1x1             17458  struct              
  ZeroRateSpec      1x1              2152  struct     

ITTTree and ITTInstSet are the input arguments required to call the function ittprice. Use the
command instdisp to examine the set of instruments contained in the variable ITTInstSet.

instdisp(ITTInstSet)

Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name  Quantity
1     OptStock call    95     01-Jan-2006    31-Dec-2008    1           Call1 10      
2     OptStock put     80     01-Jan-2006    01-Jan-2010    0           Put1   4      
 
Index Type    OptSpec Strike Settle         ExerciseDates  AmericanOpt BarrierSpec Barrier Rebate Name     Quantity
3     Barrier call    85     01-Jan-2006    31-Dec-2008    1           ui          115     0      Barrier1 1       
 
Index Type     UOptSpec UStrike USettle        UExerciseDates UAmericanOpt COptSpec CStrike CSettle        CExerciseDates CAmericanOpt Name      Quantity
4     Compound call     99      01-Jan-2006    01-Jan-2010    1            put      5       01-Jan-2006    01-Jan-2010    1            Compound1 3       
 
Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name      Quantity
5     Lookback call    85     01-Jan-2006    01-Jan-2008    0           Lookback1 7       
6     Lookback call    85     01-Jan-2006    01-Jan-2010    0           Lookback2 9       
 
Index Type  OptSpec Strike Settle         ExerciseDates  AmericanOpt AvgType    AvgPrice AvgDate Name   Quantity
7     Asian call    55     01-Jan-2006    01-Jan-2008    0           arithmetic NaN      NaN     Asian1 5       
8     Asian call    55     01-Jan-2006    01-Jan-2010    0           arithmetic NaN      NaN     Asian2 7       
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The instrument set contains eight instruments:

• Two vanilla options (Call1, Put1)
• One barrier option (Barrier1)
• One compound option (Compound1)
• Two lookback options (Lookback1, Lookback2)
• Two Asian options (Asian1, Asian2)

Each instrument has a corresponding index that identifies the instrument prices in the price vector
returned by ittprice.

Now use ittprice to calculate the price of each instrument in the instrument set.

Price = ittprice(ITTTree, ITTInstSet)

Price =

    1.6506
   10.6832
    2.4074
    3.2294
    0.5426
    6.1845
    3.2052
    6.6074

Computing Prices Using STT
Consider the following example, which uses the portfolio and stock price data in the MAT-file
deriv.mat included in the toolbox. Load the data into the MATLAB workspace.

load deriv.mat

Use the MATLAB whos command to display a list of the variables loaded from the MAT-file.
 Name              Size            Bytes  Class     Attributes

  BDTInstSet        1x1             27344  struct              
  BDTTree           1x1              7322  struct              
  BKInstSet         1x1             27334  struct              
  BKTree            1x1              8532  struct              
  CRRInstSet        1x1             21066  struct              
  CRRTree           1x1              7086  struct              
  EQPInstSet        1x1             21066  struct              
  EQPTree           1x1              7086  struct              
  HJMInstSet        1x1             27336  struct              
  HJMTree           1x1              8334  struct              
  HWInstSet         1x1             27334  struct              
  HWTree            1x1              8532  struct              
  ITTInstSet        1x1             21070  struct              
  ITTTree           1x1             12660  struct              
  STTInstSet        1x1             21070  struct              
  STTTree           1x1              7782  struct              
  ZeroInstSet       1x1             17458  struct              
  ZeroRateSpec      1x1              2152  struct     

STTTree and STTInstSet are the input arguments required to call the function sttprice. Use the
command instdisp to examine the set of instruments contained in the variable STTInstSet.

instdisp(STTInstSet)
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Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name  Quantity
1     OptStock call    100    01-Jan-2009    01-Jan-2011    1           Call1 10      
2     OptStock put      80    01-Jan-2009    01-Jan-2012    0           Put1   5      
 
Index Type    OptSpec Strike Settle         ExerciseDates  AmericanOpt BarrierSpec Barrier Rebate Name     Quantity
3     Barrier call    105    01-Jan-2009    01-Jan-2012    1           ui          115     0      Barrier1 1       
 
Index Type     UOptSpec UStrike USettle        UExerciseDates UAmericanOpt COptSpec CStrike CSettle        CExerciseDates CAmericanOpt Name      Quantity
4     Compound call     95      01-Jan-2009    01-Jan-2012    1            put      5       01-Jan-2009    01-Jan-2011    1            Compound1 3       
 
Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name      Quantity
5     Lookback call    90     01-Jan-2009    01-Jan-2012    0           Lookback1 7       
6     Lookback call    95     01-Jan-2009    01-Jan-2013    0           Lookback2 9       
 
Index Type  OptSpec Strike Settle         ExerciseDates  AmericanOpt AvgType    AvgPrice AvgDate Name   Quantity
7     Asian call    100    01-Jan-2009    01-Jan-2012    0           arithmetic NaN      NaN     Asian1 4       
8     Asian call    100    01-Jan-2009    01-Jan-2013    0           arithmetic NaN      NaN     Asian2 6       
 

The instrument set contains eight instruments:

• Two vanilla options (Call1, Put1)
• One barrier option (Barrier1)
• One compound option (Compound1)
• Two lookback options (Lookback1, Lookback2)
• Two Asian options (Asian1, Asian2)

Each instrument has a corresponding index that identifies the instrument prices in the price vector
returned by sttprice.

Now use sttprice to calculate the price of each instrument in the instrument set.

Price = sttprice(STTTree, STTInstSet)

Price =

    4.5025
    3.0603
    3.7977
    1.7090
   11.7296
   12.9120
    1.6905
    2.6203

Examining Output from the Pricing Functions
The prices in the output vector Price correspond to the prices at observation time zero (tObs = 0),
which is defined as the valuation date of the equity tree. The instrument indexing within Price is the
same as the indexing within InstSet.

In the CRR example, the prices in the Price vector correspond to the instruments in this order.
InstNames = instget(CRRInstSet, 'FieldName','Name')

InstNames =

Call1
Put1
Barrier1
Compound1 
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Lookback1  
Lookback2  
Asian1     
Asian2     

So, in the Price vector, the fourth element, 3.3241, represents the price of the fourth instrument
(Compound1), and the sixth element, 11.7772, represents the price of the sixth instrument
(Lookback2).

In the ITT example, the prices in the Price vector correspond to the instruments in this order.
InstNames = instget(ITTInstSet, 'FieldName','Name')

InstNames =

Call1
Put1
Barrier1
Compound1 
Lookback1  
Lookback2  
Asian1     
Asian2     

So, in the Price vector, the first element, 1.650, represents the price of the first instrument (Call1),
and the eighth elements, 6.607, represents the price of the eighth instrument (Asian2).

Price Tree Output for CRR

If you call a pricing function with two output arguments, for example:

[Price, PriceTree] = crrprice(CRRTree, CRRInstSet)

you generate a price tree structure along with the price information.

This price tree structure PriceTree holds all pricing information.
PriceTree =
FinObj: 'BinPriceTree'
PTree: {[8x1 double] [8x2 double] [8x3 double] [8x4 double] [8x5 double]}
tObs: [0 1 2 3 4]
dObs: [731582 731947 732313 732678 733043]

The first field of this structure, FinObj, indicates that this structure represents a price tree. The
second field, PTree, is the tree holding the prices of the instruments in each node of the tree. Finally,
the third and fourth fields, tObs and dObs, represent the observation time and date of each level of
PTree, with tObs using units in terms of compounding periods.

Using the command-line interface, you can directly examine PriceTree.PTree, the field within the
PriceTree structure that contains the price tree with the price vectors at every state. The first node
represents tObs = 0, corresponding to the valuation date.

PriceTree.PTree{1}

ans =
8.2863
2.5016
12.1272
3.3241
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7.6015
11.7772
4.1797
3.4219

With this interface, you can observe the prices for all instruments in the portfolio at a specific time.

The function eqpprice also returns a price tree that you can examine in the same way.

Price Tree Output for ITT

If you call a pricing function with two output arguments, for example:

[Price, PriceTree] = ittprice(ITTTree, ITTInstSet)

you generate a price tree structure along with the price information.

This price tree structure PriceTree holds all pricing information.
PriceTree = 

    FinObj: 'TrinPriceTree'
     PTree: {[8x1 double]  [8x3 double]  [8x5 double]  [8x7 double]  [8x9 double]}
      tObs: [0 1 2 3 4]
      dObs: [732678 733043 733408 733773 734139]

The first field of this structure, FinObj, indicates that this structure represents a trinomial price tree.
The second field, PTree is the tree holding the prices of the instruments in each node of the tree.
Finally, the third and fourth fields, tObs and dObs, represent the observation time and date of each
level of PTree, with tObs using units in terms of compounding periods.

Using the command-line interface, you can directly examine PriceTree.PTree, the field within the
PriceTree structure that contains the price tree with the price vectors at every state. The first node
represents tObs = 0, corresponding to the valuation date.

PriceTree.PTree{1}

ans =

    1.6506
   10.6832
    2.4074
    3.2294
    0.5426
    6.1845
    3.2052
    6.6074

With this interface, you can observe the prices for all instruments in the portfolio at a specific time.

Prices for Lookback and Asian Options for Equity Trees

Lookback options and Asian options are path-dependent, and, as such, there are no unique prices for
any node except the root node. So, the corresponding values for lookback and Asian options in the
price tree are set to NaN, the only exception being the root node. This becomes apparent if you
examine the prices in the second node (tobs = 1) of the CRR price tree:

PriceTree.PTree{2}

ans =
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   11.9176         0
    0.9508    7.1914
   16.4600    2.6672
    2.5896    5.0000
       NaN       NaN
       NaN       NaN
       NaN       NaN
       NaN       NaN

Examining the prices in the second node (tobs = 1) of the ITT price tree displays:

PriceTree.PTree{2}  

 ans =

    3.9022         0         0
    6.3736   13.3743   22.1915
    5.6914         0         0
    2.7663    3.8594    5.0000
       NaN       NaN       NaN
       NaN       NaN       NaN
       NaN       NaN       NaN
       NaN       NaN       NaN

Graphical Representation of Equity Derivative Trees
You can use the function treeviewer to display a graphical representation of a tree, allowing you to
examine interactively the prices and rates on the nodes of the tree until maturity. The graphical
representations of CRR, EQP, and LR trees are equivalent to Black-Derman-Toy (BDT) trees, given
that they are all binary recombining trees. The graphical representations of ITT and STT trees are
equivalent to Hull-White (HW) trees, given that they are all trinomial recombining trees. See
“Graphical Representation of Trees” on page 2-220 for an overview on the use of treeviewer with
CRR trees, EQP trees, LR trees, ITT trees, and STT trees and their corresponding option price trees.
Follow the instructions for BDT trees.

See Also
crrtree | eqptree | lrtree | stockspec | crrtimespec | eqptimespec | lrtimespec |
itttree | itttimespec | treepath | trintreepath | asianbycrr | barrierbycrr |
compoundbycrr | crrprice | crrsens | lookbackbycrr | optstockbycrr | instasian |
instbarrier | instcompound | instlookback | instoptstock | asianbyeqp | barrierbyeqp |
compoundbyeqp | eqpprice | eqpsens | lookbackbyeqp | optstockbyeqp | optstockbylr |
optstocksensbylr | asianbyitt | barrierbyitt | compoundbyitt | ittprice | ittsens |
lookbackbyitt | optstockbyitt | asianbystt | barrierbystt | compoundbystt | sttprice |
sttsens | lookbackbystt | optstockbystt

Related Examples
• “Understanding Equity Trees” on page 3-2
• “Computing Equity Instrument Sensitivities” on page 3-75
• “Creating Instruments or Properties” on page 1-16
• “Graphical Representation of Equity Derivative Trees” on page 3-73
• “Pricing European Call Options Using Different Equity Models” on page 3-88
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• “Pricing Asian Options” on page 3-110
• “Use treeviewer to Examine HWTree and PriceTree When Pricing European Callable Bond” on

page 2-195

More About
• “Supported Equity Derivative Functions” on page 3-19
• “Supported Energy Derivative Functions” on page 3-34
• “Supported Interest-Rate Instrument Functions” on page 2-3
• “Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument

Objects” on page 1-82
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Computing Equity Instrument Sensitivities
Sensitivities can be reported either as dollar price changes or percentage price changes. The delta,
gamma, and vega sensitivities that the toolbox computes are dollar sensitivities.

The functions crrsens, eqpsens, ittsens, and sttsens compute the delta, gamma, and vega
sensitivities of instruments using a stock tree. They also optionally return the calculated price for
each instrument. The sensitivity functions require the same two input arguments used by the pricing
functions (CRRTree and CRRInstSet for CRR, EQPTree and EQPInstSet for EQP, ITTTree and
ITTInstSet for ITT, and STTTree and STTInstSet for STT).

As with the instrument pricing functions, the optional input argument Options is also allowed. You
would include this argument if you want a sensitivity function to generate a price for a barrier option
as one of its outputs and want to control the method that the toolbox uses to perform the pricing
operation. See “Pricing Options Structure” on page A-2 or the derivset function for more
information.

For path-dependent options (lookback and Asian), delta and gamma are computed by finite
differences in calls to crrprice, eqpprice, ittprice, and sttprice. For the other options (stock
option, barrier, and compound), delta and gamma are computed from the CRR, EQP, ITT, and STT
trees and the corresponding option price tree. (See Chriss, Neil, Black-Scholes and Beyond, pp. 308–
312.)

CRR Sensitivities Example
The calling syntax for the sensitivity function is:

[Delta, Gamma, Vega, Price] = crrsens(CRRTree, InstSet, Options)

Using the example data in deriv.mat, calculate the sensitivity of the instruments.

load deriv.mat
[Delta, Gamma, Vega, Price] = crrsens(CRRTree, CRRInstSet);

You can conveniently examine the sensitivities and the prices by arranging them into a single matrix.

format bank
All = [Delta, Gamma, Vega, Price]

All =

      0.59            0.04       53.45          8.29
     -0.31            0.03       67.00          2.50
      0.69            0.03       67.00         12.13
     -0.12           -0.01      -98.08          3.32
     -0.40       -45926.32       88.18          7.60
     -0.42      -112143.15      119.19         11.78
      0.60        45926.32       49.21          4.18
      0.82       112143.15       41.71          3.42

As with the prices, each row of the sensitivity vectors corresponds to the similarly indexed instrument
in CRRInstSet. To view the per-dollar sensitivities, divide each dollar sensitivity by the
corresponding instrument price.

All = [Delta ./ Price, Gamma ./ Price, Vega ./ Price, Price]
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All =

       0.07         0.00        6.45        8.29
      -0.12         0.01       26.78        2.50
       0.06         0.00        5.53       12.13
      -0.04        -0.00      -29.51        3.32
      -0.05     -6041.77       11.60        7.60
      -0.04     -9522.02       10.12       11.78
       0.14     10987.98       11.77        4.18
       0.24     32771.92       12.19        3.42

ITT Sensitivities Example
The calling syntax for the sensitivity function is:

[Delta, Gamma, Vega, Price] = ittsens(ITTTree, ITTInstSet, Options)

Using the example data in deriv.mat, calculate the sensitivity of the instruments.

load deriv.mat

warning('off', 'fininst:itttree:Extrapolation');
[Delta, Gamma, Vega, Price] = ittsens(ITTTree, ITTInstSet);

You can conveniently examine the sensitivities and the prices by arranging them into a single matrix.

format bank
All = [Delta, Gamma, Vega, Price]

All =

          0.24          0.03         19.35          1.65
         -0.43          0.02         49.69         10.68
          0.35          0.04         12.29          2.41
         -0.07          0.00          6.73          3.23
          0.63     142945.66         38.90          0.54
          0.60      22703.21         68.92          6.18
          0.32    -142945.66         18.48          3.21
          0.67     -22703.21         17.75          6.61

As with the prices, each row of the sensitivity vectors corresponds to the similarly indexed instrument
in ITTInstSet.

Note In this example, the extrapolation warnings are turned off before calculating the sensitivities to
avoid displaying many warnings on the Command Window as the sensitivities are calculated.

If the extrapolation warnings are turned on

warning('on', 'fininst:itttree:Extrapolation');

and ittsens is rerun, the extrapolation warnings scroll as the command executes:

[Delta, Gamma, Vega, Price] = ittsens(ITTTree, ITTInstSet)

Warning: The option set specified in StockOptSpec was too narrow for the
generated tree.
This made extrapolation necessary. Below is a list of the options that were
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outside of the
range of those specified in StockOptSpec.

Option Type: 'call'   Maturity: 01-Jan-2007  Strike=67.2897
Option Type: 'put'   Maturity: 01-Jan-2007  Strike=37.1528
Option Type: 'put'   Maturity: 01-Jan-2008  Strike=27.6066
Option Type: 'put'   Maturity: 31-Dec-2008  Strike=20.5132
Option Type: 'call'   Maturity: 01-Jan-2010  Strike=164.0157
Option Type: 'put'   Maturity: 01-Jan-2010  Strike=15.2424
 
> In itttree>InterpOptPrices (line 680)
  In itttree (line 285)
  In stocktreesens>stocktreevega (line 193)
  In stocktreesens (line 94)
  In ittsens (line 79) 

Delta =

          0.24
         -0.43
          0.35
         -0.07
          0.63
          0.60
          0.32
          0.67

Gamma =

          0.03
          0.02
          0.04
          0.00
     142945.66
      22703.21
    -142945.66
     -22703.21

Vega =

         19.35
         49.69
         12.29
          6.73
         38.90
         68.92
         18.48
         17.75

Price =

          1.65
         10.68
          2.41
          3.23
          0.54
          6.18
          3.21
          6.61

These warnings are a consequence of having to extrapolate to find the option price of the tree nodes.
In this example, the set of inputs options was too narrow for the shift in the tree nodes introduced by
the disturbance used to calculate the sensitivities. As a consequence extrapolation for some of the
nodes was needed. Since the input data is quite close the extrapolated data, the error introduced by
extrapolation is fairly low.

STT Sensitivities Example

The calling syntax for the sensitivity function is:

[Delta, Gamma, Vega, Price] = sttsens(STTTree, InstSet, Name, Value)

Using the example data in deriv.mat, calculate the sensitivity of the instruments.
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load deriv.mat
[Delta, Gamma, Vega, Price] = sttsens(STTTree, STTInstSet);

You can conveniently examine the sensitivities and the prices by arranging them into a single matrix.

format bank
All = [Delta, Gamma, Vega, Price]

All =

          0.53          0.02         52.90          4.50
         -0.09          0.00         42.44          3.06
          0.47          0.03         25.98          3.80
         -0.06          0.00         -9.53          1.71
          0.23    -186495.25         70.38         11.73
          0.33    -191186.43         92.92         12.91
          0.57     186495.25         25.81          1.69
          0.66     191186.43         37.88          2.62

See Also
crrtree | eqptree | lrtree | stockspec | crrtimespec | eqptimespec | lrtimespec |
itttree | itttimespec | treepath | trintreepath | asianbycrr | barrierbycrr |
compoundbycrr | crrprice | crrsens | lookbackbycrr | optstockbycrr | instasian |
instbarrier | instcompound | instlookback | instoptstock | asianbyeqp | barrierbyeqp |
compoundbyeqp | eqpprice | eqpsens | lookbackbyeqp | optstockbyeqp | optstockbylr |
optstocksensbylr | asianbyitt | barrierbyitt | compoundbyitt | ittprice | ittsens |
lookbackbyitt | optstockbyitt | asianbystt | barrierbystt | compoundbystt | sttprice |
sttsens | lookbackbystt | optstockbystt

Related Examples
• “Understanding Equity Trees” on page 3-2
• “Pricing Equity Derivatives Using Trees” on page 3-64
• “Graphical Representation of Equity Derivative Trees” on page 3-73
• “Creating Instruments or Properties” on page 1-16
• “Graphical Representation of Equity Derivative Trees” on page 3-73
• “Pricing European Call Options Using Different Equity Models” on page 3-88
• “Pricing Asian Options” on page 3-110

More About
• “Supported Equity Derivative Functions” on page 3-19
• “Supported Energy Derivative Functions” on page 3-34
• “Supported Interest-Rate Instrument Functions” on page 2-3
• “Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument

Objects” on page 1-82
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Equity Derivatives Using Closed-Form Solutions
In this section...
“Introduction” on page 3-79
“Black-Scholes Model” on page 3-79
“Black Model” on page 3-80
“Roll-Geske-Whaley Model” on page 3-80
“Bjerksund-Stensland 2002 Model” on page 3-81
“Barone-Adesi-Whaley Model” on page 3-81
“Pricing Using the Black-Scholes Model” on page 3-82
“Pricing Using the Black Model” on page 3-83
“Pricing Using the Roll-Geske-Whaley Model” on page 3-84
“Pricing Using the Bjerksund-Stensland Model” on page 3-84
“Compute American Option Prices Using the Barone-Adesi and Whaley Option Pricing Model” on
page 3-86

Introduction
Financial Instruments Toolbox supports four types of closed-form solutions and analytical
approximations to calculate price and sensitivities (greeks) of vanilla options:

• Black-Scholes model
• Black model
• Roll-Geske-Whaley model
• Bjerksund-Stensland 2002 model

Black-Scholes Model
The Black-Scholes model is one of the most commonly used models to price European calls and puts.
It serves as a basis for many closed-form solutions used for pricing options. The standard Black-
Scholes model is based on the following assumptions:

• There are no dividends paid during the life of the option.
• The option can only be exercised at maturity.
• The markets operate under a Markov process in continuous time.
• No commissions are paid.
• The risk-free interest rate is known and constant.
• Returns on the underlying stocks are log-normally distributed.

Note The Black-Scholes model implemented in Financial Instruments Toolbox software allows
dividends. The following three dividend methods are supported:

• Cash dividend
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• Continuous dividend yield
• Constant dividend yield

However, not all Black-Scholes closed-form pricing functions support all three dividend methods. For
more information on specifying the dividend methods, see stockspec.

Closed-form solutions based on a Black-Scholes model support the following tasks.

Task Function
Price European options with different dividends using the
Black-Scholes option pricing model.

optstockbybls

Calculate European option prices and sensitivities using the
Black-Scholes option pricing model.

optstocksensbybls

Calculate implied volatility on European options using the
Black-Scholes option pricing model.

impvbybls

Price European simple chooser options using Black-Scholes
model.

chooserbybls

For an example using the Black-Scholes model, see “Pricing Using the Black-Scholes Model” on page
3-82.

Black Model
Use the Black model for pricing European options on physical commodities, forwards or futures. The
Black model supported by Financial Instruments Toolbox software is a special case of the Black-
Scholes model. The Black model uses a forward price as an underlier in place of a spot price. The
assumption is that the forward price at maturity of the option is log-normally distributed.

Closed-form solutions for a Black model support the following tasks.

Task Function
Price European options on futures using the Black option
pricing model.

optstockbyblk

Calculate European option prices and sensitivities on
futures using the Black option pricing model.

optstocksensbyblk

Calculate implied volatility for European options using the
Black option pricing model.

impvbyblk

For an example using the Black model, see “Pricing Using the Black Model” on page 3-83.

Roll-Geske-Whaley Model
Use the Roll-Geske-Whaley approximation method to price American call options paying a single cash
dividend. This model is based on the modification of the observed stock price for the present value of
the dividend and also supports a compound option to account for the possibility of early exercise. The
Roll-Geske-Whaley model has drawbacks due to an escrowed dividend price approach which may lead
to arbitrage. For further explanation, see Options, Futures, and Other Derivatives by John Hull.

Closed-form solutions for a Roll-Geske-Whaley model support the following tasks.
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Task Function
Price American call options with a single cash dividend
using the Roll-Geske-Whaley option pricing model.

optstockbyrgw

Calculate American call prices and sensitivities using the
Roll-Geske-Whaley option pricing model.

optstocksensbyrgw

Calculate implied volatility for American call options using
the Roll-Geske-Whaley option pricing model.

impvbyrgw

For an example using the Roll-Geske-Whaley model, see “Pricing Using the Roll-Geske-Whaley Model”
on page 3-84.

Bjerksund-Stensland 2002 Model
Use the Bjerksund-Stensland 2002 model for pricing American puts and calls with continuous
dividend yield. This model works by dividing the time to maturity of the option in two separate parts,
each with its own flat exercise boundary (trigger price). The Bjerksund-Stensland 2002 method is a
generalization of the Bjerksund and Stensland 1993 method and is considered to be computationally
efficient. For further explanation, see Closed Form Valuation of American Options by Bjerksund and
Stensland.

Closed-form solutions for a Bjerksund-Stensland 2002 model support the following tasks.

Task Function
Price American options with continuous dividend yield
using the Bjerksund-Stensland 2002 option pricing model.

optstockbybjs

Calculate American options prices and sensitivities using
the Bjerksund-Stensland 2002 option pricing model.

optstocksensbybjs

Calculate implied volatility for American options using the
Bjerksund-Stensland 2002 option pricing model.

impvbybjs

For an example using the Bjerksund-Stensland 2002 model, see “Pricing Using the Bjerksund-
Stensland Model” on page 3-84.

Barone-Adesi-Whaley Model
The Barone-Adesi-Whaley model is used for pricing American vanilla options. Closed-form solutions
for a Barone-Adesi-Whaley model support the following tasks.

Task Function
Calculate the prices of an American call and put options
using the Barone-Adesi-Whaley approximation model.

optstockbybaw

Calculate the prices and sensitivities of an American call
and put options using the Barone-Adesi-Whaley
approximation model.

optstocksensbybaw

Calculate the implied volatility for American options using
the Barone-Adesi-Whaley model.

impvbybaw

For an example using the Barone-Adesi-Whaley model, see “Compute American Option Prices Using
the Barone-Adesi and Whaley Option Pricing Model” on page 3-86.
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Pricing Using the Black-Scholes Model
Consider a European stock option with an exercise price of $40 on January 1, 2008 that expires on
July 1, 2008. Assume that the underlying stock pays dividends of $0.50 on March 1 and June 1. The
stock is trading at $40 and has a volatility of 30% per annum. The risk-free rate is 4% per annum.
Using this data, calculate the price of a call and a put option on the stock using the Black-Scholes
option pricing model:

Strike = 40;
AssetPrice = 40;
Sigma = .3;
Rates = 0.04;
Settle = 'Jan-01-08';
Maturity = 'Jul-01-08';

Div1 = 'March-01-2008';
Div2 = 'Jun-01-2008';

Create RateSpec and StockSpec:
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates',...
Maturity, 'Rates', Rates, 'Compounding', -1);

StockSpec = stockspec(Sigma, AssetPrice, {'cash'}, 0.50,{Div1,Div2});

Define two options, one call and one put:

OptSpec = {'call'; 'put'};

Calculate the price of the European options:
Price = optstockbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)

Price =

    3.2063
    3.4027

The first element of the Price vector represents the price of the call ($3.21); the second is the price
of the put ($3.40). Use the function optstocksensbybls to compute six sensitivities for the Black-
Scholes model: delta, gamma, vega, lambda, rho, and theta and the price of the option.

The selection of output parameters and their order is determined by the optional input parameter
OutSpec. This parameter is a cell array of character vectors, each one specifying a desired output
parameter. The order in which these output parameters are returned by the function is the same as
the order of the character vectors contained in OutSpec.

As an example, consider the same options as the previous example. To calculate their Delta, Rho,
Price, and Gamma, build the cell array OutSpec as follows:
OutSpec = {'delta', 'rho', 'price', 'gamma'};

[Delta, Rho, Price, Gamma] = optstocksensbybls(RateSpec, StockSpec, Settle,...
Maturity, OptSpec, Strike, 'OutSpec', OutSpec)

Delta =

    0.5328
   -0.4672
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Rho =

    8.7902
  -10.8138

Price =

    3.2063
    3.4027

Gamma =

    0.0480
    0.0480

Pricing Using the Black Model
Consider two European call options on a futures contract with exercise prices of $20 and $25 that
expire on September 1, 2008. Assume that on May 1, 2008 the contract is trading at $20 and has a
volatility of 35% per annum. The risk-free rate is 4% per annum. Using this data, calculate the price
of the call futures options using the Black model:

Strike = [20; 25];
AssetPrice = 20;
Sigma = .35;
Rates = 0.04;
Settle = 'May-01-08';
Maturity = 'Sep-01-08';

Create RateSpec and StockSpec:
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1);

StockSpec = stockspec(Sigma, AssetPrice);

Define the call option:

OptSpec = {'call'};

Calculate price and all sensitivities of the European futures options:
OutSpec = {'All'} 

[Delta, Gamma, Vega, Lambda, Rho, Theta, Price] = optstocksensbyblk(RateSpec,...
StockSpec, Settle, Maturity, OptSpec, Strike, 'OutSpec', OutSpec);

Price =

    1.5903
    0.3037

The first element of the Price vector represents the price of the call with an exercise price of $20
($1.59); the second is the price of the call with an exercise price of $25 ($2.89).

The function impvbyblk is used to compute the implied volatility using the Black option pricing
model. Assuming that the previous European call futures are trading at $1.5903 and $0.3037, you can
calculate their implied volatility:
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Volatility = impvbyblk(RateSpec, StockSpec, Settle, Maturity,...
OptSpec,  Strike, Price);

As expected, you get volatilities of 35%. If the call futures were trading at $1.50 and $0.50 in the
market, the implied volatility would be 33% and 42%:

Volatility = impvbyblk(RateSpec, StockSpec, Settle, Maturity,...
OptSpec,  Strike, [1.50;0.5])

Volatility =

    0.3301
    0.4148

Pricing Using the Roll-Geske-Whaley Model
Consider two American call options, with exercise prices of $110 and $100 on June 1, 2008, that
expire on June 1, 2009. Assume that the underlying stock pays dividends of $0.001 on December 1,
2008. The stock is trading at $80 and has a volatility of 20% per annum. The risk-free rate is 6% per
annum. Using this data, calculate the price of the American calls using the Roll-Geske-Whaley option
pricing model:

AssetPrice = 80;
Settle = 'Jun-01-2008';
Maturity = 'Jun-01-2009';
Strike = [110; 100];

Rate = 0.06;
Sigma  = 0.2;

DivAmount = 0.001;
DivDate = 'Dec-01-2008';

Create RateSpec and StockSpec:
StockSpec = stockspec(Sigma, AssetPrice, {'cash'}, DivAmount, DivDate);

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rate, 'Compounding', -1);

Calculate the call prices:
Price  = optstockbyrgw(RateSpec, StockSpec, Settle, Maturity, Strike)

Price =

    0.8398
    2.0236

The first element of the Price vector represents the price of the call with an exercise price of $110
($0.84); the second is the price of the call with an exercise price of $100 ($2.02).

Pricing Using the Bjerksund-Stensland Model
Consider four American stock options (two calls and two puts) with an exercise price of $100 that
expire on July 1, 2008. Assume that the underlying stock pays a continuous dividend yield of 4% as of
January 1, 2008. The stock has a volatility of 20% per annum and the risk-free rate is 8% per annum.
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Using this data, calculate the price of the American calls and puts assuming the following current
prices of the stock: $80, $90 (for the calls) and $100 and $110 (for the puts):

Settle = 'Jan-1-2008';
Maturity = 'Jul-1-2008';
Strike = 100;
AssetPrice = [80; 90; 100; 110];
DivYield = 0.04;

Rate = 0.08;
Sigma = 0.20;

Create RateSpec and StockSpec:
StockSpec = stockspec(Sigma, AssetPrice, {'continuous'}, DivYield);

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rate, 'Compounding', -1);

Define the option type:

OptSpec = {'call'; 'call'; 'put'; 'put'};

Compute the option prices:
Price = optstockbybjs(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)

Price =

    0.4144
    2.1804
    4.7253
    1.7164

The first two elements of the Price vector represent the price of the calls ($0.41 and $2.18), the last
two elements represent the price of the put options ($4.72 and $1.72). Use the function
optstocksensbybjs to compute six sensitivities for the Bjerksund-Stensland model: delta, gamma,
vega, lambda, rho, and theta and the price of the option. The selection of output parameters and
their order is determined by the optional input parameter OutSpec. This parameter is a cell array of
character vectors, each one specifying a desired output parameter. The order in which these output
parameters are returned by the function is the same as the order of the character vectors contained
in OutSpec. As an example, consider the same options as the previous example. To calculate their
delta, gamma, and price, build the cell array OutSpec as follows:

OutSpec = {'delta', 'gamma', 'price'};

The outputs of optstocksensbybjs are in the same order as in OutSpec.
[Delta, Gamma, Price] = optstocksensbybjs(RateSpec, StockSpec, Settle,...
Maturity, OptSpec, Strike, 'OutSpec', OutSpec)

Delta =

    0.0843
    0.2912
    0.4803
    0.2261

Gamma =
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    0.0136
    0.0267
    0.0304
    0.0217

Price =

    0.4144
    2.1804
    4.7253
    1.7164

For more information on the Bjerksund-Stensland model, see “Closed-Form Solutions Modeling” on
page B-3.

Compute American Option Prices Using the Barone-Adesi and Whaley
Option Pricing Model
Consider an American call option with an exercise price of $120. The option expires on Jan 1, 2018.
The stock has a volatility of 14% per annum, and the annualized continuously compounded risk-free
rate is 4% per annum as of Jan 1, 2016. Using this data, calculate the price of the American call,
assuming the price of the stock is $125 and pays a dividend of 2%.

StartDate  = 'Jan-1-2016';
EndDate = 'jan-1-2018';
Basis = 1;
Compounding = -1;
Rates = 0.04;

Define the RateSpec.

RateSpec = intenvset('ValuationDate',StartDate,'StartDate',StartDate,'EndDate',EndDate, ...
'Rates',Rates,'Basis',Basis,'Compounding',Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9231
            Rates: 0.0400
         EndTimes: 2
       StartTimes: 0
         EndDates: 737061
       StartDates: 736330
    ValuationDate: 736330
            Basis: 1
     EndMonthRule: 1

Define the StockSpec.

Dividend = 0.02;
AssetPrice = 125;
Volatility = 0.14;

StockSpec = stockspec(Volatility,AssetPrice,'Continuous',Dividend)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
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              Sigma: 0.1400
         AssetPrice: 125
       DividendType: {'continuous'}
    DividendAmounts: 0.0200
    ExDividendDates: []

Define the American option.

OptSpec = 'call';
Strike = 120;
Settle = 'Jan-1-2016';
Maturity = 'jan-1-2018';

Compute the price for the American option.

Price = optstockbybaw(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike)

Price = 14.5180

See Also
assetbybls | assetsensbybls | cashbybls | cashsensbybls | chooserbybls | gapbybls |
gapsensbybls | impvbybls | optstockbybls | optstocksensbybls | supersharebybls |
supersharesensbybls | impvbyblk | optstockbyblk | optstocksensbyblk | impvbyrgw |
optstockbyrgw | optstocksensbyrgw | impvbybjs | optstockbybjs | optstocksensbybjs |
spreadbybjs | spreadsensbybjs | basketbyju | basketsensbyju | basketstockspec |
maxassetbystulz | maxassetsensbystulz | minassetbystulz | minassetsensbystulz |
spreadbykirk | spreadsensbykirk | asianbykv | asiansensbykv | asianbylevy |
asiansensbylevy | lookbackbycvgsg | lookbacksensbycvgsg | basketbyls |
basketsensbyls | basketstockspec | asianbyls | asiansensbyls | lookbackbyls |
lookbacksensbyls | spreadbyls | spreadsensbyls | optstockbyls | optstocksensbyls |
optpricebysim | optstockbybaw | optstocksensbybaw

Related Examples
• “Pricing European Call Options Using Different Equity Models” on page 3-88
• “Compute the Option Price on a Future” on page 3-95
• “Pricing European Call Options Using Different Equity Models” on page 3-88
• “Pricing Asian Options” on page 3-110

More About
• “Supported Equity Derivative Functions” on page 3-19
• “Supported Energy Derivative Functions” on page 3-34
• “Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument

Objects” on page 1-82
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Pricing European Call Options Using Different Equity Models
This example illustrates how the Financial Instruments Toolbox™ is used to price European vanilla
call options using different equity models.

The example compares call option prices using the Cox-Ross-Rubinstein model, the Leisen-Reimer
model and the Black-Scholes closed formula.

Define the Call Instrument

Consider a European call option, with an exercise price of $30 on January 1, 2010. The option expires
on Sep 1, 2010. Assume that the underlying stock provides no dividends. The stock is trading at $25
and has a volatility of 35% per annum. The annualized continuously compounded risk-free rate is
1.11% per annum.

% Option
Settle = 'Jan-01-2010';
Maturity = 'Sep-01-2010';
Strike = 30;
OptSpec = 'call';

% Stock
AssetPrice = 25;   
Sigma = .35;

Create the Interest Rate Term Structure

StartDates = '01 Jan 2010';          
EndDates =   '01 Jan 2013';
Rates = 0.0111;
ValuationDate = '01 Jan 2010';
Compounding = -1;

RateSpec = intenvset('Compounding',Compounding,'StartDates', StartDates,...
                     'EndDates', EndDates, 'Rates', Rates,'ValuationDate', ValuationDate);

Create the Stock Structure

Suppose we want to create two scenarios. The first one assumes that AssetPrice is currently $25,
the option is out of the money (OTM). The second scenario assumes that the option is at the money
(ATM), and therefore AssetPriceATM = 30.

AssetPriceATM = 30; 

StockSpec = stockspec(Sigma, AssetPrice);
StockSpecATM = stockspec(Sigma, AssetPriceATM);

Price the Options Using the Black-Scholes Closed Formula

Use the function optstockbybls in the Financial Instruments Toolbox to compute the price of the
European call options.

% Price the option with AssetPrice = 25
PriceBLS = optstockbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike);

% Price the option with AssetPrice = 30
PriceBLSATM = optstockbybls(RateSpec, StockSpecATM, Settle, Maturity, OptSpec, Strike);
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Build the Cox-Ross-Rubinstein Tree

% Create the time specification of the tree
NumPeriods = 15;

CRRTimeSpec = crrtimespec(ValuationDate, Maturity, NumPeriods);

% Build the tree
CRRTree = crrtree(StockSpec, RateSpec, CRRTimeSpec);
CRRTreeATM = crrtree(StockSpecATM, RateSpec, CRRTimeSpec);

Build the Leisen-Reimer Tree

% Create the time specification of the tree
LRTimeSpec = lrtimespec(ValuationDate, Maturity, NumPeriods);

% Use the default method 'PP1' (Peizer-Pratt method 1 inversion)to build
% the tree
LRTree = lrtree(StockSpec, RateSpec, LRTimeSpec, Strike);
LRTreeATM = lrtree(StockSpecATM, RateSpec, LRTimeSpec, Strike);

Price the Options Using the Cox-Ross-Rubinstein (CRR) Model

PriceCRR = optstockbycrr(CRRTree, OptSpec, Strike, Settle, Maturity); 
PriceCRRATM = optstockbycrr(CRRTreeATM, OptSpec, Strike, Settle, Maturity);

Price the Options Using the Leisen-Reimer (LR) Model

PriceLR = optstockbylr(LRTree, OptSpec, Strike, Settle, Maturity); 
PriceLRATM = optstockbylr(LRTreeATM, OptSpec, Strike, Settle, Maturity);

Compare BLS, CRR and LR Results

sprintf('PriceBLS: \t%f\nPriceCRR: \t%f\nPriceLR:\t%f\n', PriceBLS, ...
    PriceCRR, PriceLR)

ans = 
    'PriceBLS:     1.275075
     PriceCRR:     1.294979
     PriceLR:    1.275838
     '

sprintf('\t== ATM ==\nPriceBLS ATM: \t%f\nPriceCRR ATM: \t%f\nPriceLR ATM:\t%f\n', PriceBLSATM, ...
    PriceCRRATM,   PriceLRATM)

ans = 
    '    == ATM ==
     PriceBLS ATM:     3.497891
     PriceCRR ATM:     3.553938
     PriceLR ATM:    3.498571
     '

Convergence of CRR and LR Models to a BLS Solution

The following tables compare call option prices using the CRR and LR models against the results
obtained with the Black-Scholes formula.

 Pricing European Call Options Using Different Equity Models

3-89



While the CRR binomial model and the Black-Scholes model converge as the number of time steps
gets large and the length of each step gets small, this convergence, except for at the money options,
is anything but smooth or uniform.

The tables below show that the Leisen-Reimer model reduces the size of the error with even as few
steps of 45.

Strike = 30, Asset Price = 30

-------------------------------------

#Steps LR CRR

15 3.4986 3.5539

25 3.4981 3.5314

45 3.4980 3.5165

65 3.4979 3.5108

85 3.4979 3.5077

105 3.4979 3.5058

201 3.4979 3.5020

501 3.4979 3.4996

999 3.4979 3.4987

Strike = 30, Asset Price = 25

-------------------------------------

#Steps LR CRR

15 1.2758 1.2950

25 1.2754 1.2627

45 1.2751 1.2851

65 1.2751 1.2692

85 1.2751 1.2812

105 1.2751 1.2766

201 1.2751 1.2723

501 1.2751 1.2759

999 1.2751 1.2756
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Analyze the Effect of the Number of Periods on the Price of the Options

The following graphs show how convergence changes as the number of steps in the binomial
calculation increases, as well as, the impact on convergence to changes to the stock price. Observe
that the Leisen-Reimer model removes the oscillation and produces estimates close to the Black-
Scholes model using only a small number of steps.

NPoints = 300;

% Cox-Ross-Rubinstein
NumPeriodCRR  = 5 : 1 : NPoints; 
NbStepCRR     = length(NumPeriodCRR);
PriceCRR = nan(NbStepCRR, 1);
PriceCRRATM = PriceCRR;

for i = 1 : NbStepCRR
    CRRTimeSpec = crrtimespec(ValuationDate, Maturity, NumPeriodCRR(i));
    CRRT = crrtree(StockSpec, RateSpec, CRRTimeSpec);
    PriceCRR(i) = optstockbycrr(CRRT, OptSpec, Strike,ValuationDate, Maturity) ;
    
    CRRTATM = crrtree(StockSpecATM, RateSpec, CRRTimeSpec);
    PriceCRRATM(i) = optstockbycrr(CRRTATM, OptSpec, Strike,ValuationDate, Maturity) ;
end

% Now with Leisen-Reimer
NumPeriodLR  = 5 : 2 : NPoints; 
NbStepLR     = length(NumPeriodLR);
PriceLR = nan(NbStepLR, 1);
PriceLRATM = PriceLR;

for i = 1 : NbStepLR
    LRTimeSpec = lrtimespec(ValuationDate, Maturity, NumPeriodLR(i));
    LRT = lrtree(StockSpec, RateSpec, LRTimeSpec, Strike);
    PriceLR(i) = optstockbylr(LRT, OptSpec, Strike,ValuationDate, Maturity) ;
    
    LRTATM = lrtree(StockSpecATM, RateSpec, LRTimeSpec, Strike);
    PriceLRATM(i) = optstockbylr(LRTATM, OptSpec, Strike,ValuationDate, Maturity) ;
end

First scenario: Out of the Money call option

% For Cox-Ross-Rubinstein
plot(NumPeriodCRR, PriceCRR);
hold on;
plot(NumPeriodCRR, PriceBLS*ones(NbStepCRR,1),'Color',[0 0.9 0], 'linewidth', 1.5);

% For Leisen-Reimer
plot(NumPeriodLR, PriceLR, 'Color',[0.9 0 0], 'linewidth', 1.5);

% Concentrate in the area of interest by clipping on the Y axis at 5x the
% LR Price:
YLimDelta = 5*abs(PriceLR(1) - PriceBLS);
ax = gca;
ax.YLim = [PriceBLS-YLimDelta PriceBLS+YLimDelta];

% Annotate Plot
titleString = sprintf('\nConvergence of CRR and LR models to a BLS Solution (OTM)\nStrike = %d,  Asset Price = %d', Strike , AssetPrice);
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title(titleString)
ylabel('Option Price')
xlabel('Number of Steps')
legend('CRR', 'BLS', 'LR', 'Location', 'NorthEast')

Second scenario: At the Money call option

% For Cox-Ross-Rubinstein
figure;
plot(NumPeriodCRR, PriceCRRATM);
hold on;
plot(NumPeriodCRR, PriceBLSATM*ones(NbStepCRR,1),'Color',[0 0.9 0], 'linewidth', 1.5);

% For Leisen-Reimer
plot(NumPeriodLR, PriceLRATM, 'Color',[0.9 0 0], 'linewidth', 1.5);

% Concentrate in the area of interest by clipping on the Y axis at 5x the
% LR Price:
YLimDelta = 5*abs(PriceLRATM(1) - PriceBLSATM);
ax = gca;
ax.YLim = [PriceBLSATM-YLimDelta PriceBLSATM+YLimDelta];
% Annotate Plot
titleString = sprintf('\nConvergence of CRR and LR models to a BLS Solution (ATM)\nStrike = %d,  Asset Price = %d', Strike , AssetPriceATM);
title(titleString)
ylabel('Option Price')
xlabel('Number of Steps')
legend('CRR', 'BLS', 'LR', 'Location', 'NorthEast')
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See Also
assetbybls | assetsensbybls | cashbybls | cashsensbybls | chooserbybls | gapbybls |
gapsensbybls | impvbybls | optstockbybls | optstocksensbybls | supersharebybls |
supersharesensbybls | impvbyblk | optstockbyblk | optstocksensbyblk | impvbyrgw |
optstockbyrgw | optstocksensbyrgw | impvbybjs | optstockbybjs | optstocksensbybjs |
spreadbybjs | spreadsensbybjs | basketbyju | basketsensbyju | basketstockspec |
maxassetbystulz | maxassetsensbystulz | minassetbystulz | minassetsensbystulz |
spreadbykirk | spreadsensbykirk | asianbykv | asiansensbykv | asianbylevy |
asiansensbylevy | lookbackbycvgsg | lookbacksensbycvgsg | basketbyls |
basketsensbyls | basketstockspec | asianbyls | asiansensbyls | lookbackbyls |
lookbacksensbyls | spreadbyls | spreadsensbyls | optstockbyls | optstocksensbyls |
optpricebysim | optstocksensbybaw

Related Examples
• “Equity Derivatives Using Closed-Form Solutions” on page 3-79
• “Compute the Option Price on a Future” on page 3-95
• “Pricing Asian Options” on page 3-110

More About
• “Supported Equity Derivative Functions” on page 3-19
• “Supported Energy Derivative Functions” on page 3-34
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• “Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument
Objects” on page 1-82
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Compute the Option Price on a Future
Consider a call European option on the Crude Oil Brent futures. The option expires on December 1,
2014 with an exercise price of $120. Assume that on April 1, 2014 futures price is at $105, the
annualized continuously compounded risk-free rate is 3.5% per annum and volatility is 22% per
annum. Using this data, compute the price of the option.

Define the RateSpec.

ValuationDate = 'January-1-2014';
EndDates = 'January-1-2015';
Rates = 0.035;
Compounding = -1;
Basis = 1;
RateSpec  = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate,...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis')

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9656
            Rates: 0.0350
         EndTimes: 1
       StartTimes: 0
         EndDates: 735965
       StartDates: 735600
    ValuationDate: 735600
            Basis: 1
     EndMonthRule: 1

Define the StockSpec.

AssetPrice = 105;
Sigma = 0.22;
StockSpec  = stockspec(Sigma, AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2200
         AssetPrice: 105
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Define the option.

Settle = 'April-1-2014';
Maturity = 'Dec-1-2014'; 
Strike = 120;
OptSpec = {'call'};

Price the futures call option.

Price = optstockbyblk(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)

Price = 2.5847
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See Also
assetbybls | assetsensbybls | cashbybls | cashsensbybls | chooserbybls | gapbybls |
gapsensbybls | impvbybls | optstockbybls | optstocksensbybls | supersharebybls |
supersharesensbybls | impvbyblk | optstockbyblk | optstocksensbyblk | impvbyrgw |
optstockbyrgw | optstocksensbyrgw | impvbybjs | optstockbybjs | optstocksensbybjs |
spreadbybjs | spreadsensbybjs | basketbyju | basketsensbyju | basketstockspec |
maxassetbystulz | maxassetsensbystulz | minassetbystulz | minassetsensbystulz |
spreadbykirk | spreadsensbykirk | asianbykv | asiansensbykv | asianbylevy |
asiansensbylevy | lookbackbycvgsg | lookbacksensbycvgsg | basketbyls |
basketsensbyls | basketstockspec | asianbyls | asiansensbyls | lookbackbyls |
lookbacksensbyls | spreadbyls | spreadsensbyls | optstockbyls | optstocksensbyls |
optpricebysim | optstockbybaw | optstocksensbybaw

Related Examples
• “Equity Derivatives Using Closed-Form Solutions” on page 3-79
• “Pricing European Call Options Using Different Equity Models” on page 3-88
• “Pricing Asian Options” on page 3-110

More About
• “Supported Equity Derivative Functions” on page 3-19
• “Supported Energy Derivative Functions” on page 3-34
• “Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument

Objects” on page 1-82

3 Equity Derivatives

3-96



Pricing European and American Spread Options
This example shows how to price and calculate sensitivities for European and American spread
options using various techniques. First, the price and sensitivities for a European spread option is
calculated using closed form solutions. Then, price and sensitivities for an American spread option is
calculated using finite difference and Monte Carlo simulations. Finally, further analysis is conducted
on spread options with a different range of inputs.

Spread options are options on the difference of two underlying asset prices. For example, a call
option on the spread between two assets has the following payoff at maturity:

max(X1− X2− K, 0)

where X1 is the price of the first underlying asset, X2 is the price of the second underlying asset, and
K is the strike price. At maturity, if the spread X1− X2 is greater than the strike price K, the option
holder exercises the option and gains the difference between the spread and the strike price. If the
spread is less than 0, the option holder does not exercise the option, and the payoff is 0. Spread
options are frequently traded in the energy market. Two examples are:

• Crack spreads: Options on the spread between refined petroleum products and crude oil. The
spread represents the refinement margin made by the oil refinery by "cracking" the crude oil into
a refined petroleum product.

• Spark spreads: Options on the spread between electricity and some type of fuel. The spread
represents the margin of the power plant, which takes fuel to run its generator to produce
electricity.

Overview of the Pricing Methods

There are several methods to price spread options, as discussed in [1 on page 3-0 ]. This example
uses the closed form, finite difference, and Monte Carlo simulations to price spread options. The
advantages and disadvantages of each method are discussed below:

• Closed form solutions and approximations of partial differential equations (PDE) are advantageous
because they are very fast, and extend well to computing sensitivities (Greeks). However, closed
form solutions are not always available, for example for American spread options.

• The finite difference method is a numerical procedure to solve PDEs by discretizing the price and
time variables into a grid. A detailed analysis of this method can be found in [2 on page 3-0 ]. It
can handle cases where closed form solutions are not available. Also, finite difference extends well
to calculating sensitivities because it outputs a grid of option prices for a range of underlying
prices and times. However, it is slower than the closed form solutions.

• Monte Carlo simulation uses random sampling to simulate movements of the underlying asset
prices. It handles cases where closed solutions do not exist. However, it usually takes a long time
to run, especially if sensitivities are calculated.

Pricing a European Spread Option

The following example demonstrates the pricing of a crack spread option.

A refiner is concerned about its upcoming maintenance schedule and needs to protect against
decreasing crude oil prices and increasing heating oil prices. During the maintenance the refiner
needs to continue providing customers with heating oil to meet their demands. The refiner's strategy
is to use spread options to manage its hedge.
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On January 2013, the refiner buys a 1:1 crack spread option by purchasing heating oil futures and
selling crude oil futures. CLF14 WTI crude oil futures is at $100 per barrel and HOF14 heating oil
futures contract is at $2.6190 per gallon.

clear;

% Price, volatility, and dividend of heating oil
Price1gallon = 2.6190;       % $/gallon 
Price1 = Price1gallon*42;    % $/barrel
Vol1 = 0.10;
Div1 = 0.03;

% Price, volatility, and dividend of WTI crude oil
Price2 = 100;     % $/barrel
Vol2 = 0.15;
Div2 = 0.02;

% Correlation of underlying prices
Corr = 0.3;

% Option type
OptSpec = 'call';

% Strike
Strike = 5;

% Settlement date
Settle = '01-Jan-2013';

% Maturity
Maturity = '01-Jan-2014'; 

% Risk free rate
RiskFreeRate = 0.05;

The pricing functions take an interest-rate term structure and stock structure as inputs. Also, you
need to specify which outputs are of interest.

% Define RateSpec
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
    'EndDates', Maturity, 'Rates', RiskFreeRate, 'Compounding', ...
    Compounding, 'Basis', Basis);

% Define StockSpec for the two assets
StockSpec1 = stockspec(Vol1, Price1, 'Continuous', Div1);
StockSpec2 = stockspec(Vol2, Price2, 'Continuous', Div2);

% Specify price and sensitivity outputs
OutSpec = {'Price', 'Delta', 'Gamma'};

The Financial Instruments Toolbox™ contains two types of closed form approximations for calculating
price and sensitivities of European spread options: the Kirk's approximation (spreadbykirk,
spreadsensbykirk) and the Bjerksund and Stensland model (spreadbybjs, spreadsensbybjs)
[3 on page 3-0 ].

3 Equity Derivatives

3-98



The function spreadsensbykirk calculates prices and sensitivities for a European spread option
using the Kirk's approximation.

% Kirk's approximation
[PriceKirk, DeltaKirk, GammaKirk] = ...
    spreadsensbykirk(RateSpec, StockSpec1, StockSpec2, Settle, ...
    Maturity, OptSpec, Strike, Corr, 'OutSpec', OutSpec)

PriceKirk = 8.3636

DeltaKirk = 1×2

    0.6108   -0.5590

GammaKirk = 1×2

    0.0225    0.0249

The function spreadsensbybjs calculates the prices and sensitivities for a European spread option
using the Bjerksund and Stensland model. In [3 on page 3-0 ], Bjerksund and Stensland explains
that the Kirk's approximation tends to underprice the spread option when the strike is close to zero,
and overprice when the strike is further away from zero. In comparison, the model by Bjerksund and
Stensland has higher precision.

% Bjerksund and Stensland model
[PriceBJS, DeltaBJS, GammaBJS] = ...
    spreadsensbybjs(RateSpec, StockSpec1, StockSpec2, Settle, ...
    Maturity, OptSpec, Strike, Corr, 'OutSpec', OutSpec)

PriceBJS = 8.3662

DeltaBJS = 1×2

    0.6115   -0.5597

GammaBJS = 1×2

    0.0225    0.0248

A comparison of the calculated prices show that the two closed form models produce similar results
for price and sensitivities. In addition to delta and gamma, the functions can also calculate theta,
vega, lambda, and rho.

displayComparison('Kirk', 'BJS', PriceKirk, PriceBJS, DeltaKirk, DeltaBJS, GammaKirk, GammaBJS)

Comparison of prices:

Kirk:    8.363641
BJS :    8.366158

Comparison of delta:

Kirk:    0.610790     -0.558959
BJS :    0.611469     -0.559670
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Comparison of gamma:

Kirk:    0.022533      0.024850
BJS :    0.022495      0.024819

Pricing an American Spread Option

Although the closed form approximations are fast and well suited for pricing European spread
options, they cannot price American spread options. Using the finite difference method and the
Monte Carlo method, an American spread option can be priced. In this example, an American spread
option is priced with the same attributes as the above crack spread option.

The finite difference method numerically solves a PDE by discretizing the underlying price and time
variables into a grid. The Financial Instrument Toolbox™ contains the functions spreadbyfd and
spreadsensbyfd, which calculate prices and sensitivities for European and American spread
options using the finite difference method. For the finite difference method, the composition of the
grid has a large impact on the quality of the output and the execution time. Generally, a finely
discretized grid will result in outputs that are closer to the theoretical value, but it comes at the cost
of longer execution times. The composition of the grid is controlled using optional parameters
PriceGridSize, TimeGridSize, AssetPriceMin and AssetPriceMax.

To indicate pricing an American option, add an optional input of AmericanOpt with a value of 1 to
the argument of the function.

% Finite difference method for American spread option
[PriceFD, DeltaFD, GammaFD, PriceGrid, AssetPrice1, ...
    AssetPrice2] = ...
    spreadsensbyfd(RateSpec, StockSpec1, StockSpec2, Settle, ...
    Maturity, OptSpec, Strike, Corr, 'OutSpec', OutSpec, ...    
    'PriceGridSize', [500 500], 'TimeGridSize', 100, ...
    'AssetPriceMin', [0 0], 'AssetPriceMax', [2000 2000], ...
    'AmericanOpt', 1);

% Display price and sensitivities
PriceFD

PriceFD = 8.5463

DeltaFD

DeltaFD = 1×2

    0.6306   -0.5777

GammaFD

GammaFD = 1×2

    0.0233    0.0259

The function spreadsensbyfd also returns a grid that contains the option prices for a range of
underlying prices and times. The grid of option prices at time zero, which is the option prices at the
settle date, can be plotted for a range of underlying prices.

% Plot option prices
figure;
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mesh(AssetPrice1, AssetPrice2, PriceGrid(:, :, 1)');
title('American Spread Option Prices for Range of Underlying Prices');
xlabel('Price of underlying asset 1');
ylabel('Price of underlying asset 2');
zlabel('Price of spread option');

An American style option can be priced by Monte Carlo methods using the least square method of
Longstaff and Schwartz [4 on page 3-0 ]. The Financial Instruments Toolbox™ contains the
functions spreadbyls and spreadsensbyls, that calculate prices and sensitivities of European and
American options using simulations. The Monte Carlo simulation method in spreadsensbyls
generates multiple paths of simulations according to a geometric Brownian motion (GBM) for the two
underlying asset prices. Similar to the finite difference method where the granularity of the grid
determined the quality of the output and the execution time, the quality of output and execution time
of the Monte Carlo simulation depends on the number of paths (NumTrials) and the number of time
periods per path (NumPeriods). Also, the results obtained by Monte Carlo simulations are not
deterministic. Each run will have different results depending on the simulation outcomes.

% To indicate that we are pricing an American option using the Longstaff
% and Schwartz method, add an optional input of |AmericanOpt| with a value
% of |1| to the argument of the function.

% Monte Carlo method for American spread option
[PriceMC, DeltaMC, GammaMC] = ...
    spreadsensbyls(RateSpec, StockSpec1, StockSpec2, Settle, ...
    Maturity, OptSpec, Strike, Corr, 'OutSpec', OutSpec, ...
    'NumTrials', 1000, 'Antithetic', true, 'AmericanOpt', 1)
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PriceMC = 8.4999

DeltaMC = 1×2

    0.6325   -0.5931

GammaMC = 1×2

   -0.0873    0.0391

The results of the two models are compared. The prices and sensitivities calculated by the Longstaff
and Schwartz method will vary at each run, depending on the outcome of the simulations. It is
important to note that the quality of the results from the finite difference method and the Monte
Carlo simulation depend on the optional input parameters. For example, increasing the number of
paths (NumTrials) for the spreadsensbyls function will result in more precise results at the cost
of longer execution times.

displayComparison('Finite Difference', 'Monte Carlo', PriceFD, PriceMC, DeltaFD, DeltaMC, GammaFD, GammaMC)

Comparison of prices:

Finite Difference:    8.546285
Monte Carlo      :    8.499894

Comparison of delta:

Finite Difference:    0.630606     -0.577686
Monte Carlo      :    0.632549     -0.593106

Comparison of gamma:

Finite Difference:    0.023273      0.025852
Monte Carlo      :   -0.087340      0.039120

Comparing Results for a Range of Strike Prices

As discussed earlier, the Kirk's approximation tends to overprice spread options when the strike is
further away from zero. To confirm this, a spread option is priced with the same attributes as before,
but for a range of strike prices.

% Specify outputs
OutSpec = {'Price', 'Delta'};

% Range of strike prices
Strike = [-25; -15; -5; 0; 5; 15; 25];

The results from the Kirk's approximation and the Bjerksund and Stensland model are compared
against the numerical approximation from the finite difference method. Since spreadsensbyfd can
only price one option at a time, it is called in a loop for each strike value. The Monte Carlo simulation
(spreadsensbyls) with a large number of trial paths can also be used as a benchmark, but the finite
difference is used for this example.

% Kirk's approximation
[PriceKirk, DeltaKirk] = ...
    spreadsensbykirk(RateSpec, StockSpec1, StockSpec2, Settle, ...
    Maturity, OptSpec, Strike, Corr, 'OutSpec', OutSpec);
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% Bjerksund and Stensland model
[PriceBJS, DeltaBJS] = ...
    spreadsensbybjs(RateSpec, StockSpec1, StockSpec2, Settle, ...
    Maturity, OptSpec, Strike, Corr, 'OutSpec', OutSpec);

% Finite difference
PriceFD = zeros(numel(Strike), 1);
DeltaFD = zeros(numel(Strike), 2);
for i = 1:numel(Strike)
    [PriceFD(i), DeltaFD(i,:)] = ...
    spreadsensbyfd(RateSpec, StockSpec1, StockSpec2, Settle, ...
    Maturity, OptSpec, Strike(i), Corr, 'OutSpec', OutSpec, ...    
    'PriceGridSize', [500 500], 'TimeGridSize', 100, ...
    'AssetPriceMin', [0 0], 'AssetPriceMax', [2000 2000]);
end

displayComparisonPrices(PriceKirk, PriceBJS, PriceFD, Strike)

Prices for range of strikes:

Kirk         BJS          FD    
32.707787    32.672353    32.676040
23.605307    23.577099    23.580307
15.236908    15.228510    15.230919
11.560332    11.560332    11.562023
8.363641    8.366158    8.367212
3.689909    3.678862    3.680493
1.243753    1.219079    1.221866

The difference in prices between the closed form and finite difference method is plotted below. It is
clear that as the strike moves further away from 0, the difference between the Kirk's approximation
and finite difference (red line) increases, while the difference between the Bjerksund and Stensland
model and finite difference (blue line) stays at the same level. As stated in [3 on page 3-0 ], the
Kirk's approximation is overpricing the spread option when the strike is far away from 0.

% Plot of difference in price against the benchmark
figure;
plot(PriceKirk-PriceFD, 'Color', 'red');
hold on;
plot(PriceBJS-PriceFD, 'Color', 'blue');
hold off;
title('Difference in Price Against Finite Difference');
legend('Kirk', 'BJS', 'Location', 'EastOutside');
xlabel('Strike');
ax = gca;
ax.XTickLabel = Strike;
ylabel('Difference in Price');
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Next, the difference in delta between the closed form models and finite difference is plotted. The top
plot shows the difference in delta for the first asset, and the bottom plot shows the difference in delta
for the second asset. As seen from the small increments in the y-axis of the order 10e-3, it can be
seen that all three models (Kirk, BJS, finite difference) produce similar values for delta.

% Plot of difference in delta of first asset against the benchmark
figure;
subplot(2, 1, 1);
plot(DeltaKirk(:,1)-DeltaFD(:,1), 'Color', 'red');
hold on;
plot(DeltaBJS(:,1)-DeltaFD(:,1), 'Color', 'blue');
hold off;
title('Difference in Delta (Asset 1) Against FD');
legend('Kirk', 'BJS', 'Location', 'EastOutside');
xlabel('Strike');
ax = gca;
ax.XTickLabel = Strike;
ylabel('Difference in Delta');

% Plot of difference in delta of second asset against the benchmark
subplot(2, 1, 2);
plot(DeltaKirk(:,2)-DeltaFD(:,2), 'Color', 'red');
hold on;
plot(DeltaBJS(:,2)-DeltaFD(:,2), 'Color', 'blue');
hold off;
title('Difference in Delta (Asset 2) Against FD');
legend('Kirk', 'BJS', 'Location', 'EastOutside');
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xlabel('Strike');
ax = gca;
ax.XTickLabel = Strike;
ylabel('Difference in Delta');

Analyzing Prices and Vega at Different Levels of Volatility

To further show the type of analysis that can be conducted using these models, the above spread
option is priced at different levels of volatility for the first asset. The price and vega are compared at
three levels of volatility for the first asset: 0.1, 0.3, and 0.5. The Bjerksund and Stensland model is
used for this analysis.

% Strike
Strike = 5;

% Specify output
OutSpec = {'Price', 'Vega'};

% Different levels of volatility for asset 1
Vol1 = [0.1, 0.3, 0.5];

StockSpec1 = stockspec(Vol1, Price1, 'Continuous', Div1);

% Bjerksund and Stensland model
[PriceBJS, VegaBJS] = ...
    spreadsensbybjs(RateSpec, StockSpec1, StockSpec2, Settle, ...
    Maturity, OptSpec, Strike, Corr, 'OutSpec', OutSpec);
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displaySummary(Vol1, PriceBJS, VegaBJS)

Prices for different vol levels in asset 1:

8.366158
14.209112
21.795746

Asset 1 vega for different vol levels in asset 1:

15.534849
36.212192
38.794348

Asset 2 vega for different vol levels in asset 1:

29.437036
7.133657
-0.557852

The change in the price and vega with respect to the volatility of the first asset is plotted below. You
can observe that as the volatility of the first asset increases, the price of the spread option also
increases. Also, the changes in vega indicate that the price of the spread option becomes more
sensitive to the volatility of the first asset and less sensitive to the volatility of the second asset.

figure;

% Plot price for BJS model
subplot(2, 1, 1);
plot(PriceBJS, 'Color', 'red');
title('Price (BJS)');
legend('Price', 'Location', 'EastOutside');
xlabel('Vol of Asset 1');
ax = gca;
ax.XTick = 1:3;
ax.XTickLabel = Vol1;
ylabel('Price');

% Plot of vega for BJS model
subplot(2, 1, 2);
plot(VegaBJS(:,1), 'Color', 'red');
hold on;
plot(VegaBJS(:,2), 'Color', 'blue');
hold off;
title('Vega (BJS)');
legend('Asset 1', 'Asset 2', 'Location', 'EastOutside');
xlabel('Vol of Asset 1');
ax = gca;
ax.XTick = 1:3;
ax.XTickLabel = Vol1;
ax.YLim = [-1 40];
ylabel('Vega');
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Summary

In this example, European and American spread options are priced and analyzed using various
techniques. The Financial Instruments Toolbox™ provides functions for two types of closed form
solutions (Kirk, BJS), the finite difference method, and the Monte Carlo simulation method. The
closed form solutions are well suited for pricing and sensitivity calculation of European spread
options because they are fast. However, they cannot price American spread options. The finite
difference method and Monte Carlo method can price both European and American options. However,
they are not as fast in pricing European spread options as compared to closed form solutions.
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Utility Functions
function displayComparison(model1, model2, price1, price2, delta1, delta2, gamma1, gamma2)
% Pad the model name with additional spaces
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additionalSpaces = numel(model1) - numel(model2);
if additionalSpaces > 0
    model2 = [model2 repmat(' ', 1, additionalSpaces)];
else
    model1 = [model1 repmat(' ', 1, abs(additionalSpaces))];
end
    
% Comparison of calculated prices
fprintf('Comparison of prices:\n');
fprintf('\n');
fprintf('%s:   % f\n', model1, price1);
fprintf('%s:   % f\n', model2, price2);
fprintf('\n');

% Comparison of Delta
fprintf('Comparison of delta:\n');
fprintf('\n');
fprintf('%s:   % f     % f\n', model1, delta1(1), delta1(2));
fprintf('%s:   % f     % f\n', model2, delta2(1), delta2(2));
fprintf('\n');

% Comparison of Gamma
fprintf('Comparison of gamma:\n');
fprintf('\n');
fprintf('%s:   % f     % f\n', model1, gamma1(1), gamma1(2));
fprintf('%s:   % f     % f\n', model2, gamma2(1), gamma2(2));
fprintf('\n');
end

function displayComparisonPrices(PriceKirk, PriceBJS, PriceFD, Strike)
% Comparison of calculated prices
fprintf('Prices for range of strikes:\n');
fprintf('\n')
fprintf('Kirk     \tBJS      \tFD    \n');
for i = 1:numel(Strike)
    fprintf('%f\t%f\t%f\n', PriceKirk(i), PriceBJS(i), PriceFD(i));
end
end

function displaySummary(Vol1, PriceBJS, VegaBJS)
% Display price
fprintf('Prices for different vol levels in asset 1:\n');
fprintf('\n');
for i = 1:numel(Vol1)
    fprintf('%f\n', PriceBJS(i));
end
fprintf('\n');

% Display vega for first asset
fprintf('Asset 1 vega for different vol levels in asset 1:\n');
fprintf('\n');
for i = 1:numel(Vol1)
    fprintf('%f\n', VegaBJS(i,1));
end
fprintf('\n');

% Display vega for second asset
fprintf('Asset 2 vega for different vol levels in asset 1:\n');
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fprintf('\n');
for i = 1:numel(Vol1)
    fprintf('%f\n', VegaBJS(i,2));
end
end

See Also

More About
• “Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument

Objects” on page 1-82
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Pricing Asian Options
This example shows how to price a European Asian option using six methods in the Financial
Instruments Toolbox™. This example demonstrates four closed form approximations (Kemna-Vorst,
Levy, Turnbull-Wakeman, and Haug-Haug-Margrabe), a lattice model (Cox-Ross-Rubinstein), and
Monte Carlo simulation. All these methods involve some tradeoffs between numerical accuracy and
computational efficiency. This example also demonstrates how variations in spot prices, volatility, and
strike prices affect option prices on European Vanilla and Asian options.

Overview of Asian Options

Asian options are securities with payoffs that depend on the average value of an underlying asset
over a specific period of time. Underlying assets can be stocks, commodities, or financial indices.

Two types of Asian options are found in the market: average price options and average strike options.
Average price options have a fixed strike value and the average used is the asset price. Average strike
options have a strike equal to the average value of the underlying asset.

The payoff at maturity of an average price European Asian option is:

max(0, Savg− K) for a call

max(0, K − Savg) for a put

The payoff at maturity of an average strike European Asian option is:

max(0, St − Savg) for a call

max(0, Savg− St) for a put

where Savg is the average price of underlying asset, St is the price at maturity of underlying asset,
and K is the strike price.

The average can be arithmetic or geometric.

Pricing Asian Options Using Closed Form Approximations

The Financial Instruments Toolbox™ supports four closed form approximations for European Average
Price options. The Kemna-Vorst method is based on the geometric mean of the price of the underlying
during the life of the option [1]. The Levy and Turnbull-Wakeman models provide a closed form
pricing solution to continuous arithmetic averaging options [2,3 on page 3-0 ]. The Haug-Haug-
Margrabe approximation is used for pricing discrete arithmetic averaging options [4].

All the pricing functions asianbykv, asianbylevy, asianbytw, and asianbyhhm take an interest-
rate term structure and stock structure as inputs.

Consider the following example:

% Create RateSpec from the interest rate term structure
StartDates = '12-March-2014';
EndDates = '12-March-2020';
Rates = 0.035;   
Compounding = -1;
Basis = 1;
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RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates, ...
    'EndDates', EndDates, 'Rates', Rates, 'Compounding', ...
    Compounding, 'Basis', Basis);

% Define StockSpec with the underlying asset information
Sigma = 0.20;
AssetPrice = 100;

StockSpec = stockspec(Sigma, AssetPrice);

% Define the Asian option
Settle = '12-March-2014';
ExerciseDates = '12-March-2015';
Strike = 90;
OptSpec = 'call';

% Kemna-Vorst closed form model
PriceKV = asianbykv(RateSpec, StockSpec, OptSpec, Strike, Settle,...
    ExerciseDates);

% Levy model approximation
PriceLevy = asianbylevy(RateSpec, StockSpec, OptSpec, Strike, Settle,...
    ExerciseDates);

% Turnbull-Wakeman approximation
PriceTW = asianbytw(RateSpec, StockSpec, OptSpec, Strike, Settle,...
    ExerciseDates);

% Haug-Haug-Margrabe approximation
PriceHHM = asianbyhhm(RateSpec, StockSpec, OptSpec, Strike, Settle,...
    ExerciseDates);     
                 
% Comparison of calculated prices for the geometric and arithmetic options
% using different closed form algorithms.
displayPricesClosedForm(PriceKV, PriceLevy, PriceTW, PriceHHM)

Comparison of Asian Arithmetic and Geometric Prices:

Kemna-Vorst:        11.862580
Levy:               12.164734
Turnbull-Wakeman:   12.164734
Haug-Haug-Margrabe: 12.108746

Computing Asian Options Prices Using the Cox-Ross-Rubinstein Model

In addition to closed form approximations, the Financial Instruments Toolbox™ supports pricing
European Average Price options using CRR trees via the function asianbycrr.

The lattice pricing function asianbycrr takes an interest-rate tree ( CRRTree ) and stock structure
as inputs. You can price the previous options by building a CRRTree using the interest-rate term
structure and stock specification from the example above.

% Create the time specification of the tree
NPeriods = 20;
TreeValuationDate = '12-March-2014';
TreeMaturity = '12-March-2024';
TimeSpec = crrtimespec(TreeValuationDate, TreeMaturity, NPeriods);

 Pricing Asian Options

3-111



% Build the tree
CRRTree =  crrtree(StockSpec, RateSpec, TimeSpec);

% Price the European Asian option using the CRR lattice model.
% The function 'asianbycrr' computes prices of arithmetic and geometric
% Asian options.
AvgType = {'arithmetic';'geometric'};
AmericanOpt = 0;
PriceCRR20 = asianbycrr(CRRTree, OptSpec, Strike, Settle, ExerciseDates,...
                        AmericanOpt, AvgType);

% Increase the numbers of periods in the tree and compare results
NPeriods = 40;
TimeSpec = crrtimespec(TreeValuationDate, TreeMaturity, NPeriods);
CRRTree =  crrtree(StockSpec, RateSpec, TimeSpec);

PriceCRR40 = asianbycrr(CRRTree, OptSpec, Strike, Settle, ExerciseDates,...
                        AmericanOpt, AvgType);
                    
% Display prices
displayPricesCRR(PriceCRR20, PriceCRR40)

Asian Prices using the CRR lattice model:

PriceArithmetic(CRR20): 11.934380
PriceArithmetic(CRR40): 12.047243
PriceGeometric (CRR20): 11.620899
PriceGeometric (CRR40): 11.732037

The results above compare the findings from calculating both geometric and arithmetic Asian options,
using CRR trees with 20 and 40 levels. As the number of levels increases, the results approach the
closed form solutions.

Calculating Prices of Asian Options Using Monte Carlo Simulation

Another method to price European Average Price options with the Financial Instruments Toolbox™ is
via Monte Carlo simulations.

The pricing function asianbyls takes an interest-rate term structure and stock structure as inputs.
The output and execution time of the Monte Carlo simulation depends on the number of paths
(NumTrials) and the number of time periods per path (NumPeriods).

You can price the same options of previous examples using Monte Carlo.

% Simulation Parameters
NumTrials = 500;
NumPeriods = 200;

% Price the arithmetic option 
PriceAMC = asianbyls(RateSpec, StockSpec, OptSpec, Strike, Settle,...
                     ExerciseDates,'NumTrials', NumTrials, ...
                     'NumPeriods', NumPeriods);

% Price the geometric option 
PriceGMC = asianbyls(RateSpec, StockSpec, OptSpec, Strike, Settle,...
                     ExerciseDates,'NumTrials', NumTrials, ...
                     'NumPeriods', NumPeriods, 'AvgType', AvgType(2));
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% Use the antithetic variates method to value the options
Antithetic = true;
PriceAMCAntithetic = asianbyls(RateSpec, StockSpec, OptSpec, Strike, Settle,...
                    ExerciseDates,'NumTrials', NumTrials, 'NumPeriods',...
                    NumPeriods, 'Antithetic', Antithetic);

PriceGMCAntithetic = asianbyls(RateSpec, StockSpec, OptSpec, Strike, Settle,...
                    ExerciseDates,'NumTrials', NumTrials, 'NumPeriods',...
                    NumPeriods, 'Antithetic', Antithetic,'AvgType', AvgType(2));
                
% Display prices
displayPricesMonteCarlo(PriceAMC, PriceAMCAntithetic, PriceGMC, PriceGMCAntithetic)

Asian Prices using Monte Carlo Method:

Arithmetic Asian
Standard Monte Carlo:           12.304046
Variate Antithetic Monte Carlo: 12.304046

Geometric Asian
Standard Monte Carlo:           12.048434
Variate Antithetic Monte Carlo: 12.048434

The use of variate antithetic accelerates the conversion process by reducing the variance.

You can create a plot to display the difference between the geometric Asian price using the Kemna-
Vorst model, standard Monte Carlo, and antithetic Monte Carlo.

nTrials = [50:5:100 110:10:250 300:50:500 600:100:2500]';
PriceKVVector = PriceKV * ones(size(nTrials));
PriceGMCVector = nan(size(nTrials));
PriceGMCAntitheticVector = nan(size(nTrials));
TimeGMCAntitheticVector = nan(length(nTrials),1);
TimeGMCVector = nan(length(nTrials),1);
idx = 1;
for iNumTrials = nTrials'
    PriceGMCVector(idx) = asianbyls(RateSpec, StockSpec, OptSpec, Strike, Settle,...
                        ExerciseDates,'NumTrials', iNumTrials, 'NumPeriods',...
                        NumPeriods,'AvgType', AvgType(2));

    PriceGMCAntitheticVector(idx) = asianbyls(RateSpec, StockSpec, OptSpec, Strike, Settle,...
                        ExerciseDates,'NumTrials', iNumTrials, 'NumPeriods',...
                        NumPeriods, 'Antithetic', Antithetic,'AvgType', AvgType(2));
    idx = idx+1;
end

figure('menubar', 'none', 'numbertitle', 'off')
plot(nTrials, [PriceKVVector PriceGMCVector PriceGMCAntitheticVector]);
title 'Variance Reduction by Antithetic'
xlabel 'Number of Simulations'
ylabel 'Asian Option Price'
legend('Kemna-Vorst', 'Standard Monte Carlo', 'Variate Antithetic Monte Carlo ', 'location', 'northeast');
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The graph above shows how oscillation in simulated price is reduced by using variate antithetic.

Compare Pricing Model Results

Prices calculated by the Monte Carlo method varies depending on the outcome of the simulations.
Increase NumTrials and analyze the results.

NumTrials = 2000;

PriceAMCAntithetic2000 = asianbyls(RateSpec, StockSpec, OptSpec, Strike, Settle, ExerciseDates,...
         'NumTrials', NumTrials, 'NumPeriods', NumPeriods, 'Antithetic', Antithetic);

PriceGMCAntithetic2000 = asianbyls(RateSpec, StockSpec, OptSpec, Strike, Settle,...
                    ExerciseDates,'NumTrials', NumTrials, 'NumPeriods',...
                    NumPeriods, 'Antithetic', Antithetic,'AvgType', AvgType(2));
                
% Comparison of calculated Asian call prices
displayComparisonAsianCallPrices(PriceLevy, PriceTW, PriceHHM, PriceCRR40, PriceAMCAntithetic, PriceAMCAntithetic2000, PriceKV, PriceGMCAntithetic, PriceGMCAntithetic2000)

Comparison of Asian call prices:

Arithmetic Asian
Levy:                     12.164734
Turnbull-Wakeman:         12.164734
Haug-Haug-Margrabe:       12.108746
Cox-Ross-Rubinstein:      12.047243
Monte Carlo(500 trials):  12.304046
Monte Carlo(2000 trials): 12.196848
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Geometric Asian
Kemna-Vorst:              11.862580
Cox-Ross-Rubinstein:      11.732037
Monte Carlo(500 trials):  12.048434
Monte Carlo(2000 trials): 11.932017

The table above contrasts the results from closed approximation models against price simulations
implemented via CRR trees and Monte Carlo.

Asian and Vanilla Call Options

Asian options are popular instruments since they tend to be less expensive than comparable Vanilla
calls and puts. This is because the volatility in the average value of an underlier tends to be lower
than the volatility of the value of the underlier itself.

The Financial Instruments Toolbox™ supports several algorithms for pricing vanilla options. Let us
compare the price of Asian options against their Vanilla counterpart.

First, compute the price of a European Vanilla Option using the Black Scholes model.

PriceBLS = optstockbybls(RateSpec, StockSpec, Settle, ExerciseDates,...
                         OptSpec, Strike);
                     
% Comparison of calculated call prices.
displayComparisonVanillaAsian('Prices', PriceBLS, PriceKV, PriceLevy, PriceTW, PriceHHM)

Comparison of Vanilla and Asian Prices:

Vanilla BLS:              15.743809
Asian Kemna-Vorst:        11.862580
Asian Levy:               12.164734
Asian Turnbull-Wakeman:   12.164734
Asian Haug-Haug-Margrabe: 12.108746

Both geometric and arithmetic Asians price lower than their Vanilla counterpart.

You can analyze options prices at different levels of the underlying asset. Using the Financial
Instruments Toolbox™, it is possible to observe the effect of different parameters on the price of the
options. Consider for example, the effect of variations in the price of the underlying asset.

StockPrices = (50:5:150)';
PriceBLS = nan(size(StockPrices));
PriceKV = nan(size(StockPrices));
PriceLevy = nan(size(StockPrices));
PriceTW = nan(size(StockPrices));
PriceHHM = nan(size(StockPrices));
idx = 1;
for So = StockPrices'
    SP = stockspec(Sigma, So);
    PriceBLS(idx) = optstockbybls(RateSpec, SP, Settle, ExerciseDates,...
                                  OptSpec, Strike);
                              
    PriceKV(idx) = asianbykv(RateSpec, SP, OptSpec, Strike, Settle,...
                             ExerciseDates);                                  
                     
    PriceLevy(idx) = asianbylevy(RateSpec, SP, OptSpec, Strike, Settle,...
                                 ExerciseDates);
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    PriceKV(idx) = asianbykv(RateSpec, SP, OptSpec, Strike, Settle,...
                             ExerciseDates);
                         
    PriceKV(idx) = asianbykv(RateSpec, SP, OptSpec, Strike, Settle,...
                             ExerciseDates);                             
    
    idx = idx+1;
end

figure('menubar', 'none', 'numbertitle', 'off')
plot(StockPrices, [PriceBLS PriceKV PriceLevy PriceTW PriceHHM]);
xlabel 'Spot Price ($)'
ylabel 'Option Price ($)'
title 'Call Price Comparison'
legend('Vanilla', 'Geometric Asian', 'Continuous Arithmetic Asian (1)', 'Continuous Arithmetic Asian (2)', 'Discrete Arithmetic Asian', 'location', 'northwest');

It can be observed that the price of the Asian option is cheaper than the price of the Vanilla option.

Also, it is possible to observe the effect of changes in the volatility of the underlying asset. The table
below shows what happens to Asian and Vanilla option prices when the constant volatility changes.

Call Option (ITM)

Strike = 90 AssetPrice = 100

-----------------------------------------------------------------------------
--------
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Volatility Haug-Haug-Margrabe Turnbull-Wakeman Levy Kemna-Vorst BLS

10% 11.3946 11.3987 11.3987 11.3121 13.4343

20% 12.1087 12.1647 12.1647 11.8626 15.7438

30% 13.5374 13.6512 13.6512 13.0338 18.8770

40% 15.2823 15.4464 15.4464 14.4086 22.2507

A comparison of the calculated prices show that Asian options are less sensitive to volatility changes,
since averaging reduces the volatility of the value of the underlying asset. Also, Asian options that use
arithmetic average are more expensive than those that use geometric average.

Now, examine the effect of strike on option prices.

Strikes = (90:5:120)';
NStrike = length(Strikes);
PriceBLS = nan(size(Strikes));
PriceKV = nan(size(Strikes));
PriceLevy = nan(size(Strikes));
PriceTW = nan(size(Strikes));
PriceHHM = nan(size(Strikes));
idx = 1;
for ST = Strikes'
    SP = stockspec(Sigma, AssetPrice);
    PriceBLS(idx) = optstockbybls(RateSpec, SP, Settle, ExerciseDates,...
                                  OptSpec, ST);
                     
    PriceKV(idx) = asianbykv(RateSpec, SP, OptSpec, ST, Settle,...
                             ExerciseDates);                                  
                                  
    PriceLevy(idx) = asianbylevy(RateSpec, SP, OptSpec, ST, Settle,...
                                 ExerciseDates);

    PriceTW(idx) = asianbytw(RateSpec, SP, OptSpec, ST, Settle,...
                             ExerciseDates);                             
                                 
    PriceHHM(idx) = asianbyhhm(RateSpec, SP, OptSpec, ST, Settle,...
                             ExerciseDates);     
    
    idx = idx+1;
end

figure('menubar', 'none', 'numbertitle', 'off')
plot(Strikes, [PriceBLS PriceKV PriceLevy PriceTW PriceHHM]);
xlabel 'Strike Price ($)'
ylabel 'Option Price ($)'
title 'Effect of Strike on Option Prices'
legend('Vanilla', 'Geometric Asian', 'Continuous Arithmetic Asian (1)', 'Continuous Arithmetic Asian (2)', 'Discrete Arithmetic Asian', 'location', 'northeast');
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The figure above displays the option price with respect to strike price. Since call option value
decreases as strike price increases, the Asian call curve is under the Vanilla call curve. It can be
observed that the Asian call option is less expensive than the Vanilla call.

Hedging

Hedging is an insurance to minimize exposure to market movements on the value of a position or
portfolio. As the underlying changes, the proportions of the instruments forming the portfolio may
need to be adjusted to keep the sensitivities within the desired range. Delta measures the option
price sensitivity to changes in the price of the underlying.

Assume that you have a portfolio of two options with the same strike and maturity. You can use the
Financial Instruments Toolbox™ to compute Delta for the Vanilla and Average Price options.

OutSpec = 'Delta';

% Vanilla option using Black Scholes 
DeltaBLS = optstocksensbybls(RateSpec, StockSpec, Settle, ExerciseDates,...
                             OptSpec, Strike, 'OutSpec', OutSpec);

% Asian option using Kemna-Vorst method
DeltaKV = asiansensbykv(RateSpec, StockSpec, OptSpec, Strike, Settle,...
                        ExerciseDates,  'OutSpec', OutSpec);                         
                             
% Asian option using Levy model
DeltaLevy = asiansensbylevy(RateSpec, StockSpec, OptSpec, Strike, Settle,...
                            ExerciseDates,  'OutSpec', OutSpec);
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% Asian option using Turnbull-Wakeman model
DeltaTW = asiansensbytw(RateSpec, StockSpec, OptSpec, Strike, Settle,...
                        ExerciseDates,  'OutSpec', OutSpec);
                    
% Asian option using Haug-Haug-Margrabe model
DeltaHHM = asiansensbyhhm(RateSpec, StockSpec, OptSpec, Strike, Settle,...
                        ExerciseDates,  'OutSpec', OutSpec);                        

% Delta Comparison
displayComparisonVanillaAsian('Delta', DeltaBLS, DeltaKV, DeltaLevy, DeltaTW, DeltaHHM)

Comparison of Vanilla and Asian Delta:

Vanilla BLS:              0.788666
Asian Kemna-Vorst:        0.844986
Asian Levy:               0.852806
Asian Turnbull-Wakeman:   0.852806
Asian Haug-Haug-Margrabe: 0.857864

The following graph demonstrates the behavior of Delta for the Vanilla and Asian options as a
function of the underlying price.

StockPrices = (40:5:120)';
NStockPrices = length(StockPrices);
DeltaBLS = nan(size(StockPrices));
DeltaKV = nan(size(StockPrices));
DeltaLevy = nan(size(StockPrices));
DeltaTW = nan(size(StockPrices));
DeltaHHM = nan(size(StockPrices));

idx = 1;
for SPrices = StockPrices'
    SP = stockspec(Sigma, SPrices);
    DeltaBLS(idx) = optstocksensbybls(RateSpec, SP, Settle, ...
                    ExerciseDates, OptSpec, Strike, 'OutSpec', OutSpec);

    DeltaKV(idx) = asiansensbykv(RateSpec, SP, OptSpec, Strike, ...
                   Settle, ExerciseDates,'OutSpec', OutSpec);                
                
    DeltaLevy(idx) = asiansensbylevy(RateSpec, SP, OptSpec, Strike,...
                     Settle, ExerciseDates, 'OutSpec', OutSpec);

    DeltaTW(idx) = asiansensbytw(RateSpec, SP, OptSpec, Strike, ...
                   Settle, ExerciseDates,'OutSpec', OutSpec);
               
    DeltaHHM(idx) = asiansensbyhhm(RateSpec, SP, OptSpec, Strike, ...
                   Settle, ExerciseDates,'OutSpec', OutSpec);
               
    idx = idx+1;
end

figure('menubar', 'none', 'numbertitle', 'off')
plot(StockPrices, [DeltaBLS DeltaKV DeltaLevy DeltaTW DeltaHHM]);
xlabel 'Spot Price ($)'
ylabel 'Call Delta'
title 'Delta Comparison (Strike Price = $90)'
legend('Vanilla', 'Geometric Asian', 'Continuous Arithmetic Asian (1)', 'Continuous Arithmetic Asian (2)', 'Discrete Arithmetic Asian', 'location', 'northwest');
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A Vanilla, or Asian, in the money (ITM) call option is more sensitive to price movements than an out of
the money (OTM) option. If the asset price is deep in the money, then it is more likely to be exercised.
The opposite occurs for an out of the money option. Asian delta is lower for out of the money options
and is higher for in the money options than its Vanilla European counterpart. The geometric Asian
delta is lower than the arithmetic Asian delta.
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Utility Functions

function displayPricesClosedForm(PriceKV, PriceLevy, PriceTW, PriceHHM)
fprintf('Comparison of Asian Arithmetic and Geometric Prices:\n');
fprintf('\n');
fprintf('Kemna-Vorst:        %f\n', PriceKV);
fprintf('Levy:               %f\n', PriceLevy);
fprintf('Turnbull-Wakeman:   %f\n', PriceTW);
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fprintf('Haug-Haug-Margrabe: %f\n', PriceHHM);
end

function displayPricesCRR(PriceCRR20, PriceCRR40)
fprintf('Asian Prices using the CRR lattice model:\n');
fprintf('\n');
fprintf('PriceArithmetic(CRR20): %f\n', PriceCRR20(1));
fprintf('PriceArithmetic(CRR40): %f\n', PriceCRR40(1));
fprintf('PriceGeometric (CRR20): %f\n', PriceCRR20(2));
fprintf('PriceGeometric (CRR40): %f\n', PriceCRR40(2));
end

function displayPricesMonteCarlo(PriceAMC, PriceAMCAntithetic, PriceGMC, PriceGMCAntithetic)
fprintf('Asian Prices using Monte Carlo Method:\n');
fprintf('\n');
fprintf('Arithmetic Asian\n');
fprintf('Standard Monte Carlo:           %f\n', PriceAMC);
fprintf('Variate Antithetic Monte Carlo: %f\n\n', PriceAMCAntithetic);
fprintf('Geometric Asian\n');
fprintf('Standard Monte Carlo:           %f\n', PriceGMC);
fprintf('Variate Antithetic Monte Carlo: %f\n', PriceGMCAntithetic);
end

function displayComparisonAsianCallPrices(PriceLevy, PriceTW, PriceHHM, PriceCRR40, PriceAMCAntithetic, PriceAMCAntithetic2000, PriceKV, PriceGMCAntithetic, PriceGMCAntithetic2000)
fprintf('Comparison of Asian call prices:\n');
fprintf('\n');
fprintf('Arithmetic Asian\n');
fprintf('Levy:                     %f\n', PriceLevy);
fprintf('Turnbull-Wakeman:         %f\n', PriceTW);
fprintf('Haug-Haug-Margrabe:       %f\n', PriceHHM);
fprintf('Cox-Ross-Rubinstein:      %f\n', PriceCRR40(1));
fprintf('Monte Carlo(500 trials):  %f\n', PriceAMCAntithetic);
fprintf('Monte Carlo(2000 trials): %f\n', PriceAMCAntithetic2000);
fprintf('\n');
fprintf('Geometric Asian\n');
fprintf('Kemna-Vorst:              %f\n', PriceKV);
fprintf('Cox-Ross-Rubinstein:      %f\n', PriceCRR40(2));
fprintf('Monte Carlo(500 trials):  %f\n', PriceGMCAntithetic);
fprintf('Monte Carlo(2000 trials): %f\n', PriceGMCAntithetic2000);
end

function displayComparisonVanillaAsian(type, BLS, KV, Levy, TW, HHM)
fprintf('Comparison of Vanilla and Asian %s:\n', type);
fprintf('\n');
fprintf('Vanilla BLS:              %f\n', BLS);
fprintf('Asian Kemna-Vorst:        %f\n', KV);
fprintf('Asian Levy:               %f\n', Levy);
fprintf('Asian Turnbull-Wakeman:   %f\n', TW);
fprintf('Asian Haug-Haug-Margrabe: %f\n', HHM);
end

See Also
asianbykv | asiansensbykv | asianbylevy | asiansensbylevy | asianbyhhm |
asiansensbyhhm | asianbytw | asiansensbytw | asianbyls | asiansensbyls | asianbystt |
asianbyitt | asianbyeqp | asianbycrr
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Related Examples
• “Use Black-Scholes Model to Price Asian Options with Several Equity Pricers” on page 3-135

More About
• “Supported Equity Derivative Functions” on page 3-19
• “Supported Energy Derivative Functions” on page 3-34
• “Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument

Objects” on page 1-82

External Websites
• How to Price Asian Options Efficiently Using MATLAB (4 min 37 sec)
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Price Spread Instrument for a Commodity Using Black-Scholes
Model and Analytic Pricers

This example shows the workflow to price a commodity Spread instrument when you use a
BlackScholes model and Kirk and BjerksundStensland analytic pricing methods.

Understanding Crack Spread Options

In the petroleum industry, refiners are concerned about the difference between their input costs
(crude oil) and output prices (refined products — gasoline, heating oil, diesel fuel, and so on). The
differential between these two underlying commodities is referred to as a crack spread. It represents
the profit margin between crude oil and the refined products.

A spread option is an option on the spread where the holder has the right, but not the obligation, to
enter into a spot or forward spread contract. Crack spread options are often used to protect against
declines in the crack spread or to monetize volatility or price expectations on the spread.

Define the Commodity

Assume that current gasoline prices are strong, and you want to model a crack spread option strategy
to protect the gasoline margin. A crack spread option strategy is used to maintain profits for the
following season. The WTI crude oil futures are at $93.20 per barrel and RBOB gasoline futures
contract are at $2.85 per gallon.

Strike = 20;
Rate = 0.05;

Settle = datetime(2020,1,1);
Maturity = datemnth(Settle,3);

% Price and volatility of RBOB gasoline
PriceGallon1 = 2.85;          % Dollars per gallon
Price1 = PriceGallon1 * 42;   % Dollars per barrel
Vol1 = 0.29;

% Price and volatility of WTI crude oil
Price2 = 93.20;         % Dollars per barrel
Vol2 = 0.36;

% Correlation between the prices of the commodities
Corr = 0.42;

Create Spread Instrument Object

Use fininstrument to create a Spread instrument object.

SpreadOpt = fininstrument("Spread", 'ExerciseDate', Maturity, 'Strike', Strike,'ExerciseStyle',"european",'Name',"spread_instrument")

SpreadOpt = 
  Spread with properties:

       OptionType: "call"
           Strike: 20
    ExerciseStyle: "european"
     ExerciseDate: 01-Apr-2020
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             Name: "spread_instrument"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes", 'Volatility', [Vol1,Vol2], 'Correlation', [1 Corr; Corr 1]);

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

ZeroCurve = ratecurve('zero', Settle, Maturity, Rate, 'Basis', 1);

Create BjerksundStensland Pricer Object

Use finpricer to create a BjerksundStensland pricer object and use the ratecurve object for
the 'DiscountCurve' name-value pair argument.

BJSPricer = finpricer("Analytic", 'Model', BlackScholesModel, 'SpotPrice', [Price1 , Price2], 'DiscountCurve', ZeroCurve,'PricingMethod', "BjerksundStensland");

Create Kirk Pricer Object

Use finpricer to create a Kirk pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

KirkPricer = finpricer("Analytic", 'Model', BlackScholesModel,'SpotPrice', [Price1 , Price2], 'DiscountCurve', ZeroCurve,'PricingMethod', "Kirk");

Price Spread Instrument Using BjerksundStensland and Kirk Analytic Pricing Methods

Use price to compute the price and sensitivities for the commodity Spread instrument.

[PriceKirk, outPR_Kirk] = price(KirkPricer, SpreadOpt, "all");
[PriceBJS,  outPR_BJS]  = price(BJSPricer,  SpreadOpt, "all");

[outPR_Kirk.Results; outPR_BJS.Results]

ans=2×7 table
    Price           Delta                  Gamma                 Lambda                Vega           Theta      Rho  
    _____    ___________________    ____________________    _________________    ________________    _______    ______

    11.19    0.67224    -0.60665    0.019081    0.021662    7.1907    -6.4891    11.299    9.8869    -14.539    3.1841
     11.2    0.67371    -0.60816    0.018992    0.021572    7.2003    -6.4997    11.198    9.9878    -14.555    3.1906
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Price Vanilla Instrument Using Heston Model and Multiple
Different Pricers

This example shows the workflow to price a Vanilla instrument when you use a Heston model and
various pricing methods.

Create Vanilla Instrument Object

Use fininstrument to create a Vanilla instrument object.

Settle = datetime(2017,6,29);
Maturity = datemnth(Settle,6);
Strike = 80;
VanillaOpt = fininstrument('Vanilla','ExerciseDate',Maturity,'Strike',Strike,'Name',"vanilla_option")

VanillaOpt = 
  Vanilla with properties:

       OptionType: "call"
    ExerciseStyle: "european"
     ExerciseDate: 29-Dec-2017
           Strike: 80
             Name: "vanilla_option"

Create Heston Model Object

Use finmodel to create a Heston model object.

V0 = 0.04;
ThetaV = 0.05;
Kappa = 1.0;
SigmaV = 0.2;
RhoSV = -0.7;

HestonModel = finmodel("Heston",'V0',V0,'ThetaV',ThetaV,'Kappa',Kappa,'SigmaV',SigmaV,'RhoSV',RhoSV)

HestonModel = 
  Heston with properties:

        V0: 0.0400
    ThetaV: 0.0500
     Kappa: 1
    SigmaV: 0.2000
     RhoSV: -0.7000

Create ratecurve object

Create a ratecurve object using ratecurve.

Rate = 0.03;
ZeroCurve = ratecurve('zero',Settle,Maturity,Rate);

Create NumericalIntegration, FFT, and FiniteDifference Pricer Objects

Use finpricer to create a NumericalIntegration, FFT, and FiniteDifference pricer objects
and use the ratecurve object for the 'DiscountCurve' name-value pair argument.
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SpotPrice = 80;
Strike = 80;
DividendYield = 0.02;

NIPricer = finpricer("NumericalIntegration",'Model', HestonModel,'SpotPrice',SpotPrice,'DiscountCurve',ZeroCurve,'DividendValue',DividendYield)

NIPricer = 
  NumericalIntegration with properties:

                Model: [1x1 finmodel.Heston]
        DiscountCurve: [1x1 ratecurve]
            SpotPrice: 80
         DividendType: "continuous"
        DividendValue: 0.0200
               AbsTol: 1.0000e-10
               RelTol: 1.0000e-10
     IntegrationRange: [1.0000e-09 Inf]
    CharacteristicFcn: @characteristicFcnHeston
            Framework: "heston1993"
       VolRiskPremium: 0
           LittleTrap: 1

FFTPricer = finpricer("FFT",'Model',HestonModel, ...
    'SpotPrice',SpotPrice,'DiscountCurve',ZeroCurve, ...
    'DividendValue',DividendYield,'NumFFT',8192)

FFTPricer = 
  FFT with properties:

                    Model: [1x1 finmodel.Heston]
            DiscountCurve: [1x1 ratecurve]
                SpotPrice: 80
             DividendType: "continuous"
            DividendValue: 0.0200
                   NumFFT: 8192
    CharacteristicFcnStep: 0.0100
            LogStrikeStep: 0.0767
        CharacteristicFcn: @characteristicFcnHeston
            DampingFactor: 1.5000
               Quadrature: "simpson"
           VolRiskPremium: 0
               LittleTrap: 1

FDPricer = finpricer("FiniteDifference",'Model',HestonModel,'SpotPrice',SpotPrice,'DiscountCurve',ZeroCurve,'DividendValue',DividendYield)

FDPricer = 
  FiniteDifference with properties:

     DiscountCurve: [1x1 ratecurve]
             Model: [1x1 finmodel.Heston]
         SpotPrice: 80
    GridProperties: [1x1 struct]
      DividendType: "continuous"
     DividendValue: 0.0200
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Price Vanilla Instrument

Use the following sensitivities when pricing the Vanilla instrument.

InpSensitivity = ["delta", "gamma", "theta", "rho", "vega", "vegalt"];

Use price to compute the price and sensitivities for the Vanilla instrument that uses the
NumericalIntegration pricer.

[PriceNI,  outPR_NI]  = price(NIPricer,VanillaOpt,InpSensitivity)

PriceNI = 4.7007

outPR_NI = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []

Use price to compute the price and sensitivities for the Vanilla instrument that uses the FFT
pricer.

[PriceFFT, outPR_FFT] = price(FFTPricer,VanillaOpt,InpSensitivity)

PriceFFT = 4.7007

outPR_FFT = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []

Use price to compute the price and sensitivities for the Vanilla instrument that uses the
FiniteDifference pricer.

[PriceFD,  outPR_FD]  = price(FDPricer,VanillaOpt,InpSensitivity)

PriceFD = 4.7003

outPR_FD = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: [1x1 struct]

Aggregate the price results.

[outPR_NI.Results;outPR_FFT.Results;outPR_FD.Results]

ans=3×7 table
    Price      Delta      Gamma       Theta      Rho       Vega     VegaLT
    ______    _______    ________    _______    ______    ______    ______

    4.7007    0.57747     0.03392    -4.8474    20.805    17.028    5.2394
    4.7007    0.57747     0.03392    -4.8474    20.805    17.028    5.2394
    4.7003    0.57722    0.035254    -4.8483    20.801    17.046    5.2422
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Compute Option Price Surfaces

Use the price function for the NumericalIntegration pricer and the price function for the FFT
pricer to compute the prices for a range of Vanilla instruments.

Maturities = datemnth(Settle,(3:3:24)');
NumMaturities = length(Maturities);
Strikes = (20:10:160)';
NumStrikes = length(Strikes);

[Maturities_Full,Strikes_Full] = meshgrid(Maturities,Strikes);

NumInst = numel(Strikes_Full);
VanillaOptions(NumInst, 1) = fininstrument("vanilla",...
    "ExerciseDate", Maturities_Full(1), "Strike", Strikes_Full(1));
for instidx=1:NumInst
    VanillaOptions(instidx) = fininstrument("vanilla",...
        "ExerciseDate", Maturities_Full(instidx), "Strike", Strikes_Full(instidx));
end

Prices_NI = price(NIPricer, VanillaOptions);
Prices_FFT = price(FFTPricer, VanillaOptions);

figure;
surf(Maturities_Full,Strikes_Full,reshape(Prices_NI,[NumStrikes,NumMaturities]));
title('Price (Numerical Integration)');
view(-112,34);
xlabel('Maturity')
ylabel('Strike')
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figure;
surf(Maturities_Full,Strikes_Full,reshape(Prices_FFT,[NumStrikes,NumMaturities]));
title('Price (FFT)');
view(-112,34);
xlabel('Maturity')
ylabel('Strike')
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Create and Price Portfolio of Instruments
Use finportfolio and pricePortfolio to create and price a portfolio of interest-rate and equity
instruments. The portfolio contains a vanilla FixedBond, an OptionEmbeddedFixedBond, a
Vanilla European call option, a Vanilla American call option, and an Asian call option.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates);

Create the Instrument Objects

Use fininstrument to create the instrument objects.

% Vanilla FixedBond
CouponRate = 0.0325;
Maturity = datetime(2038,3,15);
Period = 1;
VanillaBond = fininstrument("FixedBond",'Maturity',Maturity,'CouponRate',CouponRate,...
    'Period',Period,'Name',"VanillaBond")

VanillaBond = 
  FixedBond with properties:

                  CouponRate: 0.0325
                      Period: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 15-Mar-2038
                        Name: "VanillaBond"

% OptionEmbeddedBond
Maturity = datetime(2024,9,15);
CouponRate = 0.035;
Strike = 100;
ExerciseDates = datetime(2023,9,15);
CallSchedule =  timetable(ExerciseDates,Strike,'VariableNames',{'Strike Schedule'});
Period = 1;
CallableBond = fininstrument("OptionEmbeddedFixedBond", "Maturity",Maturity,...
    'CouponRate',CouponRate,'Period',Period, ...
    'CallSchedule',CallSchedule,...
    'Name',"CallableBond");
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% Vanilla European call option
ExerciseDate = datetime(2022,1,1);
Strike = 96;
OptionType = 'call';
CallOpt = fininstrument("Vanilla",'ExerciseDate',ExerciseDate,'Strike',Strike,...
    'OptionType',OptionType, 'Name',"EuropeanCallOption")

CallOpt = 
  Vanilla with properties:

       OptionType: "call"
    ExerciseStyle: "european"
     ExerciseDate: 01-Jan-2022
           Strike: 96
             Name: "EuropeanCallOption"

% Vanilla American call option
ExerciseDate = datetime(2023,1,1);
Strike = 97;
OptionType = 'call';
CallOpt_American = fininstrument("Vanilla",'ExerciseDate',ExerciseDate,'Strike',Strike,...
    'OptionType',OptionType, 'ExerciseStyle', "american", ...
    'Name',"AmericanCallOption")

CallOpt_American = 
  Vanilla with properties:

       OptionType: "call"
    ExerciseStyle: "american"
     ExerciseDate: 01-Jan-2023
           Strike: 97
             Name: "AmericanCallOption"

% Asian call option
ExerciseDate = datetime(2023,1,1);
Strike = 102;
OptionType = 'call';
CallOpt_Asian = fininstrument("Asian",'ExerciseDate',ExerciseDate,'Strike',Strike,...
    'OptionType',OptionType,'Name',"AsianCall")

CallOpt_Asian = 
  Asian with properties:

          OptionType: "call"
              Strike: 102
         AverageType: "arithmetic"
        AveragePrice: 0
    AverageStartDate: NaT
       ExerciseStyle: "european"
        ExerciseDate: 01-Jan-2023
                Name: "AsianCall"
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Create Model Objects

Use finmodel to create HullWhite and BlackScholes model objects.

% Create Hull-White model
Vol = 0.01;
Alpha = 0.1;
HWModel = finmodel("hullwhite",'alpha',Alpha,'sigma',Vol);

% Create Black-Scholes model
Vol = .1;
SpotPrice = 95;
BlackScholesModel = finmodel("BlackScholes",'Volatility',Vol);

Create Pricer Objects

Use finpricer to create Discount, IRTree, BlackScholes, Levy, and BjerksundStensland
pricer objects and use the ratecurve object for the 'DiscountCurve' name-value pair argument.

% Create Discount pricer
DiscPricer = finpricer("Discount","DiscountCurve",ZeroCurve);

% Create Hull-White tree pricer
TreeDates = Settle + calyears(1:30);
HWTreePricer = finpricer("IRTree",'Model',HWModel,'DiscountCurve',ZeroCurve,...
    'TreeDates',TreeDates');

% Create BlackScholes, Levy, and BjerksundStensland pricers
BLSPricer = finpricer("analytic",'DiscountCurve',ZeroCurve,'Model',BlackScholesModel,'SpotPrice',SpotPrice);
LevyPricer = finpricer("analytic",'DiscountCurve',ZeroCurve,'Model',BlackScholesModel,...
                        'SpotPrice',SpotPrice,'PricingMethod',"Levy");
BJSpricer = finpricer("analytic",'DiscountCurve',ZeroCurve,'Model',BlackScholesModel,...
                        'SpotPrice',SpotPrice,'PricingMethod',"BjerksundStensland");

Create finportfolio Object

Create a finportfolio object that contains all of the instrument and pricer objects using
finportfolio.

myPort = finportfolio([VanillaBond CallableBond CallOpt CallOpt_American CallOpt_Asian]',...
                            [DiscPricer HWTreePricer BLSPricer BJSpricer LevyPricer]')

myPort = 
  finportfolio with properties:

    Instruments: [5x1 fininstrument.FinInstrument]
        Pricers: [5x1 finpricer.FinPricer]
    PricerIndex: [5x1 double]
       Quantity: [5x1 double]

Price Portfolio

Use pricePortfolio to compute the price and sensitivities for the portfolio and the instruments in
the portfolio.

[PortPrice,InstPrice,PortSens,InstSens] = pricePortfolio(myPort)

PortPrice = 237.3275
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InstPrice = 5×1

  107.4220
  110.8389
    7.5838
    8.8705
    2.6123

PortSens=1×8 table
    Price      Delta     Gamma    Lambda     Vega      Theta      Rho       DV01 
    ______    _______    _____    ______    ______    _______    ______    ______

    237.33    -546.39    2840     26.354    124.28    -4.0673    418.68    0.1579

InstSens=5×8 table
                          Price      Delta      Gamma      Lambda     Vega       Theta       Rho       DV01 
                          ______    _______    ________    ______    _______    ________    ______    ______

    VanillaBond           107.42        NaN         NaN       NaN        NaN         NaN       NaN    0.1579
    CallableBond          110.84     -547.9      2839.9       NaN    -62.532         NaN       NaN       NaN
    EuropeanCallOption    7.5838    0.57026    0.022762    7.1435     67.763     -1.3962    153.68       NaN
    AmericanCallOption    8.8705     0.5845    0.019797    6.2597     76.808     -1.8677    200.68       NaN
    AsianCall             2.6123    0.35611    0.032053     12.95     42.238    -0.80342     64.31       NaN
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Use Black-Scholes Model to Price Asian Options with Several
Equity Pricers

This example shows how to compare arithmetic and geometric Asian option prices using the
BlackScholes model and various pricing methods. The pricing methods are: the Kemna-Vorst, Levy,
Turnbull-Wakeman, and Cox-Ross-Rubinstein methods and Monte Carlo simulation. This example also
demonstrates how variations in spot prices affect option and delta sensitivity values on European
vanilla and Asian options.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2019,01,01);
Maturity = datetime(2025,01,01);
Rate = 0.035;
Compounding = -1;
Basis = 1;
ZeroCurve = ratecurve('zero',Settle,Maturity,Rate,'Compounding',Compounding,'Basis', Basis)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 1
                Dates: 01-Jan-2025
                Rates: 0.0350
               Settle: 01-Jan-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

Volatility = .20;
BSModel = finmodel("BlackScholes",'Volatility',Volatility)

BSModel = 
  BlackScholes with properties:

     Volatility: 0.2000
    Correlation: 1

Create Asian Instrument Objects

Use fininstrument to create two Asian instrument objects, one using an arithmetic average and
the other using a geometric average.

ExerciseDates = datetime(2020,01,01);
Strike = 90;
OptionType = 'call';
AverageType = 'geometric';
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AsianOptArith = fininstrument("Asian",'ExerciseDate',ExerciseDates,'Strike',Strike,...
                              'OptionType',OptionType,'Name',"CallAsianArith")

AsianOptArith = 
  Asian with properties:

          OptionType: "call"
              Strike: 90
         AverageType: "arithmetic"
        AveragePrice: 0
    AverageStartDate: NaT
       ExerciseStyle: "european"
        ExerciseDate: 01-Jan-2020
                Name: "CallAsianArith"

AsianOptGeo = fininstrument("Asian",'ExerciseDate',ExerciseDates,'Strike',Strike,...
                            'OptionType',OptionType,'AverageType', AverageType,'Name',"CallAsianGeo")

AsianOptGeo = 
  Asian with properties:

          OptionType: "call"
              Strike: 90
         AverageType: "geometric"
        AveragePrice: 0
    AverageStartDate: NaT
       ExerciseStyle: "european"
        ExerciseDate: 01-Jan-2020
                Name: "CallAsianGeo"

Create Analytic, AssetTree, and AssetMonteCarlo Pricer Objects

Use finpricer to create BlackScholes, AssetTree, and AssetMonteCarlo pricer objects and
use the ratecurve object for the 'DiscountCurve' name-value pair argument.

SpotPrice = 100;
InpSensitivity = "delta";

% Analytic Pricers
LevyPricer = finpricer('Analytic', 'Model', BSModel, 'SpotPrice', SpotPrice, ...
                       'DiscountCurve', ZeroCurve, 'PricingMethod', "Levy");

TWPricer = finpricer('Analytic', 'Model', BSModel, 'SpotPrice', SpotPrice, ...
                     'DiscountCurve', ZeroCurve, 'PricingMethod', "TurnbullWakeman");

KVPricer = finpricer('Analytic', 'Model', BSModel, 'SpotPrice', SpotPrice, ...
                       'DiscountCurve', ZeroCurve, 'PricingMethod', "KemnaVorst");

% AssetTree Pricer
% Define the number of levels of the tree
NumPeriods = 50;
CRRPricer = finpricer("AssetTree",'DiscountCurve',ZeroCurve,'Model',BSModel, 'SpotPrice',SpotPrice, ...
                      'PricingMethod',"CoxRossRubinstein",'NumPeriods', NumPeriods,...
                      'Maturity', ExerciseDates);
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% AssetMonteCarlo Pricer
% Define the number of simulation trials
NumTrials = 2000;
SimDates =[Settle:days(2):ExerciseDates ExerciseDates];

MCPricer = finpricer("AssetMonteCarlo", 'Model', BSModel, 'SpotPrice', SpotPrice, 'DiscountCurve', ZeroCurve,...
                     'SimulationDates',  SimDates, 'NumTrials', NumTrials);

Calculate the Price of the Arithmetic and Geometric Asian Options Using Different Pricers

Calculate the Asian option prices using the price function for the Analytic, AssetTree, and
AssetMonetCarlo pricing methods.

% Analytic
[LevyPrice,LevyoutPR] = price(LevyPricer, AsianOptArith,InpSensitivity);

[TWPrice, TWoutPR] = price(TWPricer, AsianOptArith, InpSensitivity);

[KVPrice, KVoutPR] = price(KVPricer, AsianOptGeo, InpSensitivity);

% Cox-Ross-Rubinstein
[CRRArithPrice, CRRArithoutPR] = price(CRRPricer, AsianOptArith, InpSensitivity);

[CRRGeoPrice, CRRGeooutPR] = price(CRRPricer, AsianOptGeo, InpSensitivity);

% Monte Carlo
[MCArithPrice, MCArithoutPR] = price(MCPricer, AsianOptArith, InpSensitivity);

[MCGeoPrice, MCGeooutPR] = price(MCPricer, AsianOptGeo, InpSensitivity);

Compare Asian Option Prices

Compare the Asian option call prices using the displayPricesAsianCallOption function defined
in Local Functions on page 3-0 .

displayPricesAsianCallOption(KVPrice,LevyPrice,TWPrice,CRRArithPrice,CRRGeoPrice,MCArithPrice,MCGeoPrice)

Comparison of Asian prices:

Arithmetic Asian
Levy:                     12.164734
Turnbull-Wakeman:         12.164734
Cox-Ross-Rubinstein:      12.126509
Monte Carlo:              12.102669

Geometric Asian
Kemna-Vorst:              11.862580
Cox-Ross-Rubinstein:      11.852462
Monte Carlo:              11.988051

The table contrasts the results from closed approximation models against price simulations
implemented using the Cox-Ross-Rubinstein binomial tree and Monte Carlo pricing methods. Observe
that arithmetic average Asian options are more expensive than their geometric average counterparts.

Compare Asian and Vanilla Options

Asian options are popular instruments since they tend to be less expensive than comparable vanilla
calls and puts. This is because the volatility in the average value of an underlier tends to be lower

 Use Black-Scholes Model to Price Asian Options with Several Equity Pricers

3-137



than the volatility of the value of the underlier itself. You can compare the price and delta sensitivity
values of Asian options against their vanilla counterparts.

Create Vanilla Instrument Object

Use fininstrument to create a Vanilla instrument object with same Maturity and Strike as the
two Asian options.

EuropeanCallOption = fininstrument("Vanilla",'ExerciseDate',ExerciseDates,'Strike',Strike,...
                                   'OptionType',OptionType,'Name',"CallVanilla")

EuropeanCallOption = 
  Vanilla with properties:

       OptionType: "call"
    ExerciseStyle: "european"
     ExerciseDate: 01-Jan-2020
           Strike: 90
             Name: "CallVanilla"

Create Analytic Pricer Object

Use finpricer to create a BlackScholes pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

BLSPricer = finpricer('Analytic', 'Model', BSModel, 'SpotPrice', SpotPrice, 'DiscountCurve', ZeroCurve)

BLSPricer = 
  BlackScholes with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 100
    DividendValue: 0
     DividendType: "continuous"

Compute price and delta sensitivity.

[BLSPrice, BLSoutPR] = price(BLSPricer, EuropeanCallOption, InpSensitivity);

Compare Prices for Asian and Vanilla Options

Compare option prices using the displayVanillaAsianComparison function defined in Local
Functions on page 3-0 .

displayVanillaAsianComparison('Prices', BLSPrice, KVPrice,LevyPrice,TWPrice)

Comparison of Vanilla and Asian Option Prices:

Vanilla BLS:              15.743809
Asian Kemna-Vorst:        11.862580
Asian Levy:               12.164734
Asian Turnbull-Wakeman:   12.164734

Observe that both the geometric and arithmetic Asian option prices are lower than their vanilla
counterparts.
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Compare Delta Sensitivity for Asian and Vanilla Options

The delata value measures the option price sensitivity to changes in the price of the underlying asset.
As the underlier changes, the proportions of the instruments forming the portfolio might need to be
adjusted to keep the sensitivities within the desired range.

displayVanillaAsianComparison('Delta', BLSoutPR.Results.Delta, KVoutPR.Results.Delta, LevyoutPR.Results.Delta,TWoutPR.Results.Delta)

Comparison of Vanilla and Asian Option Delta:

Vanilla BLS:              0.788666
Asian Kemna-Vorst:        0.844986
Asian Levy:               0.852806
Asian Turnbull-Wakeman:   0.852806

The table shows the delta values for both the vanilla and arithmetic and geometric Asian options.
Observe that the geometric Asian delta value is lower than the delta value for the arithmetic Asian
option.

Analyze Effect of Variations of Underlying Asset on Option Prices

Examine the effect of changes of underlying asset prices. Create a plot to show the effect of
variations in the price of the underlying asset on the vanilla and Asian option prices.

StockPrices = (50:5:120)';
PriceBLS = nan(size(StockPrices));
PriceKV = PriceBLS;
PriceLevy = PriceBLS;
PriceTW = PriceBLS;
DeltaBLS = PriceBLS;
DeltaLevy = PriceBLS;
DeltaTW = PriceBLS;
DeltaKV = PriceBLS;
InpSensitivity = "delta";
idx = 1;
for AssetPrice = StockPrices'

    PricerBLS = finpricer('Analytic', 'Model', BSModel, 'SpotPrice', AssetPrice,...
                          'DiscountCurve', ZeroCurve);
    [PriceBLS(idx), outPRBLS] = price(PricerBLS, EuropeanCallOption, InpSensitivity);
    DeltaBLS(idx) = outPRBLS.Results.Delta;

    PricerLevy = finpricer('Analytic', 'Model', BSModel, 'SpotPrice', AssetPrice, ...
                           'DiscountCurve', ZeroCurve, 'PricingMethod', "Levy");
    [PriceLevy(idx), outPRLevy] = price(PricerLevy, AsianOptArith, InpSensitivity);
    DeltaLevy(idx) = outPRLevy.Results.Delta;

    PricerTW = finpricer('Analytic', 'Model', BSModel, 'SpotPrice', AssetPrice, ...
        'DiscountCurve', ZeroCurve, 'PricingMethod', "TurnbullWakeman");
    [PriceTW(idx), outPRBTW] = price(PricerTW, AsianOptArith, InpSensitivity);
    DeltaTW(idx) = outPRBTW.Results.Delta;

    PricerKV = finpricer('Analytic', 'Model', BSModel, 'SpotPrice', AssetPrice, ...
        'DiscountCurve', ZeroCurve, 'PricingMethod', "KemnaVorst");
    [PriceKV(idx), outPRKV] = price(PricerKV, AsianOptGeo, InpSensitivity);
    DeltaKV(idx) = outPRKV.Results.Delta;

    idx = idx+1;
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end

figure('menubar', 'none', 'numbertitle', 'off')
plot(StockPrices, [PriceBLS PriceKV PriceLevy PriceTW]);
xlabel 'Spot Price ($)'
ylabel 'Option Price ($)'
title 'Asian and Vanilla Option Price Comparison'
legend('Vanilla', 'KV Geometric Asian', 'Levy Arithmetic Asian', 'TW Arithmetic Asian', 'location','northwest');

The plot displays vanilla and Asian option prices with respect to the underlying asset price. Observe
that the price of the Asian options is cheaper than the price of the vanilla option.

Analyze Effect of Variations of the Underlying Asset on the Options Delta

Examine the effect of changes of underlying asset prices on delta sensitivity. The following plot
demonstrates the behavior of the delta value for the Vanilla and Asian options as a function of the
underlying price.

figure('menubar', 'none', 'numbertitle', 'off')
plot(StockPrices, [DeltaBLS DeltaKV DeltaLevy DeltaTW]);
xlabel 'Spot Price ($)'
ylabel 'Call Delta'
title 'Asian and Vanilla Option Delta Comparison (Strike Price = $90)'
legend('Vanilla', 'KV Geometric Asian', 'Levy Arithmetic Asian', 'TW Arithmetic Asian', 'location', 'northwest');
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The plot displays the vanilla and Asian delta sensitivity values with respect to the underlying asset
price. A vanilla or Asian in-the-money (ITM) call option is more sensitive to price movements than an
out-of-the-money (OTM) option. If the asset price is deep in the money, then it is more likely to be
exercised. The opposite is the case for an out-of-the-money option. Observe that the Asian delta value
is lower for out-of-the-money options and higher for in-the-money options compared with the vanilla
European counterpart.

Local Functions

function displayPricesAsianCallOption(KVPrice,LevyPrice,TWPrice,CRRArithPrice,CRRGeoPrice,MCArithPrice,MCGeoPrice)
fprintf('Comparison of Asian prices:\n');
fprintf('\n');
fprintf('Arithmetic Asian\n');
fprintf('Levy:                     %f\n', LevyPrice);
fprintf('Turnbull-Wakeman:         %f\n', TWPrice);
fprintf('Cox-Ross-Rubinstein:      %f\n', CRRArithPrice);
fprintf('Monte Carlo:              %f\n', MCArithPrice);
fprintf('\n');
fprintf('Geometric Asian\n');
fprintf('Kemna-Vorst:              %f\n', KVPrice);
fprintf('Cox-Ross-Rubinstein:      %f\n', CRRGeoPrice);
fprintf('Monte Carlo:              %f\n', MCGeoPrice);
end

function displayVanillaAsianComparison(type, BLS, KV, Levy, TW)
fprintf('Comparison of Vanilla and Asian Option %s:\n', type);
fprintf('\n');
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fprintf('Vanilla BLS:              %f\n', BLS);
fprintf('Asian Kemna-Vorst:        %f\n', KV);
fprintf('Asian Levy:               %f\n', Levy);
fprintf('Asian Turnbull-Wakeman:   %f\n', TW);
end

See Also

Related Examples
• “Pricing Asian Options” on page 3-110

More About
• “Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments”

on page 1-22
• “Choose Instruments, Models, and Pricers” on page 1-53
• “Supported Exercise Styles” on page 1-62

External Websites
• How to Price Asian Options Efficiently Using MATLAB (4 min 37 sec)
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Calibrate Option Pricing Model Using Heston Model
This example shows how to use the Calibrate Pricing Model Live Editor task to calibrate a Heston
pricing model to call option prices from the market. After calibration, use the Financial Instruments
Toolbox™ object-based workflow to price an American option for a Barrier instrument using the
calibrated parameter values for the Heston model with an AssetMonteCarlo pricing method.

Define Pricing Data

Define the data.

Settle = datetime(2015,7,10);
SpotPrice = 123.28;
Rate = -0.001;
MaturityDates = datetime([2015,8,21; 2015,9,18; 2015,12,18; 2016,4,15; 2016,6,17; 2017,1,20]);

Strikes = [115 120 125 130 135 140 145]';

Prices = [9.95 10.63 12.84 15.10 15.95 20.00; ...
    6.30 7.20 9.90 12.30 13.57 17.50; ...
    3.60 4.55 7.30 9.70 11.15 15.20; ...
    1.82 2.68 5.30 7.70 9.00 13.20; ...
    0.82 1.45 3.70 5.85 7.20 11.27; ...
    0.36 0.77 2.50 4.48 5.76 9.65; ...
    0.15 0.38 1.70 3.44 4.54 8.10];

ZeroCurve = ratecurve("zero", Settle, MaturityDates(end), Rate)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: 20-Jan-2017
                Rates: -1.0000e-03
               Settle: 10-Jul-2015
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Use the Calibrate Pricing Model live task to interactively select the data, model, parameter
constraints, and the optimization and solver options to generate a volatility surface plot.
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% Create fininstrument objects
[MAT, STR] = meshgrid(MaturityDates', Strikes);
Inst = fininstrument('Vanilla', 'ExerciseDate', MAT(:), ...
    'Strike', STR(:), 'OptionType', 'Call');

% Construct objective function
objectiveFcn = @(Param) Prices(:) - price(finpricer('FFT', 'Model', ...
    finmodel('Heston', 'V0', Param(1), 'ThetaV', Param(2), ...
    'Kappa', Param(3), 'SigmaV', Param(4), 'RhoSV', Param(5)), ...
    'SpotPrice', 123.28, 'DiscountCurve', ZeroCurve), Inst);

% Estimate model parameters
options = optimoptions('lsqnonlin', 'FunctionTolerance', 0.0001, ...
    'Display', 'final', 'PlotFcn', 'optimplotresnorm');
Param = lsqnonlin(objectiveFcn, [0.1 0.4 0.2 0.6 -0.1], [0 0 0 0 -1], ...
    [1 1 10 2 1], options);
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Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to 
its initial value is less than the value of the function tolerance.

HestonModel = finmodel('Heston', 'V0', Param(1), 'ThetaV', Param(2), ...
    'Kappa', Param(3), 'SigmaV', Param(4), 'RhoSV', Param(5))

HestonModel = 
  Heston with properties:

        V0: 0.0448
    ThetaV: 0.1625
     Kappa: 0.3317
    SigmaV: 0.0776
     RhoSV: -0.8401

% Calculate implied volatilities for market and model prices
TMAT = yearfrac(ZeroCurve.Settle, MAT);
MKTVOL = blsimpv(123.28, STR, ZeroCurve.Rates(1), TMAT, Prices);

ModelPrice = price(finpricer('FFT', 'Model', HestonModel, 'SpotPrice', 123.28, ...
    'DiscountCurve', ZeroCurve), Inst);
ModelVol = blsimpv(123.28, STR(:), ZeroCurve.Rates(1), TMAT(:), ModelPrice);
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% Plot implied volatility surface
figure
surf(TMAT, STR, MKTVOL)
hold on
scatter3(TMAT(:), STR(:), ModelVol, 'ro')
xlabel('Time to Maturity (years)')
ylabel('Strike Price')
zlabel('Implied Volatility')
hold off
grid on

clearvars TMAT MKTVOL ModelPrice ModelVol
clearvars STR MAT Inst Param options objectiveFcn

Continue with this workflow to price an American option for a Barrier instrument using the
calibrated parameter values for a Heston model with an AssetMonteCarlo pricing method.

Create Barrier Instrument Object

Use fininstrument to create a Barrier instrument object.

ExerciseDate = datetime(2016,1,1);
BarrierOpt = fininstrument("Barrier",Strike=90,ExerciseDate=ExerciseDate,OptionType="call",ExerciseStyle="american",BarrierType="DO",BarrierValue=40,Name="barrier_option")

BarrierOpt = 
  Barrier with properties:
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       OptionType: "call"
           Strike: 90
      BarrierType: "do"
     BarrierValue: 40
           Rebate: 0
    ExerciseStyle: "american"
     ExerciseDate: 01-Jan-2016
             Name: "barrier_option"

Create AssetMonteCarlo Pricer Object

Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object
ZeroCurve for the 'DiscountCurve' name-value pair argument.

outPricer = finpricer("AssetMonteCarlo",DiscountCurve=ZeroCurve,Model=HestonModel,SpotPrice=100,SimulationDates=Settle+days(1):days(5):ExerciseDate)

outPricer = 
  HestonMonteCarlo with properties:

      DiscountCurve: [1x1 ratecurve]
          SpotPrice: 100
    SimulationDates: [11-Jul-2015    16-Jul-2015    21-Jul-2015    ...    ]
          NumTrials: 1000
      RandomNumbers: []
              Model: [1x1 finmodel.Heston]
       DividendType: "continuous"
      DividendValue: 0

Price Barrier Instrument

Use price to compute the price and sensitivities for the Barrier instrument.

[Price,outPR] = price(outPricer,BarrierOpt,["all"])

Price = 12.4688

outPR = 
  priceresult with properties:

       Results: [1x8 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×8 table
    Price      Delta      Gamma      Lambda     Rho       Theta      Vega     VegaLT
    ______    _______    ________    ______    ______    _______    ______    ______

    12.469    0.94837    -0.24723    7.6059    297.84    -46.735    17.591    2.6804

See Also
Functions
Heston | Bates | Merton | ratecurve | AssetMonteCarlo | Barrier | lsqnonlin |
simulannealbnd
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Related Examples
• “Use Deep Learning to Approximate Barrier Option Prices with Heston Model” on page 3-149
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Use Deep Learning to Approximate Barrier Option Prices with
Heston Model

This example shows how to use Deep Learning Toolbox™ to train a network and obtain predictions on
barrier option prices with a Heston model.

Barrier Option

The barrier option is an option where the payoff depends on whether the underlying asset crosses the
predetermined trigger value (barrier level) during the life of the option. Barrier options are attractive
because they are less expensive than the corresponding vanilla options.

Heston Model

The Heston model is an extension of the Black-Scholes model, where the volatility (square root of
variance) is no longer assumed to be constant, and the variance follows a stochastic (CIR) process.
The Heston model allows modeling the implied volatility smiles observed in the market where options
with identical expiration dates show increasing volatility as the options become more in-the-money
(ITM) or out-of-the-money (OTM).

The stochastic differential equation is:

dSt = rStdt + vtStdWt

dvt = κ θ− vt dt + σv
vt

dWt
v

where

r — Continuous risk-free rate

St — Asset price at time t

vt — Asset price variance at time t

v0 — Initial variance of the asset price at t = 0

θ — Long-term variance level

κ — Mean reversion speed for the variance

σv — Volatility of the variance

ρ — Correlation between the Weiner processes Wt and Wt
v

Barrier option prices are usually computed using Monte Carlo simulation in the Heston setting since
there is no closed-form solution available. However, a Monte Carlo simulation is computationally
expensive, and when pricing instruments for financial markets, pricing speed is crucial. This example
demonstrates using a vanilla neural network to speed up the barrier option pricing by learning the
results from a Monte Carlo simulation. The neural network provides a highly efficient approximation
technique. Although the off-line training is time consuming, the on-line pricing is fast.
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Define Parameters

Focusing on a barrier-up, knock-out call option, start by deciding on the ranges for the pricing
parameters. Consider a scaled spot price (moneyness) instead of two separate parameters S0 (asset
spot price) and K(strike). The barrier level is also scaled by strike value.

% Option parameter ranges.
% The first value defines the lower bound 
% and the second value is the upper bound.
moneyness = [0.6 1.2]; % S0/K
maturity = [0.05 2];
upBarrier = [0.6 1.3]; % Up barrier/K

% Model parameter ranges
rate = [0 0.05];
kappa = [0.3 2];
theta = [0.05 0.2];
sigma = [0.05 0.5];
v0 = [0.05 0.2];
rho = [-0.9 -0.1];

% Call option parameters
optSpec = "call";
exerciseStyle = "european";
barriertype = "uo";

% Simulation parameter
nTrials = 1000;

% Set the random generator seed for reproducibility.
%rng('default')

Gather Data

Next, sample the parameter combinations by quasi-Monte Carlo sampling method (sobolset) based
on Sobol sequences, which possess good uniformity properties. A Sobol sequence uses a base of 2 to
form successively finer uniform partitions of the unit interval, and then reorder the coordinates in
each dimension.

Quasi = sobolset(9,'Skip',1024);
Quasi = scramble(Quasi,'MatousekAffineOwen');
inputs = Quasi(1:24e4, :); % Initial 240000 samples

% Column number for each parameter in the inputs array.
iMoneyness = 1;iTime = 2;iRate = 3;iCorr = 4;iKappa = 5;iTheta = 6;iSigma = 7;iV0 = 8;iBarrier = 9;

inputs(:,iMoneyness) = inputs(:,iMoneyness)*(moneyness(2)-moneyness(1))+moneyness(1);   % Moneyness S0/K
inputs(:,iTime)      = inputs(:,iTime)*(maturity(2)-maturity(1))+maturity(1);           % Maturity time
inputs(:,iRate)      = inputs(:,iRate)*(rate(2)-rate(1))+rate(1);                       % rate
inputs(:,iCorr)      = inputs(:,iCorr)*(rho(2)-rho(1))+rho(1);                          % Correlation
inputs(:,iKappa)     = inputs(:,iKappa)*(kappa(2)-kappa(1))+kappa(1);                   % Mean reversion speed
inputs(:,iTheta)     = inputs(:,iTheta)*(theta(2)-theta(1))+theta(1);                   % Long-term variance
inputs(:,iSigma)     = inputs(:,iSigma)*(sigma(2)-sigma(1))+sigma(1);                   % Volatility of variance
inputs(:,iV0)        = inputs(:,iV0)*(v0(2)-v0(1))+v0(1);                               % Initial variance V0
inputs(:,iBarrier)   = inputs(:,iBarrier)*(upBarrier(2)-upBarrier(1))+upBarrier(1);     % UPbarrier/K

Remove the parameter combinations where the barrier levels are not greater than the initial spot
prices.
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% Barrier level should be higher than the initial spot price.
invalid = inputs(:,iBarrier)<=inputs(:,iMoneyness);
inputs(invalid,:) = [];

Calculate Barrier Option Prices Using Monte Carlo Simulation

After you create the parameter space, calculate the prices of the Barrier option by Monte Carlo
simulation using the object-based pricing framework in Financial Instrument Toolbox™. Specifically,
use ratecurve, Heston, Barrier, and AssetMonteCarlo to create the objects required to price
the Barrier option. To avoid waiting for the Monte Carlo simulation, load the calculated prices for
the example by setting the doMCPricing flag to false.

doMCPricing = false;

if doMCPricing
    % Calculate the prices using the AssetMonteCarlo pricer.
    Settle = datetime(2021,2,1);
    Price = nan(size(inputs,1),1);

    for i = 1:size(inputs,1)
        AssetPrice = inputs(i,iMoneyness);
        Strike = 1;
        Barrier = inputs(i,iBarrier);

        V0 = inputs(i,iV0);
        ThetaV = inputs(i,iTheta);
        Kappa = inputs(i,iKappa);
        SigmaV = inputs(i,iSigma);
        RhoSV = inputs(i,iCorr);

        Rates = inputs(i,iRate);
        ExerciseDate = daysadd(Settle,round(inputs(i,iTime)*365),0);
        ZeroCurve = ratecurve('zero',Settle,ExerciseDate,Rates);

        hestonModel = finmodel("Heston",V0=V0,ThetaV=ThetaV,Kappa=Kappa,SigmaV=SigmaV,RhoSV=RhoSV);

        MCPricer = finpricer("AssetMonteCarlo",DiscountCurve=ZeroCurve,Model=hestonModel,SpotPrice=AssetPrice,...
            SimulationDates=[Settle:days(2):ExerciseDate, ExerciseDate],numTrials=nTrials);

        CallBarrier = fininstrument("Barrier",ExerciseDate=ExerciseDate,Strike=Strike,OptionType=optSpec,...
            Barriertype=barriertype,Barriervalue=Barrier,ExerciseStyle=exerciseStyle);

        Price(i) = price(MCPricer,CallBarrier);

    end

else
    % Load the calculated prices for the example.
    load('DeepLearningBarrierHeston.mat','inputs','Price')
end

If you do not use the calculated prices for the example by setting the doMCPricing flag to false,
the following histogram shows the distribution of valuation times for each individual barrier option
using a Monte Carlo method. This histogram demonstrates that it takes approximately 0.46 seconds
to compute a single barrier option price. In this example, nTrials is set to 1e3 which is the number
of trials in the Monte Carlo simulation to compute a single option price. The total time to compute
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prices for the sample size of 30,000 barrier options is approximately 3.9 hours, depending on the
processor speed.

Define Neural Network

Different network architectures can help with the task of pricing barrier options using a Heston
model. Choosing a neural network architecture requires balancing computation time against
accuracy. This example uses multiple, fully-connected layers and Leaky ReLU activations.

numFeatures = size(inputs,2);
layers = [
    featureInputLayer(numFeatures,Normalization='zscore')    
    fullyConnectedLayer(32,WeightsInitializer='he')
    leakyReluLayer
    fullyConnectedLayer(32,WeightsInitializer='he')
    leakyReluLayer
    fullyConnectedLayer(32,WeightsInitializer='he')
    leakyReluLayer

3 Equity Derivatives

3-152



    fullyConnectedLayer(1,WeightsInitializer='he')
    leakyReluLayer
    regressionLayer];

Visualize Network

You can visualize the network using the Deep Network Designer (Deep Learning Toolbox) app or the
analyzeNetwork (Deep Learning Toolbox) function.

deepNetworkDesigner(layerGraph(layers))

Train Network

Train the neural network by using the analyzeNetwork (Deep Learning Toolbox) function. The
function creates a hold-out set to test the trained network and allocates a validation set to monitor
the overfitting during the training. By default, trainNetwork uses a GPU if one is available;
otherwise, it uses a CPU. Training on a GPU requires Parallel Computing Toolbox™ and a supported
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GPU device. For information on supported devices, see “GPU Support by Release” (Parallel
Computing Toolbox).

n = size(Price,1);
c = cvpartition(n,Holdout=1/5);     % Hold out 1/5 of the data set for testing
XTrain = inputs(training(c),:);     % 4/5 of the input for training
YTrain = Price(training(c),:);      % 4/5 of the target for training
XTest = inputs(test(c),:);          % 1/5 of the input for testing
YTest = Price(test(c),:);           % 1/5 of the target for testing

nTrain = size(XTrain,1);
idx = randperm(nTrain,floor(nTrain*0.1)); % 10% validation data
XValidation = XTrain(idx,:);
XTrain(idx,:) = [];
YValidation = YTrain(idx,:);
YTrain(idx,:) = [];

opts = trainingOptions('adam', ...
    MaxEpochs=30, ...
    Shuffle='every-epoch', ...
    Plots='none', ...
    Verbose=false, ...
    VerboseFrequency=50, ...
    MiniBatchSize=265, ...
    ValidationData={XValidation,YValidation}, ...
    ValidationFrequency=50, ...
    ValidationPatience=Inf, ...
    L2Regularization=1.9e-7, ...
    InitialLearnRate=8.8e-3, ...
    LearnRateSchedule='piecewise', ...
    LearnRateDropPeriod=4, ...
    LearnRateDropFactor=0.128, ...
    SquaredGradientDecayFactor=0.55, ...
    GradientDecayFactor=0.62);
%opts.ExecutionEnvironment = "gpu";  % When using GPU

doTraining = false;
if doTraining
    % Train the network.
    net = trainNetwork(XTrain,YTrain,layers,opts);
else
    % Load the pretrained network for the example.
    load('DeepLearningBarrierHeston.mat','net')
end

To avoid waiting for the training, load the pretrained network by setting the doTraining flag to
false. To train the networks using analyzeNetwork (Deep Learning Toolbox), set the doTraining
flag to true. The Training Progress window displays progress when Plots in trainingOptions
is set as training-progress.
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Test Network

After training the network model, you can use the predict (Deep Learning Toolbox) function to
evaluate the test data set containing 30,000 barrier options on this trained network. Compared to the
histogram in Calculate Barrier Option Prices Using MonteCarlo Simulation on page 3-0  where
Monte Carlo simulation takes 0.46 seconds to price each barrier option (3.9 hours to price 30,000
barrier options), after the network model is trained, a data set containing 30,000 barrier option is
evaluated in seconds.

% If training on a GPU, then convert data to a gpuArray.
if opts.ExecutionEnvironment == "gpu" && canUseGPU
    XTest = gpuArray(XTest);
end

YPred = predict(net,XTest);

To assess the performance of the network, calculate the mean-squared error (MSE) value.

mseTest = mean((YTest - YPred).^2)

mseTest = single
    2.9402e-06
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The following histogram shows the error distribution for the predicted barrier option price using
Deep Learning Toolbox™ with respect to the calculated barrier option price using Financial
Instrument Toolbox™.

figure
histogram(YTest - YPred, Binwidth=1e-4)
xlabel('Error Distribution')
ylabel('Counts')

A plot of the calculated prices and predicted prices shows the performance of the network for the
Heston model using the test data.

figure
plot(YTest,YPred,'.',[min(YTest),max(YTest)],[min(YTest),max(YTest)],'r')
xlabel('Scaled Actual Price')
ylabel('Scaled Predicted Price')
title('Predictions on Test Data')
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Related Examples
• “Hedging an Option Using Reinforcement Learning Toolbox” (Deep Learning Toolbox)
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Hedging Portfolios

• “Hedging” on page 4-2
• “Hedging Functions” on page 4-3
• “Pricing and Hedging a Portfolio Using the Black-Karasinski Model” on page 4-13
• “Specifying Constraints with ConSet” on page 4-24
• “Hedging with Constrained Portfolios” on page 4-28
• “Hedging Strategies Using Spread Options” on page 4-35
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Hedging
Hedging is an important consideration in modern finance. Whether or not to hedge, how much
portfolio insurance is adequate, and how often to rebalance a portfolio are important considerations
for traders, portfolio managers, and financial institutions alike.

If there were no transaction costs, financial professionals would prefer to rebalance portfolios
continually, thereby minimizing exposure to market movements. However, in practice, the transaction
costs associated with frequent portfolio rebalancing may be expensive. Therefore, traders and
portfolio managers must carefully assess the cost required to achieve a particular portfolio sensitivity
(for example, maintaining delta, gamma, and vega neutrality). Thus, the hedging problem involves the
fundamental tradeoff between portfolio insurance and the cost of such insurance coverage.

See Also
hedgeopt | hedgeslf

Related Examples
• “Portfolio Creation Using Functions” on page 1-6
• “Adding Instruments to an Existing Portfolio Using Functions” on page 1-8
• “Instrument Constructors” on page 1-15
• “Creating Instruments or Properties” on page 1-16
• “Searching or Subsetting a Portfolio” on page 1-17
• “Hedging Functions” on page 4-3
• “Hedging with hedgeopt” on page 4-4
• “Self-Financing Hedges with hedgeslf” on page 4-9
• “Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-10
• “Pricing and Hedging a Portfolio Using the Black-Karasinski Model” on page 4-13
• “Specifying Constraints with ConSet” on page 4-24
• “Portfolio Rebalancing” on page 4-26
• “Hedging with Constrained Portfolios” on page 4-28

More About
• “Instrument Constructors” on page 1-15
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Hedging Functions

In this section...
“Introduction” on page 4-3
“Hedging with hedgeopt” on page 4-4
“Self-Financing Hedges with hedgeslf” on page 4-9

Introduction
Hedging is an investment to reduce the risk of adverse price movements in an asset. Financial
Instruments Toolbox offers two functions for assessing the fundamental hedging tradeoff, hedgeopt
and hedgeslf.

The first function, hedgeopt, addresses the most general hedging problem. It allocates an optimal
hedge to satisfy either of two goals:

• Minimize the cost of hedging a portfolio given a set of target sensitivities.
• Minimize portfolio sensitivities for a given set of maximum target costs.

hedgeopt allows investors to modify portfolio allocations among instruments according to either of
the goals. The problem is cast as a constrained linear least-squares problem. For additional
information about hedgeopt, see “Hedging with hedgeopt” on page 4-4.

The second function, hedgeslf, attempts to allocate a self-financing hedge among a portfolio of
instruments. In particular, hedgeslf attempts to maintain a constant portfolio value consistent with
reduced portfolio sensitivities (that is, the rebalanced portfolio is hedged against market moves and is
closest to being self-financing). If hedgeslf cannot find a self-financing hedge, it rebalances the
portfolio to minimize overall portfolio sensitivities. For additional information on hedgeslf, see “Self-
Financing Hedges with hedgeslf” on page 4-9.

The examples in this section consider the delta, gamma, and vega sensitivity measures. In this
toolbox, when you work with interest-rate derivatives, delta is the price sensitivity measure of shifts
in the forward yield curve, gamma is the delta sensitivity measure of shifts in the forward yield curve,
and vega is the price sensitivity measure of shifts in the volatility process. See bdtsens or hjmsens
for details on the computation of sensitivities for interest-rate derivatives.

For equity exotic options, the underlying instrument is the stock price instead of the forward yield
curve. So, delta now represents the price sensitivity measure of shifts in the stock price, gamma is
the delta sensitivity measure of shifts in the stock price, and vega is the price sensitivity measure of
shifts in the volatility of the stock. See crrsens, eqpsens, ittsens, or sttsens for details on the
computation of sensitivities for equity derivatives.

For examples showing the computation of sensitivities for interest-rate based derivatives, see
“Computing Instrument Sensitivities” on page 2-63. Likewise, for examples showing the computation
of sensitivities for equity exotic options, see “Computing Equity Instrument Sensitivities” on page 3-
75.

Note The delta, gamma, and vega sensitivities that the toolbox calculates are dollar sensitivities.
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Hedging with hedgeopt

Note The numerical results in this section are displayed in the MATLAB bank format. Although the
calculations are performed in floating-point double precision, only two decimal places are displayed.

To illustrate the hedging facility, consider the portfolio HJMInstSet obtained from the example file
deriv.mat. The portfolio consists of eight instruments: two bonds, one bond option, one fixed-rate
note, one floating-rate note, one cap, one floor, and one swap.

Both hedging functions require some common inputs, including the current portfolio holdings
(allocations), and a matrix of instrument sensitivities. To create these inputs, load the example
portfolio into memory

load deriv.mat;

compute price and sensitivities
[Delta, Gamma, Vega, Price] = hjmsens(HJMTree, HJMInstSet);

Warning: Not all cash flows are aligned with the tree. Result will
be approximated.

and extract the current portfolio holdings.

Holdings = instget(HJMInstSet, 'FieldName', 'Quantity');

For convenience place the delta, gamma, and vega sensitivity measures into a matrix of sensitivities.

Sensitivities = [Delta Gamma Vega];

Each row of the Sensitivities matrix is associated with a different instrument in the portfolio, and
each column with a different sensitivity measure.

To summarize the portfolio information

disp([Price  Holdings  Sensitivities])

 98.72       100.00       -272.65       1029.90       0.00
 97.53        50.00       -347.43       1622.69      -0.04
  0.05       -50.00         -8.08        643.40      34.07
 98.72        80.00       -272.65       1029.90       0.00
100.55         8.00         -1.04          3.31          0
  6.28        30.00        294.97       6852.56      93.69
  0.05        40.00        -47.16       8459.99      93.69
  3.69        10.00       -282.05       1059.68       0.00

The first column above is the dollar unit price of each instrument, the second is the holdings of each
instrument (the quantity held or the number of contracts), and the third, fourth, and fifth columns are
the dollar delta, gamma, and vega sensitivities, respectively.

The current portfolio sensitivities are a weighted average of the instruments in the portfolio.

TargetSens  = Holdings' * Sensitivities

TargetSens =

     -61910.22     788946.21       4852.91
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Maintaining Existing Allocations

To illustrate using hedgeopt, suppose that you want to maintain your existing portfolio. The first
form of hedgeopt minimizes the cost of hedging a portfolio given a set of target sensitivities. If you
want to maintain your existing portfolio composition and exposure, you should be able to do so
without spending any money. To verify this, set the target sensitivities to the current sensitivities.

FixedInd = [1 2 3 4 5 6 7 8];
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,Holdings, FixedInd, [], [], TargetSens)

Holdings =

        100.00
         50.00
        -50.00
         80.00
          8.00
         30.00
         40.00
         10.00

Sens =

     -61910.22     788946.21       4852.91

Cost =

             0

Quantity =

  Columns 1 through 6

        100.00         50.00        -50.00         80.00          8.00         30.00

  Columns 7 through 8

         40.00         10.00

Portfolio composition and sensitivities are unchanged, and the cost associated with doing nothing is
zero. The cost is defined as the change in portfolio value. This number cannot be less than zero
because the rebalancing cost is defined as a nonnegative number.

If Value0 and Value1 represent the portfolio value before and after rebalancing, respectively, the
zero cost can also be verified by comparing the portfolio values.

Value0 = Holdings' * Price

Value0 =

     23674.62

Value1 = Quantity * Price

 Hedging Functions
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Value1 =

     23674.62

Partially Hedged Portfolio

Building on the example in “Maintaining Existing Allocations” on page 4-5, suppose you want to know
the cost to achieve an overall portfolio dollar sensitivity of [-23000 -3300 3000], while allowing
trading only in instruments 2, 3, and 6 (holding the positions of instruments 1, 4, 5, 7, and 8 fixed). To
find the cost, first set the target portfolio dollar sensitivity.

TargetSens = [-23000 -3300 3000];

Then, specify the instruments to be fixed.

FixedInd = [1 4 5 7 8];

Finally, call hedgeopt

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,... 
Holdings, FixedInd, [], [], TargetSens);

and again examine the results.

Sens =

     -23000.00      -3300.00       3000.00

Cost =

      19174.02

Quantity' =

        100.00
       -141.03
        137.26
         80.00
          8.00
        -57.96
         40.00
         10.00

Recompute Value1, the portfolio value after rebalancing.

Value1 = Quantity * Price

Value1 =

      4500.60

As expected, the cost, $19174.02, is the difference between Value0 and Value1, $23674.62 —
$4500.60. Only the positions in instruments 2, 3, and 6 have been changed.

Fully Hedged Portfolio

The example in “Partially Hedged Portfolio” on page 4-6 illustrates a partial hedge, but perhaps the
most interesting case involves the cost associated with a fully hedged portfolio (simultaneous delta,
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gamma, and vega neutrality). In this case, set the target sensitivity to a row vector of 0s and call
hedgeopt again. The following example uses data from “Hedging with hedgeopt” on page 4-4.

TargetSens = [0 0 0];
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price, ... 
Holdings, FixedInd, [], [], TargetSens);

Examining the outputs reveals that you have obtained a fully hedged portfolio

Sens =

         -0.00          -0.00          -0.00

but at an expense of over $20,000.

Cost =

      23055.90

The positions required to achieve a fully hedged portfolio

Quantity' =

        100.00
       -182.36
        -19.55
         80.00
          8.00
        -32.97
         40.00
         10.00

result in the new portfolio value

Value1 = Quantity * Price

Value1 =

      618.72

Minimizing Portfolio Sensitivities

The examples in “Fully Hedged Portfolio” on page 4-6 illustrate how to use hedgeopt to determine
the minimum cost of hedging a portfolio given a set of target sensitivities. In these examples,
portfolio target sensitivities are treated as equality constraints during the optimization process. You
tell hedgeopt what sensitivities you want, and it tells you what it will cost to get those sensitivities.

A related problem involves minimizing portfolio sensitivities for a given set of maximum target costs.
For this goal, the target costs are treated as inequality constraints during the optimization process.
You tell hedgeopt the most you are willing spend to insulate your portfolio, and it tells you the
smallest portfolio sensitivities you can get for your money.

To illustrate this use of hedgeopt, compute the portfolio dollar sensitivities along the entire cost
frontier. From the previous examples, you know that spending nothing replicates the existing
portfolio, while spending $23,055.90 completely hedges the portfolio.
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Assume, for example, you are willing to spend as much as $50,000, and want to see what portfolio
sensitivities will result along the cost frontier. Assume that the same instruments are held fixed, and
that the cost frontier is evaluated from $0 to $50,000 at increments of $1000.

MaxCost = [0:1000:50000];

Now, call hedgeopt.

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price, ... 
Holdings, FixedInd, [], MaxCost);

With this data, you can plot the required hedging cost versus the funds available (the amount you are
willing to spend)

plot(MaxCost/1000, Cost/1000, 'red'), grid
xlabel('Funds Available for Rebalancing ($1000''s)')
ylabel('Actual Rebalancing Cost ($1000''s)')
title ('Rebalancing Cost Profile')

Rebalancing Cost Profile

and the portfolio dollar sensitivities versus the funds available.

figure
plot(MaxCost/1000, Sens(:,1), '-red')
hold('on')
plot(MaxCost/1000, Sens(:,2), '-.black')
plot(MaxCost/1000, Sens(:,3), '--blue')
grid
xlabel('Funds Available for Rebalancing ($1000''s)')
ylabel('Delta, Gamma, and Vega Portfolio Dollar Sensitivities')
title ('Portfolio Sensitivities Profile')
legend('Delta', 'Gamma', 'Vega', 0)
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Funds Available for Rebalancing

Self-Financing Hedges with hedgeslf
The figures “Rebalancing Cost Profile” on page 4-8 and “Funds Available for Rebalancing” on page 4-
9 indicate that there is no benefit because the funds available for hedging exceed $23,055.90, the
point of maximum expense required to obtain simultaneous delta, gamma, and vega neutrality. You
can also find this point of delta, gamma, and vega neutrality using hedgeslf.

[Sens, Value1, Quantity] = hedgeslf(Sensitivities, Price,... 
Holdings, FixedInd);

Sens =

         -0.00
         -0.00
         -0.00

Value1 =

      618.72

Quantity =

        100.00
       -182.36
        -19.55
         80.00
          8.00
        -32.97
         40.00
         10.00
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Similar to hedgeopt, hedgeslf returns the portfolio dollar sensitivities and instrument quantities
(the rebalanced holdings). However, in contrast, the second output parameter of hedgeslf is the
value of the rebalanced portfolio, from which you can calculate the rebalancing cost by subtraction.

Value0 - Value1

ans =

      23055.90

In this example, the portfolio is clearly not self-financing, so hedgeslf finds the best possible
solution required to obtain zero sensitivities.

There is, in fact, a third calling syntax available for hedgeopt directly related to the results shown
above for hedgeslf. Suppose, instead of directly specifying the funds available for rebalancing (the
most money you are willing to spend), you want to simply specify the number of points along the cost
frontier. This call to hedgeopt samples the cost frontier at 10 equally spaced points between the
point of minimum cost (and potentially maximum exposure) and the point of minimum exposure (and
maximum cost).

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,... 
Holdings, FixedInd, 10)

Sens =
     -32784.46       2231.83     -49694.33
     -29141.74       1983.85     -44172.74
     -25499.02       1735.87     -38651.14
     -21856.30       1487.89     -33129.55
     -18213.59       1239.91     -27607.96
     -14570.87        991.93     -22086.37
     -10928.15        743.94     -16564.78
      -7285.43        495.96     -11043.18
      -3642.72        247.98      -5521.59
          0.00         -0.00          0.00

Cost =
          0.00
       2561.77
       5123.53
       7685.30
      10247.07
      12808.83
      15370.60
      17932.37
      20494.14
      23055.90

Now plot this data.

figure
plot(Cost/1000, Sens(:,1), '-red')
hold('on')
plot(Cost/1000, Sens(:,2), '-.black')
plot(Cost/1000, Sens(:,3), '--blue')
grid
xlabel('Rebalancing Cost ($1000''s)')
ylabel('Delta, Gamma, and Vega Portfolio Dollar Sensitivities')
title ('Portfolio Sensitivities Profile')
legend('Delta', 'Gamma', 'Vega', 0)
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Rebalancing Cost

In this calling form, hedgeopt calls hedgeslf internally to determine the maximum cost needed to
minimize the portfolio sensitivities ($23,055.90), and evenly samples the cost frontier between $0 and
$23,055.90.

Both hedgeopt and hedgeslf cast the optimization problem as a constrained linear least squares
problem. Depending on the instruments and constraints, neither function is guaranteed to converge
to a solution. In some cases, the problem space may be unbounded, and additional instrument
equality constraints, or user-specified constraints, may be necessary for convergence. See “Hedging
with Constrained Portfolios” on page 4-28 for additional information.

See Also
hedgeopt | hedgeslf

Related Examples
• “Portfolio Creation Using Functions” on page 1-6
• “Adding Instruments to an Existing Portfolio Using Functions” on page 1-8
• “Instrument Constructors” on page 1-15
• “Creating Instruments or Properties” on page 1-16
• “Searching or Subsetting a Portfolio” on page 1-17
• “Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-10
• “Pricing and Hedging a Portfolio Using the Black-Karasinski Model” on page 4-13
• “Specifying Constraints with ConSet” on page 4-24
• “Portfolio Rebalancing” on page 4-26
• “Hedging with Constrained Portfolios” on page 4-28
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More About
• “Instrument Constructors” on page 1-15
• “Hedging” on page 4-2
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Pricing and Hedging a Portfolio Using the Black-Karasinski
Model

This example illustrates how MATLAB® can be used to create a portfolio of interest-rate derivatives
securities, and price it using the Black-Karasinski interest-rate model. The example also shows some
hedging strategies to minimize exposure to market movements.

Create the Interest-Rate Term Structure Based on Reported Data

The structure RateSpec is an interest-rate term structure that defines the initial rate specification
from which the tree rates are derived. Use the information of annualized zero coupon rates in the
table below to populate the RateSpec structure.

  From             To           Rate
27 Feb 2007    27 Feb 2008      0.0493
27 Feb 2007    27 Feb 2009      0.0459
27 Feb 2007    27 Feb 2010      0.0450
27 Feb 2007    27 Feb 2012      0.0446
27 Feb 2007    27 Feb 2014      0.0445
27 Feb 2007    27 Feb 2017      0.0450
27 Feb 2007    27 Feb 2027      0.0473

This data could be retrieved from the Federal Reserve Statistical Release page by using the Datafeed
Toolbox™. In this case, the Datafeed Toolbox™ will connect to FRED® and pull back the rates of the
following treasury notes.

  Terms    Symbol
 =======   ======
    1   =  DGS1
    2   =  DGS2
    3   =  DGS3
    5   =  DGS5
    7   =  DGS7
    10  =  DGS10
    20  =  DGS20

Create the connection object:

  c = fred;

Create the symbol fetch list:

FredNames   = { ...    
  'DGS1'; ...      % 1  Year
  'DGS2'; ...      % 2  Year
  'DGS3'; ...      % 3  Year
  'DGS5'; ...      % 5  Year
  'DGS7'; ...      % 7  Year
  'DGS10'; ...     % 10 Year
  'DGS20'};        % 20 Year

Define the Terms:

Terms = [ 1; ...      % 1  Year
          2; ...      % 2  Year
          3; ...      % 3  Year

 Pricing and Hedging a Portfolio Using the Black-Karasinski Model
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          5; ...      % 5  Year
          7; ...      % 7  Year
         10; ...      % 10 Year
         20];         % 20 Year

Set the StartDate to Feb 27, 2007:

  StartDate = datenum('Feb-27-2007');

  FredRet = fetch(c,FredNames,StartDate); 

Set the ValuationDate based on the StartDate:

  ValuationDate = StartDate;

  EndDates = [];

  Rates =[];

Create the EndDates:

  for idx = 1:length(FredRet)    

   %Pull the rates associated with Feb 27, 2007. All the Fred Rates come
   %back as percents
   Rates = [Rates; ...
       FredRet(idx).Data(1,2) / 100];

    %Determine the EndDates by adding the Term to the year of the
    %StartDate      
    EndDates = [EndDates; ...
       round(datenum(...
           year(StartDate)+ Terms(idx,1), ...
           month(StartDate),...
           day(StartDate)))];

  end

Use the function intenvset to create the RateSpec with the following data:

Compounding = 1;
StartDate = '27-Feb-2007';
Rates = [0.0493; 0.0459; 0.0450; 0.0446; 0.0446; 0.0450; 0.0473];
EndDates = {'27-Feb-2008'; '27-Feb-2009';'27-Feb-2010'; '27-Feb-2012';...   
            '27-Feb-2014' ; '27-Feb-2017'; '27-Feb-2027'};  
ValuationDate = StartDate;

RateSpec = intenvset('Compounding',Compounding,'StartDates', StartDate,...
                     'EndDates', EndDates, 'Rates', Rates,'ValuationDate', ValuationDate)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [7x1 double]
            Rates: [7x1 double]
         EndTimes: [7x1 double]
       StartTimes: [7x1 double]
         EndDates: [7x1 double]
       StartDates: 733100
    ValuationDate: 733100
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            Basis: 0
     EndMonthRule: 1

Specify the Volatility Model

Create the structure VolSpec that specifies the volatility process with the following data.

Volatility = [0.011892; 0.01563; 0.02021; 0.02125; 0.02165; 0.02065; 0.01803];
Alpha = [0.0001];
VolSpec = bkvolspec(ValuationDate, EndDates, Volatility, EndDates(end), Alpha)

VolSpec = struct with fields:
             FinObj: 'BKVolSpec'
      ValuationDate: 733100
           VolDates: [7x1 double]
           VolCurve: [7x1 double]
         AlphaCurve: 1.0000e-04
         AlphaDates: 740405
    VolInterpMethod: 'linear'

Specify the Time Structure of the Tree

The structure TimeSpec specifies the time structure for an interest-rate tree. This structure defines
the mapping between the observation times at each level of the tree and the corresponding dates.

TimeSpec = bktimespec(ValuationDate, EndDates)

TimeSpec = struct with fields:
           FinObj: 'BKTimeSpec'
    ValuationDate: 733100
         Maturity: [7x1 double]
      Compounding: -1
            Basis: 0
     EndMonthRule: 1

Create the BK Tree

Use the previously computed values for RateSpec, VolSpec, and TimeSpec to create the BK tree.

BKTree = bktree(VolSpec, RateSpec, TimeSpec)

BKTree = struct with fields:
      FinObj: 'BKFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3 5 7 10]
        dObs: [733100 733465 733831 734196 734926 735657 736753]
      CFlowT: {1x7 cell}
       Probs: {1x6 cell}
     Connect: {[2]  [2 3 4]  [2 3 4 5 6]  [2 3 3 4 5 5 6]  [2 3 4 5 6 7 8]  [2 2 ... ]}
     FwdTree: {1x7 cell}
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Visualize the interest rate evolution along the tree by looking at the output structure BKTree. The
function bktree returns an inverse discount tree, which you can convert into an interest rate tree
with the cvtree function.

BKTreeR = cvtree(BKTree)

BKTreeR = struct with fields:
      FinObj: 'BKRateTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3 5 7 10]
        dObs: [733100 733465 733831 734196 734926 735657 736753]
      CFlowT: {1x7 cell}
       Probs: {1x6 cell}
     Connect: {[2]  [2 3 4]  [2 3 4 5 6]  [2 3 3 4 5 5 6]  [2 3 4 5 6 7 8]  [2 2 ... ]}
    RateTree: {1x7 cell}

Look at the upper, middle and lower branch paths of the tree.

OldFormat = get(0, 'format');  
format short

%Rate at root node:
RateRoot      = trintreepath(BKTreeR, 0) 

RateRoot = 0.0481

%Rates along upper branch:
RatePathUp    = trintreepath(BKTreeR, [1 1 1 1 1 1]) 

RatePathUp = 7×1

    0.0481
    0.0425
    0.0446
    0.0478
    0.0510
    0.0555
    0.0620

%Rates along middle branch:
RatePathMiddle = trintreepath(BKTreeR, [2 2 2 2 2 2]) 

RatePathMiddle = 7×1

    0.0481
    0.0416
    0.0423
    0.0430
    0.0436
    0.0449
    0.0484
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%Rates along lower branch:
RatePathDown = trintreepath(BKTreeR, [3 3 3 3 3 3])

RatePathDown = 7×1

    0.0481
    0.0408
    0.0401
    0.0388
    0.0373
    0.0363
    0.0378

You can also display a graphical representation of the tree to examine interactively the rates on the
nodes of the tree until maturity. The function treeviewer displays the structure of the rate tree in
the left window. The tree visualization in the right window is blank, but by selecting Table/Diagram
and clicking on the nodes you can examine the rates along the paths.

treeviewer(BKTreeR);

Create an Instrument Portfolio

Create a portfolio consisting of two bonds instruments and an option on the 5% bond.

% Two Bonds
CouponRate = [0.04;0.05]; 
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Settle = '27 Feb 2007'; 
Maturity = {'27 Feb 2009';'27 Feb 2010'};
Period = 1;

% American Option on the 5% Bond
OptSpec = {'call'};
Strike = 98;
ExerciseDates = '27 Feb 2010';
AmericanOpt = 1;

InstSet = instadd('Bond', CouponRate, Settle,  Maturity, Period);
InstSet = instadd(InstSet,'OptBond', 2, OptSpec, Strike, ExerciseDates, AmericanOpt);

% Assign Names and Holdings
Holdings = [10; 15;3];
Names = {'4% Bond'; '5% Bond'; 'Option 98'};

InstSet = instsetfield(InstSet, 'Index',1:3, 'FieldName', {'Quantity'}, 'Data', Holdings );
InstSet = instsetfield(InstSet, 'Index',1:3, 'FieldName', {'Name'}, 'Data', Names );

Examine the set of instruments contained in the variable InstSet.

instdisp(InstSet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face Quantity Name     
1     Bond 0.04       27-Feb-2007    27-Feb-2009    1      0     1            NaN       NaN             NaN            NaN       100  10       4% Bond  
2     Bond 0.05       27-Feb-2007    27-Feb-2010    1      0     1            NaN       NaN             NaN            NaN       100  15       5% Bond  
 
Index Type    UnderInd OptSpec Strike ExerciseDates  AmericanOpt Quantity Name     
3     OptBond 2        call    98     27-Feb-2010    1           3        Option 98
 

Price the Portfolio Using the BK Model

Calculate the price of each instrument in the portfolio.

[Price, PTree] = bkprice(BKTree, InstSet)

Price = 3×1

   98.8841
  101.3470
    3.3470

PTree = struct with fields:
     FinObj: 'BKPriceTree'
      PTree: {1x8 cell}
     AITree: {1x8 cell}
     ExTree: {1x8 cell}
       tObs: [0 1 2 3 5 7 10 20]
    Connect: {[2]  [2 3 4]  [2 3 4 5 6]  [2 3 3 4 5 5 6]  [2 3 4 5 6 7 8]  [2 2 3 ... ]}
      Probs: {1x6 cell}

The prices in the output vector Price correspond to the prices at observation time zero (tObs = 0),
which is defined as the Valuation Date of the interest-rate tree.
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In the Price vector, the first element, 98.884, represents the price of the first instrument (4% Bond);
the second element, 101.347, represents the price of the second instrument (5% Bond), and 3.347
represents the price of the American call option.

You can also display a graphical representation of the price tree to examine the prices on the nodes of
the tree until maturity.

treeviewer(PTree,InstSet);

Add More Instruments to the Existing Portfolio

Add instruments to the existing portfolio: cap, floor, floating rate note, vanilla swap and a puttable
and callable bond.

% Cap
StrikeC =0.035;
InstSet = instadd(InstSet,'Cap', StrikeC, Settle, '27 Feb 2010');

% Floor
StrikeF =0.05;
InstSet = instadd(InstSet,'Floor', StrikeF, Settle, '27 Feb 2009');

% Floating Rate Note
InstSet = instadd(InstSet,'Float', 30, Settle, '27 Feb 2009');

% Vanilla Swap
 LegRate =[0.04 5];
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 InstSet = instadd(InstSet,'Swap', LegRate, Settle, '27 Feb 2010');

% Puttable and Callable Bonds
InstSet = instadd(InstSet,'OptEmBond', CouponRate, Settle, '27 Feb 2010', {'put';'call'},...
                  Strike, '27 Feb 2010','AmericanOpt', 1, 'Period', 1);

% Process Names and Holdings
Holdings = [15 ;5 ;8; 7; 9; 4];
Names = {'3.5% Cap';'5% Floor';'30BP Float';'4%/5BP Swap'; 'PuttBond'; 'CallBond' };

InstSet = instsetfield(InstSet, 'Index',4:9, 'FieldName', {'Quantity'}, 'Data', Holdings );
InstSet = instsetfield(InstSet, 'Index',4:9, 'FieldName', {'Name'}, 'Data', Names );

Examine the set of instruments contained in the variable InstSet.

instdisp(InstSet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face Quantity Name     
1     Bond 0.04       27-Feb-2007    27-Feb-2009    1      0     1            NaN       NaN             NaN            NaN       100  10       4% Bond  
2     Bond 0.05       27-Feb-2007    27-Feb-2010    1      0     1            NaN       NaN             NaN            NaN       100  15       5% Bond  
 
Index Type    UnderInd OptSpec Strike ExerciseDates  AmericanOpt Quantity Name     
3     OptBond 2        call    98     27-Feb-2010    1           3        Option 98
 
Index Type Strike Settle         Maturity       CapReset Basis Principal Quantity Name       
4     Cap  0.035  27-Feb-2007    27-Feb-2010    1        0     100       15       3.5% Cap   
 
Index Type  Strike Settle         Maturity       FloorReset Basis Principal Quantity Name       
5     Floor 0.05   27-Feb-2007    27-Feb-2009    1          0     100       5        5% Floor   
 
Index Type  Spread Settle         Maturity       FloatReset Basis Principal EndMonthRule CapRate FloorRate Quantity Name       
6     Float 30     27-Feb-2007    27-Feb-2009    1          0     100       1            Inf     -Inf      8        30BP Float 
 
Index Type LegRate   Settle         Maturity       LegReset Basis Principal LegType EndMonthRule StartDate Quantity Name       
7     Swap [0.04  5] 27-Feb-2007    27-Feb-2010    [NaN]    0     100       [NaN]   1            NaN       7        4%/5BP Swap
 
Index Type      CouponRate Settle         Maturity       OptSpec Strike ExerciseDates                Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face AmericanOpt Quantity Name       
8     OptEmBond 0.04       27-Feb-2007    27-Feb-2010    put     98     27-Feb-2007   27-Feb-2010    1      0     1            NaN       NaN             NaN            NaN       100  1           9        PuttBond   
9     OptEmBond 0.05       27-Feb-2007    27-Feb-2010    call    98     27-Feb-2007   27-Feb-2010    1      0     1            NaN       NaN             NaN            NaN       100  1           4        CallBond   
 

Hedging

The idea behind hedging is to minimize exposure to market movements. As the underlying changes,
the proportions of the instruments forming the portfolio may need to be adjusted to keep the
sensitivities within the desired range.

Calculate sensitivities using the BK model.

[Delta, Gamma, Vega, Price] = bksens(BKTree, InstSet);

Get the current portfolio holdings.

Holdings = instget(InstSet, 'FieldName', 'Quantity');

Create a matrix of sensitivities.

Sensitivities = [Delta Gamma Vega];
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Each row of the Sensitivities matrix is associated with a different instrument in the portfolio, and
each column with a different sensitivity measure.

format bank
disp([Price  Holdings  Sensitivities])

         98.88         10.00       -185.47        528.47             0
        101.35         15.00       -277.51       1045.05             0
          3.35          3.00       -223.52      11843.32             0
          2.77         15.00        250.04       2921.11         -0.00
          0.75          5.00       -132.97      11566.69             0
        100.56          8.00         -0.80          2.02             0
         -1.53          7.00       -272.08       1027.85          0.00
         98.60          9.00       -168.92      21712.82             0
         98.00          4.00        -53.99     -10798.27             0

The first column above is the dollar unit price of each instrument, the second column is the number of
contracts of each instrument, and the third, fourth, and fifth columns are the dollar delta, gamma,
and vega sensitivities.

The current portfolio sensitivities are a weighted average of the instruments in the portfolio.

TargetSens  = Holdings' * Sensitivities

TargetSens = 1×3

      -7249.21     317573.92         -0.00

Obtain a Neutral Sensitivity Portfolio Using hedgeslf

Suppose you want to obtain a delta, gamma and vega neutral portfolio. The function hedgeslf finds
the reallocation in a portfolio of financial instruments closest to being self-financing (maintaining
constant portfolio value).

[Sens, Value1, Quantity]= hedgeslf(Sensitivities, Price,Holdings)

Sens = 3×1

         -0.00
         -0.00
         -0.00

Value1 = 
       4637.54

Quantity = 9×1

         10.00
          5.26
         -5.11
          7.06
         -3.05
         12.45
         -7.36
          8.47
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         10.37

The function hedgeslf returns the portfolio dollar sensitivities (Sens), the value of the rebalanced
portfolio (Value1) and the new allocation for each instrument (Quantity). If Value0 and Value1
represent the portfolio value before and after rebalancing, you can verify the cost by comparing the
portfolio values.

Value0 = Holdings' * Price

Value0 = 
       4637.54

In this example, the portfolio is fully hedged (simultaneous delta, gamma, and vega neutrality) and
self-financing (the values of the portfolio before and after balancing (Value0 and Value1) are the
same.

Adding Constraints to Hedge a Portfolio

Suppose that you want to place upper and lower bounds on the individual instruments in the
portfolio. Let's say that you want to bound the position of all instruments to within +/- 11 contracts.

Applying these constraints disallows the current positions in the fifth and eighth instruments. All
other instruments are currently within the upper/lower bounds.

% Specify the lower and upper bounds
LowerBounds = [-11  -11  -11  -11  -11  -11  -11  -11  -11];
UpperBounds = [ 11   11   11   11   11   11   11   11   11];

% Use the function portcons to build the constraints
ConSet = portcons('AssetLims', LowerBounds, UpperBounds);

% Apply the constraints to the portfolio
[Sens, Value, Quantity1] = hedgeslf(Sensitivities, Price, Holdings, [], ConSet)

Sens = 3×1

             0
             0
             0

Value = 
             0

Quantity1 = 9×1

             0
             0
             0
             0
             0
             0
             0
             0
             0
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Observe that the hedgeslf function enforces the bounds on the fifth and eighth instruments, and the
portfolio continues to be fully hedged and self-financing.

set(0, 'format', OldFormat);

See Also
hedgeopt | hedgeslf

Related Examples
• “Portfolio Creation Using Functions” on page 1-6
• “Adding Instruments to an Existing Portfolio Using Functions” on page 1-8
• “Instrument Constructors” on page 1-15
• “Creating Instruments or Properties” on page 1-16
• “Searching or Subsetting a Portfolio” on page 1-17
• “Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-10
• “Specifying Constraints with ConSet” on page 4-24
• “Portfolio Rebalancing” on page 4-26
• “Hedging with Constrained Portfolios” on page 4-28

More About
• “Instrument Constructors” on page 1-15
• “Hedging” on page 4-2
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Specifying Constraints with ConSet
In this section...
“Introduction” on page 4-24
“Setting Constraints” on page 4-24
“Portfolio Rebalancing” on page 4-26

Introduction
Both hedgeopt and hedgeslf accept an optional input argument, ConSet, that allows you to specify
a set of linear inequality constraints for instruments in your portfolio. The examples in this section
are brief. For additional information regarding portfolio constraint specifications, refer to “Analyzing
Portfolios”.

Setting Constraints
For the first example of setting constraints, return to the fully hedged portfolio example that used
hedgeopt to determine the minimum cost of obtaining simultaneous delta, gamma, and vega
neutrality (target sensitivities all 0). Recall that when hedgeopt computes the cost of rebalancing a
portfolio, the input target sensitivities you specify are treated as equality constraints during the
optimization process. The situation is reproduced next for convenience.

TargetSens = [0 0 0];
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,... 
Holdings, FixedInd, [], [], TargetSens);

The outputs provide a fully hedged portfolio

Sens =
         -0.00          -0.00          -0.00

at an expense of over $23,000.

Cost =
      23055.90

The positions required to achieve this fully hedged portfolio are

Quantity' =

        100.00
       -182.36
        -19.55
         80.00
          8.00
        -32.97
         40.00
         10.00

Suppose now that you want to place some upper and lower bounds on the individual instruments in
your portfolio. You can specify these constraints, along with a variety of general linear inequality
constraints, with function portcons.
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As an example, assume that, in addition to holding instruments 1, 4, 5, 7, and 8 fixed as before, you
want to bound the position of all instruments to within +/- 180 contracts (for each instrument, you
cannot short or long more than 180 contracts). Applying these constraints disallows the current
position in the second instrument (short 182.36). All other instruments are currently within the
upper/lower bounds.

You can generate these constraints by first specifying the lower and upper bounds vectors and then
calling portcons.

LowerBounds = [-180 -180 -180 -180 -180 -180 -180 -180];
UpperBounds = [ 180  180   180 180  180  180  180  180];
ConSet = portcons('AssetLims', LowerBounds, UpperBounds);

To impose these constraints, call hedgeopt with ConSet as the last input.

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,... 
Holdings, FixedInd, [], [], TargetSens, ConSet);

Examine the outputs and see that they are all set to NaN, indicating that the problem, given the
constraints, is not solvable. Intuitively, the results mean that you cannot obtain simultaneous delta,
gamma, and vega neutrality with these constraints at any price.

To see how close you can get to portfolio neutrality with these constraints, call hedgeslf.

[Sens, Value1, Quantity] = hedgeslf(Sensitivities, Price,... 
Holdings, FixedInd, ConSet);

Sens =

       -352.43
         21.99
       -498.77

Value1 =

      855.10

Quantity =

        100.00
       -180.00
        -37.22
         80.00
          8.00
        -31.86
         40.00
         10.00

hedgeslf enforces the lower bound for the second instrument, but the sensitivity is far from neutral.
The cost to obtain this portfolio is

Value0 - Value1

ans =

      22819.52
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Portfolio Rebalancing
As a final example of user-specified constraints, rebalance the portfolio using the second hedging goal
of hedgeopt. Assume that you are willing to spend as much as $20,000 to rebalance your portfolio,
and you want to know what minimum portfolio sensitivities you can get for your money. In this form,
recall that the target cost ($20,000) is treated as an inequality constraint during the optimization
process.

For reference, start up hedgeopt without any user-specified linear inequality constraints.

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,... 
Holdings, FixedInd, [], 20000);

Sens =

      -4345.36        295.81      -6586.64
Cost =

      20000.00

Quantity' =

        100.00
       -151.86
       -253.47
         80.00
          8.00
        -18.18 
         40.00
         10.00

This result corresponds to the $20,000 point along the Portfolio Sensitivities Profile shown in the
figure “Rebalancing Cost” on page 4-11.

Assume that, in addition to holding instruments 1, 4, 5, 7, and 8 fixed as before, you want to bound
the position of all instruments to within +/- 150 contracts (for each instrument, you cannot short
more than 150 contracts and you cannot long more than 150 contracts). These bounds disallow the
current position in the second and third instruments (-151.86 and -253.47). All other instruments are
currently within the upper/lower bounds.

As before, you can generate these constraints by first specifying the lower and upper bounds vectors
and then calling portcons.

LowerBounds = [-150 -150 -150 -150 -150 -150 -150 -150];
UpperBounds = [ 150  150  150  150  150  150  150  150];
ConSet = portcons('AssetLims', LowerBounds, UpperBounds);

To impose these constraints, again call hedgeopt with ConSet as the last input.

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,... 
Holdings,FixedInd, [], 20000, [], ConSet);

Sens =

      -8818.47        434.43      -4010.79

Cost =
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      19876.89

Quantity' =

        100.00
       -150.00
       -150.00
         80.00
          8.00
        -28.32
         40.00
         10.00

With these constraints, hedgeopt enforces the lower bound for the second and third instruments.
The cost incurred is $19,876.89.

See Also
hedgeopt | hedgeslf

Related Examples
• “Portfolio Creation Using Functions” on page 1-6
• “Adding Instruments to an Existing Portfolio Using Functions” on page 1-8
• “Instrument Constructors” on page 1-15
• “Creating Instruments or Properties” on page 1-16
• “Searching or Subsetting a Portfolio” on page 1-17
• “Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-10
• “Pricing and Hedging a Portfolio Using the Black-Karasinski Model” on page 4-13
• “Hedging with Constrained Portfolios” on page 4-28

More About
• “Instrument Constructors” on page 1-15
• “Hedging” on page 4-2
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Hedging with Constrained Portfolios
In this section...
“Overview” on page 4-28
“Example: Fully Hedged Portfolio” on page 4-28
“Example: Minimize Portfolio Sensitivities” on page 4-30
“Example: Under-Determined System” on page 4-30
“Example: Portfolio Constraints with hedgeslf” on page 4-31

Overview
Both hedging functions cast the optimization as a constrained linear least-squares problem. (See the
function lsqlin for details.) In particular, lsqlin attempts to minimize the constrained linear least
squares problem

min
x

1
2 Cx− d 2

2 such that A ⋅ x ≤ b

Aeq ⋅ x = beq
lb ≤ x ≤ ub

where C, A, and Aeq are matrices, and d, b, beq, lb, and ub are vectors. For Financial Instruments
Toolbox software, x is a vector of asset holdings (contracts).

Depending on the constraint and the number of assets in the portfolio, a solution to a particular
problem may or may not exist. Furthermore, if a solution is found, it may not be unique. For a unique
solution to exist, the least squares problem must be sufficiently and appropriately constrained.

Example: Fully Hedged Portfolio
Recall that hedgeopt allows you to allocate an optimal hedge by one of two goals:

• Minimize the cost of hedging a portfolio given a set of target sensitivities.
• Minimize portfolio sensitivities for a given set of maximum target costs.

As an example, reproduce the results for the fully hedged portfolio example.

TargetSens = [0 0 0];
FixedInd   = [1 4 5 7 8];
[Sens,Cost,Quantity] = hedgeopt(Sensitivities, Price,... 
Holdings, FixedInd, [], [], TargetSens);

Sens =

         -0.00          -0.00          -0.00

Cost =

      23055.90

Quantity' =
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         98.72
       -182.36
        -19.55
         80.00
          8.00
        -32.97
         40.00
         10.00 

This example finds a unique solution at a cost of just over $23,000. The matrix C (formed internally by
hedgeopt and passed to lsqlin) is the asset Price vector expressed as a row vector.

C = Price' == [98.72 97.53 0.05 98.72 100.55 6.28 0.05 3.69]

The vector d is the current portfolio value Value0 = 23674.62. The example maintains, as closely
as possible, a constant portfolio value subject to the specified constraints.

Additional Constraints

In the absence of any additional constraints, the least squares objective involves a single equation
with eight unknowns. This is an under-determined system of equations. Because such systems
generally have an infinite number of solutions, you need to specify additional constraints to achieve a
solution with practical significance.

The additional constraints can come from two sources:

• User-specified equality constraints
• Target sensitivity equality constraints imposed by hedgeopt

The example in “Fully Hedged Portfolio” on page 4-6 specifies five equality constraints associated
with holding assets 1, 4, 5, 7, and 8 fixed. This reduces the number of unknowns from eight to three,
which is still an under-determined system. However, when combined with the first goal of hedgeopt,
the equality constraints associated with the target sensitivities in TargetSens produce an additional
system of three equations with three unknowns. This additional system guarantees that the weighted
average of the delta, gamma, and vega of assets 2, 3, and 6, together with the remaining assets held
fixed, satisfy the overall portfolio target sensitivity needs in TargetSens.

Combining the least-squares objective equation with the three portfolio sensitivity equations provides
an overall system of four equations with three unknown asset holdings. This is no longer an under-
determined system, and the solution is as shown.

If the assets held fixed are reduced, for example, FixedInd = [1 4 5 7], hedgeopt returns a no
cost, fully hedged portfolio (Sens = [0 0 0] and Cost = 0).

If you further reduce FixedInd (for example, [1 4 5], [1 4], or even []), hedgeopt always
returns a no cost, fully hedged portfolio. In these cases, insufficient constraints result in an under-
determined system. Although hedgeopt identifies no cost, fully hedged portfolios, there is nothing
unique about them. These portfolios have little practical significance.

Constraints must be sufficient and appropriately defined. Additional constraints having no effect on
the optimization are called dependent constraints. As a simple example, assume that parameter Z is
constrained such that Z ≤ 1. Furthermore, assume that you somehow add another constraint that
effectively restricts Z ≤ 0. The constraint Z ≤ 1 now has no effect on the optimization.
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Example: Minimize Portfolio Sensitivities
To illustrate using hedgeopt to minimize portfolio sensitivities for a given maximum target cost,
specify a target cost of $20,000 and determine the new portfolio sensitivities, holdings, and cost of
the rebalanced portfolio.

MaxCost = 20000;
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,... 
Holdings, [1 4 5 7 8], [], MaxCost);

Sens =

      -4345.36        295.81      -6586.64

Cost =

       20000.00

Quantity' =

        100.00
       -151.86
       -253.47
         80.00
          8.00
        -18.18
         40.00
         10.00

This example corresponds to the $20,000 point along the cost axis in the figures “Rebalancing Cost
Profile” on page 4-8, “Funds Available for Rebalancing” on page 4-9, and “Rebalancing Cost” on page
4-11.

When minimizing sensitivities, the maximum target cost is treated as an inequality constraint; in this
case, MaxCost is the most you are willing to spend to hedge a portfolio. The least-squares objective
matrix C is the matrix transpose of the input asset sensitivities

C = Sensitivities'

a 3-by-8 matrix in this example, and d is a 3-by-1 column vector of zeros,
[0 0 0]'.

Without any additional constraints, the least-squares objective results in an under-determined system
of three equations with eight unknowns. By holding assets 1, 4, 5, 7, and 8 fixed, you reduce the
number of unknowns from eight to three. Now, with a system of three equations with three
unknowns, hedgeopt finds the solution shown.

Example: Under-Determined System
Reducing the number of assets held fixed creates an under-determined system with meaningless
solutions. For example, see what happens with only four assets constrained.

FixedInd = [1 4 5 7];
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,... 
Holdings, FixedInd, [], MaxCost);
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Sens =

         -0.00          -0.00          -0.00

Cost =

      20000.00

Quantity' =

        100.00
        -149.31
        -14.91
         80.00
          8.00
        -34.64
         40.00
        -32.60

You have spent $20,000 (all the funds available for rebalancing) to achieve a fully hedged portfolio.

With an increase in available funds to $50,000, you still spend all available funds to get another fully
hedged portfolio.

MaxCost  = 50000;
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,... 
Holdings, FixedInd, [],MaxCost);

Sens =

         -0.00          0.00          0.00
Cost =

      50000.00

Quantity' =

        100.00
       -473.78
        -60.51
         80.00
          8.00
        -18.20
         40.00
        385.60

All solutions to an under-determined system are meaningless. You buy and sell various assets to
obtain zero sensitivities, spending all available funds every time. If you reduce the number of fixed
assets any further, this problem is insufficiently constrained, and you find no solution (the outputs are
all NaN).

Note also that no solution exists whenever constraints are inconsistent. Inconsistent constraints
create an infeasible solution space; the outputs are all NaN.

Example: Portfolio Constraints with hedgeslf
The other hedging function, hedgeslf, attempts to minimize portfolio sensitivities such that the
rebalanced portfolio maintains a constant value (the rebalanced portfolio is hedged against market
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moves and is closest to being self-financing). If a self-financing hedge is not found, hedgeslf tries to
rebalance a portfolio to minimize sensitivities.

From a least-squares systems approach, hedgeslf first attempts to minimize cost in the same way
that hedgeopt does. If it cannot solve this problem (a no cost, self-financing hedge is not possible),
hedgeslf proceeds to minimize sensitivities like hedgeopt. Thus, the discussion of constraints for
hedgeopt is directly applicable to hedgeslf as well.

To illustrate this hedging facility using equity exotic options, consider the portfolio CRRInstSet
obtained from the example MAT-file deriv.mat. The portfolio consists of eight option instruments:
two stock options, one barrier, one compound, two lookback, and two Asian.

The hedging functions require inputs that include the current portfolio holdings (allocations) and a
matrix of instrument sensitivities. To create these inputs, start by loading the example portfolio into
memory

load deriv.mat;

Next, compute the prices and sensitivities of the instruments in this portfolio.

[Delta, Gamma, Vega, Price] = crrsens(CRRTree, CRRInstSet);

Extract the current portfolio holdings (the quantity held or the number of contracts).

Holdings = instget(CRRInstSet, 'FieldName', 'Quantity');

For convenience place the delta, gamma, and vega sensitivity measures into a matrix of sensitivities.

Sensitivities = [Delta Gamma Vega];

Each row of the Sensitivities matrix is associated with a different instrument in the portfolio and
each column with a different sensitivity measure.
disp([Price  Holdings  Sensitivities])

          8.29         10.00          0.59          0.04         53.45
          2.50          5.00         -0.31          0.03         67.00
         12.13          1.00          0.69          0.03         67.00
          3.32          3.00         -0.12         -0.01        -98.08
          7.60          7.00         -0.40     -45926.32         88.18
         11.78          9.00         -0.42    -112143.15        119.19
          4.18          4.00          0.60      45926.32         49.21
          3.42          6.00          0.82     112143.15         41.71

The first column contains the dollar unit price of each instrument, the second contains the holdings of
each instrument, and the third, fourth, and fifth columns contain the delta, gamma, and vega dollar
sensitivities, respectively.

Suppose that you want to obtain a delta, gamma, and vega neutral portfolio using hedgeslf.

[Sens, Value1, Quantity]= hedgeslf(Sensitivities, Price, ... 
Holdings)

Sens =

          0.00
         -0.00
          0.00

Value1 =
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        313.93

Quantity =

         10.00
          7.64
         -1.56
         26.13
          9.94
          3.73
         -0.75
          8.11

hedgeslf returns the portfolio dollar sensitivities (Sens), the value of the rebalanced portfolio
(Value1) and the new allocation for each instrument (Quantity).

If Value0 and Value1 represent the portfolio value before and after rebalancing, respectively, you
can verify the cost by comparing the portfolio values.

Value0= Holdings' * Price

Value0 =

        313.93

In this example, the portfolio is fully hedged (simultaneous delta, gamma, and vega neutrality) and
self-financing (the values of the portfolio before and after balancing (Value0 and Value1) are the
same.

Suppose now that you want to place some upper and lower bounds on the individual instruments in
your portfolio. By using function portcons, you can specify these constraints, along with various
general linear inequality constraints.

As an example, assume that, in addition to holding instrument 1 fixed as before, you want to bound
the position of all instruments to within +/- 20 contracts (for each instrument, you cannot short or
long more than 20 contracts). Applying these constraints disallows the current position in the fourth
instrument (long 26.13). All other instruments are currently within the upper/lower bounds.

You can generate these constraints by first specifying the lower and upper bounds vectors and then
calling portcons.

LowerBounds = [-20  -20  -20  -20  -20  -20  -20  -20];
UpperBounds = [20  20  20  20  20  20  20  20];
ConSet = portcons('AssetLims', LowerBounds, UpperBounds);

To impose these constraints, call hedgeslf with ConSet as the last input.

[Sens, Cost, Quantity1] = hedgeslf(Sensitivities, Price, ... 
Holdings, 1, ConSet)

Sens =

         -0.00
          0.00
          0.00

Cost =
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        313.93

Quantity1 =

         10.00
          5.28
         10.98
         20.00
         20.00
         -6.99
        -20.00
          9.39

Observe that hedgeslf enforces the upper bound on the fourth instrument, and the portfolio
continues to be fully hedged and self-financing.

See Also
hedgeopt | hedgeslf

Related Examples
• “Portfolio Creation Using Functions” on page 1-6
• “Adding Instruments to an Existing Portfolio Using Functions” on page 1-8
• “Instrument Constructors” on page 1-15
• “Creating Instruments or Properties” on page 1-16
• “Searching or Subsetting a Portfolio” on page 1-17
• “Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-10
• “Pricing and Hedging a Portfolio Using the Black-Karasinski Model” on page 4-13
• “Specifying Constraints with ConSet” on page 4-24
• “Portfolio Rebalancing” on page 4-26

More About
• “Instrument Constructors” on page 1-15
• “Hedging” on page 4-2
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Hedging Strategies Using Spread Options
This example shows different hedging strategies to minimize exposure in the Energy market using
Crack Spread Options.

Understanding Crack Spread Options

In the petroleum industry, refiners are concerned about the difference between their input costs
(crude oil) and output prices (refined products - gasoline, heating oil, diesel fuel, and so on). The
differential between these two underlying commodities is referred to as a Crack Spread. It represents
the profit margin between crude oil and the refined products.

A Spread option is an option on the spread where the holder has the right, but not the obligation, to
enter into a spot or forward spread contract. Crack Spread Options are often used to protect against
declines in the crack spread or to monetize volatility or price expectations on the spread.

Example 1: Protecting Margins using a 1:1 Crack Spread Option

A marketer is interested in protecting his gasoline margin since current prices are strong. A crack
spread option strategy is used to maintain profits for the following season. In March the June WTI
crude oil futures are at $91.10 per barrel and RBOB gasoline futures contract are at $2.72 per gallon.
The marketer's strategy is a long crack call involving purchasing RBOB gasoline futures and selling
crude oil futures.

OldFormat = get(0, 'format');  
format bank

% Price and volatility of RBOB gasoline
Price1gallon = 2.72;          % $/gallon
Price1 = Price1gallon * 42;   % $/barrel
Vol1 = 0.39;

% Price and volatility of WTI crude oil
Price2 = 91.10;         % $/barrel
Vol2 = 0.34;

% Assume the following data
% Spread Option
Strike = 20; 
OptSpec = 'call'; 
Settle =   '01-March-2013';
Maturity = '01-June-2013';
Corr = 0.45;     % Correlation of underlying commodities

Define the RateSpec and StockSpec.

% Define RateSpec
Rate = 0.035;  
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
    'EndDates', Maturity, 'Rates', Rate, 'Compounding', ...
    Compounding, 'Basis', Basis);

% Define StockSpec for the two assets
StockSpec1 = stockspec(Vol1, Price1);
StockSpec2 = stockspec(Vol2, Price2);
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Price the Crack Spread Option

Use the function spreadbybjs in the Financial Instruments Toolbox™ to price the spread option
using the Bjerksund and Stensland model.

Price = spreadbybjs(RateSpec, StockSpec1, StockSpec2, Settle, ...
                       Maturity, OptSpec, Strike, Corr)

Price = 
          9.91

The 1:1 implied current crack spread between these two underlyings is $23.14 per barrel.

CrackSpread = Price1 - Price2    % $/barrel

CrackSpread = 
         23.14

Suppose that by expiration day, June crude oil prices decrease to $90.34 per barrel and gasoline
prices rise to $2.89 per gallon. The price changes cause the marketer's profit margin (the new
implied crack spread) to increase from $23.14/barrel to $31.04/barrel:

NewCrackSpread = (2.89 * 42) - 90.34

NewCrackSpread = 
         31.04

Since the marketer purchased a long crack call on the $20 call, the option is now in the money by
$11.04.

(NewCrackSpread - Strike)

ans = 
         11.04

The marketer paid $9.91 from the long crack call, this protects the margin by $1.13.

(NewCrackSpread - Strike - Price)

ans = 
          1.13

This strategy provides the marketer protection during spread increase scenarios.

Example 2: Creating a Floor with Crack Spread Options

A refiner is interested in covering its fixed and operating costs, but still profit from a favorable move
in the market. In March the May WTI crude oil futures are at $99.43 per barrel and RBOB gasoline
futures contract are at $3.04 per gallon. The refiner believes that the spread between those
commodities of $28.25 per barrel is favorable. Of this, $11 corresponds to operating and fixed costs,
and $17.25 is the net refining margin. The refiner's strategy is to sell the crack spread by selling 10
RBOB gasoline futures and buying 10 crude oil futures.
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% Price and volatility of RBOB gasoline 
Price1gallon = 3.04;          % $/gallon
Price1 = Price1gallon * 42;   % $/barrel
Vol1 = 0.35;
Div1 = 0.0783;

% Price and volatility of WTI crude oil
Price2 = 99.43;         % $/barrel
Vol2 = 0.38;
Div2 = 0.0571;

The refiner purchases 10 May RBOB gasoline crack spread puts with a strike price of $25.

% Spread Option
Strike = 25; 
OptSpec = 'put'; 
Settle =   '01-March-2013';
Maturity = '01-May-2013';
Corr = 0.30;      % Correlation of underlying commodities

Define the RateSpec and StockSpec.

% Define RateSpec
Rate = 0.035;  
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
    'EndDates', Maturity, 'Rates', Rate, 'Compounding', ...
    Compounding, 'Basis', Basis);

% Define StockSpec for the two assets
StockSpec1 = stockspec(Vol1, Price1, 'Continuous', Div1);
StockSpec2 = stockspec(Vol2, Price2, 'Continuous', Div2);

Price the Crack Spread Option

Use the function spreadbyfd in the Financial Instruments Toolbox™ to price the American spread
option using the finite difference method.

                   
Price = spreadbyfd(RateSpec, StockSpec1, StockSpec2, Settle, ...
                   Maturity, OptSpec, Strike, Corr, 'AmericanOpt', 1)

Price = 
          6.61

By expiration, if the option is exercised, the refiner would have hedged the cost of purchasing 10000
barrels of crude oil with the revenue of selling 10000 barrels of RBOB gasoline. The futures contract
represents 1000 barrels of crude oil and 42000 gallons of gasoline.

CostOfHedge = Price * 10000   % Option premium

CostOfHedge = 
      66122.24
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The hedge cost is $66386 to implement and guarantee that neither a fall in RBOB gasoline prices or
an increase in WTI crude oil prices will diminish the refining margin below $25.

ProfitMargin = 14 * 10000   %$     

ProfitMargin = 
     140000.00

CrackingMargin = ProfitMargin - CostOfHedge 

CrackingMargin = 
      73877.76

This strategy allows a cracking margin of $73613.

Another strategy for the refiner could be to buy the $22 puts at a price of $5.38.

StrikeNew = 22;

PriceNew = spreadbyfd(RateSpec, StockSpec1, StockSpec2, Settle, ...
                       Maturity, OptSpec, StrikeNew, Corr, 'AmericanOpt', 1)

PriceNew = 
          5.36

This time the hedge would have cost $53823, but it also guarantees a $11 per barrel or a $56176
cracking margin.

NewCostOfHedge = PriceNew * 10000   % Option premium

NewCostOfHedge = 
      53570.97

NewProfitMargin = 11 * 10000       

NewProfitMargin = 
     110000.00

CrackingMargin = NewProfitMargin - NewCostOfHedge

CrackingMargin = 
      56429.03

Example 3: Using Collars to Reduce the Cost of Hedging

A refiner is concerned about its cost of hedging and decides to use a collar strategy. In April the crack
spread is trading at $4.23 per barrel. The refiner is not convinced to lock in this margin, but also
wants to protect against price changes causing the refinery margin to decrease less than $4 per
barrel.
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% Price and volatility of heating oil
Price1gallon = 2.52;          % $/gallon
Price1 = Price1gallon * 42;   % $/barrel
Vol1 = 0.38;
Div1 = 0.0762;

% Price and volatility of WTI crude oil
Price2 = 101.61;         % $/barrel
Vol2 = 0.34;
Div2 = 0.1169;

To accomplish the collar strategy the refiner sells a call spread option with a strike of $4.50 and uses
the premium income to offset the cost of purchasing a put spread option with a strike of $4. This
allows the refiner to benefit if market prices move up, and protects it if market prices move down.

% Assume the following data 
Strike = [4.50;4];
OptSpec = {'call';'put'}; 
Settle =   '01-April-2013';
Maturity = '01-June-2013';
Corr = 0.35;       % Correlation of underlying commodities

Define the RateSpec and StockSpec.

% Define RateSpec
Rate = 0.035;  
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
    'EndDates', Maturity, 'Rates', Rate, 'Compounding', ...
    Compounding, 'Basis', Basis);

% Define StockSpec for the two assets
StockSpec1 = stockspec(Vol1, Price1, 'Continuous', Div1);
StockSpec2 = stockspec(Vol2, Price2, 'Continuous', Div2);

Price the Crack Spread Options

Use the function spreadbybjs in the Financial Instruments Toolbox™ to price the spread options
using the Bjerksund and Stensland model.

Price = spreadbybjs(RateSpec, StockSpec1, StockSpec2, Settle, ...
                       Maturity, OptSpec, Strike, Corr)

Price = 2×1

          7.06
          6.43

The collar strategy allows the refiner to reduce the cost of the hedge to $0.63.

% CostOfHedge = Premium of Call - Premium of Put   
CostOfHedge = Price(1) - Price(2)

CostOfHedge = 
          0.63
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The refiner is protected if the crack spread narrows to less than $4. If the crack spread widens to
more than $4.50, the refiner will not benefit over this amount if he has hedged 100% of all its market
exposure.

set(0, 'format', OldFormat);

See Also

More About
• “Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument

Objects” on page 1-82
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Mortgage-Backed Securities

• “What Are Mortgage-Backed Securities?” on page 5-2
• “Fixed-Rate Mortgage Pool” on page 5-3
• “Computing Option-Adjusted Spread” on page 5-9
• “Prepayments with Fewer Than 360 Months Remaining” on page 5-12
• “Pools with Different Numbers of Coupons Remaining” on page 5-14
• “Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model”

on page 5-16
• “Pricing Mortgage Backed Securities Using the Black-Derman-Toy Model” on page 5-34
• “Using Collateralized Mortgage Obligations (CMOs)” on page 5-40
• “Prepayment Risk” on page 5-41
• “CMO Workflow” on page 5-47
• “Create PAC and Sequential CMO” on page 5-49
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What Are Mortgage-Backed Securities?
Mortgage-backed securities (MBSs) are a type of investment that represents ownership in a group of
mortgages. Principal and interest from the individual mortgages are used to pay principal and
interest on the MBS.

Ownership in a group of mortgages is typically represented by a pass-through certificate (PC). Most
pass-through certificates are issued by the Government National Mortgage Agency, a branch of the
United States government, or by one of two private corporations: Fannie Mae or Freddie Mac. With
these certificates, homeowners' payments pass from the originating bank through the issuing agency
to holders of the certificates. These agencies also frequently guarantee that the certificate holder
receives timely payment of principal and interest from the PCs.

See Also
mbscfamounts | mbsconvp | mbsconvy | mbsdurp | mbsdury | mbsnoprepay | mbspassthrough |
mbsprice | mbswal | mbsyield | mbsprice2speed | mbsyield2speed | psaspeed2default |
psaspeed2rate | mbsoas2price | mbsoas2yield | mbsprice2oas | mbsyield2oas

Related Examples
• “Fixed-Rate Mortgage Pool” on page 5-3
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Fixed-Rate Mortgage Pool

In this section...
“Introduction” on page 5-3
“Inputs to Functions” on page 5-3
“Generating Prepayment Vectors” on page 5-4
“Mortgage Prepayments” on page 5-5
“Risk Measurement” on page 5-6
“Mortgage Pool Valuation” on page 5-7

Introduction
Financial Instruments Toolbox software supports calculations involved with generic fixed-rate
mortgage pools and balloon mortgages. Generic fixed-rate mortgage pools and balloon mortgages
have pass-through certificates (PC) that typically have embedded call options in the form of
prepayment. Prepayment is an excess payment applied to the principal of a PC. These accelerated
payments reduce the effective life of a PC.

The toolbox comes with a standard Bond Market Association (PSA) prepayment model and can
generate multiples of standard prepayment speeds. The Public Securities Association provides a set
of uniform practices for calculating the characteristics of mortgage-backed securities when there is
an assumed prepayment function.

Alternatively, aside from the standard PSA implementation in this toolbox, you can supply your own
projected prepayment vectors. Currently, however, custom prepayment functionality that incorporates
pool-specific information and interest rate forecasts are not available in this toolbox. If you plan to
use custom prepayment vectors in your calculations, you presumably already own such a suite in
MATLAB.

Inputs to Functions
Because of the generic, all-purpose nature of the toolbox pass-through functions, you can fine-tune
them to conform to a particular mortgage. Most functions require at least this set of inputs:

• Gross coupon rate
• Settlement date
• Issue (effective) date
• Maturity date

Typical optional inputs include standard prepayment speed (or customized vector), net coupon rate (if
different from gross coupon rate), and payment delay in number of days.

All calculations are based on expected payment dates and actual cash flow to the investor. For
example, when GrossRate and CouponRate differ as inputs to mbsdurp, the function returns a
modified duration based on CouponRate. (A notable exception is mbspassthrough, which returns
interest quantities based on the GrossRate.)

 Fixed-Rate Mortgage Pool

5-3



Generating Prepayment Vectors
You can generate PSA multiple prepayment vectors quickly. To generate prepayment vectors of 100
and 200 PSA, type

PSASpeed = [100, 200];
[CPR, SMM] = psaspeed2rate(PSASpeed)

This function computes two prepayment values: conditional prepayment rate (CPR) and single
monthly mortality (SMM) rate. CPR is the percentage of outstanding principal prepaid in one year.
SMM is the percentage of outstanding principal prepaid in one month. In other words, CPR is an
annual version of SMM.

Since the entire 360-by-2 array is too long to show in this document, observe the SMM (100 and 200
PSA) plots, spaced one month apart, instead.

Prepayment assumptions form the basis upon which far more comprehensive MBS calculations are
based. As an illustration, observe the following example, which shows the use of the function
mbscfamounts to generate cash flows and timings based on a set of standard prepayments.

Consider three mortgage pools that were sold on the issue date (which starts unamortized). The first
two pools "balloon out" in 60 months, and the third is regularly amortized to the end. The prepayment
speeds are assumed to be 100, 200, and 200 PSA, respectively.

Settle     = [datenum('1-Feb-2000');
              datenum('1-Feb-2000');
              datenum('1-Feb-2000')];
                            
Maturity   = [datenum('1-Feb-2030')];
          
IssueDate  = datenum('1-Feb-2000');
GrossRate  = 0.08125;
CouponRate = 0.075;
Delay = 14; 

PSASpeed = [100, 200];
[CPR, SMM] = psaspeed2rate(PSASpeed);
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PrepayMatrix = ones(360,3);
PrepayMatrix(1:60,1:2) = SMM(1:60,1:2);
PrepayMatrix(:,3) = SMM(:,2);

[CFlowAmounts, CFlowDates, TFactors, Factors] = ... 
mbscfamounts(Settle, Maturity, IssueDate, GrossRate, ... 
CouponRate, Delay, [], PrepayMatrix);

The fourth output argument, Factors, indicates the fraction of the balance still outstanding at the
beginning of each month. A snapshot of this argument in the MATLAB Variables editor illustrates the
60-month life of the first two of the mortgages with balloon payments and the continuation of the
third mortgage until the end (360 months).

You can readily see that mbscfamounts is the building block of most fixed-rate and balloon pool cash
flows.

Mortgage Prepayments
Prepayment is beneficial to the pass-through owner when a mortgage pool has been purchased at
discount. The next example compares mortgage yields (compounded monthly) versus the purchase
clean price with constant prepayment speed. The example illustrates that when you have purchased a
pool at a discount, prepayment generates a higher yield with decreasing purchase price.

Price = [85; 90; 95];
Settle = datenum('15-Apr-2002');
Maturity = datenum('1 Jan 2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Speed = 100;

Compute the mortgage and bond-equivalent yields.

[MYield, BEMBSYield] = mbsyield(Price, Settle, Maturity, ... 
IssueDate, GrossRate, CouponRate, Delay, Speed)

MYield =

    0.1018
    0.0918
    0.0828

BEMBSYield =
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    0.1040
    0.0936
    0.0842

If for this same pool of mortgages, there was no prepayment (Speed = 0), the yields would decline
to

MYield =

    0.0926
    0.0861
    0.0802

BEMBSYield =

    0.0944
    0.0877
    0.0815

Likewise, if the rate of prepayment doubled (Speed = 200), the yields would increase to

MYield =

    0.1124
    0.0984
    0.0858

BEMBSYield =

    0.1151
    0.1004
    0.0873

For the same prepayment vector, deeper discount pools earn higher yields. For more information, see
mbsprice and mbsyield.

Risk Measurement
Financial Instruments Toolbox provides the most basic risk measures of a pool portfolio:

• Modified duration
• Convexity
• Average life of pool

Consider the following example, which calculates the Macaulay and modified durations given the
price of a mortgage pool.

Price = [95; 100; 105];
Settle = datenum('15-Apr-2002');
Maturity = datenum('1-Jan-2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Speed = 100;
 

5 Mortgage-Backed Securities

5-6



[YearDuration, ModDuration] = mbsdurp(Price, Settle, ...
Maturity, IssueDate, GrossRate, CouponRate, Delay, Speed)

YearDuration =

    6.1341
    6.3882
    6.6339

ModDuration =

    5.8863
    6.1552
    6.4159

Using Financial Instruments Toolbox functions, you can obtain modified duration and convexity from
either price or yield, as long as you specify a prepayment vector or an assumed prepayment speed.
The toolbox risk-measurement functions (mbsdurp, mbsdury, mbsconvp, mbsconvy, and mbswal)
adhere to the guidelines listed in the PSA Uniform Practices manual.

Mortgage Pool Valuation
For accurate valuation of a mortgage pool, you must generate interest-rate paths and use them with
mortgage pool characteristics to properly value the pool. A widely used methodology is the option-
adjusted spread (OAS). OAS measures the yield spread that is not directly attributable to the
characteristics of a fixed-income investment.

Calculating OAS

Prepayment alters the cash flows of an otherwise regularly amortizing mortgage pool. A
comprehensive option-adjusted spread calculation typically begins with the generation of a set of
paths of spot rates to predict prepayment. A path is collection of i spot-rate paths, with corresponding
j cash flows on each of those paths.

The effect of the OAS on pool pricing is shown mathematically in the following equation, where K is
the option-adjusted spread.

PoolPrice = 1
Numberof Paths × ∑

i

Numberof Paths
∑
j

CFi j CFi j

(1 + zeroratesi j + K)Ti j

Calculating Effective Duration

Alternatively, if you are more interested in the sensitivity of a mortgage pool to interest rate changes,
use effective duration, which is a more appropriate measure. Effective duration is defined
mathematically with the following equation.

Ef fective Duration = P(y + Δy)− P(y − Δy)
2P(y)Δy

Calculating Market Price

The toolbox has all the components required to calculate OAS and effective duration if you supply
prepayment vectors or assumptions. For OAS, given a prepayment vector, you can generate a set of
cash flows with mbscfamounts. Discounting these cash flows with the reference curve and then
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adding OAS produces the market price. See “Computing Option-Adjusted Spread” on page 5-9 for a
discussion on the computation of option-adjusted spread.

Effective duration is a more difficult issue. While modified duration changes the discounting process
(by changing the yield used to discount cash flows), effective duration must account for the change in
cash flow because of the change in yield. A possible solution is to recompute prices using mbsprice
for a small change in yield, in both the upwards and downwards directions. In this case, you must
recompute the prepayment input. Internally, this alters the cash flows of the mortgage pool.
Assuming that the OAS stays constant in all yield environments, you can apply a set of discounting
factors to the cash flows in up and down yield environments to find the effective duration.

See Also
mbscfamounts | mbsconvp | mbsconvy | mbsdurp | mbsdury | mbsnoprepay | mbspassthrough |
mbsprice | mbswal | mbsyield | mbsprice2speed | mbsyield2speed | psaspeed2default |
psaspeed2rate | mbsoas2price | mbsoas2yield | mbsprice2oas | mbsyield2oas

Related Examples
• “Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model” on

page 5-16
• “Computing Option-Adjusted Spread” on page 5-9
• “Prepayments with Fewer Than 360 Months Remaining” on page 5-12
• “Pools with Different Numbers of Coupons Remaining” on page 5-14
• “Pricing Mortgage Backed Securities Using the Black-Derman-Toy Model” on page 5-34
• “Using Collateralized Mortgage Obligations (CMOs)” on page 5-40

More About
• “What Are Mortgage-Backed Securities?” on page 5-2
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Computing Option-Adjusted Spread
The option-adjusted spread (OAS) is an amount of extra interest added above (or below if negative)
the reference zero curve. To compute the OAS, you must provide the zero curve as an extra input. You
can specify the zero curve in any intervals and with any compounding method. (To minimize any error
due to interpolation, keep the intervals as regular and frequent as possible.) You must supply a
prepayment vector or specify a speed corresponding to a standard PSA prepayment vector.

One way to compute the appropriate zero curve for an agency is to look at its bond yields and
bootstrap them from the shortest maturity onwards. You can do this with Financial Toolbox™
functions zbtprice and zbtyield.

The following example shows how to calculate an appropriate zero curve followed by computation of
the pool's OAS. This example calculates the OAS of a 30-year fixed rate mortgage with about a 28-
year weighted average maturity left, given an assumption of 0, 50, and 100 PSA prepayment speeds.

Create curve for zerorates.
Bonds = [datenum('11/21/2002')   0        100    0    2    1;    
         datenum('02/20/2003')   0        100    0    2    1;
         datenum('07/31/2004')   0.03     100    2    3    1;
         datenum('08/15/2007')   0.035    100    2    3    1;
         datenum('08/15/2012')   0.04875  100    2    3    1;
         datenum('02/15/2031')   0.05375  100    2    3    1];
  
Yields = [0.0162;
          0.0163;
          0.0211;
          0.0328;
          0.0420;
          0.0501];

Since the above is Treasury data and not selected agency data, a term structure of spread is
assumed. In this example, the spread declines proportionally from a maximum of 250 basis points at
the shortest maturity.

Yields = Yields + 0.025 * (1./[1:6]')

Yields =

    0.0412
    0.0288
    0.0294
    0.0391
    0.0470
    0.0543

Get parameters from Bonds matrix.
Settle = datenum('20-Aug-2002');
Maturity = Bonds(:,1);
CouponRate = Bonds(:,2);
Face = Bonds(:,3);
Period = Bonds(:,4);
Basis = Bonds(:,5);
EndMonthRule = Bonds(:,6);
  
[Prices, AccruedInterest] = bndprice(Yields, CouponRate, ...
Settle, Maturity, Period, Basis, EndMonthRule, [], [], [], [], ... 
Face)

Prices =
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   98.9747
   98.5804
  100.1040
   98.1802
  101.3808
   99.2535

AccruedInterest =

         0
         0
    0.1644
    0.0479
    0.0668
    0.0736

Use zbtprice to solve for zero rates.

[ZeroRatesP, CurveDatesP] = zbtprice(Bonds, Prices, Settle);
ZeroCompounding = 2*ones(size(ZeroRatesP));
ZeroMatrix = [CurveDatesP, ZeroRatesP, ZeroCompounding]

ZeroMatrix =

   1.0e+05 *

    7.3154    0.0000    0.0000
    7.3163    0.0000    0.0000
    7.3216    0.0000    0.0000
    7.3327    0.0000    0.0000
    7.3510    0.0000    0.0000
    7.4185    0.0000    0.0000

Use output from zbtprice to calculate the OAS.

Price = 95;
Settle = datenum('20-Aug-2002');
Maturity = datenum('2-Jan-2030');
IssueDate = datenum('2-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Interpolation = 1;
PrepaySpeed = [0; 50; 100];
  
OAS = mbsprice2oas(ZeroMatrix, Price, Settle, Maturity, ...
IssueDate, GrossRate, CouponRate, Delay, Interpolation, ... 
PrepaySpeed)

OAS =

    26.0502
    28.6348
    31.2222

This example shows that one cash flow set is being discounted and solved for its OAS, as contrasted
with the NumberOfPaths set of cash flows as shown in “Mortgage Pool Valuation” on page 5-7.
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Averaging the sets of cash flows resulting from all simulations into one average cash flow vector and
solving for the OAS, discounts the averaged cash flows to have a present value of today's (average)
price.

While this example uses the mortgage pool price (mbsprice2oas) to determine the OAS, you can
also use yield to resolve it (mbsyield2oas). Also, there are reverse OAS functions that return prices
and yields given OAS (mbsoas2price and mbsoas2yield).

The example also restates earlier examples that show discount securities benefit from higher level of
prepayment, keeping everything else unchanged. The relation is reversed for premium securities.

See Also
mbscfamounts | mbsconvp | mbsconvy | mbsdurp | mbsdury | mbsnoprepay | mbspassthrough |
mbsprice | mbswal | mbsyield | mbsprice2speed | mbsyield2speed | psaspeed2default |
psaspeed2rate | mbsoas2price | mbsoas2yield | mbsprice2oas | mbsyield2oas

Related Examples
• “Fixed-Rate Mortgage Pool” on page 5-3
• “Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model” on

page 5-16
• “Pricing Mortgage Backed Securities Using the Black-Derman-Toy Model” on page 5-34
• “Prepayments with Fewer Than 360 Months Remaining” on page 5-12
• “Pools with Different Numbers of Coupons Remaining” on page 5-14
• “Using Collateralized Mortgage Obligations (CMOs)” on page 5-40

More About
• “What Are Mortgage-Backed Securities?” on page 5-2
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Prepayments with Fewer Than 360 Months Remaining
When fewer than 360 months remain in the pool, the applicable PSA prepayment vector is "seasoned"
by the pool's age. (Elements in the 360-element prepayment vector that represent past payments are
skipped. For example, on a 30-year mortgage that is 10 months old, only the final 350 prepayments
are applied.)

Assume, for example, that you have two 30-year loans, one new and another 10 months old. Both
have the same PSA speed of 100 and prepay using the vectors plotted below.

Still within the scope of relative valuation, you could also solve for the percentage of the standard
PSA prepayment vector given the pool's arbitrary, user-supplied prepayment vector, such that the
PSA speed gives the same Macaulay duration as the user-supplied prepayment vector.

If you supply a custom prepayment vector, you must account for the number of months remaining.

Price = 101;
Settle = datenum('1-Jan-2001');
Maturity = datenum('1-Jan-2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
PrepayMatrix = 0.005*ones(348,1);
CouponRate   = 0.075;
Delay = 14;
 
ImpliedSpeed = mbsprice2speed(Price, Settle, Maturity, ...
IssueDate, GrossRate, PrepayMatrix, CouponRate, Delay)

ImpliedSpeed =

  104.2543
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Examine the prepayment input. The remaining 29 years require 348 monthly elements in the
prepayment vector. Suppose then, keeping everything the same, you change Settle to February 14,
2003.

Settle = datenum('14-Feb-2003');

You can use cpncount to count all incoming coupons received after Settle by invoking

NumCouponsRemaining = cpncount(Settle, Maturity, 12, 1, [], ... 
IssueDate) 

NumCouponsRemaining =
323

The input 12 defines the monthly payment frequency, 1 defines the 30/360 basis, and IssueDate
defines aging and determination-of-holder date. Thus, you must supply a 323-element vector to
account for a prepayment corresponding to each monthly payment.

See Also
mbscfamounts | mbsconvp | mbsconvy | mbsdurp | mbsdury | mbsnoprepay | mbspassthrough |
mbsprice | mbswal | mbsyield | mbsprice2speed | mbsyield2speed | psaspeed2default |
psaspeed2rate | mbsoas2price | mbsoas2yield | mbsprice2oas | mbsyield2oas

Related Examples
• “Fixed-Rate Mortgage Pool” on page 5-3
• “Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model” on

page 5-16
• “Computing Option-Adjusted Spread” on page 5-9
• “Pricing Mortgage Backed Securities Using the Black-Derman-Toy Model” on page 5-34
• “Using Collateralized Mortgage Obligations (CMOs)” on page 5-40

More About
• “What Are Mortgage-Backed Securities?” on page 5-2
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Pools with Different Numbers of Coupons Remaining
Suppose that one pool has two remaining coupons, and the other has three. MATLAB expects the
prepayment matrix to be in the following format:

V11       V21
V12       V22
NaN       V23

Vij denotes the single monthly mortality (SMM) rate for pool i during the jth coupon period since
Settle.

The use of NaN to pad the prepayment matrix is necessary because MATLAB cannot concatenate
vectors of different lengths into a matrix. Also, it can serve as an error check against any unintended
operation (any MATLAB operation that would return NaN).

For example, assume that the 2-month pool has a constant SMM of 0.5% and the 3-month pool has a
constant SMM of 1% in every period. The prepayment matrix you would create is depicted below.

Create this input in whatever manner is best for you.

Summary of Prepayment Data Vector Representation
• When you specify a PSA prepayment speed, MATLAB "seasons" the pool according to its age.
• When you specify your own prepayment matrix, identify the maximum number of coupons

remaining using cpncount. Then supply the matrix elements up to the point when cash flow
ceases to exist.

• When different length pools must exist in the same matrix, pad the shorter one(s) with NaN. Each
column of the prepayment matrix corresponds to a specific pool.

See Also
mbscfamounts | mbsconvp | mbsconvy | mbsdurp | mbsdury | mbsnoprepay | mbspassthrough |
mbsprice | mbswal | mbsyield | mbsprice2speed | mbsyield2speed | psaspeed2default |
psaspeed2rate | mbsoas2price | mbsoas2yield | mbsprice2oas | mbsyield2oas

Related Examples
• “Fixed-Rate Mortgage Pool” on page 5-3
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• “Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model” on
page 5-16

• “Computing Option-Adjusted Spread” on page 5-9
• “Pricing Mortgage Backed Securities Using the Black-Derman-Toy Model” on page 5-34
• “Using Collateralized Mortgage Obligations (CMOs)” on page 5-40

More About
• “What Are Mortgage-Backed Securities?” on page 5-2
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Prepayment Modeling with a Two Factor Hull White Model and
a LIBOR Market Model

This example shows how to model prepayment in MATLAB® using functionality from the Financial
Instruments Toolbox™. Specifically, a variation of the Richard and Roll prepayment model is
implemented using a two factor Hull-White interest-rate model and a LIBOR Market Model to
simulate future interest-rate paths. A mortgage-backed security is priced with both the custom and
default prepayment models.

Introduction

Prepayment modeling is crucial to the analysis of mortgage-backed securities (MBS). Prepayments by
individual mortgage holders affect both the amount and timing of cash flows and for collateralized
mortgage obligations (for example, interest-only securities), prepayment can greatly affect the value
of the securities.

PSA Model

The most basic prepayment model is the Public Securities Association (PSA) model, which assumes a
ramp-up phase and then a constant conditional prepayment rate (CPR). The PSA model can be
generated in MATLAB using the Financial Instruments Toolbox function psaspeed2rate.

G2PP_CPR = psaspeed2rate([100 200]);
figure
plot(G2PP_CPR)
title('100 and 200 PSA Prepayment Speeds')
xlabel('Months')
ylabel('CPR')
ylim([0 .14])
legend({'100 PSA','200 PSA'}, 'Location', 'Best')
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Mortgage-Backed Security

The MBS analyzed in this example matures in 2020 and has the properties outlined in this section.
Cash flows are generated for PSA prepayment speeds simply by entering the PSA speed as an input
argument.

% Parameters for MBS passthrough to be priced
Settle = datenum('15-Dec-2007');
Maturity = datenum('15-Dec-2020');
IssueDate = datenum('15-Dec-2000');
GrossRate = .0475;
CouponRate = .045;
Delay = 14;
Period = 12;
Basis = 4;

% Generate cash flows and dates for baseline case using 100 PSA
[CFlowAmounts, CFlowDates] = mbscfamounts(Settle,Maturity, IssueDate,...
    GrossRate, CouponRate, Delay,100);
CFlowTimes = yearfrac(Settle,CFlowDates);
NumCouponsRemaining = cpncount(Settle, Maturity, Period,Basis, 1, IssueDate);

Richard and Roll Model

While prepayment modeling often involves complex and sophisticated modeling, often at the loan
level, this example uses a slightly modified approach based on the model proposed by Richard and
Roll [6 on page 5-0 ].
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The Richard and Roll prepayment model involves the following factors:

• Refinancing incentive
• Seasonality (month of the year)
• Seasoning or age of the mortgage
• Burnout

Richard and Roll propose a multiplicative model of the following:

CPR = Ref iIncentive * SeasoningMultiplier * SeasonalityMultiplier * BurnoutMultiplier

For the custom model in this example, the Burnout Multiplier, which describes the tendency of
prepayment to slow when a significant number of homeowners have already refinanced, is ignored
and the first three terms are used.

The refinancing incentive is a function of the ratio of the coupon-rate of the mortgage to the available
mortgage rate at that particular point in time. For example, the Office of Thrift Supervision (OTS)
proposes the following model:

Ref i = . 2406− . 1389 * arctan(5 . 952 * (1 . 089− CouponRate
MortgageRate ))

The refinancing incentive requires a simulation of future interest rates. This will be discussed later in
this example.

C_M = .1:.1:2;
G2PP_Refi = .2406 - .1389 * atan(5.952*(1.089 - C_M));
figure
plot(C_M,G2PP_Refi)
xlabel('Coupon/Mortgage Rate')
ylabel('CPR')
title('Refinancing Incentive')
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Seasoning captures the tendency of prepayment to ramp up at the beginning of a mortgage before
leveling off. The OTS models the seasoning multiplier as follows:

Seasoning = ones(360,1);
Seasoning(1:29) = (1:29)/30;
figure
plot(Seasoning)
xlim([1 360])
title('Seasoning Multiplier')
xlabel('Months')
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The seasonality multiplier simply models the seasonal behavior of prepayments -- this data is based
on Figure 3 of [6 on page 5-0 ], which applies to the behavior of Ginnie Mae 30-year, single-family
MBSs.

Seasonality = [.94 .76 .73 .96 .98 .92 .99 1.1 1.18 1.21 1.23 .97];
figure
plot(Seasonality)
xlim([1 12])
ax = gca;
ax.XTick = 1:12;
ax.XTickLabel = {'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug', ...
    'Sep','Oct','Nov','Dec'};
title('Seasonality Multiplier')
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G2++ Interest-Rate Model

Since the refinancing incentive requires a simulation of future interest rates, an interest-rate model
must be used. One choice is a two-factor additive Gaussian model, referred to as G2++ by Brigo and
Mercurio [2 on page 5-0 ].

The G2++ Interest Rate Model is:

r(t) = x(t) + y(t) + φ(t)

dx(t) = − ax(t)dt + σdW1(t)

dy(t) = − by(t)dt + ηdW2(t)

where dW1(t)dW2(t) is a two-dimensional Brownian motion with correlation ρ

dW1(t)dW2(t) = ρdt

φ(T) = f M(0, T) + σ2

2a2 (1− e−aT)2 + η2

2b2 (1− e−bT)2 + ρση
ab (1− e−aT)(1− e−bT)

and r(t) is the short rate, a and b are mean reversion constants and σ and η are volatility constants,
and f M(0, T) is the market forward rate, or the forward rate observed on the Settle date.
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LIBOR Market Model

The LIBOR Market Model (LMM) differs from short-rate models in that it evolves a set of discrete
forward rates. Specifically, the lognormal LMM specifies the following diffusion equation for each
forward rate:

dFi(t)
Fi

= − μidt + σi(t)dWi

where

dW is an N dimensional geometric Brownian motion with:

dWi(t)dW j(t) = ρi jdt

The LMM relates the drifts of the forward rates based on no-arbitrage arguments. Specifically, under
the Spot LIBOR measure, the drifts are expressed as the following:

μi(t) = − σi(t) ∑
j = q(t)

i τ jρi, jσ j(t)F j(t)
1 + τ jF j(t)

where

τi is the time fraction associated with the ith forward rate

q(t) is an index function defined by the relation Tq(t)− 1 < t < Tq(t)

and the Spot LIBOR numeraire is defined as the following:

B(t) = P(t, Tq(t)) ∏
n = 0

q(t)− 1
(1 + τnFn(Tn))

Given the above, the choice with the LMM is how to model volatility and correlation.

The volatility of the rates can be modeled with a stochastic volatility, but for this example a
deterministic volatility is used, and so a functional form needs to be specified. One of the most
popular functional forms in the literature is the following:

σi(t) = ϕi(a(Ti− t) + b)ec(Ti− t) + d

where ϕ adjusts the curve to match the volatility for the ith forward rate.

Similarly, the correlation between the forward rates needs to be specified. This can be estimated from
historical data or fitted to option prices. For this example, the following functional form will be used:

ρi, j = e−β | i− j|

Once the volatility and correlation are specified, the parameters need to be calibrated -- this can be
done with historical or market data, typically swaptions or caps and floors. For this example, we
simply use reasonable estimates for the correlation and volatility parameters.

% The volatility function to be used -- and one choice for the parameters
LMMVolFunc = @(a,t) (a(1)*t + a(2)).*exp(-a(3)*t) + a(4);
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LMMVolParams = [.13 .04 .7 .08];

% Volatility specification
fplot(@(t) LMMVolFunc(LMMVolParams,t),[0 10])
title(['Volatility Function with parameters ' mat2str(LMMVolParams)])
ylabel('Volatility (%)')
xlabel('Tenor (years)')

Calibration to Market Data

The parameters in the G2++ model can be calibrated to market data. Typically, the parameters are
calibrated to observed interest-rate cap, floor and/or swaption data. For now, market cap data is used
for calibration.

This data is hardcoded but could be imported into MATLAB with the Database Toolbox™ or Datafeed
Toolbox™.

% Zero Curve -- this data is hardcoded for now, but could be bootstrapped
% using the bootstrap method of IRDataCurve.
ZeroTimes = [3/12 6/12 1 5 7 10 20 30]';
ZeroRates = [0.033 0.034 0.035 0.040 0.042 0.044 0.048 0.0475]';
ZeroDates = daysadd(Settle,360*ZeroTimes,1);
DiscountRates = zero2disc(ZeroRates,ZeroDates,Settle);
irdc = IRDataCurve('Zero',Settle,ZeroDates,ZeroRates);

figure
plot(ZeroDates,ZeroRates)
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datetick
title(['US Zero Curve for ' datestr(Settle)])

% Cap Data
Reset = 2;
Notional = 100;
CapMaturity = daysadd(Settle,360*[1:5 7 10 15 20 25 30],1);
CapVolatility = [.28 .30 .32 .31 .30 .27 .23 .2 .18 .17 .165]';

% ATM strikes could be computed with swapbyzero
Strike = [0.0353 0.0366 0.0378 0.0390 0.0402 0.0421 0.0439 ...
    0.0456 0.0471 0.0471 0.0471]';

% This could be computed with capbyblk
BlackCapPrices = [0.1532 0.6416 1.3366 2.0290 2.7366 4.2960 6.5992 ...
    9.6787 12.2580 14.0969 15.7873]';

figure
scatter(CapMaturity,CapVolatility)
datetick
title(['ATM Volatility for Caps on ' datestr(Settle)])
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To calibrate the model parameters, a parameter set will be found that minimizes the sum of the
squared differences between the G2++ predicted Cap values and the observed Black Cap values. The
Optimization Toolbox™ function lsqnonlin is used in this example, although other approaches (for
example, Global Optimization) may also be applicable. The function capbylg2f computes the
analytic values for the caps given parameter values.

Upper and lower bounds for the model parameters are set to be relatively constrained. As Brigo and
Mercurio discuss, the correlation parameter, rho, can often be close to -1 when fitting a G2++ model
to interest-rate cap prices. Therefore, rho is constrained to be between -.7 and .7 to ensure that the
parameters represent a truly two-factor model. The remaining mean reversion and volatility
parameters are constrained to be between 0 and .5. Calibration remains a complex task, and while
the plot below indicates that the best fit parameters seem to do a reasonably good job of reproducing
the Cap prices, it should be noted that the procedure outlined here simply represents one approach.

% Call to lsqnonlin to calibrate parameters
objfun = @(x) BlackCapPrices - capbylg2f(irdc,x(1),x(2),x(3),x(4),x(5),Strike,CapMaturity);
x0 = [.5 .05 .1 .01 -.1];
lb = [0 0 0 0 -.7];
ub = [.5 .5 .5 .5 .7];

G2PP_Params = lsqnonlin(objfun,x0,lb,ub);

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to 
its initial value is less than the value of the function tolerance.
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a = G2PP_Params(1);
b = G2PP_Params(2);
sigma = G2PP_Params(3);
eta = G2PP_Params(4);
rho = G2PP_Params(5);

% Compare the results
figure
scatter(CapMaturity,BlackCapPrices)
hold on
scatter(CapMaturity,capbylg2f(irdc,a,b,sigma,eta,rho,Strike,CapMaturity),'rx')
datetick
title('Market and Model Implied Prices')
ylabel('Price ($)')

G2++ Model Implementation

The LinearGaussian2F model can be used to specify the G2++ model and simulate future paths
interest rates.

% G2++ model from Brigo and Mercurio with time homogeneous volatility
% parameters
G2PP = LinearGaussian2F(irdc,a,b,sigma,eta,rho);

LIBOR Market Model Implementation

After the volatility and correlation have been calibrated, Monte Carlo simulation is used to evolve the
rates forward in time. The LiborMarketModel object is used to simulate the forward rates.
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While factor reduction is often used with the LMM to reduce computational complexity, there is no
factor reduction in this example.

6M LIBOR rates are chosen to be evolved in this simulation. Since a monthly prepayment vector must
be computed, interpolation is used to generate the intermediate rates. Simple linear interpolation is
used.

numForwardRates = 46;

% Instead of being fit, VolPhi is simply hard-coded  --
% representative of a declining volatility over time.
VolPhi = linspace(1.2,.8,numForwardRates-1)';

Beta = .08;
CorrFunc = @(i,j,Beta) exp(-Beta*abs(i-j));
CorrMat = CorrFunc(meshgrid(1:numForwardRates-1)',meshgrid(1:numForwardRates-1),Beta);

VolFunc = cell(length(VolPhi),1);
for jdx = 1:length(VolPhi)
    VolFunc(jdx) = {@(t) VolPhi(jdx)*ones(size(t)).*(LMMVolParams(1)*t + ...
        LMMVolParams(2)).*exp(-LMMVolParams(3)*t) + LMMVolParams(4)};
end

LMM = LiborMarketModel(irdc,VolFunc,CorrMat);

G2++ Monte Carlo Simulation

The various interest-rate paths can be simulated by calling the simTermStructs method.

One limitation to two-factor Gaussian models like this one is that it does permit negative interest
rates. This is a concern, particularly in low interest-rate environments. To handle this possibility, any
interest-rate paths with negative rates are simply rejected.

nPeriods = NumCouponsRemaining;
nTrials = 100;
DeltaTime = 1/12;

% Generate factors and short rates
Tenor = [1/12 1 2 3 4 5 7 10 15 20 30];
G2PP_SimZeroRates = G2PP.simTermStructs(nPeriods,'NTRIALS',nTrials,...
    'Tenor',Tenor,'DeltaTime',DeltaTime);

SimDates = daysadd(Settle,360*DeltaTime*(0:nPeriods),1);

% Tenors that will be recovered for each simulation date. The stepsize is
% included here to facilitate computing a discount factor for each
% simulation path.

% Remove any paths that go negative
NegIdx = squeeze(any(any(G2PP_SimZeroRates < 0,1),2));
G2PP_SimZeroRates(:,:,NegIdx) = [];
nTrials = size(G2PP_SimZeroRates,3);

% Plot evolution of one sample path
trialIdx = 1;
figure
surf(Tenor,SimDates,G2PP_SimZeroRates(:,:,trialIdx))
datetick y keepticks keeplimits
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title(['Evolution of the Zero Curve for Trial:' num2str(trialIdx) ' of G2++ Model'])
xlabel('Tenor (Years)')

LIBOR Market Model Simulation

The various interest-rate paths can be simulated by calling the simTermStructs method of the
LiborMarketModel object.

LMMPeriod = 2; % Semiannual rates
LMMNumPeriods = NumCouponsRemaining/12*LMMPeriod; % Number of semiannual periods
LMMDeltaTime = 1/LMMPeriod;
LMMNTRIALS = 100;

% Simulate
[LMMZeroRates, LMMForwardRates] = LMM.simTermStructs(LMMNumPeriods,'nTrials',LMMNTRIALS,'DeltaTime',LMMDeltaTime);
ForwardTimes = 1/2:1/2:numForwardRates/2;
LMMSimTimes = 0:1/LMMPeriod:LMMNumPeriods/LMMPeriod;

% Plot evolution of one sample path
trialIdx = 1;
figure
tmpPlotData = LMMZeroRates(:,:,trialIdx);
tmpPlotData(tmpPlotData == 0) = NaN;
surf(ForwardTimes,LMMSimTimes,tmpPlotData)
title(['Evolution of the Zero Curve for Trial:' num2str(trialIdx) ' of LIBOR Market Model'])
xlabel('Tenor (Years)')
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Compute Mortgage Rates from Simulation

Once the interest-rate paths have been simulated, the mortgage rate needs to be computed -- one
approach, discussed by [7 on page 5-0 ], is to compute the mortgage rate from a combination of the
2-year and 10-year rates.

For this example, the following is used:

MortgageRate = . 024 + . 2 * TwoYearRate + . 6 * TenYearRate

% Compute mortgage rates from interest rate paths
TwoYearRates = squeeze(G2PP_SimZeroRates(:,Tenor == 2,:));
TenYearRates = squeeze(G2PP_SimZeroRates(:,Tenor == 7,:));
G2PP_MortgageRates = .024 + .2*TwoYearRates + .6*TenYearRates;

LMMMortgageRates = squeeze(.024 + .2*LMMZeroRates(:,4,:) + .6*LMMZeroRates(:,20,:));
LMMDiscountFactors = squeeze(cumprod(1./(1 + LMMZeroRates(:,1,:)*.5)));

% Interpolate to get monthly mortgage rates
MonthlySimTimes = 0:1/12:LMMNumPeriods/LMMPeriod;
LMMMonthlyMortgageRates = zeros(nPeriods+1,LMMNTRIALS);
LMMMonthlyDF = zeros(nPeriods+1,LMMNTRIALS);
for trialidx = 1:LMMNTRIALS
   LMMMonthlyMortgageRates(:,trialidx) = interp1(LMMSimTimes,LMMMortgageRates(:,trialidx),MonthlySimTimes,'linear','extrap');
   LMMMonthlyDF(:,trialidx) = interp1(LMMSimTimes,LMMDiscountFactors(:,trialidx),MonthlySimTimes,'linear','extrap');
end
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Computing CPR and Generating and Valuing Cash Flows

Once the Mortgage Rates have been simulated, the CPR can be computed from the multiplicative
model for each interest-rate path.

% Compute Seasoning and Refinancing Multipliers
Seasoning = ones(nPeriods+1,1);
Seasoning(1:30) = 1/30*(1:30);
G2PP_Refi = .2406 - .1389 * atan(5.952*(1.089 - CouponRate./G2PP_MortgageRates));
LMM_Refi = .2406 - .1389 * atan(5.952*(1.089 - CouponRate./LMMMonthlyMortgageRates));

% CPR is simply computed by evaluating the multiplicative model
G2PP_CPR = bsxfun(@times,G2PP_Refi,Seasoning.*(Seasonality(month(CFlowDates))'));
LMM_CPR = bsxfun(@times,LMM_Refi,Seasoning.*(Seasonality(month(CFlowDates))'));

% Compute single monthly mortality (SMM) from CPR
G2PP_SMM = 1 - (1 - G2PP_CPR).^(1/12);
LMM_SMM = 1 - (1 - LMM_CPR).^(1/12);

% Plot CPR's against 100 PSA
CPR_PSA100 = psaspeed2rate(100);
figure
PSA_handle = plot(CPR_PSA100(1:nPeriods),'rx');
hold on
G2PP_handle = plot(G2PP_CPR,'b');
LMM_handle = plot(LMM_CPR,'g');
title('Prepayment Speeds')
legend([PSA_handle(1) G2PP_handle(1) LMM_handle(1)],{'100 PSA','G2PP CPR','LMM CPR'},'Location', 'Best');
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Generate Cash Flows and Compute Present Value

With a vector of single monthly mortalities (SMM) computed for each interest-rate path, cash flows
for the MBS can be computed and discounted.

% Compute the baseline zero rate at each cash flow time
CFlowZero = interp1(ZeroTimes,ZeroRates,CFlowTimes,'linear','extrap');

% Compute DF for each cash flow time
CFlowDF_Zero = zero2disc(CFlowZero,CFlowDates,Settle);

% Compute the price of the MBS using the zero curve
Price_Zero = CFlowAmounts*CFlowDF_Zero';

% Generate the cash flows for each IR Path
G2PP_CFlowAmounts = mbscfamounts(Settle, ...
    repmat(Maturity,1,nTrials), IssueDate, GrossRate, CouponRate, Delay, [], G2PP_SMM(2:end,:));

% Compute the DF for each IR path
G2PP_CFlowDFSim = cumprod(exp(squeeze(-G2PP_SimZeroRates(:,1,:).*DeltaTime)));

% Present value the cash flows for each MBS
G2PP_Price_Ind = sum(G2PP_CFlowAmounts.*G2PP_CFlowDFSim',2);
G2PP_Price = mean(G2PP_Price_Ind);

% Repeat for LMM
LMM_CFlowAmounts = mbscfamounts(Settle, ...
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    repmat(Maturity,1,LMMNTRIALS), IssueDate, GrossRate, CouponRate, Delay, [], LMM_SMM(2:end,:));

% Present value the cash flows for each MBS
LMM_Price_Ind = sum(LMM_CFlowAmounts.*LMMMonthlyDF',2);
LMM_Price = mean(LMM_Price_Ind);

The results from the different approaches can be compared. The number of trials for the G2++ model
will typically be less than 100 due to the filtering out of any paths that produce negative interest
rates.

Additionally, while the number of trials for the G2++ model in this example is set to be 100, it is often
the case that a larger number of simulations need to be run to produce an accurate valuation.

fprintf('                     # of Monte Carlo Trials: %8d\n'    , nTrials)

                     # of Monte Carlo Trials:       72

fprintf('                     # of Time Periods/Trial: %8d\n\n'  , nPeriods)

                     # of Time Periods/Trial:      156

fprintf('                      MBS Price with PSA 100: %8.4f\n'  , Price_Zero)

                      MBS Price with PSA 100:   1.0187

fprintf(' MBS Price with Custom G2PP Prepayment Model: %8.4f\n\n', G2PP_Price)

 MBS Price with Custom G2PP Prepayment Model:   0.9884

fprintf(' MBS Price with Custom LMM Prepayment Model: %8.4f\n\n', LMM_Price)

 MBS Price with Custom LMM Prepayment Model:   0.9993

Conclusion

This example shows how to calibrate and simulate a G2++ interest-rate model and how to use the
generated interest-rate paths in a prepayment model loosely based on the Richard and Roll model.
This example also provides a useful starting point to using the G2++ and LMM interest-rate models
in other financial applications.
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See Also
mbscfamounts | mbsconvp | mbsconvy | mbsdurp | mbsdury | mbsnoprepay | mbspassthrough |
mbsprice | mbswal | mbsyield | mbsprice2speed | mbsyield2speed | psaspeed2default |
psaspeed2rate | mbsoas2price | mbsoas2yield | mbsprice2oas | mbsyield2oas

Related Examples
• “Pricing Mortgage Backed Securities Using the Black-Derman-Toy Model” on page 5-34
• “Using Collateralized Mortgage Obligations (CMOs)” on page 5-40

More About
• “What Are Mortgage-Backed Securities?” on page 5-2
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Pricing Mortgage Backed Securities Using the Black-Derman-
Toy Model

This example illustrates how the Financial Toolbox™ and Financial Instruments Toolbox™ are used to
price a level mortgage backed security using the BDT model.

Load the BDT Tree Stored in the Data File
 load mbsexample.mat

Observe the Interest-Rate Tree

Visualize the interest rate evolution along the tree by looking at the output structure BDTTree.
BDTTree returns an inverse discount tree, which you can convert into an interest-rate tree with the
cvtree function.

BDTTreeR = cvtree(BDTTree);

Look at the upper branch and lower branch paths of the tree:

OldFormat = get(0, 'format');  
format short

%Rate at root node:
RateRoot      = treepath(BDTTreeR.RateTree, 0) 

RateRoot = 0.0399

%Rates along upper branch:
RatePathUp    = treepath(BDTTreeR.RateTree, [1 1 1 1 1]) 

RatePathUp = 6×1

    0.0399
    0.0397
    0.0391
    0.0383
    0.0373
    0.0360

%Rates along lower branch:
RatePathDown = treepath(BDTTreeR.RateTree, [2 2 2 2 2])

RatePathDown = 6×1

    0.0399
    0.0470
    0.0550
    0.0638
    0.0734
    0.0841

Compute the Price Tree for the Non-Prepayable Mortgage

Let's say that we have a three year $10000 level prepayable loan, with a mortgage interest rate of
4.64% semi-annually compounded.
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MortgageAmount = 10000;
CouponRate = 0.0464;
Period = 2;
Settle='01-Jan-2007';
Maturity='01-Jan-2010';
Compounding = BDTTree.TimeSpec.Compounding;

format bank

Use the function amortize in the Financial Toolbox™ to calculate the mortgage payment of the loan
(MP), the interest and principal components, and the outstanding principal balance.

NumPeriods = date2time(Settle,Maturity, Compounding)';

[Principal, InterestPayment, OutstandingBalance, MP] = amortize(CouponRate/Period, NumPeriods, MortgageAmount);

% Display Principal, Interest and Outstanding balances
PrincipalAmount = Principal'

PrincipalAmount = 6×1

       1572.59
       1609.07
       1646.40
       1684.60
       1723.68
       1763.67

InterestPaymentAmount = InterestPayment'

InterestPaymentAmount = 6×1

        232.00
        195.52
        158.19
        119.99
         80.91
         40.92

OutstandingBalanceAmount = OutstandingBalance'

OutstandingBalanceAmount = 6×1

       8427.41
       6818.34
       5171.94
       3487.35
       1763.67
          0.00

CFlowAmounts = MP*ones(1,NumPeriods);
% The CFlowDates are the same as the tree level dates
CFlowDates= {'01-Jul-2007' ,'01-Jan-2008' ,'01-Jul-2008' , '01-Jan-2009' , '01-Jul-2009' , '01-Jan-2010'} ;

% Calculate the price of the non-prepayable mortgage
[PriceNonPrepayableMortgage, PriceTreeNonPrepayableMortgage] = cfbybdt(BDTTree, CFlowAmounts, CFlowDates, Settle);

 Pricing Mortgage Backed Securities Using the Black-Derman-Toy Model

5-35



for iLevel = 2:length(PriceTreeNonPrepayableMortgage.PTree) 
    PriceTreeNonPrepayableMortgage.PTree{iLevel}(:,:)= PriceTreeNonPrepayableMortgage.PTree{iLevel}(:,:) - MP;
end

% Look at the price of the mortgage today tObs = 0
PriceNonPrepayableMortgage

PriceNonPrepayableMortgage = 
      10017.47

% The value of the non-prepayable mortgage is $10017.47. This value exceeds
% the $10000 amount borrowed since the homeowner received not only $10000, but
% also a prepayment option. 

% Look at the value of the mortgage on the last date, right after the last
% mortgage payment, is zero:
PriceTreeNonPrepayableMortgage.PTree{end}

ans = 1×6

             0             0             0             0             0             0

% Visualize the price tree for the non-prepayable mortgage.
treeviewer(PriceTreeNonPrepayableMortgage)

5 Mortgage-Backed Securities

5-36



Compute the Price Tree of the Prepayment Option

% The Prepayment option is like a call option on a bond.
%
% The exercise price or strike will be equal to the outstanding principal amount
% which has been calculated using the function amortize.

OptSpec = 'call';
Strike = [MortgageAmount OutstandingBalance];
ExerciseDates =[Settle CFlowDates];
AmericanOpt = 0; 
Maturity = CFlowDates(end);

% Compute the price of the prepayment option:
[PricePrepaymentOption, PriceTreePrepaymentOption] = prepaymentbybdt(BDTTree, OptSpec, Strike, ExerciseDates, AmericanOpt, ...
                            0, Settle, Maturity,[], [], [], ...
                           [], [], [],  [], 0, [], CFlowAmounts);
                       

% Look at the price of the prepayment option today (tObs = 0)
PricePrepaymentOption

PricePrepaymentOption = 
         17.47

% The value of the prepayment option is $17.47 as expected. 

% Visualize the price tree for the prepayment option
treeviewer(PriceTreePrepaymentOption)
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Calculate the Price Tree of the Prepayable Mortgage.

% Compute the price of the prepayable mortgage.

PricePrepayableMortgage = PriceNonPrepayableMortgage - PricePrepaymentOption;

PriceTreePrepayableMortgage = PriceTreeNonPrepayableMortgage;

for iLevel = 1:length(PriceTreeNonPrepayableMortgage.PTree) 
    PriceTreePrepayableMortgage.PTree{iLevel}(:,:)= PriceTreeNonPrepayableMortgage.PTree{iLevel}(:,:) -  ...
         PriceTreePrepaymentOption.PTree{iLevel}(:,:);
end

% Look at the price of the prepayable mortgage today (tObs = 0)
PricePrepayableMortgage

PricePrepayableMortgage = 
      10000.00

% The value of the prepayable mortgage is $10000 as expected. 

% Visualize the price and price tree for the prepayable mortgage
treeviewer(PriceTreePrepayableMortgage)
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set(0, 'format', OldFormat);

See Also
mbscfamounts | mbsconvp | mbsconvy | mbsdurp | mbsdury | mbsnoprepay | mbspassthrough |
mbsprice | mbswal | mbsyield | mbsprice2speed | mbsyield2speed | psaspeed2default |
psaspeed2rate | mbsoas2price | mbsoas2yield | mbsprice2oas | mbsyield2oas

Related Examples
• “Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model” on

page 5-16
• “Using Collateralized Mortgage Obligations (CMOs)” on page 5-40

More About
• “What Are Mortgage-Backed Securities?” on page 5-2
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Using Collateralized Mortgage Obligations (CMOs)

What Are CMOs?
Financial Instruments Toolbox supports collateralized mortgage obligations (CMOs) to provide
investors with a greater range of risk and return characteristics than mortgage-backed securities
(MBS). In contrast to an MBS, which simply redirects principal and interest cash flows to investors on
a pro rata basis, a CMO structures cash flows to different tranches, or slices, to create securities that
are better tailored to specific investors.

For example, banks might be primarily concerned with extension risk, or the risk that their
investment lengthens in time due to increasing interest rates, given that they typically have short-
term deposits as liabilities. Insurance companies and pension funds might be concerned primarily
with contraction risk, or the risk that their investment will pay off too soon, with liabilities that have
much longer lives. A CMO structure addresses the interest-rate risk of extension or contraction with
a blend of short-term and long-term CMO securities, called tranches.

See Also
cmoseqcf | cmosched | cmoschedcf | mbscfamounts | mbspassthrough

Related Examples
• “CMO Workflow” on page 5-47
• “Prepayment Risk” on page 5-41
• “Create PAC and Sequential CMO” on page 5-49
• “Fixed-Rate Mortgage Pool” on page 5-3

More About
• “What Are Mortgage-Backed Securities?” on page 5-2
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Prepayment Risk
Prepayment risk is the risk that the term of the security varies according to differing rates of
repayment of principal by borrowers (repayments from refinancings, sales, curtailments, or
foreclosures). In a CMO, you can structure the principal (and associated coupon) stream from the
underlying mortgage pool collateral to allocate prepayment risk. If principal is prepaid faster than
expected (for example, if mortgage rates fall and borrowers refinance), then the overall term of the
mortgage pool collateral shortens.

You cannot remove prepayment risk, but you can reallocate it among CMO tranches so that some
tranches have some protection against this risk, and other tranches will absorb more of this risk. To
facilitate this allocation of prepayment risk, CMOs are structured such that prepayments are
allocated among tranches using a fixed set of rules. The most common schemes for prepayment
tranching are:

• Sequential tranching, with or without, Z-bond tranching
• Schedule bond tranching

• Planned amortization class (PAC) bonds
• Target amortization class (TAC) bonds

Financial Instruments Toolbox supports these schemes for prepayment tranching for CMOs and tools
for pricing and scheduling cash flows between the tranches, as well as analyzing the price and yield
for CMOs. Financial Instruments Toolbox functionality for CMOs does not model credit risk.
Therefore, this functionality is most appropriate for CMOs where credit risk is not an issue (for
example, agency CMOs where the underlying mortgage pool collateral is insured for default by the
agency Government-Sponsored Enterprises (GSEs), such as Fannie Mae and Freddie Mac).

Sequential Tranches Without a Z-Bond
All available principal and interest payments go to the first sequential tranche, until its balance
decrements to zero, then to the second, and so on. For example, consider the following example
where all principal and interest from the underlying mortgage pool is repaid on tranche A first, then
tranche B, then tranche C. Interest is paid on each tranche as long as the principal for the tranche
has not been retired.
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Sequential Tranches with a Z-Bond
The Z-bond, also called an accrual bond, is a type of interest and principal pay rule. The Z-bond
tranche supports other sequential pay tranches by not receiving an interest payment. The interest
payment that would have accrued to the Z-bond tranche pays off the principal of other bonds, and the
principal of the Z-bond tranche increases. The Z-bond tranche starts receiving interest and principal
payments only after the other tranches in the CMO have been fully paid. The Z-bond tranche is used
in a sequential-pay structure to accelerate the principal repayments of the sequential-pay bonds.

A Z-bond differs from other CMO instruments because it is not tranching principal but interest. The
Z-bond receives no cash flows until all other securities have been paid off. In the interim, the interest
that is owed to the Z-bond is accrued to its principal. The following chart demonstrates the difference
between a Z-bond and a normal sequential pay tranche. The C tranche pays off sooner with the Z-
bond, because the interest cash flows to the Z-bond are being used to pay down the principal of the C
tranche.

For comparison, the following graphic is the same sequential CMO with no Z-bond.

PAC Tranches
Planned amortization class (PAC) bonds help reduce the effects of prepayment risk. They are
designed to produce more stable cash flows by redirecting prepayments from the underlying
mortgage collateral to other classes (tranches) called companion or support classes. PAC bonds have
a principal payment rate over a predetermined period of time. The PAC bond payment schedule is
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determined by two different prepayment rates, which together form a band (also called a collar).
Early in the life of the CMO, the prepayment at the lower PSA yields a lower prepayment. Later in its
life, the principal in the higher PSA declines enough that it yields a lower prepayment. The PAC
tranche receives whichever rate is lower, so it will change prepayment at one PSA for the first part of
its life, then switch to the other rate. The ability to stay on this schedule is maintained by a support
bond, which absorbs excess prepayments, and receives fewer prepayments to prevent extension of
average life.

However, the PAC is only protected from extension to the amount that prepayments are made on the
underlying MBSs. If there is a sustained period of fast prepayments, then that might completely
eliminate a PAC bond’s outstanding support class. When the principal of the associated PAC bond is
exhausted, the CMO is called a “busted PAC”, or “busted collar”. Alternatively, in times of slow
prepayments, amortization of the support bonds is delayed if there is not enough principal for the
currently paying PAC bond. This extends the average life of the class.

A PAC bond protects against both extension and contraction risk by:

• Specifying a schedule of principal payments for the PAC bond
• Including support tranches that are allocated prepayments inside a specified prepayment band

PAC bonds typically specify a band expressed using the PSA model. A PAC bond with a range of 100–
250% has this principal schedule.

The principal repayment schedule is the minimum principal payment as Region 1 shows. This is the
principal payment schedule as long as the actual prepayment stays within the prepayment band of
100–250% PSA.

For example, for different prepayment speeds of 125%, 175%, and 225% PSA, the actual principal
payments are shown in the following graphs. At higher prepayment speeds, the support tranche is
allocated principal earlier while the principal timing for the other tranches remains constant.
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TAC Tranches
Target amortization class (TAC) bonds are similar to PAC bonds, but they do not provide protection
against extension of average life. Create the schedule of principal payments by using just a single
PSA. TAC bonds pay a “targeted” principal payment schedule at a single, constant prepayment speed.
As long as the underlying mortgage collateral does not prepay at a rate slower than this speed, the
TAC bond payment schedule is met. TAC bonds can protect against increasing prepayments and early
retirement of the TAC bond investment. If the principal cash flow from the mortgage collateral
exceeds the TAC schedule, the excess is allocated to TAC companion (support) classes. Alternatively,
if prepayments fall below the speed necessary to maintain the TAC schedule, the weighted average
life of the TAC is extended. The TAC bond does not protect against low prepayment rates.

For example, here is a TAC structure rated for 125%, 175%, and 450% PSA.
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For prepayments below 175% PSA, the TAC bond extends like a normal sequential pay CMO. TAC
bonds are appealing because they offer higher yields than comparable PAC bonds. The unaddressed
risk from low prepayment rates generally does not concern investors as much as risk from high
prepayment rates.

See Also
cmoseqcf | cmosched | cmoschedcf | mbscfamounts | mbspassthrough
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Related Examples
• “CMO Workflow” on page 5-47
• “Prepayment Risk” on page 5-41
• “Create PAC and Sequential CMO” on page 5-49
• “Fixed-Rate Mortgage Pool” on page 5-3

More About
• “What Are CMOs?” on page 5-40
• “What Are Mortgage-Backed Securities?” on page 5-2
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CMO Workflow
In general, the CMO workflow is:

1 Calculate underlying mortgage cash flows.
2 Define CMO tranches
3 If using a PAC or TAC CMO, calculate the principal schedule.
4 Calculate cash flows for each tranche.
5 Analyze the CMO by computing price, yield, spread of CMO cash flows.

Calculate Underlying Mortgage Cash Flows
Underlying mortgage pool pass-through cash flows are calculated by the existing function
mbspassthrough. The CMO cash flow functions require the principal payments (including
prepayments) calculated from existing functions mbspassthrough or mbscfamounts.
principal = 10000000;
coupon = 0.06;
terms = 360;
psa = 150;

[principal_balance, monthly_payments, sched_principal_payments,...
interest_payments, prepayments] = mbspassthrough(principal,...
coupon, terms, terms, psa, []);

principal_payments = sched_principal_payments.' + prepayments.';

After determining principal payments for the underlying mortgage collateral, you can generate cash
flows for a sequential CMO, with or without a Z-bond, by using cmoseqcf. For a PAC or TAC CMO,
the cash flows are generated using cmoschedcf

Define CMO Tranches
Define CMO tranche; for example, define a CMO with two tranches:

TranchePrincipals = [500000; 500000];
TrancheCoupons = [0.06; 0.06];

If Using a PAC or TAC CMO, Calculate Principal Schedule
Calculate the PAC/TAC principal balance schedule based on a band of PSA speeds. For scheduled
CMOs (PAC/TAC), the CMO cash flow functions additionally take in the principal balance schedule
calculated by the CMO schedule function cmosched.
terms = 360;
coupon = 0.06;
principal = 10000000;
speed = [100 300];
[balanceSchedule, initialBalance] = cmosched(principal, coupon,...
terms, terms, speed, TranchePrincipals(1));

Calculate Cash Flows for Each Tranche
You can reuse the output from the cash flow generation functions to further divide the cash flows into
tranches. For example, the output from cmoschedcf for a PAC tranche can be divided into sequential
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tranches by passing the principal cash flows of the PAC tranche into the cmoschedcf function. The
outputs of the CMO cash flow functions are the principal and interest cash flows, and the principal
balance.
[principal_balances, principal_cashflows, interest_cashflows] = cmoschedcf(principal_payments,...
TranchePrincipals, TrancheCoupons, balanceSchedule);

Analyze CMO by Computing Price, Yield, and Spread of CMO Cash
Flows
The outputs from the CMO functions (cmoseqcf and cmoschedcf) are cash flows. The functions
used to analyze a CMO are based on these cash flows. To that end, you can use cfbyzero,
cfspread, cfyield, and cfprice to compute prices, yield, and spreads for the CMO cash flows. In
addition, using the following, you can calculate a weighted average life (WAL) for each tranche in the
CMO:

WAL = ∑
i = 1

n Pi
P ti

where:

P is the total principal.

Pi is the principal repayment of the coupon i.

Pi
P  is the fraction of the principal repaid in coupon i.

ti is the time in years from the start to coupon i.

See Also
cmoseqcf | cmosched | cmoschedcf | mbscfamounts | mbspassthrough

Related Examples
• “Using Collateralized Mortgage Obligations (CMOs)” on page 5-40
• “Create PAC and Sequential CMO” on page 5-49
• “Fixed-Rate Mortgage Pool” on page 5-3

More About
• “What Are Mortgage-Backed Securities?” on page 5-2
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Create PAC and Sequential CMO
This example shows how to use an underlying mortgage-backed security (MBS) pool for a 30-year
fixed-rate mortgage of 6% to define a PAC bond, and then define a sequential CMO from the PAC
bond. Analyze the CMO by comparing the CMO spread to a zero-rate curve for a 30-year Treasury
bond and then calculate the weighted-average life (WAL) for the PAC bond.

Step 1. Define the underlying mortgage pool.

principal = 100000000;
grossrate = 0.06;
coupon = 0.05;
originalTerm = 360;
termRemaining = 360;
speed = 100;
delay = 14;

Settle      = datenum('1-Jan-2011');
IssueDate   = datenum('1-Jan-2011');
Maturity    = addtodate(IssueDate, 360, 'month');

Step 2. Calculate underlying pool cash flow.

[CFlowAmounts, CFlowDates, ~, ~, ~, UnitPrincipal, UnitInterest, ...
UnitPrepayment] = mbscfamounts(Settle, Maturity, IssueDate, grossrate, ...
coupon, delay, speed, []);

Step 3. Calculate prepayments.

principalPayments = UnitPrincipal * principal;
netInterest = UnitInterest * principal;
prepayments = UnitPrepayment * principal;
dates = CFlowDates' + delay;

Step 4. Generate a plot for underlying MBS payments.

area([principalPayments'+prepayments', netInterest'])
title('Underlying MBS Payments');
legend('Principal Payments (incl. Prepayments)', 'Interest Payments')
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Step 5. Calculate the PAC schedule.

pacSpeed = [80 300];
[balanceSchedule, pacInitBalance] = ...
cmosched(principal, grossrate, originalTerm, termRemaining, ...
pacSpeed, []);

Step 6. Generate a plot for the PAC principal balance schedule.

figure;
area([pacInitBalance'; balanceSchedule'])
title('PAC Principal Balance Schedule');
legend('Principal Balance Schedule');
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Step 7. Calculate PAC cash flow.

pacTranchePrincipals = [pacInitBalance; principal-pacInitBalance];
pacTrancheCoupons = [0.05; 0.05];
[pacBalances, pacPrincipals, pacInterests] = ...
cmoschedcf(principalPayments+prepayments, ...
pacTranchePrincipals, pacTrancheCoupons, balanceSchedule);

Step 8. Generate a plot for the PAC CMO tranches.

Generate a plot for the PAC CMO tranches:

figure;
area([pacPrincipals' pacInterests']);
title('PAC CMO (PAC and Support Tranches)');
legend('PAC Principal Payments', 'Support Principal Payments', ...
'PAC Interest Payments', 'Support Interest Payments');
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Step 9. Create sequential CMO from the PAC bond.

CMO tranches, A, B, C, and D

seqTranchePrincipals = ...
[20000000; 20000000; 10000000; pacInitBalance-50000000];
seqTrancheCoupons = [0.05; 0.05; 0.05; 0.05];

Step 10. Calculate cash flows for each tranche.

[seqBalances, seqPrincipals, seqInterests] = ...
cmoseqcf(pacPrincipals(1, :), seqTranchePrincipals, ...
seqTrancheCoupons, false);

Step 11. Generate a plot for the sequential PAC CMO.

Generate a plot for the sequential PAC CMO:

figure
area([seqPrincipals' pacPrincipals(2, :)' pacInterests']);
title('Sequential PAC CMO and Support Tranches');
legend('Sequential PAC Principals (A)', 'Sequential PAC Principals (B)', ...
'Sequential PAC Principals (C)', 'Sequential PAC Principals (D)', ...
'Support Principal Payments', 'PAC Interest Payments', ...
'Support Interest Payments');
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Step 12. Create the discount curve.

CurveSettle = datenum('1-Jan-2011');
ZeroRates = [0.01 0.03 0.10 0.19 0.45 0.81 1.76 2.50 3.18 4.09 4.38]'/100;
CurveTimes = [1/12 3/12 6/12 1 2 3 5 7 10 20 30]';
CurveDates = daysadd(CurveSettle, 360 * CurveTimes, 1);
zeroCurve = intenvset('Rates', ZeroRates, 'StartDates', CurveSettle, ...
'EndDates', CurveDates);

Step 13. Price the CMO cash flows.

The cash flow for the sequential PAC principal A tranche is calculated using the cash flow functions
cfbyzero, cfyield, cfprice, and cfspread.

cflows = seqPrincipals(1, :)+seqInterests(1, :);
cfdates = dates(2:end)';
price1 = cfbyzero(zeroCurve, cflows, cfdates, Settle, 4)

price1 = 2.2109e+07

yield = cfyield(cflows, cfdates, price1, Settle, 'Basis', 4)

yield = 0.0090

price2 = cfprice(cflows, cfdates, yield, Settle, 'Basis', 4)

price2 = 2.2109e+07

spread = cfspread(zeroCurve, price2, cflows, cfdates, Settle, 'Basis', 4)

 Create PAC and Sequential CMO

5-53



spread = 5.5084e-12

WAL = sum(cflows .* yearfrac(Settle, cfdates, 4)) / sum(cflows)

WAL = 2.5408

The weighted average life (WAL) for the sequential PAC principal A tranche is 2.54 years.

See Also
cmoseqcf | cmosched | cmoschedcf | mbscfamounts | cfbyzero | cfyield | cfprice |
cfspread | cfbyzero

Related Examples
• “Fixed-Rate Mortgage Pool” on page 5-3

More About
• “Using Collateralized Mortgage Obligations (CMOs)” on page 5-40
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Debt Instruments

• “Agency Option-Adjusted Spreads” on page 6-2
• “Using Zero-Coupon Bonds” on page 6-5
• “Stepped-Coupon Bonds” on page 6-8
• “Term Structure Calculations” on page 6-11

6



Agency Option-Adjusted Spreads
Often bonds are issued with embedded options, which then makes standard price/yield or spread
measures irrelevant. For example, a municipality concerned about the chance that interest rates may
fall in the future might issue bonds with a provision that allows the bond to be repaid before the
bond’s maturity. This is a call option on the bond and must be incorporated into the valuation of the
bond. Option-adjusted spread (OAS), which adjusts a bond spread for the value of the option, is the
standard measure for valuing bonds with embedded options. Financial Instruments Toolbox software
supports computing option-adjusted spreads for bonds with single embedded options using the
agency model.

The Securities Industry and Financial Markets Association (SIFMA) has a simplified approach to
compute OAS for agency issues (Government Sponsored Entities like Fannie Mae and Freddie Mac)
termed “Agency OAS”. In this approach, the bond has only one call date (European call) and uses
Black’s model (a variation on Black Scholes, http://en.wikipedia.org/wiki/Black_model) to
value the bond option. The price of the bond is computed as follows:

PriceCallable = PriceNonCallable – PriceOption

where

PriceCallable is the price of the callable bond.

PriceNonCallable is the price of the noncallable bond, that is, price of the bond using bndspread.

PriceOption is the price of the option, that is, price of the option using Black’s model.

The Agency OAS is the spread, when used in the previous formula, yields the market price. Financial
Instruments Toolbox software supports these functions:

Agency OAS

Agency OAS Functions Purpose
agencyoas Compute the OAS of the callable bond using the Agency OAS

model.
agencyprice Price the callable bond OAS using Agency using the OAS model.

Computing the Agency OAS for Bonds
To compute the Agency OAS using agencyoas, you must provide the zero curve as the input
ZeroData. You can specify the zero curve in any intervals and with any compounding method. You
can do this using Financial Toolbox™ functions zbtprice and zbtyield. Or, you can use
IRDataCurve to construct an IRDataCurve object, and then use the getZeroRates to convert to
dates and data for use in the ZeroData input.

After creating the ZeroData input for agencyoas, you can then:

1 Assign parameters for CouponRate, Settle, Maturity, Vol, CallDate, and Price.
2 Compute the option-adjusted spread using agencyoas to derive the OAS output.

If you have the Agency OAS for the callable bond, you can use the OAS value as an input to
agencyprice to determine the price for a callable bond.
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In the following example, the Agency OAS is computed using agencyoas for a range of bond prices
and the spread of an identically priced noncallable bond is calculated using bndspread.
%% Data
% Bond data -- note that there is only 1 call date
Settle = datenum('20-Jan-2010');
Maturity = datenum('30-Dec-2013');
Coupon = .022;
Vol = .5117;
CallDate = datenum('30-Dec-2010');
Period = 2;
Basis = 1;
Face = 100;
 
% Zero Curve data
ZeroTime = [.25 .5 1 2 3 4 5 7 10 20 30]';
ZeroDates = daysadd(Settle,360*ZeroTime,1);
ZeroRates = [.0008 .0017 .0045 .0102 .0169 .0224 .0274 .0347 .0414 .0530 .0740]';
ZeroData = [ZeroDates ZeroRates];
CurveCompounding = 2;
CurveBasis = 1;

Price = 94:104;
OAS = agencyoas(ZeroData, Price', Coupon, Settle,Maturity, Vol, CallDate,'Basis',Basis)
Spread = bndspread(ZeroData, Price', Coupon, Settle, Maturity)
plot(OAS,Price)
hold on
plot(Spread,Price,'r')
xlabel('Spread (bp)')
ylabel('Price')
title('AOAS and Spread for an Agency and Equivalent Noncallable Bond')
legend({'Callable Issue','Noncallable Issue'})

OAS =

  163.4942
  133.7306
  103.8735
   73.7505
   43.1094
   11.5608
  -21.5412
  -57.3869
  -98.5675
 -152.5226
 -239.6462

Spread =

  168.1412
  139.7047
  111.6123
   83.8561
   56.4286
   29.3227
    2.5314
  -23.9523
  -50.1348
  -76.0226
 -101.6218

The following plot demonstrates as the price increases, the value of the embedded option in the
Agency issue increases, and the value of the issue itself does not increase as much as it would for a
noncallable bond, illustrating the negative convexity of this issue:
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See Also
agencyoas | agencyprice

Related Examples
• “Using Zero-Coupon Bonds” on page 6-5
• “Stepped-Coupon Bonds” on page 6-8
• “Term Structure Calculations” on page 6-11

More About
• “Supported Interest-Rate Instrument Functions” on page 2-3

6 Debt Instruments

6-4



Using Zero-Coupon Bonds
In this section...
“Introduction” on page 6-5
“Measuring Zero-Coupon Bond Function Quality” on page 6-5
“Pricing Treasury Notes” on page 6-5
“Pricing Corporate Bonds” on page 6-7

Introduction
A zero-coupon bond is a corporate, Treasury, or municipal debt instrument that pays no periodic
interest. Typically, the bond is redeemed at maturity for its full face value. It is a security issued at a
discount from its face value, or it may be a coupon bond stripped of its coupons and repackaged as a
zero-coupon bond.

Financial Instruments Toolbox software provides functions for valuing zero-coupon debt instruments.
These functions supplement existing coupon bond functions such as bndprice and bndyield that
are available in Financial Toolbox software.

Measuring Zero-Coupon Bond Function Quality
Zero-coupon function quality is measured by how consistent the results are with coupon-bearing
bonds. Because the zero coupon's yield is bond-equivalent, comparisons with coupon-bearing bonds
are possible.

In the textbook case, where time (t) is measured continuously and the rate (r) is continuously
compounded, the value of a zero bond is the principal multiplied by e−r t. In reality, the rate quoted is
continuous and the basis can be variable, requiring a more consistent approach to meet the stricter
demands of accurate pricing.

The following two examples

• “Pricing Treasury Notes” on page 6-5
• “Pricing Corporate Bonds” on page 6-7

show how the zero functions are consistent with supported coupon bond functions.

Pricing Treasury Notes
A Treasury note can be considered to be a package of zeros. The toolbox functions that price zeros
require a coupon bond equivalent yield. That yield can originate from any type of coupon paying
bond, with any periodic payment, or any accrual basis. The next example shows the use of the toolbox
to price a Treasury note and compares the calculated price with the actual price quotation for that
day.

Settle = datenum('02-03-2003');
MaturityCpn = datenum('05-15-2009');
Period = 2;
Basis = 0;
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% Quoted yield.
QYield = 0.03342;

% Quoted price.
QPriceACT = 112.127;

CouponRate = 0.055;

Extract the cash flow and compute price from the sum of zeros discounted.

[CFlows, CDates] = cfamounts(CouponRate, Settle, MaturityCpn, ... 
Period, Basis);
MaturityofZeros = CDates;

Compute the price of the coupon bond identically as a collection of zeros by multiplying the discount
factors to the corresponding cash flows.

PriceofZeros = CFlows * zeroprice(QYield, Settle, ... 
MaturityofZeros, Period, Basis)/100;

The following table shows the intermediate calculations.

Cash Flows Discount Factors Discounted Cash Flows
-1.2155 1.0000 -1.2155
2.7500 0.9908 2.7246
2.7500 0.9745 2.6799
2.7500 0.9585 2.6359
2.7500 0.9427 2.5925
2.7500 0.9272 2.5499
2.7500 0.9120 2.5080
2.7500 0.8970 2.4668
2.7500 0.8823 2.4263
2.7500 0.8678 2.3864
2.7500 0.8535 2.3472
2.7500 0.8395 2.3086
2.7500 0.8257 2.2706
102.7500 0.8121 83.4451
                                        Total 112.1263

Compare the quoted price and the calculated price based on zeros.

[QPriceACT PriceofZeros]

ans =

112.1270   112.1263

This example shows that zeroprice can satisfactorily price a Treasury note, a semiannual actual/
actual basis bond, as if it were a composed of a series of zero-coupon bonds.
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Pricing Corporate Bonds
You can similarly price a corporate bond, for which there is no corresponding zero-coupon bond, as
opposed to a Treasury note, for which corresponding zeros exist. You can create a synthetic zero-
coupon bond and arrive at the quoted coupon-bond price when you later sum the zeros.

Settle = datenum('02-05-2003');
MaturityCpn = datenum('01-14-2009');
Period = 2;
Basis = 1;
% Quoted yield.
QYield = 0.05974;
% Quoted price.
QPrice30 = 99.382;
CouponRate = 0.05850;

Extract cash flow and compute price from the sum of zeros.
[CFlows, CDates] = cfamounts(CouponRate, Settle, MaturityCpn, ... 
Period, Basis);

Maturity = CDates;

Compute the price of the coupon bond identically as a collection of zeros by multiplying the discount
factors to the corresponding cash flows.
Price30 = CFlows * zeroprice(QYield, Settle, Maturity, Period, ... 
Basis)/100;

Compare quoted price and calculated price based on zeros.

[QPrice30 Price30]

ans =

99.3820   99.3828

As a test of fidelity, intentionally giving the wrong basis, say actual/actual (Basis = 0) instead of
30/360, gives a price of 99.3972. Such a systematic error, if recurring in a more complex pricing
routine, quickly adds up to large inaccuracies.

In summary, the zero functions in MATLAB software facilitate extraction of present value from
virtually any fixed-coupon instrument, up to any period in time.

See Also
bndprice | bndyield

Related Examples
• “Agency Option-Adjusted Spreads” on page 6-2
• “Stepped-Coupon Bonds” on page 6-8
• “Term Structure Calculations” on page 6-11

More About
• “Supported Interest-Rate Instrument Functions” on page 2-3
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Stepped-Coupon Bonds

In this section...
“Introduction” on page 6-8
“Cash Flows from Stepped-Coupon Bonds” on page 6-8
“Price and Yield of Stepped-Coupon Bonds” on page 6-9

Introduction
A stepped-coupon bond has a fixed schedule of changing coupon amounts. Like fixed coupon bonds,
stepped-coupon bonds could have different periodic payments and accrual bases.

The functions stepcpnprice and stepcpnyield compute prices and yields of such bonds. An
accompanying function stepcpncfamounts produces the cash flow schedules pertaining to these
bonds.

Cash Flows from Stepped-Coupon Bonds
Consider a bond that has a schedule of two coupons. Suppose that the bond starts out with a 2%
coupon that steps up to 4% in 2 years and onward to maturity. Assume that the issue and settlement
dates are both March 15, 2003. The bond has a 5-year maturity. Use stepcpncfamounts to generate
the cash flow schedule and times.

Settle      = datenum('15-Mar-2003');
Maturity    = datenum('15-Mar-2008');
ConvDates   = [datenum('15-Mar-2005')];
CouponRates = [0.02, 0.04];

[CFlows, CDates, CTimes] = stepcpncfamounts(Settle, Maturity, ... 
ConvDates, CouponRates)

CFlows =

     0     1     1     1     1     2     2     2     2     2   102

CDates =

      731655      731839      732021      732205      732386      732570      732751      732935      733116      733300      733482

CTimes =

     0     1     2     3     4     5     6     7     8     9    10

Notably, ConvDates has one less element than CouponRates because MATLAB software assumes
that the first element of CouponRates indicates the coupon schedule between Settle (March 15,
2003) and the first element of ConvDates (March 15, 2005), shown diagrammatically below.

 Pay 2% from March 15,
2003

 Pay 4% from March 15,
2003

Effective 2% on March 15,
2003

 Effective 4% on March 15,
2005
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Coupon Dates Semiannual Coupon Payment
15-Mar-03 0
15-Sep-03 1
15-Mar-04 1
15-Sep-04 1
15-Mar-05 1
15-Sep-05 2
15-Mar-06 2
15-Sep-06 2
15-Mar-07 2
15-Sep-07 2
15-Mar-08 102

The payment on March 15, 2005 is still a 2% coupon. Payment of the 4% coupon starts with the next
payment, September 15, 2005. March 15, 2005 is the end of first coupon schedule, not to be confused
with the beginning of the second.

In summary, MATLAB takes user input as the end dates of coupon schedules and computes the next
coupon dates automatically.

The payment due on settlement (zero in this case) represents the accrued interest due on that day. It
is negative if such amount is nonzero. Comparison with cfamounts in Financial Toolbox shows that
the two functions operate identically.

Price and Yield of Stepped-Coupon Bonds
The toolbox provides two basic analytical functions to compute price and yield for stepped-coupon
bonds. Using the above bond as an example, you can compute the price when the yield is known.

You can estimate the yield to maturity as a number-of-year weighted average of coupon rates. For this
bond, the estimated yield is:

(2 × 2) + (4 × 3)
5

.

or 3.33%. While definitely not exact (due to nonlinear relation of price and yield), this estimate
suggests close to par valuation and serves as a quick first check on the function.

Yield = 0.0333;

[Price, AccruedInterest] = stepcpnprice(Yield, Settle, ... 
Maturity, ConvDates, CouponRates)

Price =

   99.2237

AccruedInterest =
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     0

The price returned is 99.2237 (per $100 notional), and the accrued interest is zero, consistent with
our earlier assertions.

To validate that there is consistency among the stepped-coupon functions, you can use the above
price and see if indeed it implies a 3.33% yield by using stepcpnyield.

YTM = stepcpnyield(Price, Settle, Maturity, ConvDates, ... 
CouponRates)

YTM =

    0.0333

See Also
stepcpnprice | stepcpnyield | stepcpncfamounts

Related Examples
• “Agency Option-Adjusted Spreads” on page 6-2
• “Using Zero-Coupon Bonds” on page 6-5
• “Term Structure Calculations” on page 6-11

More About
• “Supported Interest-Rate Instrument Functions” on page 2-3
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Term Structure Calculations
In this section...
“Introduction” on page 6-11
“Computing Spot and Forward Curves” on page 6-11
“Computing Spreads” on page 6-13

Introduction
So far, a more formal definition of "yield" and its application has not been developed. In many
situations when cash flow is available, discounting factors to the cash flows may not be immediately
apparent. In other cases, what is relevant is often a spread, the difference between curves (also
known as the term structure of spread).

All these calculations require one main ingredient, the Treasury spot, par-yield, or forward curve.
Typically, the generation of these curves starts with a series of on-the-run and selected off-the-run
issues as inputs.

MATLAB software uses these bonds to find spot rates one at a time, from the shortest maturity
onwards, using bootstrap techniques. All cash flows are used to construct the spot curve, and rates
between maturities (for these coupons) are interpolated linearly.

Computing Spot and Forward Curves
For an illustration of how this works, observe the use of zbtyield (or equivalently zbtprice) on a
portfolio of six Treasury bills and bonds.

Bills Maturity Date Current Yield
3 month 4/17/03 1.15
6 month 7/17/03 1.18

Notes/Bonds Coupon Maturity Date Current Yield
2 year 1.750 12/31/04 1.68
5 year 3.000 11/15/07 2.97
10 year 4.000 11/15/12 4.01
30 year 5.375 2/15/31 4.92

You can specify prices or yields to the bonds above to infer the spot curve. The function zbtyield
accepts yields (bond-equivalent yield, to be exact).

To proceed, first assemble the above table into a variable called Bonds. The first column contains
maturities, the second contains coupons, and the third contains notionals or face values of the bonds.
(Note that bills have zero coupons.)

Bonds = [datenum('04/17/2003')    0        100;
         datenum('07/17/2003')    0        100;
         datenum('12/31/2004')    0.0175   100;
         datenum('11/15/2007')    0.03     100;
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         datenum('11/15/2012')    0.04     100;
         datenum('02/15/2031')    0.05375  100];

Then specify the corresponding yields.

Yields  = [0.0115;
           0.0118;
           0.0168;
           0.0297;
           0.0401;
           0.0492];

You are now ready to compute the spot curve for each of these six maturities. The spot curve is based
on a settlement date of January 17, 2003.

Settle = datenum('17-Jan-2003');
[ZeroRates, CurveDates] = zbtyield(Bonds, Yields, Settle)

ZeroRates =

    0.0115
    0.0118
    0.0168
    0.0302
    0.0418
    0.0550

CurveDates =

      731688
      731779
      732312
      733361
      735188
      741854

This gets you the Treasury spot curve for the day.

You can compute the forward curve from this spot curve with zero2fwd.
[ForwardRates, CurveDates] = zero2fwd(ZeroRates, CurveDates, ... 
Settle)

ForwardRates =

    0.0115
    0.0121
    0.0185
    0.0394
    0.0530
    0.0621

CurveDates =

      731688
      731779
      732312
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      733361
      735188
      741854

Here the notion of forward rates refers to rates between the maturity dates shown above, not to a
certain period (forward 3-month rates, for example).

Computing Spreads
Calculating the spread between specific, fixed forward periods (such as the Treasury-Eurodollar
spread) requires an extra step. Interpolate the zero rates (or zero prices, instead) for the
corresponding maturities on the interval dates. Then use the interpolated zero rates to deduce the
forward rates, and thus the spread of Eurodollar forward curve segments versus the relevant forward
segments from Treasury bills.

Additionally, the variety of curve functions (including zero2fwd) helps to standardize such
calculations. For instance, by making both rates quoted with quarterly compounding and on an
actual/360 basis, the resulting spread structure is fully comparable. This avoids the small
inconsistency that occurs when directly comparing the bond-equivalent yield of a Treasury bill to the
quarterly forward rates implied by Eurodollar futures.

Noise in Curve Computations

When introducing more bonds in constructing curves, noise may become a factor and may need some
“smoothing” (with splines, for example); this helps obtain a smoother forward curve.

The following spot and forward curves are constructed from 67 Treasury bonds. The fitted and
bootstrapped spot curve (bottom right figure) displays comparable stability. The forward curve
(upper-left figure) contains significant noise and shows an improbable forward rate structure. The
noise is not necessarily bad; it could uncover trading opportunities for a relative-value approach. Yet,
a more balanced approach is desired when the bootstrapped forward curve oscillates this much and
contains a negative rate as large as -10% (not shown in the plot because it is outside the limits).
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This example uses termfit, an example function from Financial Toolbox software that also requires
the use of Curve Fitting Toolbox™ software.

See Also
zbtyield | zbtprice

Related Examples
• “Agency Option-Adjusted Spreads” on page 6-2
• “Using Zero-Coupon Bonds” on page 6-5
• “Stepped-Coupon Bonds” on page 6-8

More About
• “Supported Interest-Rate Instrument Functions” on page 2-3
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Derivative Securities

• “Interest Rate Swaps” on page 7-2
• “Bond Futures” on page 7-10
• “Analysis of Bond Futures” on page 7-12
• “Managing Present Value with Bond Futures” on page 7-14
• “Fitting the Diebold Li Model” on page 7-15
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Interest Rate Swaps
In this section...
“Swap Pricing Assumptions” on page 7-2
“Swap Pricing Example” on page 7-2
“Portfolio Hedging” on page 7-8

Swap Pricing Assumptions
Financial Instruments Toolbox contains the function liborfloat2fixed, which computes a fixed-
rate par yield that equates the floating-rate side of a swap to the fixed-rate side. The solver sets the
present value of the fixed side to the present value of the floating side without having to line up and
compare fixed and floating periods.

Assumptions on Floating-Rate Input

• Rates are quarterly, for example, that of Eurodollar futures.
• Effective date is the first third Wednesday after the settlement date.
• All delivery dates are spaced 3 months apart.
• All periods start on the third Wednesday of delivery months.
• All periods end on the same dates of delivery months, 3 months after the start dates.
• Accrual basis of floating rates is actual/360.
• Applicable forward rates are estimated by interpolation in months when forward-rate data is not

available.

Assumptions on Fixed-Rate Output

• Design allows you to create a bond of any coupon, basis, or frequency, based on the floating-rate
input.

• The start date is a valuation date, that is, a date when an agreement to enter into a contract by
the settlement date is made.

• Settlement can be on or after the start date. If it is after, a forward fixed-rate contract results.
• Effective date is assumed to be the first third Wednesday after settlement, the same date as that of

the floating rate.
• The end date of the bond is a designated number of years away, on the same day and month as the
effective date.

• Coupon payments occur on anniversary dates. The frequency is determined by the period of the
bond.

• Fixed rates are not interpolated. A fixed-rate bond of the same present value as that of the
floating-rate payments is created.

Swap Pricing Example
This example shows the use of the functions in computing the fixed rate applicable to a series of 2-,
5-, and 10-year swaps based on Eurodollar market data. According to the Chicago Mercantile
Exchange (https://www.cmegroup.com), Eurodollar data on Friday, October 11, 2002, was as
shown in the following table.
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Note This example illustrates swap calculations in MATLAB software. Timing of the data set used
was not rigorously examined and was assumed to be the proxy for the swap rate reported on October
11, 2002.
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Eurodollar Data on Friday, October 11, 2002 

Month Year Settle
10 2002 98.21
11 2002 98.26
12 2002 98.3
1 2003 98.3
2 2003 98.31
3 2003 98.275
6 2003 98.12
9 2003 97.87
12 2003 97.575
3 2004 97.26
6 2004 96.98
9 2004 96.745
12 2004 96.515
3 2005 96.33
6 2005 96.135
9 2005 95.955
12 2005 95.78
3 2006 95.63
6 2006 95.465
9 2006 95.315
12 2006 95.16
3 2007 95.025
6 2007 94.88
9 2007 94.74
12 2007 94.595
3 2008 94.48
6 2008 94.375
9 2008 94.28
12 2008 94.185
3 2009 94.1
6 2009 94.005
9 2009 93.925
12 2009 93.865
3 2010 93.82
6 2010 93.755
9 2010 93.7
12 2010 93.645
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Month Year Settle
3 2011 93.61
6 2011 93.56
9 2011 93.515
12 2011 93.47
3 2012 93.445
6 2012 93.41
9 2012 93.39

Using this data, you can compute 1-, 2-, 3-, 4-, 5-, 7-, and 10-year swap rates with the toolbox function
liborfloat2fixed. The function requires you to input only Eurodollar data, the settlement date,
and tenor of the swap. MATLAB software then performs the required computations.

To illustrate how this function works, first load the data contained in the supplied Excel® worksheet
EDdata.xls.

[EDRawData, textdata] = xlsread('EDdata.xls');

Extract the month from the first column and the year from the second column. The rate used as proxy
is the arithmetic average of rates on opening and closing.

Month = EDRawData(:,1);
Year  = EDRawData(:,2);
IMMData = (EDRawData(:,4)+EDRawData(:,6))/2;
EDFutData = [Month, Year, IMMData]

EDFutData =

   1.0e+03 *

    0.0100    2.0020    0.0982
    0.0110    2.0020    0.0983
    0.0120    2.0020    0.0983
    0.0010    2.0030    0.0983
    0.0020    2.0030    0.0983
    0.0030    2.0030    0.0983
    0.0060    2.0030    0.0982
    0.0090    2.0030    0.0979
    0.0120    2.0030    0.0976
    0.0030    2.0040    0.0973
    0.0060    2.0040    0.0970
    0.0090    2.0040    0.0968
    0.0120    2.0040    0.0966
    0.0030    2.0050    0.0964
    0.0060    2.0050    0.0962
    0.0090    2.0050    0.0960
    0.0120    2.0050    0.0958
    0.0030    2.0060    0.0957
    0.0060    2.0060    0.0955
    0.0090    2.0060    0.0954
    0.0120    2.0060    0.0952
    0.0030    2.0070    0.0951
    0.0060    2.0070    0.0949
    0.0090    2.0070    0.0948
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    0.0120    2.0070    0.0946
    0.0030    2.0080    0.0945
    0.0060    2.0080    0.0944
    0.0090    2.0080    0.0943
    0.0120    2.0080    0.0942
    0.0030    2.0090    0.0941
    0.0060    2.0090    0.0940
    0.0090    2.0090    0.0939
    0.0120    2.0090    0.0939
    0.0030    2.0100    0.0938
    0.0060    2.0100    0.0937
    0.0090    2.0100    0.0937
    0.0120    2.0100    0.0936
    0.0030    2.0110    0.0936
    0.0060    2.0110    0.0935
    0.0090    2.0110    0.0935
    0.0120    2.0110    0.0935
    0.0030    2.0120    0.0934
    0.0060    2.0120    0.0934
    0.0090    2.0120    0.0934

Next, input the current date.

Settle = datenum('11-Oct-2002');

To compute for the 2-year swap rate, set the tenor to 2.

Tenor = 2;

Finally, compute the swap rate with liborfloat2fixed.

[FixedSpec, ForwardDates, ForwardRates] = ... 
liborfloat2fixed(EDFutData, Settle, Tenor)

MATLAB returns a par-swap rate of 2.23% using the default setting (quarterly compounding and
30/360 accrual), and forward dates and rates data (quarterly compounded).

FixedSpec = 

       Coupon: 0.0223
       Settle: '16-Oct-2002'
     Maturity: '16-Oct-2004'
       Period: 4
        Basis: 1

ForwardDates =

      731505
      731596
      731687
      731778
      731869
      731967
      732058
      732149

ForwardRates =
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    0.0178
    0.0168
    0.0171
    0.0189
    0.0216
    0.0250
    0.0280
    0.0306

In the FixedSpec output, note that the swap rate actually goes forward from the third Wednesday of
October 2002 (October 16, 2002), 5 days after the original Settle input (October 11, 2002). This,
however, is still the best proxy for the swap rate on Settle, as the assumption merely starts the
swap's effective period and does not affect its valuation method or its length.

The correction suggested by Hull and White improves the result by turning on convexity adjustment
as part of the input to liborfloat2fixed. (See Hull, J., Options, Futures, and Other Derivatives,
4th Edition, Prentice-Hall, 2000.) For a long swap, for example, five years or more, this correction
could prove to be large.

The adjustment requires additional parameters:

• StartDate, which you make the same as Settle (the default) by providing an empty matrix []
as input.

• ConvexAdj to tell liborfloat2fixed to perform the adjustment.
• RateParam, which provides the parameters a and S as input to the Hull-White short rate process.
• Optional parameters InArrears and Sigma, for which you can use empty matrices [] to accept

the MATLAB defaults.
• FixedCompound, with which you can facilitate comparison with values cited in Table H15 of

Federal Reserve Statistical Release by turning the default quarterly compounding into semiannual
compounding, with the (default) basis of 30/360.

StartDate = [];
Interpolation = [];
ConvexAdj = 1;
RateParam = [0.03; 0.017];
FixedCompound = 2;
[FixedSpec, ForwardDaates, ForwardRates] = ... 
liborfloat2fixed(EDFutData, Settle, Tenor, StartDate, ... 
Interpolation, ConvexAdj, RateParam, [], [], FixedCompound)

This returns 2.21% as the 2-year swap rate, quite close to the reported swap rate for that date.

Analogously, the following table summarizes the solutions for 1-, 3-, 5-, 7-, and 10-year swap rates
(convexity-adjusted and unadjusted).
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Calculated and Market Average Data of Swap Rates on Friday, October 11, 2002
Swap
Length
(Years)

Unadjusted Adjusted Table H15 Adjusted Error
(Basis Points)

1 1.80% 1.79% 1.80% -1
2 2.24% 2.21% 2.22% -1
3 2.70% 2.66% 2.66% 0
4 3.12% 3.03% 3.04% -1
5 3.50% 3.37% 3.36% +1
7 4.16% 3.92% 3.89% +3
10 4.87% 4.42% 4.39% +3

Portfolio Hedging
You can use these results further, such as for hedging a portfolio. The liborduration function
provides a duration-hedging capability. You can isolate assets (or liabilities) from interest-rate risk
exposure with a swap arrangement.

Suppose that you own a bond with these characteristics:

• $100 million face value
• 7% coupon paid semiannually
• 5% yield to maturity
• Settlement on October 11, 2002
• Maturity on January 15, 2010
• Interest accruing on an actual/365 basis

Use of the bnddury function from Financial Toolbox software shows a modified duration of 5.6806
years.

To immunize this asset, you can enter into a pay-fixed swap, specifically a swap in the amount of
notional principal (Ns) such that Ns*SwapDuration + $100M*5.6806 = 0 (or Ns = -100*5.6806/
SwapDuration).

Suppose again, you choose to use a 5-, 7-, or 10-year swap (3.37%, 3.92%, and 4.42% from the
previous table) as your hedging tool.

SwapFixRate = [0.0337; 0.0392; 0.0442];
Tenor = [5; 7; 10];
Settle = '11-Oct-2002';
PayFixDuration = liborduration(SwapFixRate, Tenor, Settle)

PayFixDuration =

   -3.6835
   -4.7307
   -6.0661

This gives a duration of -3.6835, -4.7307, and -6.0661 years for 5-, 7-, and 10-year swaps. The
corresponding notional amount is computed by
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Ns = -100*5.6806./PayFixDuration

Ns =

  154.2163
  120.0786
   93.6443

The notional amount entered in pay-fixed side of the swap instantaneously immunizes the portfolio.

See Also
liborfloat2fixed | liborduration | liborprice

Related Examples
• “Analysis of Bond Futures” on page 7-12
• “Fitting the Diebold Li Model” on page 7-15
• “Managing Interest-Rate Risk with Bond Futures” on page 2-126

More About
• “Supported Interest-Rate Instrument Functions” on page 2-3
• “Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on

page 1-73
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Bond Futures
Bond futures are futures contracts where the commodity for delivery is a government bond. There are
established global markets for government bond futures. Bond futures provide a liquid alternative for
managing interest-rate risk.

In the U.S. market, the Chicago Mercantile Exchange (CME) offers futures on Treasury bonds and
notes with maturities of 2, 5, 10, and 30 years. Typically, the following bond future contracts from the
CME have maturities of 3, 6, 9, and 12 months:

• 30-year U.S. Treasury bond
• 10-year U.S. Treasury bond
• 5-year U.S. Treasury bond
• 2-year U.S. Treasury bond

The short position in a Treasury bond or note future contract must deliver to the long position in one
of many possible existing Treasury bonds. For example, in a 30-year Treasury bond future, the short
position must deliver a Treasury bond with at least 15 years to maturity. Because these bonds have
different values, the bond future contract is standardized by computing a conversion factor. The
conversion factor normalizes the price of a bond to a theoretical bond with a coupon of 6%. The price
of a bond future contract is represented as:

InvoicePrice = FutPrice × CF + AI

where:

FutPrice is the price of the bond future.

CF is the conversion factor for a bond to deliver in a futures contract.

AI is the accrued interest.

The short position in a futures contract has the option of which bond to deliver and, in the U.S. bond
market, when in the delivery month to deliver the bond. The short position typically chooses to
deliver the bond known as the Cheapest to Deliver (CTD). The CTD bond most often delivers on the
last delivery day of the month.

Financial Instruments Toolbox software supports the following bond futures:

• U.S. Treasury bonds and notes
• German Bobl, Bund, Buxl, and Schatz
• UK gilts
• Japanese government bonds (JGBs)

The functions supporting all bond futures are:

Function Purpose
convfactor Calculates bond conversion factors for U.S. Treasury bonds, German

Bobl, Bund, Buxl, and Schatz, U.K. gilts, and JGBs.
bndfutprice Prices bond future given repo rates.
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Function Purpose
bndfutimprepo Calculates implied repo rates for a bond future given price.

The functions supporting U.S. Treasury bond futures are:

Function Purpose
tfutbyprice Calculates future prices of Treasury bonds given the spot price.
tfutbyyield Calculates future prices of Treasury bonds given current yield.
tfutimprepo Calculates implied repo rates for the Treasury bond future given price.
tfutpricebyrepo Calculates Treasury bond futures price given the implied repo rates.
tfutyieldbyrepo Calculates Treasury bond futures yield given the implied repo rates.

See Also
convfactor | bndfutprice | bndfutimprepo | tfutbyprice | tfutbyyield | tfutimprepo |
tfutpricebyrepo | tfutyieldbyrepo | bnddurp | bnddury

Related Examples
• “Analysis of Bond Futures” on page 7-12
• “Fitting the Diebold Li Model” on page 7-15
• “Managing Interest-Rate Risk with Bond Futures” on page 2-126

More About
• “Supported Interest-Rate Instrument Functions” on page 2-3
• “Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on

page 1-73
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Analysis of Bond Futures
The following example demonstrates analyzing German Euro-Bund futures traded on Eurex. However,
convfactor, bndfutprice, and bndfutimprepo apply to bond futures in the U.S., U.K., Germany,
and Japan. The workflow for this analysis is:

1 Calculate bond conversion factors.
2 Calculate implied repo rates to find the CTD bond.
3 Price the bond future using the term implied repo rate.

Calculating Bond Conversion Factors
Use conversion factors to normalize the price of a particular bond for delivery in a futures contract.
When using conversion factors, the assumption is that a bond for delivery has a 6% coupon. Use
convfactor to calculate conversion factors for all bond futures from the U.S., Germany, Japan, and
U.K.

For example, conversion factors for Euro-Bund futures on Eurex are listed at
www.eurexchange.com. The delivery date for Euro-Bund futures is the 10th day of the month, as
opposed to bond futures in the U.S., where the short position has the option of choosing when to
deliver the bond.

For the 4% bond, compute the conversion factor with:

CF1 = convfactor('10-Sep-2009','04-Jul-2018', .04,.06,3)

CF1 =

     0.8659

This syntax for convfactor works fine for bonds with standard coupon periods. However, some
deliverable bonds have long or short first coupon periods. Compute the conversion factors for such
bonds using the optional input parameters StartDate and FirstCouponDate. Specify all optional
input arguments for convfactor as parameter/value pairs:
CF2 = convfactor('10-Sep-2009','04-Jan-2019', .0375,'Convention',3,'startdate',...
datenum('14-Nov-2008'))

CF2 =

    0.8426

Calculating Implied Repo Rates to Find the CTD Bond
To determine the availability of the cheapest bond for deliverable bonds against a futures contract,
compute the implied repo rate for each bond. The bond with the highest repo rate is the cheapest
because it has the lowest initial value, thus yielding a higher return, provided you deliver it with the
stated futures price. Use bndfutimprepo to calculate repo rates:
% Bond Properties
CouponRate = [.0425;.0375;.035];
Maturity = [datenum('04-Jul-2018');datenum('04-Jan-2019');datenum('04-Jul-2019')];
CF = [0.882668;0.842556;0.818193];
Price = [105.00;100.89;98.69];

% Futures Properties
FutSettle = '09-Jun-2009';
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FutPrice = 118.54;
Delivery = '10-Sep-2009';

% Note that the default for BNDFUTIMPREPO is for the bonds to be
% semi-annual with a day count basis of 0.  Since these are German
% bonds, we need to have a Basis of 8 and a Period of 1
ImpRepo = bndfutimprepo(Price, FutPrice, FutSettle, Delivery, CF, ...
CouponRate, Maturity,'Basis',8,'Period',1)

ImpRepo =

    0.0261
   -0.0022
   -0.0315

Pricing Bond Futures Using the Term Implied Repo Rate
Use bndfutprice to perform price calculations for all bond futures from the U.S., Germany, Japan,
and U.K. To price the bond, given a term repo rate:
% Assume a term repo rate of .0091;
RepoRate = .0091;
[FutPrice,AccrInt] = bndfutprice(RepoRate, Price(1), FutSettle,...
Delivery, CF(1), CouponRate(1), Maturity(1),...
'Basis',8,'Period',1)

FutPrice =

  118.0126

AccrInt =

    0.7918

See Also
convfactor | bndfutprice | bndfutimprepo | tfutbyprice | tfutbyyield | tfutimprepo |
tfutpricebyrepo | tfutyieldbyrepo | bnddurp | bnddury

Related Examples
• “Managing Present Value with Bond Futures” on page 7-14
• “Fitting the Diebold Li Model” on page 7-15
• “Managing Interest-Rate Risk with Bond Futures” on page 2-126

More About
• “Bond Futures” on page 7-10
• “Supported Interest-Rate Instrument Functions” on page 2-3
• “Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on

page 1-73
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Managing Present Value with Bond Futures
The Present Value of a Basis Point (PVBP) is used to manage interest-rate risk. PVBP is a measure
that quantifies the change in price of a bond given a one-basis point shift in interest rates. The PVBP
of a bond is computed with the following:

PVBPBond = Duration × MarketValue
100

The PVBP of a bond futures contract can be computed with the following:

PVBPFutures = PVBPCTDBond
CTDConversionFactor

Use bnddurp and bnddury from Financial Toolbox software to compute the modified durations of
CTD bonds. For more information, see “Managing Interest-Rate Risk with Bond Futures” on page 2-
126 and “Fitting the Diebold Li Model” on page 7-15.

See Also
convfactor | bndfutprice | bndfutimprepo | tfutbyprice | tfutbyyield | tfutimprepo |
tfutpricebyrepo | tfutyieldbyrepo | bnddurp | bnddury

Related Examples
• “Analysis of Bond Futures” on page 7-12
• “Fitting the Diebold Li Model” on page 7-15
• “Managing Interest-Rate Risk with Bond Futures” on page 2-126

More About
• “Bond Futures” on page 7-10
• “Supported Interest-Rate Instrument Functions” on page 2-3
• “Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on

page 1-73
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Fitting the Diebold Li Model
This example shows how to construct a Diebold Li model of the US yield curve for each month from
1990 to 2010. This example also demonstrates how to forecast future yield curves by fitting an
autoregressive model to the time series of each parameter.

The paper can be found here:

https://www.nber.org/papers/w10048

Load the Data

The data used are monthly Treasury yields from 1990 through 2010 for tenors of 1 Mo, 3 Mo, 6 Mo, 1
Yr, 2 Yr, 3 Yr, 5 Yr, 7 Yr, 10 Yr, 20 Yr, 30 Yr.

Daily data can be found here:

https://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?
data=yieldAll

Data is stored in a MATLAB® data file as a MATLAB dataset object.

load Data_USYieldCurve

% Extract data for the last day of each month
MonthYearMat = repmat((1990:2010)',1,12)';
EOMDates = lbusdate(MonthYearMat(:),repmat((1:12)',21,1));
MonthlyIndex = find(ismember(Dataset.Properties.ObsNames,datestr(EOMDates)));
Estimationdataset = Dataset(MonthlyIndex,:);
EstimationData = double(Estimationdataset);

Diebold Li Model

Diebold and Li start with the Nelson Siegel model

y = β0 + (β1 + β2) τ
m (1− e

−m
τ )− β2e

−m
τ

and rewrite it to be the following:

yt(τ) = β1t + β2t
1− e−λtτ

λtτ
+ β3t

1− e−λtτ

λtτ
− e−λtτ

The above model allows the factors to be interpreted in the following way: Beta1 corresponds to the
long term/level of the yield curve, Beta2 corresponds to the short term/slope, and Beta3 corresponds
to the medium term/curvature. λ determines the maturity at which the loading on the curvature is
maximized, and governs the exponential decay rate of the model.

Diebold and Li advocate setting λ to maximize the loading on the medium term factor, Beta3, at 30
months. This also transforms the problem from a nonlinear fitting to a simple linear regression.

% Explicitly set the time factor lambda
lambda_t = .0609;

% Construct a matrix of the factor loadings
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% Tenors associated with data
TimeToMat = [3 6 9 12 24 36 60 84 120 240 360]';
X = [ones(size(TimeToMat)) (1 - exp(-lambda_t*TimeToMat))./(lambda_t*TimeToMat) ...
    ((1 - exp(-lambda_t*TimeToMat))./(lambda_t*TimeToMat) - exp(-lambda_t*TimeToMat))];

% Plot the factor loadings
plot(TimeToMat,X)
title('Factor Loadings for Diebold Li Model with time factor of .0609')
xlabel('Maturity (months)')
ylim([0 1.1])
legend({'Beta1','Beta2','Beta3'},'location','east')

Fit the Model

A DieboldLi object is developed to facilitate fitting the model from yield data. The DieboldLi
object inherits from the IRCurve object, so the getZeroRates, getDiscountFactors,
getParYields, getForwardRates, and toRateSpec methods are all implemented. Additionally,
the method fitYieldsFromBetas is implemented to estimate the Beta parameters given a lambda
parameter for observed market yields.

The DieboldLi object is used to fit a Diebold Li model for each month from 1990 through 2010.

% Preallocate the Betas
Beta = zeros(size(EstimationData,1),3);

% Loop through and fit each end of month yield curve
for jdx = 1:size(EstimationData,1)
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    tmpCurveModel = DieboldLi.fitBetasFromYields(EOMDates(jdx),lambda_t*12,daysadd(EOMDates(jdx),30*TimeToMat),EstimationData(jdx,:)');
    Beta(jdx,:) = [tmpCurveModel.Beta1 tmpCurveModel.Beta2 tmpCurveModel.Beta3];
end

The Diebold Li fits on selected dates are included here

PlotSettles = datenum({'30-May-1997','31-Aug-1998','29-Jun-2001','31-Oct-2005'});
figure
for jdx = 1:length(PlotSettles)
    subplot(2,2,jdx)
    tmpIdx = find(strcmpi(Estimationdataset.Properties.ObsNames,datestr(PlotSettles(jdx))));
    tmpCurveModel = DieboldLi.fitBetasFromYields(PlotSettles(jdx),lambda_t*12,...
        daysadd(PlotSettles(jdx),30*TimeToMat),EstimationData(tmpIdx,:)');
    scatter(daysadd(PlotSettles(jdx),30*TimeToMat),EstimationData(tmpIdx,:))
    hold on
    PlottingDates = (PlotSettles(jdx)+30:30:PlotSettles(jdx)+30*360)';
    plot(PlottingDates,tmpCurveModel.getParYields(PlottingDates),'r-')
    title(['Yield Curve on ' datestr(PlotSettles(jdx))])
    datetick
end

Forecasting

The Diebold Li model can be used to forecast future yield curves. Diebold and Li propose fitting an
AR(1) model to the time series of each Beta parameter. This fitted model can then be used to forecast
future values of each parameter, and by extension, future yield curves.
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For this example the MATLAB function regress is used to estimate the parameters for an AR(1)
model for each Beta.

The confidence intervals for the regression fit are also used to generate two additional yield curve
forecasts that serve as additional possible scenarios for the yield curve.

The MonthsLag variable can be adjusted to make different period ahead forecasts. For example,
changing the value from 1 to 6 would change the forecast from a 1 month ahead to 6 month ahead
forecast.

MonthsLag = 1;

[tmpBeta,bint] = regress(Beta(MonthsLag+1:end,1),[ones(size(Beta(MonthsLag+1:end,1))) Beta(1:end-MonthsLag,1)]);
ForecastBeta(1,1) = [1 Beta(end,1)]*tmpBeta;
ForecastBeta_Down(1,1) = [1 Beta(end,1)]*bint(:,1);
ForecastBeta_Up(1,1) = [1 Beta(end,1)]*bint(:,2);
[tmpBeta,bint]  = regress(Beta(MonthsLag+1:end,2),[ones(size(Beta(MonthsLag+1:end,2))) Beta(1:end-MonthsLag,2)]);
ForecastBeta(1,2) = [1 Beta(end,2)]*tmpBeta;
ForecastBeta_Down(1,2) = [1 Beta(end,2)]*bint(:,1);
ForecastBeta_Up(1,2) = [1 Beta(end,2)]*bint(:,2);
[tmpBeta,bint]  = regress(Beta(MonthsLag+1:end,3),[ones(size(Beta(MonthsLag+1:end,3))) Beta(1:end-MonthsLag,3)]);
ForecastBeta(1,3) = [1 Beta(end,3)]*tmpBeta;
ForecastBeta_Down(1,3) = [1 Beta(end,3)]*bint(:,1);
ForecastBeta_Up(1,3) = [1 Beta(end,3)]*bint(:,2);

% Forecasted yield curve
figure
Settle = daysadd(EOMDates(end),30*MonthsLag);
DieboldLi_Forecast = DieboldLi('ParYield',Settle,[ForecastBeta lambda_t*12]);
DieboldLi_Forecast_Up = DieboldLi('ParYield',Settle,[ForecastBeta_Up lambda_t*12]);
DieboldLi_Forecast_Down = DieboldLi('ParYield',Settle,[ForecastBeta_Down lambda_t*12]);
PlottingDates = (Settle+30:30:Settle+30*360)';
plot(PlottingDates,DieboldLi_Forecast.getParYields(PlottingDates),'b-')
hold on
plot(PlottingDates,DieboldLi_Forecast_Up.getParYields(PlottingDates),'r-')
plot(PlottingDates,DieboldLi_Forecast_Down.getParYields(PlottingDates),'r-')
title(['Diebold Li Forecasted Yield Curves on ' datestr(EOMDates(end)) ' for '  datestr(Settle)])
legend({'Forecasted Curve','Additional Scenarios'},'location','southeast')
datetick
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See Also
convfactor | bndfutprice | bndfutimprepo | tfutbyprice | tfutbyyield | tfutimprepo |
tfutpricebyrepo | tfutyieldbyrepo | bnddurp | bnddury

Related Examples
• “Analysis of Bond Futures” on page 7-12
• “Managing Interest-Rate Risk with Bond Futures” on page 2-126

More About
• “Supported Interest-Rate Instrument Functions” on page 2-3
• “Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on

page 1-73
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Credit Derivatives

• “Counterparty Credit Risk and CVA” on page 8-2
• “First-to-Default Swaps” on page 8-18
• “Credit Default Swap Option” on page 8-27
• “Pricing a Single-Name CDS Option” on page 8-28
• “Pricing a CDS Index Option” on page 8-30
• “Wrong Way Risk with Copulas” on page 8-34
• “Bootstrapping a Default Probability Curve from Credit Default Swaps” on page 8-42
• “Bootstrap Default Probability Curve from Market CDS Instruments” on page 8-45
• “Price Multiple CDS Option Instruments Using CDS Black Model and CDS Black Pricer”

on page 8-46
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Counterparty Credit Risk and CVA
This example shows how to compute the unilateral credit value (valuation) adjustment (CVA) for a
bank holding a portfolio of vanilla interest-rate swaps with several counterparties. CVA is the
expected loss on an over-the-counter contract or portfolio of contracts due to counterparty default.
The CVA for a particular counterparty is defined as the sum over all points in time of the discounted
expected exposure at each moment multiplied by the probability that the counterparty defaults at
that moment, all multiplied by 1 minus the recovery rate. The CVA formula is:

CV A = (1− R)∫0 T
discEE(t)dPD(t)

Where R is the recovery, discEE the discounted expected exposure at time t, and PD the default
probability distribution.

The expected exposure is computed by first simulating many future scenarios of risk factors for the
given contract or portfolio. Risk factors can be interest rates, as in this example, but will differ based
on the portfolio and can include FX rates, equity or commodity prices, or anything that will affect the
market value of the contracts. Once a sufficient set of scenarios has been simulated, the contract or
portfolio can be priced on a series of future dates for each scenario. The result is a matrix, or "cube",
of contract values.

These prices are converted into exposures after taking into account collateral agreements that the
bank might have in place as well as netting agreements, as in this example, where the values of
several contracts may offset each other, lowering their total exposure.

The contract values for each scenario are discounted to compute the discounted exposures. The
discounted expected exposures can then be computed by a simple average of the discounted
exposures at each simulation date.

Finally, counterparty default probabilities are typically derived from credit default swap (CDS) market
quotes and the CVA for the counterparty can be computed according to the above formula. Assume
that a counterparty default is independent of its exposure (no wrong-way risk).

This example demonstrates a portfolio of vanilla interest-rate swaps with the goal of computing the
CVA for a particular counterparty.

Read Swap Portfolio

The portfolio of swaps is close to zero value at time t = 0. Each swap is associated with a
counterparty and may or may not be included in a netting agreement.

% Read swaps from spreadsheet
swapFile = 'cva-swap-portfolio.xls';
swaps = readtable(swapFile,'Sheet','Swap Portfolio');
swaps.LegType = [swaps.LegType ~swaps.LegType];
swaps.LegRate = [swaps.LegRateReceiving swaps.LegRatePaying];
swaps.LegReset = ones(size(swaps,1),1);

numSwaps = size(swaps,1);

For more information on the swap parameters for CounterpartyID and NettingID, see
creditexposures. For more information on the swap parameters for Principal, Maturity,
LegType, LegRate, LatestFloatingRate, Period, and LegReset, see swapbyzero.
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Create RateSpec from the Interest-Rate Curve
Settle = datenum('14-Dec-2007');

Tenor = [3 6 12 5*12 7*12 10*12 20*12 30*12]';
ZeroRates = [0.033 0.034 0.035 0.040 0.042 0.044 0.048 0.0475]';

ZeroDates = datemnth(Settle,Tenor);
Compounding = 2;
Basis = 0;
RateSpec = intenvset('StartDates', Settle,'EndDates', ZeroDates, ...
    'Rates', ZeroRates,'Compounding',Compounding,'Basis',Basis);

figure;
plot(ZeroDates, ZeroRates, 'o-');
xlabel('Date');
datetick('keeplimits');
ylabel('Zero rate');
grid on;
title('Yield Curve at Settle Date');

Set Changeable Simulation Parameters

You can vary the number of simulated interest-rate scenarios that you generate. This example sets
the simulation dates to be more frequent at first, then turning less frequent further in the future.

% Number of Monte Carlo simulations
numScenarios = 1000;
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% Compute monthly simulation dates, then quarterly dates later.
simulationDates = datemnth(Settle,0:12);
simulationDates = [simulationDates datemnth(simulationDates(end),3:3:74)]';
numDates = numel(simulationDates);

Compute Floating Reset Dates

For each simulation date, compute previous floating reset date for each swap.

floatDates = cfdates(Settle-360,swaps.Maturity,swaps.Period);
swaps.FloatingResetDates = zeros(numSwaps,numDates);
for i = numDates:-1:1
    thisDate = simulationDates(i);
    floatDates(floatDates > thisDate) = 0;
    swaps.FloatingResetDates(:,i) = max(floatDates,[],2);
end

Setup Hull-White Single Factor Model

The risk factor that is simulated to value the contracts is the zero curve. For this example, you model
the interest-rate term structure using the one-factor Hull-White model. This is a model of the short
rate and is defined as:

dr = [θ(t)− ar]dt + σdz

where

• dr: Change in the short rate after a small change in time, dt
• a: Mean reversion rate
• σ: Volatility of the short rate
• dz: A Weiner process (a standard normal process)
• θ(t): Drift function defined as:

θ(t) = Ft(0, t) + aF(0, t) + σ2

2a (1− e−2at)

F(0, t): Instantaneous forward rate at time t

Ft(0, t): Partial derivative of F with respect to time

Once you have simulated a path of the short rate, generate a full yield curve at each simulation date
using the formula:

R(t, T) = − 1
(T − t) lnA(t, T) + 1

(T − t)B(t, T)r(t)

lnA(t, T) = lnP(0, T)
P(0, t) + B(t, T)F(0, t)− 1

4a3σ2(e−aT − e−at)2(e2at − 1)

B(t, T) = 1− e−a(T − t)

a

R(t, T): Zero rate at time t for a period of T − t

8 Credit Derivatives

8-4



P(t, T): Price of a zero coupon bond at time t that pays one dollar at time T

Each scenario contains the full term structure moving forward through time, modeled at each of our
selected simulation dates.

Refer to the “Calibrating Hull-White Model Using Market Data” on page 2-92 example in the
Financial Instruments Toolbox™ Users' Guide for more details on Hull-White one-factor model
calibration.

Alpha = 0.2;
Sigma = 0.015;

hw1 = HullWhite1F(RateSpec,Alpha,Sigma);

Simulate Scenarios

For each scenario, simulate the future interest-rate curve at each valuation date using the Hull-White
one-factor interest-rate model.

% Use reproducible random number generator (vary the seed to produce
% different random scenarios).
prevRNG = rng(0, 'twister');

dt = diff(yearfrac(Settle,simulationDates,1));
nPeriods = numel(dt);
scenarios = hw1.simTermStructs(nPeriods, ...
    'nTrials',numScenarios, ...
    'deltaTime',dt);

% Restore random number generator state
rng(prevRNG);

% Compute the discount factors through each realized interest rate
% scenario.
dfactors = ones(numDates,numScenarios);
for i = 2:numDates
    tenorDates = datemnth(simulationDates(i-1),Tenor);
    rateAtNextSimDate = interp1(tenorDates,squeeze(scenarios(i-1,:,:)), ...
        simulationDates(i),'linear','extrap');
    % Compute D(t1,t2)
    dfactors(i,:) = zero2disc(rateAtNextSimDate, ...
        repmat(simulationDates(i),1,numScenarios),simulationDates(i-1),-1,3);
end
dfactors = cumprod(dfactors,1);

Inspect a Scenario

Create a surface plot of the yield curve evolution for a particular scenario.

i = 20;
figure;
surf(Tenor, simulationDates, scenarios(:,:,i))
axis tight
datetick('y','mmmyy'); 
xlabel('Tenor (Months)');
ylabel('Observation Date');
zlabel('Rates');
ax = gca;
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ax.View = [-49 32];
title(sprintf('Scenario %d Yield Curve Evolution\n',i));

Compute Mark to Market Swap Prices

For each scenario the swap portfolio is priced at each future simulation date. Prices are computed
using a price approximation function, hswapapprox. It is common in CVA applications to use
simplified approximation functions when pricing contracts due to the performance requirements of
these Monte Carlo simulations.

Since the simulation dates do not correspond to the swaps cash flow dates (where the floating rates
are reset) estimate the latest floating rate with the 1-year rate (all swaps have period 1 year)
interpolated between the nearest simulated rate curves.

The swap prices are then aggregated into a "cube" of values which contains all future contract values
at each simulation date for each scenario. The resulting cube of contract prices is a 3-dimensional
matrix where each row represents a simulation date, each column a contract, and each "page" a
different simulated scenario.

% Compute all mark-to-market values for this scenario. Use an
% approximation function here to improve performance.
values = hcomputeMTMValues(swaps,simulationDates,scenarios,Tenor);

Inspect Scenario Prices

Create a plot of the evolution of all swap prices for a particular scenario.
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i = 32;
figure;
plot(simulationDates, values(:,:,i));
datetick;
ylabel('Mark-To-Market Price');
title(sprintf('Swap prices along scenario %d', i));

Visualize Simulated Portfolio Values

Plot the total portfolio value for each scenario of the simulation. As each scenario moves forward in
time, the values of the contracts move up or down depending on how the modeled interest-rate term
structure changes. As the swaps get closer to maturity, their values will begin to approach zero since
the aggregate value of all remaining cash flows will decrease after each cash flow date.

% View portfolio value over time
figure;
totalPortValues = squeeze(sum(values, 2));
plot(simulationDates,totalPortValues);
title('Total MTM Portfolio Value for All Scenarios');
datetick('x','mmmyy')
ylabel('Portfolio Value ($)')
xlabel('Simulation Dates')
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Compute Exposure by Counterparty

The exposure of a particular contract (i) at time t is the maximum of the contract value (Vi) and 0:

Ei(t) = max{Vi(t), 0}

And the exposure for a particular counterparty is simply a sum of the individual contract exposures:

Ecp(t) = ∑Ei(t) = ∑max{Vi(t), 0}

In the presence of netting agreements, however, contracts are aggregated together and can offset
each other. Therefore the total exposure of all contracts in a netting agreement is:

Ena(t) = max{∑Vi(t), 0}

Compute these exposures for the entire portfolio as well as each counterparty at each simulation date
using the creditexposures function.

Unnetted contracts are indicated using a NaN in the NettingID vector. Exposure of an unnetted
contract is equal to the market value of the contract if it has positive value, otherwise it is zero.

Contracts included in a netting agreement have their values aggregated together and can offset each
other. See the references for more details on computing exposure from mark-to-market contract
values.

8 Credit Derivatives

8-8



[exposures, expcpty] = creditexposures(values,swaps.CounterpartyID, ...
    'NettingID',swaps.NettingID);

Plot the total portfolio exposure for each scenario in our simulation. Similar to the plot of contract
values, the exposures for each scenario will approach zero as the swaps mature.

% View portfolio exposure over time
figure;
totalPortExposure = squeeze(sum(exposures,2));
plot(simulationDates,totalPortExposure);
title('Portfolio Exposure for All Scenarios');
datetick('x','mmmyy')
ylabel('Exposure ($)')
xlabel('Simulation Dates')

Exposure Profiles

Several exposure profiles are useful when analyzing the potential future exposure of a bank to a
counterparty. Here you can compute several (non-discounted) exposure profiles per counterparty, as
well as, for the entire portfolio.

• PFE (Potential Future Exposure): A high percentile (95%) of the distribution of exposures at any
particular future date (also called Peak Exposure (PE))

• MPFE (Maximum Potential Future Exposure): The maximum PFE across all dates
• EE : (Expected Exposure): The mean (average) of the distribution of exposures at each date
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• EPE (Expected Positive Exposure): Weighted average over time of the expected exposure
• EffEE (Effective Expected Exposure): The maximum expected exposure at any time, t, or

previous time
• EffEPE (Effective Expected Positive Exposure): The weighted average of the effective expected

exposure

For further definitions, see for example the Basel II document in references.

% Compute entire portfolio exposure
portExposures = sum(exposures,2);

% Compute exposure profiles for each counterparty and entire portfolio
cpProfiles = exposureprofiles(simulationDates,exposures);
portProfiles = exposureprofiles(simulationDates,portExposures);

Visualize the exposure profiles, first for the entire portfolio, then for a particular counterparty.

% Visualize portfolio exposure profiles
figure;
plot(simulationDates,portProfiles.PFE, ...
    simulationDates,portProfiles.MPFE * ones(numDates,1), ...
    simulationDates,portProfiles.EE, ...
    simulationDates,portProfiles.EPE * ones(numDates,1), ...
    simulationDates,portProfiles.EffEE, ...
    simulationDates,portProfiles.EffEPE * ones(numDates,1));
legend({'PFE (95%)','Max PFE','Exp Exposure (EE)','Time-Avg EE (EPE)', ...
    'Max past EE (EffEE)','Time-Avg EffEE (EffEPE)'})

datetick('x','mmmyy')
title('Portfolio Exposure Profiles');
ylabel('Exposure ($)')
xlabel('Simulation Dates')
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Visualize exposure profiles for a particular counterparty.

cpIdx = find(expcpty == 5);
figure;
plot(simulationDates,cpProfiles(cpIdx).PFE, ...
    simulationDates,cpProfiles(cpIdx).MPFE * ones(numDates,1), ...
    simulationDates,cpProfiles(cpIdx).EE, ...
    simulationDates,cpProfiles(cpIdx).EPE * ones(numDates,1), ...
    simulationDates,cpProfiles(cpIdx).EffEE, ...
    simulationDates,cpProfiles(cpIdx).EffEPE * ones(numDates,1));
legend({'PFE (95%)','Max PFE','Exp Exposure (EE)','Time-Avg EE (EPE)', ...
    'Max past EE (EffEE)','Time-Avg EffEE (EffEPE)'})

datetick('x','mmmyy','keeplimits')
title(sprintf('Counterparty %d Exposure Profiles',cpIdx));
ylabel('Exposure ($)')
xlabel('Simulation Dates')
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Discounted Exposures

Compute the discounted expected exposures using the discount factors from each simulated interest-
rate scenario. The discount factor for a given valuation date in a given scenario is the product of the
incremental discount factors from one simulation date to the next, along with the interest-rate path of
that scenario.

% Get discounted exposures per counterparty, for each scenario
discExp = zeros(size(exposures));
for i = 1:numScenarios
    discExp(:,:,i) = bsxfun(@times,dfactors(:,i),exposures(:,:,i));
end

% Discounted expected exposure
discProfiles = exposureprofiles(simulationDates,discExp, ...
    'ProfileSpec','EE');

Plot the discounted expected exposures for the aggregate portfolio as well as for each counterparty.

% Aggregate the discounted EE for each counterparty into a matrix
discEE = [discProfiles.EE];

% Portfolio discounted EE
figure;
plot(simulationDates,sum(discEE,2))
datetick('x','mmmyy','keeplimits')
title('Discounted Expected Exposure for Portfolio');

8 Credit Derivatives

8-12



ylabel('Discounted Exposure ($)')
xlabel('Simulation Dates')

% Counterparty discounted EE
figure;
plot(simulationDates,discEE)
datetick('x','mmmyy','keeplimits')
title('Discounted Expected Exposure for Each Counterparty');
ylabel('Discounted Exposure ($)')
xlabel('Simulation Dates')
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Calibrating Probability of Default Curve for Each Counterparty

The default probability for a given counterparty is implied by the current market spreads of the
counterparty's CDS. Use the function cdsbootstrap to generate the cumulative probability of
default at each simulation date.

% Import CDS market information for each counterparty
CDS = readtable(swapFile,'Sheet','CDS Spreads');
disp(CDS);

        Date         cp1    cp2    cp3    cp4    cp5
    _____________    ___    ___    ___    ___    ___

    {'3/20/2008'}    140     85    115    170    140
    {'3/20/2009'}    185    120    150    205    175
    {'3/20/2010'}    215    170    195    245    210
    {'3/20/2011'}    275    215    240    285    265
    {'3/20/2012'}    340    255    290    320    310

CDSDates = datenum(CDS.Date);
CDSSpreads = table2array(CDS(:,2:end));

ZeroData = [RateSpec.EndDates RateSpec.Rates];

% Calibrate default probabilities for each counterparty
DefProb = zeros(length(simulationDates), size(CDSSpreads,2));
for i = 1:size(DefProb,2)
    probData = cdsbootstrap(ZeroData, [CDSDates CDSSpreads(:,i)], ...
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        Settle, 'probDates', simulationDates);
    DefProb(:,i) = probData(:,2);
end

% Plot of the cumulative probability of default for each counterparty.
figure;
plot(simulationDates,DefProb)
title('Default Probability Curve for Each Counterparty');
xlabel('Date');
grid on;
ylabel('Cumulative Probability')
datetick('x','mmmyy')
ylabel('Probability of Default')
xlabel('Simulation Dates')

CVA Computation

The Credit Value (Valuation) Adjustment (CVA) formula is:

CV A = (1− R)∫0 T
discEE(t)dPD(t)

Where R is the recovery, discEE the discounted expected exposure at time t, and PD the default
probability distribution. This assumes the exposure is independent of default (no wrong-way risk),
and it also assumes that the exposures were obtained using risk-neutral probabilities.

Approximate the integral with a finite sum over the valuation dates as:
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CV A(approx) = (1− R) ∑
i = 2

n
discEE(ti)(PD(ti)− PD(ti− 1))

where t_1 is today's date, t_2, ...,t_n the future valuation dates.

Assume that the CDS information corresponds to the counterparty with index cpIdx. The computed
CVA is the present market value of our credit exposure to counterparty cpIdx. For this example, set
the recovery rate at 40%.

Recovery = 0.4;
CVA = (1-Recovery) * sum(discEE(2:end,:) .* diff(DefProb));
for i = 1:numel(CVA)
    fprintf('CVA for counterparty %d = $%.2f\n',i,CVA(i));
end

CVA for counterparty 1 = $2229.38
CVA for counterparty 2 = $2498.71
CVA for counterparty 3 = $918.96
CVA for counterparty 4 = $5521.83
CVA for counterparty 5 = $5883.77

figure;
bar(CVA);
title('CVA for each counterparty');
xlabel('Counterparty');
ylabel('CVA $');
grid on;
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First-to-Default Swaps
This example shows how to price first-to-default (FTD) swaps under the homogeneous loss
assumption.

A first-to-default swap is an instrument that pays a predetermined amount when (and if) the first of a
basket of credit instruments defaults. The credit instruments in the basket are usually bonds. If you
assume that the loss amount following a credit event is the same for all credits in the basket, you are
under the homogeneous loss assumption. This assumption makes models simpler because any default
in the basket triggers the same payment amount. This example is an implementation of the pricing
methodology for these instruments, as described in O'Kane [2 on page 8-0 ]. There are two steps in
the methodology:

• Compute the survival probability for the basket numerically.
• Use this survival curve and standard single-name credit-default swap (CDS) functionality to find

FTD spreads and to price existing FTD swaps.

Fit Probability Curves to Market Data

Given CDS market quotes for each issuer in the basket, use cdsbootstrap to calibrate individual
default probability curves for each issuer.

% Interest-rate curve
ZeroDates = datenum({'17-Jan-10','17-Jul-10','17-Jul-11','17-Jul-12',...
'17-Jul-13','17-Jul-14'});
ZeroRates = [1.35 1.43 1.9 2.47 2.936 3.311]'/100;
ZeroData = [ZeroDates ZeroRates];

% CDS spreads
% Each row in MarketSpreads corresponds to a different issuer; each
% column to a different maturity date (corresponding to MarketDates)
MarketDates = datenum({'20-Sep-10','20-Sep-11','20-Sep-12','20-Sep-14',...
'20-Sep-16'});
MarketSpreads = [
   160 195 230 285 330;
   130 165 205 260 305;
   150 180 210 260 300;
   165 200 225 275 295];
% Number of issuers equals number of rows in MarketSpreads
nIssuers = size(MarketSpreads,1);

% Settlement date
Settle = datenum('17-Jul-2009');

In practice, the time axis is discretized and the FTD survival curve is only evaluated at grid points.
This example uses one point every three months. To request that cdsbootstrap returns default
probability values over the specific grid points that you want, use the optional argument
'ProbDates'. Add the original standard CDS market dates to the grid, otherwise the default
probability information on those dates is interpolated using the two closest dates on the grid, and
then the prices on market dates will be inconsistent with the original market data.

ProbDates = union(MarketDates,daysadd(Settle,360*(0.25:0.25:8),1));
nProbDates = length(ProbDates);
DefProb = zeros(nIssuers,nProbDates);
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for ii = 1:nIssuers
   MarketData = [MarketDates MarketSpreads(ii,:)'];
   ProbData = cdsbootstrap(ZeroData,MarketData,Settle,...
      'ProbDates',ProbDates);
   DefProb(ii,:) = ProbData(:,2)';
end

Here are the calibrated default probability curves for each credit in the basket.

figure
plot(ProbDates',DefProb)
datetick
title('Individual Default Probability Curves')
ylabel('Cumulative Probability')
xlabel('Date')

Determine Latent Variable Thresholds

Latent variables are used in different credit risk contexts, with different interpretations. In some
contexts, a latent variable is a proxy for a change in the value of assets, and the domain of this
variable is binned, with each bin corresponding to a credit rating. The bins limits, or thresholds, are
determined from credit migration matrices. In our context, the latent variable is associated to a time
to default, and the thresholds determine bins in a discretized time grid where defaults may occur.

Formally, if the time to default of a particular issuer is denoted by τ, and we know its default
probability function P(t), a latent variable A and corresponding thresholds C(t) satisfy

Pr(τ ≤ t) = P(t) = Pr(A ≤ C(t))
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or

Pr(s ≤ τ ≤ t) = P(t)− P(s) = Pr(C(s) ≤ A ≤ C(t))

These relationships make latent variable approaches convenient for both simulations and analytical
derivations. Both P(t) and C(t) are functions of time.

The choice of a distribution for the variable A determines the thresholds C(t). In the standard latent
variable model, the variable A is chosen to follow a standard normal distribution, from which

C(t) = Φ−1(P(t))

where Φ is the cumulative standard normal distribution.

Use the previous formula to determine the default-time thresholds, or simply default thresholds,
corresponding to the default probabilities previously obtained for the credits in the basket.

DefThresh = norminv(DefProb);

Derive Survival Curve for the Basket

Following O'Kane [2 on page 8-0 ], you can use a one-factor latent variable model to derive
expressions for the survival probability function of the basket.

Given parameters βi for each issuer i, and given independent standard normal variables Z and ϵi, the
one-factor latent variable model assumes that the latent variable Ai associated to issuer i satisfies

Ai = βi * Z + 1− βi
2 * ϵi

This induces a correlation between issuers i and j of βiβ j. All latent variables Ai share the common
factor Z as a source of uncertainty, but each latent variable also has an idiosyncratic source of
uncertainty ϵi. The larger the coefficient βi, the more the latent variable resembles the common factor
Z.

Using the latent variable model, you can derive an analytic formula for the survival probability of the
basket. The probability that issuer i survives past time t j, in other words, that its default time τi is
greater than t j is

Pr(τi > t j) = 1− Pr(Ai ≤ Ci(t j))

where Ci(t j) is the default threshold computed above for issuer i, for the j-th date in the discretization
grid. Conditional on the value of the one-factor Z, the probability that all issuers survive past time t j
is

Pr(No defaults by time t j |Z)
= Pr(τi > t j for all i |Z)
= ∏

i
[1− Pr(Ai ≤ Ci(t j) |Z)]

where the product is justified because all the ϵi's are independent. Therefore, conditional on Z, the
Ai's are independent. The unconditional probability of no defaults by time t j is the integral over all
values of Z of the previous conditional probability
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Pr(No defaults by time t j)

=∫Z∏i [1− Pr(Ai ≤ Ci(t j) |Z)]ϕ(Z)dZ

with ϕ(Z) the standard normal density.

By evaluating this one-dimensional integral for each point t j in the grid, you get a discretization of the
survival curve for the whole basket, which is the FTD survival curve.

The latent variable model can also be used to simulate default times, which is the back engine of
many pricing methodologies for credit instruments. Loeffler and Posch [1 on page 8-0 ], for
example, estimate the survival probability of a basket via simulation. In each simulated scenario a
time to default is determined for each issuer. With some bookkeeping, the probability of having the
first default on each bucket of the grid can be estimated from the simulation. The simulation
approach is also discussed in O'Kane [2 on page 8-0 ]. Simulation is very flexible and applicable to
many credit instruments. However, analytic approaches are preferred, when available, because they
are much faster and more accurate than simulation.

To compute the FTD survival probabilities in this example, set all betas to the square root of a target
correlation. Then you can loop over all dates in the time grid to compute the one-dimensional integral
that gives the survival probability of the basket.

Regarding implementation, the conditional survival probability as a function of a scalar Z would be

condProb=@(Z)prod(normcdf((-DefThresh(:,jj)+beta*Z)./sqrt(1-beta.^2)));

However, the integration function requires that the function handle of the integrand accepts vectors.
Although a loop around the scalar version of the conditional probability would work, it is far more
efficient to vectorize the conditional probability using bsxfun.

beta = sqrt(0.25)*ones(nIssuers,1);

FTDSurvProb = zeros(size(ProbDates));
for jj = 1:nProbDates
   % Vectorized conditional probability as a function of Z
   vecCondProb = @(Z)prod(normcdf(bsxfun(@rdivide,...
      -repmat(DefThresh(:,jj),1,length(Z))+bsxfun(@times,beta,Z),...
      sqrt(1-beta.^2))));
   % Truncate domain of normal distribution to [-5,5] interval
   FTDSurvProb(jj) = integral(@(Z)vecCondProb(Z).*normpdf(Z),-5,5);
end
FTDDefProb = 1-FTDSurvProb;

Compare the FTD probability to the default probabilities of the individual issuers.

figure
plot(ProbDates',DefProb)
datetick
hold on
plot(ProbDates,FTDDefProb,'LineWidth',3)
datetick
hold off
title('FTD and Individual Default Probability Curves')
ylabel('Cumulative Probability')
xlabel('Date')
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Find FTD Spreads and Price Existing FTD Swaps

Under the assumption that all instruments in the basket have the same recovery rate, or
homogeneous loss assumption (see O'Kane [2 on page 8-0 ]), you get the spread for the FTD swap
using the cdsspread function by passing the FTD probability data just computed.

Maturity = MarketDates;
ProbDataFTD = [ProbDates, FTDDefProb];
FTDSpread = cdsspread(ZeroData,ProbDataFTD,Settle,Maturity);

Compare the FTD spreads with the individual spreads.

figure
plot(MarketDates,MarketSpreads')
datetick
hold on
plot(MarketDates,FTDSpread,'LineWidth',3)
hold off
title('FTD and Individual CDS Spreads')
ylabel('FTD Spread (bp)')
xlabel('Maturity Date')
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An existing FTD swap can be priced with cdsprice, using the same FTD probability.

Maturity0 = MarketDates(1); % Assume maturity on nearest market date
Spread0 = 540; % Spread of existing FTD contract
% Assume default values of recovery and notional
FTDPrice = cdsprice(ZeroData,ProbDataFTD,Settle,Maturity0,Spread0);
fprintf('Price of existing FTD contract: %g\n',FTDPrice)

Price of existing FTD contract: 17644.7

Analyze Sensitivity to Correlation

To illustrate the sensitivity of the FTD spreads to model parameters, calculate the market spreads for
a range of correlation values.

corr = [0 0.01 0.10 0.25 0.5 0.75 0.90 0.99 1];
FTDSpreadByCorr = zeros(length(Maturity),length(corr));
FTDSpreadByCorr(:,1) = sum(MarketSpreads)';
FTDSpreadByCorr(:,end) = max(MarketSpreads)';

for ii = 2:length(corr)-1
   beta = sqrt(corr(ii))*ones(nIssuers,1);
   FTDSurvProb = zeros(length(ProbDates));
   for jj = 1:nProbDates
      % Vectorized conditional probability as a function of Z
      condProb = @(Z)prod(normcdf(bsxfun(@rdivide,...
         -repmat(DefThresh(:,jj),1,length(Z))+bsxfun(@times,beta,Z),...
         sqrt(1-beta.^2))));
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      % Truncate domain of normal distribution to [-5,5] interval
      FTDSurvProb(jj) = integral(@(Z)condProb(Z).*normpdf(Z),-5,5);
   end
   FTDSurvProb = FTDSurvProb(:,1);
   FTDDefProb = 1-FTDSurvProb;
   ProbDataFTD = [ProbDates, FTDDefProb];
   FTDSpreadByCorr(:,ii) = cdsspread(ZeroData,ProbDataFTD,Settle,Maturity);
end

The FTD spreads lie in a band between the sum and the maximum of individual spreads. As the
correlation increases to one, the FTD spreads decrease towards the maximum of the individual
spreads in the basket (all credits default together). As the correlation decreases to zero, the FTD
spreads approach the sum of the individual spreads (independent credits).

figure
legends = cell(1,length(corr));
plot(MarketDates,FTDSpreadByCorr(:,1),'k:')
legends{1} = 'Sum of Spreads';
datetick
hold on
for ii = 2:length(corr)-1
   plot(MarketDates,FTDSpreadByCorr(:,ii),'LineWidth',3*corr(ii))
   legends{ii} = ['Corr ' num2str(corr(ii)*100) '%'];
end
plot(MarketDates,FTDSpreadByCorr(:,end),'k-.')
legends{end} = 'Max of Spreads';

hold off
title('FTD Spreads for Different Correlations')
ylabel('FTD Spread (bp)')
xlabel('Maturity Date')
legend(legends,'Location','NW')
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For short maturities and small correlations, the basket is effectively independent (the FTD spread is
very close to the sum of individual spreads). The correlation effect becomes more significant for
longer maturities.

Here is an alternative visualization of the dependency of FTD spreads on correlation.

figure
surf(corr,MarketDates,FTDSpreadByCorr)
datetick('y')
ax = gca;
ax.YDir = 'reverse';
view(-40,10)
title('FTD Spreads for Different Correlations and Maturities')
xlabel('Correlation')
ylabel('Maturity Date')
zlabel('FTD Spread (bp)')
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Credit Default Swap Option
A credit default swap (CDS) option, or credit default swaption, is a contract that provides the holder
with the right, but not the obligation, to enter into a credit default swap in the future. CDS options
can either be payer swaptions or receiver swaptions. If a payer swaption, the option holder has the
right to enter into a CDS where they pay premiums; and, if a receiver swaption, the option holder
receives premiums. Financial Instruments Toolbox software provides cdsoptprice for pricing payer
and receiver credit default swaptions. Also, with some additional steps, cdsoptprice can be used
for pricing multi-name CDS index options.
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Pricing a Single-Name CDS Option
This example shows how to price a single-name CDS option using cdsoptprice. The function
cdsoptprice is based on the Black's model as described in O'Kane (2008). The optional knockout
argument for cdsoptprice supports two variations of the mechanics of a CDS option. CDS options
can be knockout or non-knockout options.

• A knockout option cancels with no payments if there is a credit event before the option expiry
date.

• A non-knockout option does not cancel if there is a credit event before the option expiry date. In
this case, the option holder of a non-knockout payer swaption can take delivery of the underlying
long protection CDS on the option expiry date and exercise the protection, delivering a defaulted
obligation in return for par. This portion of protection from option initiation to option expiry is
known as the front-end protection (FEP). While this distinction does not affect the receiver
swaption, the price of a non-knockout payer swaption is obtained by adding the value of the FEP
to the knockout payer swaption price.

Define the CDS instrument.

Settle = datenum('12-Jun-2012');
OptionMaturity = datenum('20-Sep-2012');
CDSMaturity = datenum('20-Sep-2017');
OptionStrike = 200;
SpreadVolatility = .4;

Define the zero rate.

Zero_Time = [.5 1 2 3 4 5]';
Zero_Rate = [.5 .75 1.5 1.7 1.9 2.2]'/100;
Zero_Dates = daysadd(Settle,360*Zero_Time,1);
ZeroData = [Zero_Dates Zero_Rate]

ZeroData = 6×2
105 ×

    7.3521    0.0000
    7.3540    0.0000
    7.3576    0.0000
    7.3613    0.0000
    7.3649    0.0000
    7.3686    0.0000

Define the market data.

Market_Time = [1 2 3 5 7 10]';
Market_Rate = [100 120 145 220 245 270]';
Market_Dates = daysadd(Settle,360*Market_Time,1);
MarketData = [Market_Dates Market_Rate];

ProbData = cdsbootstrap(ZeroData, MarketData, Settle)

ProbData = 6×2
105 ×

    7.3540    0.0000
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    7.3576    0.0000
    7.3613    0.0000
    7.3686    0.0000
    7.3759    0.0000
    7.3868    0.0000

Define the CDS option.

[Payer,Receiver] = cdsoptprice(ZeroData, ProbData, Settle, OptionMaturity, ...
    CDSMaturity, OptionStrike, SpreadVolatility, 'Knockout', true);
fprintf('    Payer: %.0f   Receiver: %.0f  (Knockout)\n',Payer,Receiver);

    Payer: 196   Receiver: 23  (Knockout)

[Payer,Receiver] = cdsoptprice(ZeroData, ProbData, Settle, OptionMaturity, ...
    CDSMaturity, OptionStrike, SpreadVolatility, 'Knockout', false);
fprintf('    Payer: %.0f   Receiver: %.0f  (Non-Knockout)\n',Payer,Receiver);

    Payer: 224   Receiver: 23  (Non-Knockout)

See Also
cdsoptprice | cdsspread | cdsrpv01

Related Examples
• “Pricing a CDS Index Option” on page 8-30
• “Credit Default Swap (CDS)”

More About
• “Mapping Financial Instruments Toolbox Functions for Credit Derivative Instrument Objects” on

page 1-92
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Pricing a CDS Index Option
This example shows how to price CDS index options by using cdsoptprice with the forward spread
adjustment. Unlike a single-name CDS, a CDS portfolio index contains multiple credits. When one or
more of the credits default, the corresponding contingent payments are made to the protection buyer
but the contract still continues with reduced coupon payments. Considering the fact that the CDS
index option does not cancel when some of the underlying credits default before expiry, one might
attempt to price CDS index options using the Black's model for non-knockout single-name CDS
option. However, Black's model in this form is not appropriate for pricing CDS index options because
it does not capture the exercise decision correctly when the strike spread (K) is very high, nor does it
ensure put-call parity when (K) is not equal to the contractual spread (O'Kane, 2008).

However, with the appropriate modifications, Black's model for single-name CDS options used in
cdsoptprice can provide a good approximation for CDS index options. While there are some
variations in the way the Black's model is modified for CDS index options, they usually involve
adjusting the forward spread F, the strike spread K, or both. Here we describe the approach of
adjusting the forward spread only. In the Black's model for single-name CDS options, the forward
spread F is defined as:

F = S(t, tE, T) =
S(t, T)RPV01(t, T)− S(t, tE)RPV01(t, tE)

RPV01(t, tE, T)

where

S is the spread.

RPV01 is the risky present value of a basis point (see cdsrpv01).

t is the valuation date.

tE is the option expiry date.

T is the CDS maturity date.

To capture the exercise decision correctly for CDS index options, we use the knockout form of the
Black's model and adjust the forward spread to incorporate the FEP as follows:

FAd j = F + FEP
RPV01(t, tE, T)

with FEP defined as

FEP = (1− R)Z(t, tE)(1− Q(t, tE))

where

R is the recovery rate.

Z is the discount factor.

Q is the survival probability.

In cdsoptprice, forward spread adjustment can be made with the AdjustedForwardSpread
parameter. When computing the adjusted forward spread, we can compute the spreads using
cdsspread and the RPV01s using cdsrpv01.
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Set up the data for the CDS index, its option, and zero curve. The underlying is a 5-year CDS index
maturing on 20-Jun-2017 and the option expires on 20-Jun-2012. A flat index spread is assumed when
bootstrapping the default probability curve.
% CDS index and option data
Recovery = .4;
Basis = 2;
Period = 4;
CDSMaturity = datenum('20-Jun-2017');
ContractSpread = 100;
IndexSpread = 140;
BusDayConvention = 'follow';
Settle = datenum('13-Apr-2012');
OptionMaturity = datenum('20-Jun-2012');
OptionStrike = 140;
SpreadVolatility = .69;

% Zero curve data
MM_Time = [1 2 3 6]';
MM_Rate = [0.004111 0.00563 0.00757 0.01053]';
MM_Dates = daysadd(Settle,30*MM_Time,1);
Swap_Time = [1 2 3 4 5 6 7 8 9 10 12 15 20 30]';
Swap_Rate = [0.01387 0.01035 0.01145 0.01318 0.01508 0.01700 0.01868 ...
    0.02012 0.02132 0.02237 0.02408 0.02564 0.02612 0.02524]';
Swap_Dates = daysadd(Settle,360*Swap_Time,1);

InstTypes = [repmat({'deposit'},size(MM_Time));repmat({'swap'},size(Swap_Time))];
Instruments = [repmat(Settle,size(InstTypes)) [MM_Dates;Swap_Dates] [MM_Rate;Swap_Rate]];

ZeroCurve = IRDataCurve.bootstrap('zero',Settle,InstTypes,Instruments);

% Bootstrap the default probability curve assuming a flat index spread.
MarketData = [CDSMaturity IndexSpread];
ProbDates = datemnth(OptionMaturity,(0:5*12)');
ProbData = cdsbootstrap(ZeroCurve, MarketData, Settle, 'ProbDates', ProbDates);

Compute the spot and forward RPV01s, which will be used later in the computation of the adjusted
forward spread. For this purpose, we can use cdsrpv01.
% RPV01(t,T)
RPV01_CDSMaturity = cdsrpv01(ZeroCurve,ProbData,Settle,CDSMaturity)

% RPV01(t,t_E,T)
RPV01_OptionExpiryForward = cdsrpv01(ZeroCurve,ProbData,Settle,CDSMaturity,...
    'StartDate',OptionMaturity)

% RPV01(t,t_E) = RPV01(t,T) - RPV01(t,t_E,T)
RPV01_OptionExpiry = RPV01_CDSMaturity - RPV01_OptionExpiryForward

RPV01_CDSMaturity =

    4.7853

RPV01_OptionExpiryForward =

    4.5971

RPV01_OptionExpiry =

    0.1882

Compute the spot spreads using cdsspread.
% S(t,t_E)
Spread_OptionExpiry = cdsspread(ZeroCurve,ProbData,Settle,OptionMaturity,...
    'Period',Period,'Basis',Basis,'BusDayConvention',BusDayConvention,...
    'PayAccruedPremium',true,'recoveryrate',Recovery)

% S(t,T)
Spread_CDSMaturity = cdsspread(ZeroCurve,ProbData,Settle,CDSMaturity,...
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    'Period',Period,'Basis',Basis,'BusDayConvention',BusDayConvention,...
    'PayAccruedPremium',true,'recoveryrate',Recovery)

Spread_OptionExpiry =

  139.9006

Spread_CDSMaturity =

  140.0000

The spot spreads and RPV01s are then used to compute the forward spread.

% F = S(t,t_E,T)
ForwardSpread = (Spread_CDSMaturity.*RPV01_CDSMaturity - ...
    Spread_OptionExpiry.*RPV01_OptionExpiry)./RPV01_OptionExpiryForward

ForwardSpread =

  140.0040

Compute the front-end protection (FEP).
FEP = 10000*(1-Recovery)*ZeroCurve.getDiscountFactors(OptionMaturity)*ProbData(1,2)

FEP =

   26.3108

Compute the adjusted forward spread.

AdjustedForwardSpread = ForwardSpread + FEP./RPV01_OptionExpiryForward

AdjustedForwardSpread =

  145.7273

Compute the option prices using cdsoptprice with the adjusted forward spread. Note again that
the Knockout parameter should be set to be true because the FEP was already incorporated into
the adjusted forward spread.
[Payer,Receiver] = cdsoptprice(ZeroCurve, ProbData, Settle, OptionMaturity, ...
    CDSMaturity, OptionStrike, SpreadVolatility,'Knockout',true,...
    'AdjustedForwardSpread', AdjustedForwardSpread,'PayAccruedPremium',true);
fprintf('    Payer: %.0f   Receiver: %.0f  \n',Payer,Receiver);

Payer: 92   Receiver: 66  

See Also
cdsoptprice | cdsspread | cdsrpv01 | CDSOption

Related Examples
• “Pricing a Single-Name CDS Option” on page 8-28
• “Credit Default Swap (CDS)”
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More About
• “Mapping Financial Instruments Toolbox Functions for Credit Derivative Instrument Objects” on

page 1-92
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Wrong Way Risk with Copulas
This example shows an approach to modeling wrong-way risk for Counterparty Credit Risk using a
Gaussian copula.

A basic approach to Counterparty Credit Risk (CCR) (see “Counterparty Credit Risk and CVA” on page
8-2 example) assumes that market and credit risk factors are independent of each other. A simulation
of market risk factors drives the exposures for all contracts in the portfolio. In a separate step,
Credit-Default Swap (CDS) market quotes determine the default probabilities for each counterparty.
Exposures, default probabilities, and a given recovery rate are used to compute the Credit-Value
Adjustment (CVA) for each counterparty, which is a measure of expected loss. The simulation of risk
factors and the default probabilities are treated as independent of each other.

In practice, default probabilities and market factors are correlated. The relationship may be
negligible for some types of instruments, but for others, the relationship between market and credit
risk factors may be too important to be ignored when computing risk measures. When the probability
of default of a counterparty and the exposure resulting from particular contract tend to increase
together we say that the contract has wrong-way risk (WWR).

This example demonstrates an implementation of the wrong-way risk methodology described in
Garcia Cespedes et al. (see References on page 8-0 ).

Exposures Simulation

Many financial institutions have systems that simulate market risk factors and value all the
instruments in their portfolios at given simulation dates. These simulations are used to compute
exposures and other risk measures. Because the simulations are computationally intensive, reusing
them for subsequent risk analyses is important.

This example uses the data and the simulation results from the “Counterparty Credit Risk and CVA”
on page 8-2 example, previously saved in the ccr.mat file. The ccr.mat file contains:

• RateSpec: The rate spec when contract values were calculated
• Settle: The settle date when contract values were calculated
• simulationDates: A vector of simulation dates
• swaps: A struct containing the swap parameters
• values: The NUMDATES x NUMCONTRACT x NUMSCENARIOS cube of simulated contract values over

each date/scenario

This example looks at expected losses over a one-year time horizon only, so the data is cropped after
one year of simulation. Simulation dates over the first year are at a monthly frequency, so the 13th
simulation date is our one-year time horizon (the first simulation date is the settle date).

load ccr.mat

oneYearIdx = 13;
values = values(1:oneYearIdx,:,:);
dates = simulationDates(1:oneYearIdx);

numScenarios = size(values,3);

The credit exposures are computed from the simulated contract values. These exposures are monthly
credit exposures per counterparty from the settle date to our one-year time horizon.
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Since defaults can happen at any time during the one-year time period, it is common to model the
exposure at default (EAD) based on the idea of expected positive exposure (EPE). The time-averaged
exposure for each scenario is computed, which is called PE (positive exposure). The average of the
PE's, including all scenarios, is the EPE, which can also be obtained from the exposureprofiles
function.

The positive exposure matrix PE contains one row per simulated scenario and one column per
counterparty. This is used as the EAD in this analysis.

% Compute counterparty exposures
[exposures, counterparties] = creditexposures(values,swaps.Counterparty, ...
    'NettingID',swaps.NettingID);
numCP = numel(counterparties);

% Compute PE (time-averaged exposures) per scenario
intervalWeights = diff(dates) / (dates(end) - dates(1));
exposureMidpoints = 0.5 * (exposures(1:end-1,:,:) + exposures(2:end,:,:));
weightedContributions = bsxfun(@times,intervalWeights,exposureMidpoints);
PE = squeeze(sum(weightedContributions))';

% Compute total portfolio exposure per scenario
totalExp = sum(PE,2);

% Display size of PE and totalExp
whos PE totalExp

  Name             Size            Bytes  Class     Attributes

  PE            1000x5             40000  double              
  totalExp      1000x1              8000  double              

Credit Simulation

A common approach for simulating credit defaults is based on a "one-factor model", sometimes called
the "asset-value approach" (see Gupton et al., 1997 on page 8-0 ). This is an efficient way to
simulate correlated defaults.

Each company i is associated with a random variable Yi, such that

Yi = βiZ + 1− βi
2ϵi

where Z is the "one-factor", a standard normal random variable that represents a systematic credit
risk factor whose values affect all companies. The correlation between company i and the common
factor is given by beta_i, the correlation between companies i and j is beta_i*beta_j. The idiosyncratic
shock epsilon_i is another standard normal variable that may reduce or increase the effect of the
systematic factor, independently of what happens with any other company.

If the default probability for company i is PDi, a default occurs when

Φ(Yi) < PDi

where Φ is the cumulative standard normal distribution.

The Yi variable is sometimes interpreted as asset returns, or sometimes referred to as a latent
variable.
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This model is a Gaussian copula that introduces a correlation between credit defaults. Copulas offer a
particular way to introduce correlation, or more generally, co-dependence between two random
variables whose co-dependence is unknown.

Use CDS spreads to bootstrap the one-year default probabilities for each counterparty. The CDS
quotes come from the swap-portfolio spreadsheet used in the “Counterparty Credit Risk and CVA” on
page 8-2 example.

% Import CDS market information for each counterparty
swapFile = 'cva-swap-portfolio.xls';
cds = readtable(swapFile,'Sheet','CDS Spreads');
cdsDates = datenum(cds.Date);
cdsSpreads = table2array(cds(:,2:end));

% Bootstrap default probabilities for each counterparty
zeroData = [RateSpec.EndDates RateSpec.Rates];
defProb = zeros(1, size(cdsSpreads,2));
for i = 1:numel(defProb)
    probData = cdsbootstrap(zeroData, [cdsDates cdsSpreads(:,i)], ...
        Settle, 'probDates', dates(end));
    defProb(i) = probData(2);
end

Now simulate the credit scenarios. Because defaults are rare, it is common to simulate a large
number of credit scenarios.

The sensitivity parameter beta is set to 0.3 for all counterparties. This value can be calibrated or
tuned to explore model sensitivities. See the References on page 8-0  for more information.

numCreditScen = 100000;
rng('default');

% Z is the single credit factor
Z = randn(numCreditScen,1);

% epsilon is the idiosyncratic factor
epsilon = randn(numCreditScen,numCP);

% beta is the counterparty sensitivity to the credit factor
beta = 0.3 * ones(1,numCP);

% Counterparty latent variables
Y = bsxfun(@times,beta,Z) + bsxfun(@times,sqrt(1 - beta.^2),epsilon);

% Default indicator
isDefault = bsxfun(@lt,normcdf(Y),defProb);

Correlating Exposure and Credit Scenarios

Now that there is a set of sorted portfolio exposure scenarios and a set of default scenarios, follow
the approach in Garcia Cespedes et al. and use a Gaussian copula to generate correlated exposure-
default scenario pairs.

Define a latent variable Ye that maps into the distribution of simulated exposures. Ye is defined as

Ye = ρZ + 1− ρ2ϵe
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where Z is the systemic factor computed in the credit simulation, epsilon_e is an independent
standard normal variable and rho is interpreted as a market-credit correlation parameter. By
construction, Ye is a standard normal variable correlated with Z with correlation parameter rho.

The mapping between Ye and the simulated exposures requires us to order the exposure scenarios in
a meaningful way, based on some sortable criterion. The criterion can be any meaningful quantity, for
example, it could be an underlying risk factor for the contract values (such as an interest rate), the
total portfolio exposure, and so on.

In this example, use the total portfolio exposure (totalExp) as the exposure scenario criterion to
correlate the credit factor with the total exposure. If rho is negative, low values of the credit factor Z
tend to get linked to high values of Ye, hence high exposures. This means negative values of rho
introduce WWR.

To implement the mapping between Ye and the exposure scenarios, sort the exposure scenarios by
the totalExp values. Suppose that the number of exposure scenarios is S (numScenarios). Given
Ye, find the value j such that

j− 1
S ≤ Φ(Ye) < j

S

and select the scenario j from the sorted exposure scenarios.

Ye is correlated to the simulated exposures and Z is correlated to the simulated defaults. The
correlation rho between Ye and Z is, therefore, the correlation link between the exposures and the
credit simulations.

% Sort the total exposure
[~,totalExpIdx] = sort(totalExp);

% Scenario cut points
cutPoints = 0:1/numScenarios:1;

% epsilonExp is the idiosyncratic factor for the latent variable
epsilonExp = randn(numCreditScen,1);

% Set a market-credit correlation value
rho = -0.75;

% Latent variable
Ye = rho * Z + sqrt(1 - rho^2) * epsilonExp;

% Find corresponding exposure scenario
binidx = discretize(normcdf(Ye),cutPoints);
scenIdx = totalExpIdx(binidx);
totalExpCorr = totalExp(scenIdx);
PECorr = PE(scenIdx,:);

The following plot shows the correlated exposure-credit scenarios for the total portfolio exposure as
well as for the first counterparty. Because of the negative correlation, negative values of the credit
factor Z correspond to high exposure levels (wrong-way risk).

% We only plot up to 10000 scenarios
numScenPlot = min(10000,numCreditScen);
figure;
scatter(Z(1:numScenPlot),totalExpCorr(1:numScenPlot))
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hold on
scatter(Z(1:numScenPlot),PECorr(1:numScenPlot,1))
xlabel('Credit Factor (Z)')
ylabel('Exposure')
title(['Correlated Exposure-Credit Scenarios, \rho = ' num2str(rho)])
legend('Total Exposure','CP1 Exposure')
hold off

For positive values of rho, the relationship between the credit factor and the exposures is reversed
(right-way risk).

rho = 0.75;
Ye = rho * Z + sqrt(1 - rho^2) * epsilonExp;
binidx = discretize(normcdf(Ye),cutPoints);
scenIdx = totalExpIdx(binidx);
totalExpCorr = totalExp(scenIdx);

figure;
scatter(Z(1:numScenPlot),totalExpCorr(1:numScenPlot))
xlabel('Credit Factor (Z)')
ylabel('Exposure')
title(['Correlated Exposure-Credit Scenarios, \rho = ' num2str(rho)])

8 Credit Derivatives

8-38



Sensitivity to Correlation

You can explore the sensitivity of the exposures or other risk measures to a range of values for rho.

For each value of rho, compute the total losses per credit scenario as well as the expected losses per
counterparty. This example assumes a 40% recovery rate.

Recovery = 0.4;
rhoValues = -1:0.1:1;

totalLosses = zeros(numCreditScen,numel(rhoValues));
expectedLosses = zeros(numCP, numel(rhoValues));

for i = 1:numel(rhoValues)
    
    rho = rhoValues(i);
    
    % Latent variable
    Ye = rho * Z + sqrt(1 - rho^2) * epsilonExp;
    
    % Find corresponding exposure scenario
    binidx = discretize(normcdf(Ye),cutPoints);
    scenIdx = totalExpIdx(binidx);
    simulatedExposures = PE(scenIdx,:);
    
    % Compute actual losses based on exposures and default events
    losses = isDefault .* simulatedExposures * (1-Recovery);    
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    totalLosses(:,i) = sum(losses,2);
    
    % We compute the expected losses per counterparty
    expectedLosses(:,i) = mean(losses)';    
end
displayExpectedLosses(rhoValues, expectedLosses)

               Expected Losses
 Rho    CP1      CP2      CP3     CP4       CP5
-------------------------------------------------
-1.0   604.10   260.44   194.70  1234.17   925.95-0.9   583.67   250.45   189.02  1158.65   897.91-0.8   560.45   245.19   183.23  1107.56   865.33-0.7   541.08   235.86   177.16  1041.39   835.12-0.6   521.89   228.78   170.49   991.70   803.22-0.5   502.68   217.30   165.25   926.92   774.27-0.4   487.15   211.29   160.80   881.03   746.15-0.3   471.17   203.55   154.79   828.90   715.63-0.2   450.91   197.53   149.33   781.81   688.13-0.1   433.87   189.75   144.37   744.00   658.19 0.0   419.20   181.25   138.76   693.26   630.38 0.1   399.36   174.41   134.83   650.66   605.89 0.2   385.21   169.86   130.93   617.91   579.01 0.3   371.21   164.19   124.62   565.78   552.83 0.4   355.57   158.14   119.92   530.79   530.19 0.5   342.58   152.10   116.38   496.27   508.86 0.6   324.73   145.42   111.90   466.57   485.05 0.7   319.18   140.76   108.14   429.48   465.84 0.8   303.71   136.13   103.95   405.88   446.36 0.9   290.36   131.54   100.20   381.27   422.79 1.0   278.89   126.77    95.77   358.71   405.40

You can visualize the sensitivity of the Economic Capital (EC) to the market-credit correlation
parameter. Define EC as the difference between a percentile q of the distribution of losses, minus the
expected loss.

Negative values of rho result in higher capital requirements because of WWR.

pct = 99;
ec = prctile(totalLosses,pct) - mean(totalLosses);

figure;
plot(rhoValues,ec)
title('Economic Capital (99%) versus \rho')
xlabel('Rho');
ylabel('Economic Capital');
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Final Remarks

This example implements a copula-based approach to WWR, following Garcia Cespedes et al. The
methodology can efficiently reuse existing exposures and credit simulations, and the sensitivity to the
market-credit correlation parameter can be efficiently computed and conveniently visualized for all
correlation values.

The single-parameter copula approach presented here can be extended for a more thorough
exploration of the WWR of a portfolio. For example, different types of copulas can be applied, and
different criteria can be used to sort the exposure scenarios. Other extensions include simulating
multiple systemic credit risk variables (a multi-factor model), or switching from a one-year to a multi-
period framework to calculate measures such as credit value adjustment (CVA), as in Rosen and
Saunders (see References on page 8-0 ).
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Local Functions

function displayExpectedLosses(rhoValues, expectedLosses)
fprintf('               Expected Losses\n');
fprintf(' Rho    CP1      CP2      CP3     CP4       CP5\n');
fprintf('-------------------------------------------------\n');
for i = 1:numel(rhoValues)
    % Display expected loss
    fprintf('% .1f%9.2f%9.2f%9.2f%9.2f%9.2f', rhoValues(i), expectedLosses(:,i));  
end
end

See Also
cdsbootstrap | cdsprice | cdsspread | cdsrpv01

Related Examples
• “First-to-Default Swaps” on page 8-18
• “Credit Default Swap Option” on page 8-27

More About
• “Mapping Financial Instruments Toolbox Functions for Credit Derivative Instrument Objects” on

page 1-92

External Websites
• Pricing and Valuation of Credit Default Swaps (4 min 22 sec)
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Bootstrapping a Default Probability Curve from Credit Default
Swaps

This example shows how to bootstrap a default probability curve for CDS instruments.

Create a ratecurve Object for a Zero Curve

Create a ratecurve object using ratecurve.

Settle = datetime(2017,9,15);
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])];
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2017
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Market CDS Spreads and a Vector of Market CDS Instruments

Define the market CDS spreads and use fininstrument to create a vector of market CDS
instrument objects.

SpreadTimes = [1 2 3 4 5 7 10 20 30]';
Spread = [140 175 210 265 310 360 410 460 490]';
MarketDates = datemnth(Settle,12*SpreadTimes);

NumMarketInst = length(MarketDates);
ContractSpreadBP = 50.*ones(NumMarketInst,1);

MarketCDSInstruments(NumMarketInst,1) = fininstrument("cds", ...
    'ContractSpread', ContractSpreadBP(end), 'Maturity', MarketDates(end));
for k = 1:NumMarketInst
    MarketCDSInstruments(k,1) = fininstrument("cds", ...
        'ContractSpread', ContractSpreadBP(k), 'Maturity', MarketDates(k));
end
MarketCDSInstruments

MarketCDSInstruments=9×1 object
  9x1 CDS array with properties:

    ContractSpread
    Maturity
    Period
    Basis
    RecoveryRate
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    BusinessDayConvention
    Holidays
    PayAccruedPremium
    Notional
    Name

Bootstrap a Default Probability Curve

Use defprobstrip, hazardrates,and survprobs to analyse a default probability curve for the
market CDS instruments.

DefaultProbCurve = defprobstrip(ZeroCurve, MarketCDSInstruments, Spread)

DefaultProbCurve = 
  defprobcurve with properties:

                  Settle: 15-Sep-2017
                   Basis: 2
                   Dates: [9x1 datetime]
    DefaultProbabilities: [9x1 double]

HazardRates = hazardrates(DefaultProbCurve)

HazardRates = 9×1

    0.0233
    0.0352
    0.0474
    0.0751
    0.0879
    0.0887
    0.1023
    0.1059
    0.2271

SurvivalProbabilities = survprobs(DefaultProbCurve, MarketDates)

SurvivalProbabilities = 9×1

    0.9766
    0.9424
    0.8981
    0.8322
    0.7612
    0.6358
    0.4658
    0.1590
    0.0159

See Also
Functions
CDS | finmodel | finpricer
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Related Examples
• “Price Multiple CDS Option Instruments Using CDS Black Model and CDS Black Pricer” on page

8-46

More About
• “Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments”

on page 1-22
• “Choose Instruments, Models, and Pricers” on page 1-53

8 Credit Derivatives

8-44



Bootstrap Default Probability Curve from Market CDS
Instruments

This example shows how to use defprobstrip to bootstrap a defprobcurve object based on
market CDS instruments.

Create ratecurve Object for Zero-Rate Curve

Create a ratecurve object using ratecurve.

Settle = datetime(2017,9,15);
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])];
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates);

Market CDS Spreads and Vector of Market CDS Instruments

Define the market CDS spreads and use fininstrument to create a vector of market CDS
instrument objects.

SpreadTimes = [1 2 3 4 5 7 10 20 30]';
Spread = [140 175 210 265 310 360 410 460 490]';
MarketDates = datemnth(Settle,12*SpreadTimes);
  
NumMarketInst = length(MarketDates);
ContractSpreadBP = zeros(NumMarketInst,1);
  
MarketCDSInstruments(NumMarketInst,1) = fininstrument("cds", ...
      'ContractSpread', ContractSpreadBP(end), 'Maturity', MarketDates(end));
  for k = 1:NumMarketInst
      MarketCDSInstruments(k,1) = fininstrument("cds", ...
          'ContractSpread', ContractSpreadBP(k), 'Maturity', MarketDates(k));
  end

Use defprobstrip to create a defprobcurve object.

DefaultProbCurve = defprobstrip(ZeroCurve,MarketCDSInstruments, Spread)

DefaultProbCurve = 
  defprobcurve with properties:

                  Settle: 15-Sep-2017
                   Basis: 2
                   Dates: [9x1 datetime]
    DefaultProbabilities: [9x1 double]
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Price Multiple CDS Option Instruments Using CDS Black Model
and CDS Black Pricer

This example shows the workflow to price multiple CDSOption instruments using a CDSBlack model
and a CDSBlack pricer.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2021,9,20);
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])];
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
ZeroCurve = ratecurve("zero", Settle, ZeroDates ,ZeroRates)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 20-Sep-2021
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create defprobcurve Object

Create a defprobcurve object using defprobcurve.

DefProbTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])];
DefaultProbabilities = [0.005 0.007 0.01 0.015 0.026 0.04 0.077 0.093 0.15 0.20]';
ProbDates = Settle + DefProbTimes;
DefaultProbCurve = defprobcurve(Settle, ProbDates, DefaultProbabilities)

DefaultProbCurve = 
  defprobcurve with properties:

                  Settle: 20-Sep-2021
                   Basis: 2
                   Dates: [10x1 datetime]
    DefaultProbabilities: [10x1 double]

Create CDS Instrument Object

Use fininstrument to create an underlying CDS instrument object.

ContractSpreadBP = 0; % Contractual spread is determined on ExerciseDate
CDS = fininstrument("CDS",'Maturity',datetime(2027,9,20),'ContractSpread',ContractSpreadBP)

CDS = 
  CDS with properties:
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           ContractSpread: 0
                 Maturity: 20-Sep-2027
                   Period: 4
                    Basis: 2
             RecoveryRate: 0.4000
    BusinessDayConvention: "actual"
                 Holidays: NaT
        PayAccruedPremium: 1
                 Notional: 10000000
                     Name: ""

Create CDSOption Instrument Objects

Use fininstrument to create multiple CDSOption instrument objects.

ExerciseDate = datetime(2021, 12, 20);
Strikes = [30:2:90]';
PayerCDSOptions = fininstrument("CDSOption",'Strike',Strikes,'ExerciseDate',ExerciseDate,'OptionType',"call",'CDS',CDS)

PayerCDSOptions=31×1 object
  16x1 CDSOption array with properties:

    OptionType
    Strike
    Knockout
    AdjustedForwardSpread
    ExerciseDate
    CDS
    Name
      ⋮

ReceiverCDSOptions = fininstrument("CDSOption",'Strike',Strikes,'ExerciseDate',ExerciseDate,'OptionType',"put",'CDS',CDS)

ReceiverCDSOptions=31×1 object
  16x1 CDSOption array with properties:

    OptionType
    Strike
    Knockout
    AdjustedForwardSpread
    ExerciseDate
    CDS
    Name
      ⋮

Price CDSOption Instruments

Assuming a flat volatility structure across strikes, first use finmodel to create a CDSBlack model
object. Then use finpricer to create a CDSBlack pricer object. Use price to compute the prices
for the CDSOption instruments.

SpreadVolatility = 0.3;
CDSOptionModel = finmodel("CDSBlack",'SpreadVolatility',SpreadVolatility)

CDSOptionModel = 
  CDSBlack with properties:
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    SpreadVolatility: 0.3000

CDSOptionpricer = finpricer("analytic",'Model',CDSOptionModel,'DiscountCurve',ZeroCurve,'DefaultProbabilityCurve',DefaultProbCurve)

CDSOptionpricer = 
  CDSBlack with properties:

                      Model: [1x1 finmodel.CDSBlack]
              DiscountCurve: [1x1 ratecurve]
    DefaultProbabilityCurve: [1x1 defprobcurve]

PayerPrices = price(CDSOptionpricer,PayerCDSOptions)

PayerPrices = 31×1

  171.7269
  160.6802
  149.6346
  138.5931
  127.5648
  116.5716
  105.6576
   94.8983
   84.4061
   74.3266
      ⋮

ReceiverPrices = price(CDSOptionpricer,ReceiverCDSOptions)

ReceiverPrices = 31×1

    0.0000
    0.0003
    0.0016
    0.0070
    0.0256
    0.0794
    0.2123
    0.4999
    1.0547
    2.0221
      ⋮

Plot CDS Option Prices

Plot the payer and receiver CDS option prices.

figure;
plot(Strikes, PayerPrices, '--', Strikes, ReceiverPrices)
title('CDS Option Pricing')
xlabel('Option Strike (Basis Points)')
ylabel('Option Premium (Basis Points)')
legend('Payer CDS Options','Receiver CDS Options','Location','best')
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See Also
Functions
CDS | CDSOption | finmodel | finpricer

Related Examples
• “Bootstrapping a Default Probability Curve from Credit Default Swaps” on page 8-42

More About
• “Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments”

on page 1-22
• “Choose Instruments, Models, and Pricers” on page 1-53

 Price Multiple CDS Option Instruments Using CDS Black Model and CDS Black Pricer

8-49





Interest-Rate Curve Objects

• “Interest-Rate Curve Objects and Workflow” on page 9-2
• “Creating Interest-Rate Curve Objects” on page 9-4
• “Creating an IRDataCurve Object” on page 9-6
• “Dual Curve Bootstrapping” on page 9-12
• “Creating an IRFunctionCurve Object” on page 9-16
• “Fitting Interest-Rate Curve Functions” on page 9-24
• “Converting an IRDataCurve or IRFunctionCurve Object” on page 9-30
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Interest-Rate Curve Objects and Workflow
In this section...
“Class Structure” on page 9-2
“Workflow Using Interest-Rate Curve Objects” on page 9-2

Class Structure
Financial Instruments Toolbox class structure supports interest-rate curve objects. The class
structure supports four classes.

Class Structure

Class Name Description
IRDataCurve Creates a representation of an interest-rate curve with dates and

data. IRDataCurve is created directly by specifying dates and
corresponding interest rates or discount factors, or you can
bootstrap an IRDataCurve object from market data.

IRFunctionCurve Creates a representation of an interest-rate curve with a
function. IRFunctionCurve is created directly by specifying a
function handle, or you can fit a function to market data using
functions of the IRFunctionCurve object.

IRBootstrapOptions The IRBootstrapOptions object lets you specify options
relating to the bootstrapping of an IRDataCurve object.

IRFitOptions The IRFitOptions object lets you specify options relating to
the fitting process for an IRFunctionCurve object.

Workflow Using Interest-Rate Curve Objects
The supported workflow model for using interest-rate curve objects is:

1 Create an interest-rate curve based on an IRDataCurve object or an IRFunctionCurve object.

• To create an IRDataCurve object:

• Use vectors of dates and data with interpolation methods.
• Use bootstrapping based on market instruments.

For more information on creating an IRDataCurve object, see “Creating an IRDataCurve
Object” on page 9-6.

• To create an IRFunctionCurve object:

• Specify a function handle.
• Fit a function using the Nelson-Siegel model, Svensson model, or smoothing spline model.
• Fit a custom function.

2 Use functions of the IRDataCurve or IRFunctionCurve objects to extract forward, zero,
discount factor, or par yield curves for the interest-rate curve object.
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3 Convert an interest-rate curve from an IRDataCurve or IRFunctionCurve object to a
RateSpec structure. This RateSpec structure is identical to the RateSpec produced by the
function intenvset. Using the RateSpec for an interest-rate curve object, you can then use
Financial Instruments Toolbox functions to model an interest-rate structure and price.
Alternatively, you can convert the RateSpec to a ratecurve object (see “Convert RateSpec to a
ratecurve Object” on page 1-49) and then use the Financial Instruments Toolbox object-based
framework for pricing instruments.

See Also
ratecurve | parametercurve

Related Examples
• “Creating Interest-Rate Curve Objects” on page 9-4

More About
• “Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework” on page

1-93
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Creating Interest-Rate Curve Objects
Depending on your data and purpose for analysis, you can create an interest-rate curve object by
using an IRDataCurve or IRFunctionCurve object.

To create an IRDataCurve object, you can:

• Use IRDataCurve to create an IRDataCurve object using vector of dates and data with
interpolation methods.

• Use the object function bootstrap using market instruments.

For more information on creating an IRDataCurve object, see “Creating an IRDataCurve Object” on
page 9-6.

Using an IRDataCurve object, you can use the following functions to determine:

• Forward rate curve — getForwardRates
• Zero rate curve — getZeroRates
• Discount rate curve — getDiscountFactors
• Par yield curve — getParYields

Alternatively, to create an IRFunctionCurve object, you can:

• Use IRFunctionCurve to create an IRFunctionCurve object and directly specify a function
handle.

• Use IRFunctionCurve object functions:

• fitNelsonSiegel fits a “Fitting IRFunctionCurve Object Using Nelson-Siegel Method” on
page 9-16 to market data for bonds.

• fitSvensson fits a “Fitting IRFunctionCurve Object Using Svensson Method” on page 9-17
to market data for bonds.

• fitSmoothingSpline fits a “Fitting IRFunctionCurve Object Using Smoothing Spline
Method” on page 9-19 function to market data for bonds.

• fitFunction custom fits an interest-rate curve object to market data for bonds.

Using an IRFunctionCurve object, you can use the following functions to determine:

• Forward rate curve — getForwardRates
• Zero rate curve — getZeroRates
• Discount rate curve — getDiscountFactors
• Par yield curve — getParYields

In addition, you can convert an IRDataCurve object or IRFunctionCurve object to a RateSpec
structure. For more information, see “Converting an IRDataCurve or IRFunctionCurve Object” on
page 9-30.
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See Also

Related Examples
• “Creating an IRDataCurve Object” on page 9-6

More About
• “Interest-Rate Curve Objects and Workflow” on page 9-2
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Creating an IRDataCurve Object
To create an IRDataCurve object, see the following options:

In this section...
“Use IRDataCurve with Dates and Data” on page 9-6
“Bootstrap IRDataCurve Based on Market Instruments” on page 9-7

Use IRDataCurve with Dates and Data
Use IRDataCurve with vectors of dates and data to create an interest-rate curve object. When
constructing the IRDataCurve object, you can also use optional inputs to define how the interest-
rate curve is constructed from the dates and data.

Example

In this example, you create the vectors for Dates and Data for an interest-rate curve.
Data = [2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;
Dates = daysadd(today,[360 2*360 3*360 5*360 7*360 10*360 20*360 30*360],1);

Use IRDataCurve to build interest-rate objects based on the constant and pchip interpolation
methods.
irdc_const = IRDataCurve('Forward',today,Dates,Data,'InterpMethod','constant');
irdc_pchip = IRDataCurve('Forward',today,Dates,Data,'InterpMethod','pchip');

Plot the forward and zero rate curves for the two IRDataCurve objects based on constant and
pchip interpolation methods.
PlottingDates = daysadd(today,180:10:360*30,1);
plot(PlottingDates, getForwardRates(irdc_const, PlottingDates),'b')
hold on
plot(PlottingDates, getForwardRates(irdc_pchip, PlottingDates),'r')
plot(PlottingDates, getZeroRates(irdc_const, PlottingDates),'g')
plot(PlottingDates, getZeroRates(irdc_pchip, PlottingDates),'yellow')
legend({'Constant Forward Rates','PCHIP Forward Rates','Constant Zero Rates',...
'PCHIP Zero Rates'},'location','SouthEast')
title('Interpolation methods for IRDataCurve objects')
datetick

The plot demonstrates the relationship of the forward and zero rate curves.
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Bootstrap IRDataCurve Based on Market Instruments
Use the bootstrapping function, based on market instruments, to create an interest-rate curve object.
When bootstrapping, you also have the option to define a range of interpolation methods (linear,
spline, constant, and pchip).

Example 1

In this example, you bootstrap a swap curve from deposits, Eurodollar Futures and swaps. The input
market data for this example is hard-coded and specified as two cell arrays of data; one cell array
indicates the type of instrument and the other contains the Settle, Maturity values and a market
quote for the instrument. For deposits and swaps, the quote is a rate; for the EuroDollar futures, the
quote is a price. Although bonds are not used in this example, a bond would also be quoted with a
price.
InstrumentTypes = {'Deposit';'Deposit';'Deposit';'Deposit';'Deposit'; ...
    'Futures';'Futures'; ...
    'Futures';'Futures';'Futures'; ...
    'Futures';'Futures';'Futures'; ...
    'Futures';'Futures';'Futures'; ...
    'Futures';'Futures';'Futures'; ...
    'Futures';'Futures';'Futures'; ...
    'Swap';'Swap';'Swap';'Swap';'Swap';'Swap';'Swap'};

Instruments = [datenum('08/10/2007'),datenum('08/17/2007'),.0532063; ...
    datenum('08/10/2007'),datenum('08/24/2007'),.0532000; ...
    datenum('08/10/2007'),datenum('09/17/2007'),.0532000; ...
    datenum('08/10/2007'),datenum('10/17/2007'),.0534000; ...
    datenum('08/10/2007'),datenum('11/17/2007'),.0535866; ...
    datenum('08/08/2007'),datenum('19-Dec-2007'),9485; ...
    datenum('08/08/2007'),datenum('19-Mar-2008'),9502; ...
    datenum('08/08/2007'),datenum('18-Jun-2008'),9509.5; ...
    datenum('08/08/2007'),datenum('17-Sep-2008'),9509; ...
    datenum('08/08/2007'),datenum('17-Dec-2008'),9505.5; ...
    datenum('08/08/2007'),datenum('18-Mar-2009'),9501; ...
    datenum('08/08/2007'),datenum('17-Jun-2009'),9494.5; ...
    datenum('08/08/2007'),datenum('16-Sep-2009'),9489; ...
    datenum('08/08/2007'),datenum('16-Dec-2009'),9481.5; ...
    datenum('08/08/2007'),datenum('17-Mar-2010'),9478; ...
    datenum('08/08/2007'),datenum('16-Jun-2010'),9474; ...
    datenum('08/08/2007'),datenum('15-Sep-2010'),9469.5; ...
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    datenum('08/08/2007'),datenum('15-Dec-2010'),9464.5; ...
    datenum('08/08/2007'),datenum('16-Mar-2011'),9462.5; ...
    datenum('08/08/2007'),datenum('15-Jun-2011'),9456.5; ...
    datenum('08/08/2007'),datenum('21-Sep-2011'),9454; ...
    datenum('08/08/2007'),datenum('21-Dec-2011'),9449.5; ...
    datenum('08/08/2007'),datenum('08/08/2014'),.0530; ...
    datenum('08/08/2007'),datenum('08/08/2017'),.0545; ...
    datenum('08/08/2007'),datenum('08/08/2019'),.0551; ...
    datenum('08/08/2007'),datenum('08/08/2022'),.0559; ...
    datenum('08/08/2007'),datenum('08/08/2027'),.0565; ...
    datenum('08/08/2007'),datenum('08/08/2032'),.0566; ...
    datenum('08/08/2007'),datenum('08/08/2037'),.0566];

bootstrap is called as a function of the IRDataCurve object. Inputs to this function include the
curve Type (zero or forward), Settle date, InstrumentTypes, and Instrument data. The
bootstrap function also supports optional arguments, including an interpolation method,
compounding, basis, and an options structure for bootstrapping. For example, you are passing in an
IRBootstrapOptions object which includes information for the ConvexityAdjustment to forward
rates.
IRsigma = .01;
CurveSettle = datenum('08/10/2007');
bootModel = IRDataCurve.bootstrap('Forward', CurveSettle, ...
InstrumentTypes, Instruments,'InterpMethod','pchip',...
'Compounding',-1,'IRBootstrapOptions',...
IRBootstrapOptions('ConvexityAdjustment',@(t) .5*IRsigma^2.*t.^2))

bootModel = 

IRDataCurve

             Type: Forward
           Settle: 733264 (10-Aug-2007)
      Compounding: -1
            Basis: 0 (actual/actual)
     InterpMethod: pchip
            Dates: [29x1 double]
             Data: [29x1 double]

The bootstrap function uses an Optimization Toolbox function to solve for any bootstrapped rates.

Plot the forward and zero curves.
PlottingDates = (CurveSettle+20:30:CurveSettle+365*25)';
TimeToMaturity = yearfrac(CurveSettle,PlottingDates);
BootstrappedForwardRates = getForwardRates(bootModel, PlottingDates);
BootstrappedZeroRates = getZeroRates(bootModel, PlottingDates);

figure
hold on
plot(TimeToMaturity,BootstrappedForwardRates,'r')
plot(TimeToMaturity,BootstrappedZeroRates,'g')
title('Bootstrapped Curve')
xlabel('Time')
legend({'Forward','Zero'})

The plot demonstrates the forward and zero rate curves for the market data.
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Example 2

In this example, you bootstrap a swap curve from deposits, Eurodollar futures, and swaps. The input
market data for this example is hard-coded and specified as two cell arrays of data; one cell array
indicates the type of instrument and the other cell array contains the Settle, Maturity values and
a market quote for the instrument. This example of bootstrapping also demonstrates the use of an
InstrumentBasis for each Instrument type.
InstrumentTypes = {'Deposit';'Deposit';...
'Futures';'Futures';'Futures';'Futures';'Futures';'Futures';...
'Swap';'Swap';'Swap';'Swap';};

Instruments = [datenum('08/10/2007'),datenum('09/17/2007'),.0532000; ...
datenum('08/10/2007'),datenum('11/17/2007'),.0535866; ...
datenum('08/08/2007'),datenum('19-Dec-2007'),9485; ...
datenum('08/08/2007'),datenum('19-Mar-2008'),9502; ...
datenum('08/08/2007'),datenum('18-Jun-2008'),9509.5; ...
datenum('08/08/2007'),datenum('17-Sep-2008'),9509; ...
datenum('08/08/2007'),datenum('17-Dec-2008'),9505.5; ...
datenum('08/08/2007'),datenum('18-Mar-2009'),9501; ...
datenum('08/08/2007'),datenum('08/08/2014'),.0530; ...
datenum('08/08/2007'),datenum('08/08/2019'),.0551; ...
datenum('08/08/2007'),datenum('08/08/2027'),.0565; ...
datenum('08/08/2007'),datenum('08/08/2037'),.0566];

CurveSettle = datenum('08/10/2007');

The bootstrap function is called as a function of the IRBootstrapOptions object. Inputs to the
bootstrap function include the curve Type (zero or forward), Settle date, InstrumentTypes,
and Instrument data. The bootstrap function also supports optional arguments, including an
interpolation method, compounding, basis, and an options structure for bootstrapping. In this
example, you are passing an additional Basis value for each instrument type.
bootModel=IRDataCurve.bootstrap('Forward',CurveSettle,InstrumentTypes, ...
Instruments,'InterpMethod','pchip','InstrumentBasis',[repmat(2,8,1);repmat(0,4,1)])

bootModel = 

    IRDataCurve

             Type: Forward
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           Settle: 733264 (10-Aug-2007)
      Compounding: 2
            Basis: 0 (actual/actual)
     InterpMethod: pchip
            Dates: [12x1 double]
             Data: [12x1 double]

The bootstrap function uses an Optimization Toolbox function to solve for any bootstrapped rates.

Plot the par yields curve using the getParYields function.

PlottingDates = (datenum('08/11/2007'):30:CurveSettle+365*25)';
plot(PlottingDates, getParYields(bootModel, PlottingDates),'r')
datetick

The plot demonstrates the par yields curve for the market data.

See Also
IRBootstrapOptions | IRDataCurve | IRFunctionCurve | IRFitOptions

Related Examples
• “Creating Interest-Rate Curve Objects” on page 9-4
• “Bootstrapping a Swap Curve” on page 2-142
• “Dual Curve Bootstrapping” on page 9-12
• “Creating an IRFunctionCurve Object” on page 9-16
• “Fitting Interest-Rate Curve Functions” on page 2-145

More About
• “Interest-Rate Curve Objects and Workflow” on page 9-2
• “Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework” on page

1-93
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External Websites
• Calibration and Simulation Best Practices: Multifactor Interest Rate Models for Risk

Applications (30 min 00 sec)
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Dual Curve Bootstrapping
This example shows how to bootstrap a forward curve using a different curve for discounting.

Define the Data

Data is needed for both the forward and discount curve. For this particular example, it is assumed
that the data is provided for EONIA (the discount curve) and EURIBOR (the forward curve). However,
this approach can be used in any case where the curve to be built is different than the curve used for
discounting cash flows. While the data in this example is hardcoded, it could also be imported into
MATLAB with Datafeed Toolbox™ or Database Toolbox™.
Settle = datenum('20-Aug-2013');

% Deposit data
EONIADepositRates = [.0007 .00067]';
EONIADepositMat = datenum({'3-Sep-2013','20-Sep-2013'});
EONIADepositBasis = 2; % act/360
EONIADepositPeriod = 0;

% FRA
EONIAFRARates = [.00025 .0003 .00043 .00054]';
EONIAFRAStartDate = datenum({'11-Sep-2013','9-Oct-2013','13-Nov-2013','11-Dec-2013'});
EONIAFRAEndDate = datenum({'9-Oct-2013','13-Nov-2013','11-Dec-2013','11-Jan-2014'});
EONIAFRABasis = 2; % act/360
EONIAFRAPeriod = 0;

% Swap data
EONIASwapRates = [.0003 .001 .002 .004 .008 .012 .0155 .018 .0193 .02]';
EONIASwapMat = datemnth(Settle,12*[2:5 7 10 15 20 25 30]');
EONIASwapBasis = 5; % 30/360 ISDA
EONIASwapPeriod = 1;

% EURIBOR Deposit data
EURIBORDepositRates = [.0022 .0021 .002 .0019]';
EURIBORDepositMat = datenum({'3-Sep-2013','20-Sep-2013','21-Oct-2013','20-Nov-2013'});
EURIBORDepositBasis = 2; % act/360
EURIBORDepositPeriod = 0;

% EURIBOR Futures
EURIBORFRARates = [9982 9978 9976 9975]';
EURIBORFRAStartDate = datenum({'18-Dec-2013','19-Mar-2014','18-Jun-2014','17-Sep-2014'});
EURIBORFRAEndDate = datenum({'18-Mar-2014','19-Jun-2014','18-Sep-2014','17-Dec-2014'});
EURIBORFRABasis = 2; % act/360
EURIBORFRAPeriod = 4;

% EURIBOR Swap data
EURIBORSwapRates = [.0026 .0044 .0062 .0082 .012 .015 .018 .02 .021 .0215]';
EURIBORSwapMat = datemnth(Settle,12*[2:5 7 10 15 20 25 30]');
EURIBORSwapBasis = 5; % 30/360 ISDA
EURIBORSwapPeriod = 1;

Create an EONIA Discount Curve

Build the EONIA curve. This is essentially the same as the single curve case.
CurveType = 'zero';
CurveCompounding = 1;
CurveBasis = 3; % act/365

nEONIADeposits = length(EONIADepositMat);
nEONIAFRA = length(EONIAFRAEndDate);
nEONIASwaps = length(EONIASwapMat);

EONIAInstrumentTypes = [repmat({'deposit'},nEONIADeposits,1);
    repmat({'fra'},nEONIAFRA,1);repmat({'swap'},nEONIASwaps,1)];

EONIAPeriod = [repmat(EONIADepositPeriod,nEONIADeposits,1);
    repmat(EONIAFRAPeriod,nEONIAFRA,1);repmat(EONIASwapPeriod,nEONIASwaps,1)];

EONIABasis = [repmat(EONIADepositBasis,nEONIADeposits,1);
    repmat(EONIAFRABasis,nEONIAFRA,1);repmat(EONIASwapBasis,nEONIASwaps,1)];

EONIAInstrumentData = [[repmat(Settle,[nEONIADeposits 1]);EONIAFRAStartDate;repmat(Settle,[nEONIASwaps 1])] ...
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    [EONIADepositMat;EONIAFRAEndDate;EONIASwapMat] ...
    [EONIADepositRates;EONIAFRARates;EONIASwapRates]];

EONIACurve = IRDataCurve.bootstrap(CurveType,Settle,EONIAInstrumentTypes,...
    EONIAInstrumentData,'Compounding',CurveCompounding,'Basis',CurveBasis,...
    'InstrumentPeriod',EONIAPeriod,'InstrumentBasis',EONIABasis)

EONIACurve = 

             Type: zero
           Settle: 735466 (20-Aug-2013)
      Compounding: 1
            Basis: 3 (actual/365)
     InterpMethod: linear
            Dates: [16x1 double]
             Data: [16x1 double]

Create an EURIBOR Forward Curve

The EURIBOR forward curve is built first using a single curve approach.
nEURIBORDeposits = length(EURIBORDepositMat);
nEURIBORFRA = length(EURIBORFRAEndDate);
nEURIBORSwaps = length(EURIBORSwapMat);

EURIBORInstrumentTypes = [repmat({'deposit'},nEURIBORDeposits,1);
    repmat({'futures'},nEURIBORFRA,1);repmat({'swap'},nEURIBORSwaps,1)];

EURIBORPeriod = [repmat(EURIBORDepositPeriod,nEURIBORDeposits,1);
    repmat(EURIBORFRAPeriod,nEURIBORFRA,1);repmat(EURIBORSwapPeriod,nEURIBORSwaps,1)];

EURIBORBasis = [repmat(EURIBORDepositBasis,nEURIBORDeposits,1);
    repmat(EURIBORFRABasis,nEURIBORFRA,1);repmat(EURIBORSwapBasis,nEURIBORSwaps,1)];

EURIBORInstrumentData = [repmat(Settle,size(EURIBORInstrumentTypes)) ...
    [EURIBORDepositMat;EURIBORFRAEndDate;EURIBORSwapMat] ...
    [EURIBORDepositRates;EURIBORFRARates;EURIBORSwapRates]];

EURIBORCurve_Single = IRDataCurve.bootstrap(CurveType,Settle,EURIBORInstrumentTypes,...
    EURIBORInstrumentData,'Compounding',CurveCompounding,'Basis',CurveBasis,...
    'InstrumentPeriod',EURIBORPeriod,'InstrumentBasis',EURIBORBasis)

EURIBORCurve_Single = 

             Type: zero
           Settle: 735466 (20-Aug-2013)
      Compounding: 1
            Basis: 3 (actual/365)
     InterpMethod: linear
            Dates: [18x1 double]
             Data: [18x1 double]

Build the EURIBOR Curve with the EONIA Curve

Next, build a curve using the EONIA curve as a discounting curve. To do this, specify the EONIA
curve as an optional input argument.
EURIBORCurve = IRDataCurve.bootstrap(CurveType,Settle,EURIBORInstrumentTypes,...
    EURIBORInstrumentData,'DiscountCurve',EONIACurve,'Compounding',...
    CurveCompounding,'Basis',CurveBasis,'InstrumentPeriod',EURIBORPeriod,...
    'InstrumentBasis',EURIBORBasis)

EURIBORCurve = 

             Type: zero
           Settle: 735466 (20-Aug-2013)
      Compounding: 1
            Basis: 3 (actual/365)
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     InterpMethod: linear
            Dates: [18x1 double]
             Data: [18x1 double]

Plot the Results

Plot the results to compare the curves.
PlottingDates = (Settle+20:30:Settle+365*30)';
TimeToMaturity = yearfrac(Settle,PlottingDates);

figure
plot(TimeToMaturity, getZeroRates(EONIACurve, PlottingDates),'b')
hold on
plot(TimeToMaturity, getZeroRates(EURIBORCurve_Single, PlottingDates),'r')
plot(TimeToMaturity, getZeroRates(EURIBORCurve, PlottingDates),'g')
title('Comparison of Single Curve and Dual Curve Bootstrapping')
legend({'EONIA','EURIBOR','EURIBOR w/ EONIA Discounting'},'location','southeast')

As expected, the difference between the two different EURIBOR curves is small but nontrivial.
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Creating an IRFunctionCurve Object
To create an IRFunctionCurve object, see the following options:

In this section...
“Fitting IRFunctionCurve Object Using a Function Handle” on page 9-16
“Fitting IRFunctionCurve Object Using Nelson-Siegel Method” on page 9-16
“Fitting IRFunctionCurve Object Using Svensson Method” on page 9-17
“Fitting IRFunctionCurve Object Using Smoothing Spline Method” on page 9-19
“Using fitFunction to Create Custom Fitting Function” on page 9-21

Fitting IRFunctionCurve Object Using a Function Handle
You can use IRFunctionCurve with a MATLAB function handle to define an interest-rate curve. For
more information on defining a function handle, see the MATLAB Programming Fundamentals
documentation.

Example

This example uses a FunctionHandle argument with a value @(t) t.^2 to create an interest-rate
curve.

rr = IRFunctionCurve('Zero',today,@(t) t.^2)

rr = 

  Properties:
    FunctionHandle: @(t)t.^2
              Type: 'Zero'
            Settle: 733600
       Compounding: 2
             Basis: 0

Fitting IRFunctionCurve Object Using Nelson-Siegel Method
Use the function, fitNelsonSiegel, for the Nelson-Siegel model that fits the empirical form of the
yield curve with a prespecified functional form of the spot rates which is a function of the time to
maturity of the bonds.

The Nelson-Siegel model represents a dynamic three-factor model: level, slope, and curvature.
However, the Nelson-Siegel factors are unobserved, or latent, which allows for measurement error,
and the associated loadings have economic restrictions (forward rates are always positive, and the
discount factor approaches zero as maturity increases). For more information, see “Zero-coupon yield
curves: technical documentation,” BIS Papers, Bank for International Settlements, Number 25,
October 2005.

Example

This example uses IRFunctionCurve to model the default-free term structure of interest rates in
the United Kingdom.

Load the data.
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load ukdata20080430

Convert repo rates to be equivalent zero-coupon bonds.
RepoCouponRate = repmat(0,size(RepoRates));
RepoPrice = bndprice(RepoRates, RepoCouponRate, RepoSettle, RepoMaturity);

Aggregate the data.

Settle = [RepoSettle;BondSettle];
Maturity = [RepoMaturity;BondMaturity];
CleanPrice = [RepoPrice;BondCleanPrice];
CouponRate = [RepoCouponRate;BondCouponRate];
Instruments = [Settle Maturity CleanPrice CouponRate];
InstrumentPeriod = [repmat(0,6,1);repmat(2,31,1)];
CurveSettle = datenum('30-Apr-2008');

The IRFunctionCurve object provides the capability to fit a Nelson-Siegel curve to observed market
data with the fitNelsonSiegel function. The fitting is done by calling the function lsqnonlin.
The fitNelsonSiegel function has required inputs of Type, Settle, and a matrix of instrument
data.
NSModel = IRFunctionCurve.fitNelsonSiegel('Zero',CurveSettle,...
Instruments,'Compounding',-1,'InstrumentPeriod',InstrumentPeriod);

Plot the Nelson-Siegel interest-rate curve for forward rates.
PlottingDates = CurveSettle+20:30:CurveSettle+365*25;
TimeToMaturity = yearfrac(CurveSettle,PlottingDates);
NSForwardRates = getForwardRates(NSModel, PlottingDates);
plot(TimeToMaturity,NSForwardRates)
title('Nelson Siegel model of UK instantaneous nominal forward curve')

Fitting IRFunctionCurve Object Using Svensson Method
Use the function, fitSvensson, for the Svensson model to improve the flexibility of the curves and
the fit for a Nelson-Siegel model. In 1994, Svensson extended Nelson and Siegel’s function by adding
a further term that allows for a second “hump.” The extra precision is achieved at the cost of adding
two more parameters, β3 and τ2, which have to be estimated.
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Example

In this example of using the fitSvensson function, an IRFitOptions structure, previously defined
using IRFitOptions, is used. Thus, you must specify FitType, InitialGuess, UpperBound,
LowerBound, and the OptOptions optimization parameters for lsqnonlin.

Load the data.

load ukdata20080430

Convert repo rates to be equivalent zero coupon bonds.

RepoCouponRate = repmat(0,size(RepoRates));
RepoPrice = bndprice(RepoRates, RepoCouponRate, RepoSettle, RepoMaturity);

Aggregate the data.

Settle = [RepoSettle;BondSettle];
Maturity = [RepoMaturity;BondMaturity];
CleanPrice = [RepoPrice;BondCleanPrice];
CouponRate = [RepoCouponRate;BondCouponRate];
Instruments = [Settle Maturity CleanPrice CouponRate];
InstrumentPeriod = [repmat(0,6,1);repmat(2,31,1)];
CurveSettle = datenum('30-Apr-2008');

Define OptOptions for IRFitOptions.

OptOptions = optimoptions('lsqnonlin','MaxFunEvals',1000);
fIRFitOptions = IRFitOptions([5.82 -2.55 -.87 0.45 3.9 0.44],...
'FitType','durationweightedprice','OptOptions',OptOptions,...
'LowerBound',[0 -Inf -Inf -Inf 0 0],'UpperBound',[Inf Inf Inf Inf Inf Inf]);

Fit the interest-rate curve using a Svensson model.

SvenssonModel = IRFunctionCurve.fitSvensson('Zero',CurveSettle,...
Instruments,'IRFitOptions', fIRFitOptions, 'Compounding',-1,...
'InstrumentPeriod',InstrumentPeriod)

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to 
its initial value is less than the default value of the function tolerance.

SvenssonModel = 

             Type: Zero
           Settle: 733528 (30-Apr-2008)
      Compounding: -1
            Basis: 0 (actual/actual)

The status message, output from lsqnonlin, indicates that the optimization to find parameters for
the Svensson equation terminated successfully.

Plot the Svensson interest-rate curve for forward rates.

PlottingDates = CurveSettle+20:30:CurveSettle+365*25;
TimeToMaturity = yearfrac(CurveSettle,PlottingDates);
SvenssonForwardRates = getForwardRates(SvenssonModel, PlottingDates);
plot(TimeToMaturity,SvenssonForwardRates)
title('Svensson model of UK instantaneous nominal forward curve')
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Fitting IRFunctionCurve Object Using Smoothing Spline Method
Use the function, fitSmoothingSpline, to model the term structure with a spline, specifically, the
term structure represents the forward curve with a cubic spline.

Note You must have a license for Curve Fitting Toolbox software to use the fitSmoothingSpline
function.

Example

The IRFunctionCurve object is used to fit a smoothing spline representation of the forward curve
with a penalty function. Required inputs for fitSmoothingSpline are Type, Settle, the matrix of
Instruments, and Lambdafun, a function handle containing the penalty function

Load the data.

load ukdata20080430

Convert repo rates to be equivalent zero coupon bonds.
RepoCouponRate = repmat(0,size(RepoRates));
RepoPrice = bndprice(RepoRates, RepoCouponRate, RepoSettle, RepoMaturity);

Aggregate the data.

Settle = [RepoSettle;BondSettle];
Maturity = [RepoMaturity;BondMaturity];
CleanPrice = [RepoPrice;BondCleanPrice];
CouponRate = [RepoCouponRate;BondCouponRate];
Instruments = [Settle Maturity CleanPrice CouponRate];
InstrumentPeriod = [repmat(0,6,1);repmat(2,31,1)];
CurveSettle = datenum('30-Apr-2008');

Choose parameters for Lambdafun.
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L = 9.2;
S = -1;
mu = 1;

Define the Lambdafun penalty function.

lambdafun = @(t) exp(L - (L-S)*exp(-t/mu));
t = 0:.1:25;
y = lambdafun(t);
figure
semilogy(t,y);
title('Penalty Function for VRP Approach')
ylabel('Penalty')
xlabel('Time')

Use the fitSmoothingSpline function to fit the interest-rate curve and model the Lambdafun
penalty function.
VRPModel = IRFunctionCurve.fitSmoothingSpline('Forward',CurveSettle,...
Instruments,lambdafun,'Compounding',-1, 'InstrumentPeriod',InstrumentPeriod);

Plot the smoothing spline interest-rate curve for forward rates.
PlottingDates = CurveSettle+20:30:CurveSettle+365*25;
TimeToMaturity = yearfrac(CurveSettle,PlottingDates);
VRPForwardRates = getForwardRates(VRPModel, PlottingDates);
plot(TimeToMaturity,VRPForwardRates)
title('Smoothing Spline model of UK instantaneous nominal forward curve')
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Using fitFunction to Create Custom Fitting Function
When using an IRFunctionCurve object, you can create a custom fitting function with the
fitFunction function. To use fitFunction, you must define a FunctionHandle. In addition, you
must also use IRFitOptions to define an IRFitOptions object to support an InitialGuess for
the parameters of the curve function.

Example

The following example demonstrates the use of fitFunction with a FunctionHandle and an
IRFitOptions object.
Settle = repmat(datenum('30-Apr-2008'),[6 1]);
Maturity = [datenum('07-Mar-2009');datenum('07-Mar-2011');...
datenum('07-Mar-2013');datenum('07-Sep-2016');...
datenum('07-Mar-2025');datenum('07-Mar-2036')];

CleanPrice = [100.1;100.1;100.8;96.6;103.3;96.3];
CouponRate = [0.0400;0.0425;0.0450;0.0400;0.0500;0.0425];
Instruments = [Settle Maturity CleanPrice CouponRate];
CurveSettle = datenum('30-Apr-2008');

Define the FunctionHandle.

functionHandle = @(t,theta) polyval(theta,t);

Define the OptOptions for IRFitOptions.

OptOptions = optimoptions('lsqnonlin','display','iter');

Define fitFunction.
CustomModel = IRFunctionCurve.fitFunction('Zero', CurveSettle, ...
functionHandle,Instruments, IRFitOptions([.05 .05 .05],'FitType','price',...
'OptOptions',OptOptions));

                                         Norm of      First-order 
 Iteration  Func-count     f(x)          step          optimality   CG-iterations
     0          4         38036.7                      4.92e+04
     1          8         38036.7             10       4.92e+04            0
     2         12         38036.7            2.5       4.92e+04            0
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     3         16         38036.7          0.625       4.92e+04            0
     4         20         38036.7        0.15625       4.92e+04            0
     5         24         30741.5      0.0390625       1.72e+05            0
     6         28         30741.5       0.078125       1.72e+05            0
     7         32         30741.5      0.0195312       1.72e+05            0
     8         36         28713.6     0.00488281       2.33e+05            0
     9         40         20323.3     0.00976562       9.47e+05            0
    10         44         20323.3      0.0195312       9.47e+05            0
    11         48         20323.3     0.00488281       9.47e+05            0
    12         52         20323.3      0.0012207       9.47e+05            0
    13         56         19698.8    0.000305176       1.08e+06            0
    14         60           17493    0.000610352          7e+06            0
    15         64           17493      0.0012207          7e+06            0
    16         68           17493    0.000305176          7e+06            0
    17         72         15455.1    7.62939e-05       2.25e+07            0
    18         76         15455.1    0.000177499       2.25e+07            0
    19         80         13317.1     3.8147e-05       3.18e+07            0
    20         84         12865.3    7.62939e-05       7.83e+07            0
    21         88         11779.8    7.62939e-05       7.58e+06            0
    22         92         11747.6    0.000152588       1.45e+05            0
    23         96         11720.9    0.000305176       2.33e+05            0
    24        100         11667.2    0.000610352       1.48e+05            0
    25        104         11558.6      0.0012207       3.55e+05            0
    26        108         11335.5     0.00244141       1.57e+05            0
    27        112         10863.8     0.00488281       6.36e+05            0
    28        116         9797.14     0.00976562       2.53e+05            0
    29        120         6882.83      0.0195312       9.18e+05            0
    30        124         6882.83      0.0373993       9.18e+05            0
    31        128         3218.45     0.00934981       1.96e+06            0
    32        132         612.703      0.0186996       3.01e+06            0
    33        136         13.0998      0.0253882       3.05e+06            0
    34        140       0.0762922     0.00154002       5.05e+04            0
    35        144       0.0731652    3.61102e-06           29.9            0
    36        148       0.0731652    6.32335e-08          0.063            0

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to 
its initial value is less than the default value of the function tolerance.

Plot the custom function that is defined using fitFunction.
Yields = bndyield(CleanPrice,CouponRate,Settle(1),Maturity);
scatter(Maturity,Yields);
PlottingPoints = min(Maturity):30:max(Maturity);
hold on;
plot(PlottingPoints, getParYields(CustomModel, PlottingPoints),'r');
datetick
legend('Market Yields','Fitted Yield Curve')
title('Custom Function fit to Market Data')
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See Also
IRBootstrapOptions | IRDataCurve | IRFunctionCurve | IRFitOptions

Related Examples
• “Creating Interest-Rate Curve Objects” on page 9-4
• “Bootstrapping a Swap Curve” on page 2-142
• “Dual Curve Bootstrapping” on page 9-12
• “Creating an IRDataCurve Object” on page 9-6
• “Converting an IRDataCurve or IRFunctionCurve Object” on page 9-30
• “Analyze Inflation-Indexed Instruments” on page 2-133
• “Fitting Interest-Rate Curve Functions” on page 9-24

More About
• “Interest-Rate Curve Objects and Workflow” on page 9-2
• “Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework” on page

1-93

External Websites
• Calibration and Simulation Best Practices: Multifactor Interest Rate Models for Risk

Applications (30 min 00 sec)
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Fitting Interest-Rate Curve Functions
This example shows how to use IRFunctionCurve objects to model the term structure of interest
rates (also referred to as the yield curve). This can be contrasted with modeling the term structure
with vectors of dates and data and interpolating between the points (which can currently be done
with the function prbyzero). The term structure can refer to at least three different curves: the
discount curve, zero curve, or forward curve.

The IRFunctionCurve object allows you to model an interest-rate curve as a function.

This example explores using an IRFunctionCurve object to model the default-free term structure of
interest rates in the United Kingdom. Three different forms for the term structure are implemented
and are discussed in more detail later:

• Nelson-Siegel
• Svensson
• Smoothing Cubic Spline with a so-called Variable Roughness Penalty (VRP)

Choosing the Data

The first question in modeling the yield curve is what data should be used. To model a default-free
yield curve, default-free, option-free market instruments must be used. The most significant
component of the data is UK Government Bonds (known as Gilts). Historical data is retrieved from
the following site:

https://www.dmo.gov.uk

Repo data is used to construct the short end of the yield curve. Repo data is retrieved from the
following site:

https://www.ukfinance.org.uk/

Note also that the data must be specified as a matrix where the columns are Settle, Maturity,
CleanPrice, and CouponRate and that instruments must be bonds or synthetically converted to
bonds.

Market data for a close date of April 30, 2008, has been downloaded and saved to the following data
file (ukdata20080430), which is loaded into MATLAB® with the following command:

% Load the data
load ukdata20080430

% Convert repo rates to be equivalent zero coupon bonds
RepoCouponRate = repmat(0,size(RepoRates));
RepoPrice = bndprice(RepoRates, RepoCouponRate, RepoSettle, RepoMaturity);

% Aggregate the data
Settle = [RepoSettle;BondSettle];
Maturity = [RepoMaturity;BondMaturity];
CleanPrice = [RepoPrice;BondCleanPrice];
CouponRate = [RepoCouponRate;BondCouponRate];
Instruments = [Settle Maturity CleanPrice CouponRate];
InstrumentPeriod = [repmat(0,6,1);repmat(2,31,1)];

CurveSettle = datenum('30-Apr-2008');
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Fit Nelson-Siegel Model to Market Data

The Nelson-Siegel model proposes that the instantaneous forward curve can be modeled with the
following:

f = β0 + β1e
−m

τ + β2e
−m

τ
m
τ

This can be integrated to derive an equation for the zero curve (see [6] for more information on the
equations and the derivation):

s = β0 + (β1 + β2) τ
m (1− e

−m
τ )− β2e

−m
τ

See [1 on page 9-0 ] for more information.

The IRFunctionCurve object provides the capability to fit a Nelson Siegel curve to observed market
data with the fitNelsonSiegel method. The fitting is done by calling the Optimization Toolbox™
function lsqnonlin.

The fitNelsonSiegel function has required inputs for Curve Type, Curve Settle, and a matrix of
instrument data.

Optional input arguments, specified in name-value pair argument, are:

• IRFitOptions structure: Provides the capability to choose which quantity to be minimized
(price, yield, or duration weighted price) and other optimization parameters (for example, upper
and lower bounds for parameters).

• Curve Compounding and Basis (day-count convention)
• Additional instrument parameters, Period, Basis, FirstCouponDate, and so on.

NSModel = IRFunctionCurve.fitNelsonSiegel('Zero',CurveSettle,...
    Instruments,'InstrumentPeriod',InstrumentPeriod);

Fit Svensson Model

A very similar model to the Nelson-Siegel model is the Svensson model, which adds two additional
parameters to account for greater flexibility in the term structure. This model proposes that the
forward rate can be modeled with the following form:

f = β0 + β1e
−m
τ1 + β2e

−m
τ1

m
τ1

+ β3e
−m
τ2

m
τ2

As above, this can be integrated to derive an equation for the zero curve:

s = β0 + β1(1− e
−m
τ1 )(−

τ1
m ) + β2((1− e

−m
τ1 )

τ1
m − e

m
τ1) + β3((1− e

−m
τ2 )

τ2
m − e

m
τ2)

See [2 on page 9-0 ] for more information.

Fitting the parameters to this model proceeds in a similar fashion to the Nelson-Siegel model using
the fitSvensson function.

SvenssonModel = IRFunctionCurve.fitSvensson('Zero',CurveSettle,...
    Instruments,'InstrumentPeriod',InstrumentPeriod);
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Fit Smoothing Spline

The term structure can also be modeled with a spline, specifically, one way to model the term
structure is by representing the forward curve with a cubic spline. To ensure that the spline is
sufficiently smooth, a penalty is imposed relating to the curvature (second derivative) of the spline:

∑
i = 1

N
[
Pi− Pi(f )

Di
]2 +∫0 M

λt(m)[f ′′(m)]2dm

where the first term is the difference between the observed price P and the predicted price, P_hat,
(weighted by the bond's duration, D) summed over all bonds in the data set, and the second term is
the penalty term (where lambda is a penalty function and f is the spline).

See [3 on page 9-0 ], [4 on page 9-0 ], [5 on page 9-0 ] below.

There have been different proposals for the specification of the penalty function lambda. One
approach, advocated by [4 on page 9-0 ], and currently used by the UK Debt Management Office, is
a penalty function of the following form:

log(λ(m)) = L− (L− S)e
−m
μ

The parameters L, S, and mu are typically estimated from historical data.

The IRFunctionCurve object can be used to fit a smoothing spline representation of the forward
curve with a penalty function using the function fitSmoothingSpline.

Required inputs, like for the functions above, are a CurveType, CurveSettle, Instruments matrix,
and a function handle (Lambdafun) containing the penalty function.

The optional parameters are similar to fitNelsonSiegel and fitSvensson.

% Parameters chosen to be roughly similar to [4] below.
L = 9.2;
S = -1;
mu = 1;

lambdafun = @(t) exp(L - (L-S)*exp(-t/mu)); % Construct penalty function
t = 0:.1:25; % Construct data to plot penalty function
y = lambdafun(t);
figure
semilogy(t,y);
title('Penalty Function for VRP Approach')
ylabel('Penalty')
xlabel('Time')
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VRPModel = IRFunctionCurve.fitSmoothingSpline('Forward',CurveSettle,...
    Instruments,lambdafun,'Compounding',-1,...
    'InstrumentPeriod',InstrumentPeriod);

Use Fitted Curves and Plot Results

Once a curve is created, functions are used to extract the Forward and Zero Rates and the Discount
Factors. This curve can also be converted into a RateSpec structure using the toRateSpec function.
The RateSpec can then be used with many other functions in the Financial Instruments Toolbox™

PlottingDates = CurveSettle+20:30:CurveSettle+365*25;
TimeToMaturity = yearfrac(CurveSettle,PlottingDates);

NSForwardRates = NSModel.getForwardRates(PlottingDates);
SvenssonForwardRates = SvenssonModel.getForwardRates(PlottingDates);
VRPForwardRates = VRPModel.getForwardRates(PlottingDates);

figure
hold on
plot(TimeToMaturity,NSForwardRates,'r')
plot(TimeToMaturity,SvenssonForwardRates,'g')
plot(TimeToMaturity,VRPForwardRates,'b')
title('UK Instantaneous Nominal Forward Curve')
xlabel('Years Ahead')
legend({'Nelson Siegel','Svensson','VRP'})
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Compare with this Link

This link provides a live look at the derived yield curve published by the UK

https://www.bankofengland.co.uk
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See Also
IRBootstrapOptions | IRDataCurve | IRFunctionCurve | IRFitOptions

Related Examples
• “Creating Interest-Rate Curve Objects” on page 9-4
• “Bootstrapping a Swap Curve” on page 2-142
• “Dual Curve Bootstrapping” on page 9-12
• “Creating an IRDataCurve Object” on page 9-6
• “Converting an IRDataCurve or IRFunctionCurve Object” on page 9-30
• “Analyze Inflation-Indexed Instruments” on page 2-133

More About
• “Interest-Rate Curve Objects and Workflow” on page 9-2
• “Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework” on page

1-93

External Websites
• Calibration and Simulation Best Practices: Multifactor Interest Rate Models for Risk

Applications (30 min 00 sec)
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Converting an IRDataCurve or IRFunctionCurve Object
In this section...
“Introduction” on page 9-30
“Using the toRateSpec Function” on page 9-30
“Using Vector of Dates and Data” on page 9-31

Introduction
The IRDataCurve and IRFunctionCurve objects for interest-rate curves support conversion to:

• A RateSpec structure.

The RateSpec generated from an IRDataCurve or IRFunctionCurve object, using the
toRateSpec function, is identical to the RateSpec structure created with intenvset using
Financial Instruments Toolbox software.

• A vector of dates and data from an IRDataCurve object

The vector of dates and data is acceptable to prbyzero, bkcall, bkput, tfutbyprice, and
tfutbyyield or any function that requires a term structure of interest rates.

Using the toRateSpec Function
To convert an IRDataCurve or IRFunctionCurve object to a RateSpec structure, you must first
create an interest-rate curve object. Then, use the toRateSpec function for an IRDataCurve object
or thetoRateSpec function for an IRFunctionCurve object.

Example

Create a data vector from the following data: https://www.ustreas.gov/offices/domestic-
finance/debt-management/
interest-rate/yield.shtml.
Data = [1.85 1.84 1.91 2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;
Dates = daysadd(today,[30 90 180 360 2*360 3*360 5*360 7*360 10*360 20*360 30*360],2);
scatter(Dates,Data)
datetick
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Create an IRDataCurve interest-rate curve object.

rr = IRDataCurve('Zero',today,Dates,Data);

Convert to a RateSpec.

toRateSpec(rr, today+30:30:today+365)

ans = 
           FinObj: 'RateSpec'
      Compounding: 2
             Disc: [12x1 double]
            Rates: [12x1 double]
         EndTimes: [12x1 double]
       StartTimes: [12x1 double]
         EndDates: [12x1 double]
       StartDates: 733569
    ValuationDate: 733569
            Basis: 0
     EndMonthRule: 1

Using Vector of Dates and Data
You can use the getZeroRates function for an IRDataCurve object with a Dates property to create
a vector of dates and data acceptable for prbyzero in Financial Toolbox software and bkcall,
bkput, tfutbyprice, and tfutbyyield in Financial Instruments Toolbox software.

Example

This is an example of using an IRDataCurve object with the getZeroRates function with
prbyzero.
Data = [2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;
Dates = daysadd(today,[360 2*360 3*360 5*360 7*360 10*360 20*360 30*360],1);
irdc = IRDataCurve('Zero',today,Dates,Data,'InterpMethod','pchip');
Maturity = daysadd(today,8*360,1);
CouponRate = .055;
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ZeroDates = daysadd(today,180:180:8*360,1);
ZeroRates = getZeroRates(irdc, ZeroDates);
BondPrice = prbyzero([Maturity CouponRate], today, ZeroRates, ZeroDates)

BondPrice =
  113.9250

See Also
IRBootstrapOptions | IRDataCurve | IRFunctionCurve | IRFitOptions

Related Examples
• “Creating an IRFunctionCurve Object” on page 9-16
• “Dual Curve Bootstrapping” on page 9-12
• “Analyze Inflation-Indexed Instruments” on page 2-133
• “Fitting Interest-Rate Curve Functions” on page 9-24

More About
• “Interest-Rate Curve Objects and Workflow” on page 9-2
• “Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework” on page

1-93
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Numerix Workflows

• “Working with Simple Numerix Trades” on page 10-2
• “Working with Advanced Numerix Trades” on page 10-4
• “Use Numerix to Price Cash Deposits” on page 10-8
• “Use Numerix for Interest-Rate Risk Assessment” on page 10-10
• “Numerix CROSSASSET Interface Workflow Example Using Matrix, Data, and Call Objects”

on page 10-12
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Working with Simple Numerix Trades
This example shows how to price a callable reverse floater using Numerix CROSSASSET.

Initialize Numerix environment.

import com.numerix.integration.*;
import com.numerix.integration.implementation.*;

n = numerix('i:\NumeriX_java_10_3_0\data')

n = 

              Path: 'i:\NumeriX_java_10_3_0\data'
    RepositoryPath: 'i:\NumeriX_java_10_3_0\data\Repository'
        Repository: [1x1 com.numerix.integration.implementation.FileSystemRepository]
           Context: [1x1 com.numerix.integration.implementation.LocalCalculationContext]
       LookupsPath: 'i:\NumeriX_java_10_3_0\data\Data\LookupRules'
       MarketsPath: 'i:\NumeriX_java_10_3_0\data\Data\Markets'
       FixingsPath: 'i:\NumeriX_java_10_3_0\data\Data\Fixings'
        TradesPath: 'i:\NumeriX_java_10_3_0\data\Data\Trades'
        Parameters: [1x1 com.numerix.integration.implementation.CalculationParameters]

Create a market.
quotes = java.util.HashMap;
quotes.put('IR.USD-LIBOR-3M.SWAP-1Y.MID', 0.0066056);
quotes.put('IR.USD-LIBOR-3M.SWAP-10Y.MID', 0.022465005);
quotes.put('IR.USD-LIBOR-3M.SWAP-20Y.MID', 0.027544995);
market = Market('EOD_14-NOV-2011', DateExtensions.date('14-Nov-2011'), quotes.entrySet);

Define a trade instance for a callable reverse floater based on instrument template located in the
Repository.
tradeDescriptor = 'TRADE.IR.CALLABLEREVERSEFLOATER';
tradeParameters = java.util.HashMap;
tradeParameters.put('Trade ID','1001');
tradeParameters.put('Quote Type', 'MID');
tradeParameters.put('Currency', 'USD');
tradeParameters.put('Notional', 1000000.0);
tradeParameters.put('Effective Date', DateExtensions.date('1-Dec-2011'));
tradeParameters.put('Termination Date', DateExtensions.date('1-Dec-2021'));
tradeParameters.put('IR Index', 'LIBOR');
tradeParameters.put('IR Index Tenor', '3M');
tradeParameters.put('Structured Freq', '3M');
tradeParameters.put('Structured Side', 'Receive');
tradeParameters.put('Structured Coupon Floor', 0.0);
tradeParameters.put('Structured Coupon UpBd', 0.08);
tradeParameters.put('StructuredCoupon Multiplier', 1.4);
tradeParameters.put('Structured Coupon Cap', 0.05);
tradeParameters.put('Structured Basis', 'ACT/360');
tradeParameters.put('Funding Freq', '3M');
tradeParameters.put('Funding Side', 'Pay');
tradeParameters.put('Funding Spread', 0.003);
tradeParameters.put('Funding Basis', 'ACT/360');
tradeParameters.put('Call Start Date', DateExtensions.date('1-Dec-2013'));
tradeParameters.put('Call End Date', DateExtensions.date('1-Dec-2020'));
tradeParameters.put('Option Side', 'Short');
tradeParameters.put('Option Type', 'Right to Terminate');
tradeParameters.put('Call Frequency', '3M');
tradeParameters.put('Model', 'IR.USD-LIBOR-3M.MID.DET');
tradeParameters.put('Method', 'BackwardAnalytic');

Create the trade instance.
trade = RepositoryExtensions.createTradeInstance(n.Repository, tradeDescriptor, tradeParameters)

Price the trade.
results = CalculationContextExtensions.calculate(n.Context, trade, market, Request.getAll);
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Parse the results for MATLAB and display.

r = n.parseResults(results)
disp([r.Name r.Category r.Currency r.Data])

r = 

    Category: {13x1 cell}
    Currency: {13x1 cell}
        Name: {13x1 cell}
        Data: {13x1 cell}

    'Reporting Currency'           'Price'       ''       'USD'        
    'Structured Cashflow Log'      'Cashflow'    ''        {41x20 cell}
    'Structured Leg PV Accrued'    'Price'       'USD'    [          0]
    'PV'                           'Price'       'USD'    [ 6.4133e+04]
    'Structured Leg PV Clean'      'Price'       'USD'    [ 4.2637e+05]
    'Option PV'                    'Price'       'USD'    [-1.3220e+05]
    'Funding Cashflow Log'         'Cashflow'    ''        {41x20 cell}
    'Structured Leg PV'            'Price'       'USD'    [ 4.2637e+05]
    'Funding Leg PV'               'Price'       'USD'    [-2.3004e+05]
    'Funding Leg PV Accrued'       'Price'       'USD'    [          0]
    'Funding Leg PV Clean'         'Price'       'USD'    [-2.3004e+05]
    'Yield Risk Report'            ''            ''        { 4x30 cell}
    'Messages'                     ''            ''        { 4x1  cell}

See Also
numerix | parseResults | numerixCrossAsset

Related Examples
• “Working with Advanced Numerix Trades” on page 10-4
• “Use Numerix to Price Cash Deposits” on page 10-8
• “Use Numerix for Interest-Rate Risk Assessment” on page 10-10

External Websites
• https://www.numerix.com/CrossAsset
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Working with Advanced Numerix Trades
This example shows how to price multiple trades from MATLAB using Numerix CROSSASSET.

Initialize Numerix environment.

import com.numerix.integration.*;
import com.numerix.integration.implementation.*;

n = numerix('i:\NumeriX_java_10_3_0\data')

n = 

              Path: 'i:\NumeriX_java_10_3_0\data'
    RepositoryPath: 'i:\NumeriX_java_10_3_0\data\Repository'
        Repository: [1x1 com.numerix.integration.implementation.FileSystemRepository]
           Context: [1x1 com.numerix.integration.implementation.LocalCalculationContext]
       LookupsPath: 'i:\NumeriX_java_10_3_0\data\Data\LookupRules'
       MarketsPath: 'i:\NumeriX_java_10_3_0\data\Data\Markets'
       FixingsPath: 'i:\NumeriX_java_10_3_0\data\Data\Fixings'
        TradesPath: 'i:\NumeriX_java_10_3_0\data\Data\Trades'
        Parameters: [1x1 com.numerix.integration.implementation.CalculationParameters]

Specify the hybrid model for multiple trades.
hySpec = HybridModelSpecification;
hySpec.addHW1F('IR-USD', 'USD', 'LIBOR', '3M', 'MeanReversion(0.5),DiagonalSwaption(ATM, 10Y)');
hySpec.addHW1F('IR-EUR', 'EUR', 'EURIBOR', '6M', 'MeanReversion(0.5),DiagonalSwaption(ATM, 10Y)');
hySpec.addFXBlack('FX-USDEUR', 'USD', 'EUR', 'LIBOR', '3M', 'EURIBOR', '6M', 'StrikeFXEuropean(ATM, 10Y)');
% 5 Specify the factor correlations.
hyCorrelations = HybridModelCorrelationMatrix(hySpec);
hyCorrelations.add('IR-USD', 'IR-EUR', 0.5);
hyCorrelations.add('IR-USD', 'FX-USDEUR', 0.25);
hyCorrelations.add('IR-EUR', 'FX-USDEUR', 0.25);

% Specify the model parameters.
hybridModelParameters = java.util.HashMap;
hybridModelParameters.put('Quote Type', 'MID');
hybridModelParameters.put('Payout Currency', 'USD');
hybridModelParameters.put('Specification', hySpec);
hybridModelParameters.put('Correlations', hyCorrelations);

Specify exposure calculation parameters.
observationDates = CustomObservationSchedule;
observationDates.add(DateExtensions.date(2011, 12, 1));
for y = 2012:2013
  for m = 1:12
    observationDates.add(DateExtensions.date(y, m, 1));
  end
end

exposureParameters = java.util.HashMap;
exposureParameters.put('Model ID', 'HYBRID');
exposureParameters.put('Observation Dates', observationDates);

Define the first trade instance.
tradeParameters1 = java.util.HashMap;
tradeParameters1.put('Trade ID', 'RVFL1001');
tradeParameters1.put('Quote Type', 'MID');
tradeParameters1.put('Currency', 'USD');
tradeParameters1.put('Notional', 1000000.0);
tradeParameters1.put('Effective Date', DateExtensions.date('1-Dec-2011'));
tradeParameters1.put('Termination Date', DateExtensions.date('1-Dec-2021'));
tradeParameters1.put('IR Index', 'LIBOR');
tradeParameters1.put('IR Index Tenor', '3M');
tradeParameters1.put('Structured Freq', '3M');
tradeParameters1.put('Structured Side', 'Receive');
tradeParameters1.put('Structured Coupon Floor', 0.0);
tradeParameters1.put('Structured Coupon UpBd', 0.08);
tradeParameters1.put('StructuredCoupon Multiplier', 1.4);
tradeParameters1.put('Structured Coupon Cap', 0.05);
tradeParameters1.put('Structured Basis', 'ACT/360');
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tradeParameters1.put('Funding Freq', '3M');
tradeParameters1.put('Funding Side', 'Pay');
tradeParameters1.put('Funding Spread', 0.003);
tradeParameters1.put('Funding Basis', 'ACT/360');
tradeParameters1.put('Call Start Date', DateExtensions.date('1-Dec-2013'));
tradeParameters1.put('Call End Date', DateExtensions.date('1-Dec-2020'));
tradeParameters1.put('Option Side', 'Short');
tradeParameters1.put('Option Type', 'Right to Terminate');
tradeParameters1.put('Call Frequency', '3M');
tradeParameters1.put('Model', 'HYBRID');
tradeParameters1.put('Method', 'BackwardMC');
tradeInstance1 = RepositoryExtensions.createTradeInstance(n.Repository, 'TRADE.IR.CALLABLEREVERSEFLOATER', tradeParameters1);

Define the second trade instance.
tradeParameters2 = java.util.HashMap;
tradeParameters2.put('Trade ID', 'CASHDEP1001');
tradeParameters2.put('Quote Type', 'MID');
tradeParameters2.put('Currency', 'USD');
tradeParameters2.put('Coupon Rate', 0.05);
tradeParameters2.put('Yield', 0.044);
tradeParameters2.put('Notional', 100.0);
tradeParameters2.put('Effective Date', DateExtensions.date('1-Apr-2012'));
tradeParameters2.put('Maturity', DateExtensions.date('1-Apr-2013'));
tradeParameters2.put('IR Index', 'LIBOR');
tradeParameters2.put('IR Index Tenor', '3M');
tradeParameters2.put('Model', 'HYBRID');
tradeParameters2.put('Method', 'BACKWARDMC');
tradeInstance2 = RepositoryExtensions.createTradeInstance(n.Repository, 'IR.CASHDEPOSIT', tradeParameters2);

Create the third trade instance.
tradeParameters3 = java.util.HashMap;
tradeParameters3.put('Trade ID', 'FXFWD1001');
tradeParameters3.put('Quote Type', 'MID');
tradeParameters3.put('Base Currency', 'USD');
tradeParameters3.put('Term Currency', 'EUR');
tradeParameters3.put('Delivery Date', DateExtensions.date('1-Jun-2012'));
tradeParameters3.put('Contract FX Forward Rate', 80.5);
tradeParameters3.put('Base Notional', 10000000.0);
tradeParameters3.put('Base IR Index', 'LIBOR');
tradeParameters3.put('Term IR Index', 'EURIBOR');
tradeParameters3.put('Base IR Index Tenor', '3m');
tradeParameters3.put('Term IR Index Tenor', '6m');
tradeParameters3.put('Calendar', 'NewYork Target');
tradeParameters3.put('Spot Lag', '2bd');
tradeParameters3.put('Model', 'HYBRID');
tradeParameters3.put('Method', 'BACKWARDMC');
tradeInstance3 = RepositoryExtensions.createTradeInstance(n.Repository, 'FX.FXFORWARD', tradeParameters3);

Set tradeInstances for all three trade instances.
tradeInstances = java.util.ArrayList;
tradeInstances.add(tradeInstance1);
tradeInstances.add(tradeInstance2);
tradeInstances.add(tradeInstance3);
n.Parameters.setInstances(tradeInstances);

Add a custom lookup so these trade instances reference the hybrid model.
n.Parameters.getLookups.add(0,ExactLookupRule('HYBRID','MODEL.HYBRID',hybridModelParameters.entrySet));

Add another custom lookup so that exposure report has parameters defined.
n.Parameters.getLookups.add(1,ExactLookupRule('RISK.REPORT.EXPOSURE','REPORT.EXPOSURE',exposureParameters.entrySet));

Perform the calculation.

results = n.Context.calculate(n.Parameters, Request.getExposure);

Parse the results for MATLAB and display.
r = n.parseResults(results)

disp([r.Trade(2) r.Market(2)])
disp([r.Results{2}.Name r.Results{2}.Category r.Results{2}.Currency r.Results{2}.Data])
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disp([r.Results{2}.Name{1}])
disp([r.Results{2}.Data{1}])

r = 

      Trade: {3x1 cell}
     Market: {3x1 cell}
    Results: {3x1 cell}

 'CASHDEP1001'    'EOD'

    'Exposure'                     ''    ''    {21x501 cell}
    'Exposure.Discount Factors'    ''    ''    {21x501 cell}
    'Messages'                     ''    ''    {12x1   cell}

Exposure
  Columns 1 through 3

    'DATE'                            'VALUE 1'             'VALUE 2'         
    'Tue May 01 13:00:00 EDT 2012'    [104.198166609924]    [103.386222783828]
    'Fri Jun 01 13:00:00 EDT 2012'    [ 104.09953599675]    [102.117465067435]
    'Sun Jul 01 13:00:00 EDT 2012'    [105.524567506006]    [100.055731577867]
    'Wed Aug 01 13:00:00 EDT 2012'    [105.787455961524]    [100.318762976796]
    'Sat Sep 01 13:00:00 EDT 2012'    [104.417483614373]    [100.764337265155]
    'Mon Oct 01 13:00:00 EDT 2012'    [104.692275556824]    [100.980213613911]
    'Thu Nov 01 13:00:00 EDT 2012'    [104.443818312902]    [101.478508725115]
    'Sat Dec 01 12:00:00 EST 2012'    [104.736646932343]    [101.679769557039]
    'Tue Jan 01 12:00:00 EST 2013'    [104.577562970494]    [102.423339265735]
    'Fri Feb 01 12:00:00 EST 2013'    [ 104.28994278039]    [103.117326879887]
    'Fri Mar 01 12:00:00 EST 2013'    [ 104.70469459715]    [104.232180198939]
    'Mon Apr 01 13:00:00 EDT 2013'    [ 105.07334321718]    [ 105.05089338769]
    'Wed May 01 13:00:00 EDT 2013'    [               0]    [               0]
    'Sat Jun 01 13:00:00 EDT 2013'    [               0]    [               0]
    'Mon Jul 01 13:00:00 EDT 2013'    [               0]    [               0]
    'Thu Aug 01 13:00:00 EDT 2013'    [               0]    [               0]
    'Sun Sep 01 13:00:00 EDT 2013'    [               0]    [               0]
    'Tue Oct 01 13:00:00 EDT 2013'    [               0]    [               0]
    'Fri Nov 01 13:00:00 EDT 2013'    [               0]    [               0]
    'Sun Dec 01 12:00:00 EST 2013'    [               0]    [               0]

.

.

.

  Columns 499 through 501

    'VALUE 498'           'VALUE 499'           'VALUE 500'       
    [ 105.36273206453]    [104.335982034187]    [104.141595030057]
    [105.904822463264]    [104.238089023172]    [104.276676080686]
    [103.893060436208]    [103.613968079212]    [106.188617261199]
    [103.183889382889]    [105.499763150412]    [105.440275818983]
    [103.310404527817]    [105.233622768447]    [105.267337892552]
    [103.274239052394]    [104.716952177783]    [ 104.33099834332]
    [103.583983117053]    [104.710250522521]    [105.501004542869]
    [103.379982561438]    [105.146939039653]    [104.681616459661]
    [103.821169954095]    [105.567274949306]    [104.835971977691]
    [104.016530403399]    [105.254054161819]    [104.842156238753]
    [104.481475787501]    [105.197179985119]    [104.962752610848]
    [105.061984636083]    [105.077227736476]    [105.077766765965]
    [               0]    [               0]    [               0]
    [               0]    [               0]    [               0]
    [               0]    [               0]    [               0]
    [               0]    [               0]    [               0]
    [               0]    [               0]    [               0]
    [               0]    [               0]    [               0]
    [               0]    [               0]    [               0]
    [               0]    [               0]    [               0]

Plot the results for the second trade instance, CASHDEP1001, with the corresponding Exposure
Discount Factors.
figure('Tag','NumerixAdvancedRiskExample');

for ii=1:3
   % Get dates
   dates = cell2mat(r.Results{ii}.Data{expIndex}(2:end,1));
   dates = dates(:,4:end);
   dates = floor(datenum(dates));
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   % Get exposures
   mtm = cell2mat(r.Results{ii}.Data{expIndex}(2:end,2:end))';
   exposures = max(0,mtm);  % Exposure at contract level, no netting
   EE = mean(exposures);  % Expected Exposure
   PFE = prctile(exposures,95);  % Potential Future Exposure
   subplot(3,1,ii)
   plot(dates,EE,dates,PFE)
   title(r.Trade{ii})
   datetick
end

See Also
numerix | parseResults | numerixCrossAsset

Related Examples
• “Working with Simple Numerix Trades” on page 10-2
• “Use Numerix to Price Cash Deposits” on page 10-8
• “Use Numerix for Interest-Rate Risk Assessment” on page 10-10

External Websites
• https://www.numerix.com/CrossAsset
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Use Numerix to Price Cash Deposits
This example shows how to use the Numerix CROSSASSET API to price a cash deposit from MATLAB.
The trade parameters are read from the Cashdeposit1.csv in the Numerix Data Trades folder.

Initialize Numerix environment.

import com.numerix.integration.*;
import com.numerix.integration.implementation.*;

n = numerix('i:\NumeriX_java_10_3_0\data')

n = 

              Path: 'i:\NumeriX_java_10_3_0\data'
    RepositoryPath: 'i:\NumeriX_java_10_3_0\data\Repository'
        Repository: [1x1 com.numerix.integration.implementation.FileSystemRepository]
           Context: [1x1 com.numerix.integration.implementation.LocalCalculationContext]
       LookupsPath: 'i:\NumeriX_java_10_3_0\data\Data\LookupRules'
       MarketsPath: 'i:\NumeriX_java_10_3_0\data\Data\Markets'
       FixingsPath: 'i:\NumeriX_java_10_3_0\data\Data\Fixings'
        TradesPath: 'i:\NumeriX_java_10_3_0\data\Data\Trades'
        Parameters: [1x1 com.numerix.integration.implementation.CalculationParameters]

Create a market.
market = Market('EOD_16-APR-2012', DateExtensions.date('16-APR-2012'), []);

Read the Cashdeposit1.csv file from the Numerix Trades folder.
[~,~,tradeInfo] = xlsread([n.TradesPath '\Cashdeposit1.csv'])

tradeInfo = 

    'Template'          'String'      'TRADE.IR.CASHDEPOSIT'
    'Trade ID'          'ID'          'CASHDEP1001'         
    'Quote Type'        'String'      'MID'                 
    'Effective Date'    'Date'        '4/1/2012'            
    'Maturity'          'Date'        '4/1/2013'            
    'Notional'          'Double'      [                 100]
    'Currency'          'Currency'    'USD'                 
    'Coupon Rate'       'Double'      [              0.0500]
    'Yield'             'Double'      [              0.0440]
    'IR Index'          'String'      'Libor'               
    'IR Index Tenor'    'Tenor'       '3m'                  

Define a trade instance from the imported CASHDEP1001 instrument.
tradeDescriptor = tradeInfo{1,3};
tradeParameters = java.util.HashMap;
numTradeInfoFields = size(tradeInfo,1);
for i = 2:numTradeInfoFields
  switch tradeInfo{i,2}
    case {'DATE','Date'}
      tradeParameters.put(tradeInfo{i,1},DateExtensions.date(datestr(tradeInfo{i,3},'dd-mmm-yyyy')));
    otherwise
      tradeParameters.put(tradeInfo{i,1},tradeInfo{i,3});
  end
end

Create the trade instance.
trade = RepositoryExtensions.createTradeInstance(n.Repository, tradeDescriptor, tradeParameters);

Price the trade.
results = CalculationContextExtensions.calculate(n.Context, trade, market, Request.getAll);

Parse the results for MATLAB and display.
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r = n.parseResults(results)
disp([r.Name r.Category r.Currency r.Data])

 r = 

    Category: {9x1 cell}
    Currency: {9x1 cell}
        Name: {9x1 cell}
        Data: {9x1 cell}

    'Modified Duration'     'Price'    ''       [   0.9349]
    'Accrued Interest'      'Price'    'USD'    [   0.2083]
    'Reporting Currency'    'Price'    ''       'USD'      
    'PV'                    'Price'    'USD'    [ 100.7607]
    'Instrument'            'Price'    ''       [1x85 char]
    'Clean Price'           'Price'    'USD'    [ 100.5524]
    'Convexity'             'Price'    ''       [   1.7481]
    'YTM'                   'Price'    ''                []
    'Messages'              ''         ''                []

See Also
numerix | parseResults | numerixCrossAsset

Related Examples
• “Working with Simple Numerix Trades” on page 10-2
• “Working with Advanced Numerix Trades” on page 10-4
• “Use Numerix for Interest-Rate Risk Assessment” on page 10-10

External Websites
• https://www.numerix.com/CrossAsset
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Use Numerix for Interest-Rate Risk Assessment
This example shows how to use the Numerix CROSSASSET API for interest-rate curve stripping for
risk assessment.

Initialize Numerix environment.

import com.numerix.integration.*;
import com.numerix.integration.implementation.*;

n = numerix('i:\NumeriX_java_10_3_0\data')

n = 

              Path: 'i:\NumeriX_java_10_3_0\data'
    RepositoryPath: 'i:\NumeriX_java_10_3_0\data\Repository'
        Repository: [1x1 com.numerix.integration.implementation.FileSystemRepository]
           Context: [1x1 com.numerix.integration.implementation.LocalCalculationContext]
       LookupsPath: 'i:\NumeriX_java_10_3_0\data\Data\LookupRules'
       MarketsPath: 'i:\NumeriX_java_10_3_0\data\Data\Markets'
       FixingsPath: 'i:\NumeriX_java_10_3_0\data\Data\Fixings'
        TradesPath: 'i:\NumeriX_java_10_3_0\data\Data\Trades'
        Parameters: [1x1 com.numerix.integration.implementation.CalculationParameters]

Specify the current market associated with the Numerix CROSSASSET environment.
markets = get(n.Parameters,'Markets');
currentMarket = markets.get(0);
outInstance = RefObject(currentMarket);

Define the interest-rate curve key IR.USD-LIBOR-3M.MID.
n.Context.tryResolveId('IR.USD-LIBOR-3M.MID',outInstance);
currentInstance = outInstance.argvalue;

Set the instance and market.
n.Parameters.setMarkets(java.util.Arrays.asList(currentMarket));
n.Parameters.setInstances(java.util.Arrays.asList(currentInstance));

Calculate the interest-rate curve stripping.
results = n.Context.calculate(n.Parameters,Request.getAll);

The calculation returns the results from stripping the interest-rate curve for IR.USD-
LIBOR-3M.MID. Parse the results for MATLAB and display.
% IR.USD-LIBOR-3M.MID.  
r = n.parseResults(results)

disp([r.Instance r.Market])
disp([r.Results{1}.Name r.Results{1}.Category r.Results{1}.Currency r.Results{1}.Data])
disp([r.Results{1}.Name{1}])
disp([r.Results{1}.Data{1}])

r = 

    Instance: {'IR.USD-LIBOR-3M.MID'}
      Market: {'EOD'}
     Results: {[1x1 struct]}

 'IR.USD-LIBOR-3M.MID'    'EOD'

'Curve Info'    ''    ''    {30x3 cell}
'Messages'      ''    ''    { 7x1 cell}

Curve Info

  'KEY'                                  'DATE'                            'DISCOUNTFACTOR'
    'CASH RATE 16-APR-2012 17-APR-2012'    'Tue Apr 17 13:00:00 EDT 2012'    [        1.0000]
    'CASH RATE 16-APR-2012 18-APR-2012'    'Wed Apr 18 13:00:00 EDT 2012'    [        1.0000]
    'CASH RATE 16-APR-2012 23-APR-2012'    'Mon Apr 23 13:00:00 EDT 2012'    [        1.0000]
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    'CASH RATE 16-APR-2012 30-APR-2012'    'Mon Apr 30 13:00:00 EDT 2012'    [        0.9999]
    'CASH RATE 16-APR-2012 16-MAY-2012'    'Wed May 16 13:00:00 EDT 2012'    [        0.9998]
    'CASH RATE 16-APR-2012 18-JUN-2012'    'Mon Jun 18 13:00:00 EDT 2012'    [        0.9994]
    'CASH RATE 16-APR-2012 16-JUL-2012'    'Mon Jul 16 13:00:00 EDT 2012'    [        0.9988]
    'CASH RATE 18-MAY-2012 12-AUG-2012'    'Sun Aug 12 13:00:00 EDT 2012'    [        0.9987]
    'CASH RATE 20-JUN-2012 20-SEP-2012'    'Thu Sep 20 13:00:00 EDT 2012'    [        0.9981]
    'CASH RATE 18-JUL-2012 18-OCT-2012'    'Thu Oct 18 13:00:00 EDT 2012'    [        0.9975]
    'CASH RATE 15-AUG-2012 15-NOV-2012'    'Thu Nov 15 12:00:00 EST 2012'    [        0.9973]
    'CASH RATE 19-SEP-2012 19-DEC-2012'    'Wed Dec 19 12:00:00 EST 2012'    [        0.9968]
    'CASH RATE 17-OCT-2012 17-JAN-2013'    'Thu Jan 17 12:00:00 EST 2013'    [        0.9962]
    'CASH RATE 19-DEC-2012 19-MAR-2013'    'Tue Mar 19 13:00:00 EDT 2013'    [        0.9955]
    'SWAP RATE 18-APR-2012 19-APR-2016'    'Tue Apr 19 13:00:00 EDT 2016'    [        0.9645]
    'SWAP RATE 18-APR-2012 18-APR-2017'    'Tue Apr 18 13:00:00 EDT 2017'    [        0.9445]
    'SWAP RATE 18-APR-2012 18-APR-2018'    'Wed Apr 18 13:00:00 EDT 2018'    [        0.9199]
    'SWAP RATE 18-APR-2012 18-APR-2019'    'Thu Apr 18 13:00:00 EDT 2019'    [        0.8925]
    'SWAP RATE 18-APR-2012 21-APR-2020'    'Tue Apr 21 13:00:00 EDT 2020'    [        0.8639]
    'SWAP RATE 18-APR-2012 19-APR-2021'    'Mon Apr 19 13:00:00 EDT 2021'    [        0.8356]
    'SWAP RATE 18-APR-2012 19-APR-2022'    'Tue Apr 19 13:00:00 EDT 2022'    [        0.8069]
    'SWAP RATE 18-APR-2012 18-APR-2023'    'Tue Apr 18 13:00:00 EDT 2023'    [        0.7784]
    'SWAP RATE 18-APR-2012 18-APR-2024'    'Thu Apr 18 13:00:00 EDT 2024'    [        0.7506]
    'SWAP RATE 18-APR-2012 19-APR-2027'    'Mon Apr 19 13:00:00 EDT 2027'    [        0.6733]
    'SWAP RATE 18-APR-2012 20-APR-2032'    'Tue Apr 20 13:00:00 EDT 2032'    [        0.5682]
    'SWAP RATE 18-APR-2012 20-APR-2037'    'Mon Apr 20 13:00:00 EDT 2037'    [        0.4828]
    'SWAP RATE 18-APR-2012 21-APR-2042'    'Mon Apr 21 13:00:00 EDT 2042'    [        0.4112]
    'SWAP RATE 18-APR-2012 18-APR-2052'    'Thu Apr 18 13:00:00 EDT 2052'    [        0.3087]
    'SWAP RATE 18-APR-2012 18-APR-2062'    'Tue Apr 18 13:00:00 EDT 2062'    [        0.2414]

See Also
numerix | parseResults | numerixCrossAsset

Related Examples
• “Working with Simple Numerix Trades” on page 10-2
• “Working with Advanced Numerix Trades” on page 10-4
• “Use Numerix to Price Cash Deposits” on page 10-8

External Websites
• https://www.numerix.com/CrossAsset
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Numerix CROSSASSET Interface Workflow Example Using
Matrix, Data, and Call Objects

This example shows how to use the Numerix CROSSASSET API to create and price a vanilla
European option.

Construct a numerixCrossAsset object for Java® or C++.

For the Java SDK API:
c = numerixCrossAsset 

 c = 

numerixCrossAsset with properties:

Application: [1x1 com.numerix.pro.Application]
ApplicationWarning: [1x1 com.numerix.pro.ApplicationWarning]

For the C++ SDK API on Windows®:
c = numerixCrossAsset(true)

 c = 

numerixCrossAsset with properties:

Application: [1×1 fininst.internal.NumerixCAIL]
ApplicationWarning: []

Create and register data as a Matrix with the Numerix Cross Asset Integration Layer Application
using the applicationMatrix method.
rowData = [41992, 42020, 42449, 42905, 43115];
colData = [390, 395, 400, 405];
volData = [0.35778, 0.35132, 0.34394, 0.33582;...
           0.33405, 0.32819, 0.32669, 0.31904;...
           0.31576, 0.31235, 0.30371, 0.30261;...
           0.29391, 0.29366, 0.28962, 0.28932;...
           0.28787, NaN,     0.28347, NaN    ];
applicationMatrix(c,'BYSTRIKEVOLDATA',rowData,colData,volData);

Create and register the yield curve data with the Application object. Use a table for optimal display
purposes. Dates must be relative to '01/01/1900' and the Numerix Cross Asset Integration Layer API
supports date number representation only. MATLAB datetime's get converted automatically,
otherwise date numbers must be input and based relative to '01/01/1900'.
dates = datetime({'18-Feb-2014';'20-May-2014';'18-Jun-2014';'16-Jul-2014';
                  '20-Aug-2014';'17-Sep-2014';'15-Oct-2014';'19-Nov-2014';
                  '17-Dec-2014';'18-Mar-2015';'17-Jun-2015';'16-Sep-2015';
                  '16-Dec-2015';'16-Mar-2016';'15-Jun-2016';'21-Sep-2016';
                  '21-Dec-2016';'15-Mar-2017';'20-Feb-2018';'20-Feb-2019';
                  '20-Feb-2020';'22-Feb-2021';'22-Feb-2022';'21-Feb-2023';
                  '20-Feb-2024';'20-Feb-2025';'20-Feb-2026';'20-Feb-2029';
                  '21-Feb-2034';'22-Feb-2039';'22-Feb-2044';'20-Feb-2054';
                  '20-Feb-2064'},'locale','en_US');

Define the corresponding discount factors.
discountFactors = [1;0.99942;0.999231;0.999037;0.998797;0.998616;0.998385;...
                  0.998122;0.997941;0.997159;0.996157;0.994825;0.993065;...
                  0.99078;0.987889;0.984092;0.979913;0.975459;0.952707;...
                  0.922223;0.888128;0.852291;0.816462;0.781228;0.746677;...
                  0.712892;0.680462;0.592285;0.474003;0.383493;0.312617;...
                  0.213809;0.152345];

Supported Numerix Cross Asset Integration Layer API names are DATE and DISCOUNTFACTOR for the
creation of the data.
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curveData = table(dates,discountFactors,'VariableNames',{'DATE','DISCOUNTFACTOR'});
applicationData(c,'USD_3MLIBOR_CURVE',curveData);

Define the headers for registering the RATESPEC and DIVSPEC call objects.
headers = {'ID','LOCAL ID','TIMER','TIMER CPU','UPDATED'};

Data is required to create dividend curve. Create and register the DIVSPEC call object using name-
value pairs in this example.
applicationCall(c,headers,'ID','DIVSPEC','OBJECT','MARKET DATA','TYPE','DIVIDEND',...
                  'COMMENT','Comments here','SKIP',false,'NOWDATE',41688,...
                  'CURRENCY','USD','RATE/DIVIDEND',0,'BASIS','ACT/360');

Create the EQUITYVOLSPEC call object. BYSTRIKEVOLDATA denotes the volatility matrix object
created previously, using an array of names and an array of values in this example.
applicationCall(c,headers,{'ID','OBJECT','TYPE','COMMENT','SKIP','NOWDATE','CURRENCY','VOLATILITYBASIS',...
                           'DATA','INTERPMETHOD','INTERPVARIABLE','EXTRAPOLATION'},...
                          {'EQVOLSPEC','MARKET DATA','EQ VOL','Comments here',...
                           false,41688,'USD','ACT/360','BYSTRIKEVOLDATA',...
                           'LINEAR','VOL','FLAT EXTRAPOLATION'});

Create the RATESPEC call object. USD_3MLIBOR_CURVE denotes yield curve data object created
previously using name-value pairs.
applicationCall(c,headers,'ID','RATESPEC','OBJECT','MARKET DATA','TYPE','YIELD','COMMENT','Comments here',...
                  'SKIP',false,'INTERPMETHOD','LogLinear','INTERPVARIABLE','DF',...
                  'CURRENCY','USD','DATA','USD_3MLIBOR_CURVE','BASIS','ACT/360');

Create the EuropeanOptionEQ instrument. Create the STOCKSPEC call object using the
applicationCall method.
applicationCall(c,headers,'ID','STOCKSPEC','OBJECT','INSTRUMENT','TYPE','EQ EUROPEAN',...
                  'COMMENT','Comments here','SKIP',false,'FLAVOR','PUT',...
                  'CURRENCY','USD','ENDDATE',43976,'SETTLEMENTDATE',43976,...
                  'STRIKE',112,'SIGMA1',0.2,'NOTIONAL',100);

Price the portfolio by creating and registering call object to run pricing analytics. Create the
OPTIONSPEC_CLOSEFORM call object headers for registering the OPTIONSPEC_CLOSEFORM call
object.
headers = {'ATM','DELTA','DELTA TRADER','FORWARD DELTA','FORWARD DELTA TRADER', ...
           'FUTURES DELTA','FUTURES DELTA TRADER','GAMMA','GAMMA TRADER', ...
           'ID','LOCAL ID','NOTIONAL','PRICE','PV','RHO','RHO TRADER', ...
           'SIGMA1','STRIKE','THETA','TIMER','TIMER CPU','UPDATED','VANNA', ...
           'VANNA TRADER','VEGA','VEGA TRADER','VOLGA','VOLGA TRADER'};

applicationCall(c,headers,'ID','OPTIONSPEC_CLOSEFORM','OBJECT','ANALYTIC',...
                  'TYPE','EUROPEAN OPTION','COMMENT','Comments here',...
                  'SKIP',false,'NOWDATE',41688,'OPTION','STOCKSPEC',...
                  'DIVIDENDCURVE','DIVSPEC','DOMESTICYIELDCURVE','RATESPEC',...
                  'SPOTPRICE',112,'SPOTDATE',41688,'MODEL','BLACK');

Create an output structure in MATLAB from the Application object using the getdata method.
appData = getdata(c);

Display the results.
[appData.OPTIONSPEC_CLOSEFORM.OUTPUT_HEADERS 
appData.OPTIONSPEC_CLOSEFORM.OUTPUT_VALUES]

ans =
 
  28×2 cell array
 
    'PRICE'                   [             1467.24]
    'PV'                      [             1467.24]
    'DELTA'                   [              -30.54]
    'FORWARD DELTA'           [              -30.54]
    'FUTURES DELTA'           [              -26.83]
    'GAMMA'                   [                0.62]
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    'VEGA'                    [             9827.91]
    'VOLGA'                   [              205.45]
    'VANNA'                   [               -1.44]
    'DELTA TRADER'            [              -34.20]
    'FORWARD DELTA TRADER'    [              -34.20]
    'FUTURES DELTA TRADER'    [              -30.05]
    'GAMMA TRADER'            [                0.78]
    'VEGA TRADER'             [               98.28]
    'VOLGA TRADER'            [                0.02]
    'VANNA TRADER'            [               -0.02]
    'SIGMA1'                  [                0.20]
    'STRIKE'                  [              112.00]
    'NOTIONAL'                [              100.00]
    'RHO'                     [           -30638.08]
    'THETA'                   [               -0.15]
    'RHO TRADER'              [               -3.06]
    'ATM'                     [              127.48]
    'UPDATED'                 '12 @ 01:37:24 PM'    
    'ID'                      'OPTIONSPEC_CLOSEFORM'
    'TIMER'                   [                0.17]
    'TIMER CPU'               [                0.06]
    'LOCAL ID'                'OPTIONSPEC_CLOSEFORM' 

Close the numerixCrossAsset object.
close(c)

See Also
numerixCrossAsset | applicationData | applicationMatrix | getdata | applicationCall
| close

External Websites
• https://www.numerix.com/CrossAsset
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Calibrate Pricing Model
Calibrate option pricing model in the Live Editor

Description
The Calibrate Pricing Model task lets you interactively calibrate an equity, FX, or commodity option
pricing model using market data. The task automatically generates MATLAB code for your live script.

Using this task, you can:

• Select data.
• Select a model.
• Edit parameter constraints.
• Specify an optimization solver and options.
• Display the results in a volatility surface plot.

For general information about Live Editor tasks, see “Add Interactive Tasks to a Live Script”.

Open the Task
To add the Calibrate Pricing Model task to a live script in the MATLAB Editor:

• On the Live Editor tab, select Task > Calibrate Pricing Model.
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• In a code block in the script, type a relevant keyword, such as calibrate. Select Calibrate
Pricing Model from the suggested command completions.

Parameters
Select data — Data for model
matrix for Price, Strike, Maturity | object for Discount Curve | string for Option Type | positive
numeric for Spot Price

Select data enables you to select the data that you want to use to calibrate your pricing model:

• Price — M-by-N numeric matrix for prices
• Strike — M-by-N numeric matrix or M-by-1 column vector for strikes and Strike must be a

nonnegative value.
• Discount Curve — Rate curve (ratecurve) for the zero curve
• Option Type — Put or call option type
• Maturity — Option maturity dates
• Spot Price — Current underlying asset price

Select model — Specify model type
object for Heston, Bates, or Merton

Select model enables you to select the model type that you want to use to calibrate pricing:

• Heston — The Heston model is an extension of the Black-Scholes model, where the volatility
(square root of variance) is no longer assumed to be constant, and the variance now follows a
stochastic (CIR) process. This option allows modeling the implied volatility smiles observed in the
market.

The stochastic differential equation is
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dSt = (r − q)Stdt + vtStdWt

dvt = κ(θ− vt)dt + σv vtdWt
v

E dWtdWt
v = pdt

where

• r is the continuous risk-free rate.
• q is the continuous dividend yield.
• St is the asset price at time t.
• vt is the asset price variance at time t
• v0 is the initial variance of the asset price at t = 0 for (v0 > 0).
• θ is the long-term variance level for (θ > 0).
• κ is the mean reversion speed for the variance for (κ > 0).
• σv is the volatility of the variance for (σv > 0).
• p is the correlation between the Weiner processes Wt and Wv

t for (-1 ≤ p ≤ 1).
• Bates — The Bates model extends the Heston model by including stochastic volatility and (similar

to Merton) jump diffusion parameters in the modeling of sudden asset price movements.

The stochastic differential equation is

dSt = (r − q− λpμJ)Stdt + vtStdWt + JStdPt

dvt = κ(θ− vt)dt + σv vtdWt

E dWtdWt
v = pdt

prob(dPt = 1) = λpdt

where

• r is the continuous risk-free rate.
• q is the continuous dividend yield.
• St is the asset price at time t.
• vt is the asset price variance at time t.
• J is the random percentage jump size conditional on the jump occurring, where ln(1+J) is

normally distributed with mean ln(1 + μJ)−
δ2

2  and the standard deviation δ, and (1+J) has a
lognormal distribution:

1
(1 + J)δ 2πexp

− ln(1 + J)− ln(1 + μJ −
δ2
2

2δ2

2

where

• v0 is the initial variance of the asset price at t = 0 (v0> 0).
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• θ is the long-term variance level for (θ > 0).
• κ is the mean reversion speed for (κ > 0).
• σv is the volatility of variance for (σv > 0).
• p is the correlation between the Weiner processes Wt and Wt

v for (-1 ≤ p ≤ 1).
• μJ is the mean of J for (μJ > -1).
• λp is the annual frequency (intensity) of Poisson process Pt for (λp ≥ 0).
• δ is the standard deviation of ln(1+J) for (δ ≥ 0).

• Merton — The Merton jump diffusion model extends the Black-Scholes model by using the
Poisson process to include jump diffusion parameters in the modeling of sudden asset price
movements (both up and down).

The stochastic differential equation is

dSt = (r − q− λpμ j)Stdt + σStdWt + JStdPt
prob(dPt = 1) = λpdt

where

• r is the continuous risk-free rate.
• q is the continuous dividend yield.
• Wt is the Weiner process.
• J is the random percentage jump size conditional on the jump occurring, where ln(1+J) is

normally distributed with mean ln(1 + μJ)−
δ2

2  and the standard deviation δ, and (1+J) has a
lognormal distribution:

1
(1 + J)δ 2πexp

− ln(1 + J)− ln(1 + μJ −
δ2
2

2δ2

2

where

• μJ is the mean of J for (μJ > -1).
• δ is the standard deviation of ln(1+J) for (δ≥ 0).
• ƛp is the annual frequency (intensity) of Poisson process Ptfor (ƛp ≥ 0).
• σ is the volatility of the asset price for (σ > 0).

Edit parameter constraints — Parameter constraints for model and solver
table

The parameter constraints displayed in table for editing depend on the model type that you specify
from Select model.

• Heston

• V0 — Initial variance of the underlying asset
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• ThetaV — Long-term variance of underlying asset
• Kappa — Mean revision speed for the variance of underlying asset
• SigmaV — Volatility of the variance of underlying asset
• RhoSV — Correlation between Weiner processes for underlying asset and its variance

• Bates

• V0 — Initial variance of the underlying asset
• ThetaV — Long-term variance of underlying asset
• Kappa — Mean revision speed for the variance of underlying asset
• SigmaV — Volatility of the variance of underlying asset
• RhoSV — Correlation between Weiner processes for underlying asset and its variance
• MeanJ — Mean of the random percentage jump size
• JumpVol — Standard deviation of log(1+J)
• JumpFreq — Annual frequency of Poisson jump process

• Merton

• Volatility — Volatility value for the underlying asset
• MeanJ — Mean of the random percentage jump size
• JumpVol — Standard deviation of log(1+J)
• JumpFreq — Annual frequency of Poisson jump process

In addition, you can edit the table for Lower Bounds (lb) and Upper Bounds (ub).

Specify optimization solver and options — Specify solver type and options
drop-down control for Solver, Text Display, and Plot Function | text box for Tolerance

Specify optimization solver and options enables you to specify the solver and options for
optimization and visualizing results:

• Solver

• lsqnonlin - Non linear least squares — For information, see lsqnonlin.
• simulannelbnd - Simulated annealing — For information, see simulannealbnd.

• Text Display

• Final output
• Each iteration
• No display

For information, see “Iterative Display”.

• Plot Function

• Best value
• Current value
• No plot

For information, see “Plot Functions”.
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• Tolerance — Termination tolerance of the objective function lsqnonlin or simulannealbnd.
Tolerance must be a positive value.

Display results — Display optimization results
check box to toggle display of Volatility Surface Plot

Select the Volatility Surface Plot check box to display the current optimization results.

See Also
Functions
Heston | Bates | Merton | ratecurve | lsqnonlin | simulannealbnd

Topics
“Calibrate Option Pricing Model Using Heston Model” on page 3-143

Introduced in R2022a
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asianbycrr
Price Asian option from Cox-Ross-Rubinstein binomial tree

Syntax
Price = asianbycrr(CRRTree,OptSpec,Strike,Settle,ExerciseDates)
Price = asianbycrr( ___ ,AmericanOpt,AvgType,AvgPrice,AvgDate)

Description
Price = asianbycrr(CRRTree,OptSpec,Strike,Settle,ExerciseDates) prices Asian
options using a Cox-Ross-Rubinstein binomial tree.

Price = asianbycrr( ___ ,AmericanOpt,AvgType,AvgPrice,AvgDate) adds optional
arguments for AmericanOpt, AvgType, AvgPrice, and AvgDate.

Examples

Price a Floating-Strike Asian Option Using a CRR Binomial Tree

This example shows how to price a floating-strike Asian option using a CRR binomial tree using the
file deriv.mat, which provides CRRTree. The CRRTree structure contains the stock specification and
time information needed to price the option.

load deriv.mat;

OptSpec = 'put';
Strike = NaN;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2004';

Price = asianbycrr(CRRTree, OptSpec, Strike, Settle, ... 
ExerciseDates)

Price = 1.2177

Input Arguments
CRRTree — Stock tree structure
structure

Stock tree structure, specified by using crrtree.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'
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Definition of option, specified as 'call' or 'put' using a character vector or a cell array of
character vectors.
Data Types: char | cell

Strike — Option strike price value
matrix of nonnegative integers

Option strike price value, specified with a nonnegative integer using a NINST-by-1 matrix of strike
price values.

To compute the value of a floating-strike Asian option, Strike must be specified as NaN. Floating-
strike Asian options are also known as average strike options.
Data Types: double

Settle — Settlement date or trade date
serial date number | date character vector

Settlement date or trade date for the Asian option, specified as a NINST-by-1 matrix of settlement or
trade dates using serial date numbers or date character vectors.

Note The Settle date for every Asian option is set to the ValuationDate of the stock tree. The
Asian argument, Settle, is ignored.

Data Types: double | char

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a serial date number or date character vector:

• For a European option, use aNINST-by-1 matrix of exercise dates. Each row is the schedule for
one option. For a European option, there is only one ExerciseDates on the option expiry date.

• For an American option, use a NINST-by-2 vector of exercise date boundaries. The option can be
exercised on any tree date between or including the pair of dates on that row. If only one non-NaN
date is listed, or if ExerciseDates is a NINST-by-1 vector, the option can be exercised between
ValuationDate of the stock tree and the single listed ExerciseDates.

Data Types: double | char

AmericanOpt — Option type
0 European (default) | integer with values 0 or 1

(Optional) Option type, specified as NINST-by-1 positive integer flags with values:

• 0 — European
• 1 — American

Data Types: double

AvgType — Average types
arithmetic (default) | character vector with values of arithmetic or geometric
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Average types, specified as arithmetic for arithmetic average, or geometric for geometric
average.
Data Types: char

AvgPrice — Average price of underlying asset at Settle
scalar

Average price of underlying asset at Settle, specified as a scalar.

Note Use this argument when AvgDate < Settle.

Data Types: double

AvgDate — Date averaging period begins
scalar

Date averaging period begins, specified as a scalar.
Data Types: char | double

Output Arguments
Price — Expected prices for Asian options at time 0
vector

Expected prices for Asian options at time 0, returned as a NINST-by-1 vector. Pricing of Asian options
is done using Hull-White (1993). Therefore, for these options there are no unique prices on the tree
nodes except for the root node.

More About
Asian Option

An Asian option is a path-dependent option with a payoff linked to the average value of the underlying
asset during the life (or some part of the life) of the option.

Asian options are similar to lookback options in that there are two types of Asian options: fixed
(average price option) and floating (average strike option). Fixed Asian options have a specified
strike, while floating Asian options have a strike equal to the average value of the underlying asset
over the life of the option. For more information, see “Asian Option” on page 3-34.

References
[1] Hull, J., and A. White. “Efficient Procedures for Valuing European and American Path-Dependent

Options.” Journal of Derivatives. Vol. 1, pp. 21–31.

See Also
crrtree | instasian

Topics
“Pricing Asian Options” on page 3-110
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“Graphical Representation of Equity Derivative Trees” on page 3-73
“Asian Option” on page 3-34
“Supported Equity Derivative Functions” on page 3-19
“Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument Objects” on
page 1-82

External Websites
How to Price Asian Options Efficiently Using MATLAB (4 min 37 sec)

Introduced before R2006a
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asianbyeqp
Price Asian option from Equal Probabilities binomial tree

Syntax
Price = asianbyeqp(EQPTree,OptSpec,Strike,Settle,ExerciseDates)
Price = asianbyeqp( ___ ,AmericanOpt,AvgType,AvgPrice,AvgDate)

Description
Price = asianbyeqp(EQPTree,OptSpec,Strike,Settle,ExerciseDates) prices Asian
options using an Equal Probabilities binomial tree.

Price = asianbyeqp( ___ ,AmericanOpt,AvgType,AvgPrice,AvgDate) adds optional
arguments for AmericanOpt, AvgType, AvgPrice, and AvgDate.

Examples

Price a Floating-Strike Asian Option Using an EQP Equity Tree

This example shows how to price a floating-strike Asian option using an EQP equity tree by loading
the file deriv.mat, which provides EQPTree. The EQPTree structure contains the stock specification
and time information needed to price the option.

load deriv.mat;

OptSpec = 'put';
Strike = NaN;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2004';

Price = asianbyeqp(EQPTree, OptSpec, Strike, Settle, ... 
ExerciseDates)

Price = 1.2724

Input Arguments
EQPTree — Stock tree structure
structure

Stock tree structure, specified by using eqptree.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'
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Definition of option, specified as 'call' or 'put' using a character vector or a cell array of
character vectors.
Data Types: char | cell

Strike — Option strike price value
matrix of nonnegative integers

Option strike price value, specified with a nonnegative integer using a NINST-by-1 matrix of strike
price values.

To compute the value of a floating-strike Asian option, Strike must be specified as NaN. Floating-
strike Asian options are also known as average strike options.
Data Types: double

Settle — Settlement date or trade date
serial date number | date character vector

Settlement date or trade date for the Asian option, specified as a NINST-by-1 matrix of settlement or
trade dates using serial date numbers or date character vectors.

Note The Settle date for every Asian option is set to the ValuationDate of the stock tree. The
Asian argument, Settle, is ignored.

Data Types: double | char

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a serial date number or date character vector:

• For a European option, use aNINST-by-1 matrix of exercise dates. Each row is the schedule for
one option. For a European option, there is only one ExerciseDates on the option expiry date.

• For an American option, use a NINST-by-2 vector of exercise date boundaries. The option can be
exercised on any tree date between or including the pair of dates on that row. If only one non-NaN
date is listed, or if ExerciseDates is a NINST-by-1 vector, the option can be exercised between
ValuationDate of the stock tree and the single listed ExerciseDates.

Data Types: double | char

AmericanOpt — Option type
0 European (default) | integer with values 0 or 1

(Optional) Option type, specified as NINST-by-1 positive integer flags with values:

• 0 — European
• 1 — American

Data Types: double

AvgType — Average types
arithmetic (default) | character vector with values of arithmetic or geometric
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Average types, specified as arithmetic for arithmetic average, or geometric for geometric
average.
Data Types: char

AvgPrice — Average price of underlying asset at Settle
scalar

Average price of underlying asset at Settle, specified as a scalar.

Note Use this argument when AvgDate < Settle.

Data Types: double

AvgDate — Date averaging period begins
scalar

Date averaging period begins, specified as a scalar.
Data Types: char | double

Output Arguments
Price — Expected prices for Asian options at time 0
vector

Expected prices for Asian options at time 0, returned as a NINST-by-1 vector. Pricing of Asian options
is done using Hull-White (1993). Therefore, for these options there are no unique prices on the tree
nodes except for the root node.

More About
Asian Option

An Asian option is a path-dependent option with a payoff linked to the average value of the underlying
asset during the life (or some part of the life) of the option.

Asian options are similar to lookback options in that there are two types of Asian options: fixed
(average price option) and floating (average strike option). Fixed Asian options have a specified
strike, while floating Asian options have a strike equal to the average value of the underlying asset
over the life of the option. For more information, see “Asian Option” on page 3-34.

References
[1] Hull, J., and A. White. “Efficient Procedures for Valuing European and American Path-Dependent

Options.” Journal of Derivatives. Vol. 1, pp. 21–31.

See Also
eqptree | instasian

Topics
“Pricing Asian Options” on page 3-110

11 Functions

11-14



“Graphical Representation of Equity Derivative Trees” on page 3-73
“Asian Option” on page 3-34
“Supported Equity Derivative Functions” on page 3-19
“Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument Objects” on
page 1-82

External Websites
How to Price Asian Options Efficiently Using MATLAB (4 min 37 sec)

Introduced before R2006a
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asianbyitt
Price Asian options using implied trinomial tree (ITT)

Syntax
Price = asianbyitt(ITTTree,OptSpec,Strike,Settle,ExerciseDates)
Price = asianbyitt( ___ ,AmericanOpt,AvgType,AvgPrice,AvgDate)

Description
Price = asianbyitt(ITTTree,OptSpec,Strike,Settle,ExerciseDates) prices Asian
options using an implied trinomial tree (ITT).

Price = asianbyitt( ___ ,AmericanOpt,AvgType,AvgPrice,AvgDate) adds optional
arguments for AmericanOpt, AvgType, AvgPrice, and AvgDate.

Examples

Price a Floating-Strike Asian Option Using an ITT Equity Tree

This example shows how to price a floating-strike Asian option using an ITT equity tree by loading the
file deriv.mat, which provides ITTTree. The ITTTree structure contains the stock specification and
time information needed to price the option.

load deriv.mat;

OptSpec = 'put';
Strike = NaN;
Settle = '01-Jan-2006';
ExerciseDates = '01-Jan-2007';

Price = asianbyitt(ITTTree, OptSpec, Strike, Settle, ExerciseDates)

Price = 1.0778

Input Arguments
ITTTree — Stock tree structure
structure

Stock tree structure, specified by using itttree.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'
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Definition of option, specified as 'call' or 'put' using a character vector or a cell array of
character vectors.
Data Types: char | cell

Strike — Option strike price value
matrix of nonnegative integers

Option strike price value, specified with a nonnegative integer using a NINST-by-1 matrix of strike
price values.

To compute the value of a floating-strike Asian option, Strike must be specified as NaN. Floating-
strike Asian options are also known as average strike options.
Data Types: double

Settle — Settlement date or trade date
serial date number | date character vector

Settlement date or trade date for the Asian option, specified as a NINST-by-1 matrix of settlement or
trade dates using serial date numbers or date character vectors.

Note The Settle date for every Asian option is set to the ValuationDate of the stock tree. The
Asian argument, Settle, is ignored.

Data Types: double | char

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a serial date number or date character vector:

• For a European option, use aNINST-by-1 matrix of exercise dates. Each row is the schedule for
one option. For a European option, there is only one ExerciseDates on the option expiry date.

• For an American option, use a NINST-by-2 vector of exercise date boundaries. The option can be
exercised on any tree date between or including the pair of dates on that row. If only one non-NaN
date is listed, or if ExerciseDates is a NINST-by-1 vector, the option can be exercised between
ValuationDate of the stock tree and the single listed ExerciseDates.

Data Types: double | char

AmericanOpt — Option type
0 European (default) | integer with values 0 or 1

(Optional) Option type, specified as NINST-by-1 positive integer flags with values:

• 0 — European
• 1 — American

Data Types: double

AvgType — Average types
arithmetic (default) | character vector with values of arithmetic or geometric
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Average types, specified as arithmetic for arithmetic average, or geometric for geometric
average.
Data Types: char

AvgPrice — Average price of underlying asset at Settle
scalar

Average price of underlying asset at Settle, specified as a scalar.

Note Use this argument when AvgDate < Settle.

Data Types: double

AvgDate — Date averaging period begins
scalar

Date averaging period begins, specified as a scalar.
Data Types: char | double

Output Arguments
Price — Expected prices for Asian options at time 0
vector

Expected prices for Asian options at time 0, returned as a NINST-by-1 vector. Pricing of Asian options
is done using Hull-White (1993). Therefore, for these options there are no unique prices on the tree
nodes except for the root node.

More About
Asian Option

An Asian option is a path-dependent option with a payoff linked to the average value of the underlying
asset during the life (or some part of the life) of the option.

Asian options are similar to lookback options in that there are two types of Asian options: fixed
(average price option) and floating (average strike option). Fixed Asian options have a specified
strike, while floating Asian options have a strike equal to the average value of the underlying asset
over the life of the option. For more information, see “Asian Option” on page 3-34.

References
[1] Hull, J., and A. White. “Efficient Procedures for Valuing European and American Path-Dependent

Options.” Journal of Derivatives. Vol. 1, pp. 21–31.

See Also
itttree | instasian

Topics
“Pricing Asian Options” on page 3-110
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“Graphical Representation of Equity Derivative Trees” on page 3-73
“Asian Option” on page 3-34
“Supported Equity Derivative Functions” on page 3-19

External Websites
How to Price Asian Options Efficiently Using MATLAB (4 min 37 sec)

Introduced in R2007a
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asianbyls
Price European or American Asian options using Monte Carlo simulations

Syntax
Price = asianbyls(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates)
Price = asianbyls( ___ ,Name,Value)

[Price,Paths,Times,Z] = asianbyls(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates)
[Price,Paths,Times,Z] = asianbyls( ___ ,Name,Value)

Description
Price = asianbyls(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates)
returns fixed- and floating-strike Asian option prices using the Longstaff-Schwartz model. asianbyls
computes prices of European and American Asian options.

For American options, the Longstaff-Schwartz least squares method is used to calculate the early
exercise premium.

To compute the value of a floating-strike Asian option, Strike should be specified as NaN. Fixed-
strike Asian options are also known as average price options and floating-strike Asian options are also
known as average strike options.

Price = asianbyls( ___ ,Name,Value) adds optional name-value pair arguments.

[Price,Paths,Times,Z] = asianbyls(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates) returns fixed- and floating-strike Asian option Price, Paths, Times, and Z values
using the Longstaff-Schwartz model. asianbyls computes prices of European and American Asian
options.

[Price,Paths,Times,Z] = asianbyls( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Compute the Price of an Asian Option Using the Longstaff-Schwartz Model

Define the RateSpec.

Rates = 0.05;
StartDate = 'Jan-1-2013';
EndDate = 'Jan-1-2014';
RateSpec = intenvset('ValuationDate', StartDate, 'StartDates', StartDate, ...
'EndDates', EndDate,'Compounding', -1, 'Rates', Rates)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
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             Disc: 0.9512
            Rates: 0.0500
         EndTimes: 1
       StartTimes: 0
         EndDates: 735600
       StartDates: 735235
    ValuationDate: 735235
            Basis: 0
     EndMonthRule: 1

Define the StockSpec for the asset.

AssetPrice = 100;
Sigma = 0.2;
StockSpec = stockspec(Sigma, AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2000
         AssetPrice: 100
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Define the Asian 'call' option.

Settle = 'Jan-1-2013';
ExerciseDates = 'Jan-1-2014';
Strike = 110;
OptSpec = 'call';

Compute the price for the European arithmetic average price for the Asian option using the
Longstaff-Schwartz model.

NumTrials = 10000;
NumPeriods = 100;
AvgType = 'arithmetic';
Antithetic= true;
Price= asianbyls(RateSpec, StockSpec, OptSpec, Strike, Settle, ExerciseDates, ...
'NumTrials', NumTrials, 'NumPeriods', NumPeriods,'Antithetic', Antithetic, 'AvgType', AvgType)

Price = 1.9876

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure
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Stock specification for underlying asset, specified using StockSpec obtained from stockspec. For
information on the stock specification, see stockspec.

stockspec can handle other types of underlying assets. For example, stocks, stock indices, and
commodities. If dividends are not specified in StockSpec, dividends are assumed to be 0.
Data Types: struct

OptSpec — Definition of option
character vector with a value of 'call' or 'put'

Definition of option, specified as 'call' or 'put' using a character vector
Data Types: char

Strike — Option strike price value
nonnegative scalar integer

Option strike price value, specified with a nonnegative scalar integer. To compute the value of a
floating-strike Asian option, Strike should be specified as NaN. Floating-strike Asian options are also
known as average strike options.
Data Types: double

Settle — Settlement or trade date
date character vector | nonnegative scalar integer

Settlement or trade date for the Asian option, specified as a nonnegative scalar integer or date
character vector. By default, asianbyls calculates the price of Asian options based on averages that
start on the settlement date.
Data Types: double | char

ExerciseDates — Option exercise dates
date character vector | nonnegative scalar integer

Option exercise dates, specified as a nonnegative scalar integer or date character vector:

• For a European option, use a 1-by-1 vector of dates. For a European option, there is only one
ExerciseDates on the option expiry date.

• For an American option, use a 1-by-2 vector of exercise date boundaries. The option can be
exercised on any date between or including the pair of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is a 1-by-1 vector of serial date numbers or cell array of date
character vectors, the option can be exercised between Settle and the single listed
ExerciseDates.

Data Types: double | char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Price =
asianbyls(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates,'NumTrials',
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NumTrials,'NumPeriods',NumPeriods,'Antithetic',Antithetic,'AvgType','arithmet
ic')

AmericanOpt — Option type
0 European (default) | scalar with value [0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and a NINST-by-1
positive integer scalar flags with values:

• 0 — European
• 1 — American

Note For American options, the Longstaff-Schwartz least squares method is used to calculate the
early exercise premium. For more information on the least squares method, see https://
people.math.ethz.ch/%7Ehjfurrer/teaching/
LongstaffSchwartzAmericanOptionsLeastSquareMonteCarlo.pdf.

Data Types: single | double

AvgType — Average types
arithmetic (default) | character vector with values of arithmetic or geometric

Average types, specified as the comma-separated pair consisting of 'AvgType' and arithmetic for
arithmetic average, or geometric for geometric average.
Data Types: char

AvgPrice — Average price of underlying asset at Settle
numeric

Average price of underlying asset at Settle, specified as the comma-separated pair consisting of
'AvgPrice' and a scalar numeric value. The AvgPrice is assumed to be calculated in the time
window starting at AvgDate and ending on Settle. In other words, the average is backward looking.

Note Use this argument when AvgDate < Settle.

Data Types: double

AvgDate — Date averaging period begins
serial date number

Date averaging period begins, specified as the comma-separated pair consisting of 'AvgDate' and a
scalar serial date number.
Data Types: double

NumTrials — Simulation trials
1000 (default) | numeric

Simulation trials, specified as the comma-separated pair consisting of 'NumTrials' and a scalar
number of independent sample paths.
Data Types: double
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NumPeriods — Simulation periods per trial
100 (default) | numeric

Simulation periods per trial, specified as the comma-separated pair consisting of 'NumPeriods'
scalar numeric value. NumPeriods is considered only when pricing European Asian options. For
American Asian options, NumPeriods is equal to the number of exercise days during the life of the
option.
Data Types: double

Z — Dependent random variates
nonnegative integer

Dependent random variates used to generate the Brownian motion vector (that is, Wiener processes)
that drive the simulation, specified as the comma-separated pair consisting of 'Z' and a
NumPeriods-by-2-by-NumTrials 3-D time series array.
Data Types: single | double

Antithetic — Indicator for antithetic sampling
false (default) | logical flag with value of true or false

Logical flag to indicate antithetic sampling, specified as the comma-separated pair consisting of
'Antithetic' and a value of true or false.
Data Types: logical

Output Arguments
Price — Expected price of Asian option
scalar

Expected price of the Asian option, returned as a 1-by-1 scalar.

Paths — Simulated paths of correlated state variables
vector

Simulated paths of correlated state variables, returned as a (NumPeriods + 1)-by-1-by-NumTrials 3-
D time series array. Each row of Paths is the transpose of the state vector X(t) at time t for a given
trial.

Times — Observation times associated with simulated paths
vector

Observation times associated with the simulated paths, returned as a (NumPeriods + 1)-by-1 column
vector of observation times associated with the simulated paths. Each element of Times is associated
with the corresponding row of Paths.

Z — Dependent random variates
vector

Dependent random variates, returned, if Z is specified as an optional input argument, the same value
is returned. Otherwise, Z contains the random variates generated internally.

11 Functions

11-24



More About
Asian Option

An Asian option is a path-dependent option with a payoff linked to the average value of the underlying
asset during the life (or some part of the life) of the option.

Asian options are similar to lookback options in that there are two types of Asian options: fixed
(average price option) and floating (average strike option). Fixed Asian options have a specified
strike, while floating Asian options have a strike equal to the average value of the underlying asset
over the life of the option. For more information, see “Asian Option” on page 3-34.

See Also
asiansensbyls | asianbycrr | intenvset | stockspec | asianbykv | asianbylevy

Topics
“Pricing Asian Options” on page 3-110
“Asian Option” on page 3-34
“Supported Equity Derivative Functions” on page 3-19
“Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument Objects” on
page 1-82

External Websites
How to Price Asian Options Efficiently Using MATLAB (4 min 38 sec)

Introduced in R2013b
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asianbystt
Price Asian options using standard trinomial tree

Syntax
Price = asianbystt(STTTree,OptSpec,Strike,Settle,ExerciseDates)
Price = asianbystt( ___ ,AmericanOpt,AvgType,AvgPrice,AvgDate)

Description
Price = asianbystt(STTTree,OptSpec,Strike,Settle,ExerciseDates) prices Asian
options using a standard trinomial (STT) tree.

Price = asianbystt( ___ ,AmericanOpt,AvgType,AvgPrice,AvgDate) prices Asian options
using a standard trinomial (STT) tree with optional arguments for AmericanOpt, AvgType,
AvgPrice, and AvgDate.

Examples

Price an Asian Option Using the Standard Trinomial Tree Model

Create a RateSpec.

StartDates = 'Jan-1-2009'; 
EndDates = 'Jan-1-2013'; 
Rates = 0.035; 
Basis = 1; 
Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates,'Compounding', Compounding, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.8694
            Rates: 0.0350
         EndTimes: 4
       StartTimes: 0
         EndDates: 735235
       StartDates: 733774
    ValuationDate: 733774
            Basis: 1
     EndMonthRule: 1

Create a StockSpec.

AssetPrice = 85; 
Sigma = 0.15; 
StockSpec = stockspec(Sigma, AssetPrice)
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StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1500
         AssetPrice: 85
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Create an STTTree.

NumPeriods = 4;
TimeSpec = stttimespec(StartDates, EndDates, 4);
STTTree = stttree(StockSpec, RateSpec, TimeSpec)

STTTree = struct with fields:
       FinObj: 'STStockTree'
    StockSpec: [1x1 struct]
     TimeSpec: [1x1 struct]
     RateSpec: [1x1 struct]
         tObs: [0 1 2 3 4]
         dObs: [733774 734139 734504 734869 735235]
        STree: {1x5 cell}
        Probs: {[3x1 double]  [3x3 double]  [3x5 double]  [3x7 double]}

Define the Asian option and compute the price.

Settle = '01-Jan-2009';
ExerciseDates = [datenum('1/1/12');datenum('1/1/13')];
OptSpec = 'call';
Strike = 100;

Price = asianbystt(STTTree, OptSpec, Strike, Settle, ExerciseDates)

Price = 2×1

    1.6905
    2.6203

Input Arguments
STTTree — Stock tree structure for standard trinomial tree
structure

Stock tree structure for a standard trinomial tree, specified by using stttree.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put'

Definition of option, specified as 'call' or 'put' using a character vector.
Data Types: char

 asianbystt

11-27



Strike — Option strike price value
matrix of nonnegative integers

Option strike price value, specified with a nonnegative integer using a NINST-by-1 matrix of strike
price values. To compute the value of a floating-strike Asian option, Strike should be specified as
NaN. Floating-strike Asian options are also known as average strike options.
Data Types: double

Settle — Settlement date or trade date
serial date number | date character vector

Settlement date or trade date for the Asian option, specified as a NINST-by-1 matrix of settlement or
trade dates using serial date numbers or date character vectors.

Note The Settle date for every Asian option is set to the ValuationDate of the stock tree. The
Asian argument, Settle, is ignored.

Data Types: double | char

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a serial date number or date character vector:

• For a European option, use aNINST-by-1 matrix of exercise dates. Each row is the schedule for
one option. For a European option, there is only one ExerciseDates on the option expiry date.

• For an American option, use a NINST-by-2 vector of exercise date boundaries. The option can be
exercised on any tree date between or including the pair of dates on that row. If only one non-NaN
date is listed, or if ExerciseDates is a NINST-by-1 vector of serial date numbers or cell array of
character vectors, the option can be exercised between ValuationDate of the stock tree and the
single listed ExerciseDates.

Data Types: double | char

AmericanOpt — Option type
0 European (default) | scalar with values [0,1]

Option type, specified as NINST-by-1 positive integer scalar flags with values:

• 0 — European
• 1 — American

Data Types: single | double

AvgType — Average types
arithmetic (default) | character vector with values of arithmetic or geometric

Average types, specified as arithmetic for arithmetic average, or geometric for geometric
average.
Data Types: char
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AvgPrice — Average price of underlying asset at Settle
scalar

Average price of underlying asset at Settle, specified as a scalar.

Note Use this argument when AvgDate < Settle.

Data Types: double

AvgDate — Date averaging period begins
scalar

Date averaging period begins, specified as a scalar.
Data Types: double

Output Arguments
Price — Expected prices for Asian options at time 0
matrix

Expected prices for Asian options at time 0, returned as a NINST-by-1 matrix. Pricing of Asian options
is done using Hull-White (1993). Consequently, for these options there are no unique prices on the
tree nodes with the exception of the root node.

More About
Asian Option

An Asian option is a path-dependent option with a payoff linked to the average value of the underlying
asset during the life (or some part of the life) of the option.

Asian options are similar to lookback options in that there are two types of Asian options: fixed
(average price option) and floating (average strike option). Fixed Asian options have a specified
strike, while floating Asian options have a strike equal to the average value of the underlying asset
over the life of the option. For more information, see “Asian Option” on page 3-34.

References
[1] Hull, J., and A. White. “Efficient Procedures for Valuing European and American Path-Dependent

Options.” Journal of Derivatives. Vol. 1, pp. 21–31.

See Also
stttimespec | stttree | sttprice | sttsens | instasian

Topics
“Asian Option” on page 3-34
“Supported Equity Derivative Functions” on page 3-19

External Websites
How to Price Asian Options Efficiently Using MATLAB (4 min 37 sec)
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Introduced in R2015b
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asiansensbyls
Calculate price and sensitivities for European or American Asian options using Monte Carlo
simulations

Syntax
PriceSens = asiansensbyls(RateSpec,StockSpec,OptSpec,StrikeSettle,
ExerciseDates)
PriceSens = asiansensbyls( ___ ,Name,Value)

[PriceSens,Path,Times,Z] = asiansensbyls(RateSpec,StockSpec,OptSpec,Strike
Settle,ExerciseDates)
[PriceSens,Path,Times,Z] = asiansensbyls( ___ ,Name,Value)

Description
PriceSens = asiansensbyls(RateSpec,StockSpec,OptSpec,StrikeSettle,
ExerciseDates) returns Asian option prices or sensitivities for fixed- and floating-strike Asian
options using the Longstaff-Schwartz model. asiansensbyls supports European and American
Asian options.

For American options, the Longstaff-Schwartz least squares method is used to calculate the early
exercise premium.

To compute the value of a floating-strike Asian option, Strike should be specified as NaN. Fixed-
strike Asian options are also known as average price options and floating-strike Asian options are also
known as average strike options.

PriceSens = asiansensbyls( ___ ,Name,Value) returns Asian option prices or sensitivities for
fixed- and floating-strike Asian options using optional name-value pair arguments and the Longstaff-
Schwartz model.

[PriceSens,Path,Times,Z] = asiansensbyls(RateSpec,StockSpec,OptSpec,Strike
Settle,ExerciseDates) returns Asian option prices or sensitivities (PriceSens, Path, Times,
and Z) for fixed- and floating-strike Asian options using the Longstaff-Schwartz model.

[PriceSens,Path,Times,Z] = asiansensbyls( ___ ,Name,Value) returns Asian option
prices or sensitivities (PriceSens, Path, Times, and Z) for fixed- and floating-strike Asian options
using optional name-value pair arguments and the Longstaff-Schwartz model.

Examples

Compute the Price and Sensitivities of an Asian Option Using the Longstaff-Schwartz Model

Define the RateSpec.

Rates = 0.05;
StartDate = 'Jan-1-2013';
EndDate = 'Jan-1-2014';
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RateSpec = intenvset('ValuationDate', StartDate, 'StartDates', StartDate, ...
'EndDates', EndDate,'Compounding', -1, 'Rates', Rates)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9512
            Rates: 0.0500
         EndTimes: 1
       StartTimes: 0
         EndDates: 735600
       StartDates: 735235
    ValuationDate: 735235
            Basis: 0
     EndMonthRule: 1

Define the StockSpec for the asset.

AssetPrice = 100;
Sigma = 0.2;
StockSpec = stockspec(Sigma, AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2000
         AssetPrice: 100
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Define the Asian 'call' option.

Settle = 'Jan-1-2013';
ExerciseDates = 'Jan-1-2014';
Strike = 110;
OptSpec = 'call';

Compute the price for the European arithmetic average price and sensitivities for the Asian option
using the Longstaff-Schwartz model.

NumTrials = 10000;
NumPeriods = 100;
AvgType = 'arithmetic';
Antithetic= true;
OutSpec = {'Price', 'Delta', 'Gamma'};
PriceSens = asiansensbyls(RateSpec, StockSpec, OptSpec, Strike, Settle, ExerciseDates, ...
'NumTrials', NumTrials, 'NumPeriods', NumPeriods,'Antithetic', Antithetic, 'AvgType', ...
AvgType,'OutSpec',OutSpec)

PriceSens = 1.9876

Input Arguments
RateSpec — Interest-rate term structure
structure
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Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for underlying asset, specified using StockSpec obtained from stockspec. For
information on the stock specification, see stockspec.

stockspec can handle other types of underlying assets. For example, stocks, stock indices, and
commodities. If dividends are not specified in StockSpec, dividends are assumed to be 0.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put'

Definition of option, specified as 'call' or 'put' using a character vector.
Data Types: char

Strike — Option strike price value
nonnegative scalar integer

Option strike price value, specified with a nonnegative scalar integer. To compute the value of a
floating-strike Asian option, Strike should be specified as NaN. Floating-strike Asian options are also
known as average strike options.
Data Types: double

Settle — Settlement date or trade date
nonnegative scalar integer | date character vector

Settlement date or trade date for the Asian option, specified as a nonnegative scalar integer or date
character vector.
Data Types: double | char

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a serial date number or date character vector:

• For a European option, use a 1-by-1 vector of dates. For a European option, there is only one
ExerciseDates on the option expiry date.

• For an American option, use a 1-by-2 vector of exercise date boundaries. The option can be
exercised on any date between or including the pair of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is a 1-by-1 vector of serial date numbers or cell array of character
vectors, the option can be exercised between Settle and the single listed ExerciseDates.

Data Types: double | char
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: PriceSens =
asiansensbyls(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates,'NumTria
ls',NumTrials,'NumPeriods',
NumPeriods,'Antithetic',Antithetic,'AvgType',AvgType,'OutSpec',{'All'})

AmericanOpt — Option type
0 European (default) | scalar with values [0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and a NINST-by-1
positive integer scalar flags with values:

• 0 — European
• 1 — American

Note For American options, the Longstaff-Schwartz least squares method is used to calculate the
early exercise premium. For more information on the least squares method, see https://
people.math.ethz.ch/%7Ehjfurrer/teaching/
LongstaffSchwartzAmericanOptionsLeastSquareMonteCarlo.pdf.

Data Types: single | double

AvgType — Average types
arithmetic (default) | character vector with values of arithmetic or geometric

Average types, specified as the comma-separated pair consisting of 'AvgType' and arithmetic for
arithmetic average, or geometric for geometric average.
Data Types: char

AvgPrice — Average price of underlying asset at Settle
numeric

Average price of underlying asset at Settle, specified as the comma-separated pair consisting of
'AvgPrice' and a scalar numeric value.

Note Use this argument when AvgDate < Settle.

Data Types: double

AvgDate — Date averaging period begins
serial date number

Date averaging period begins, specified as the comma-separated pair consisting of 'AvgDate' and a
scalar serial date number.
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Data Types: double

NumTrials — Simulation trials
1000 (default) | numeric

Simulation trials, specified as the comma-separated pair consisting of 'NumTrials' and a scalar
number of independent sample paths.
Data Types: double

NumPeriods — Simulation periods per trial
100 (default) | numeric

Simulation periods per trial, specified as the comma-separated pair consisting of 'NumPeriods' and
a scalar numeric value. NumPeriods is considered only when pricing European Asian options. For
American Asian options, NumPeriod is equal to the number of exercise days during the life of the
option.
Data Types: double

Z — Dependent random variates
nonnegative integer

Dependent random variates used to generate the Brownian motion vector (that is, Wiener processes)
that drive the simulation, specified as the comma-separated pair consisting of 'Z' and a
NumPeriods-by-2-by-NumTrials 3-D time series array.
Data Types: single | double

Antithetic — Indicates antithetic sampling
false (default) | logical flag with value of true or false

Indicates antithetic sampling, specified as the comma-separated pair consisting of 'Antithetic'
and a value of true or false.
Data Types: logical

OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma', 'Vega',
'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with values 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a NOUT- by-1 or
1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta,
and Price, in that order. This is the same as specifying OutSpec to include each sensitivity:
Example: OutSpec = {'delta','gamma','vega','lambda','rho','theta','price'}
Data Types: char | cell

Output Arguments
PriceSens — Expected price or sensitivities of Asian option
scalar
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Expected price or sensitivities (defined by OutSpec) of the Asian option, returned as a 1-by-1 array.

Path — Simulated paths of correlated state variables
vector

Simulated paths of correlated state variables, returned as a (NumPeriods + 1)-by-2-by-NumTrials 3-
D time series array. Each row of Paths is the transpose of the state vector X(t) at time t for a given
trial.

Times — Observation times associated with simulated paths
vector

Observation times associated with simulated paths, returned as a (NumPeriods + 1)-by-1 column
vector of observation times associated with the simulated paths. Each element of Times is associated
with the corresponding row of Paths.

Z — Dependent random variates
vector

Dependent random variates, returned, if Z is specified as an optional input argument, the same value
is returned. Otherwise, Z contains the random variates generated internally.

More About
Asian Option

An Asian option is a path-dependent option with a payoff linked to the average value of the underlying
asset during the life (or some part of the life) of the option.

Asian options are similar to lookback options in that there are two types of Asian options: fixed
(average price option) and floating (average strike option). Fixed Asian options have a specified
strike, while floating Asian options have a strike equal to the average value of the underlying asset
over the life of the option. For more information, see “Asian Option” on page 3-34.

See Also
asianbyls | asianbycrr | stockspec | intenvset | asianbykv | asianbylevy

Topics
“Pricing Asian Options” on page 3-110
“Asian Option” on page 3-34
“Supported Equity Derivative Functions” on page 3-19

External Websites
How to Price Asian Options Efficiently Using MATLAB (4 min 37 sec)

Introduced in R2013b
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asianbykv
Prices European geometric Asian options using Kemna-Vorst model

Syntax
Price = asianbykv(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates)

Description
Price = asianbykv(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates)
returns prices of European geometric Asian options using the Kemna-Vorst model.

Examples

Compute the Price of an Asian Option Using the Kemna-Vorst Model

Define the RateSpec.

StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2014';
Rates = 0.035;
Basis = 1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates, ...
'EndDates', EndDates,'Rates', Rates,  'Compounding', -1, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9656
            Rates: 0.0350
         EndTimes: 1
       StartTimes: 0
         EndDates: 735600
       StartDates: 735235
    ValuationDate: 735235
            Basis: 1
     EndMonthRule: 1

Define the StockSpec for the asset.

AssetPrice = 100;
Sigma = 0.15;
DivType = 'continuous';
DivAmounts = 0.03;
StockSpec = stockspec(Sigma, AssetPrice, DivType, DivAmounts)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1500
         AssetPrice: 100
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       DividendType: {'continuous'}
    DividendAmounts: 0.0300
    ExDividendDates: []

Define the Asian 'call' and 'put' options.

Strike = 102;
OptSpec = {'put'; 'call'};
Settle = 'Jan-1-2013';
Maturity = 'Apr-1-2013';

Compute the European geometric Average Price for the Asian option using the Kemna-Vorst model.

Price = asiansensbykv(RateSpec, StockSpec, OptSpec, Strike, Settle, Maturity)

Price = 2×1

    2.8881
    0.9210

Input Arguments
RateSpec — Interest-rate term structure
structure

The annualized continuously compounded interest-rate term structure specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for underlying asset, specified using StockSpec obtained from stockspec. For
information on the stock specification, see stockspec.

stockspec can handle other types of underlying assets. For example, stocks, stock indices and
commodities. If dividends are not specified in StockSpec, dividends are assumed to be 0.
Data Types: struct

OptSpec — Definition of option
character vector with value'call' or 'put' | cell array of character vectors

Definition of option, specified as 'call' or 'put' using a NINST-by-1 cell array of character vectors.
Data Types: cell | char

Strike — Option strike price values
nonnegative integer | vector of nonnegative integers

Option strike price values, specified with nonnegative integers using a NINST-by-1 vector.
Data Types: single | double
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Settle — Settlement dates or trade dates
serial date number | vector of serial date numbers | date character vector | cell array of character
vectors

Settlement dates or trade dates for the Asian option, specified as a character vector or as serial date
numbers using a NINST-by-1 vector or cell array of character vector dates.
Data Types: double | char | cell

ExerciseDates — European option exercise dates
serial date number | vector of serial date numbers | date character vector | cell array of character
vectors

European option exercise dates, specified as serial date numbers or date character vectors using a
NINST-by-1 vector or cell array of character vector dates. For a European option, there is only one
ExerciseDates on the option expiry date.
Data Types: double | char | cell

Output Arguments
Price — Expected prices of an Asian option
vector

Expected prices of the Asian option, returned as an NINST-by-1 vector.

More About
Asian Option

An Asian option is a path-dependent option with a payoff linked to the average value of the underlying
asset during the life (or some part of the life) of the option.

Asian options are similar to lookback options in that there are two types of Asian options: fixed
(average price option) and floating (average strike option). Fixed Asian options have a specified
strike, while floating Asian options have a strike equal to the average value of the underlying asset
over the life of the option. For more information, see “Asian Option” on page 3-34.

See Also
asiansensbykv | asianbycrr | intenvset | stockspec | asianbyls | asianbylevy

Topics
“Pricing Asian Options” on page 3-110
“Asian Option” on page 3-34
“Supported Equity Derivative Functions” on page 3-19
“Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument Objects” on
page 1-82

External Websites
How to Price Asian Options Efficiently Using MATLAB (4 min 37 sec)

Introduced in R2013b
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asiansensbykv
Calculate prices or sensitivities of European geometric Asian options using Kemna-Vorst model

Syntax
PriceSens = asiansensbykv(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates)
PriceSens = asiansensbykv( ___ ,Name,Value)

Description
PriceSens = asiansensbykv(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates) returns prices or sensitivities of European geometric Asian options using Kemna-
Vorst model.

PriceSens = asiansensbykv( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Compute the Price and Sensitivities of an Asian Option Using the Kemna-Vorst Model

Define the RateSpec.

StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2014';
Rates = 0.035;
Basis = 1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates, ...
'EndDates', EndDates,'Rates', Rates,  'Compounding', -1, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9656
            Rates: 0.0350
         EndTimes: 1
       StartTimes: 0
         EndDates: 735600
       StartDates: 735235
    ValuationDate: 735235
            Basis: 1
     EndMonthRule: 1

Define the StockSpec for the asset.

AssetPrice = 100;
Sigma = 0.15;
DivType = 'continuous';
DivAmounts = 0.03;
StockSpec = stockspec(Sigma, AssetPrice, DivType, DivAmounts)
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StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1500
         AssetPrice: 100
       DividendType: {'continuous'}
    DividendAmounts: 0.0300
    ExDividendDates: []

Define the Asian 'call' and 'put' options.

Strike = 102;
OptSpec = {'put'; 'call'};
Settle = 'Jan-1-2013';
ExerciseDates = 'Jan-1-2014';

Compute the European geometric Average Price and sensitivities for the Asian option using the
Kemna-Vorst model.

OutSpec = {'Price', 'Delta', 'Gamma'};
PriceSens = asiansensbykv(RateSpec, StockSpec, OptSpec, Strike,...
Settle, ExerciseDates,'OutSpec', OutSpec)

PriceSens = 2×1

    4.3871
    2.5163

Input Arguments
RateSpec — Interest-rate term structure
structure

The annualized continuously compounded interest-rate term structure specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for underlying asset, specified using StockSpec obtained from stockspec. For
information on the stock specification, see stockspec.

stockspec can handle other types of underlying assets. For example, stocks, stock indices and
commodities. If dividends are not specified in StockSpec, dividends are assumed to be 0.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors

Definition of option, specified as 'call' or 'put' using a NINST-by-1 cell array of character vectors.
Data Types: cell | char
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Strike — Option strike price values
nonnegative integer | vector of nonnegative integers

Option strike price values, specified with nonnegative integers using a NINST- by-1 vector.
Data Types: single | double

Settle — Settlement dates or trade dates
serial date number | vector of serial date numbers | date character vector | cell array of character
vectors

Settlement dates or trade dates for the Asian option, specified as serial date numbers or date
character vectors using a NINST-by-1 vector or cell array of character vector dates.
Data Types: double | char | cell

ExerciseDates — Option exercise dates
serial date number | vector of serial date numbers | date character vector | cell array of character
vectors

European option exercise dates, specified as serial date numbers or date character vectors using a
NINST-by-1 vector or cell array of character vector dates. For a European option, there is only one
ExerciseDates on the option expiry date.
Data Types: double | char | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: PriceSens =
asiansensbykv(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates,'OutSpec
',{'All'})

OutSpec — Define outputs
{'Price'} (default) | character vector with values: 'Price', 'Delta', 'Gamma', 'Vega',
'Lambda', 'Rho', 'Theta' and 'All'. | cell array of character vectors with values: 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta' and 'All'.

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a NOUT- by-1 or
1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta,
and Price, in that order. This is the same as specifying OutSpec as:
Example: OutSpec = {'delta','gamma','vega','lambda','rho','theta','price'}
Data Types: char | cell
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Output Arguments
PriceSens — Expected prices or sensitivities of the Asian option
vector

Expected prices or sensitivities (defined by OutSpec) of the Asian option, returned as an 1-by-1
vector. If the OutSpec is not specified only price is returned.

More About
Asian Option

An Asian option is a path-dependent option with a payoff linked to the average value of the underlying
asset during the life (or some part of the life) of the option.

Asian options are similar to lookback options in that there are two types of Asian options: fixed
(average price option) and floating (average strike option). Fixed Asian options have a specified
strike, while floating Asian options have a strike equal to the average value of the underlying asset
over the life of the option. For more information, see “Asian Option” on page 3-34.

See Also
asianbykv | asianbycrr | stockspec | intenvset | asianbyls | asianbylevy

Topics
“Pricing Asian Options” on page 3-110
“Asian Option” on page 3-34
“Supported Equity Derivative Functions” on page 3-19

External Websites
How to Price Asian Options Efficiently Using MATLAB (4 min 37 sec)

Introduced in R2013b
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asianbylevy
Price of European arithmetic Asian options using Levy model

Syntax
Price = asianbylevy(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates)

Description
Price = asianbylevy(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates)
returns European arithmetic average pricing for Asian options using the Levy model.

Examples

Compute the Price of an Asian Option Using the Levy Model

Define the RateSpec.

Rates = 0.07;
StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2014';
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates, 'EndDates', ...
EndDates, 'Rates', Rates, 'Compounding', -1)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9324
            Rates: 0.0700
         EndTimes: 1
       StartTimes: 0
         EndDates: 735600
       StartDates: 735235
    ValuationDate: 735235
            Basis: 0
     EndMonthRule: 1

Define the StockSpec for the asset.

AssetPrice = 6.8;
Sigma = 0.14;
DivType = 'continuous';
DivAmounts = 0.09;
StockSpec = stockspec(Sigma, AssetPrice, DivType, DivAmounts)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1400
         AssetPrice: 6.8000
       DividendType: {'continuous'}
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    DividendAmounts: 0.0900
    ExDividendDates: []

Define two options for 'call' and 'put'.

Settle = 'Jan-1-2013';
Maturity = 'July-1-2013';
Strike = 6.9;
OptSpec = {'call'; 'put'};

Compute the European arithmetic average price for the Asian option using the Levy model.

Price= asianbylevy(RateSpec, StockSpec, OptSpec, Strike, Settle, Maturity)

Price = 2×1

    0.0944
    0.2237

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for underlying asset, specified using StockSpec obtained from stockspec. For
information on the stock specification, see stockspec.

stockspec can handle other types of underlying assets. For example, stocks, stock indices, and
commodities. If dividends are not specified in StockSpec, dividends are assumed to be 0.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors

Definition of option, specified as 'call' or 'put' using a NINST-by-1 cell array of character vectors.
Data Types: char | cell

Strike — Option strike price values
nonnegative integer | vector of nonnegative integers

Option strike price values, specified with nonnegative integers as a NINST-by-1 vector.
Data Types: single | double
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Settle — Settlement dates or trade dates
serial date number | vector of serial date numbers | date character vector | cell array of character
vectors

Settlement dates or trade dates for the Asian option, specified as serial date numbers or date
character vectors using a NINST-by-1 vector or cell array of character vector dates.
Data Types: double | char | cell

ExerciseDates — Option exercise dates
serial date number | vector of serial date numbers | date character vector | cell array of character
vectors

Option exercise dates, specified as serial date numbers or date character vectors using a NINST-by-1
vector or cell array of character vector dates. For a European option, there is only one
ExerciseDates on the option expiry date.
Data Types: double | char | cell

Output Arguments
Price — Expected prices of Asian option
vector

Expected prices of the Asian option, returned as a NINST-by-1 vector.

More About
Asian Option

An Asian option is a path-dependent option with a payoff linked to the average value of the underlying
asset during the life (or some part of the life) of the option.

Asian options are similar to lookback options in that there are two types of Asian options: fixed
(average price option) and floating (average strike option). Fixed Asian options have a specified
strike, while floating Asian options have a strike equal to the average value of the underlying asset
over the life of the option. For more information, see “Asian Option” on page 3-34.

See Also
asiansensbylevy | asianbycrr | intenvset | stockspec | asianbyls | asianbykv

Topics
“Pricing Asian Options” on page 3-110
“Asian Option” on page 3-34
“Supported Equity Derivative Functions” on page 3-19
“Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument Objects” on
page 1-82

External Websites
How to Price Asian Options Efficiently Using MATLAB (4 min 37 sec)

Introduced in R2013b
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asiansensbylevy
Calculate prices or sensitivities of European arithmetic Asian options using Levy model

Syntax
PriceSens = asiansensbylevy(RateSpec,StockSpec,OptSpec,StrikeSettle,
ExerciseDates)
PriceSens = asiansensbylevy( ___ ,Name,Value)

Description
PriceSens = asiansensbylevy(RateSpec,StockSpec,OptSpec,StrikeSettle,
ExerciseDates) returns European average pricing or sensitivities for arithmetic Asian options
using the Levy model.

PriceSens = asiansensbylevy( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Compute the Price and Sensitivities of an Asian Option Using the Levy Model

Define the RateSpec.

Rates = 0.07;
StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2014';
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates, 'EndDates', ...
EndDates, 'Rates', Rates, 'Compounding', -1)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9324
            Rates: 0.0700
         EndTimes: 1
       StartTimes: 0
         EndDates: 735600
       StartDates: 735235
    ValuationDate: 735235
            Basis: 0
     EndMonthRule: 1

Define the StockSpec for the asset.

AssetPrice = 6.8;
Sigma = 0.14;
DivType = 'continuous';
DivAmounts = 0.09;
StockSpec = stockspec(Sigma, AssetPrice, DivType, DivAmounts)
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StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1400
         AssetPrice: 6.8000
       DividendType: {'continuous'}
    DividendAmounts: 0.0900
    ExDividendDates: []

Define two options for a 'call' and 'put'.

Settle = 'Jan-1-2013';
ExerciseDates = 'Jan-1-2014';
Strike = 6.9;
OptSpec = {'call'; 'put'};

Compute the European arithmetic average price and sensitivities for the Asian option using the Levy
model.

OutSpec = {'Price', 'Delta', 'Gamma'};
PriceSens = asiansensbylevy(RateSpec, StockSpec, OptSpec, Strike,...
Settle, ExerciseDates,'OutSpec', OutSpec)

PriceSens = 2×1

    0.1358
    0.2921

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for underlying asset, specified using StockSpec obtained from stockspec. For
information on the stock specification, see stockspec.

stockspec can handle other types of underlying assets. For example, stocks, stock indices, and
commodities. If dividends are not specified in StockSpec, dividends are assumed to be 0.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors

Definition of option, specified as 'call' or 'put' using a NINST-by-1 cell array of character vectors.
Data Types: char | cell
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Strike — Option strike price values
nonnegative integer | vector of nonnegative integers

Option strike price values, specified with nonnegative integers using a NINST-by-1 vector.
Data Types: single | double

Settle — Settlement dates or trade dates
serial date number | vector of serial date numbers | date character vector | cell array of character
vectors

Settlement dates or trade dates for the Asian option, specified as serial date numbers or date
character vectors using a NINST-by-1 vector or cell array of character vector dates.
Data Types: double | char | cell

ExerciseDates — Option exercise dates
serial date number | vector of serial date numbers | date character vector | cell array of character
vectors

Option exercise dates, specified as serial date numbers or date character vectors using a NINST-by-1
vector or cell array of character vector dates. For a European option, there is only one
ExerciseDates on the option expiry date.
Data Types: double | char | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: PriceSens =
asiansensbylevy(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates,'OutSp
ec',{'All'})

OutSpec — Define outputs
{'Price'} (default) | character vector with values: 'Price', 'Delta', 'Gamma', 'Vega',
'Lambda', 'Rho', 'Theta', and 'All'. | cell array of character vectors with values 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a NOUT- by-1 or
1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta,
and Price, in that order. This is the same as specifying OutSpec to include each sensitivity:
Example: OutSpec = {'delta','gamma','vega','lambda','rho','theta','price'}
Data Types: char | cell
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Output Arguments
PriceSens — Expected prices or sensitivities of Asian option
vector

Expected prices or sensitivities (defined by OutSpec) of the Asian option, returned as an 1-by-1
vector. If the OutSpec is not specified only the price is returned.

More About
Asian Option

An Asian option is a path-dependent option with a payoff linked to the average value of the underlying
asset during the life (or some part of the life) of the option.

Asian options are similar to lookback options in that there are two types of Asian options: fixed
(average price option) and floating (average strike option). Fixed Asian options have a specified
strike, while floating Asian options have a strike equal to the average value of the underlying asset
over the life of the option. For more information, see “Asian Option” on page 3-34.

See Also
asianbykv | asianbycrr | stockspec | intenvset | asianbyls | asianbykv

Topics
“Pricing Asian Options” on page 3-110
“Asian Option” on page 3-34
“Supported Equity Derivative Functions” on page 3-19

External Websites
How to Price Asian Options Efficiently Using MATLAB (4 min 37 sec)

Introduced in R2013b
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asianbyhhm
Price European discrete arithmetic fixed Asian options using Haug, Haug, Margrabe model

Syntax
Price = asianbyhhm(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates)
Price = asianbyhhm( ___ ,Name,Value)

Description
Price = asianbyhhm(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates)
prices European discrete arithmetic fixed Asian options using the Haug, Haug, Margrabe model.

Price = asianbyhhm( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Price an Asian Option with Averaging Period Starting Before the Settle Date

Define the Asian option parameters.

AssetPrice = 100;
Strike = 95;
Rates = 0.1;
Sigma = 0.15;
Settle = 'Apr-1-2013';
Maturity = 'Oct-1-2013';

Create a RateSpec using the intenvset function.

 RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates', ...
 Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', 1);

Create a StockSpec for the underlying asset using the stockspec function.

DividendType = 'Continuous';
DividendAmounts = 0.05;

StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts);

Calculate the price of the Asian option using the Haug, Haug, Margrabe approximation. Assume that
the averaging period has started before the Settle date.

OptSpec = 'Call';
ExerciseDates = 'Oct-1-2013';
NumFixings = 12;
AvgDate = 'Jan-1-2013';
AvgPrice = 100;

Price = asianbyhhm(RateSpec, StockSpec, OptSpec, Strike, Settle, ExerciseDates, ...
'NumFixings', NumFixings, 'AvgDate', AvgDate, 'AvgPrice', AvgPrice)
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Price = 5.8216

Price an Asian Option with Averaging Period Starting After the Settle Date

Define the Asian option parameters.

AssetPrice = 100;
Strike = 95;
Rates = 0.1;
Sigma = 0.15;
Settle = 'Apr-1-2013';
Maturity = 'Oct-1-2013';

Create a RateSpec using the intenvset function.

 RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates', ...
 Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', 1);

Create a StockSpec for the underlying asset using the stockspec function.

DividendType = 'Continuous';
DividendAmounts = 0.05;

StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts);

Calculate the price of the Asian option using the Haug, Haug, Margrabe approximation. Assume that
the averaging period starts after the Settle date.

OptSpec = 'Call';
ExerciseDates = 'Oct-1-2013';
NumFixings = 15;
AvgDate = 'Jan-1-2013';

Price = asianbyhhm(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates, ...
'NumFixings',NumFixings,'AvgDate',AvgDate)

Price = 1.3785e-07

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for underlying asset, specified using StockSpec obtained from stockspec. For
information on the stock specification, see stockspec.
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stockspec can handle other types of underlying assets. For example, stocks, stock indices, and
commodities. If dividends are not specified in StockSpec, dividends are assumed to be 0.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put' | string array with values "call" or "put"

Definition of option, specified as 'call' or 'put' using a character vector, cell array of character
vectors, or string array.
Data Types: char | cell | string

Strike — Option strike price value
nonnegative integer | vector of nonnegative integers

Option strike price value, specified with a nonnegative integer using a NINST-by-1 vector of strike
price values.
Data Types: double

Settle — Settlement dates or trade dates
serial date number | date character vector | datetime | string array

Settlement date or trade date for the Asian option, specified as a NINST-by-1 vector using serial date
numbers, date character vectors, datetime, or string arrays.
Data Types: double | char | datetime | string

ExerciseDates — European option exercise dates
serial date number | date character vector | datetime | string array

European option exercise dates, specified as a NINST-by-1 vector using serial date numbers, date
character vectors, datetimes, or string arrays.

Note For a European option, there is only one ExerciseDates on the option expiry date.

Data Types: double | char | datetime | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Price =
asianbyhhm(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates,'NumFixings
',15)

AvgPrice — Average price of underlying asset at the Settle date
vector
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Average price of underlying asset at the Settle date, specified as the comma-separated pair
consisting of 'AvgPrice' and a NINST-by-1 vector.

Note Use the AvgPrice argument when AvgDate < Settle.

Data Types: double

AvgDate — Date averaging period begins
serial date number | date character vector | datetime | string array

Date averaging period begins, specified as the comma-separated pair consisting of 'AvgDate' and a
NINST-by-1 vector using serial date numbers, date character vectors, datetimes, or string array.
Data Types: char | double | datetime | string

NumFixings — Total number of fixings or averaging points
10 (default) | vector

Total number of fixings or averaging points, specified as the comma-separated pair consisting of
'NumFixings' and a NINST-by-1 vector.
Data Types: double

Output Arguments
Price — Expected prices for fixed Asian options
vector

Expected prices for fixed Asian options, returned as a NINST-by-1 vector.

More About
Asian Option

An Asian option is a path-dependent option with a payoff linked to the average value of the underlying
asset during the life (or some part of the life) of the option.

Asian options are similar to lookback options in that there are two types of Asian options: fixed
(average price option) and floating (average strike option). Fixed Asian options have a specified
strike, while floating Asian options have a strike equal to the average value of the underlying asset
over the life of the option. For more information, see “Asian Option” on page 3-34.

References
[1] Haug, E. G. The Complete Guide to Option Pricing Formulas. McGraw-Hill Education, 2007.

See Also
asiansensbyhhm | asianbytw | asianbykv | asianbyls | stockspec | intenvset | asianbycrr
| asianbylevy

Topics
“Pricing Asian Options” on page 3-110
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“Asian Option” on page 3-34
“Supported Equity Derivative Functions” on page 3-19
“Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument Objects” on
page 1-82

External Websites
How to Price Asian Options Efficiently Using MATLAB (4 min 37 sec)

Introduced in R2018a
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asiansensbyhhm
Calculate price and sensitivities of European discrete arithmetic fixed Asian options using Haug,
Haug, Margrabe model

Syntax
PriceSens = asiansensbyhhm(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates)
PriceSens = asiansensbyhhm( ___ ,Name,Value)

Description
PriceSens = asiansensbyhhm(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates) calculates prices and sensitivities for European discrete arithmetic fixed Asian
options using the Haug, Haug, Margrabe model.

PriceSens = asiansensbyhhm( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Compute Price and Sensitivities for Asian Option with Averaging Period Starting Before the
Settle Date

Define the Asian option parameters.

AssetPrice = 100;
Strike = 95;
Rates = 0.1;
Sigma = 0.15;
Settle = 'Apr-1-2013';
Maturity = 'Oct-1-2013';

Create a RateSpec using the intenvset function.

 RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates', ...
 Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', 1);

Create a StockSpec for the underlying asset using the stockspec function.

DividendType = 'Continuous';
DividendAmounts = 0.05;

StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts);

Calculate the price and sensitivities of the Asian option using the Haug, Haug, Margrabe
approximation. Assume that the averaging period has started before the Settle date.

OptSpec = 'Call';
ExerciseDates = 'Oct-1-2013';
NumFixings = 12;
AvgDate = 'Jan-1-2013';
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AvgPrice = 100;
OutSpec = {'Price','Delta','Gamma'};

[Price,Delta,Gamma] = asiansensbyhhm(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates, ...
'NumFixings',NumFixings,'AvgDate',AvgDate,'AvgPrice',AvgPrice,'OutSpec',OutSpec)

Price = 5.8216

Delta = 0.5907

Gamma = 0.0143

Compute Price and Sensitivities for Asian Option with Averaging Period Starting After the
Settle Date

Define the Asian option parameters.

AssetPrice = 100;
Strike = 95;
Rates = 0.1;
Sigma = 0.15;
Settle = 'Apr-1-2013';
Maturity = 'Oct-1-2013';

Create a RateSpec using the intenvset function.

 RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates', ...
 Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', 1);

Create a StockSpec for the underlying asset using the stockspec function.

DividendType = 'Continuous';
DividendAmounts = 0.05;

StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts);

Calculate the price and sensitivities of the Asian option using the Haug, Haug, Margrabe
approximation. Assume that the averaging period started after the Settle date.

OptSpec = 'Call';
ExerciseDates = 'Oct-1-2013';
NumFixings = 15;
AvgDate = 'Jan-1-2013';
OutSpec = {'Price','Delta','Gamma'};

[Price,Delta,Gamma] = asiansensbyhhm(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates, ...
'NumFixings',NumFixings,'AvgDate',AvgDate,'OutSpec',OutSpec)

Price = 1.3785e-07

Delta = 1.1438e-07

Gamma = 9.0830e-08

 asiansensbyhhm

11-57



Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for underlying asset, specified using StockSpec obtained from stockspec. For
information on the stock specification, see stockspec.

stockspec can handle other types of underlying assets. For example, stocks, stock indices, and
commodities. If dividends are not specified in StockSpec, dividends are assumed to be 0.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put' | string array with values "call" or "put"

Definition of option, specified as 'call' or 'put' using a character vector, cell array of character
vectors, or string array.
Data Types: char | cell | string

Strike — Option strike price value
nonnegative integer | vector of nonnegative integers

Option strike price value, specified with a nonnegative integer using a NINST-by-1 vector of strike
price values.
Data Types: double

Settle — Settlement dates or trade dates
serial date number | date character vector | datetime | string array

Settlement date or trade date for the Asian option, specified as a NINST-by-1 vector using serial date
numbers, date character vectors, datetimes, or string arrays.
Data Types: double | char | datetime | string

ExerciseDates — European option exercise dates
serial date number | date character vector | datetime | string array

European option exercise dates, specified as a NINST-by-1 vector using serial date numbers, date
character vectors, datetimes, or string arrays.

Note For a European option, there is only one ExerciseDates on the option expiry date.

Data Types: double | char | datetime | string
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: PriceSens =
asiansensbyhhm(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates,'OutSpe
c',{'All'},'NumFixings',15)

OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma', 'Vega',
'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with values 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All' | string array with values
"Price", "Delta", "Gamma", "Vega", "Lambda", "Rho", "Theta", and "All"

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a NOUT- by-1 or
1-by-NOUT cell array of character vectors or string array with possible values of 'Price', 'Delta',
'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output is Delta, Gamma, Vega, Lambda, Rho, Theta, and
Price, in that order. This is the same as specifying OutSpec to include each sensitivity:
Example: OutSpec = {'delta','gamma','vega','lambda','rho','theta','price'}
Data Types: char | cell | string

AvgPrice — Average price of underlying asset at the Settle date
vector

Average price of underlying asset at the Settle date, specified as the comma-separated pair
consisting of 'AvgPrice' and a NINST-by-1 vector.

Note Use the AvgPrice argument when AvgDate < Settle.

Data Types: double

AvgDate — Date averaging period begins
character vector | serial date number | datetime | string array

Date averaging period begins, specified as the comma-separated pair consisting of 'AvgDate' and a
NINST-by-1 vector using character vectors, serial date numbers, datetimes, or string arrays.
Data Types: char | double | datetime | string

NumFixings — Total number of fixings or averaging points
10 (default) | vector

Total number of fixings or averaging points, specified as the comma-separated pair consisting of
'NumFixings' and a NINST-by-1 vector.
Data Types: double
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Output Arguments
PriceSens — Expected prices or sensitivities for fixed Asian options
vector

Expected prices or sensitivities for fixed Asian options, returned as a NINST-by-1 vector. asianbyhhm
calculates prices of European arithmetic fixed (average price) Asian options with discretely
monitoring.

More About
Asian Option

An Asian option is a path-dependent option with a payoff linked to the average value of the underlying
asset during the life (or some part of the life) of the option.

Asian options are similar to lookback options in that there are two types of Asian options: fixed
(average price option) and floating (average strike option). Fixed Asian options have a specified
strike, while floating Asian options have a strike equal to the average value of the underlying asset
over the life of the option. For more information, see “Asian Option” on page 3-34.

References
[1] Haug, E. G. The Complete Guide to Option Pricing Formulas. McGraw-Hill Education, 2007.

See Also
asianbyhhm | asianbytw | asianbykv | asianbyls | stockspec | intenvset | asianbycrr |
asianbylevy

Topics
“Pricing Asian Options” on page 3-110
“Asian Option” on page 3-34
“Supported Equity Derivative Functions” on page 3-19

External Websites
How to Price Asian Options Efficiently Using MATLAB (4 min 37 sec)

Introduced in R2018a
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asianbytw
Price European arithmetic fixed Asian options using Turnbull-Wakeman model

Syntax
Price = asianbytw(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates)
Price = asianbytw( ___ ,Name,Value)

Description
Price = asianbytw(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates)
prices European arithmetic fixed Asian options using the Turnbull-Wakeman model.

Price = asianbytw( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Price an Asian Option with Averaging Period Before the Settle Date

Define the Asian option parameters.

AssetPrice = 100;
Strike = 95;
Rates = 0.1;
Sigma = 0.15;
Settle = 'Apr-1-2013';
Maturity = 'Oct-1-2013';

Create a RateSpec using the intenvset function.

 RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates', ...
 Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', 1);

Create a StockSpec for the underlying asset using the stockspec function.

DividendType = 'Continuous';
DividendAmounts = 0.05;

StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts);

Calculate the price of the Asian option using the Turnbull-Wakeman approximation. Assume that the
averaging period has started before the Settle date.

OptSpec = 'Call';
ExerciseDates = 'Oct-1-2013';
AvgDate = 'Jan-1-2013';
AvgPrice = 100;

Price = asianbytw(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates, ...
'AvgDate',AvgDate,'AvgPrice',AvgPrice)

Price = 5.6731
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Price an Asian Option with Averaging Period After the Settle Date

Define the Asian option parameters.

AssetPrice = 100;
Strike = 95;
Rates = 0.1;
Sigma = 0.15;
Settle = 'Apr-1-2013';
Maturity = 'Oct-1-2013';

Create a RateSpec using the intenvset function.

 RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates', ...
 Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', 1);

Create a StockSpec for the underlying asset using the stockspec function.

DividendType = 'Continuous';
DividendAmounts = 0.05;

StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts);

Calculate the price of the Asian option using the Turnbull-Wakeman approximation. Assume that the
averaging period starts after the Settle date.

OptSpec = 'Call';
ExerciseDates = 'Oct-1-2013';
AvgDate = 'Jan-1-2013';

Price = asianbytw(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates, ...
'AvgDate',AvgDate)

Price = 1.0774e-08

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for underlying asset, specified using StockSpec obtained from stockspec. For
information on the stock specification, see stockspec.

stockspec can handle other types of underlying assets. For example, stocks, stock indices, and
commodities. If dividends are not specified in StockSpec, dividends are assumed to be 0.
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Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put' | string array with values "call" or "put"

Definition of option, specified as 'call' or 'put' using a character vector, cell array of character
vectors, or string array.
Data Types: char | cell | string

Strike — Option strike price value
nonnegative integer | vector of nonnegative integer

Option strike price value, specified with a nonnegative integer using a NINST-by-1 vector of strike
price values.
Data Types: double

Settle — Settlement dates or trade dates
serial date number | date character vector | datetime | string array

Settlement date or trade date for the Asian option, specified as a NINST-by-1 vector using serial date
numbers, date character vectors, datetimes, or string arrays.
Data Types: double | char | datetime | string

ExerciseDates — European option exercise dates
serial date number | date character vector | datetime | string array

European option exercise dates, specified as a NINST-by-1 vector using serial date numbers, date
character vectors, datetimes, or string arrays.

Note For a European option, there is only one ExerciseDates on the option expiry date.

Data Types: double | char | datetime | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Price =
asianbytw(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates,'AvgPrice',1
500)

AvgPrice — Average price of underlying asset at the Settle date
vector

Average price of underlying asset at the Settle date, specified as the comma-separated pair
consisting of 'AvgPrice' and a NINST-by-1 vector.
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Note Use the AvgPrice argument when AvgDate < Settle.

Data Types: double

AvgDate — Date averaging period begins
serial date number | date character vector | datetime | string array

Date averaging period begins, specified as the comma-separated pair consisting of 'AvgDate' and a
NINST-by-1 vector using serial date numbers, date character vectors, datetimes, or string arrays.
Data Types: char | double | datetime | string

Output Arguments
Price — Expected prices for fixed Asian options
vector

Expected prices for Asian options, returned as a NINST-by-1 vector.

More About
Asian Option

An Asian option is a path-dependent option with a payoff linked to the average value of the underlying
asset during the life (or some part of the life) of the option.

Asian options are similar to lookback options in that there are two types of Asian options: fixed
(average price option) and floating (average strike option). Fixed Asian options have a specified
strike, while floating Asian options have a strike equal to the average value of the underlying asset
over the life of the option. For more information, see “Asian Option” on page 3-34.

References
[1] Turnbull, S. M. and L. M. Wakeman. "A Quick Algorithm for Pricing European Average

Options."Journal of Financial and Quantitative Analysis Vol. 26(3).1991, pp. 377-389.

See Also
asiansensbytw | asianbyhhm | asianbykv | asianbyls | stockspec | intenvset | asianbycrr
| asianbylevy

Topics
“Pricing Asian Options” on page 3-110
“Asian Option” on page 3-34
“Supported Equity Derivative Functions” on page 3-19
“Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument Objects” on
page 1-82

External Websites
How to Price Asian Options Efficiently Using MATLAB (4 min 37 sec)
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Introduced in R2018a
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asiansensbytw
Calculate price and sensitivities of European fixed arithmetic Asian options using Turnbull-Wakeman
model

Syntax
PriceSens = asiansensbytw(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates)
PriceSens = asiansensbytw( ___ ,Name,Value)

Description
PriceSens = asiansensbytw(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates) calculates prices and sensitivities for European fixed arithmetic Asian options
using the Turnbull-Wakeman model.

PriceSens = asiansensbytw( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Compute Price and Sensitivities for Asian Option with Averaging Period Before the Settle
Date

Define the Asian option parameters.

AssetPrice = 100;
Strike = 95;
Rates = 0.1;
Sigma = 0.15;
Settle = 'Apr-1-2013';
Maturity = 'Oct-1-2013';

Create a RateSpec using the intenvset function.

 RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates', ...
 Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', 1);

Create a StockSpec for the underlying asset using the stockspec function.

DividendType = 'Continuous';
DividendAmounts = 0.05;

StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts);

Calculate the price and sensitivities of the Asian option using the Turnbull-Wakeman approximation.
Assume that the averaging period has started before the Settle date.

OptSpec = 'Call';
ExerciseDates = 'Oct-1-2013';
AvgDate = 'Jan-1-2013';
AvgPrice = 100;
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OutSpec = {'Price','Delta','Gamma'};

[Price,Delta,Gamma] = asiansensbytw(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates, ...
'AvgDate',AvgDate,'AvgPrice',AvgPrice,'OutSpec',OutSpec)

Price = 5.6731

Delta = 0.5995

Gamma = 0.0135

Compute Price and Sensitivities for Asian Option with Averaging Period After the Settle
Date

Define the Asian option parameters.

AssetPrice = 100;
Strike = 95;
Rates = 0.1;
Sigma = 0.15;
Settle = 'Apr-1-2013';
Maturity = 'Oct-1-2013';

Create a RateSpec using the intenvset function.

 RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates', ...
 Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', 1);

Create a StockSpec for the underlying asset using the stockspec function.

DividendType = 'Continuous';
DividendAmounts = 0.05;

StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts);

Calculate the price and sensitivities of the Asian option using the Turnbull-Wakeman approximation.
Assume that the averaging period starts after the Settle date.

OptSpec = 'Call';
ExerciseDates = 'Oct-1-2013';
AvgDate = 'Jan-1-2013';
OutSpec = {'Price','Delta','Gamma'};

[Price,Delta,Gamma] = asiansensbytw(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates, ...
'AvgDate',AvgDate,'OutSpec',OutSpec)

Price = 1.0774e-08

Delta = 1.0380e-08

Gamma = 9.6246e-09
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Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for underlying asset, specified using StockSpec obtained from stockspec. For
information on the stock specification, see stockspec.

stockspec can handle other types of underlying assets. For example, stocks, stock indices, and
commodities. If dividends are not specified in StockSpec, dividends are assumed to be 0.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put' | string array with values "call" or "put"

Definition of option, specified as 'call' or 'put' using a character vector, cell array of character
vectors, or string array.
Data Types: char | cell | string

Strike — Option strike price value
nonnegative integer | vector of nonnegative integers

Option strike price value, specified with a nonnegative integer using a NINST-by-1 vector of strike
price values.
Data Types: double

Settle — Settlement dates or trade dates
serial date number | date character vector | datetime | string array

Settlement date or trade date for the Asian option, specified as a NINST-by-1 vector using serial date
numbers, date character vectors, datetimes, or string arrays.
Data Types: double | char

ExerciseDates — European option exercise dates
serial date number | date character vector | datetime | string array

European option exercise dates, specified as a NINST-by-1 vector using serial date numbers, date
character vectors, datetimes, or string arrays.

Note For a European option, there is only one ExerciseDates on the option expiry date.

Data Types: double | char | datetime | string
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: PriceSens =
asiansensbytw(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates,'OutSpec
',{'All'})

OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma', 'Vega',
'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with values 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All' | string array with values
"Price", "Delta", "Gamma", "Vega", "Lambda", "Rho", "Theta", and "All"

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a NOUT- by-1 or
1-by-NOUT cell array of character vectors or string array with possible values of 'Price', 'Delta',
'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output is Delta, Gamma, Vega, Lambda, Rho, Theta, and
Price, in that order. This is the same as specifying OutSpec to include each sensitivity:
Example: OutSpec = {'delta','gamma','vega','lambda','rho','theta','price'}
Data Types: char | cell | string

AvgPrice — Average price of underlying asset at the Settle date
vector

Average price of underlying asset at the Settle date, specified as the comma-separated pair
consisting of 'AvgPrice' and a NINST-by-1 vector.

Note Use the AvgPrice argument when AvgDate < Settle.

Data Types: double

AvgDate — Date averaging period begins
serial date number | date character vector | datetime | string array

Date averaging period begins, specified as the comma-separated pair consisting of 'AvgDate' and a
NINST-by-1 vector using serial date numbers, date character vectors, datetimes, or string arrays.
Data Types: char | double | datetime | string

Output Arguments
PriceSens — Expected prices or sensitivities for fixed Asian options
vector

Expected prices or sensitivities for fixed Asian options, returned as a NINST-by-1 vector.
asiansensbytw calculates prices of European arithmetic fixed (average price) Asian options.
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More About
Asian Option

An Asian option is a path-dependent option with a payoff linked to the average value of the underlying
asset during the life (or some part of the life) of the option.

Asian options are similar to lookback options in that there are two types of Asian options: fixed
(average price option) and floating (average strike option). Fixed Asian options have a specified
strike, while floating Asian options have a strike equal to the average value of the underlying asset
over the life of the option. For more information, see “Asian Option” on page 3-34.

References
[1] Turnbull, S. M. and L. M. Wakeman. "A Quick Algorithm for Pricing European Average

Options."Journal of Financial and Quantitative Analysis Vol. 26(3).1991, pp. 377-389.

See Also
asianbyhhm | asianbytw | asianbykv | asianbyls | stockspec | intenvset | asianbycrr |
asianbylevy

Topics
“Pricing Asian Options” on page 3-110
“Asian Option” on page 3-34
“Supported Equity Derivative Functions” on page 3-19

External Websites
How to Price Asian Options Efficiently Using MATLAB (4 min 37 sec)

Introduced in R2018a
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assetbybls
Determine price of asset-or-nothing digital options using Black-Scholes model

Syntax
Price = assetbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike)

Description
Price = assetbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike) computes
asset-or-nothing European digital options using the Black-Scholes option pricing model.

Examples

Compute Asset-Or-Nothing Digital Option Prices Using the Black-Scholes Option Pricing
Model

Consider two asset-or-nothing put options on a nondividend paying stock with a strike of 95 and 93
and expiring on January 30, 2009. On November 3, 2008 the stock is trading at 97.50. Using this
data, calculate the price of the asset-or-nothing put options if the risk-free rate is 4.5% and the
volatility is 22%. First, create the RateSpec.

Settle = 'Nov-3-2008';
Maturity = 'Jan-30-2009';
Rates = 0.045;
Compounding = -1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9893
            Rates: 0.0450
         EndTimes: 0.2391
       StartTimes: 0
         EndDates: 733803
       StartDates: 733715
    ValuationDate: 733715
            Basis: 0
     EndMonthRule: 1

Define the StockSpec.

AssetPrice = 97.50;
Sigma = .22;
StockSpec = stockspec(Sigma, AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
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              Sigma: 0.2200
         AssetPrice: 97.5000
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Define the put options.

OptSpec = {'put'};
Strike = [95;93];

Calculate the price.

Paon = assetbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)

Paon = 2×1

   33.7666
   26.9662

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification, see
stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities the
price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is
StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement or trade date
serial date number | date character vector

Settlement or trade date for the basket option, specified as an NINST-by-1 vector of serial date
numbers or date character vectors.
Data Types: double | char | cell

Maturity — Maturity date
serial date number | date character vector

Maturity date for the basket option, specified as an NINST-by-1 vector of serial date numbers or date
character vectors.
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Data Types: double | char | cell

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors with values 'call'
or 'put'

Definition of the option as 'call' or 'put', specified as an NINST-by-1 vector.
Data Types: char | cell

Strike — Pay-off strike value
vector

Pay-off strike value, specified as an NINST-by-1 vector.
Data Types: double

Output Arguments
Price — Expected prices for asset-or-nothing option
vector

Expected prices for asset-or-nothing option, returned as a NINST-by-1 vector.

See Also
assetsensbybls | cashbybls | gapbybls | supersharebybls

Topics
“Pricing Using the Black-Scholes Model” on page 3-82
“Digital Option” on page 3-26
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2009a
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assetsensbybls
Determine price or sensitivities of asset-or-nothing digital options using Black-Scholes model

Syntax
PriceSens = assetsensbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike)
PriceSens = assetsensbybls( ___ ,Name,Value)

Description
PriceSens = assetsensbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike)
computes asset-or-nothing European digital options or sensitivities using the Black-Scholes option
pricing model.

PriceSens = assetsensbybls( ___ ,Name,Value) specifies options using one or more name-
value pair arguments in addition to the input arguments in the previous syntax.

Examples

Compute Asset-Or-Nothing Digital Option Prices and Sensitivities Using the Black-Scholes
Option Pricing Model

Consider two asset-or-nothing put options on a nondividend paying stock with a strike of 95 and 93
and expiring on January 30, 2009. On November 3, 2008 the stock is trading at 97.50. Using this
data, calculate the price and sensitivity of the asset-or-nothing put options if the risk-free rate is 4.5%
and the volatility is 22%. First, create the RateSpec.

Settle = 'Nov-3-2008';
Maturity = 'Jan-30-2009';
Rates = 0.045;
Compounding = -1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9893
            Rates: 0.0450
         EndTimes: 0.2391
       StartTimes: 0
         EndDates: 733803
       StartDates: 733715
    ValuationDate: 733715
            Basis: 0
     EndMonthRule: 1

Define the StockSpec.
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AssetPrice = 97.50;
Sigma = .22;
StockSpec = stockspec(Sigma, AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2200
         AssetPrice: 97.5000
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Define the put options.

OptSpec = {'put'};
Strike = [95;93];

Calculate the delta, price, and gamma.

OutSpec = { 'delta';'price';'gamma'};
[Delta, Price, Gamma] = assetsensbybls(RateSpec, StockSpec, Settle,...
Maturity, OptSpec, Strike, 'OutSpec', OutSpec)

Delta = 2×1

   -3.0833
   -2.8337

Price = 2×1

   33.7666
   26.9662

Gamma = 2×1

    0.0941
    0.1439

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification, see
stockspec.
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stockspec handles several types of underlying assets. For example, for physical commodities the
price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is
StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement or trade date
serial date number | date character vector

Settlement or trade date for the basket option, specified as an NINST-by-1 vector of serial date
numbers or date character vectors.
Data Types: double | char | cell

Maturity — Maturity date
serial date number | date character vector

Maturity date for the basket option, specified as an NINST-by-1 vector of serial date numbers or date
character vectors.
Data Types: double | char | cell

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors with values 'call'
or 'put'

Definition of the option as 'call' or 'put', specified as an NINST-by-1 vector.
Data Types: char | cell

Strike — Pay-off strike value
vector

Pay-off strike value, specified as an NINST-by-1 vector.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Gamma,Delta] =
assetsensbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,'OutSpec',
{'gamma'; 'delta'})

OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma', 'Vega',
'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with values 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a NOUT- by-1 or
a 1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.
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OutSpec = {'All'} specifies that the output is Delta, Gamma, Vega, Lambda, Rho, Theta, and
Price, in that order. This is the same as specifying OutSpec to include each sensitivity.
Example: OutSpec = {'delta','gamma','vega','lambda','rho','theta','price'}
Data Types: char | cell

Output Arguments
PriceSens — Expected prices or sensitivities for asset-or-nothing option
vector

Expected prices or sensitivities (defined using OutSpec) for asset-or-nothing option, returned as a
NINST-by-1 vector.

See Also
assetbybls | cashbybls | gapbybls | supersharebybls

Topics
“Pricing Using the Black-Scholes Model” on page 3-82
“Digital Option” on page 3-26
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2009a
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barrierbycrr
Price barrier option from Cox-Ross-Rubinstein binomial tree

Syntax
[Price,PriceTree] = barrierbycrr(CRRTree,OptSpec,Strike,Settle,AmericanOpt,
ExerciseDates,BarrierSpec,Barrier)
[Price,PriceTree] = barrierbycrr( ___ ,Rebate,Options)

Description
[Price,PriceTree] = barrierbycrr(CRRTree,OptSpec,Strike,Settle,AmericanOpt,
ExerciseDates,BarrierSpec,Barrier) calculates prices for barrier options using a Cox-Ross-
Rubinstein binomial tree.

[Price,PriceTree] = barrierbycrr( ___ ,Rebate,Options) adds optional arguments for
Rebate and Options.

Examples

Price a Barrier Option Using a CRR Binomial Tree

This example shows how to price a barrier option using a CRR binomial tree by loading the file
deriv.mat, which provides CRRTree. The CRRTree structure contains the stock specification and time
information needed to price the option.

load deriv.mat;

OptSpec = 'Call';
Strike = 105;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2006';
AmericanOpt = 1;
BarrierSpec = 'UI';
Barrier = 102;

Price = barrierbycrr(CRRTree, OptSpec, Strike, Settle, ... 
ExerciseDates, AmericanOpt, BarrierSpec, Barrier)

Price = 12.1272

Input Arguments
CRRTree — Stock tree structure
structure

Stock tree structure, specified by using crrtree.
Data Types: struct
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OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors with values 'call'
or 'put'

Definition of an option as 'call' or 'put', specified as a NINST-by-1 cell array of character vector
values.
Data Types: char | cell

Strike — Option strike price value
integer

Option strike price value for a European or an American Option, specified as NINST-by-1 matrix of
integers. Each row is the schedule for one option.
Data Types: double

Settle — Settlement or trade date
serial date number | date character vector

Settlement or trade date for the barrier option, specified as a NINST-by-1 matrix of serial date
numbers or date character vectors. The Settle date for every barrier is set to the ValuationDate
of the stock tree. The barrier argument Settle is ignored.
Data Types: double | char

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a serial date number or a date character vector:

• For a European option, use a 1-by-1 matrix of dates. Each row is the schedule for one option. For a
European option, there is only one ExerciseDates on the option expiry date which is the
maturity of the instrument.

• For an American option, use a 1-by-2 vector of exercise date boundaries. The option can be
exercised on any date between or including the pair of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is a NINST-by-1, the option can be exercised between
ValuationDate of the stock tree and the single listed date in ExerciseDates.

Data Types: double | char

AmericanOpt — Option type
Option type values 0 or 1

Option type, specified as NINST-by-1 matrix of integer flags with values:

• 0 — European
• 1 — American

Data Types: double

BarrierSpec — Barrier option type
character vector with values: 'UI', 'UO', 'DI', 'DO' | cell array of character vectors with values:
'UI', 'UO', 'DI', 'DO'
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Barrier option type, specified as a character vector or an NINST-by-1 cell array of character vectors
with the following values:

• 'UI' — Up Knock-in

This option becomes effective when the price of the underlying asset passes above the barrier
level. It gives the option holder the right, but not the obligation, to buy or sell (call/put) the
underlying security at the strike price if the underlying asset goes above the barrier level during
the life of the option.

• 'UO' — Up Knock-out

This option gives the option holder the right, but not the obligation, to buy/sell (call/put) the
underlying security at the strike price as long as the underlying asset does not go above the
barrier level during the life of the option. This option terminates when the price of the underlying
asset passes above the barrier level. Usually, with an up-and-out option, the rebate is paid if the
spot price of the underlying reaches or exceeds the barrier level.

• 'DI' — Down Knock-in

This option becomes effective when the price of the underlying stock passes below the barrier
level. It gives the option holder the right, but not the obligation, to buy or sell (call/put) the
underlying security at the strike price if the underlying security goes below the barrier level
during the life of the option. With a down-and-in option, the rebate is paid if the spot price of the
underlying does not reach the barrier level during the life of the option. Note, barrierbyfd does
not support American knock-in barrier options.

• 'DO' — Down Knock-up

This option gives the option holder the right, but not the obligation, to buy or sell (call/put) the
underlying asset at the strike price as long as the underlying asset does not go below the barrier
level during the life of the option. This option terminates when the price of the underlying security
passes below the barrier level. Usually the option holder receives a rebate amount if the option
expires worthless.

Option Barrier Type Payoff if Barrier Crossed Payoff if Barrier not
Crossed

Call/Put Down Knock-out Worthless Standard Call/Put
Call/Put Down Knock-in Call/Put Worthless
Call/Put Up Knock-out Worthless Standard Call/Put
Call/Put Up Knock-in Standard Call/Put Worthless

Data Types: char | cell

Barrier — Barrier level
numeric

Barrier level, specified as a NINST-by-1 matrix of numeric values.
Data Types: double

Rebate — Rebate value
0 (default) | numeric
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(Optional) Rebate value, specified as a NINST-by-1 matrix of numeric values. For Knock-in options,
the Rebate is paid at expiry. For Knock-out options, the Rebate is paid when the Barrier is
reached.
Data Types: double

Options — Derivatives pricing options
structure

(Optional) Derivatives pricing options, specified as structure that is created with derivset.
Data Types: struct

Output Arguments
Price — Expected prices for barrier options at time 0
matrix

Expected prices for barrier options at time 0, returned as a NINST-by-1 matrix.

PriceTree — Structure with vector of barrier option prices at each node
tree structure

Structure with a vector of barrier option prices at each node, returned as a tree structure.

PriceTree is a MATLAB structure of trees containing vectors of instrument prices and a vector of
observation times for each node.

PriceTree.PTree contains the prices.

PriceTree.tObs contains the observation times.

PriceTree.dObs contains the observation dates.

More About
Barrier Option

A Barrier option has not only a strike price but also a barrier level and sometimes a rebate.

A rebate is a fixed amount that is paid if the option cannot be exercised because the barrier level has
been reached or not reached. The payoff for this type of option depends on whether the underlying
asset crosses the predetermined trigger value (barrier level), indicated by Barrier, during the life of
the option. For more information, see “Barrier Option” on page 3-20.

References
[1] Derman, E., I. Kani, D. Ergener and I. Bardhan. “Enhanced Numerical Methods for Options with

Barriers.” Financial Analysts Journal. (Nov.-Dec.), 1995, pp. 65–74.

See Also
crrtree | instbarrier
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Topics
“Computing Prices Using CRR” on page 3-65
“Graphical Representation of Equity Derivative Trees” on page 3-73
“Pricing European Call Options Using Different Equity Models” on page 3-88
“Barrier Option” on page 3-20
“Pricing Options Structure” on page A-2
“Supported Equity Derivative Functions” on page 3-19
“Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument Objects” on
page 1-82

Introduced before R2006a
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barrierbyeqp
Price barrier option from Equal Probabilities binomial tree

Syntax
[Price,PriceTree] = barrierbyeqp(EQPTree,OptSpec,Strike,Settle,AmericanOpt,
ExerciseDates,BarrierSpec,Barrier)
[Price,PriceTree] = barrierbyeqp( ___ ,Rebate,Options)

Description
[Price,PriceTree] = barrierbyeqp(EQPTree,OptSpec,Strike,Settle,AmericanOpt,
ExerciseDates,BarrierSpec,Barrier) calculates prices for barrier options using an Equal
Probabilities binomial tree.

[Price,PriceTree] = barrierbyeqp( ___ ,Rebate,Options) adds optional arguments for
Rebate and Options.

Examples

Price a Barrier Option Using an EQP Equity Tree

This example shows how to price a barrier option using an EQP equity tree by loading the file
deriv.mat, which provides EQPTree. The EQPTree structure contains the stock specification and
time information needed to price the option.

load deriv.mat;

OptSpec = 'Call';
Strike = 105;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2006';
AmericanOpt = 1;
BarrierSpec = 'UI';
Barrier = 102;

Price = barrierbyeqp(EQPTree, OptSpec, Strike, Settle, ... 
ExerciseDates, AmericanOpt, BarrierSpec, Barrier)

Price = 12.2632

Input Arguments
EQPTree — Stock tree structure
structure

Stock tree structure, specified by using eqptree.
Data Types: struct
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OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors with values 'call'
or 'put'

Definition of an option as 'call' or 'put', specified as a NINST-by-1 cell array of character vector
values.
Data Types: char | cell

Strike — Option strike price value
numeric

Option strike price value for a European or an American Option, specified as NINST-by-1 matrix of
numeric values. Each row is the schedule for one option.
Data Types: double

Settle — Settlement or trade date
serial date number | date character vector

Settlement or trade date for the barrier option, specified as a NINST-by-1 matrix of serial date
numbers or date character vectors. The Settle date for every barrier is set to the ValuationDate
of the stock tree. The barrier argument Settle is ignored.
Data Types: double | char

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a serial date number or a date character vector:

• For a European option, use a 1-by-1 matrix of dates. Each row is the schedule for one option. For a
European option, there is only one ExerciseDates on the option expiry date which is the
maturity of the instrument.

• For an American option, use a 1-by-2 vector of exercise date boundaries. The option can be
exercised on any date between or including the pair of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is a NINST-by-1, the option can be exercised between
ValuationDate of the stock tree and the single listed date in ExerciseDates.

Data Types: double | char

AmericanOpt — Option type
option type with values 0 or 1

Option type, specified as NINST-by-1 matrix of flags with values:

• 0 — European
• 1 — American

Data Types: double

BarrierSpec — Barrier option type
character vector with values: 'UI', 'UO', 'DI', 'DO' | cell array of character vectors with values:
'UI', 'UO', 'DI', 'DO'
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Barrier option type, specified as a character vector or an NINST-by-1 cell array of character vectors
with the following values:

• 'UI' — Up Knock-in

This option becomes effective when the price of the underlying asset passes above the barrier
level. It gives the option holder the right, but not the obligation, to buy or sell (call/put) the
underlying security at the strike price if the underlying asset goes above the barrier level during
the life of the option.

• 'UO' — Up Knock-out

This option gives the option holder the right, but not the obligation, to buy or sell (call/put) the
underlying security at the strike price as long as the underlying asset does not go above the
barrier level during the life of the option. This option terminates when the price of the underlying
asset passes above the barrier level. Usually, with an up-and-out option, the rebate is paid if the
spot price of the underlying reaches or exceeds the barrier level.

• 'DI' — Down Knock-in

This option becomes effective when the price of the underlying stock passes below the barrier
level. It gives the option holder the right, but not the obligation, to buy or sell (call/put) the
underlying security at the strike price if the underlying security goes below the barrier level
during the life of the option. With a down-and-in option, the rebate is paid if the spot price of the
underlying does not reach the barrier level during the life of the option. Note, barrierbyfd does
not support American knock-in barrier options.

• 'DO' — Down Knock-up

This option gives the option holder the right, but not the obligation, to buy or sell (call/put) the
underlying asset at the strike price as long as the underlying asset does not go below the barrier
level during the life of the option. This option terminates when the price of the underlying security
passes below the barrier level. Usually the option holder receives a rebate amount if the option
expires worthless.

Option Barrier Type Payoff if Barrier Crossed Payoff if Barrier not
Crossed

Call/Put Down Knock-out Worthless Standard Call/Put
Call/Put Down Knock-in Call/Put Worthless
Call/Put Up Knock-out Worthless Standard Call/Put
Call/Put Up Knock-in Standard Call/Put Worthless

Data Types: char | cell

Barrier — Barrier level
numeric

Barrier level, specified as a NINST-by-1 matrix of numeric values.
Data Types: double

Rebate — Rebate value
0 (default) | numeric
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(Optional) Rebate value, specified as a NINST-by-1 matrix of numeric values. For Knock-in options,
the Rebate is paid at expiry. For Knock-out options, the Rebate is paid when the Barrier is
reached.
Data Types: double

Options — Derivatives pricing options
structure

(Optional) Derivatives pricing options, specified as a structure that is created with derivset.
Data Types: struct

Output Arguments
Price — Expected prices for barrier options at time 0
matrix

Expected prices for barrier options at time 0, returned as a NINST-by-1 matrix.

PriceTree — Structure with vector of barrier option prices at each node
tree structure

Structure with a vector of barrier option prices at each node, returned as a tree structure.

PriceTree is a MATLAB structure of trees containing vectors of instrument prices and a vector of
observation times for each node.

PriceTree.PTree contains the prices.

PriceTree.tObs contains the observation times.

PriceTree.dObs contains the observation dates.

More About
Barrier Option

A Barrier option has not only a strike price but also a barrier level and sometimes a rebate.

A rebate is a fixed amount that is paid if the option cannot be exercised because the barrier level has
been reached or not reached. The payoff for this type of option depends on whether the underlying
asset crosses the predetermined trigger value (barrier level), indicated by Barrier, during the life of
the option. For more information, see “Barrier Option” on page 3-20.

References
[1] Derman, E., I. Kani, D. Ergener and I. Bardhan. “Enhanced Numerical Methods for Options with

Barriers.” Financial Analysts Journal. (Nov.-Dec.), 1995, pp. 65–74.

See Also
eqptree | instbarrier
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Topics
“Computing Prices Using CRR” on page 3-65
“Graphical Representation of Equity Derivative Trees” on page 3-73
“Pricing European Call Options Using Different Equity Models” on page 3-88
“Barrier Option” on page 3-20
“Pricing Options Structure” on page A-2
“Supported Equity Derivative Functions” on page 3-19
“Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument Objects” on
page 1-82

Introduced before R2006a
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barrierbyfd
Calculate barrier option prices using finite difference method

Syntax
[Price,PriceGrid,AssetPrices,Times] = barrierbyfd(RateSpec,StockSpec,OptSpec,
Strike,Settle,ExerciseDates,BarrierSpec,Barrier)
[Price,PriceGrid,AssetPrices,Times] = barrierbyfd( ___ ,Name,Value)

Description
[Price,PriceGrid,AssetPrices,Times] = barrierbyfd(RateSpec,StockSpec,OptSpec,
Strike,Settle,ExerciseDates,BarrierSpec,Barrier) calculates European and American
barrier option prices on a single underlying asset using the finite difference method. barrierbyfd
assumes that the barrier is continuously monitored.

[Price,PriceGrid,AssetPrices,Times] = barrierbyfd( ___ ,Name,Value) adds optional
name-value pair arguments. barrierbyfd assumes that the barrier is continuously monitored.

Examples

Price a Barrier Down and Out Call Option Using Finite Difference Method

Create a RateSpec.

AssetPrice = 50;
Strike = 45;
Rate = 0.035;
Volatility = 0.30;
Settle = '01-Jan-2015';
Maturity = '01-Jan-2016';
Basis = 1;
 
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity,'Rates', Rate, 'Compounding', -1, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9656
            Rates: 0.0350
         EndTimes: 1
       StartTimes: 0
         EndDates: 736330
       StartDates: 735965
    ValuationDate: 735965
            Basis: 1
     EndMonthRule: 1

Create a StockSpec.
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StockSpec = stockspec(Volatility, AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3000
         AssetPrice: 50
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Calculate the price of a European Down and Out call option using Finite Difference.

Barrier = 40;
BarrierSpec = 'DO';
OptSpec = 'Call';
Price = barrierbyfd(RateSpec, StockSpec, OptSpec, Strike, Settle, Maturity,...
BarrierSpec, Barrier)

Price = 8.5020

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification, see
stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities the
price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is
StockSpec.DividendAmounts.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | string array with values 'call' or 'put'

Definition of an option as 'call' or 'put', specified as a character vector or string array with
values "call" or "put".
Data Types: char | string

Strike — Option strike price value
numeric

Option strike price value, specified as a scalar numeric.
Data Types: double
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Settle — Settlement or trade date
serial date number | date character vector | datetime object

Settlement or trade date for the barrier option, specified as a serial date number, a date character
vector, or a datetime object.
Data Types: double | char | datetime

ExerciseDates — Option exercise dates
date character vector | serial date number | datetime object

Option exercise dates, specified as a date character vector, a serial date number, or datetime object:

• For a European option, there is only one ExerciseDates on the option expiry date which is the
maturity of the instrument.

• For an American option, use a 1-by-2 vector of exercise date boundaries. The option can be
exercised on any date between or including the pair of dates on that row. If only one non-NaN date
is listed, the option can be exercised between Settle and the single listed date in
ExerciseDates.

Data Types: double | char | cell | datetime

BarrierSpec — Barrier option type
character vector with values: 'UI', 'UO', 'DI', 'DO'

Barrier option type, specified as a character vector with the following values:

• 'UI' — Up Knock-in

This option becomes effective when the price of the underlying asset passes above the barrier
level. It gives the option holder the right, but not the obligation, to buy or sell (call/put) the
underlying security at the strike price if the underlying asset goes above the barrier level during
the life of the option. Note, barrierbyfd does not support American knock-in barrier options.

• 'UO' — Up Knock-out

This option gives the option holder the right, but not the obligation, to buy or sell (call/put) the
underlying security at the strike price as long as the underlying asset does not go above the
barrier level during the life of the option. This option terminates when the price of the underlying
asset passes above the barrier level. Usually, with an up-and-out option, the rebate is paid if the
spot price of the underlying reaches or exceeds the barrier level.

• 'DI' — Down Knock-in

This option becomes effective when the price of the underlying stock passes below the barrier
level. It gives the option holder the right, but not the obligation, to buy or sell (call/put) the
underlying security at the strike price if the underlying security goes below the barrier level
during the life of the option. With a down-and-in option, the rebate is paid if the spot price of the
underlying does not reach the barrier level during the life of the option. Note, barrierbyfd does
not support American knock-in barrier options.

• 'DO' — Down Knock-up

This option gives the option holder the right, but not the obligation, to buy or sell (call/put) the
underlying asset at the strike price as long as the underlying asset does not go below the barrier
level during the life of the option. This option terminates when the price of the underlying security
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passes below the barrier level. Usually the option holder receives a rebate amount if the option
expires worthless.

Option Barrier Type Payoff if Barrier Crossed Payoff if Barrier not
Crossed

Call/Put Down Knock-out Worthless Standard Call/Put
Call/Put Down Knock-in Call/Put Worthless
Call/Put Up Knock-out Worthless Standard Call/Put
Call/Put Up Knock-in Standard Call/Put Worthless

Data Types: char

Barrier — Barrier level
numeric

Barrier level, specified as a scalar numeric value.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Price =
barrierbyfd(RateSpec,StockSpec,OptSpec,Strike,Settle,Maturity,BarrierSpec,Bar
rier,Rebate,1000)

Rebate — Rebate value
0 (default) | numeric

Rebate value, specified as the comma-separated pair consisting of 'Rebate' and a scalar numeric.
For Knock-in options, the Rebate is paid at expiry. For Knock-out options, the Rebate is paid when
the Barrier is reached.
Data Types: double

AssetGridSize — Size of asset grid used for a finite difference grid
400 (default) | positive numeric

Size of the asset grid used for finite difference grid, specified as the comma-separated pair consisting
of 'AssetGridSize' and a scalar positive numeric.
Data Types: double

TimeGridSize — Size of time grid used for finite difference grid
100 (default) | positive numeric

Size of the time grid used for the finite difference grid, specified as the comma-separated pair
consisting of 'TimeGridSize' and a scalar positive numeric.
Data Types: double
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AmericanOpt — Option type
0 European (default) | integer with values 0 or 1

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and a scalar flag
with one of the following values:

• 0 — European
• 1 — American

Data Types: logical

Output Arguments
Price — Expected prices for barrier options
matrix

Expected prices for barrier options, returned as a NINST-by-1 matrix.

PriceGrid — Grid containing prices calculated by finite difference method
grid

Grid containing prices calculated by the finite difference method, returned as a grid that is two-
dimensional with size PriceGridSize*length(Times). The number of columns does not have to
be equal to the TimeGridSize, because ex-dividend dates in the StockSpec are added to the time
grid. The price for t = 0 is contained in PriceGrid(:, end).

AssetPrices — Prices of asset defined by StockSpec
vector

Prices of the asset defined by the StockSpec corresponding to the first dimension of PriceGrid,
returned as a vector.

Times — Times corresponding to second dimension of PriceGrid
vector

Times corresponding to the second dimension of the PriceGrid, returned as a vector.

More About
Barrier Option

A Barrier option has not only a strike price but also a barrier level and sometimes a rebate.

A rebate is a fixed amount that is paid if the option cannot be exercised because the barrier level has
been reached or not reached. The payoff for this type of option depends on whether the underlying
asset crosses the predetermined trigger value (barrier level), indicated by Barrier, during the life of
the option. For more information, see “Barrier Option” on page 3-20.

References
[1] Hull, J. Options, Futures, and Other Derivatives. Fourth Edition. Prentice Hall. 2000, pp. 646–649.
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[2] Aitsahlia, F., L. Imhof, and T.L. Lai. “Pricing and hedging of American knock-in options.” The
Journal of Derivatives. Vol. 11.3, 2004, pp. 44–50.

[3] Rubinstein M. and E. Reiner. “Breaking down the barriers.” Risk. Vol. 4(8), 1991, pp. 28–35.

See Also
barriersensbyfd | barrierbybls | barriersensbybls | barrierbyls | barriersensbyls

Topics
“Barrier Option” on page 3-20
“Supported Equity Derivative Functions” on page 3-19
“Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument Objects” on
page 1-82

Introduced in R2016b
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barriersensbyfd
Calculate barrier option prices or sensitivities using finite difference method

Syntax
[PriceSens,PriceGrid,AssetPrices,Times] = barriersensbyfd(RateSpec,StockSpec,
OptSpec,Strike,Settle,ExerciseDates,BarrierSpec,Barrier)
[PriceSens,PriceGrid,AssetPrices,Times] = barriersensbyfd( ___ ,Name,Value)

Description
[PriceSens,PriceGrid,AssetPrices,Times] = barriersensbyfd(RateSpec,StockSpec,
OptSpec,Strike,Settle,ExerciseDates,BarrierSpec,Barrier) calculates European and
American barrier option prices or sensitivities of a single underlying asset using the finite difference
method. barrierbyfd assumes that the barrier is continuously monitored.

[PriceSens,PriceGrid,AssetPrices,Times] = barriersensbyfd( ___ ,Name,Value) adds
optional name-value pair arguments. barriersesbyfd assumes that the barrier is continuously
monitored.

Examples

Calculate Price and Sensitivities for a Barrier Down and Out Call Option Using Finite
Difference Method

Create a RateSpec.

AssetPrice = 50;
Strike = 45;
Rate = 0.035;
Volatility = 0.30;
Settle = '01-Jan-2015';
Maturity = '01-Jan-2016';
Basis = 1;
 
RateSpec = intenvset('ValuationDate',Settle,'StartDates',Settle,'EndDates',...
Maturity,'Rates',Rate,'Compounding',-1,'Basis',Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9656
            Rates: 0.0350
         EndTimes: 1
       StartTimes: 0
         EndDates: 736330
       StartDates: 735965
    ValuationDate: 735965
            Basis: 1
     EndMonthRule: 1
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Create a StockSpec.

StockSpec = stockspec(Volatility,AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3000
         AssetPrice: 50
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Calculate the Price, Delta, and Theta of a European Down and Out call option using the finite
difference method.

Barrier = 40;
BarrierSpec = 'DO';
OptSpec = 'Call';
OutSpec = {'price';'delta';'theta'};
[Price, Delta, Theta] = barriersensbyfd(RateSpec,StockSpec,OptSpec,Strike,Settle,...
Maturity, BarrierSpec,Barrier,'Outspec',OutSpec)

Price = 8.5020

Delta = 0.8569

Theta = -1.8502

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification, see
stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities the
price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is
StockSpec.DividendAmounts.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | string array with values 'call' or 'put'

Definition of an option as 'call' or 'put', specified as a character vector or string array with
values "call" or "put".
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Data Types: char | string

Strike — Option strike price value
numeric

Option strike price value, specified as a scalar numeric.
Data Types: double

Settle — Settlement or trade date
serial date number | date character vector | datetime object

Settlement or trade date for the barrier option, specified as a serial date number, a date character
vector, or a datetime object.
Data Types: double | char | datetime

ExerciseDates — Option exercise dates
serial date number | date character vector | datetime object

Option exercise dates, specified as a serial date number, a date character vector, or datetime object:

• For a European option, there is only one ExerciseDates on the option expiry date which is the
maturity of the instrument.

• For an American option, use a 1-by-2 vector of exercise date boundaries. The option can be
exercised on any date between or including the pair of dates on that row. If only one non-NaN date
is listed, the option can be exercised between Settle and the single listed date in
ExerciseDates.

Data Types: double | char | datetime

BarrierSpec — Barrier option type
character vector with values: 'UI', 'UO', 'DI', 'DO'

Barrier option type, specified as a character vector with the following values:

• 'UI' — Up Knock-in

This option becomes effective when the price of the underlying asset passes above the barrier
level. It gives the option holder the right, but not the obligation, to buy or sell (call/put) the
underlying security at the strike price if the underlying asset goes above the barrier level during
the life of the option. Note, barrierbyfd does not support American knock-in barrier options.

• 'UO' — Up Knock-out

This option gives the option holder the right, but not the obligation, to buy or sell (call/put) the
underlying security at the strike price as long as the underlying asset does not go above the
barrier level during the life of the option. This option terminates when the price of the underlying
asset passes above the barrier level. Usually, with an up-and-out option, the rebate is paid if the
spot price of the underlying reaches or exceeds the barrier level.

• 'DI' — Down Knock-in

This option becomes effective when the price of the underlying stock passes below the barrier
level. It gives the option holder the right, but not the obligation, to buy or sell (call/put) the
underlying security at the strike price if the underlying security goes below the barrier level
during the life of the option. With a down-and-in option, the rebate is paid if the spot price of the
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underlying does not reach the barrier level during the life of the option. Note, barrierbyfd does
not support American knock-in barrier options.

• 'DO' — Down Knock-up

This option gives the option holder the right, but not the obligation, to buy or sell (call/put) the
underlying asset at the strike price, as long as the underlying asset does not go below the barrier
level during the life of the option. This option terminates when the price of the underlying security
passes below the barrier level. Usually the option holder receives a rebate amount if the option
expires worthless.

Option Barrier Type Payoff if Barrier Crossed Payoff if Barrier not
Crossed

Call/Put Down Knock-out Worthless Standard Call/Put
Call/Put Down Knock-in Call/Put Worthless
Call/Put Up Knock-out Worthless Standard Call/Put
Call/Put Up Knock-in Standard Call/Put Worthless

Data Types: char

Barrier — Barrier level
numeric

Barrier level, specified as a scalar numeric.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: PriceSens =
barriersensbyfd(RateSpec,StockSpec,OptSpec,Strike,Settle,Maturity,BarrierSpec
,Barrier,Rebate,1000,AmericanOpt,1)

Rebate — Rebate value
0 (default) | numeric

Rebate value, specified as the comma-separated pair consisting of 'Rebate' and a scalar numeric.
For Knock-in options, the Rebate is paid at expiry. For Knock-out options, the Rebate is paid when
the Barrier is reached.
Data Types: double

OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma', 'Vega',
'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with values 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'
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Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a NOUT- by-1 or
a 1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output is Delta, Gamma, Vega, Lambda, Rho, Theta, and
Price, in that order. This is the same as specifying OutSpec to include each sensitivity.
Example: OutSpec = {'delta','gamma','vega','lambda','rho','theta','price'}
Data Types: char | cell

AssetGridSize — Size of asset grid used for finite difference grid
400 (default) | positive numeric

Size of the asset grid used for a finite difference grid, specified as the comma-separated pair
consisting of 'AssetGridSize' and a scalar positive numeric.
Data Types: double

TimeGridSize — Size of time grid used for finite difference grid
100 (default) | positive numeric

Size of the time grid used for a finite difference grid, specified as the comma-separated pair
consisting of 'TimeGridSize' and a scalar positive numeric.
Data Types: double

AmericanOpt — Option type
0 European (default) | integer with values 0 or 1

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and a scalar flag
with one of the following values:

• 0 — European
• 1 — American

Data Types: logical

Output Arguments
PriceSens — Expected prices or sensitivities values for barrier options
matrix

Expected prices or sensitivities (defined using OutSpec) for barrier options, returned as a NINST-
by-1 matrix.

PriceGrid — Grid containing prices calculated by finite difference method
grid

Grid containing prices calculated by the finite difference method, returned as a two-dimensional grid
with size PriceGridSize*length(Times). The number of columns does not have to be equal to
the TimeGridSize, because ex-dividend dates in the StockSpec are added to the time grid. The
price for t = 0 is contained in PriceGrid(:, end).

AssetPrices — Prices of the asset defined by StockSpec
vector
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Prices of the asset defined by the StockSpec corresponding to the first dimension of PriceGrid,
returned as a vector.

Times — Times corresponding to second dimension of PriceGrid
vector

Times corresponding to the second dimension of the PriceGrid, returned as a vector.

More About
Barrier Option

A Barrier option has not only a strike price but also a barrier level and sometimes a rebate.

A rebate is a fixed amount that is paid if the option cannot be exercised because the barrier level has
been reached or not reached. The payoff for this type of option depends on whether the underlying
asset crosses the predetermined trigger value (barrier level), indicated by Barrier, during the life of
the option. For more information, see “Barrier Option” on page 3-20.

References
[1] Hull, J. Options, Futures and Other Derivatives. Fourth Edition. Prentice Hall, 2000, pp. 646–649.

[2] Aitsahlia, F., L. Imhof, and T.L. Lai. “Pricing and hedging of American knock-in options.” The
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See Also
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“Barrier Option” on page 3-20
“Supported Equity Derivative Functions” on page 3-19
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dblbarrierbyfd
Calculate double barrier option price using finite difference method

Syntax
[Price,PriceGrid,AssetPrices,Times] = dblbarrierbyfd(RateSpec,StockSpec,
OptSpec,Strike,Settle,ExerciseDates,BarrierSpec,Barrier)
[Price,PriceGrid,AssetPrices,Times] = dblbarrierbyfd( ___ ,Name,Value)

Description
[Price,PriceGrid,AssetPrices,Times] = dblbarrierbyfd(RateSpec,StockSpec,
OptSpec,Strike,Settle,ExerciseDates,BarrierSpec,Barrier) calculates a European or
American call or put double barrier option price on a single underlying asset using the finite
difference method. dblbarrierbyfd assumes that the barrier is continuously monitored.

[Price,PriceGrid,AssetPrices,Times] = dblbarrierbyfd( ___ ,Name,Value) specifies
options using one or more name-value pair arguments in addition to the input arguments in the
previous syntax.

Examples

Price an American Double Knock-Out Call Option with Rebate

Compute the price of an American double barrier option for a double knock-out (down and out-up and
out) call option with a rebate using the following data:

Rate = 0.05;
Settle = '01-Jun-2018';
Maturity = '01-Dec-2018';
Basis = 1;

Define a RateSpec.

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates', Maturity,'Rates', Rate, 'Compounding', -1, 'Basis', Basis);

Define a StockSpec.

AssetPrice = 100; 
Volatility = 0.25;
StockSpec = stockspec(Volatility, AssetPrice);

Define the double barrier option.

LBarrier = 80; 
UBarrier = 130; 
Barrier = [UBarrier LBarrier];
BarrierSpec = 'DKO';
OptSpec = 'Call';
Strike = 110;
Rebate = 1;
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Compute the price of an American option using finite differences.

Price = dblbarrierbyfd(RateSpec, StockSpec, OptSpec, Strike, Settle, Maturity, BarrierSpec, Barrier,'Rebate', Rebate, 'AmericanOpt', 1)

Price = 4.0002

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset, specified by the StockSpec obtained from stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities the
price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is
StockSpec.DividendAmounts.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | string scalar with values "call" or "put"

Definition of an option, specified as a character vector with a value of 'call' or 'put', or a string
scalar with values "call" or "put".
Data Types: char | string

Strike — Option strike price value
scalar numeric

Option strike price value, specified as a scalar numeric.
Data Types: double

Settle — Settlement or trade date
date character vector | serial date number | datetime object

Settlement or trade date for the barrier option, specified as a serial date number, a date character
vector, or a datetime object.
Data Types: double | char | datetime

ExerciseDates — Option exercise dates
date character vector | serial date number | datetime object

Option exercise dates, specified as a date character vector, a serial date number, or datetime object.

• For a European option, the option expiry date has only one ExerciseDates value.
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• For an American option, use a 1-by-2 vector of exercise date boundaries. The option can be
exercised on any date between or including the pair of dates. If only one non-NaN date is listed,
the option can be exercised between Settle and the single listed date in ExerciseDates.

Data Types: double | char | cell | datetime

BarrierSpec — Double barrier option type
character vector with value of 'DKI' or 'DKO' | scalar string with value of "DKI" or "DKO"

Double barrier option type, specified as a character vector or string with one of the following values:

• 'DKI' — Double Knock-in

The 'DKI' option becomes effective when the price of the underlying asset reaches one of the
barriers. It gives the option holder the right but not the obligation to buy or sell the underlying
security at the strike price, if the underlying asset goes above or below the barrier levels during
the life of the option.

• 'DKO' — Double Knock-out

The 'DKO' option gives the option holder the right but not the obligation to buy or sell the
underlying security at the strike price, as long as the underlying asset remains between the
barrier levels during the life of the option. This option terminates when the price of the underlying
asset passes one of the barriers.

Option Barrier Type Payoff If Any Barrier
Crossed

Payoff If Barriers Not
Crossed

Call/Put Double Knock-in Standard Call/Put Worthless
Call/Put Double Knock-out Worthless Standard Call/Put

Data Types: char | string

Barrier — Barrier level
vector

Barrier level, specified as a 1-by-2 vector of numeric values, where the first column is the upper
barrier (1)(UB) and the second column is the lower barrier (2)(LB). Barrier(1) must be greater than
Barrier(2).
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Price =
dblbarrierbyfd(RateSpec,StockSpec,OptSpec,Strike,Settle,Maturity,BarrierSpec,
Barrier,'Rebate',[100,100])

Rebate — Rebate value
[0 0] for Double Knock-out or 0 for Double Knock-in (default) | vector | scalar numeric
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Rebate value, specified as the comma-separated pair consisting of 'Rebate' and one of the
following:

• For a Double Knock-out option, use a 1-by-2 vector of rebate values where the first column is the
payout if the upper barrier(1)(UB) is hit and the second column is payout if the lower barrier(2)
(LB) is hit. The rebate is paid when the barrier is reached.

• For a Double Knock-in option, use a scalar rebate value. The rebate is paid at expiry.

Data Types: double

AssetGridSize — Size of asset grid used for a finite difference grid
400 (default) | positive scalar numeric

Size of the asset grid used for the finite difference grid, specified as the comma-separated pair
consisting of 'AssetGridSize' and a positive scalar numeric.
Data Types: double

TimeGridSize — Size of time grid used for finite difference grid
100 (default) | positive scalar numeric

Size of the time grid used for the finite difference grid, specified as the comma-separated pair
consisting of 'TimeGridSize' and a positive scalar numeric.

Note The actual time grid may have a larger size because exercise and ex-dividend dates might be
added to the grid from StockSpec.

Data Types: double

AmericanOpt — Option type
0 European (default) | integer with values 0 or 1

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and a scalar flag
with one of the following values:

• 0 — European
• 1 — American

Data Types: logical

Output Arguments
Price — Expected prices for double barrier options
matrix

Expected prices for double barrier options, returned as a 1-by-1 matrix.

PriceGrid — Grid containing prices
grid

Grid containing prices calculated by the finite difference method, returned as a two-dimensional grid
with the size AssetGridSize*TimeGridSize. The number of columns does not have to be equal to
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the TimeGridSize, because exercise and ex-dividend dates in StockSpec are added to the time
grid. PriceGrid(:, end) contains the price for t = 0.

AssetPrices — Prices of asset defined by StockSpec
vector

Prices of the asset defined by the StockSpec corresponding to the first dimension of PriceGrid,
returned as a vector.

Times — Times corresponding to second dimension of PriceGrid
vector

Times corresponding to the second dimension of PriceGrid, returned as a vector.

More About
Double Barrier Option

A double barrier option is similar to the standard single barrier option except that it has two barrier
levels: a lower barrier (LB) and an upper barrier (UB).

The payoff for a double barrier option depends on whether the underlying asset remains between the
barrier levels during the life of the option. Double barrier options are less expensive than single
barrier options as they have a higher knock-out probability. Because of this, double barrier options
allow investors to reduce option premiums and match an investor’s belief about the future movement
of the underlying price process.
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Hall, 2000, pp. 646–649.

[3] Rubinstein, M., and E. Reiner. “Breaking Down the Barriers.” Risk. Vol. 4, Number 8, 1991, pp.
28–35.

[4] Zvan, R., P. A. Forsyth and K. R. Vetzal. “PDE Methods for Pricing Barrier Options.” Journal of
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See Also
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Topics
“Double Barrier Option” on page 3-21
“Supported Equity Derivative Functions” on page 3-19
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dblbarriersensbyfd
Calculate double barrier option price and sensitivities using finite difference method

Syntax
[PriceSens,PriceGrid,AssetPrices,Times] = dblbarriersensbyfd(RateSpec,
StockSpec,OptSpec,Strike,Settle,ExerciseDates,BarrierSpec,Barrier)
[PriceSens,PriceGrid,AssetPrices,Times] = dblbarriersensbyfd( ___ ,Name,Value)

Description
[PriceSens,PriceGrid,AssetPrices,Times] = dblbarriersensbyfd(RateSpec,
StockSpec,OptSpec,Strike,Settle,ExerciseDates,BarrierSpec,Barrier) calculates a
European or American call or put double barrier option price and sensitivities of a single underlying
asset using the finite difference method. dblbarrierbyfd assumes that the barrier is continuously
monitored.

[PriceSens,PriceGrid,AssetPrices,Times] = dblbarriersensbyfd( ___ ,Name,Value)
specifies options using one or more name-value pair arguments in addition to the input arguments in
the previous syntax.

Examples

Calculate Price and Sensitivities for an American Double Knock-Out Call Option with Rebate

Compute the price and sensitivities for an American double barrier option for a double knock-out
(down and out-up and out) call option with a rebate using the following data:

Rate = 0.05;
Settle = '01-Jun-2018';
Maturity = '01-Dec-2018';
Basis = 1;

Define a RateSpec.

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates', Maturity,'Rates', Rate, 'Compounding', -1, 'Basis', Basis);

Define a StockSpec.

AssetPrice = 100; 
Volatility = 0.25;
StockSpec = stockspec(Volatility, AssetPrice);

Define the double barrier option.

LBarrier = 80; 
UBarrier = 130; 
Barrier = [UBarrier LBarrier];
BarrierSpec = 'DKO';
OptSpec = 'Call';
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Strike = 110;
Rebate = 1;
OutSpec = {'price'; 'vega'; 'theta'};

Compute the price and sensitivities for an American option using finite differences.

[Price, Vega, Theta] = dblbarriersensbyfd(RateSpec, StockSpec, OptSpec, Strike, Settle, Maturity, BarrierSpec, Barrier,'Rebate', Rebate, 'AmericanOpt', 1,'Outspec', OutSpec)

Price = 4.0002

Vega = -1.9180e+03

Theta = -6.6509

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset, specified by the StockSpec obtained from stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities the
price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is
StockSpec.DividendAmounts.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | string scalar with values "call" or "put"

Definition of an option, specified as a character vector with a value of 'call' or 'put', or a string
scalar with values "call" or "put".
Data Types: char | string

Strike — Option strike price value
scalar numeric

Option strike price value, specified as a scalar numeric.
Data Types: double

Settle — Settlement or trade date
serial date number | date character vector | datetime object

Settlement or trade date for the barrier option, specified as a serial date number, a date character
vector, or a datetime object.
Data Types: double | char | datetime
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ExerciseDates — Option exercise dates
serial date number | date character vector | datetime object

Option exercise dates, specified as a serial date number, a date character vector, or datetime object.

• For a European option, the option expiry date has only one ExerciseDates value.
• For an American option, use a 1-by-2 vector of exercise date boundaries. The option can be

exercised on any date between or including the pair of dates. If only one non-NaN date is listed,
the option can be exercised between Settle and the single listed date in ExerciseDates.

Data Types: double | char | datetime

BarrierSpec — Double barrier option type
character vector with value of 'DKI' or 'DKO' | scalar string with value of "DKI" or "DKO"

Double barrier option type, specified as a character vector or string with one of the following values:

• 'DKI' — Double Knock-in

The 'DKI' option becomes effective when the price of the underlying asset reaches one of the
barriers. It gives the option holder the right but not the obligation to buy or sell the underlying
security at the strike price, if the underlying asset goes above or below the barrier levels during
the life of the option.

• 'DKO' — Double Knock-out

The 'DKO' option gives the option holder the right but not the obligation to buy or sell the
underlying security at the strike price, as long as the underlying asset remains between the
barrier levels during the life of the option. This option terminates when the price of the underlying
asset passes one of the barriers.

Option Barrier Type Payoff If Any Barrier
Crossed

Payoff If Barriers Not
Crossed

Call/Put Double Knock-in Standard Call/Put Worthless
Call/Put Double Knock-out Worthless Standard Call/Put

Data Types: char | string

Barrier — Barrier level
vector

Barrier level, specified as a 1-by-2 vector of numeric values, where the first column is the upper
barrier (1)(UB) and the second column is the lower barrier (2)(LB). Barrier(1) must be greater than
Barrier(2).
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
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Example: PriceSens =
dblbarriersensbyfd(RateSpec,StockSpec,OptSpec,Strike,Settle,Maturity,BarrierS
pec,Barrier,'OutSpec',
{'delta','gamma','vega','lambda','rho','theta','price'},'AmericanOpt',1)

OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma', 'Vega',
'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with values 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All' | string array with values
"Price", "Delta", "Gamma", "Vega", "Lambda", "Rho", "Theta", and "All"

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a NOUT- by-1 or
a 1-by-NOUT cell array of character vectors or a string array with possible values of 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output is Delta, Gamma, Vega, Lambda, Rho, Theta, and
Price, in that order. This is the same as specifying OutSpec to include each sensitivity.
Example: OutSpec = {'delta','gamma','vega','lambda','rho','theta','price'}
Data Types: char | cell | string

Rebate — Rebate value
[0 0] for Double Knock-out or 0 for Double Knock-in (default) | vector | scalar numeric

Rebate value, specified as the comma-separated pair consisting of 'Rebate' and one of the
following:

• For a Double Knock-out option, use a 1-by-2 vector of rebate values where the first column is the
payout if the upper barrier(1)(UB) is hit and the second column is payout if the lower barrier(2)
(LB) is hit. The rebate is paid when the barrier is reached.

• For a Double Knock-in option, use a scalar rebate value. The rebate is paid at expiry.

Data Types: double

AssetGridSize — Size of asset grid used for finite difference grid
400 (default) | positive scalar numeric

Size of the asset grid used for the finite difference grid, specified as the comma-separated pair
consisting of 'AssetGridSize' and a positive scalar numeric.
Data Types: double

TimeGridSize — Size of time grid used for finite difference grid
100 (default) | positive scalar numeric

Size of the time grid used for the finite difference grid, specified as the comma-separated pair
consisting of 'TimeGridSize' and a positive scalar numeric.

Note The actual time grid may have a larger size because exercise and ex-dividend dates might be
added to the grid from StockSpec.

Data Types: double
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AmericanOpt — Option type
0 European (default) | integer with values 0 or 1

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and a scalar flag
with one of the following values:

• 0 — European
• 1 — American

Data Types: logical

Output Arguments
PriceSens — Expected prices or sensitivities values for double barrier options
matrix

Expected prices or sensitivities (defined using OutSpec) for double barrier options, returned as a 1-
by-NOUT matrix.

PriceGrid — Grid containing prices
grid

Grid containing prices calculated by the finite difference method, returned as a two-dimensional grid
with the size AssetGridSize*TimeGridSize. The number of columns does not have to be equal to
the TimeGridSize, because exercise and ex-dividend dates in StockSpec are added to the time
grid. PriceGrid(:, end) contains the price for t = 0.

AssetPrices — Prices of the asset defined by StockSpec
vector

Prices of the asset defined by the StockSpec corresponding to the first dimension of PriceGrid,
returned as a vector.

Times — Times corresponding to second dimension of PriceGrid
vector

Times corresponding to the second dimension of the PriceGrid, returned as a vector.

More About
Double Barrier Option

A double barrier option is similar to the standard single barrier option except that it has two barrier
levels: a lower barrier (LB) and an upper barrier (UB).

The payoff for a double barrier option depends on whether the underlying asset remains between the
barrier levels during the life of the option. Double barrier options are less expensive than single
barrier options as they have a higher knock-out probability. Because of this, double barrier options
allow investors to reduce option premiums and match an investor’s belief about the future movement
of the underlying price process.
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barrierbyls
Price European or American barrier options using Monte Carlo simulations

Syntax
[Price,Paths,Times,Z] = barrierbyls(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates,BarrierSpec,Barrier)
[Price,Paths,Times,Z] = barrierbyls( ___ ,Name,Value)

Description
[Price,Paths,Times,Z] = barrierbyls(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates,BarrierSpec,Barrier) calculates barrier option prices on a single underlying
asset using the Longstaff-Schwartz model. barrierbyls computes prices of European and American
barrier options.

For American options, the Longstaff-Schwartz least squares method is used to calculate the early
exercise premium.

[Price,Paths,Times,Z] = barrierbyls( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Price an American Barrier Down In Put Option

Compute the price of an American down in put option using the following data:

Rates = 0.0325;
Settle = '01-Jan-2016';
Maturity = '01-Jan-2017';
Compounding = -1;
Basis = 1;

Define a RateSpec.

 RateSpec = intenvset('ValuationDate',Settle,'StartDates',Settle,'EndDates',Maturity, ...
     'Rates',Rates,'Compounding',Compounding,'Basis',Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9680
            Rates: 0.0325
         EndTimes: 1
       StartTimes: 0
         EndDates: 736696
       StartDates: 736330
    ValuationDate: 736330
            Basis: 1
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     EndMonthRule: 1

Define a StockSpec.

 AssetPrice = 40;
 Volatility = 0.20;
 StockSpec = stockspec(Volatility,AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2000
         AssetPrice: 40
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Calculate the price of an American barrier down in put option.

Strike = 45;
OptSpec = 'put';
Barrier = 35;
BarrierSpec = 'DI';
AmericanOpt = 1;

Price = barrierbyls(RateSpec,StockSpec,OptSpec,Strike,Settle,Maturity,BarrierSpec,...
Barrier,'NumTrials',2000,'AmericanOpt',AmericanOpt)

Price = 4.7306

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification, see
stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities the
price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is
StockSpec.DividendAmounts.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | string array with values "call" or "put"
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Definition of the option as 'call' or 'put', specified as a character vector or string array with a
value of "call" or "put".
Data Types: char | string

Strike — Option strike price value
scalar numeric

Option strike price value, specified as a scalar numeric.
Data Types: double

Settle — Settlement or trade date
serial date number | date character vector | datetime object

Settlement or trade date for the barrier option, specified as a serial date number, a date character
vector, or a datetime object.
Data Types: double | char | datetime

ExerciseDates — Option exercise dates
serial date number | date character vector | datetime object

Option exercise dates, specified as a serial date number, a date character vector, or a datetime object:

• For a European option, there is only one ExerciseDates on the option expiry date which is the
maturity of the instrument.

• For an American option, use a 1-by-2 vector of exercise date boundaries. The option can be
exercised on any date between or including the pair of dates on that row. If only one non-NaN date
is listed, the option can be exercised between Settle and the single listed date in
ExerciseDates.

Data Types: double | char | cell

BarrierSpec — Barrier option type
character vector with values: 'UI', 'UO', 'DI', 'DO'

Barrier option type, specified as a character vector with the following values:

• 'UI' — Up Knock-in

This option becomes effective when the price of the underlying asset passes above the barrier
level. It gives the option holder the right, but not the obligation, to buy or sell (call/put) the
underlying security at the strike price if the underlying asset goes above the barrier level during
the life of the option.

• 'UO' — Up Knock-out

This option gives the option holder the right, but not the obligation, to buy or sell (call/put) the
underlying security at the strike price as long as the underlying asset does not go above the
barrier level during the life of the option. This option terminates when the price of the underlying
asset passes above the barrier level. Usually with an up-and-out option, the rebate is paid if the
spot price of the underlying reaches or exceeds the barrier level.

• 'DI' — Down Knock-in

This option becomes effective when the price of the underlying stock passes below the barrier
level. It gives the option holder the right, but not the obligation, to buy or sell (call/put) the
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underlying security at the strike price if the underlying security goes below the barrier level
during the life of the option. With a down-and-in option, the rebate is paid if the spot price of the
underlying does not reach the barrier level during the life of the option.

• 'DO' — Down Knock-up

This option gives the option holder the right, but not the obligation, to buy or sell (call/put) the
underlying asset at the strike price as long as the underlying asset does not go below the barrier
level during the life of the option. This option terminates when the price of the underlying security
passes below the barrier level. Usually, the option holder receives a rebate amount if the option
expires worthless.

Option Barrier Type Payoff if Barrier Crossed Payoff if Barrier not
Crossed

Call/Put Down Knock-out Worthless Standard Call/Put
Call/Put Down Knock-in Call/Put Worthless
Call/Put Up Knock-out Worthless Standard Call/Put
Call/Put Up Knock-in Standard Call/Put Worthless

Data Types: char

Barrier — Barrier level
scalar numeric

Barrier level, specified as a scalar numeric.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Price =
barrierbyls(RateSpec,StockSpec,OptSpec,Strike,Settle,Maturity,BarrierSpec,Bar
rier,Rebate,1000)

AmericanOpt — Option type
0 (European) (default) | values [0,1]

Option type, specified as the comma-separated pair consisting of 'AnericanOpt' and a NINST-by-1
positive integer scalar flags with values:

• 0 — European
• 1 — American

Note For American options, the Longstaff-Schwartz least squares method is used to calculate the
early exercise premium. For more information on the least squares method, see https://
people.math.ethz.ch/%7Ehjfurrer/teaching/
LongstaffSchwartzAmericanOptionsLeastSquareMonteCarlo.pdf.
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Data Types: double

Rebate — Rebate value
0 (default) | scalar numeric

Rebate value, specified as the comma-separated pair consisting of 'Rebate' and a scalar numeric.
For Knock-in options, the Rebate is paid at expiry. For Knock-out options, the Rebate is paid when
the Barrier is reached.
Data Types: double

NumTrials — Number of independent sample paths
1000 (default) | nonnegative integer

Number of independent sample paths (simulation trials), specified as the comma-separated pair
consisting of 'NumTrials' and a scalar nonnegative integer.
Data Types: double

NumPeriods — Number of simulation periods per trial
100 (default) | nonnegative integer

Number of simulation periods per trial, specified as the comma-separated pair consisting of
'NumPeriods' and a scalar nonnegative integer.
Data Types: double

Z — Time series array of dependent random variates
vector

Time series array of dependent random variates, specified as the comma-separated pair consisting of
'Z' and a NumPeriods-by-1-by-NumTrials 3-D time series array. The Z value generates the
Brownian motion vector (that is, Wiener processes) that drives the simulation.
Data Types: double

Antithetic — Indicator for antithetic sampling
false (default) | scalar logical flag with value of true or false

Indicator for antithetic sampling, specified as the comma-separated pair consisting of 'Antithetic'
and a value of true or false.
Data Types: logical

Output Arguments
Price — Expected prices for barrier options
matrix

Expected prices for barrier options, returned as a NINST-by-1 matrix.

Paths — Simulated paths of correlated state variables
vector

Simulated paths of correlated state variables, returned as a NumPeriods + 1-by-1-by-NumTrials 3-
D time series array of simulated paths of correlated state variables. Each row of Paths is the
transpose of the state vector X(t) at time t for a given trial.
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Times — Observation times associated with simulated paths
vector

Observation times associated with simulated paths, returned as a NumPeriods + 1-by-1 column
vector of observation times associated with the simulated paths. Each element of Times is associated
with the corresponding row of Paths.

Z — Time series array of dependent random variates
vector

Time series array of dependent random variates, returned as a NumPeriods-by-1-by-NumTrials 3-D
array when Z is specified as an input argument. If the Z input argument is not specified, then the Z
output argument contains the random variates generated internally.

More About
Barrier Option

A Barrier option has not only a strike price but also a barrier level and sometimes a rebate.

A rebate is a fixed amount that is paid if the option cannot be exercised because the barrier level has
been reached or not reached. The payoff for this type of option depends on whether the underlying
asset crosses the predetermined trigger value (barrier level), indicated by Barrier, during the life of
the option. For more information, see “Barrier Option” on page 3-20.
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barriersensbyls
Calculate price and sensitivities for European or American barrier options using Monte Carlo
simulations

Syntax
[PriceSens,Paths,Times,Z] = barriersensbyls(RateSpec,StockSpec,OptSpec,
Strike,Settle,ExerciseDates,BarrierSpec,Barrier)
[PriceSens,Paths,Times,Z] = barriersensbyls( ___ ,Name,Value)

Description
[PriceSens,Paths,Times,Z] = barriersensbyls(RateSpec,StockSpec,OptSpec,
Strike,Settle,ExerciseDates,BarrierSpec,Barrier) calculates barrier option prices or
sensitivities on a single underlying asset using the Longstaff-Schwartz model. barriersensbyls
computes prices of European and American barrier options.

For American options, the Longstaff-Schwartz least squares method is used to calculate the early
exercise premium.

[PriceSens,Paths,Times,Z] = barriersensbyls( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Compute the Delta and Gamma of an American Barrier Down In Put Option

Compute the price of an American down in put option using the following data:

Rates = 0.0325;
Settle = '01-Jan-2016';
Maturity = '01-Jan-2017';
Compounding = -1;
Basis = 1;

Define a RateSpec.

 RateSpec = intenvset('ValuationDate',Settle,'StartDates',Settle,'EndDates',Maturity, ...
     'Rates',Rates,'Compounding',Compounding,'Basis',Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9680
            Rates: 0.0325
         EndTimes: 1
       StartTimes: 0
         EndDates: 736696
       StartDates: 736330
    ValuationDate: 736330
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            Basis: 1
     EndMonthRule: 1

Define a StockSpec.

 AssetPrice = 40;
 Volatility = 0.20;
 StockSpec = stockspec(Volatility,AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2000
         AssetPrice: 40
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Calculate the delta and gamma of an American barrier down in put option.

Strike = 45;
OptSpec = 'put';
Barrier = 35;
BarrierSpec = 'DI';
AmericanOpt = 1;

OutSpec = {'delta','gamma'};

[Delta,Gamma] = barriersensbyls(RateSpec,StockSpec,OptSpec,Strike,Settle,...
Maturity,BarrierSpec,Barrier,'NumTrials',2000,'AmericanOpt',AmericanOpt,'OutSpec',OutSpec)

Delta = -0.6346

Gamma = -0.3091

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification, see
stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities the
price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is
StockSpec.DividendAmounts.
Data Types: struct
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OptSpec — Definition of option
character vector with values 'call' or 'put' | string array with values "call" or "put"

Definition of the option as 'call' or 'put', specified as a character vector or string array with
values "call" or "put".
Data Types: char | string

Strike — Option strike price value
scalar numeric

Option strike price value, specified as a scalar numeric.
Data Types: double

Settle — Settlement or trade date
serial date number | date character vector | datetime object

Settlement or trade date for the barrier option, specified as a serial date number, a date character
vector, or a datetime object.
Data Types: double | char | datetime

ExerciseDates — Option exercise dates
serial date number | date character vector | datetime object

Option exercise dates, specified as a serial date number, a date character vector, or a datetime object:

• For a European option, there is only one ExerciseDates on the option expiry date which is the
maturity of the instrument.

• For an American option, use a 1-by-2 vector of exercise date boundaries. The option can be
exercised on any date between or including the pair of dates on that row. If only one non-NaN date
is listed, the option can be exercised between Settle and the single listed date in
ExerciseDates.

Data Types: double | char | cell

BarrierSpec — Barrier option type
character vector with values: 'UI', 'UO', 'DI', 'DO'

Barrier option type, specified as a character vector with the following values:

• 'UI' — Up Knock-in

This option becomes effective when the price of the underlying asset passes above the barrier
level. It gives the option holder the right, but not the obligation, to buy or sell (call/put) the
underlying security at the strike price if the underlying asset goes above the barrier level during
the life of the option.

• 'UO' — Up Knock-out

This option gives the option holder the right, but not the obligation, to buy or sell (call/put) the
underlying security at the strike price as long as the underlying asset does not go above the
barrier level during the life of the option. This option terminates when the price of the underlying
asset passes above the barrier level. Usually with an up-and-out option, the rebate is paid if the
spot price of the underlying reaches or exceeds the barrier level.
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• 'DI' — Down Knock-in

This option becomes effective when the price of the underlying stock passes below the barrier
level. It gives the option holder the right, but not the obligation, to buy or sell (call/put) the
underlying security at the strike price if the underlying security goes below the barrier level
during the life of the option. With a down-and-in option, the rebate is paid if the spot price of the
underlying does not reach the barrier level during the life of the option.

• 'DO' — Down Knock-up

This option gives the option holder the right, but not the obligation, to buy or sell (call/put) the
underlying asset at the strike price as long as the underlying asset does not go below the barrier
level during the life of the option. This option terminates when the price of the underlying security
passes below the barrier level. Usually, the option holder receives a rebate amount if the option
expires worthless.

Option Barrier Type Payoff if Barrier Crossed Payoff if Barrier not
Crossed

Call/Put Down Knock-out Worthless Standard Call/Put
Call/Put Down Knock-in Call/Put Worthless
Call/Put Up Knock-out Worthless Standard Call/Put
Call/Put Up Knock-in Standard Call/Put Worthless

Data Types: char

Barrier — Barrier level
scalar numeric

Barrier level, specified as a scalar numeric.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Price =
barriersensbyls(RateSpec,StockSpec,OptSpec,Strike,Settle,Maturity,BarrierSpec
,Barrier,Rebate,1000)

AmericanOpt — Option type
0 (European) (default) | values [0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and a scalar flag
with one of the following values:

• 0 — European
• 1 — American

Note For American options, the Longstaff-Schwartz least squares method is used to calculate the
early exercise premium. For more information on the least squares method, see https://
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LongstaffSchwartzAmericanOptionsLeastSquareMonteCarlo.pdf.

Data Types: double

Rebate — Rebate value
0 (default) | numeric

Rebate value, specified as the comma-separated pair consisting of 'Rebate' and a scalar numeric.
For Knock-in options, the Rebate is paid at expiry. For Knock-out options, the Rebate is paid when
the Barrier is reached.
Data Types: double

NumTrials — Number of independent sample paths
1000 (default) | nonnegative integer

Number of independent sample paths (simulation trials), specified as the comma-separated pair
consisting of 'NumTrials' and a scalar nonnegative integer.
Data Types: double

NumPeriods — Number of simulation periods per trial
100 (default) | nonnegative integer

Number of simulation periods per trial, specified as the comma-separated pair consisting of
'NumPeriods' and a scalar nonnegative integer.
Data Types: double

Z — Time series array of dependent random variates
vector

Time series array of dependent random variates, specified as the comma-separated pair consisting of
'Z' and a NumPeriods-by-1-by-NumTrials 3-D time series array. The Z value generates the
Brownian motion vector (that is, Wiener processes) that drives the simulation.
Data Types: double

Antithetic — Indicator for antithetic sampling
false (default) | logical flag with value of true or false

Indicator for antithetic sampling, specified as the comma-separated pair consisting of 'Antithetic'
and a scalar value of true or false.
Data Types: logical

OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma', 'Vega',
'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with values 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a NOUT- by-1 or
a 1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.
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OutSpec = {'All'} specifies that the output is Delta, Gamma, Vega, Lambda, Rho, Theta, and
Price, in that order. This is the same as specifying OutSpec to include each sensitivity.
Example: OutSpec = {'delta','gamma','vega','lambda','rho','theta','price'}
Data Types: char | cell

MonitoringFreq — Number of days between monitoring barriers
0 (default) | integer

Number of days between monitoring barriers, specified as a scalar integer. The default is 0 which
indicates that the barrier is continuously monitored.
Data Types: double

Output Arguments
PriceSens — Expected prices or sensitivities for barrier options
matrix

Expected prices or sensitivities (defined using OutSpec) for barrier options, returned as a NINST-
by-1 matrix.

Paths — Simulated paths of correlated state variables
vector

Simulated paths of correlated state variables, returned as a NumPeriods + 1-by-1-by-NumTrials 3-
D time series array of simulated paths of correlated state variables. Each row of Paths is the
transpose of the state vector X(t) at time t for a given trial.

Times — Observation times associated with simulated paths
vector

Observation times associated with simulated paths, returned as a NumPeriods + 1-by-1 column
vector of observation times associated with the simulated paths. Each element of Times is associated
with the corresponding row of Paths.

Z — Time series array of dependent random variates
vector

Time series array of dependent random variates, returned as a NumPeriods-by-1-by-NumTrials 3-D
array when Z is specified as an input argument. If the Z input argument is not specified, then the Z
output argument contains the random variates generated internally.

More About
Barrier Option

A Barrier option has not only a strike price but also a barrier level and sometimes a rebate.

A rebate is a fixed amount that is paid if the option cannot be exercised because the barrier level has
been reached or not reached. The payoff for this type of option depends on whether the underlying
asset crosses the predetermined trigger value (barrier level), indicated by Barrier, during the life of
the option. For more information, see “Barrier Option” on page 3-20.
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barrierbybls
Price European barrier options using Black-Scholes option pricing model

Syntax
Price = barrierbybls(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates,
BarrierSpec,Barrier)
Price = barrierbybls( ___ ,Name,Value)

Description
Price = barrierbybls(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates,
BarrierSpec,Barrier) calculates European barrier option prices using the Black-Scholes option
pricing model.

Price = barrierbybls( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Price an European Barrier Down Out Call Option

Compute the price of an European barrier down out call option using the following data:

Rates = 0.035;
Settle = '01-Jan-2015';
Maturity = '01-jan-2016';
Compounding = -1;
Basis = 1;

Define a RateSpec.

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates', Maturity, ...
'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9656
            Rates: 0.0350
         EndTimes: 1
       StartTimes: 0
         EndDates: 736330
       StartDates: 735965
    ValuationDate: 735965
            Basis: 1
     EndMonthRule: 1

Define a StockSpec.
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AssetPrice = 50;
Volatility = 0.30;
StockSpec = stockspec(Volatility, AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3000
         AssetPrice: 50
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Calculate the price of an European barrier down out call option using the Black-Scholes option
pricing model.

Strike = 50;
OptSpec = 'call';
Barrier = 45;
BarrierSpec = 'DO';

Price = barrierbybls(RateSpec, StockSpec, OptSpec, Strike, Settle,...
Maturity,  BarrierSpec, Barrier)

Price = 4.4285

Price European Barrier Down Out and Down In Call Options

Compute the price of European down out and down in call options using the following data:

Rates = 0.035;
Settle = '01-Jan-2015';
Maturity = '01-jan-2016';
Compounding = -1;
Basis = 1;

Define a RateSpec.

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates', Maturity, ...
'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9656
            Rates: 0.0350
         EndTimes: 1
       StartTimes: 0
         EndDates: 736330
       StartDates: 735965
    ValuationDate: 735965
            Basis: 1
     EndMonthRule: 1

Define a StockSpec.
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AssetPrice = 50;
Volatility = 0.30;
StockSpec = stockspec(Volatility, AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3000
         AssetPrice: 50
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Calculate the price of European barrier down out and down in call options using the Black-Scholes
Option Pricing model.

Strike = 50;
OptSpec = 'Call';
Barrier = 45;
BarrierSpec = {'DO';'DI'};

Price = barrierbybls(RateSpec, StockSpec, OptSpec, Strike, Settle, Maturity,  BarrierSpec, Barrier)

Price = 2×1

    4.4285
    2.3301

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification, see
stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities the
price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is
StockSpec.DividendAmounts.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | string array with values "call" or "put"

Definition of the option as 'call' or 'put', specified as an NINST-by-1 cell array of character
vectors or string array with values 'call' or 'put' or "call" or "put".
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Data Types: char | cell | string

Strike — Option strike price value
numeric

Option strike price value, specified as an NINST-by-1 matrix of numeric values, where each row is the
schedule for one option.
Data Types: double

Settle — Settlement or trade date
serial date number | date character vector | datetime object

Settlement or trade date for the barrier option, specified as an NINST-by-1 matrix using serial date
numbers, date character vectors, or datetime objects.
Data Types: double | char | datetime

ExerciseDates — Option exercise dates
serial date number | date character vector | datetime object

Option exercise dates, specified as an NINST-by-1 matrix of serial date numbers, date character
vectors, or datetime objects.

Note For a European option, there is only one ExerciseDates on the option expiry date which is
the maturity of the instrument.

Data Types: double | char | datetime

BarrierSpec — Barrier option type
character vector with values: 'UI', 'UO', 'DI', 'DO'

Barrier option type, specified as an NINST-by-1 cell array of character vectors with the following
values:

• 'UI' — Up Knock-in

This option becomes effective when the price of the underlying asset passes above the barrier
level. It gives the option holder the right, but not the obligation, to buy or sell (call/put) the
underlying security at the strike price if the underlying asset goes above the barrier level during
the life of the option.

• 'UO' — Up Knock-out

This option gives the option holder the right, but not the obligation, to buy or sell (call/put) the
underlying security at the strike price as long as the underlying asset does not go above the
barrier level during the life of the option. This option terminates when the price of the underlying
asset passes above the barrier level. Usually with an up-and-out option, the rebate is paid if the
spot price of the underlying reaches or exceeds the barrier level.

• 'DI' — Down Knock-in

This option becomes effective when the price of the underlying stock passes below the barrier
level. It gives the option holder the right, but not the obligation, to buy or sell (call/put) the
underlying security at the strike price if the underlying security goes below the barrier level
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during the life of the option. With a down-and-in option, the rebate is paid if the spot price of the
underlying does not reach the barrier level during the life of the option.

• 'DO' — Down Knock-up

This option gives the option holder the right, but not the obligation, to buy or sell (call/put) the
underlying asset at the strike price as long as the underlying asset does not go below the barrier
level during the life of the option. This option terminates when the price of the underlying security
passes below the barrier level. Usually, the option holder receives a rebate amount if the option
expires worthless.

Option Barrier Type Payoff if Barrier Crossed Payoff if Barrier not
Crossed

Call/Put Down Knock-out Worthless Standard Call/Put
Call/Put Down Knock-in Call/Put Worthless
Call/Put Up Knock-out Worthless Standard Call/Put
Call/Put Up Knock-in Standard Call/Put Worthless

Data Types: char | cell

Barrier — Barrier level
numeric

Barrier level, specified as NINST-by-1 matrix of numeric values.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Price =
barrierbybls(RateSpec,StockSpec,OptSpec,Strike,Settle,Maturity,BarrierSpec,Ba
rrier,Rebate,1000)

Rebate — Rebate value
0 (default) | numeric

Rebate value, specified as the comma-separated pair consisting of 'Rebate' and NINST-by-1 matrix
of numeric values. For Knock-in options, the Rebate is paid at expiry. For Knock-out options, the
Rebate is paid when the Barrier is reached.
Data Types: double

Output Arguments
Price — Expected prices for barrier options
matrix

Expected prices for barrier options at time 0, returned as a NINST-by-1 matrix.
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More About
Barrier Option

A Barrier option has not only a strike price but also a barrier level and sometimes a rebate.

A rebate is a fixed amount that is paid if the option cannot be exercised because the barrier level has
been reached or not reached. The payoff for this type of option depends on whether the underlying
asset crosses the predetermined trigger value (barrier level), indicated by Barrier, during the life of
the option. For more information, see “Barrier Option” on page 3-20.
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barriersensbybls
Calculate price or sensitivities for European barrier options using Black-Scholes option pricing model

Syntax
PriceSens = barriersensbybls(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates,BarrierSpec,Barrier)
PriceSens = barriersensbybls( ___ ,Name,Value)

Description
PriceSens = barriersensbybls(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates,BarrierSpec,Barrier) calculates European barrier option prices or sensitivities
using the Black-Scholes option pricing model.

PriceSens = barriersensbybls( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Calculate Price and Sensitivities for European Barrier Down Out and Down In Call Options

Compute price of European barrier down out and down in call options using the following data:

Rates = 0.035;
Settle = '01-Jan-2015';
Maturity = '01-April-2015';
Compounding = -1;
Basis = 1;

Define a RateSpec.

 RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates', Maturity, ...
     'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9913
            Rates: 0.0350
         EndTimes: 0.2500
       StartTimes: 0
         EndDates: 736055
       StartDates: 735965
    ValuationDate: 735965
            Basis: 1
     EndMonthRule: 1

Define a StockSpec.

AssetPrice = 19;
Volatility = 0.40;
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DivType = 'Continuous'; 
DivAmount = 0.035;
StockSpec = stockspec(Volatility, AssetPrice, DivType, DivAmount)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.4000
         AssetPrice: 19
       DividendType: {'continuous'}
    DividendAmounts: 0.0350
    ExDividendDates: []

Calculate the price, delta, and gamma for European barrier down out and down in call options
using the Black-Scholes option pricing model.

OptSpec = 'Call';
Strike = 20;
Barrier = 18;
BarrierSpec = {'DO';'DI'};
OutSpec = {'price', 'delta', 'gamma'};

[Price, Delta, Gamma] = barriersensbybls(RateSpec, StockSpec, OptSpec, Strike, Settle,...
Maturity,  BarrierSpec, Barrier,'OutSpec', OutSpec)

Price = 2×1

    0.6287
    0.4655

Delta = 2×1

    0.6376
   -0.2036

Gamma = 2×1

    0.0255
    0.0773

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure
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Stock specification for the underlying asset. For information on the stock specification, see
stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities the
price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is
StockSpec.DividendAmounts.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | string array with values "call" or "put"

Definition of the option as 'call' or 'put', specified as an NINST-by-1 cell array of character
vectors or string arrays with values "call" or "put".
Data Types: char | string | cell

Strike — Option strike price value
numeric

Option strike price value, specified as an NINST-by-1 matrix of numeric values.
Data Types: double

Settle — Settlement or trade date
serial date number | date character vector | datetime object

Settlement or trade date for the barrier option, specified as an NINST-by-1 matrix using serial date
numbers, date character vectors, or datetime objects.
Data Types: double | char | datetime

ExerciseDates — Option exercise dates
serial date number | date character vector | datetime object

Option exercise dates, specified as an NINST-by-1 matrix of serial date numbers, date character
vectors, or datetime objects.

Note For a European option, there is only one ExerciseDates on the option expiry date which is
the maturity of the instrument.

Data Types: double | char | datetime

BarrierSpec — Barrier option type
character vector with values: 'UI', 'UO', 'DI', 'DO'

Barrier option type, specified as an NINST-by-1 cell array of character vectors with the following
values:

• 'UI' — Up Knock-in

This option becomes effective when the price of the underlying asset passes above the barrier
level. It gives the option holder the right, but not the obligation, to buy or sell (call/put) the
underlying security at the strike price if the underlying asset goes above the barrier level during
the life of the option.
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• 'UO' — Up Knock-out

This option gives the option holder the right, but not the obligation, to buy or sell (call/put) the
underlying security at the strike price as long as the underlying asset does not go above the
barrier level during the life of the option. This option terminates when the price of the underlying
asset passes above the barrier level. Usually with an up-and-out option, the rebate is paid if the
spot price of the underlying reaches or exceeds the barrier level.

• 'DI' — Down Knock-in

This option becomes effective when the price of the underlying stock passes below the barrier
level. It gives the option holder the right, but not the obligation, to buy or sell (call/put) the
underlying security at the strike price if the underlying security goes below the barrier level
during the life of the option. With a down-and-in option, the rebate is paid if the spot price of the
underlying does not reach the barrier level during the life of the option.

• 'DO' — Down Knock-up

This option gives the option holder the right, but not the obligation, to buy or sell (call/put) the
underlying asset at the strike price as long as the underlying asset does not go below the barrier
level during the life of the option. This option terminates when the price of the underlying security
passes below the barrier level. Usually, the option holder receives a rebate amount if the option
expires worthless.

Option Barrier Type Payoff if Barrier Crossed Payoff if Barrier not
Crossed

Call/Put Down Knock-out Worthless Standard Call/Put
Call/Put Down Knock-in Call/Put Worthless
Call/Put Up Knock-out Worthless Standard Call/Put
Call/Put Up Knock-in Standard Call/Put Worthless

Data Types: char | cell

Barrier — Barrier level
numeric

Barrier level, specified as an NINST-by-1 matrix of numeric values.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Price =
barriersensbybls(RateSpec,StockSpec,OptSpec,Strike,Settle,Maturity,BarrierSpe
c,Barrier,'Rebate',1000,'OutSpec','Delta')

Rebate — Rebate values
0 (default) | numeric
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Rebate values, specified as the comma-separated pair consisting of 'Rebate' and NINST-by-1 matrix
of numeric values. For Knock-in options, the Rebate is paid at expiry. For Knock-out options, the
Rebate is paid when the Barrier is reached.
Data Types: double

OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma', 'Vega',
'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with values 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a NOUT- by-1 or
a 1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output is Delta, Gamma, Vega, Lambda, Rho, Theta, and
Price, in that order. This is the same as specifying OutSpec to include each sensitivity.
Example: OutSpec = {'delta','gamma','vega','lambda','rho','theta','price'}
Data Types: char | cell

Output Arguments
PriceSens — Expected prices or sensitivities for barrier options
matrix

Expected prices at time 0 or sensitivities (defined using OutSpec) for barrier options, returned as a
NINST-by-1 matrix.

More About
Barrier Option

A Barrier option has not only a strike price but also a barrier level and sometimes a rebate.

A rebate is a fixed amount that is paid if the option cannot be exercised because the barrier level has
been reached or not reached. The payoff for this type of option depends on whether the underlying
asset crosses the predetermined trigger value (barrier level), indicated by Barrier, during the life of
the option. For more information, see “Barrier Option” on page 3-20.

References
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“Supported Equity Derivative Functions” on page 3-19
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dblbarrierbybls
Price European double barrier options using Black-Scholes option pricing model

Syntax
Price = dblbarrierbybls(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates,BarrierSpec,Barrier)
Price = dblbarrierbybls( ___ ,Name,Value)

Description
Price = dblbarrierbybls(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates,BarrierSpec,Barrier) calculates European double barrier option prices using
the Black-Scholes option pricing model and the Ikeda and Kunitomo approximation.

Price = dblbarrierbybls( ___ ,Name,Value) specifies options using one or more name-value
pair arguments in addition to the input arguments in the previous syntax.

Examples

Price a European Double Knock-Out Call Option

Compute the price of a European for a double knock-out (down and out-up and out) call option using
the following data:

Rate = 0.05;
Settle = '01-Jun-2018';
Maturity = '01-Dec-2018';
Basis = 1;

Define a RateSpec.

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates', Maturity,'Rates', Rate, 'Compounding', -1, 'Basis', Basis);

Define a StockSpec.

AssetPrice = 100; 
Volatility = 0.25;
StockSpec = stockspec(Volatility, AssetPrice);

Define the double barrier option.

LBarrier = 80; 
UBarrier = 130; 
Barrier = [UBarrier LBarrier];
BarrierSpec = 'DKO';
OptSpec = 'Call';
Strike = 110;

Compute price of option using flat boundaries.
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PriceFlat = dblbarrierbybls(RateSpec, StockSpec, OptSpec, Strike, Settle, Maturity, BarrierSpec, Barrier)

PriceFlat = 1.1073

Compute price of option using two curved boundaries.

Curvature = [0.05 -0.05];
PriceCurved = dblbarrierbybls(RateSpec, StockSpec, OptSpec, Strike, Settle, Maturity, BarrierSpec, Barrier, 'Curvature', Curvature)

PriceCurved = 1.4548

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset, specified by the StockSpec obtained from stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities the
price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is
StockSpec.DividendAmounts.
Data Types: struct

OptSpec — Definition of option
cell array of character vectors with values 'call' or 'put' | string array with values "call" or
"put"

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of character vectors
or string array with values 'call' or 'put' or "call" or "put".
Data Types: char | cell | string

Strike — Option strike price value
matrix

Option strike price value, specified as an NINST-by-1 matrix of numeric values, where each row is the
schedule for one option.
Data Types: double

Settle — Settlement or trade date
serial date number | date character vector | datetime object

Settlement or trade date for the double barrier option, specified as an NINST-by-1 matrix using serial
date numbers, date character vectors, or datetime objects.
Data Types: double | char | datetime
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ExerciseDates — Option exercise dates
serial date number | date character vector | datetime object

Option exercise dates, specified as an NINST-by-1 matrix of serial date numbers, date character
vectors, or datetime objects.

Note For a European option, the option expiry date has only one ExerciseDates value, which is the
maturity of the instrument.

Data Types: double | char | datetime

BarrierSpec — Double barrier option type
cell array of character vectors with values of 'DKI' or 'DKO' | string array with values of "DKI" or
"DKO"

Double barrier option type, specified as an NINST-by-1 cell array of character vectors or string array
with the following values:

• 'DKI' — Double Knock-In

The 'DKI' option becomes effective when the price of the underlying asset reaches one of the
barriers. It gives the option holder the right but not the obligation to buy or sell the underlying
security at the strike price, if the underlying asset goes above or below the barrier levels during
the life of the option.

• 'DKO' — Double Knock-Out

The 'DKO' option gives the option holder the right but not the obligation to buy or sell the
underlying security at the strike price, as long as the underlying asset remains between the
barrier levels during the life of the option. This option terminates when the price of the underlying
asset passes one of the barriers.

Option Barrier Type Payoff If Any Barrier
Crossed

Payoff If Barriers Not
Crossed

Call/Put Double Knock-in Standard Call/Put Worthless
Call/Put Double Knock-out Worthless Standard Call/Put

Data Types: char | cell | string

Barrier — Double barrier value
numeric

Double barrier value, specified as NINST-by-1 matrix of numeric values, where each element is a 1-
by-2 vector where the first column is Barrier(1)(UB) and the second column is Barrier(2)(LB).
Barrier(1) must be greater than Barrier(2).
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
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Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Price =
dblbarrierbybls(RateSpec,StockSpec,OptSpec,Strike,Settle,Maturity,BarrierSpec
,Barrier,'Curvature',[1,5])

Curvature — Curvature levels of the upper and lower barriers
[] (default) | matrix

Curvature levels of the upper and lower barriers, specified as the comma-separated pair consisting of
'Curvature' and an NINST-by-1 matrix, where each element is a 1-by-2 vector. The first column is
the upper barrier curvature (d1) and the second column is the lower barrier curvature (d2).

• d1 = d2 = 0 corresponds to two flat boundaries.
• d1 < 0 < d2 corresponds to an exponentially growing lower boundary and an exponentially

decaying upper boundary.
• d1 > 0 > d2 corresponds to a convex downward lower boundary and a convex upward upper

boundary.

Data Types: double

Output Arguments
Price — Expected prices for double barrier options
matrix

Expected prices for double barrier options at time 0, returned as a NINST-by-1 matrix.

More About
Double Barrier Option

A double barrier option is similar to the standard single barrier option except that it has two barrier
levels: a lower barrier (LB) and an upper barrier (UB).

The payoff for a double barrier option depends on whether the underlying asset remains between the
barrier levels during the life of the option. Double barrier options are less expensive than single
barrier options as they have a higher knock-out probability. Because of this, double barrier options
allow investors to reduce option premiums and match an investor’s belief about the future movement
of the underlying price process.

Ikeda and Kunitomo Approximation

The analytical formulas of Ikeda and Kunitomo approach pricing as constrained by curved
boundaries.

This approach has the advantage of covering barriers that are flat, have exponential growth or decay,
or are concave. The Ikeda and Kunitomo model for pricing double barrier options focuses on
calculating double knock-out barriers.
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dblbarriersensbybls
Calculate prices and sensitivities for European double barrier options using Black-Scholes option
pricing model

Syntax
PriceSens = dblbarriersensbybls(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates,BarrierSpec,Barrier)
PriceSens = dblbarriersensbybls( ___ ,Name,Value)

Description
PriceSens = dblbarriersensbybls(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates,BarrierSpec,Barrier) calculates European double barrier option prices and
sensitivities using the Black-Scholes option pricing model and the Ikeda and Kunitomo approximation.

PriceSens = dblbarriersensbybls( ___ ,Name,Value) specifies options using one or more
name-value pair arguments in addition to the input arguments in the previous syntax.

Examples

Calculate Price and Sensitivities for a European Double Knock-Out Call Option

Compute the price and sensitivities for a European double knock-out (down and out-up and out) call
option using the following data:

Rate = 0.05;
Settle = '01-Jun-2018';
Maturity = '01-Dec-2018';
Basis = 1;

Define a RateSpec.

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates', Maturity,'Rates', Rate, 'Compounding', -1, 'Basis', Basis);

Define a StockSpec.

AssetPrice = 100; 
Volatility = 0.25;
StockSpec = stockspec(Volatility, AssetPrice);

Define the double barrier option and sensitivities.

LBarrier = 80; 
UBarrier = 130; 
Barrier = [UBarrier LBarrier];
BarrierSpec = 'DKO';
OptSpec = 'Call';
Strike = 110;
OutSpec = {'Price', 'Delta', 'Gamma'};
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Compute the price of the option using flat boundaries.

[PriceFlat, Delta, Gamma] = dblbarriersensbybls(RateSpec, StockSpec, OptSpec, Strike, Settle, Maturity, BarrierSpec, Barrier,'OutSpec', OutSpec)

PriceFlat = 1.1073

Delta = 0.0411

Gamma = -0.0040

Compute the price of the option using two curved boundaries.

Curvature = [0.05 -0.05];
[PriceCurved, Delta, Gamma] = dblbarriersensbybls(RateSpec, StockSpec, OptSpec, Strike, Settle, Maturity, BarrierSpec, Barrier, 'Curvature', Curvature,'OutSpec', OutSpec)

PriceCurved = 1.4548

Delta = 0.0620

Gamma = -0.0045

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset, specified by the StockSpec obtained from stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities the
price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is
StockSpec.DividendAmounts.
Data Types: struct

OptSpec — Definition of option
cell array of character vectors with values 'call' or 'put' | string array with values "call" or
"put"

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of character vectors
or string array with values 'call' or 'put' or "call" or "put".
Data Types: char | cell | string

Strike — Option strike price value
matrix

Option strike price value, specified as an NINST-by-1 matrix of numeric values, where each row is the
schedule for one option.
Data Types: double
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Settle — Settlement or trade date
serial date number | date character vector | datetime object

Settlement or trade date for the double barrier option, specified as an NINST-by-1 matrix using serial
date numbers, date character vectors, or datetime objects.
Data Types: double | char | datetime

ExerciseDates — Option exercise dates
serial date number | date character vector | datetime object

Option exercise dates, specified as an NINST-by-1 matrix of serial date numbers, date character
vectors, or datetime objects.

Note For a European option, the option expiry date has only one ExerciseDates value, which is the
maturity of the instrument.

Data Types: double | char | datetime

BarrierSpec — Double barrier option type
cell array of character vectors with values of 'DKI' or 'DKO' | string array with values of "DKI" or
"DKO"

Double barrier option type, specified as an NINST-by-1 cell array of character vectors or string array
with the following values:

• 'DKI' — Double Knock-in

The 'DKI' option becomes effective when the price of the underlying asset reaches one of the
barriers. It gives the option holder the right but not the obligation to buy or sell the underlying
security at the strike price, if the underlying asset goes above or below the barrier levels during
the life of the option.

• 'DKO' — Double Knock-out

The 'DKO' option gives the option holder the right but not the obligation to buy or sell the
underlying security at the strike price, as long as the underlying asset remains between the
barrier levels during the life of the option. This option terminates when the price of the underlying
asset passes one of the barriers.

Option Barrier Type Payoff If Any Barrier
Crossed

Payoff If Barriers Not
Crossed

Call/Put Double Knock-in Standard Call/Put Worthless
Call/Put Double Knock-out Worthless Standard Call/Put

Data Types: char | cell | string

Barrier — Double barrier value
matrix

Double barrier value, specified as NINST-by-1 matrix of numeric values, where each element is a 1-
by-2 vector where the first column is Barrier(1)(UB) and the second column is Barrier(2)(LB).
Barrier(1) must be greater than Barrier(2).

 dblbarriersensbybls

11-143



Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: PriceSens =
dblbarriersensbybls(RateSpec,StockSpec,OptSpec,Strike,Settle,Maturity,Barrier
Spec,Barrier,'Curvature',[1,5],'OutSpec','Delta')

Curvature — Curvature levels of the upper and lower barriers
[] (default) | matrix

Curvature levels of the upper and lower barriers, specified as the comma-separated pair consisting of
'Curvature' and an NINST-by-1 matrix of numeric values, where each element is a 1-by-2 vector.
The first column is the upper barrier curvature (d1) and the second column is the lower barrier
curvature (d2).

• d1 = d2 = 0 corresponds to two flat boundaries.
• d1 < 0 < d2 corresponds to an exponentially growing lower boundary and an exponentially

decaying upper boundary.
• d1 > 0 > d2 corresponds to a convex downward lower boundary and a convex upward upper

boundary.

Data Types: double

OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma', 'Vega',
'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with values 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All' | string array with values
"Price", "Delta", "Gamma", "Vega", "Lambda", "Rho", "Theta", and "All"

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a NOUT- by-1 or
a 1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output is Delta, Gamma, Vega, Lambda, Rho, Theta, and
Price, in that order. This is the same as specifying OutSpec to include each sensitivity.
Example: OutSpec = {'delta','gamma','vega','lambda','rho','theta','price'}
Data Types: char | cell

Output Arguments
PriceSens — Expected prices or sensitivities for double barrier options
matrix

Expected prices at time 0 or sensitivities (defined using OutSpec) for double barrier options,
returned as a NINST-by-1 matrix.
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More About
Double Barrier Option

A double barrier option is similar to the standard single barrier option except that it has two barrier
levels: a lower barrier (LB) and an upper barrier (UB).

The payoff for a double barrier option depends on whether the underlying asset remains between the
barrier levels during the life of the option. Double barrier options are less expensive than single
barrier options as they have a higher knock-out probability. Because of this, double barrier options
allow investors to reduce option premiums and match an investor’s belief about the future movement
of the underlying price process.

Ikeda and Kunitomo Approximation

The analytical formulas of Ikeda and Kunitomo approach pricing as constrained by curved
boundaries.

This approach has the advantage of covering barriers that are flat, have exponential growth or decay,
or are concave. The Ikeda and Kunitomo model for pricing double barrier options focuses on
calculating double knock-out barriers.
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barrierbyitt
Price barrier options using implied trinomial tree (ITT)

Syntax
[Price,PriceTree] = barrierbyitt(ITTTree,OptSpec,Strike,Settle,AmericanOpt,
ExerciseDates,BarrierSpec,Barrier)
[Price,PriceTree] = barrierbyitt( ___ ,Rebate,Options)

Description
[Price,PriceTree] = barrierbyitt(ITTTree,OptSpec,Strike,Settle,AmericanOpt,
ExerciseDates,BarrierSpec,Barrier) calculates prices for barrier options using implied
trinomial tree (ITT).

[Price,PriceTree] = barrierbyitt( ___ ,Rebate,Options) adds optional arguments for
Rebate and Options.

Examples

Price a Barrier Option Using an ITT Tree

This example shows how to price a barrier option using an ITT tree by loading the file deriv.mat,
which provides ITTTree. The ITTTree structure contains the stock specification and time information
needed to price the option.

load deriv.mat;

OptSpec = 'Call';
Strike =  85;
Settle = '01-Jan-2006';
ExerciseDates = '31-Dec-2008';
AmericanOpt = 1;
BarrierSpec = 'UI';
Barrier =  115;

Price = barrierbyitt(ITTTree,OptSpec,Strike,Settle,ExerciseDates,AmericanOpt,...
BarrierSpec,Barrier)

Price = 2.4074

Input Arguments
ITTTree — Stock tree structure
structure

Stock tree structure, specified by using itttree.
Data Types: struct
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OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors with values 'call'
or 'put'

Definition of an option as 'call' or 'put', specified as a NINST-by-1 cell array of character vector
values.
Data Types: char | cell

Strike — Option strike price value
numeric

Option strike price value for a European or an American Option, specified as NINST-by-1 matrix of
numeric values. Each row is the schedule for one option.
Data Types: double

Settle — Settlement or trade date
serial date number | date character vector

Settlement or trade date for the barrier option, specified as a NINST-by-1 matrix of serial date
numbers or date character vectors. The Settle date for every barrier is set to the ValuationDate
of the stock tree. The barrier argument Settle is ignored.
Data Types: double | char

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a serial date number or a date character vector:

• For a European option, use a NINST-by-1 matrix of dates. Each row is the schedule for one option.
For a European option, there is only one ExerciseDates on the option expiry date which is the
maturity of the instrument.

• For an American option, use a NINST-by-2 vector of exercise date boundaries. For each
instrument, the option can be exercised on any date between or including the pair of dates on that
row. If only one non-NaN date is listed, or if ExerciseDates is an NINST-by-1, the option can be
exercised between ValuationDate of the stock tree and the single listed date in
ExerciseDates.

Data Types: double | char | cell

AmericanOpt — Option type
option type values 0 or 1

Option type, specified as NINST-by-1 flags with values:

• 0 — European
• 1 — American

Data Types: double

BarrierSpec — Barrier option type
character vector with values: 'UI', 'UO', 'DI', 'DO' | cell array of character vectors with values:
'UI', 'UO', 'DI', 'DO'
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Barrier option type, specified as a character vector or a cell array of character vectors with the
following values:

• 'UI' — Up Knock-in

This option becomes effective when the price of the underlying asset passes above the barrier
level. It gives the option holder the right, but not the obligation, to buy or sell (call/put) the
underlying security at the strike price if the underlying asset goes above the barrier level during
the life of the option. Note, barrierbyfd does not support American knock-in barrier options.

• 'UO' — Up Knock-out

This option gives the option holder the right, but not the obligation, to buy or sell (call/put) the
underlying security at the strike price as long as the underlying asset does not go above the
barrier level during the life of the option. This option terminates when the price of the underlying
asset passes above the barrier level. Usually, with an up-and-out option, the rebate is paid if the
spot price of the underlying reaches or exceeds the barrier level.

• 'DI' — Down Knock-in

This option becomes effective when the price of the underlying stock passes below the barrier
level. It gives the option holder the right, but not the obligation, to buy or sell (call/put) the
underlying security at the strike price if the underlying security goes below the barrier level
during the life of the option. With a down-and-in option, the rebate is paid if the spot price of the
underlying does not reach the barrier level during the life of the option. Note, barrierbyfd does
not support American knock-in barrier options.

• 'DO' — Down Knock-up

This option gives the option holder the right, but not the obligation, to buy or sell (call/put) the
underlying asset at the strike price as long as the underlying asset does not go below the barrier
level during the life of the option. This option terminates when the price of the underlying security
passes below the barrier level. Usually the option holder receives a rebate amount if the option
expires worthless.

Option Barrier Type Payoff if Barrier Crossed Payoff if Barrier not
Crossed

Call/Put Down Knock-out Worthless Standard Call/Put
Call/Put Down Knock-in Call/Put Worthless
Call/Put Up Knock-out Worthless Standard Call/Put
Call/Put Up Knock-in Standard Call/Put Worthless

Data Types: char | cell

Barrier — Barrier level
numeric

Barrier level, specified as an NINST-by-1 matrix of numeric values.
Data Types: double

Rebate — Rebate value
0 (default) | numeric
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(Optional) Rebate value, specified as a NINST-by-1 matrix of numeric values. For Knock-in options,
the Rebate is paid at expiry. For Knock-out options, the Rebate is paid when the Barrier is
reached.
Data Types: double

Options — Derivatives pricing options
structure

(Optional) Derivatives pricing options, specified as structure that is created with derivset.
Data Types: struct

Output Arguments
Price — Expected prices for barrier options at time 0
vector

Expected prices for barrier options at time 0, returned as a NINST-by-1 vector.

PriceTree — Structure with vector of barrier option prices at each node
tree structure

Structure with a vector of barrier option prices at each node, returned as a tree structure.

PriceTree is a MATLAB structure of trees containing vectors of instrument prices and a vector of
observation times for each node.

PriceTree.PTree contains the prices.

PriceTree.tObs contains the observation times.

PriceTree.dObs contains the observation dates.

More About
Barrier Option

A Barrier option has not only a strike price but also a barrier level and sometimes a rebate.

A rebate is a fixed amount that is paid if the option cannot be exercised because the barrier level has
been reached or not reached. The payoff for this type of option depends on whether the underlying
asset crosses the predetermined trigger value (barrier level), indicated by Barrier, during the life of
the option. For more information, see “Barrier Option” on page 3-20.

References
[1] Derman, E., I. Kani, D. Ergener and I. Bardhan. “Enhanced Numerical Methods for Options with

Barriers.” Financial Analysts Journal. (Nov.-Dec.), 1995, pp. 65–74.

See Also
itttree | instbarrier
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Topics
“Computing Prices Using CRR” on page 3-65
“Graphical Representation of Equity Derivative Trees” on page 3-73
“Pricing European Call Options Using Different Equity Models” on page 3-88
“Barrier Option” on page 3-20
“Pricing Options Structure” on page A-2
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2007a
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barrierbystt
Price barrier options using standard trinomial tree

Syntax
[Price,PriceTree] = barrierbystt(STTTree,OptSpec,Strike,Settle,ExerciseDates,
AmericanOpt,BarrierSpec,Barrier)
[Price,PriceTree] = barrierbystt( ___ ,Name,Value)

Description
[Price,PriceTree] = barrierbystt(STTTree,OptSpec,Strike,Settle,ExerciseDates,
AmericanOpt,BarrierSpec,Barrier) prices barrier options using a standard trinomial (STT)
tree.

[Price,PriceTree] = barrierbystt( ___ ,Name,Value) prices barrier options using a
standard trinomial (STT) tree with an optional name-value pair argument for Rebate and Options.

Examples

Price a Barrier Option Using the Standard Trinomial Tree Model

Create a RateSpec.

StartDates = 'Jan-1-2009'; 
EndDates = 'Jan-1-2013'; 
Rates = 0.035; 
Basis = 1; 
Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates,'Compounding', Compounding, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.8694
            Rates: 0.0350
         EndTimes: 4
       StartTimes: 0
         EndDates: 735235
       StartDates: 733774
    ValuationDate: 733774
            Basis: 1
     EndMonthRule: 1

Create a StockSpec.

AssetPrice = 85; 
Sigma = 0.15; 
StockSpec = stockspec(Sigma, AssetPrice)
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StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1500
         AssetPrice: 85
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Create an STTTree.

NumPeriods = 4;
TimeSpec = stttimespec(StartDates, EndDates, 4);
STTTree = stttree(StockSpec, RateSpec, TimeSpec)

STTTree = struct with fields:
       FinObj: 'STStockTree'
    StockSpec: [1x1 struct]
     TimeSpec: [1x1 struct]
     RateSpec: [1x1 struct]
         tObs: [0 1 2 3 4]
         dObs: [733774 734139 734504 734869 735235]
        STree: {1x5 cell}
        Probs: {[3x1 double]  [3x3 double]  [3x5 double]  [3x7 double]}

Define the barrier option and compute the price.

Settle = '1/1/09';
ExerciseDates = '1/1/12';
OptSpec =  'call';
Strike = 105;
AmericanOpt = 1;
BarrierSpec = 'UI';
Barrier = 115;

Price= barrierbystt(STTTree, OptSpec, Strike, Settle, ExerciseDates,...
AmericanOpt, BarrierSpec, Barrier)

Price = 3.7977

Input Arguments
STTTree — Stock tree structure for standard trinomial tree
structure

Stock tree structure for a standard trinomial tree, specified by using stttree.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'

Definition of option, specified as 'call' or 'put' using a character vector or a NINST-by-1 cell
array of character vectors for 'call' or 'put'.
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Data Types: char | cell

Strike — European or American option strike price value
nonnegative numeric

European or American option strike price value, specified with a nonnegative integer using a NINST-
by-1 matrix of nonnegative numeric values. Each row is the schedule for one option. To compute the
value of a floating-strike barrier option, Strike should be specified as NaN. Floating-strike barrier
options are also known as average strike options.
Data Types: double

Settle — Settlement date or trade date
serial date number | date character vector

Settlement date or trade date for the barrier option, specified as a NINST-by-1 matrix of settlement or
trade dates using serial date numbers or date character vectors.

Note The Settle date for every barrier option is set to the ValuationDate of the stock tree. The
barrier argument, Settle, is ignored.

Data Types: double | char | cell

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a serial date number or date character vector:

• For a European option, use aNINST-by-1 matrix of exercise dates. Each row is the schedule for
one option. For a European option, there is only one ExerciseDates on the option expiry date.

• For an American option, use a NINST-by-2 vector of exercise date boundaries. The option can be
exercised on any tree date between or including the pair of dates on that row. If only one non-NaN
date is listed, or if ExerciseDates is a NINST-by-1 vector of serial date numbers or cell array of
character vectors, the option can be exercised between ValuationDate of the stock tree and the
single listed ExerciseDates.

Data Types: double | char | cell

AmericanOpt — Option type
scalar with values [0,1]

Option type, specified as an NINST-by-1 matrix of flags with values:

• 0 — European
• 1 — American

Data Types: double

BarrierSpec — Barrier option type
character vector with values: 'UI', 'UO', 'DI', 'DO' | cell array of character vectors with values:
'UI', 'UO', 'DI', 'DO'

Barrier option type, specified as a character vector or an NINST-by-1 cell array of character vectors
with the following values:
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• 'UI' — Up Knock-in

This option becomes effective when the price of the underlying asset passes above the barrier
level. It gives the option holder the right, but not the obligation, to buy or sell (call/put) the
underlying security at the strike price if the underlying asset goes above the barrier level during
the life of the option. Note, barrierbyfd does not support American knock-in barrier options.

• 'UO' — Up Knock-out

This option gives the option holder the right, but not the obligation, to buy or sell (call/put) the
underlying security at the strike price as long as the underlying asset does not go above the
barrier level during the life of the option. This option terminates when the price of the underlying
asset passes above the barrier level. Usually, with an up-and-out option, the rebate is paid if the
spot price of the underlying reaches or exceeds the barrier level.

• 'DI' — Down Knock-in

This option becomes effective when the price of the underlying stock passes below the barrier
level. It gives the option holder the right, but not the obligation, to buy or sell (call/put) the
underlying security at the strike price if the underlying security goes below the barrier level
during the life of the option. With a down-and-in option, the rebate is paid if the spot price of the
underlying does not reach the barrier level during the life of the option. Note, barrierbyfd does
not support American knock-in barrier options.

• 'DO' — Down Knock-up

This option gives the option holder the right, but not the obligation, to buy or sell (call/put) the
underlying asset at the strike price as long as the underlying asset does not go below the barrier
level during the life of the option. This option terminates when the price of the underlying security
passes below the barrier level. Usually the option holder receives a rebate amount if the option
expires worthless.

Option Barrier Type Payoff if Barrier Crossed Payoff if Barrier not
Crossed

Call/Put Down Knock-out Worthless Standard Call/Put
Call/Put Down Knock-in Call/Put Worthless
Call/Put Up Knock-out Worthless Standard Call/Put
Call/Put Up Knock-in Standard Call/Put Worthless

Data Types: char | cell

Barrier — Barrier levels
numeric

Barrier levels, specified as an NINST-by-1 matrix of numeric values.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
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Example: Price =
barrierbystt(STTTree,OptSpec,Strike,Settle,ExerciseDates,1,'UI',115,'Rebate',
25)

Rebate — Rebate values
0 (default) | numeric

Rebate values, specified as the comma-separated pair consisting of 'Rebate' and a NINST-by-1
matrix of numeric values. For Knock-in options, the Rebate is paid at expiry. For Knock-out options,
the Rebate is paid when theBarrier is reached.
Data Types: double

Options — Derivatives pricing options
structure

Derivatives pricing options, specified as the comma-separated pair consisting of 'Options' and a
structure that is created with derivset.
Data Types: struct

Output Arguments
Price — Expected prices for barrier options at time 0
matrix

Expected prices for barrier options at time 0, returned as a NINST-by-1 matrix.

PriceTree — Structure with vector of barrier option prices at each node
tree structure

Structure with a vector of barrier option prices at each node, returned as a tree structure.

PriceTree is a MATLAB structure of trees containing vectors of instrument prices and a vector of
observation times for each node.

PriceTree.PTree contains the prices.

PriceTree.tObs contains the observation times.

PriceTree.dObs contains the observation dates.

More About
Barrier Option

A Barrier option has not only a strike price but also a barrier level and sometimes a rebate.

A rebate is a fixed amount that is paid if the option cannot be exercised because the barrier level has
been reached or not reached. The payoff for this type of option depends on whether the underlying
asset crosses the predetermined trigger value (barrier level), indicated by Barrier, during the life of
the option. For more information, see “Barrier Option” on page 3-20.
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References
[1] Derman, E., I. Kani, D. Ergener and I. Bardhan. “Enhanced Numerical Methods for Options with

Barriers.” Financial Analysts Journal. (Nov.-Dec.), 1995, pp. 65–74.

See Also
stttimespec | stttree | sttprice | sttsens | derivset | instbarrier

Topics
“Barrier Option” on page 3-20
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2015b
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basketbyju
Price European basket options using Nengjiu Ju approximation model

Syntax
Price = basketbyju(RateSpec,BasketStockSpec,OptSpec,Strike,Settle,Maturity)

Description
Price = basketbyju(RateSpec,BasketStockSpec,OptSpec,Strike,Settle,Maturity)
prices European basket options using the Nengjiu Ju approximation model.

Examples

Price European Basket Options Using Nengjiu Ju Approximation Model

Find a European call basket option of two stocks. Assume that the stocks are currently trading at $10
and $11.50 with annual volatilities of 20% and 25%, respectively. The basket contains one unit of the
first stock and one unit of the second stock. The correlation between the assets is 30%. On January 1,
2009, an investor wants to buy a 1-year call option with a strike price of $21.50. The current
annualized, continuously compounded interest rate is 5%. Use this data to compute the price of the
call basket option with the Nengjiu Ju approximation model.

Settle = 'Jan-1-2009';
Maturity  = 'Jan-1-2010';

% Define the RateSpec.
Rate = 0.05;
Compounding = -1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', ...
Settle, 'EndDates', Maturity, 'Rates', Rate, 'Compounding', Compounding);

% Define the Correlation matrix. Correlation matrices are symmetric and
% have ones along the main diagonal.
Corr = [1 0.30; 0.30 1];

% Define the BasketStockSpec.
AssetPrice =  [10;11.50]; 
Volatility = [0.2;0.25];
Quantity = [1;1];
BasketStockSpec = basketstockspec(Volatility, AssetPrice, Quantity, Corr);

% Compute the price of the call basket option.
OptSpec = {'call'};
Strike = 21.5;
PriceCorr30 = basketbyju(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, Maturity)

PriceCorr30 = 2.1221

Compute the price of the basket instrument for these two stocks with a correlation of 60%. Then
compare this cost to the total cost of buying two individual call options.
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Corr = [1 0.60; 0.60 1];

% Define the new BasketStockSpec.
BasketStockSpec = basketstockspec(Volatility, AssetPrice, Quantity, Corr);

% Compute the price of the call basket option with Correlation = -0.60
PriceCorr60 = basketbyju(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, Maturity)

PriceCorr60 = 2.2757

The following table summarizes the sensitivity of the option to correlation changes. In general, the
premium of the basket option decreases with lower correlation and increases with higher correlation.

Compute the cost of two vanilla 1-year call options using the Black-Scholes (BLS) model on the
individual assets:

StockSpec = stockspec(Volatility, AssetPrice);
StrikeVanilla= [10;11.5];

PriceVanillaOption = optstockbybls(RateSpec, StockSpec, Settle, Maturity,...
OptSpec, StrikeVanilla)

PriceVanillaOption = 2×1

    1.0451
    1.4186

Find the total cost of buying two individual call options.

sum(PriceVanillaOption) 

ans = 2.4637

The total cost of purchasing two individual call options is $2.4637, compared to the maximum cost of
the basket option of $2.27 with a correlation of 60%.

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

BasketStockSpec — BasketStock specification
structure

BasketStock specification, specified using basketstockspec.
Data Types: struct
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OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors with values 'call'
or 'put'

Definition of the option as 'call' or 'put', specified as a character vector or a 2-by-1 cell array of
character vectors.
Data Types: char | cell

Strike — Option strike price value
scalar numeric | vector

Option strike price value, specified as one of the following:

• For a European or Bermuda option, Strike is a scalar (European) or 1-by-NSTRIKES (Bermuda)
vector of strike prices.

• For an American option, Strike is a scalar vector of the strike price.

Data Types: double

Settle — Settlement or trade date
serial date number | date character vector

Settlement or trade date for the basket option, specified as a scalar serial date number or date
character vector.
Data Types: double | char

Maturity — Maturity date
serial date number | date character vector

Maturity date for the basket option, specified as a scalar serial date number or date character vector.
Data Types: double | char

Output Arguments
Price — Expected price for basket option
numeric

Expected price for basket option, returned as a numeric.

More About
Basket Option

A basket option is an option on a portfolio of several underlying equity assets.

Payout for a basket option depends on the cumulative performance of the collection of the individual
assets. A basket option tends to be cheaper than the corresponding portfolio of plain vanilla options
for these reasons:

• If the basket components correlate negatively, movements in the value of one component
neutralize opposite movements of another component. Unless all the components correlate
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perfectly, the basket option is cheaper than a series of individual options on each of the assets in
the basket.

• A basket option minimizes transaction costs because an investor has to purchase only one option
instead of several individual options.

For more information, see “Basket Option” on page 3-22.

References
[1] Nengjiu Ju. “Pricing Asian and Basket Options Via Taylor Expansion.” Journal of Computational

Finance. Vol. 5, 2002.

See Also
basketstockspec | basketsensbyju

Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-79
“Basket Option” on page 3-22
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2009b

11 Functions

11-160



basketbyls
Price European or American basket options using Monte Carlo simulations

Syntax
[Price,Paths,Times,Z] = basketbyls(RateSpec,BasketStockSpec,OptSpec,Strike,
Settle,ExerciseDates)
[Price,Paths,Times,Z] = basketbyls( ___ ,Name,Value)

Description
[Price,Paths,Times,Z] = basketbyls(RateSpec,BasketStockSpec,OptSpec,Strike,
Settle,ExerciseDates) prices basket options using the Longstaff-Schwartz model.

For American options, the Longstaff-Schwartz least squares method is used to calculate the early
exercise premium.

[Price,Paths,Times,Z] = basketbyls( ___ ,Name,Value) specifies options using one or
more name-value pair arguments in addition to the input arguments in the previous syntax.

Examples

Prices Basket Options Using the Longstaff-Schwartz Model

Find an American call basket option of three stocks. The stocks are currently trading at $35, $40 and
$45 with annual volatilities of 12%, 15% and 18%, respectively. The basket contains 33.33% of each
stock. Assume the correlation between all pair of assets is 50%. On May 1, 2009, an investor wants to
buy a three-year call option with a strike price of $42. The current annualized continuously
compounded interest rate is 5%. Use this data to compute the price of the call basket option using the
Longstaff-Schwartz model.

Settle = 'May-1-2009';
Maturity  = 'May-1-2012';

% Define RateSpec
Rate = 0.05;
Compounding = -1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates',...
Settle, 'EndDates', Maturity, 'Rates', Rate, 'Compounding', Compounding);

% Define the Correlation matrix. Correlation matrices are symmetric,
% and have ones along the main diagonal.
Corr = [1 0.50 0.50; 0.50 1 0.50;0.50 0.50 1];

% Define BasketStockSpec
AssetPrice =  [35;40;45]; 
Volatility = [0.12;0.15;0.18];
Quantity = [0.333;0.333;0.333];
BasketStockSpec = basketstockspec(Volatility, AssetPrice, Quantity, Corr);
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% Compute the price of the call basket option
OptSpec = {'call'};
Strike = 42;
AmericanOpt = 1; % American option
Price = basketbyls(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, Maturity,...
'AmericanOpt',AmericanOpt)

Price = 5.4687

Increase the number of simulation trials to 2000 to give the following results:

NumTrial = 2000;
Price = basketbyls(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, Maturity,...
'AmericanOpt',AmericanOpt,'NumTrials',NumTrial)

Price = 5.5501

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

BasketStockSpec — BasketStock specification
structure

BasketStock specification, specified using basketstockspec.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors with values 'call'
or 'put'

Definition of the option as 'call' or 'put', specified as a character vector or a 2-by-1 cell array of
character vectors.
Data Types: char | cell

Strike — Option strike price value
scalar numeric | vector

Option strike price value, specified as one of the following:

• For a European or Bermuda option, Strike is a scalar (European) or 1-by-NSTRIKES (Bermuda)
vector of strike prices.

• For an American option, Strike is a scalar vector of the strike price.

Data Types: double

Settle — Settlement or trade date
serial date number | date character vector
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Settlement or trade date for the basket option, specified as a scalar serial date number or date
character vector.
Data Types: double | char

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a serial date number or date character vector:

• For a European or Bermuda option, ExerciseDates is a 1-by-1 (European) or 1-by-NSTRIKES
(Bermuda) vector of exercise dates. For a European option, there is only one ExerciseDate on
the option expiry date.

• For an American option, ExerciseDates is a 1-by-2 vector of exercise date boundaries. The
option exercises on any date between, or including, the pair of dates on that row. If there is only
one non-NaN date, or if ExerciseDates is 1-by-1, the option exercises between the Settle date
and the single listed ExerciseDate.

Data Types: double | char | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Price = basketbyls(RateSpec,BasketStockSpec,OptSpec,
Strike,Settle,Maturity,'AmericanOpt',AmericanOpt,'NumTrials',NumTrial)

AmericanOpt — Option type
0 (European/Bermuda) (default) | values [0,1]

Option type, specified as the comma-separated pair consisting of 'AnericanOpt' and a NINST-by-1
positive integer scalar flags with values:

• 0 — European/Bermuda
• 1 — American

Note For American options, the Longstaff-Schwartz least squares method is used to calculate the
early exercise premium. For more information on the least squares method, see https://
people.math.ethz.ch/%7Ehjfurrer/teaching/
LongstaffSchwartzAmericanOptionsLeastSquareMonteCarlo.pdf.

Data Types: double

NumPeriods — Number of simulation periods per trial
100 (default) | nonnegative integer

Number of simulation periods per trial, specified as the comma-separated pair consisting of
'NumPeriods' and a scalar nonnegative integer.
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Note NumPeriods is considered only when pricing European basket options. For American and
Bermuda basket options, NumPeriod equals the number of exercise days during the life of the option.

Data Types: double

NumTrials — Number of independent sample paths (simulation trials)
1000 (default) | nonnegative integer

Number of independent sample paths (simulation trials), specified as the comma-separated pair
consisting of 'NumTrials' and a scalar nonnegative integer.
Data Types: double

Z — Time series array of dependent random variates
vector

Time series array of dependent random variates, specified as the comma-separated pair consisting of
'Z' and a NumPeriods-by-NINST-by-NumTrials 3-D time series array. The Z value generates the
Brownian motion vector (that is, Wiener processes) that drives the simulation.
Data Types: double

Antithetic — Indicator for antithetic sampling
false (default) | scalar logical flag with value of true or false

Indicator for antithetic sampling, specified as the comma-separated pair consisting of 'Antithetic'
and a value of true or false.
Data Types: logical

Output Arguments
Price — Expected prices for basket option
matrix

Expected prices for basket option, returned as a NINST-by-1 matrix.

Paths — Simulated paths of correlated state variables
vector

Simulated paths of correlated state variables, returned as a NumPeriods + 1-by-1-by-NumTrials 3-
D time series array of simulated paths of correlated state variables. Each row of Paths is the
transpose of the state vector X(t) at time t for a given trial.

Times — Observation times associated with simulated paths
vector

Observation times associated with simulated paths, returned as a NumPeriods + 1-by-1 column
vector of observation times associated with the simulated paths. Each element of Times is associated
with the corresponding row of Paths.

Z — Time series array of dependent random variates
vector
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Time series array of dependent random variates, returned as a NumPeriods-by-1-by-NumTrials 3-D
array when Z is specified as an input argument. If the Z input argument is not specified, then the Z
output argument contains the random variates generated internally.

More About
Basket Option

A basket option is an option on a portfolio of several underlying equity assets.

Payout for a basket option depends on the cumulative performance of the collection of the individual
assets. A basket option tends to be cheaper than the corresponding portfolio of plain vanilla options
for these reasons:

• If the basket components correlate negatively, movements in the value of one component
neutralize opposite movements of another component. Unless all the components correlate
perfectly, the basket option is cheaper than a series of individual options on each of the assets in
the basket.

• A basket option minimizes transaction costs because an investor has to purchase only one option
instead of several individual options.

For more information, see “Basket Option” on page 3-22.

References
[1] Longstaff, F.A., and E.S. Schwartz. “Valuing American Options by Simulation: A Simple Least-

Squares Approach.” The Review of Financial Studies. Vol. 14, No. 1, Spring 2001, pp. 113–
147.

See Also
basketstockspec | basketsensbyls

Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-79
“Basket Option” on page 3-22
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2009b
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basketsensbyju
Determine European basket options price or sensitivities using Nengjiu Ju approximation model

Syntax
PriceSens = basketsensbyju(RateSpec,BasketStockSpec,OptSpec,Strike,Settle,
Maturity)
PriceSens = basketsensbyju( ___ ,Name,Value)

Description
PriceSens = basketsensbyju(RateSpec,BasketStockSpec,OptSpec,Strike,Settle,
Maturity) calculates prices or sensitivities for basket options using the Nengjiu Ju approximation
model.

PriceSens = basketsensbyju( ___ ,Name,Value) specifies options using one or more name-
value pair arguments in addition to the input arguments in the previous syntax.

Examples

Calculate Prices and Sensitivities for Basket Options Using the Nengjiu Ju Approximation
Model

Find a European call basket option of five stocks. Assume that the basket contains:

• 5% of the first stock trading at $110
• 15% of the second stock trading at $75
• 20% of the third stock trading at $40
• 25% of the fourth stock trading at $125
• 35% of the fifth stock trading at $92

These stocks have annual volatilities of 20% and the correlation between the assets is zero. On May
1, 2009, an investor wants to buy a 1-year call option with a strike price of $90. The current
annualized, continuously compounded interest is 5%. Use this data to compute price and delta of the
call basket option with the Ju approximation model.

Settle = 'May-1-2009';
Maturity  = 'May-1-2010';

% Define RateSpec
Rate = 0.05;
Compounding = -1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', ...
Settle, 'EndDates', Maturity, 'Rates', Rate, 'Compounding', Compounding);

% Define the Correlation matrix. Correlation matrices are symmetric, and
% have ones along the main diagonal.
NumInst  = 5;
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InstIdx = ones(NumInst,1);
Corr = diag(ones(5,1), 0);

% Define BasketStockSpec
AssetPrice =  [110; 75; 40; 125; 92]; 
Volatility = 0.2;
Quantity = [0.05; 0.15; 0.2; 0.25; 0.35];
BasketStockSpec = basketstockspec(Volatility, AssetPrice, Quantity, Corr);

% Compute the price of the call basket option. Calculate also the delta 
% of the first stock.
OptSpec = {'call'};
Strike = 90;
OutSpec = {'Price','Delta'}; 
UndIdx = 1; % First element in the basket
[Price, Delta] = basketsensbyju(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, ...
Maturity, 'OutSpec', OutSpec,'UndIdx', UndIdx)

Price = 5.1610

Delta = 0.0297

Compute Delta with respect to the second asset:

UndIdx = 2; % Second element in the basket
OutSpec = {'Delta'}; 
Delta = basketsensbyju(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, Maturity, ...
'OutSpec',OutSpec,'UndIdx',UndIdx)

Delta = 0.0906

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

BasketStockSpec — BasketStock specification
structure

BasketStock specification, specified using basketstockspec.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors with values 'call'
or 'put'

Definition of the option as 'call' or 'put', specified as a character vector or a 2-by-1 cell array of
character vectors.
Data Types: char | cell
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Strike — Option strike price value
scalar numeric | vector

Option strike price value, specified as one of the following:

• For a European or Bermuda option, Strike is a scalar (European) or 1-by-NSTRIKES (Bermuda)
vector of strike prices.

• For an American option, Strike is a scalar vector of the strike price.

Data Types: double

Settle — Settlement or trade date
serial date number | date character vector

Settlement or trade date for the basket option, specified as a scalar serial date number or date
character vector.
Data Types: double | char

Maturity — Maturity date
serial date number | date character vector

Maturity date for the basket option, specified as a scalar serial date number or date character vector.
Data Types: double | char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: PriceSens = basketsensbyju(RateSpec,BasketStockSpec,OptSpec,
Strike,Settle,Maturity,'OutSpec','delta')

OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma', 'Vega',
'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with values 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a NOUT- by-1 or
a 1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output is Delta, Gamma, Vega, Lambda, Rho, Theta, and
Price, in that order. This is the same as specifying OutSpec to include each sensitivity.
Example: OutSpec = {'delta','gamma','vega','lambda','rho','theta','price'}
Data Types: char | cell

UndIdx — Index of the underlying instrument to compute the sensitivity
[] (default) | scalar numeric

Index of the underlying instrument to compute the sensitivity, specified as the comma-separated pair
consisting of 'UndIdx' and a scalar numeric.
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Data Types: double

Output Arguments
PriceSens — Expected prices or sensitivities for basket option
matrix

Expected prices or sensitivities (defined using OutSpec) for basket option, returned as a NINST-by-1
matrix.

More About
Basket Option

A basket option is an option on a portfolio of several underlying equity assets.

Payout for a basket option depends on the cumulative performance of the collection of the individual
assets. A basket option tends to be cheaper than the corresponding portfolio of plain vanilla options
for these reasons:

• If the basket components correlate negatively, movements in the value of one component
neutralize opposite movements of another component. Unless all the components correlate
perfectly, the basket option is cheaper than a series of individual options on each of the assets in
the basket.

• A basket option minimizes transaction costs because an investor has to purchase only one option
instead of several individual options.

For more information, see “Basket Option” on page 3-22.

References
[1] Nengjiu Ju. “Pricing Asian and Basket Options Via Taylor Expansion.” Journal of Computational

Finance. Vol. 5, 2002.

See Also
basketstockspec | basketbyju

Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-79
“Basket Option” on page 3-22
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2009b
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basketsensbyls
Calculate price and sensitivities for European or American basket options using Monte Carlo
simulations

Syntax
[PriceSens,Paths,Times,Z] = basketsensbyls(RateSpec,BasketStockSpec,OptSpec,
Strike,Settle,ExerciseDates)
[PriceSens,Paths,Times,Z] = basketsensbyls( ___ ,Name,Value)

Description
[PriceSens,Paths,Times,Z] = basketsensbyls(RateSpec,BasketStockSpec,OptSpec,
Strike,Settle,ExerciseDates) calculates price and sensitivities for European or American
basket options using the Longstaff-Schwartz model.

For American options, the Longstaff-Schwartz least squares method is used to calculate the early
exercise premium.

[PriceSens,Paths,Times,Z] = basketsensbyls( ___ ,Name,Value) specifies options using
one or more name-value pair arguments in addition to the input arguments in the previous syntax.

Examples

Calculate Price and Sensitivities for Basket Options Using the Longstaff-Schwartz Model

Find a European put basket option of two stocks. The basket contains 50% of each stock. The stocks
are currently trading at $90 and $75, with annual volatilities of 15%. Assume that the correlation
between the assets is zero. On May 1, 2009, an investor wants to buy a one-year put option with a
strike price of $80. The current annualized, continuously compounded interest is 5%. Use this data to
compute price and delta of the put basket option with the Longstaff-Schwartz approximation model.

Settle = 'May-1-2009';
Maturity  = 'May-1-2010';

% Define RateSpec
Rate = 0.05;
Compounding = -1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates',...
Settle, 'EndDates', Maturity, 'Rates', Rate, 'Compounding', Compounding);

% Define the Correlation matrix. Correlation matrices are symmetric, 
% and have ones along the main diagonal.
NumInst  = 2;
InstIdx = ones(NumInst,1);
Corr = diag(ones(NumInst,1), 0);

% Define BasketStockSpec
AssetPrice =  [90; 75]; 
Volatility = 0.15;
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Quantity = [0.50; 0.50];
BasketStockSpec = basketstockspec(Volatility, AssetPrice, Quantity, Corr);

% Compute the price of the put basket option. Calculate also the delta 
% of the first stock.
OptSpec = {'put'};
Strike = 80;
OutSpec = {'Price','Delta'}; 
UndIdx = 1; % First element in the basket
                                     
[PriceSens, Delta] = basketsensbyls(RateSpec, BasketStockSpec, OptSpec,...
Strike, Settle, Maturity,'OutSpec', OutSpec,'UndIdx', UndIdx)

PriceSens = 0.9822

Delta = -0.0995

Compute the Price and Delta of the basket with a correlation of -20%:

NewCorr = [1 -0.20; -0.20 1];

% Define the new BasketStockSpec.
BasketStockSpec = basketstockspec(Volatility, AssetPrice, Quantity, NewCorr);

% Compute the price and delta of the put basket option. 
[PriceSens, Delta] = basketsensbyls(RateSpec, BasketStockSpec, OptSpec,...
Strike, Settle, Maturity,'OutSpec', OutSpec,'UndIdx', UndIdx)

PriceSens = 0.7814

Delta = -0.0961

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

BasketStockSpec — BasketStock specification
structure

BasketStock specification, specified using basketstockspec.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors with values 'call'
or 'put'

Definition of the option as 'call' or 'put', specified as a character vector or a 2-by-1 cell array of
character vectors.
Data Types: char | cell
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Strike — Option strike price value
scalar numeric | vector

Option strike price value, specified as one of the following:

• For a European or Bermuda option, Strike is a scalar (European) or 1-by-NSTRIKES (Bermuda)
vector of strike prices.

• For an American option, Strike is a scalar vector of the strike price.

Data Types: double

Settle — Settlement or trade date
serial date number | date character vector

Settlement or trade date for the basket option, specified as a scalar serial date number or date
character vector.
Data Types: double | char

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a serial date number or date character vector:

• For a European or Bermuda option, ExerciseDates is a 1-by-1 (European) or 1-by-NSTRIKES
(Bermuda) vector of exercise dates. For a European option, there is only one ExerciseDate on
the option expiry date.

• For an American option, ExerciseDates is a 1-by-2 vector of exercise date boundaries. The
option exercises on any date between, or including, the pair of dates on that row. If there is only
one non-NaN date, or if ExerciseDates is 1-by-1, the option exercises between the Settle date
and the single listed ExerciseDate.

Data Types: double | char | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: PriceSens = basketsensbyls(RateSpec,BasketStockSpec,OptSpec,
Strike,Settle,Maturity,'AmericanOpt',AmericanOpt,'NumTrials',NumTrial,'OutSpe
c','delta')

AmericanOpt — Option type
0 (European/Bermuda) (default) | values [0,1]

Option type, specified as the comma-separated pair consisting of 'AnericanOpt' and a NINST-by-1
positive integer scalar flags with values:

• 0 — European/Bermuda
• 1 — American
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Note For American options, the Longstaff-Schwartz least squares method is used to calculate the
early exercise premium. For more information on the least squares method, see https://
people.math.ethz.ch/%7Ehjfurrer/teaching/
LongstaffSchwartzAmericanOptionsLeastSquareMonteCarlo.pdf.

Data Types: double

NumPeriods — Number of simulation periods per trial
100 (default) | nonnegative integer

Number of simulation periods per trial, specified as the comma-separated pair consisting of
'NumPeriods' and a scalar nonnegative integer.

Note NumPeriods is considered only when pricing European basket options. For American and
Bermuda basket options, NumPeriod equals the number of exercise days during the life of the option.

Data Types: double

NumTrials — Number of independent sample paths (simulation trials)
1000 (default) | nonnegative integer

Number of independent sample paths (simulation trials), specified as the comma-separated pair
consisting of 'NumTrials' and a scalar nonnegative integer.
Data Types: double

Z — Time series array of dependent random variates
vector

Time series array of dependent random variates, specified as the comma-separated pair consisting of
'Z' and a NumPeriods-by-NINST-by-NumTrials 3-D time series array. The Z value generates the
Brownian motion vector (that is, Wiener processes) that drives the simulation.
Data Types: double

Antithetic — Indicator for antithetic sampling
false (default) | scalar logical flag with value of true or false

Indicator for antithetic sampling, specified as the comma-separated pair consisting of 'Antithetic'
and a value of true or false.
Data Types: logical

OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma', 'Vega',
'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with values 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a NOUT- by-1 or
a 1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output is Delta, Gamma, Vega, Lambda, Rho, Theta, and
Price, in that order. This is the same as specifying OutSpec to include each sensitivity.
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Example: OutSpec = {'delta','gamma','vega','lambda','rho','theta','price'}
Data Types: char | cell

UndIdx — Index of the underlying instrument to compute the sensitivity
[] (default) | scalar numeric

Index of the underlying instrument to compute the sensitivity, specified as the comma-separated pair
consisting of 'UndIdx' and a scalar numeric.
Data Types: double

Output Arguments
PriceSens — Expected prices or sensitivities for basket option
matrix

Expected prices or sensitivities (defined using OutSpec) for basket option, returned as a NINST-by-1
matrix.

Paths — Simulated paths of correlated state variables
vector

Simulated paths of correlated state variables, returned as a NumPeriods + 1-by-1-by-NumTrials 3-
D time series array of simulated paths of correlated state variables. Each row of Paths is the
transpose of the state vector X(t) at time t for a given trial.

Times — Observation times associated with simulated paths
vector

Observation times associated with simulated paths, returned as a NumPeriods + 1-by-1 column
vector of observation times associated with the simulated paths. Each element of Times is associated
with the corresponding row of Paths.

Z — Time series array of dependent random variates
vector

Time series array of dependent random variates, returned as a NumPeriods-by-1-by-NumTrials 3-D
array when Z is specified as an input argument. If the Z input argument is not specified, then the Z
output argument contains the random variates generated internally.

More About
Basket Option

A basket option is an option on a portfolio of several underlying equity assets.

Payout for a basket option depends on the cumulative performance of the collection of the individual
assets. A basket option tends to be cheaper than the corresponding portfolio of plain vanilla options
for these reasons:

• If the basket components correlate negatively, movements in the value of one component
neutralize opposite movements of another component. Unless all the components correlate
perfectly, the basket option is cheaper than a series of individual options on each of the assets in
the basket.
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• A basket option minimizes transaction costs because an investor has to purchase only one option
instead of several individual options.

For more information, see “Basket Option” on page 3-22.

References
[1] Longstaff, F.A., and E.S. Schwartz. “Valuing American Options by Simulation: A Simple Least-

Squares Approach.” The Review of Financial Studies. Vol. 14, No. 1, Spring 2001, pp. 113–
147.

See Also
basketstockspec | basketbyls

Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-79
“Basket Option” on page 3-22
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2009b
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basketstockspec
Specify basket stock structure using Longstaff-Schwartz model

Syntax
BasketStockSpec = basketstockspec(Sigma,AssetPrice,Quantity,Correlation)
BasketStockSpec = basketstockspec( ___ ,Name,Value)

Description
BasketStockSpec = basketstockspec(Sigma,AssetPrice,Quantity,Correlation)
creates a basket stock structure.

BasketStockSpec = basketstockspec( ___ ,Name,Value) specifies options using one or more
name-value pair arguments in addition to the input arguments in the previous syntax.

Examples

Create a Basket Stock Structure for Three Stocks

Find a basket option of three stocks. The stocks are currently trading at $56, $92 and $125 with
annual volatilities of 20%, 12% and 15%, respectively. The basket option contains 25% of the first
stock, 40% of the second stock, and 35% of the third. The first stock provides a continuous dividend
of 1%, while the other two provide no dividends. The correlation between the first and second asset is
30%, between the second and third asset 11%, and between the first and third asset 16%. Use this
data to create the BasketStockSpec structure:

AssetPrice = [56;92;125];
Sigma = [0.20;0.12;0.15];

% Create the Correlation matrix. Correlation matrices are symmetric and
% have ones along the main diagonal.
NumInst  = 3;
Corr = zeros(NumInst,1);
Corr(1,2) = .30;
Corr(2,3) = .11;
Corr(1,3) = .16;
Corr = triu(Corr,1) + tril(Corr',-1) + diag(ones(NumInst,1), 0);

% Define dividends
DivType = cell(NumInst,1);
DivType{1}='continuous';
DivAmounts = cell(NumInst,1);
DivAmounts{1} = 0.01;

Quantity = [0.25; 0.40; 0.35];

BasketStockSpec = basketstockspec(Sigma, AssetPrice, Quantity, Corr, ...
'DividendType', DivType, 'DividendAmounts', DivAmounts)
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BasketStockSpec = struct with fields:
             FinObj: 'BasketStockSpec'
              Sigma: [3x1 double]
         AssetPrice: [3x1 double]
           Quantity: [3x1 double]
        Correlation: [3x3 double]
       DividendType: {3x1 cell}
    DividendAmounts: {3x1 cell}
    ExDividendDates: {3x1 cell}

Examine the BasketStockSpec structure.

BasketStockSpec.Correlation

ans = 3×3

    1.0000    0.3000    0.1600
    0.3000    1.0000    0.1100
    0.1600    0.1100    1.0000

Create a Basket Stock Structure for Two Stocks

Find a basket option of two stocks. The stocks are currently trading at $60 and $55 with volatilities of
30% per annum. The basket option contains 50% of each stock. The first stock provides a cash
dividend of $0.25 on May 1, 2009 and September 1, 2009. The second stock provides a continuous
dividend of 3%. The correlation between the assets is 40%. Use this data to create the structure
BasketStockSpec:

AssetPrice = [60;55];
Sigma = [0.30;0.30];

% Create the Correlation matrix. Correlation matrices are symmetric and
% have ones along the main diagonal.
Correlation = [1 0.40;0.40 1];

% Define dividends
NumInst  = 2;
DivType = cell(NumInst,1);
DivType{1}='cash';
DivType{2}='continuous';

DivAmounts = cell(NumInst,1);
DivAmounts{1} = [0.25 0.25];
DivAmounts{2} = 0.03;

ExDates = cell(NumInst,1);
ExDates{1} = {'May-1-2009' 'Sept-1-2009'};

Quantity = [0.5; 0.50];

BasketStockSpec = basketstockspec(Sigma, AssetPrice, Quantity, Correlation, ...
'DividendType', DivType, 'DividendAmounts', DivAmounts, 'ExDividendDates',ExDates)
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BasketStockSpec = struct with fields:
             FinObj: 'BasketStockSpec'
              Sigma: [2x1 double]
         AssetPrice: [2x1 double]
           Quantity: [2x1 double]
        Correlation: [2x2 double]
       DividendType: {2x1 cell}
    DividendAmounts: {2x1 cell}
    ExDividendDates: {2x1 cell}

Examine the BasketStockSpec structure.

BasketStockSpec.DividendType

ans = 2x1 cell
    {'cash'      }
    {'continuous'}

Input Arguments
Sigma — Annual price volatility of the underlying security
vector in decimals

Annual price volatility of the underlying security, specified as an NINST-by-1 vector in decimals.
Data Types: double

AssetPrice — Underlying asset price values at time 0
vector

Underlying asset price values at time 0, specified as a NINST-by-1 vector.
Data Types: double

Quantity — Quantities of the instruments contained in the basket
vector

Quantities of the instruments contained in the basket, specified as an NINST-by-1 vector.
Data Types: double

Correlation — Correlation values
matrix

Correlation values, specified as an NINST-by-1 matrix.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
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Example: BasketStockSpec =
basketstockspec(Sigma,AssetPrice,Quantity,Correlation,'DividendType',DivType,
'DividendAmounts',DivAmounts)

DividendAmounts — Dividend amounts for basket instruments
row vector

Dividend amounts for basket instruments, specified as the comma-separated pair consisting of
'DividendAmounts' and an NINST-by-1 cell array. Each element of the cell array is a 1-by-NDIV
row vector of cash dividends or a scalar representing a continuous annualized dividend yield for the
corresponding instrument.
Data Types: double

DividendType — Stock dividend type
cell array of character vectors

Stock dividend type, specified as the comma-separated pair consisting of 'DividendType' and an
NINST-by-1 cell array of character vectors specifying each stock's dividend type. Dividend type must
be either cash for actual dollar dividends or continuous for continuous dividend yield.
Data Types: char | cell

ExDividendDates — Ex-dividend dates for the basket instruments
cell array

Ex-dividend dates for the basket instruments, specified as the comma-separated pair consisting of
'ExDividendDates' and an NINST-by-1 cell array specifying the ex-dividend dates for the basket
instruments. Each row is a 1-by-NDIV matrix of ex-dividend dates for cash type. For rows that
correspond to basket instruments with continuous dividend type, the cell is empty. If none of the
basket instruments pay continuous dividends, do not specify ExDividendDates.
Data Types: cell

Output Arguments
BasketStockSpec — Structure encapsulating the properties of a basket stock structure
structure

Structure encapsulating the properties of a basket stock structure, returned as a structure.

See Also
basketbyls | basketbyju | basketsensbyju | basketsensbyls | stockspec | intenvset

Topics
“Portfolio Creation Using Functions” on page 1-6
“Hedging Functions” on page 4-3
“Basket Option” on page 3-22
“Instrument Constructors” on page 1-15
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2009b
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bdtprice
Instrument prices from Black-Derman-Toy interest-rate tree

Syntax
[Price,PriceTree] = bdtprice(BDTTree,InstSet)
[Price,PriceTree] = bdtprice( ___ ,Options)

Description
[Price,PriceTree] = bdtprice(BDTTree,InstSet) computes arbitrage-free prices for
instruments using an interest-rate tree created with bdttree. All instruments contained in a
financial instrument variable, InstSet, are priced.

bdtprice handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'OptEmBond',
'OptFloat', 'OptEmFloat', 'Fixed', 'Float', 'Cap', 'Floor', 'RangeFloat', 'Swap'. See
instadd to construct defined types.

[Price,PriceTree] = bdtprice( ___ ,Options) adds an optional input argument for Options.

Examples

Price a Cap and Bond Instruments Contained in an Instrument Set

Load the BDT tree and instruments from the data file deriv.mat to price the cap and bond
instruments contained in the instrument set.

load deriv.mat; 
BDTSubSet = instselect(BDTInstSet,'Type', {'Bond', 'Cap'});

instdisp(BDTSubSet)

instdisp(BDTSubSet)
Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face Name     Quantity
1     Bond 0.1        01-Jan-2000    01-Jan-2003    1      NaN   NaN          NaN       NaN             NaN            NaN       NaN  10% Bond 100     
2     Bond 0.1        01-Jan-2000    01-Jan-2004    2      NaN   NaN          NaN       NaN             NaN            NaN       NaN  10% Bond  50     
 
Index Type Strike Settle         Maturity       CapReset Basis Principal Name    Quantity
3     Cap  0.15   01-Jan-2000    01-Jan-2004    1        NaN   NaN       15% Cap 30      

Price the bond and cap.

[Price, PriceTree] = bdtprice(BDTTree, BDTSubSet)

Warning: Not all cash flows are aligned with the tree. Result will be approximated. 
> In checktree at 289
  In bdtprice at 85 

Price =

   95.5030
   93.9079
    1.4375

PriceTree = 
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    FinObj: 'BDTPriceTree'
     PTree: {[3x1 double]  [3x2 double]  [3x3 double]  [3x4 double]  [3x4 double]}
    AITree: {[3x1 double]  [3x2 double]  [3x3 double]  [3x4 double]  [3x4 double]}
      tObs: [0 1 2 3 4]

You can use the treeviewer function to see the prices of these three instruments along the price
tree.

Price Multi-Stepped Coupon Bonds

Price the following multi-stepped coupon bonds using the following data:

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

% Create RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

% Create a portfolio of stepped coupon bonds with different maturities
Settle = '01-Jan-2010';
Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
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CouponRate = {{'01-Jan-2011' .042;'01-Jan-2012' .05; '01-Jan-2013' .06; '01-Jan-2014' .07}};

% Display the instrument portfolio 
ISet = instbond(CouponRate, Settle, Maturity, 1);
instdisp(ISet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face
1     Bond [Cell]     01-Jan-2010    01-Jan-2011    1      0     1            NaN       NaN             NaN            NaN       100 
2     Bond [Cell]     01-Jan-2010    01-Jan-2012    1      0     1            NaN       NaN             NaN            NaN       100 
3     Bond [Cell]     01-Jan-2010    01-Jan-2013    1      0     1            NaN       NaN             NaN            NaN       100 
4     Bond [Cell]     01-Jan-2010    01-Jan-2014    1      0     1            NaN       NaN             NaN            NaN       100 
 

Build a BDTTree to price the stepped coupon bonds. Assume the volatility to be 10%

Sigma = 0.1; 
BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');
BDTT = bdttree(BDTVolSpec, RS, BDTTimeSpec);

% Compute the price of the stepped coupon bonds
PBDT = bdtprice(BDTT, ISet)

PBDT = 4×1

  100.6763
  100.7368
  100.9266
  101.0115

Price a Portfolio of Stepped Callable Bonds and Stepped Vanilla Bonds

Price a portfolio of stepped callable bonds and stepped vanilla bonds using the following data: The
data for the interest rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

%Create RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

% Create an instrument portfolio of 3 stepped callable bonds and three
% stepped vanilla bonds
Settle = '01-Jan-2010';
Maturity = {'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2011' .042;'01-Jan-2012' .05; '01-Jan-2013' .06; '01-Jan-2014' .07}};
OptSpec='call';
Strike=100;
ExerciseDates='01-Jan-2011'; %Callable in one year

% Bonds with embedded option 
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ISet = instoptembnd(CouponRate, Settle, Maturity, OptSpec, Strike,...
ExerciseDates, 'Period', 1);
                    
% Vanilla bonds 
ISet = instbond(ISet, CouponRate, Settle, Maturity, 1);

% Display the instrument portfolio
instdisp(ISet)

Index Type      CouponRate Settle         Maturity       OptSpec Strike ExerciseDates  Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face AmericanOpt
1     OptEmBond [Cell]     01-Jan-2010    01-Jan-2012    call    100    01-Jan-2011    1      0     1            NaN       NaN             NaN            NaN       100  0          
2     OptEmBond [Cell]     01-Jan-2010    01-Jan-2013    call    100    01-Jan-2011    1      0     1            NaN       NaN             NaN            NaN       100  0          
3     OptEmBond [Cell]     01-Jan-2010    01-Jan-2014    call    100    01-Jan-2011    1      0     1            NaN       NaN             NaN            NaN       100  0          
 
Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face
4     Bond [Cell]     01-Jan-2010    01-Jan-2012    1      0     1            NaN       NaN             NaN            NaN       100 
5     Bond [Cell]     01-Jan-2010    01-Jan-2013    1      0     1            NaN       NaN             NaN            NaN       100 
6     Bond [Cell]     01-Jan-2010    01-Jan-2014    1      0     1            NaN       NaN             NaN            NaN       100 
 

Build a BDTTree and price the instruments. Build the tree Assume the volatility to be 10%

Sigma = 0.1;  
BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');
BDTT = bdttree(BDTVolSpec, RS, BDTTimeSpec);

%The first three rows corresponds to the price of the stepped callable bonds and the
%last three rows corresponds to the price of the stepped vanilla bonds.
PBDT = bdtprice(BDTT, ISet)

PBDT = 6×1

  100.4799
  100.3228
  100.0840
  100.7368
  100.9266
  101.0115

Price a Portfolio with Range Notes and a Floating Rate Note

Compute the price of a portfolio with range notes and a floating rate note using the following data:
The data for the interest rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2011';
StartDates = ValuationDate;
EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
Compounding = 1;

%  Create RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);
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% Create an instrument portfolio with two range notes and a floating rate
% note with the following data:
Spread = 200;
Settle = 'Jan-1-2011';
Maturity = 'Jan-1-2014';

% First Range Note:
RateSched(1).Dates = {'Jan-1-2012'; 'Jan-1-2013'  ; 'Jan-1-2014'};
RateSched(1).Rates  = [0.045 0.055; 0.0525  0.0675; 0.06 0.08];

% Second Range Note:
RateSched(2).Dates = {'Jan-1-2012'; 'Jan-1-2013' ; 'Jan-1-2014'};
RateSched(2).Rates  = [0.048 0.059; 0.055  0.068 ; 0.07 0.09];

% Create InstSet
InstSet = instadd('RangeFloat', Spread, Settle, Maturity, RateSched);

% Add a floating-rate note
InstSet = instadd(InstSet, 'Float', Spread, Settle, Maturity);

% Display the portfolio instrument
instdisp(InstSet)

Index Type       Spread Settle         Maturity       RateSched FloatReset Basis Principal EndMonthRule
1     RangeFloat 200    01-Jan-2011    01-Jan-2014    [Struct]  1          0     100       1           
2     RangeFloat 200    01-Jan-2011    01-Jan-2014    [Struct]  1          0     100       1           
 
Index Type  Spread Settle         Maturity       FloatReset Basis Principal EndMonthRule CapRate FloorRate
3     Float 200    01-Jan-2011    01-Jan-2014    1          0     100       1            Inf     -Inf     
 

Build a BDTTree and price the instruments. Build the tree Assume the volatility to be 10%.

Sigma = 0.1;  
BDTTS = bdttimespec(ValuationDate, EndDates, Compounding);
BDTVS = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');
BDTT = bdttree(BDTVS, RS, BDTTS);

% Price the portfolio 
Price = bdtprice(BDTT, InstSet)

Price = 3×1

  100.2841
   98.0757
  105.5147

Create a Float-Float Swap and Price with bdtprice

Use instswap to create a float-float swap and price the swap with bdtprice.

RateSpec = intenvset('Rates',.05,'StartDate',today,'EndDate',datemnth(today,60));
IS = instswap([.02 .03],today,datemnth(today,60),[], [], [], [1 1]);
VolSpec = bdtvolspec(today,datemnth(today,[10 60]),[.01 .02]);
TimeSpec = bdttimespec(today,cfdates(today,datemnth(today,60),1));
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BDTTree = bdttree(VolSpec,RateSpec,TimeSpec);
bdtprice(BDTTree,IS)

ans = -4.3220

Price Multiple Swaps with bdtprice

Use instswap to create multiple swaps and price the swaps with bdtprice.

RateSpec = intenvset('Rates',.05,'StartDate',today,'EndDate',datemnth(today,60));
IS = instswap([.03 .02],today,datemnth(today,60),[], [], [], [1 1]);
IS = instswap(IS,[200 300],today,datemnth(today,60),[], [], [], [0 0]);
IS = instswap(IS,[.08 300],today,datemnth(today,60),[], [], [], [1 0]);
VolSpec = bdtvolspec(today,datemnth(today,[10 60]),[.01 .02]);
TimeSpec = bdttimespec(today,cfdates(today,datemnth(today,60),1));
BDTTree = bdttree(VolSpec,RateSpec,TimeSpec);
bdtprice(BDTTree,IS)

ans = 3×1

    4.3220
   -4.3220
   -0.2701

Input Arguments
BDTTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bdttree.
Data Types: struct

InstSet — Instrument variable
structure

Instrument variable containing a collection of NINST instruments, specified using instadd.
Instruments are categorized by type; each type can have different data fields. The stored data field is
a row vector or character vector for each instrument.
Data Types: struct

Options — Derivatives pricing options structure
structure

(Optional) Derivatives pricing options structure, created using derivset.
Data Types: struct

Output Arguments
Price — Price for each instrument at time 0
vector
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Price for each instrument at time 0, returned as a NINST-by-1 vector. The prices are computed by
backward dynamic programming on the interest-rate tree. If an instrument cannot be priced, a NaN is
returned in that entry.

Related single-type pricing functions are:

• bondbybdt — Price a bond from a BDT tree.
• capbybdt — Price a cap from a BDT tree.
• cfbybdt — Price an arbitrary set of cash flows from a BDT tree.
• fixedbybdt — Price a fixed-rate note from a BDT tree.
• floatbybdt — Price a floating-rate note from a BDT tree.
• floorbybdt — Price a floor from a BDT tree.
• optbndbybdt — Price a bond option from a BDT tree.
• optfloatbybdt — Price a floating-rate note with an option from a BDT tree.
• optemfloatbybdt — Price a floating-rate note with an embedded option from a BDT tree.
• optembndbybdt — Price a bond with embedded option by a BDT tree.
• rangefloatbybdt — Price range floating note using a BDT tree.
• swapbybdt — Price a swap from a BDT tree.
• swaptionbybdt — Price a swaption from a BDT tree.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing vectors of
instrument prices and accrued interest, and a vector of observation times for each node. Within
PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.

See Also
bdtsens | bdttree | intenvprice | instadd | intenvsens

Topics
“Pricing Options Structure” on page A-2
“Understanding Interest-Rate Tree Models” on page 2-66
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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bdtsens
Instrument prices and sensitivities from Black-Derman-Toy interest-rate tree

Syntax
[Delta,Gamma,Vega,Price] = bdtsens(BDTTree,InstSet)
[Delta,Gamma,Vega,Price] = bdtsens( ___ ,Options)

Description
[Delta,Gamma,Vega,Price] = bdtsens(BDTTree,InstSet) computes instrument sensitivities
and prices for instruments using an interest-rate tree created with the bdttree function. All
sensitivities are returned as dollar sensitivities. To find the per-dollar sensitivities, divide by the
respective instrument price.

bdtsens handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'OptEmBond',
'OptEmBond', 'OptFloat', 'OptEmFloat', 'Fixed', 'Float', 'Cap', 'Floor',
'RangeFloat', 'Swap'. See instadd for information on instrument types.

[Delta,Gamma,Vega,Price] = bdtsens( ___ ,Options) adds an optional input argument for
Options.

Examples

Compute Instrument Sensitivities and Prices for Cap and Bond instruments

Load the tree and instruments from the deriv.mat data file.

load deriv.mat; 
BDTSubSet = instselect(BDTInstSet,'Type', {'Bond', 'Cap'});  
 
instdisp(BDTSubSet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face Name     Quantity
1     Bond 0.1        01-Jan-2000    01-Jan-2003    1      NaN   NaN          NaN       NaN             NaN            NaN       NaN  10% Bond 100     
2     Bond 0.1        01-Jan-2000    01-Jan-2004    2      NaN   NaN          NaN       NaN             NaN            NaN       NaN  10% Bond  50     
 
Index Type Strike Settle         Maturity       CapReset Basis Principal Name    Quantity
3     Cap  0.15   01-Jan-2000    01-Jan-2004    1        NaN   NaN       15% Cap 30      
 

Compute Delta and Gamma for the cap and bond instruments contained in the instrument set.

[Delta, Gamma] = bdtsens(BDTTree, BDTSubSet)

Warning: Not all cash flows are aligned with the tree. Result will be approximated.

Delta = 3×1

 -232.6681
 -281.0517
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   63.8102

Gamma = 3×1
103 ×

    0.8037
    1.1819
    1.8535

Input Arguments
BDTTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bdttree.
Data Types: struct

InstSet — Instrument variable
structure

Instrument variable containing a collection of NINST instruments, specified using instadd.
Instruments are categorized by type; each type can have different data fields. The stored data field is
a row vector or character vector for each instrument.
Data Types: struct

Options — Derivatives pricing options structure
structure

(Optional) Derivatives pricing options structure, created using derivset.
Data Types: struct

Output Arguments
Delta — Rate of change of instruments prices with respect to changes in interest rate
vector

Rate of change of instruments prices with respect to changes in the interest rate, returned as a
NINST-by-1 vector of deltas. Delta is computed by finite differences in calls to bdttree.

Note Delta is calculated based on yield shifts of 100 basis points.

Gamma — Rate of change of instruments deltas with respect to changes in interest rate
vector

Rate of change of instruments deltas with respect to changes in the interest rate, returned as a
NINST-by-1 vector of gammas. Gamma is computed by finite differences in calls to bdttree.

Note Gamma is calculated based on yield shifts of 100 basis points.
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Vega — Rate of change of instruments prices with respect to changes in volatility
vector

Rate of change of instruments prices with respect to changes in the volatility, returned as a NINST-
by-1 vector of vegas. Volatility is σ t, T  of the interest rate. Vega is computed by finite differences in
calls to bdttree. For information on the volatility process, see bdtvolspec.

Note Vega is calculated based on 1% shift in the volatility process.

Price — Price of each instrument
vector

Price of each instrument, returned as a NINST-by-1 vector. The prices are computed by backward
dynamic programming on the interest-rate tree. If an instrument cannot be priced, a NaN is returned
in that entry.

See Also
bdtprice | bdttree | bdtvolspec | instadd

Topics
“Pricing Options Structure” on page A-2
“Understanding Interest-Rate Tree Models” on page 2-66
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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bdttimespec
Specify time structure for Black-Derman-Toy interest-rate tree

Syntax
TimeSpec = bdttimespec(ValuationDate,Maturity)
TimeSpec = bdttimespec( ___ ,Compounding)

Description
TimeSpec = bdttimespec(ValuationDate,Maturity) sets the number of levels and node times
for a bdttree and determines the mapping between dates and time for rate quoting.

TimeSpec = bdttimespec( ___ ,Compounding) adds the optional argument Compounding.

Examples

Specify a Five-Period Tree with Annual Nodes

This example shows how to specify a five-period tree with annual nodes and use annual compounding
to report rates.

Compounding = 1;
ValuationDate = '01-01-2000';
Maturity = ['01-01-2001'; '01-01-2002'; '01-01-2003'; 
'01-01-2004'; '01-01-2005'];

TimeSpec = bdttimespec(ValuationDate, Maturity, Compounding)

TimeSpec = struct with fields:
           FinObj: 'BDTTimeSpec'
    ValuationDate: 730486
         Maturity: [5x1 double]
      Compounding: 1
            Basis: 0
     EndMonthRule: 1

Input Arguments
ValuationDate — Pricing date and first observation in the tree
serial date number | character vector date

Pricing date and first observation in the tree, specified as a scalar date using a serial date number or
date character vector.
Data Types: double | char

Maturity — Dates marking the cash flow dates of the tree
serial date number | date character vector
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Dates marking the cash flow dates of the tree, specified as NLEVELS-by-1 vector of serial date
numbers or date character vectors. Cash flows with these maturities fall on tree nodes. Maturity
should be in increasing order.
Data Types: double | char | cell

Compounding — Rate at which the input zero rates were compounded when annualized
1 (default) | integer with value of 1, 2, 3, 4, 6, 12, 365, or -1

(Optional) Rate at which the input zero rates were compounded when annualized, specified as a
scalar integer value.

• If Compounding = 1, 2, 3, 4, 6, 12:

Disc = (1 + Z/F)^(-T), where F is the compounding frequency, Z is the zero rate, and T is the
time in periodic units; for example, T = F is one year.

• If Compounding = 365:

Disc = (1 + Z/F)^(-T), where F is the number of days in the basis year and T is a number of
days elapsed computed by basis.

• If Compounding = −1:

Disc = exp(-T*Z), where T is time in years.

Data Types: double

Output Arguments
TimeSpec — Specification for the time layout for bdttree
structure

Specification for the time layout for bdttree, returned as a structure. The state observation dates
are [ValuationDate; Maturity(1:end-1)]. Because a forward rate is stored at the last
observation, the tree can value cash flows out to Maturity(end).

See Also
bdttree | bdtprice | bdtvolspec | instadd

Topics
“Specifying the Time Structure (TimeSpec)” on page 2-70
“Pricing Options Structure” on page A-2
“Understanding Interest-Rate Tree Models” on page 2-66
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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bdttree
Build Black-Derman-Toy interest-rate tree

Syntax
BDTTree = bdttree(VolSpec,RateSpec,TimeSpec)

Description
BDTTree = bdttree(VolSpec,RateSpec,TimeSpec) creates a structure containing time and
interest-rate information on a recombining tree.

Examples

Create a BDTTree

Using the data provided, create a BDT volatility specification (using bdtvolspec), rate specification
(using intenvset), and tree time layout specification (using bdttimespec). Then use these
specifications to create a BDT tree with bdttree.

Compounding = 1;
ValuationDate = '01-01-2000';
StartDate = ValuationDate;
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003'; 
'01-01-2004'; '01-01-2005'];
Rates = [.1; .11; .12; .125; .13];
Volatility = [.2; .19; .18; .17; .16];

RateSpec = intenvset('Compounding', Compounding,...
             'ValuationDate', ValuationDate,...
             'StartDates', StartDate,...
             'EndDates', EndDates,...
             'Rates', Rates);
     
BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility);
BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec)

BDTTree = struct with fields:
      FinObj: 'BDTFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3 4]
        dObs: [730486 730852 731217 731582 731947]
        TFwd: {[5x1 double]  [4x1 double]  [3x1 double]  [2x1 double]  [4]}
      CFlowT: {[5x1 double]  [4x1 double]  [3x1 double]  [2x1 double]  [5]}
     FwdTree: {1x5 cell}

Use treeviewer to observe the tree you have created.
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treeviewer(BDTTree)

Input Arguments
VolSpec — Volatility process specification
structure

Volatility process specification, specified using the VolSpec output obtained from bdtvolspec.
Data Types: struct

RateSpec — Interest-rate specification for initial risk-free rate curve
structure

Interest-rate specification for initial rate curve, specified by the RateSpec obtained from
intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

TimeSpec — Time tree layout specification
structure

Time tree layout specification, specified using the TimeSpec output obtained from bdttimespec.
The TimeSpec defines the observation dates of the BDT tree and the Compounding rule for date to
time mapping and price-yield formulas.
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Data Types: struct

Output Arguments
BDTTree — Time and interest-rate information of a recombining tree
structure

Time and interest-rate information of a recombining tree, returned as a structure.

See Also
bdttree | bdtprice | bdtvolspec | instadd | bdttimespec | intenvset

Topics
“Specifying the Interest-Rate Term Structure (RateSpec)” on page 2-70
“Specifying the Time Structure (TimeSpec)” on page 2-70
“Use treeviewer to Examine HWTree and PriceTree When Pricing European Callable Bond” on page
2-195
“Pricing Options Structure” on page A-2
“Understanding Interest-Rate Tree Models” on page 2-66
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a

11 Functions

11-194



bdtvolspec
Specify Black-Derman-Toy interest-rate volatility process

Syntax
VolSpec = bdtvolspec(ValuationDate,VolDates,VolCurve)
VolSpec = bdtvolspec( ___ ,InterpMethod)

Description
VolSpec = bdtvolspec(ValuationDate,VolDates,VolCurve) creates a structure specifying
the volatility for bdttree.

VolSpec = bdtvolspec( ___ ,InterpMethod) adds the optional argument InterpMethod.

Examples

Create a BDT Volatility Specification

This example shows how to create a BDT volatility specification (VolSpec) using the following data.

ValuationDate = '01-01-2000';
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003'; 
'01-01-2004'; '01-01-2005'];
Volatility = [.2; .19; .18; .17; .16];

BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility)

BDTVolSpec = struct with fields:
             FinObj: 'BDTVolSpec'
      ValuationDate: 730486
           VolDates: [5x1 double]
           VolCurve: [5x1 double]
    VolInterpMethod: 'linear'

Input Arguments
ValuationDate — Observation date of the investment horizon
serial date number | character vector date

Observation date of the investment horizon, specified as a scalar date using a serial date number or
date character vector.
Data Types: double | char

VolDates — Number of points of yield volatility end dates
serial date number | date character vector
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Number of points of yield volatility end dates, specified as a NPOINTS-by-1 vector of serial date
numbers or date character vectors.
Data Types: double | char | cell

VolCurve — Yield volatility values
decimal

Yield volatility values, specified as a NPOINTS-by-1 vector of decimal values. The term structure of
VolCurve is the yield volatility represented by the value of the volatility of the yield from time t = 0
to time t + i, where i is any point within the volatility curve.
Data Types: double

InterpMethod — Interpolation method
'linear' (default) | character vector with values supported by interp1

(Optional) Interpolation method, specified as a character vector with values supported by interp1.
Data Types: char

Output Arguments
VolSpec — Specification for the volatility model for bdttree
structure

Structure specifying the volatility model for bdttree.

See Also
bdttree | interp1

Topics
“Specifying the Volatility Model (VolSpec)” on page 2-68
“Pricing Options Structure” on page A-2
“Understanding Interest-Rate Tree Models” on page 2-66
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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bkprice
Instrument prices from Black-Karasinski interest-rate tree

Syntax
[Price,PriceTree] = bkprice(BKTree,InstSet)
[Price,PriceTree] = bkprice( ___ ,Options)

Description
[Price,PriceTree] = bkprice(BKTree,InstSet) computes arbitrage-free prices for
instruments using an interest-rate tree created with bktree. All instruments contained in a financial
instrument variable, InstSet, are priced.

bkprice handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'OptEmBond',
'OptEmBond', 'OptFloat', 'OptEmFloat', 'Fixed', 'Float', 'Cap', 'Floor',
'RangeFloat', 'Swap'. See instadd to construct defined types.

[Price,PriceTree] = bkprice( ___ ,Options) adds an optional input argument for Options.

Examples

Price Cap and Bond Instruments in the Instrument Set

Load the BK tree and instruments from the data file deriv.mat. Price the cap and bond instruments
contained in the instrument set.

load deriv.mat; 
BKSubSet = instselect(BKInstSet,'Type', {'Bond', 'Cap'}); 

instdisp(BKSubSet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face Name    Quantity
1     Bond 0.03       01-Jan-2004    01-Jan-2007    1      0     1            NaN       NaN             NaN            NaN       100  3% bond 20      
2     Bond 0.03       01-Jan-2004    01-Jan-2008    1      0     1            NaN       NaN             NaN            NaN       100  3% bond 15      
 
Index Type Strike Settle         Maturity       CapReset Basis Principal Name   Quantity
3     Cap  0.04   01-Jan-2004    01-Jan-2008    1        0     100       4% Cap 10      
 

[Price, PriceTree] = bkprice(BKTree, BKSubSet)

Price = 3×1

   98.1096
   95.6734
    2.2706

PriceTree = struct with fields:
     FinObj: 'BKPriceTree'
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      PTree: {1x5 cell}
     AITree: {1x5 cell}
       tObs: [0 1 2 3 4]
    Connect: {[2]  [2 3 4]  [2 2 3 4 4]}
      Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

You can use treeviewer to see the prices of these three instruments along the price tree.
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Price Multi-Stepped Coupon Bonds

Price the following multi-stepped coupon bonds using the following data:

% The data for the interest rate term structure is as follows:
Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

% Create RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

% Create a portfolio of stepped coupon bonds with different maturities
Settle = '01-Jan-2010';
Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2011' .042;'01-Jan-2012' .05; '01-Jan-2013' .06; '01-Jan-2014' .07}};

ISet = instbond(CouponRate, Settle, Maturity, 1);
instdisp(ISet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face
1     Bond [Cell]     01-Jan-2010    01-Jan-2011    1      0     1            NaN       NaN             NaN            NaN       100 
2     Bond [Cell]     01-Jan-2010    01-Jan-2012    1      0     1            NaN       NaN             NaN            NaN       100 
3     Bond [Cell]     01-Jan-2010    01-Jan-2013    1      0     1            NaN       NaN             NaN            NaN       100 
4     Bond [Cell]     01-Jan-2010    01-Jan-2014    1      0     1            NaN       NaN             NaN            NaN       100 
 

Build the BKTree with the following data:

VolDates = ['1-Jan-2011'; '1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014'];
VolCurve = 0.01;
AlphaDates = '01-01-2014';
AlphaCurve = 0.1;

BKVolSpec = bkvolspec(RS.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
BKTimeSpec = bktimespec(RS.ValuationDate, VolDates, Compounding);
BKT = bktree(BKVolSpec, RS, BKTimeSpec);

Compute the price of the stepped coupon bonds.

PBK = bkprice(BKT, ISet)

PBK = 4×1

  100.6763
  100.7368
  100.9266
  101.0115
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Price a Portfolio of Stepped Callable Bonds and Stepped Vanilla Bonds

Price a portfolio of stepped callable bonds and stepped vanilla bonds using the following data:

% The data for the interest rate term structure is as follows:
Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

% Create RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

% Create an instrument portfolio of 3 stepped callable bonds and three
% stepped vanilla bonds
Settle = '01-Jan-2010';
Maturity = {'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2011' .042;'01-Jan-2012' .05; '01-Jan-2013' .06; '01-Jan-2014' .07}};
OptSpec='call';
Strike=100;
ExerciseDates='01-Jan-2011'; % Callable in one year

% Bonds with embedded option 
ISet = instoptembnd(CouponRate, Settle, Maturity, OptSpec, Strike,...
ExerciseDates, 'Period', 1);
                    
% Vanilla bonds 
ISet = instbond(ISet, CouponRate, Settle, Maturity, 1);

% Display the instrument portfolio
instdisp(ISet)

Index Type      CouponRate Settle         Maturity       OptSpec Strike ExerciseDates  Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face AmericanOpt
1     OptEmBond [Cell]     01-Jan-2010    01-Jan-2012    call    100    01-Jan-2011    1      0     1            NaN       NaN             NaN            NaN       100  0          
2     OptEmBond [Cell]     01-Jan-2010    01-Jan-2013    call    100    01-Jan-2011    1      0     1            NaN       NaN             NaN            NaN       100  0          
3     OptEmBond [Cell]     01-Jan-2010    01-Jan-2014    call    100    01-Jan-2011    1      0     1            NaN       NaN             NaN            NaN       100  0          
 
Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face
4     Bond [Cell]     01-Jan-2010    01-Jan-2012    1      0     1            NaN       NaN             NaN            NaN       100 
5     Bond [Cell]     01-Jan-2010    01-Jan-2013    1      0     1            NaN       NaN             NaN            NaN       100 
6     Bond [Cell]     01-Jan-2010    01-Jan-2014    1      0     1            NaN       NaN             NaN            NaN       100 
 

Build the BKTree with the following data:

VolDates = ['1-Jan-2011'; '1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014'];
VolCurve = 0.01;
AlphaDates = '01-01-2014';
AlphaCurve = 0.1;

BKVolSpec = bkvolspec(RS.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
BKTimeSpec = bktimespec(RS.ValuationDate, VolDates, Compounding);
BKT = bktree(BKVolSpec, RS, BKTimeSpec);

Compute the price, where the first three rows of the output corresponds to the price of the stepped
callable bonds and the last three rows corresponds to the price of the stepped vanilla bonds.
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PBK = bkprice(BKT, ISet)

PBK = 6×1

  100.6729
  100.6763
  100.6763
  100.7368
  100.9266
  101.0115

Price a Portfolio of Range Notes and Floating-Rate Notes

Price a portfolio of range notes and floating-rate notes using the following data:

% The data for the interest rate term structure is as follows:
Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2011';
StartDates = ValuationDate;
EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
Compounding = 1;

%  Create RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates',...
StartDates, 'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

% Create an instrument portfolio with two range notes and a floating rate
% note with the following data:
Spread = 200;
Settle = 'Jan-1-2011';
Maturity = 'Jan-1-2014';

% First Range Note:
RateSched(1).Dates = {'Jan-1-2012'; 'Jan-1-2013'  ; 'Jan-1-2014'};
RateSched(1).Rates  = [0.045 0.055; 0.0525  0.0675; 0.06 0.08];

% Second Range Note:
RateSched(2).Dates = {'Jan-1-2012'; 'Jan-1-2013' ; 'Jan-1-2014'};
RateSched(2).Rates  = [0.048 0.059; 0.055  0.068 ; 0.07 0.09];

% Create InstSet
InstSet = instadd('RangeFloat', Spread, Settle, Maturity, RateSched);

% Add a floating-rate note
InstSet = instadd(InstSet, 'Float', Spread, Settle, Maturity);

% Display the portfolio instrument
instdisp(InstSet)

Index Type       Spread Settle         Maturity       RateSched FloatReset Basis Principal EndMonthRule
1     RangeFloat 200    01-Jan-2011    01-Jan-2014    [Struct]  1          0     100       1           
2     RangeFloat 200    01-Jan-2011    01-Jan-2014    [Struct]  1          0     100       1           
 
Index Type  Spread Settle         Maturity       FloatReset Basis Principal EndMonthRule CapRate FloorRate
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3     Float 200    01-Jan-2011    01-Jan-2014    1          0     100       1            Inf     -Inf     
 

Build the BKTree with the following data:

VolDates = ['1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014';'1-Jan-2015'];
VolCurve = 0.01;
AlphaDates = '01-01-2015';
AlphaCurve = 0.1;

BKVS = bkvolspec(RS.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
BKTS = bktimespec(RS.ValuationDate, VolDates, Compounding);
BKT = bktree(BKVS, RS, BKTS);

Price the portfolio.

Price = bkprice(BKT, InstSet)

Price = 3×1

  105.5147
  101.4805
  105.5147

Input Arguments
BKTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bktree.
Data Types: struct

InstSet — Instrument variable
structure

Instrument variable containing a collection of NINST instruments, specified using instadd.
Instruments are categorized by type; each type can have different data fields. The stored data field is
a row vector or character vector for each instrument.
Data Types: struct

Options — Derivatives pricing options structure
structure

(Optional) Derivatives pricing options structure, created using derivset.
Data Types: struct

Output Arguments
Price — Price for each instrument at time 0
vector
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Price for each instrument at time 0, returned as a NINST-by-1 vector. The prices are computed by
backward dynamic programming on the interest-rate tree. If an instrument cannot be priced, a NaN is
returned in that entry.

Related single-type pricing functions are:

• bondbybk — Price a bond from a Black-Karasinski tree.
• capbybk — Price a cap from a Black-Karasinski tree.
• cfbybk — Price an arbitrary set of cash flows from a Black-Karasinski tree.
• fixedbybk — Price a fixed-rate note from a Black-Karasinski tree.
• floatbybk — Price a floating-rate note from a Black-Karasinski tree.
• floorbybk — Price a floor from a Black-Karasinski tree.
• optbndbybk — Price a bond option from a Black-Karasinski tree.
• optembndbybk — Price a bond with embedded option by a Black-Karasinski tree.
• optfloatbybk — Price a floating-rate note with an option from a Black-Karasinski tree.
• optemfloatbybk — Price a floating-rate note with an embedded option from a Black-Karasinski

tree.
• rangefloatbybk — Price range floating note from a Black-Karasinski tree.
• swapbybk — Price a swap from a Black-Karasinski tree.
• swaptionbybk — Price a swaption from a Black-Karasinski tree.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing vectors of
instrument prices and accrued interest, and a vector of observation times for each node. Within
PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell array describes

how nodes in that level connect to the next. For a given tree level, there are NumNodes elements
in the vector, and they contain the index of the node at the next level that the middle branch
connects to. Subtracting 1 from that value indicates where the up-branch connects to, and adding
1 indicated where the down branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array contains the
up, middle, and down transition probabilities for each node of the level.

See Also
bksens | bdttree | instadd | intenvprice | intenvsens

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Pricing Options Structure” on page A-2
“Understanding Interest-Rate Tree Models” on page 2-66
“Supported Interest-Rate Instrument Functions” on page 2-3
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Introduced before R2006a
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bksens
Instrument prices and sensitivities from Black-Karasinski interest-rate tree

Syntax
[Delta,Gamma,Vega,Price] = bktsens(BKTree,InstSet)
[Delta,Gamma,Vega,Price] = bksens( ___ ,Options)

Description
[Delta,Gamma,Vega,Price] = bktsens(BKTree,InstSet) computes instrument sensitivities
and prices for instruments using an interest-rate tree created with the bktree function. All
sensitivities are returned as dollar sensitivities. To find the per-dollar sensitivities, divide by the
respective instrument price.

bksens handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'OptEmBond',
'OptEmBond', 'OptFloat', 'OptEmFloat', 'Fixed', 'Float', 'Cap', 'Floor',
'RangeFloat', 'Swap'. See instadd for information on instrument types.

[Delta,Gamma,Vega,Price] = bksens( ___ ,Options) adds an optional input argument for
Options.

Examples

Compute Instrument Sensitivities and Prices for Cap and Bond Instruments

Load the tree and instruments from the deriv.mat data file.

load deriv.mat; 
BKSubSet = instselect(BKInstSet,'Type', {'Bond', 'Cap'}); 

instdisp(BKSubSet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face Name    Quantity
1     Bond 0.03       01-Jan-2004    01-Jan-2007    1      0     1            NaN       NaN             NaN            NaN       100  3% bond 20      
2     Bond 0.03       01-Jan-2004    01-Jan-2008    1      0     1            NaN       NaN             NaN            NaN       100  3% bond 15      
 
Index Type Strike Settle         Maturity       CapReset Basis Principal Name   Quantity
3     Cap  0.04   01-Jan-2004    01-Jan-2008    1        0     100       4% Cap 10      
 

Compute Delta and Gamma for the cap and bond instruments contained in the instrument set.

[Delta, Gamma] = bksens(BKTree, BKSubSet)

Delta = 3×1

 -285.7151
 -365.7048
  189.5319
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Gamma = 3×1
103 ×

    0.8456
    1.4345
    6.9999

Input Arguments
BKTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bktree.
Data Types: struct

InstSet — Instrument variable
structure

Instrument variable containing a collection of NINST instruments, specified using instadd.
Instruments are categorized by type; each type can have different data fields. The stored data field is
a row vector or character vector for each instrument.
Data Types: struct

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, created using derivset.
Data Types: struct

Output Arguments
Delta — Rate of change of instruments prices with respect to changes in interest rate
vector

Rate of change of instruments prices with respect to changes in the interest rate, returned as a
NINST-by-1 vector of deltas. Delta is computed by finite differences in calls to bktree.

Note Delta is calculated based on yield shifts of 100 basis points.

Gamma — Rate of change of instruments deltas with respect to changes in interest rate
vector

Rate of change of instruments deltas with respect to changes in the interest rate, returned as a
NINST-by-1 vector of gammas. Gamma is computed by finite differences in calls to bktree.

Note Gamma is calculated based on yield shifts of 100 basis points.
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Vega — Rate of change of instruments prices with respect to changes in volatility
vector

Rate of change of instruments prices with respect to changes in the volatility, returned as a NINST-
by-1 vector of vegas. Volatility is σ t, T  of the interest rate. Vega is computed by finite differences in
calls to bktree. For information on the volatility process, see bkvolspec.

Note Vega is calculated based on 1% shift in the volatility process.

Price — Price of each instrument
vector

Price of each instrument, returned as a NINST-by-1 vector. The prices are computed by backward
dynamic programming on the interest-rate tree. If an instrument cannot be priced, a NaN is returned
in that entry.

See Also
bkprice | bktree | bkvolspec | instadd

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Pricing Options Structure” on page A-2
“Understanding Interest-Rate Tree Models” on page 2-66
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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bktimespec
Specify time structure for Black-Karasinski tree

Syntax
TimeSpec = bktimespec(ValuationDate,Maturity)
TimeSpec = bktimespec( ___ ,Compounding)

Description
TimeSpec = bktimespec(ValuationDate,Maturity) sets the number of levels and node times
for a bktree and determines the mapping between dates and time for rate quoting.

TimeSpec = bktimespec( ___ ,Compounding) adds the optional argument Compounding.

Examples

Specify a Four-Period Tree with Annual Nodes

This example shows how to specify a four-period tree with annual nodes using annual compounding
to report rates.

ValuationDate = 'Jan-1-2004';
Maturity = ['12-31-2004'; '12-31-2005'; '12-31-2006'; 
'12-31-2007'];
Compounding = 1;
TimeSpec = bktimespec(ValuationDate, Maturity, Compounding)

TimeSpec = struct with fields:
           FinObj: 'BKTimeSpec'
    ValuationDate: 731947
         Maturity: [4x1 double]
      Compounding: 1
            Basis: 0
     EndMonthRule: 1

Input Arguments
ValuationDate — Pricing date and first observation in the tree
serial date number | character vector date

Pricing date and first observation in the tree, specified as a scalar date using a serial date number or
date character vector.
Data Types: double | char

Maturity — Dates marking the cash flow dates of the tree
serial date number | date character vector
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Dates marking the cash flow dates of the tree, specified as NLEVELS-by-1 vector of serial date
numbers or date character vectors. Cash flows with these maturities fall on tree nodes. Maturity
should be in increasing order.
Data Types: double | char | cell

Compounding — Rate at which the input zero rates were compounded when annualized
1 (default) | integer with value of 1, 2, 3, 4, 6, 12, 365, or -1

(Optional) Rate at which the input zero rates were compounded when annualized, specified as a
scalar integer value.

• If Compounding = 1, 2, 3, 4, 6, 12:

Disc = (1 + Z/F)^(-T), where F is the compounding frequency, Z is the zero rate, and T is the
time in periodic units; for example, T = F is one year.

• If Compounding = 365:

Disc = (1 + Z/F)^(-T), where F is the number of days in the basis year and T is a number of
days elapsed computed by basis.

• If Compounding = −1:

Disc = exp(-T*Z), where T is time in years.

Data Types: double

Output Arguments
TimeSpec — Specification for the time layout for bktree
structure

Specification for the time layout for bktree, returned as a structure. The state observation dates are
[ValuationDate; Maturity(1:end-1)]. Because a forward rate is stored at the last observation,
the tree can value cash flows out to Maturity(end).

See Also
bktree | bkvolspec | bksens

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Specifying the Time Structure (TimeSpec)” on page 2-70
“Pricing Options Structure” on page A-2
“Understanding Interest-Rate Tree Models” on page 2-66
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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bktree
Build Black-Karasinski interest-rate tree

Syntax
BKTree = bktree(VolSpec,RateSpec,TimeSpec)
BKTree = bktree( ___ ,Name,Value)

Description
BKTree = bktree(VolSpec,RateSpec,TimeSpec) creates a structure containing time and
interest-rate information on a recombining tree.

BKTree = bktree( ___ ,Name,Value) adds additional name-value pair arguments.

Examples

Create a BKTree

Using the data provided, create a BK volatility specification (using bkvolspec), rate specification
(using intenvset), and tree time layout specification (using bktimespec). Then use these
specifications to create a BK tree using bktree.

Compounding = -1;
ValuationDate = '01-01-2004';
StartDate = ValuationDate;
VolDates = ['12-31-2004'; '12-31-2005'; '12-31-2006'; 
'12-31-2007'];
VolCurve = 0.01;
AlphaDates = '01-01-2008';
AlphaCurve = 0.1;
Rates = [0.0275; 0.0312; 0.0363; 0.0415];

BKVolSpec = bkvolspec(ValuationDate, VolDates, VolCurve,...  
AlphaDates, AlphaCurve);

RateSpec = intenvset('Compounding', Compounding,...
             'ValuationDate', ValuationDate,...
             'StartDates', ValuationDate,...
             'EndDates', VolDates,...
             'Rates', Rates);
 
BKTimeSpec = bktimespec(ValuationDate, VolDates, Compounding);

BKTree = bktree(BKVolSpec, RateSpec, BKTimeSpec)

BKTree = struct with fields:
      FinObj: 'BKFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
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        tObs: [0 0.9973 1.9973 2.9973]
        dObs: [731947 732312 732677 733042]
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [3.9973]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}
     Connect: {[2]  [2 3 4]  [2 3 4 5 6]}
     FwdTree: {1x4 cell}

Use treeviewer to observe the tree you have created.

treeviewer(BKTree)

Input Arguments
VolSpec — Volatility process specification
structure

Volatility process specification, specified using the VolSpec output obtained from bdtvolspec.
Data Types: struct

RateSpec — Interest-rate specification for initial risk-free rate curve
structure

Interest-rate specification for initial rate curve, specified by the RateSpec obtained from
intenvset. For information on the interest-rate specification, see intenvset.
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Data Types: struct

TimeSpec — Time tree layout specification
structure

Time tree layout specification, specified using the TimeSpec output obtained from bdttimespec.
The TimeSpec defines the observation dates of the BK tree and the Compounding rule for date to
time mapping and price-yield formulas.
Data Types: struct

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: BKTree = bktree(BKVolSpec, RateSpec, BKTimeSpec,'Method','HW1996')

Method — Hull-White method upon which the tree-node connectivity algorithm is based
'HW2000' (default) | character vector with values 'HW2000' or 'HW1996'

Hull-White method upon which the tree-node connectivity algorithm is based, specified as a character
vector with a value of 'HW2000' or 'HW1996'.

bktree supports two tree-node connectivity algorithms. HW1996 is based on the original paper
published in the Journal of Derivatives, and HW2000 is the general version of the algorithm, as
specified in the paper published in August 2000.
Data Types: char

Output Arguments
BKTree — Time and interest-rate information of a recombining tree
structure

Time and interest-rate information of a recombining tree, returned as a structure.

References
[1] Hull, J., and A. White. "Using Hull-White Interest Rate Trees." Journal of Derivatives. 1996.

[2] Hull, J., and A. White. "The General Hull-White Model and Super Calibration." August 2000.

See Also
bkprice | bkvolspec | bktimespec | intenvset | bksens

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Use treeviewer to Examine HWTree and PriceTree When Pricing European Callable Bond” on page
2-195
“Calibrating Hull-White Model Using Market Data” on page 2-92
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“Pricing Options Structure” on page A-2
“Understanding Interest-Rate Tree Models” on page 2-66
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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bkvolspec
Specify Black-Karasinski interest-rate volatility process

Syntax
VolSpec = bdtvolspec(ValuationDate,VolDates,VolCurve,AlphaDates,AlphaCurve)
VolSpec = bdtvolspec( ___ ,InterpMethod)

Description
VolSpec = bdtvolspec(ValuationDate,VolDates,VolCurve,AlphaDates,AlphaCurve)
creates a structure specifying the volatility for bktree.

VolSpec = bdtvolspec( ___ ,InterpMethod) adds the optional argument InterpMethod.

Examples

Create a Black-Karasinski Volatility Specification

This example shows how to create a Black-Karasinski volatility specification (VolSpec) using the
following data.

ValuationDate = '01-01-2004';
StartDate = ValuationDate;
VolDates = ['12-31-2004'; '12-31-2005'; '12-31-2006'; 
'12-31-2007'];
VolCurve = 0.01;
AlphaDates = '01-01-2008';
AlphaCurve = 0.1;
BKVolSpec = bkvolspec(ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve)

BKVolSpec = struct with fields:
             FinObj: 'BKVolSpec'
      ValuationDate: 731947
           VolDates: [4x1 double]
           VolCurve: [4x1 double]
         AlphaCurve: 0.1000
         AlphaDates: 733408
    VolInterpMethod: 'linear'

Input Arguments
ValuationDate — Observation date of the investment horizon
serial date number | character vector date

Observation date of the investment horizon, specified as a scalar date using a serial date number or
date character vector.
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Data Types: double | char

VolDates — Number of points of yield volatility end dates
serial date number | date character vector

Number of points of yield volatility end dates, specified as a NPOINTS-by-1 vector of serial date
numbers or date character vectors.
Data Types: double | char | cell

VolCurve — Yield volatility values
decimal

Yield volatility values, specified as a NPOINTS-by-1 vector of decimal values. The term structure of
VolCurve is the yield volatility represented by the value of the volatility of the yield from time t = 0
to time t + i, where i is any point within the volatility curve.
Data Types: double

AlphaDates — Mean reversion end dates
serial date number | date character vector

Mean reversion end dates, specified as a NPOINTS-by-1 vector of serial date numbers or date
character vectors.
Data Types: double | char | cell

AlphaCurve — Positive mean reversion values
positive decimal

Positive mean reversion values, specified as a NPOINTS-by-1 vector of positive decimal values.
Data Types: double

InterpMethod — Interpolation method
'linear' (default) | character vector with values supported by interp1

(Optional) Interpolation method, specified as a character vector with values supported by interp1.
Data Types: char

Output Arguments
VolSpec — Specification for the volatility model for bktree
structure

Structure specifying the volatility model for bktree.

See Also
bktree | bkprice | bktimespec | interp1

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Specifying the Volatility Model (VolSpec)” on page 2-68
“Pricing Options Structure” on page A-2
“Understanding Interest-Rate Tree Models” on page 2-66
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“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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bondbybdt
Price bond from Black-Derman-Toy interest-rate tree

Syntax
[Price,PriceTree] = bondbybdt(BDTTree,CouponRate,Settle,Maturity)
[Price,PriceTree] = bondbybdt( ___ ,Name,Value)

Description
[Price,PriceTree] = bondbybdt(BDTTree,CouponRate,Settle,Maturity) prices bond
from a Black-Derman-Toy interest-rate tree. bondbybdt computes prices of vanilla bonds, stepped
coupon bonds and amortizing bonds.

[Price,PriceTree] = bondbybdt( ___ ,Name,Value) adds additional name-value pair
arguments.

Examples

Price a Bond Using a BDT Tree

Price a 10% bond using a BDT interest-rate tree.

Load deriv.mat, which provides BDTTree. The BDTTree structure contains the time and interest-
rate information needed to price the bond.

load deriv.mat;

Define the bond using the required arguments. Other arguments use defaults.

CouponRate = 0.10;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Period = 1;

Use bondbybdt to compute the price of the bond.

Price = bondbybdt(BDTTree, CouponRate, Settle, Maturity, Period)

Price = 95.5030

Price a Stepped Coupon Bond

Price single stepped coupon bonds using market data.

Define the interest-rate term structure.

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
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StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

Create the RateSpec.

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates, 'EndDates',...
EndDates, 'Rates', Rates, 'Compounding', Compounding)

RS = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x1 double]
            Rates: [4x1 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: 734139
    ValuationDate: 734139
            Basis: 0
     EndMonthRule: 1

Create the stepped bond instrument.

Settle = '01-Jan-2010';
Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2012' .0425;'01-Jan-2014' .0750}};
Period = 1;

Build the BDT tree and assume the volatility to be 10% using the following market data:

Sigma = 0.1;  
BDTTimeSpec = bdttimespec(ValuationDate, EndDates);
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');
BDTT = bdttree(BDTVolSpec, RS, BDTTimeSpec)

BDTT = struct with fields:
      FinObj: 'BDTFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [734139 734504 734869 735235]
        TFwd: {[4x1 double]  [3x1 double]  [2x1 double]  [3]}
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
     FwdTree: {[1.0350]  [1.0444 1.0543]  [1.0469 1.0573 1.0700]  [1.0505 ... ]}

Compute the price of the stepped coupon bonds.

PBDT= bondbybdt(BDTT, CouponRate, Settle,Maturity , Period)

PBDT = 4×1

  100.7246
  100.0945
  101.5900
  102.0820
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Price Two Bonds with Amortization Schedules

Price two bonds with amortization schedules using the Face input argument to define the schedule.

Define the interest-rate term structure.

Rates = 0.035;
ValuationDate = '1-Nov-2011';
StartDates = ValuationDate;
EndDates = '1-Nov-2017';
Compounding = 1;

Create the RateSpec.

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

Create the bond instrument. The bonds have a coupon rate of 4% and 3.85%, a period of one year,
and mature on 1-Nov-2017.

CouponRate = [0.04; 0.0385];
Settle ='1-Nov-2011';
Maturity = '1-Nov-2017';
Period = 1;

Define the amortizing schedule.

Face = {{'1-Nov-2015' 100;'1-Nov-2016' 85;'1-Nov-2017' 70};
{'1-Nov-2015' 100;'1-Nov-2016' 90;'1-Nov-2017' 80}};

Build the BDT tree and assume the volatility to be 10%.

MatDates = {'1-Nov-2012'; '1-Nov-2013';'1-Nov-2014';'1-Nov-2015';'1-Nov-2016';'1-Nov-2017'};
BDTTimeSpec = bdttimespec(ValuationDate, MatDates);
Volatility = 0.1;  
BDTVolSpec = bdtvolspec(ValuationDate, MatDates, Volatility*ones(1,length(MatDates))');
BDTT = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);

Compute the price of the amortizing bonds.

Price = bondbybdt(BDTT, CouponRate, Settle, Maturity, 'Period',Period,...
'Face', Face)

Price = 2×1

  102.4791
  101.7786

Input Arguments
BDTTree — Interest-rate structure
structure
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Interest-rate tree structure, created by bdttree
Data Types: struct

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell array, where
each element is a NumDates-by-2 cell array. The first column of the NumDates-by-2 cell array is dates
and the second column is associated rates. The date indicates the last day that the coupon rate is
valid.
Data Types: double | cell

Settle — Settlement date
serial date number | character vector

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers or date
character vectors.

The Settle date for every bond is set to the ValuationDate of the BDT tree. The bond argument
Settle is ignored.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector

Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character vectors
representing the maturity date for each bond.
Data Types: char | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree] =
bondbybdt(BDTTree,CouponRate,Settle,Maturity,'Period',4,'Face',10000)

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and an NINST-by-1
vector. Values for Period are 1, 2, 3, 4, 6, and 12.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis of the instrument, specified as the comma-separated pair consisting of 'Basis' and
a NINST-by-1 vector.
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• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month
having 30 or fewer days, specified as the comma-separated pair consisting of 'EndMonthRule' and
a nonnegative integer [0, 1] using a NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

IssueDate — Bond issue date
serial nonnegative date number | date character vector

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a NINST-
by-1 vector using a serial nonnegative date number or date character vector.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial nonnegative date number | date character vector

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using a serial nonnegative date number or date
character vector.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes
precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate,
the cash flow payment dates are determined from other inputs.
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Data Types: double | char

LastCouponDate — Irregular last coupon date
serial nonnegative date number | date character vector

Irregular last coupon date, specified as the comma-separated pair consisting of 'LastCouponDate'
and a NINST-by-1 vector using a serial nonnegative date number or date character vector.

In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the
coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate,
regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not
specify a LastCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char

StartDate — Forward starting date of payments
Settle date (default) | serial date number | date character vector

Forward starting date of payments (the date from which a bond cash flow is considered), specified as
the comma-separated pair consisting of 'StartDate' and a NINST-by-1 vector using serial date
numbers or date character vectors.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double

Face — Face value
100 (default) | nonnegative value | cell array of nonnegative values

Face or par value, specified as the comma-separated pair consisting of 'Face' and a NINST-by-1
vector of nonnegative face values or an NINST-by-1 cell array of face values or face value schedules.
For the latter case, each element of the cell array is a NumDates-by-2 cell array, where the first
column is dates and the second column is its associated face value. The date indicates the last day
that the face value is valid.
Data Types: cell | double

Options — Derivatives pricing options
structure

Derivatives pricing options, specified as the comma-separated pair consisting of 'Options' and a
structure that is created with derivset.
Data Types: struct

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-separated pair
consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 vector of logicals with values of 0 (false)
or 1 (true).
Data Types: logical

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors
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Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 (or NINST-by-2 if
BusinessDayConvention is different for each leg) cell array of character vectors of business day
conventions. The selection for business day convention determines how non-business days are
treated. Non-business days are defined as weekends plus any other date that businesses are not open
(e.g. statutory holidays). Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-business days
are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on the
following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day. However if the following business day is in a different month, the
previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed on the
previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day. However if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair consisting of
'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

Output Arguments
Price — Expected bond prices at time 0
vector

Expected bond prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing vectors of
instrument prices and accrued interest, and a vector of observation times for each node. Within
PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.
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More About
Vanilla Bond

A vanilla coupon bond is a security representing an obligation to repay a borrowed amount at a
designated time and to make periodic interest payments until that time.

The issuer of a bond makes the periodic interest payments until the bond matures. At maturity, the
issuer pays to the holder of the bond the principal amount owed (face value) and the last interest
payment.

Stepped Coupon Bond

A step-up and step-down bond is a debt security with a predetermined coupon structure over time.

With these instruments, coupons increase (step up) or decrease (step down) at specific times during
the life of the bond.

Bond with an Amortization Schedule

An amortized bond is treated as an asset, with the discount amount being amortized to interest
expense over the life of the bond.

See Also
bdttree | bdtprice | cfamounts | instbond

Topics
“Computing Instrument Sensitivities” on page 2-89
“Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-10
“Bond” on page 2-3
“Understanding the Interest-Rate Term Structure” on page 2-48
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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blackvolbyrebonato
Compute Black volatility for LIBOR Market Model using Rebonato formula

Syntax
outVol = blackvolbyrebonato(ZeroCurve,VolFunc,CorrMat,ExerciseDate,Maturity)
outVol = blackvolbyrebonato( ___ ,Name,Value)

Description
outVol = blackvolbyrebonato(ZeroCurve,VolFunc,CorrMat,ExerciseDate,Maturity)
computes the Black volatility for a swaption using a LIBOR Market Model.

outVol = blackvolbyrebonato( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Price Swaption for LIBOR Market Model Using the Rebonato Formula

Define the input maturity and tenor for a LIBOR Market Model (LMM) specified by the cell array of
volatility function handles, and a correlation matrix for the LMM.

Settle = datenum('11-Aug-2004');
  
% Zero Curve
CurveTimes = (1:10)';
CurveDates = daysadd(Settle,360*CurveTimes,1);
  
ZeroRates = [0.03 0.033 0.036 0.038 0.04 0.042 0.043 0.044 0.045 0.046]';
  
% Construct an IRCurve
irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);
  
LMMVolFunc = @(a,t) (a(1)*t + a(2)).*exp(-a(3)*t) + a(4);
LMMVolParams = [.3 -.02 .7 .14];
  
numRates = length(ZeroRates);
VolFunc(1:numRates-1) = {@(t) LMMVolFunc(LMMVolParams,t)};
  
Beta = .08;
CorrFunc = @(i,j,Beta) exp(-Beta*abs(i-j));
CorrMat = CorrFunc(meshgrid(1:numRates-1)',meshgrid(1:numRates-1),Beta);
  
ExerciseDate = datenum('11-Aug-2009');
Maturity = daysadd(ExerciseDate,360*[3;4],1);
  
Vol = blackvolbyrebonato(irdc,VolFunc,CorrMat,ExerciseDate,Maturity,'Period',1)

Vol = 2×1

    0.2210

 blackvolbyrebonato

11-225



    0.2079

Input Arguments
ZeroCurve — Zero-curve for LiborMarketModel model
structure

Zero-curve for the LiborMarketModel, specified using IRDataCurve or RateSpec.
Data Types: struct

VolFunc — Function handle for volatility
cell array of function handles

Function handle for volatility, specified by a NumRates-by-1 cell array of function handles. Each
function handle must take time as an input and return a scalar volatility
Data Types: cell | function_handle

CorrMat — Correlation matrix
vector

Correlation matrix, specified by NumRates-by-NumRates.
Data Types: single | double

ExerciseDate — Swaption exercise date
serial date number | vector of serial date numbers | date character vector

Swaption exercise dates, specified by a NumSwaptions-by-1 vector of serial date numbers or date
character vectors.
Data Types: single | double | char | cell

Maturity — Swap maturity date
serial date number | vector of serial date numbers | date character vector

Swap maturity dates, specified using a NumSwaptions-by-1 vector of serial date numbers or date
character vectors.
Data Types: single | double | char | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Vol =
blackvolbyrebonato(irdc,VolFunc,CorrMat,ExerciseDate,Maturity,'Period',1)

Period — Compounding frequency of curve and reset of swaptions
2 (default) | positive integer from the set [1,2,3,4,6,12] | vector of positive integers from the set
[1,2,3,4,6,12]
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Compounding frequency of curve and reset of swaptions, specified as the comma-separated pair
consisting of 'Period' and a positive integer for the values 1,2,4,6,12 in a NumSwaptions-by-1
vector.
Data Types: single | double

Output Arguments
outVol — Black volatility for specified swaption
scalar | vector

Black volatility, returned as a vector for the specified swaptions.

Algorithms
The Rebonato approximation formula relates the Black volatility for a European swaption, given a set
of volatility functions and a correlation matrix

(υα, β
LFM)2 = ∑

i, j = α + 1

β wi(0)w j(0)Fi(0)F j(0)ρi, j

Sα, β(0)2 ∫
0

Tα
σi(t)σ j(t)dt

where:

wi(t) =
τiP(t, Ti)

∑
k = α + 1

β
τκP(t, tκ)

References
[1] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer Finance, 2006.

See Also
LiborMarketModel

Topics
“Price Swaptions with Interest-Rate Models Using Simulation” on page 2-101
“Pricing Bermudan Swaptions with Monte Carlo Simulation” on page 2-115
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced in R2013a
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blackvolbysabr
Calculate implied Black volatility using SABR model

Syntax
outVol = blackvolbysabr(Alpha,Beta,Rho,Nu,Settle,ExerciseDate,ForwardValue,
Strike)
outVol = blackvolbysabr( ___ ,Name,Value)

Description
outVol = blackvolbysabr(Alpha,Beta,Rho,Nu,Settle,ExerciseDate,ForwardValue,
Strike) calculates the implied Black volatility using the SABR stochastic volatility model.

outVol = blackvolbysabr( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Compute the Implied Black Volatility Using the SABR Model

Define the model parameters and option data.

ForwardRate = 0.0357;
Strike = 0.03;
Alpha = 0.036;
Beta = 0.5;
Rho = -0.25;
Nu = 0.35;
  
Settle = datenum('15-Sep-2013');
ExerciseDate = datenum('15-Sep-2015');

Compute the Black volatility using the SABR model.

ComputedVols = blackvolbysabr(Alpha, Beta, Rho, Nu, Settle, ...
ExerciseDate, ForwardRate, Strike)

ComputedVols = 0.2122

Compute the Shifted Black Volatility Using the Shifted SABR Model

Define the model parameters and option data with a negative strike.

ForwardRate = 0.0002;
Strike = -0.001;  % -0.1% strike.
Alpha = 0.01;
Beta = 0.5;
Rho = -0.1;
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Nu = 0.15;
Shift = 0.005;  % 0.5 percent shift

Settle = datenum('1-Mar-2016');
ExerciseDate = datenum('1-Mar-2017');

Compute the Shifted Black volatility using the Shifted SABR model.

ComputedVols = blackvolbysabr(Alpha, Beta, Rho, Nu, Settle, ...
ExerciseDate, ForwardRate, Strike, 'Shift', Shift)

ComputedVols = 0.1518

Input Arguments
Alpha — Current SABR volatility
scalar

Current SABR volatility, specified as a scalar.
Data Types: double

Beta — SABR constant elasticity of variance (CEV) exponent
scalar

SABR CEV exponent, specified as a scalar.
Data Types: double

Rho — Correlation between forward value and volatility
scalar

Correlation between forward value and volatility, specified as a scalar.
Data Types: double

Nu — Volatility of volatility
scalar

Volatility of volatility, specified as a scalar.
Data Types: double

Settle — Settlement date
scalar for serial nonnegative date number | scalar for date character vector

Settlement date, specified as a scalar using a serial nonnegative date number or date character
vector.
Data Types: double | char

ExerciseDate — Option exercise date
scalar for serial nonnegative date number | scalar for date character vector

Option exercise date, specified as a scalar using a serial nonnegative date number or date character
vector.
Data Types: double | char
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ForwardValue — Current forward value of underlying asset
scalar | vector

Current forward value of the underlying asset, specified as a scalar or vector of size NumVols-by-1.
Data Types: double

Strike — Option strike price values
scalar | vector

Option strike price values, specified as a scalar value or a vector of size NumVols-by-1.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: outVol =
blackvolbysabr(Alpha,Beta,Rho,Nu,Settle,ExerciseDate,ForwardValue,Strike,'Bas
is',2,'Model','Obloj2008')

Basis — Day-count basis of instrument
0 (actual/actual) (default) | positive integers of the set [1...13]

Day-count basis of the instrument, specified as the comma-separated pair consisting of 'Basis' and
a positive integer of the set [1...13].

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double
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Model — Version of SABR model
'Hagan2002' (default) | value 'Obloj2008'

Version of SABR model, specified as the comma-separated pair consisting of 'Model' and one of the
following values:

• 'Hagan2002' — Original version by Hagan et al. (2002)
• 'Obloj2008' — Version by Obloj (2008)

Data Types: char

Shift — Shift in decimals for shifted SABR model
0 (no shift) (default) | positive decimal

Shift in decimals for the shifted SABR model (to be used with the Shifted Black model), specified as
the comma-separated pair consisting of 'Shift' and a scalar positive decimal value. Set this
parameter to a positive shift in decimals to add a positive shift to ForwardValue and Strike, which
effectively sets a negative lower bound for ForwardValue and Strike. For example, a Shift value
of 0.01 is equal to a 1% shift.
Data Types: double

Output Arguments
outVol — Implied Black volatility computed by SABR model
scalar | vector

Implied Black volatility computed by SABR model, returned as a scalar or vector of size NumVols-
by-1.

Algorithms

The SABR stochastic volatility model treats the underlying forward F  and volatility α  as separate
random processes, which are related with correlation ρ:

dF = α F βdW1

dα = vα dW2
dW1dW2 = ρdt

F (0) = F
α (0) = α

where

• F  is the underlying forward (a variable).
• F is the current underlying forward (a constant).
• α  is the SABR volatility (a variable).
• α is the current SABR volatility (a constant).
• β is the SABR constant elasticity of variance (CEV) exponent.
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• υ is the volatility of volatility.
• dW1 is Brownian motion.
• dW2 is Brownian motion.
• ρ is the correlation between forward value and volatility.

In contrast, Black's lognormal model assumes a constant volatility, σB.

dF = σBF dW

Hagan et al. (2002) derived the following closed-form approximation of implied Black lognormal
volatility (σB) for the SABR model

σB(F, K) =
α 1 + (1− β)2

24
α2

(FK)1− β + 1
4

ρβυα
(FK)(1− β)/2 + 2− 3ρ2

24 υ2 T + ...

(FK)(1− β)/2 1 + (1− β)2
24 log2(F/K) + (1− β)4

1920 log4(F/K) + ...

z
x(z)

z = υ
α (Flog(F/K)

x(z) = log 1− 2ρz + z2 + z − ρ
1− ρ

where

• F is the current forward value of the underlying.
• α is the current SABR volatility.
• K is the strike value.
• T is the time to option maturity.

Obloj (2008) advocated the following closed-form approximation of implied Black lognormal volatility
for the SABR model (for β < 1)

σB(F, K) = υlog(F/K)
x(z) 1 + (1− β)2

24
α2

(FK)1− β + 1
4

ρβυα
(FK)(1− β)/2 + 2− 3ρ2

24 υ2 T + ...

z = υ
α

F(1− β)− K(1− β)

1− β

x(z) = log 1− 2ρz + z2 + z − ρ
1− ρ

These expressions can be simplified in special situations, such as the at-the-money (F = K ) and
stochastic lognormal (β = 1) cases [1,2].

References
[1] Hagan, P. S., D. Kumar, A.S. Lesniewski, and D.E. Woodward. “Managing Smile Risk.” Wilmott

Magazine, September, pp. 84–108, 2002.

[2] Obloj, J. “Fine-tune your smile: Correction to Hagan et. al.” Wilmott Magazine, 2008.

11 Functions

11-232



See Also
swaptionbyblk | swaptionbynormal | optsensbysabr

Topics
“Calibrate the SABR Model” on page 2-33
“Price a Swaption Using the SABR Model” on page 2-38
“Price Swaptions with Negative Strikes Using the Shifted SABR Model” on page 2-26
“Work with Negative Interest Rates Using Functions” on page 2-18
“Supported Interest-Rate Instrument Functions” on page 2-3

External Websites
How to Price Interest Rate Options with Negative Interest Rates (3 min 05 sec)

Introduced in R2014a

 blackvolbysabr

11-233

https://www.mathworks.com/videos/how-to-price-interest-rate-options-with-negative-interest-rates-1491923238337.html


bondbybk
Price bond from Black-Karasinski interest-rate tree

Syntax
[Price,PriceTree] = bondbybk(BKTree,CouponRate,Settle,Maturity)
[Price,PriceTree] = bondbybk( ___ ,Name,Value)

Description
[Price,PriceTree] = bondbybk(BKTree,CouponRate,Settle,Maturity) prices bond from
a Black-Karasinski interest-rate tree. bondbybk computes prices of vanilla bonds, stepped coupon
bonds and amortizing bonds.

[Price,PriceTree] = bondbybk( ___ ,Name,Value) adds additional name-value pair
arguments.

Examples

Price a Bond Using a BK Tree

Price a 4% bond using a Black-Karasinski interest-rate tree.

Load deriv.mat, which provides BKTree. The BKTree structure contains the time and interest-rate
information needed to price the bond.

load deriv.mat;

Define the bond using the required arguments. Other arguments use defaults.

CouponRate = 0.04;
Settle = '01-Jan-2004';
Maturity = '1-Jan-2008';

Use bondbybk to compute the price of the bond.

Period = 1;
Price = bondbybk(BKTree, CouponRate, Settle, Maturity, Period)

Price = 99.3296

Price a Stepped Coupon Bond

Price single stepped coupon bonds using market data.

Define the interest-rate term structure.

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
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StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012';...
'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

Create the RateSpec.

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RS = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x1 double]
            Rates: [4x1 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: 734139
    ValuationDate: 734139
            Basis: 0
     EndMonthRule: 1

Create the stepped bond instrument.

Settle = '01-Jan-2010';
Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2012' .0425;'01-Jan-2014' .0750}};
Period = 1;

Build the BK tree using the following market data:

VolDates = ['1-Jan-2011'; '1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014'];
VolCurve = 0.01;
AlphaDates = '01-01-2014';
AlphaCurve = 0.1;

BKVolSpec = bkvolspec(RS.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
BKTimeSpec = bktimespec(RS.ValuationDate, VolDates, Compounding);
BKT = bktree(BKVolSpec, RS, BKTimeSpec);

Compute the price of the stepped coupon bonds.

PBK= bondbybk(BKT, CouponRate, Settle,Maturity , Period)

PBK = 4×1

  100.7246
  100.0945
  101.5900
  102.0820
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Price a Bond with an Amortization Schedule

Price a bond with an amortization schedule using the Face input argument to define the schedule.

Define the interest-rate term structure.

Rates = 0.065;
ValuationDate = '1-Jan-2011';
StartDates = ValuationDate;
EndDates=  '1-Jan-2017';
Compounding = 1;

Create the RateSpec.

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: 0.6853
            Rates: 0.0650
         EndTimes: 6
       StartTimes: 0
         EndDates: 736696
       StartDates: 734504
    ValuationDate: 734504
            Basis: 0
     EndMonthRule: 1

Create the bond instrument. The bond has a coupon rate of 7%, a period of one year, and matures on
1-Jan-2017.

CouponRate = 0.07;
Settle ='1-Jan-2011';
Maturity = '1-Jan-2017';
Period = 1;
Face = {{'1-Jan-2015' 100;'1-Jan-2016' 90;'1-Jan-2017' 80}};

Build the BK tree with the following market data:

VolDates = ['1-Jan-2012'; '1-Jan-2013';...
'1-Jan-2014';'1-Jan-2015';'1-Jan-2016';'1-Jan-2017'];
VolCurve = 0.01;
AlphaDates = '01-01-2017';
AlphaCurve = 0.1;

BKVolSpec = bkvolspec(RateSpec.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
BKTimeSpec = bktimespec(RateSpec.ValuationDate, VolDates, Compounding);
BKT = bktree(BKVolSpec, RateSpec, BKTimeSpec);

Compute the price of the amortizing bond.

Price = bondbybk(BKT, CouponRate, Settle, Maturity, 'Period', Period,...
'Face', Face)

Price = 102.3155
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Compare the results with price of a vanilla bond.

PriceVanilla = bondbybk(BKT, CouponRate, Settle, Maturity, Period)

PriceVanilla = 102.4205

Input Arguments
BKTree — Interest-rate structure
structure

Interest-rate tree structure, created by bktree
Data Types: struct

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell array, where
each element is a NumDates-by-2 cell array. The first column of the NumDates-by-2 cell array is dates
and the second column is associated rates. The date indicates the last day that the coupon rate is
valid.
Data Types: double | cell

Settle — Settlement date
serial date number | character vector

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers or date
character vectors.

The Settle date for every bond is set to the ValuationDate of the BK tree. The bond argument
Settle is ignored.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector

Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character vectors
representing the maturity date for each bond.
Data Types: char | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree] =
bondbybk(BKTree,CouponRate,Settle,Maturity,'Period',4,'Face',10000)

Period — Coupons per year
2 per year (default) | vector
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Coupons per year, specified as the comma-separated pair consisting of 'Period' and a NINST-by-1
vector. Values for Period are 1, 2, 3, 4, 6, and 12.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis of the instrument, specified as the comma-separated pair consisting of 'Basis' and
a NINST-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month
having 30 or fewer days, specified as the comma-separated pair consisting of 'EndMonthRule' and
a nonnegative integer [0, 1] using a NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

IssueDate — Bond issue date
serial nonnegative date number | date character vector

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a NINST-
by-1 vector using a serial nonnegative date number or date character vector.
Data Types: double | char
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FirstCouponDate — Irregular first coupon date
serial nonnegative date number | date character vector

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using a serial nonnegative date number or date
character vector.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes
precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate,
the cash flow payment dates are determined from other inputs.
Data Types: double | char

LastCouponDate — Irregular last coupon date
serial nonnegative date number | date character vector

Irregular last coupon date, specified as the comma-separated pair consisting of 'LastCouponDate'
and a NINST-by-1 vector using a serial nonnegative date number or date character vector.

In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the
coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate,
regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not
specify a LastCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char

StartDate — Forward starting date of payments
Settle date (default) | serial date number | date character vector

Forward starting date of payments (the date from which a bond cash flow is considered), specified as
the comma-separated pair consisting of 'StartDate' and a NINST-by-1 vector using serial date
numbers or date character vectors.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double

Face — Face value
100 (default) | nonnegative value | cell array of nonnegative values

Face or par value, specified as the comma-separated pair consisting of 'Face' and a NINST-by-1
vector of nonnegative face values or an NINST-by-1 cell array of face values or face value schedules.
For the latter case, each element of the cell array is a NumDates-by-2 cell array, where the first
column is dates and the second column is its associated face value. The date indicates the last day
that the face value is valid.
Data Types: cell | double

Options — Derivatives pricing options
structure

Derivatives pricing options, specified as the comma-separated pair consisting of 'Options' and a
structure that is created with derivset.
Data Types: struct
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AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-separated pair
consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 vector of logicals with values of 0 (false)
or 1 (true).
Data Types: logical

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 (or NINST-by-2 if
BusinessDayConvention is different for each leg) cell array of character vectors of business day
conventions. The selection for business day convention determines how non-business days are
treated. Non-business days are defined as weekends plus any other date that businesses are not open
(e.g. statutory holidays). Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-business days
are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on the
following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day. However if the following business day is in a different month, the
previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed on the
previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day. However if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair consisting of
'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

Output Arguments
Price — Expected bond prices at time 0
vector

Expected bond prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure
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Tree structure of instrument prices, returned as a MATLAB structure of trees containing vectors of
instrument prices and accrued interest, and a vector of observation times for each node. Within
PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell array describes

how nodes in that level connect to the next. For a given tree level, there are NumNodes elements
in the vector, and they contain the index of the node at the next level that the middle branch
connects to. Subtracting 1 from that value indicates where the up-branch connects to, and adding
1 indicated where the down branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array contains the
up, middle, and down transition probabilities for each node of the level.

More About
Vanilla Bond

A vanilla coupon bond is a security representing an obligation to repay a borrowed amount at a
designated time and to make periodic interest payments until that time.

The issuer of a bond makes the periodic interest payments until the bond matures. At maturity, the
issuer pays to the holder of the bond the principal amount owed (face value) and the last interest
payment.

Stepped Coupon Bond

A step-up and step-down bond is a debt security with a predetermined coupon structure over time.

With these instruments, coupons increase (step up) or decrease (step down) at specific times during
the life of the bond.

Bond with an Amortization Schedule

An amortized bond is treated as an asset, with the discount amount being amortized to interest
expense over the life of the bond.

See Also
bkprice | bktree | cfamounts | hwprice | hwtree | instbond

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Bond” on page 2-3
“Understanding the Interest-Rate Term Structure” on page 2-48
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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bondbyhjm
Price bond from Heath-Jarrow-Morton interest-rate tree

Syntax
[Price,PriceTree] = bondbyhjm(HJMTree,CouponRate,Settle,Maturity)
[Price,PriceTree] = bondbyhjm( ___ ,Name,Value)

Description
[Price,PriceTree] = bondbyhjm(HJMTree,CouponRate,Settle,Maturity) prices bond
from a Heath-Jarrow-Morton interest-rate tree. bondbyhjm computes prices of vanilla bonds, stepped
coupon bonds and amortizing bonds.

[Price,PriceTree] = bondbyhjm( ___ ,Name,Value) adds additional name-value pair
arguments.

Examples

Price a Bond Using an HJM Tree

Price a 4% bond using an HJM interest-rate tree.

Load deriv.mat, which provides HJMTree. The HJMTree structure contains the time and interest-
rate information needed to price the bond.

load deriv.mat;

Define the bond using the required arguments. Other arguments use defaults.

CouponRate = 0.04;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

Use bondbyhjm to compute the price of the bond.

Period = 1;
Price = bondbyhjm(HJMTree, CouponRate, Settle, Maturity, Period)

Price = 97.3600

Price a Stepped Coupon Bond

Price single stepped coupon bonds using market data.

Define the interest-rate term structure.

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';

11 Functions

11-242



StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

Create the RateSpec.

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

Create the stepped bond instrument.

Settle = '01-Jan-2010';
Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2012' .0425;'01-Jan-2014' .0750}};
Period = 1;

Build the HJM tree using the following market data:

Volatility = [.2; .19; .18; .17];
CurveTerm = [ 1;  2;   3;   4];
HJMTimeSpec = hjmtimespec(ValuationDate, EndDates);
HJMVolSpec = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);
HJMT = hjmtree(HJMVolSpec,RS,HJMTimeSpec);

Compute the price of the stepped coupon bonds.

PHJM= bondbyhjm(HJMT, CouponRate, Settle,Maturity , Period)

PHJM = 4×1

  100.7246
  100.0945
  101.5900
  102.0820

Price a Bond with an Amortization Schedule

Price a bond with an amortization schedule using the Face input argument to define the schedule.

Define the interest-rate term structure.

Rates = 0.065;
ValuationDate = '1-Jan-2011';
StartDates = ValuationDate;
EndDates=  '1-Jan-2017';
Compounding = 1;

Create the RateSpec.

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
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             Disc: 0.6853
            Rates: 0.0650
         EndTimes: 6
       StartTimes: 0
         EndDates: 736696
       StartDates: 734504
    ValuationDate: 734504
            Basis: 0
     EndMonthRule: 1

Create the bond instrument. The bond has a coupon rate of 7%, a period of one year, and matures on
1-Jan-2017.

CouponRate = 0.07;
Settle ='1-Jan-2011';
Maturity = '1-Jan-2017';
Period = 1;
Face = {{'1-Jan-2015' 100;'1-Jan-2016' 90;'1-Jan-2017' 80}};

Build the HJM tree using the following market data:

Volatility = [.2; .19; .18; .17];
CurveTerm = [ 1;  2;   3;   4];
MaTree = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015';...
'Jan-1-2016'; 'Jan-1-2017'};
HJMTimeSpec = hjmtimespec(ValuationDate, MaTree);
HJMVolSpec = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);
HJMT = hjmtree(HJMVolSpec,RateSpec,HJMTimeSpec);

Compute the price of the amortizing bond.

Price = bondbyhjm(HJMT, CouponRate, Settle, Maturity, 'Period',...
Period, 'Face' , Face)

Price = 102.3155

Compare the results with price of a vanilla bond.

PriceVanilla = bondbyhjm(HJMT, CouponRate, Settle, Maturity, Period)

PriceVanilla = 102.4205

Input Arguments
HJMTree — Interest-rate structure
structure

Interest-rate tree structure, created by hjmtree
Data Types: struct

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell array, where
each element is a NumDates-by-2 cell array. The first column of the NumDates-by-2 cell array is dates
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and the second column is associated rates. The date indicates the last day that the coupon rate is
valid.
Data Types: double | cell

Settle — Settlement date
serial date number | character vector

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers or date
character vectors.

The Settle date for every bond is set to the ValuationDate of the HJM tree. The bond argument
Settle is ignored.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector

Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character vectors
representing the maturity date for each bond.
Data Types: char | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree] =
bondbyhjm(HJMTree,CouponRate,Settle,Maturity,'Period',4,'Face',10000)

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a NINST-by-1
vector. Values for Period are 1, 2, 3, 4, 6, and 12.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis of the instrument, specified as the comma-separated pair consisting of 'Basis' and
a NINST-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
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• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month
having 30 or fewer days, specified as the comma-separated pair consisting of 'EndMonthRule' and
a nonnegative integer [0, 1] using a NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

IssueDate — Bond issue date
serial nonnegative date number | date character vector

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a NINST-
by-1 vector using a serial nonnegative date number or date character vector.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial nonnegative date number | date character vector

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using a serial nonnegative date number or date
character vector.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes
precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate,
the cash flow payment dates are determined from other inputs.
Data Types: double | char

LastCouponDate — Irregular last coupon date
serial nonnegative date number | date character vector

Irregular last coupon date, specified as the comma-separated pair consisting of 'LastCouponDate'
and a NINST-by-1 vector using a serial nonnegative date number or date character vector.
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In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the
coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate,
regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not
specify a LastCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char

StartDate — Forward starting date of payments
Settle date (default) | serial date number | date character vector

Forward starting date of payments (the date from which a bond cash flow is considered), specified as
the comma-separated pair consisting of 'StartDate' and a NINST-by-1 vector using serial date
numbers or date character vectors.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double

Face — Face value
100 (default) | nonnegative value | cell array of nonnegative values

Face or par value, specified as the comma-separated pair consisting of 'Face' and a NINST-by-1
vector of nonnegative face values or an NINST-by-1 cell array of face values or face value schedules.
For the latter case, each element of the cell array is a NumDates-by-2 cell array, where the first
column is dates and the second column is its associated face value. The date indicates the last day
that the face value is valid.
Data Types: cell | double

Options — Derivatives pricing options
structure

Derivatives pricing options, specified as the comma-separated pair consisting of 'Options' and a
structure that is created with derivset.
Data Types: struct

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-separated pair
consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 vector of logicals with values of 0 (false)
or 1 (true).
Data Types: logical

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 (or NINST-by-2 if
BusinessDayConvention is different for each leg) cell array of character vectors of business day
conventions. The selection for business day convention determines how non-business days are
treated. Non-business days are defined as weekends plus any other date that businesses are not open
(e.g. statutory holidays). Values are:
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• actual — Non-business days are effectively ignored. Cash flows that fall on non-business days
are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on the
following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day. However if the following business day is in a different month, the
previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed on the
previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day. However if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair consisting of
'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

Output Arguments
Price — Expected bond prices at time 0
vector

Expected bond prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing vectors of
instrument prices and accrued interest, and a vector of observation times for each node. Within
PriceTree:

• PriceTree.PBush contains the clean prices.
• PriceTree.AIBush contains the accrued interest.
• PriceTree.tObs contains the observation times.

More About
Vanilla Bond

A vanilla coupon bond is a security representing an obligation to repay a borrowed amount at a
designated time and to make periodic interest payments until that time.

The issuer of a bond makes the periodic interest payments until the bond matures. At maturity, the
issuer pays to the holder of the bond the principal amount owed (face value) and the last interest
payment.
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Stepped Coupon Bond

A step-up and step-down bond is a debt security with a predetermined coupon structure over time.

With these instruments, coupons increase (step up) or decrease (step down) at specific times during
the life of the bond.

Bond with an Amortization Schedule

An amortized bond is treated as an asset, with the discount amount being amortized to interest
expense over the life of the bond.

See Also
hjmtree | cfamounts | hjmprice | instbond

Topics
“Computing Instrument Prices” on page 2-81
“Bond” on page 2-3
“Understanding the Interest-Rate Term Structure” on page 2-48
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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bondbyhw
Price bond from Hull-White interest-rate tree

Syntax
[Price,PriceTree] = bondbyhw(HWTree,CouponRate,Settle,Maturity)
[Price,PriceTree] = bondbyhw( ___ ,Name,Value)

Description
[Price,PriceTree] = bondbyhw(HWTree,CouponRate,Settle,Maturity) prices bond from
a Hull-White interest-rate tree. bondbyhw computes prices of vanilla bonds, stepped coupon bonds
and amortizing bonds.

[Price,PriceTree] = bondbyhw( ___ ,Name,Value) adds additional name-value pair
arguments.

Examples

Price a Bond Using the HW Tree

Price a 4% bond using a Hull-White interest-rate tree.

Load deriv.mat, which provides HWTree. The HWTree structure contains the time and interest-rate
information needed to price the bond.

load deriv.mat;

Define the bond using the required arguments. Other arguments use defaults.

CouponRate = 0.04;
Settle = '01-Jan-2004';
Maturity = '01-Jan-2006';

Use bondbyhw to compute the price of the bond.

Period = 1;
Price = bondbyhw(HWTree, CouponRate, Settle, Maturity, Period)

Price = 101.6002

Price a Stepped Coupon Bond

Price single stepped coupon bonds using market data.

Define the interest-rate term structure.

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
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StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

Create the RateSpec.

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RS = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x1 double]
            Rates: [4x1 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: 734139
    ValuationDate: 734139
            Basis: 0
     EndMonthRule: 1

Create the stepped bond instrument.

Settle = '01-Jan-2010';
Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2012' .0425;'01-Jan-2014' .0750}};
Period = 1;

Build the HW tree using the following market data:

VolDates = ['1-Jan-2011'; '1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014'];
VolCurve = 0.01;
AlphaDates = '01-01-2014';
AlphaCurve = 0.1;

HWVolSpec = hwvolspec(RS.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RS.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVolSpec, RS, HWTimeSpec);

Compute the price of the stepped coupon bonds.

PHW= bondbyhw(HWT, CouponRate, Settle,Maturity , Period)

PHW = 4×1

  100.7246
  100.0945
  101.5900
  102.0820

Price Two Bonds with Amortization Schedules

Price two bonds with amortization schedules using the Face input argument to define the schedules.
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Define the interest rate term structure.

Rates = 0.035;
ValuationDate = '1-Nov-2011';
StartDates = ValuationDate;
EndDates = '1-Nov-2017';
Compounding = 1;

Create the RateSpec.

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

Create the bond instrument. The bonds have a coupon rate of 4% and 3.85%, a period of one year,
and mature on 1-Nov-2017.

CouponRate = [0.04; 0.0385];
Settle ='1-Nov-2011';
Maturity = '1-Nov-2017';
Period = 1;

Define the amortizing schedule.

Face = {{'1-Nov-2015' 100;'1-Nov-2016' 85;'1-Nov-2017' 70};
{'1-Nov-2015' 100;'1-Nov-2016' 90;'1-Nov-2017' 80}};

Build the HW tree and assume the volatility to be 10%.

VolDates = ['1-Nov-2012'; '1-Nov-2013';'1-Nov-2014';'1-Nov-2015';'1-Nov-2016';'1-Nov-2017'];
VolCurve = 0.1;
AlphaDates = '01-01-2017';
AlphaCurve = 0.1;

HWVolSpec = hwvolspec(RateSpec.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RateSpec.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVolSpec, RateSpec, HWTimeSpec);

Compute the price of the amortizing bonds.

Price = bondbyhw(HWT, CouponRate, Settle, Maturity, 'Period',Period,...
'Face', Face)

Price = 2×1

  102.4791
  101.7786

Input Arguments
HWTree — Interest-rate structure
structure

Interest-rate tree structure, created by hwtree.
Data Types: struct
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CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell array, where
each element is a NumDates-by-2 cell array. The first column of the NumDates-by-2 cell array is dates
and the second column is associated rates. The date indicates the last day that the coupon rate is
valid.
Data Types: double | cell

Settle — Settlement date
serial date number | character vector

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers or date
character vectors.

The Settle date for every bond is set to the ValuationDate of the HW tree. The bond argument
Settle is ignored.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector

Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character vectors
representing the maturity date for each bond.
Data Types: char | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree] =
bondbyhw(HWTree,CouponRate,Settle,Maturity,'Period',4,'Face',10000)

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a NINST-by-1
vector. Values for Period are 1, 2, 3, 4, 6, and 12.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis of the instrument, specified as the comma-separated pair consisting of 'Basis' and
a NINST-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
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• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month
having 30 or fewer days, specified as the comma-separated pair consisting of 'EndMonthRule' and
a nonnegative integer [0, 1] using a NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

IssueDate — Bond issue date
serial nonnegative date number | date character vector

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a NINST-
by-1 vector using a serial nonnegative date number or date character vector.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial nonnegative date number | date character vector

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using a serial nonnegative date number or date
character vector.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes
precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate,
the cash flow payment dates are determined from other inputs.
Data Types: double | char
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LastCouponDate — Irregular last coupon date
serial nonnegative date number | date character vector

Irregular last coupon date, specified as the comma-separated pair consisting of 'LastCouponDate'
and a NINST-by-1 vector using a serial nonnegative date number or date character vector.

In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the
coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate,
regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not
specify a LastCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char

StartDate — Forward starting date of payments
Settle date (default) | serial date number | date character vector

Forward starting date of payments (the date from which a bond cash flow is considered), specified as
the comma-separated pair consisting of 'StartDate' and a NINST-by-1 vector using serial date
numbers or date character vectors.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double

Face — Face value
100 (default) | nonnegative value | cell array of nonnegative values

Face or par value, specified as the comma-separated pair consisting of 'Face' and a NINST-by-1
vector of nonnegative face values or an NINST-by-1 cell array of face values or face value schedules.
For the latter case, each element of the cell array is a NumDates-by-2 cell array, where the first
column is dates and the second column is its associated face value. The date indicates the last day
that the face value is valid.
Data Types: cell | double

Options — Derivatives pricing options
structure

Derivatives pricing options, specified as the comma-separated pair consisting of 'Options' and a
structure that is created with derivset.
Data Types: struct

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-separated pair
consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 vector of logicals with values of 0 (false)
or 1 (true).
Data Types: logical

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 (or NINST-by-2 if
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BusinessDayConvention is different for each leg) cell array of character vectors of business day
conventions. The selection for business day convention determines how non-business days are
treated. Non-business days are defined as weekends plus any other date that businesses are not open
(e.g. statutory holidays). Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-business days
are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on the
following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day. However if the following business day is in a different month, the
previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed on the
previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day. However if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair consisting of
'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

Output Arguments
Price — Expected bond prices at time 0
vector

Expected bond prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing vectors of
instrument prices and accrued interest, and a vector of observation times for each node. Within
PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell array describes

how nodes in that level connect to the next. For a given tree level, there are NumNodes elements
in the vector, and they contain the index of the node at the next level that the middle branch
connects to. Subtracting 1 from that value indicates where the up-branch connects to, and adding
1 indicated where the down branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array contains the
up, middle, and down transition probabilities for each node of the level.
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More About
Vanilla Bond

A vanilla coupon bond is a security representing an obligation to repay a borrowed amount at a
designated time and to make periodic interest payments until that time.

The issuer of a bond makes the periodic interest payments until the bond matures. At maturity, the
issuer pays to the holder of the bond the principal amount owed (face value) and the last interest
payment.

Stepped Coupon Bond

A step-up and step-down bond is a debt security with a predetermined coupon structure over time.

With these instruments, coupons increase (step up) or decrease (step down) at specific times during
the life of the bond.

Bond with an Amortization Schedule

An amortized bond is treated as an asset, with the discount amount being amortized to interest
expense over the life of the bond.

See Also
bkprice | bktree | cfamounts | hwprice | hwtree | instbond

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Calibrating Hull-White Model Using Market Data” on page 2-92
“Bond” on page 2-3
“Understanding the Interest-Rate Term Structure” on page 2-48
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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bondbycir
Price bond from Cox-Ingersoll-Ross interest-rate tree

Syntax
[Price,PriceTree] = bondbycir(CIRTree,CouponRate,Settle,Maturity)
[Price,PriceTree] = bondbycir( ___ ,Name,Value)

Description
[Price,PriceTree] = bondbycir(CIRTree,CouponRate,Settle,Maturity) prices bond
from a Cox-Ingersoll-Ross (CIR) interest-rate tree. bondbycir computes prices of vanilla bonds,
stepped coupon bonds, and amortizing bonds using a CIR++ model with the Nawalka-Beliaeva (NB)
approach.

[Price,PriceTree] = bondbycir( ___ ,Name,Value) adds additional name-value pair
arguments.

Examples

Price a Bond Using a CIR Interest-Rate Tree

Define the CouponRate for a bond.

CouponRate = 0.035;

Create a RateSpec using the intenvset function.

Rates = [0.035; 0.042147; 0.047345; 0.052707]; 
Dates = {'Jan-1-2017'; 'Jan-1-2018'; 'Jan-1-2019'; 'Jan-1-2020'; 'Jan-1-2021'}; 
ValuationDate = 'Jan-1-2017'; 
EndDates = Dates(2:end)'; 
Compounding = 1; 
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, 'EndDates',EndDates,'Rates', Rates, 'Compounding', Compounding); 

Create a CIR tree.

NumPeriods = length(EndDates); 
Alpha = 0.03; 
Theta = 0.02;  
Sigma = 0.1;   
Settle = '01-Jan-2017'; 
Maturity = '01-Jan-2021'; 
CIRTimeSpec = cirtimespec(ValuationDate, Maturity, NumPeriods); 
CIRVolSpec = cirvolspec(Sigma, Alpha, Theta); 

CIRT = cirtree(CIRVolSpec, RateSpec, CIRTimeSpec)

CIRT = struct with fields:
      FinObj: 'CIRFwdTree'
     VolSpec: [1x1 struct]
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    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [736696 737061 737426 737791]
     FwdTree: {1x4 cell}
     Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

Price the bond.

[Price,PriceTree] = bondbycir(CIRT,CouponRate,Settle,Maturity) 

Price = 94.0880

PriceTree = struct with fields:
     FinObj: 'CIRPriceTree'
       tObs: [0 1 2 3 4]
       dObs: [736696 737061 737426 737791 738157]
      PTree: {1x5 cell}
     AITree: {[0]  [0 0 0]  [0 0 0 0 0]  [0 0 0 0 0 0 0]  [0 0 0 0 0 0 0]}
    Connect: {[3x1 double]  [3x3 double]  [3x5 double]}

Input Arguments
CIRTree — Interest-rate structure
structure

Interest-rate tree structure, created by cirtree.
Data Types: struct

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell array, where
each element is a NumDates-by-2 cell array. The first column of the NumDates-by-2 cell array is dates
and the second column is associated rates. The date indicates the last day that the coupon rate is
valid.
Data Types: double | cell

Settle — Settlement date
serial date number | character vector | string array | datetime

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers, date
character vectors, string arrays, or datetime arrays.

The Settle date for every bond is set to the ValuationDate of the CIR tree. The bond argument
Settle is ignored.
Data Types: char | double | string | datetime

Maturity — Maturity date
serial date number | character vector | string array | datetime
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Maturity date, specified as a NINST-by-1 vector of serial date numbers, date character vectors, string
arrays, or datetime arrays representing the maturity date for each bond.
Data Types: char | double | string | datetime

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree] =
bondbycir(CIRTree,CouponRate,Settle,Maturity,'Period',4,'Face',10000)

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and an NINST-by-1
vector. Values for Period are 1, 2, 3, 4, 6, and 12.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis of the instrument, specified as the comma-separated pair consisting of 'Basis' and
a NINST-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]
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End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month
having 30 or fewer days, specified as the comma-separated pair consisting of 'EndMonthRule' and
a nonnegative integer [0, 1] using a NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

IssueDate — Bond issue date
serial date number | date character vector | string array | datetime

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a NINST-
by-1 vector using a serial date number, date character vector, string array, or datetime array.
Data Types: double | char | string | datetime

FirstCouponDate — Irregular first coupon date
serial date number | date character vector | string array | datetime

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using a serial date number, date character vector,
string array, or datetime array.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes
precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate,
the cash flow payment dates are determined from other inputs.
Data Types: double | char | string | datetime

LastCouponDate — Irregular last coupon date
serial nonnegative date number | date character vector | string array | datetime

Irregular last coupon date, specified as the comma-separated pair consisting of 'LastCouponDate'
and a NINST-by-1 vector using a serial date number, date character vector, string array, or datetime
array.

In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the
coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate,
regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not
specify a LastCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char | string | datetime

StartDate — Forward starting date of payments
Settle date (default) | serial date number | date character vector | string array | datetime

Forward starting date of payments (the date from which a bond cash flow is considered), specified as
the comma-separated pair consisting of 'StartDate' and a NINST-by-1 vector using serial date
numbers, date character vectors, string arrays, or datetime arrays.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double | string | datetime

Face — Face value
100 (default) | nonnegative value | cell array of nonnegative values
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Face or par value, specified as the comma-separated pair consisting of 'Face' and a NINST-by-1
vector of nonnegative face values or a NINST-by-1 cell array of face values or face value schedules.
For the latter case, each element of the cell array is a NumDates-by-2 cell array, where the first
column is dates and the second column is its associated face value. The date indicates the last day
that the face value is valid.
Data Types: cell | double

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-separated pair
consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 vector of logicals with values of 0 (false)
or 1 (true).
Data Types: logical

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 (or NINST-by-2 if
BusinessDayConvention is different for each leg) cell array of character vectors of business day
conventions. The selection for business day convention determines how nonbusiness days are treated.
Nonbusiness days are defined as weekends plus any other date that businesses are not open (e.g.
statutory holidays). Values are:

• actual — Nonbusiness days are effectively ignored. Cash flows that fall on nonbusiness days are
assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on the
following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day. However if the following business day is in a different month, the
previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed on the
previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day. However if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair consisting of
'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

Output Arguments
Price — Expected bond prices at time 0
vector
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Expected bond prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing vectors of
instrument prices and accrued interest, and a vector of observation times for each node. Within
PriceTree:

• PriceTree.tObs contains the observation times.
• PriceTree.dObs contains the observation dates.
• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.

More About
Vanilla Bond

A vanilla coupon bond is a security representing an obligation to repay a borrowed amount at a
designated time and to make periodic interest payments until that time.

The issuer of a bond makes the periodic interest payments until the bond matures. At maturity, the
issuer pays to the holder of the bond the principal amount owed (face value) and the last interest
payment.

Stepped Coupon Bond

A step-up and step-down bond is a debt security with a predetermined coupon structure over time.

With these instruments, coupons increase (step up) or decrease (step down) at specific times during
the life of the bond.

Bond with an Amortization Schedule

An amortized bond is treated as an asset, with the discount amount being amortized to interest
expense over the life of the bond.
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[1] Cox, J., Ingersoll, J.,and S. Ross. "A Theory of the Term Structure of Interest Rates." Econometrica.

Vol. 53, 1985.

[2] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer Finance, 2006.

[3] Hirsa, A. Computational Methods in Finance. CRC Press, 2012.

[4] Nawalka, S., Soto, G., and N. Beliaeva. Dynamic Term Structure Modeling. Wiley, 2007.

[5] Nelson, D. and K. Ramaswamy. "Simple Binomial Processes as Diffusion Approximations in
Financial Models." The Review of Financial Studies. Vol 3. 1990, pp. 393–430.
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See Also
capbycir | cfbycir | fixedbycir | floatbycir | floorbycir | oasbycir | optbndbycir |
optfloatbycir | optembndbycir | optemfloatbycir | rangefloatbycir | swapbycir |
swaptionbycir | instbond

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Calibrating Hull-White Model Using Market Data” on page 2-92
“Bond” on page 2-3
“Understanding the Interest-Rate Term Structure” on page 2-48
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced in R2018a

11 Functions

11-264



bondbyzero
Price bond from set of zero curves

Syntax
[Price,DirtyPrice,CFlowAmounts,CFlowDates] = bondbyzero(RateSpec,CouponRate,
Settle,Maturity)
[Price,DirtyPrice,CFlowAmounts,CFlowDates] = bondbyzero( ___ ,Name,Value)

Description
[Price,DirtyPrice,CFlowAmounts,CFlowDates] = bondbyzero(RateSpec,CouponRate,
Settle,Maturity) prices a bond from a set of zero curves. bondbyzero computes prices of vanilla
bonds, stepped coupon bonds and amortizing bonds.

[Price,DirtyPrice,CFlowAmounts,CFlowDates] = bondbyzero( ___ ,Name,Value) adds
additional name-value pair arguments.

Examples

Price a Vanilla Bond

Price a 4% bond using a zero curve.

Load deriv.mat, which provides ZeroRateSpec, the interest-rate term structure, needed to price
the bond.

load deriv.mat; 
CouponRate = 0.04;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';
Price = bondbyzero(ZeroRateSpec, CouponRate, Settle, Maturity)

Price = 97.5334

Price a Stepped Coupon Bond

Price single stepped coupon bonds using market data.

Define data for the interest-rate term structure.

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

Create the RateSpec.
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RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RS = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x1 double]
            Rates: [4x1 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: 734139
    ValuationDate: 734139
            Basis: 0
     EndMonthRule: 1

Create the stepped bond instrument.

Settle = '01-Jan-2010';
Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2012' .0425;'01-Jan-2014' .0750}};
Period = 1;

Compute the price of the stepped coupon bonds.

PZero= bondbyzero(RS, CouponRate, Settle, Maturity ,Period)

PZero = 4×1

  100.7246
  100.0945
  101.5900
  102.0820

Price a Bond with an Amortizing Schedule

Price a bond with an amortizing schedule using the Face input argument to define the schedule.

Define data for the interest-rate term structure.

Rates = 0.065;
ValuationDate = '1-Jan-2011';
StartDates = ValuationDate;
EndDates=  '1-Jan-2017';
Compounding = 1;

Create the RateSpec.

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
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             Disc: 0.6853
            Rates: 0.0650
         EndTimes: 6
       StartTimes: 0
         EndDates: 736696
       StartDates: 734504
    ValuationDate: 734504
            Basis: 0
     EndMonthRule: 1

Create and price the amortizing bond instrument. The bond has a coupon rate of 7%, a period of one
year, and matures on 1-Jan-2017.

CouponRate = 0.07;
Settle ='1-Jan-2011';
Maturity = '1-Jan-2017';
Period = 1;
Face = {{'1-Jan-2015' 100;'1-Jan-2016' 90;'1-Jan-2017' 80}};
Price = bondbyzero(RateSpec, CouponRate, Settle, Maturity, 'Period',...
Period, 'Face', Face)

Price = 102.3155

Compare the results with price of a vanilla bond.

PriceVanilla = bondbyzero(RateSpec, CouponRate, Settle, Maturity,Period)

PriceVanilla = 102.4205

Price both the amortizing and vanilla bonds.

Face = {{'1-Jan-2015' 100;'1-Jan-2016' 90;'1-Jan-2017' 80};
         100};
PriceBonds = bondbyzero(RateSpec, CouponRate, Settle, Maturity, 'Period',...
               Period, 'Face', Face)

PriceBonds = 2×1

  102.3155
  102.4205

Price a Bond in a Holding Period

When a bond is first issued, it can be priced with bondbyzero on that day by setting the Settle
date to the issue date. Later on, if the bond needs to be traded someday between the issue date and
the maturity date, its new price can be computed by updating the Settle date, as well as the
RateSpec input.

Note that the bond's price is determined by its remaining cash flows and the zero-rate term structure,
which can both change as the bond matures. While bondbyzero automatically updates the bond's
remaining cash flows with respect to the new Settle date, you must supply a new RateSpec input
in order to reflect the new zero-rate term structure for that new Settle date.

Use the following Bond information.
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IssueDate = datenum('20-May-2014');
CouponRate = 0.01;
Maturity = datenum('20-May-2019');

Determine the bond price on 20-May-2014.

Settle1 = datenum('20-May-2014');
ZeroDates1 = datemnth(Settle1,12*[1 2 3 5 7 10 20]');
ZeroRates1 = [0.23 0.63 1.01 1.60 2.01 2.27 2.79]'/100;
RateSpec1 = intenvset('StartDate',Settle1,'EndDates',ZeroDates1,'Rates',ZeroRates1);
[Price1, ~, CFlowAmounts1, CFlowDates1] = bondbyzero(RateSpec1, ...
    CouponRate, Settle1, Maturity, 'IssueDate', IssueDate);
Price1

Price1 = 97.1899

Determine the bond price on 10-Aug-2015.

Settle2 = datenum('10-Aug-2015');
ZeroDates2 = datemnth(Settle2,12*[1 2 3 5 7 10 20]');
ZeroRates2 = [0.40 0.73 1.09 1.62 1.98 2.24 2.58]'/100;
RateSpec2 = intenvset('StartDate',Settle2,'EndDates',ZeroDates2,'Rates',ZeroRates2);
[Price2, ~, CFlowAmounts2, CFlowDates2] = bondbyzero(RateSpec2, ...
    CouponRate, Settle2, Maturity, 'IssueDate', IssueDate);
Price2

Price2 = 98.9384

Price Three Bonds Using Two Different Curves

To price three bonds using two different curves, define the RateSpec:

StartDates = '01-April-2016';
EndDates = ['01-April-2017'; '01-April-2018';'01-April-2019';'01-April-2020'];
Rates = [[0.0356;0.041185;0.04489;0.047741],[0.0325;0.0423;0.0437;0.0465]];
RateSpec = intenvset('Rates', Rates, 'StartDates',StartDates,...
'EndDates', EndDates, 'Compounding', 1)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x2 double]
            Rates: [4x2 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: 736421
    ValuationDate: 736421
            Basis: 0
     EndMonthRule: 1

Price three bonds with the same Maturity and different coupons.

Settle = '01-April-2016';
Maturity = '01-April-2020';
Price = bondbyzero(RateSpec,[0.025;0.028;0.035],Settle,Maturity)
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Price = 3×2

   92.0766   92.4888
   93.1680   93.5823
   95.7145   96.1338

Price a Vanilla Bond Using the Optional Input Argument AdjustCashFlowsBasis

To adjust the cash flows according to the accrual amount, use the optional input argument
AdjustCashFlowsBasis when calling bondbyzero.

Use the following data to define the interest-rate term structure and to create a RateSpec.

Rates = 0.065;
ValuationDate = '1-Jan-2011';
StartDates = ValuationDate;
EndDates=  '1-Jan-2017';
Compounding = 1;
RateSpec = intenvset('ValuationDate',ValuationDate,'StartDates',StartDates,...
'EndDates', EndDates,'Rates',Rates,'Compounding',Compounding);
CouponRate = 0.07;
Settle ='1-Jan-2011';
Maturity = '1-Jan-2017';
Period = 1;
Face = {{'1-Jan-2015' 100;'1-Jan-2016' 90;'1-Jan-2017' 80}};

Use cfamounts and cycle through the Basis of 0 to 13, using the optional argument
AdjustCashFlowsBasis to determine the cash flow amounts for accrued interest due at settlement.

AdjustCashFlowsBasis = true;
CFlowAmounts =  cfamounts(CouponRate,Settle,Maturity,'Period',Period,'Basis',0:13,'AdjustCashFlowsBasis',AdjustCashFlowsBasis)

CFlowAmounts = 14×7

         0    7.0000    7.0000    7.0000    7.0000    7.0000  107.0000
         0    7.0000    7.0000    7.0000    7.0000    7.0000  107.0000
         0    7.0972    7.1167    7.0972    7.0972    7.0972  107.1167
         0    7.0000    7.0192    7.0000    7.0000    7.0000  107.0192
         0    7.0000    7.0000    7.0000    7.0000    7.0000  107.0000
         0    7.0000    7.0000    7.0000    7.0000    7.0000  107.0000
         0    7.0000    7.0000    7.0000    7.0000    7.0000  107.0000
         0    7.0000    7.0000    7.0000    7.0000    7.0000  107.0000
         0    7.0000    7.0000    7.0000    7.0000    7.0000  107.0000
         0    7.0972    7.1167    7.0972    7.0972    7.0972  107.1167
      ⋮

Notice that the cash flow amounts have been adjusted according to Basis.

Price a vanilla bond using the input argument AdjustCashFlowsBasis.

PriceVanilla = bondbyzero(RateSpec,CouponRate,Settle,Maturity,'Period',Period,'Basis',0:13,'AdjustCashFlowsBasis',AdjustCashFlowsBasis)

PriceVanilla = 14×1
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  102.4205
  102.4205
  102.9216
  102.4506
  102.4205
  102.4205
  102.4205
  102.4205
  102.4205
  102.9216
      ⋮

Input Arguments
RateSpec — Interest-rate structure
structure

Interest-rate structure, specified using intenvset to create a RateSpec for an annualized zero rate
term structure.
Data Types: struct

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell array, where
each element is a NumDates-by-2 cell array. The first column of the NumDates-by-2 cell array is dates
and the second column is associated rates. The date indicates the last day that the coupon rate is
valid.
Data Types: double | cell

Settle — Settlement date
serial date number | character vector

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers or date
character vectors.

Settle must be earlier than Maturity.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector

Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character vectors
representing the maturity date for each bond.
Data Types: char | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
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Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Price =
bondbyzero(RateSpec,CouponRate,Settle,Maturity,'Period',4,'Face',10000)

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a NINST-by-1
vector. Values for Period are 1, 2, 3, 4, 6, and 12.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis of the instrument, specified as the comma-separated pair consisting of 'Basis' and
a NINST-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month
having 30 or fewer days, specified as the comma-separated pair consisting of 'EndMonthRule' and
a nonnegative integer [0, 1] using a NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical
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IssueDate — Bond issue date
serial nonnegative date number | date character vector

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a NINST-
by-1 vector using a serial nonnegative date number or date character vector.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial nonnegative date number | date character vector

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using a serial nonnegative date number or date
character vector.
Data Types: double | char

LastCouponDate — Irregular last coupon date
serial nonnegative date number | date character vector

Irregular last coupon date, specified as the comma-separated pair consisting of 'LastCouponDate'
and a NINST-by-1 vector using a serial nonnegative date number or date character vector.
Data Types: double | char

StartDate — Forward starting date of payments
Settle date (default) | serial date number | date character vector

Forward starting date of payments (the date from which a bond cash flow is considered), specified as
the comma-separated pair consisting of 'StartDate' and a NINST-by-1 vector using serial date
numbers or date character vectors.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double

Face — Face value
100 (default) | scalar of nonnegative value | cell array of nonnegative values

Face value, specified as the comma-separated pair consisting of 'Face' and a NINST-by-1 scalar of
nonnegative face values or an NINST-by-1 cell array, where each element is a NumDates-by-2 cell
array. The first column of the NumDates-by-2 cell array is dates and the second column is the
associated face value. The date indicates the last day that the face value is valid.
Data Types: cell | double

Options — Derivatives pricing options
structure

Derivatives pricing options, specified as the comma-separated pair consisting of 'Options' and a
structure that is created with derivset.
Data Types: struct

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day count
false (default) | value of 0 (false) or 1 (true)
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Flag to adjust cash flows based on actual period day count, specified as the comma-separated pair
consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 vector of logicals with values of 0 (false)
or 1 (true).
Data Types: logical

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 (or NINST-by-2 if
BusinessDayConvention is different for each leg) cell array of character vectors of business day
conventions. The selection for business day convention determines how non-business days are
treated. Non-business days are defined as weekends plus any other date that businesses are not open
(e.g. statutory holidays). Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-business days
are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on the
following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day. However if the following business day is in a different month, the
previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed on the
previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day. However if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair consisting of
'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

Output Arguments
Price — Fixed-rate note prices
matrix

Floating-rate note prices, returned as a (NINST) by number of curves (NUMCURVES) matrix. Each
column arises from one of the zero curves.

DirtyPrice — Dirty bond price
matrix

Dirty bond price (clean + accrued interest), returned as a NINST- by-NUMCURVES matrix. Each
column arises from one of the zero curves.
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CFlowAmounts — Cash flow amounts
matrix

Cash flow amounts, returned as a NINST- by-NUMCFS matrix of cash flows for each bond.

CFlowDates — Cash flow dates
matrix

Cash flow dates, returned as a NINST- by-NUMCFS matrix of payment dates for each bond.

More About
Vanilla Bond

A vanilla coupon bond is a security representing an obligation to repay a borrowed amount at a
designated time and to make periodic interest payments until that time.

The issuer of a bond makes the periodic interest payments until the bond matures. At maturity, the
issuer pays to the holder of the bond the principal amount owed (face value) and the last interest
payment.

Stepped Coupon Bond

A step-up and step-down bond is a debt security with a predetermined coupon structure over time.

With these instruments, coupons increase (step up) or decrease (step down) at specific times during
the life of the bond.

Bond with an Amortization Schedule

An amortized bond is treated as an asset, with the discount amount being amortized to interest
expense over the life of the bond.

See Also
swapbyzero | cfamounts | cfbyzero | fixedbyzero | floatbyzero

Topics
“Pricing Using Interest-Rate Term Structure” on page 2-61
“Bond” on page 2-3
“Understanding the Interest-Rate Term Structure” on page 2-48
“Supported Interest-Rate Instrument Functions” on page 2-3
“Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on page 1-
73

Introduced before R2006a
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bushpath
Extract entries from node of bushy tree

Syntax
Values = bushpath(Tree,BranchList)

Description
Values = bushpath(Tree,BranchList) extracts entries of a node of a bushy tree. The node
path is described by the sequence of branchings taken, starting at the root. The top branch is number
1, the second-to-top is 2, and so on. Set the branch sequence to zero to obtain the entries at the root
node.

Examples

Extract Entries From Node of Bushy Tree

Create an HJM tree by loading the example file.

load deriv.mat; 

Use bushpath to return the rates at the tree nodes located by taking the up branch, then the down
branch, and finally the up branch again.

FwdRates = bushpath(HJMTree.FwdTree, [1 2 1]) 

FwdRates = 4×1

    1.0356
    1.0364
    1.0526
    1.0463

You can visualize this with the treeviewer function.

treeviewer(HJMTree)
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Input Arguments
Tree — Bushy tree
structure

Bushy tree, specified using an HJM, BDT, HW, BK, or CIR tree.
Data Types: struct

BranchList — Sequence of branching
matrix

Sequence of branching, specified as a number of paths (NUMPATHS) by path length (PATHLENGTH)
matrix.
Data Types: double

Output Arguments
Values — Retrieved entries of a bushy tree
numeric

Retrieved entries of a bushy tree, returned as a number of values (NUMVALS)-by-NUMPATHS matrix.
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See Also
bushshape | mkbush

Topics
“Graphical Representation of Trees” on page 2-220

Introduced before R2006a
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bushshape
Retrieve shape of bushy tree

Syntax
[NumLevels,NumChild,NumPos,NumStates,Trim] = bushshape(Tree)

Description
[NumLevels,NumChild,NumPos,NumStates,Trim] = bushshape(Tree) returns information
on a bushy tree's shape.

Examples

Retrieve Shape of Bushy Tree

Create an HJM tree by loading the example file.

load deriv.mat; 

With treeviewer you can see the general shape of the HJM interest-rate tree.

treeviewer(HJMTree)
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Use bushshape with the HJMTree.

[NumLevels, NumChild, NumPos, NumStates, Trim] = bushshape(HJMTree.FwdTree) 

NumLevels = 4

NumChild = 1×4

     2     2     2     0

NumPos = 1×4

     4     3     2     1

NumStates = 1×4

     1     2     4     8

Trim = logical
   1

You can recreate this tree using the mkbush function.

Tree = mkbush(NumLevels, NumChild(1), NumPos(1), Trim)
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Tree=1×4 cell array
    {4x1 double}    {3x1x2 double}    {2x2x2 double}    {1x4x2 double}

Tree = mkbush(NumLevels, NumChild, NumPos)

Tree=1×4 cell array
    {4x1 double}    {3x1x2 double}    {2x2x2 double}    {1x4x2 double}

Input Arguments
Tree — Bushy tree
structure

Bushy tree, specified using an HJM, BDT, HW, BK, or CIR tree.
Data Types: struct

Output Arguments
NumLevels — Number of tree levels
numeric

Number of tree levels, returned as a numeric.

NumChild — Number of branches of the nodes in each level
vector

Number of branches (children) of the nodes in each level, returned as a 1-by-number of levels
(NUMLEVELS) vector.

NumPos — Length of the state vectors in each level
vector

Length of the state vectors in each level, returned as a 1-by-number of levels (NUMLEVELS) vector.

NumStates — Number of state vectors in each level
vector

Number of state vectors in each levels, returned as a 1-by-number of levels (NUMLEVELS) vector.

Trim — Trim
numeric

Trim, returned as a 1 if NumPos decreases by 1 when moving from one time level to the next.
Otherwise, it is 0.

See Also
bushpath | mkbush

Topics
“Graphical Representation of Trees” on page 2-220
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Introduced before R2006a
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capbybdt
Price cap instrument from Black-Derman-Toy interest-rate tree

Syntax
[Price,PriceTree] = capbybdt(BDTTree,Strike,Settle,Maturity)
[Price,PriceTree] = capbybdt( ___ ,CapReset,Basis,Principal,Options)

Description
[Price,PriceTree] = capbybdt(BDTTree,Strike,Settle,Maturity) computes the price of
a cap instrument from a Black-Derman-Toy interest-rate tree. capbybdt computes prices of vanilla
caps and amortizing caps.

[Price,PriceTree] = capbybdt( ___ ,CapReset,Basis,Principal,Options) adds optional
arguments.

Examples

Price a 3% Cap Instrument Using a BDT Interest-Rate Tree

Load the file deriv.mat, which provides BDTTree. The BDTTree structure contains the time and
interest-rate information needed to price the cap instrument.

load deriv.mat;

Set the required values. Other arguments will use defaults.

Strike = 0.03;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

Use capbybdt to compute the price of the cap instrument.

Price = capbybdt(BDTTree, Strike, Settle, Maturity)

Price = 28.4001

Price a 10% Cap Instrument Using a BDT Interest-Rate Tree

Set the required arguments for the three specifications required to create a BDT tree.

Compounding = 1; 
ValuationDate = '01-01-2000'; 
StartDate = ValuationDate; 
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003'; 
'01-01-2004'; '01-01-2005']; 
Rates = [.1; .11; .12; .125; .13]; 
Volatility = [.2; .19; .18; .17; .16];
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Create the specifications.

RateSpec = intenvset('Compounding', Compounding,... 
'ValuationDate', ValuationDate,... 
'StartDates', StartDate,... 
'EndDates', EndDates,... 
'Rates', Rates); 
BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding); 
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility);

Create the BDT tree from the specifications.

BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec)

BDTTree = struct with fields:
      FinObj: 'BDTFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3 4]
        dObs: [730486 730852 731217 731582 731947]
        TFwd: {[5x1 double]  [4x1 double]  [3x1 double]  [2x1 double]  [4]}
      CFlowT: {[5x1 double]  [4x1 double]  [3x1 double]  [2x1 double]  [5]}
     FwdTree: {1x5 cell}

Set the cap arguments. Remaining arguments will use defaults.

CapStrike = 0.10; 
Settlement = ValuationDate; 
Maturity = '01-01-2002'; 
CapReset = 1;

Use capbybdt to find the price of the cap instrument.

Price= capbybdt(BDTTree, CapStrike, Settlement, Maturity,...
CapReset)

Price = 1.7169

Compute the Price of an Amortizing Cap Using the BDT Model

Define the RateSpec.

Rates = [0.03583; 0.042147; 0.047345; 0.052707; 0.054302];
ValuationDate = '15-Nov-2011';
StartDates = ValuationDate;
EndDates = {'15-Nov-2012';'15-Nov-2013';'15-Nov-2014' ;'15-Nov-2015';'15-Nov-2016'};
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [5x1 double]
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            Rates: [5x1 double]
         EndTimes: [5x1 double]
       StartTimes: [5x1 double]
         EndDates: [5x1 double]
       StartDates: 734822
    ValuationDate: 734822
            Basis: 0
     EndMonthRule: 1

Define the cap instrument.

Settle ='15-Nov-2011';
Maturity = '15-Nov-2015';
Strike = 0.04;
CapReset = 1;
Principal ={{'15-Nov-2012' 100;'15-Nov-2013' 70;'15-Nov-2014' 40;'15-Nov-2015' 10}};

Build the BDT Tree.

BDTTimeSpec = bdttimespec(ValuationDate, EndDates);
Volatility = 0.10;  
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility*ones(1,length(EndDates))');
BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec)

BDTTree = struct with fields:
      FinObj: 'BDTFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3 4]
        dObs: [734822 735188 735553 735918 736283]
        TFwd: {[5x1 double]  [4x1 double]  [3x1 double]  [2x1 double]  [4]}
      CFlowT: {[5x1 double]  [4x1 double]  [3x1 double]  [2x1 double]  [5]}
     FwdTree: {1x5 cell}

Price the amortizing cap.

Basis = 0;
Price = capbybdt(BDTTree, Strike, Settle, Maturity, CapReset, Basis, Principal)

Price = 1.4042

Input Arguments
BDTTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bdttree.
Data Types: struct

Strike — Rate at which cap is exercised
decimal

Rate at which cap is exercised, specified as a NINST-by-1 vector of decimal values.
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Data Types: double

Settle — Settlement date for cap
serial date number | date character vector | cell array of date character vectors

Settlement date for the cap, specified as a NINST-by-1 vector of serial date numbers or date
character vectors. The Settle date for every cap is set to the ValuationDate of the BDT tree. The
cap argument Settle is ignored.
Data Types: double | char | cell

Maturity — Maturity date for cap
serial date number | date character vector | cell array of date character vectors

Maturity date for the cap, specified as a NINST-by-1 vector of serial date numbers or date character
vectors.
Data Types: double | char | cell

CapReset — Reset frequency payment per year
1 (default) | numeric

(Optional) Reset frequency payment per year, specified as a NINST-by-1 vector.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis representing the basis used when annualizing the input forward rate,
specified as a NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double
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Principal — Notional principal amount
100 (default) | numeric

(Optional) Notional principal amount, specified as a NINST-by-1 of notional principal amounts, or a
NINST-by-1 cell array, where each element is a NumDates-by-2 cell array where the first column is
dates and the second column is associated principal amount. The date indicates the last day that the
principal value is valid.

Use Principal to pass a schedule to compute the price for an amortizing cap.
Data Types: double | cell

Options — Derivatives pricing options structure
structure

(Optional) Derivatives pricing options structure, specified using derivset.
Data Types: struct

Output Arguments
Price — Expected price of cap at time 0
vector

Expected price of the cap at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure with values of cap at each node
vector

Tree structure with values of the cap at each node, returned as a MATLAB structure of trees
containing vectors of instrument prices and a vector of observation times for each node:

• PriceTree.PTree contains cap prices.
• PriceTree.tObs contains the observation times.

More About
Cap

A cap is a contract that includes a guarantee that sets the maximum interest rate to be paid by the
holder, based on an otherwise floating interest rate.

The payoff for a cap is:

max(CurrentRate− CapRate, 0)

For more information, see “Cap” on page 2-12.

See Also
bdttree | cfbybdt | floorbybdt | swapbybdt | capbynormal

Topics
“Computing Instrument Prices” on page 2-81
“Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-10
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“Cap” on page 2-12
“Pricing Options Structure” on page A-2
“Understanding Interest-Rate Tree Models” on page 2-66
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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capbybk
Price cap instrument from Black-Karasinski interest-rate tree

Syntax
[Price,PriceTree] = capbybk(BKTree,Strike,Settle,Maturity)
[Price,PriceTree] = capbybk( ___ ,CapReset,Basis,Principal,Options)

Description
[Price,PriceTree] = capbybk(BKTree,Strike,Settle,Maturity) computes the price of a
cap instrument from a Black-Karasinski interest-rate tree. capbybk computes prices of vanilla caps
and amortizing caps.

[Price,PriceTree] = capbybk( ___ ,CapReset,Basis,Principal,Options) adds optional
arguments.

Examples

Price a 3% Cap Instrument Using a Black-Karasinski Interest-Rate Tree

Load the file deriv.mat, which provides BKTree. The BKTree structure contains the time and
interest-rate information needed to price the cap instrument.

load deriv.mat;

Set the required values. Other arguments will use defaults.

Strike = 0.03;
Settle = '01-Jan-2004';
Maturity = '01-Jan-2007';

Use capbybk to compute the price of the cap instrument.

Price = capbybk(BKTree, Strike, Settle, Maturity)

Price = 2.0965

Compute the Price of an Amortizing and Vanilla Caps Using the BK Model

Load deriv.mat to specify the BKTree and then define the cap instrument.

load deriv.mat; 
Settle = '01-Jan-2004';
Maturity = '01-Jan-2008';
Strike = 0.05;
CapReset = 1;
Principal ={{'01-Jan-2005' 100;'01-Jan-2006' 60;'01-Jan-2007' 30;'01-Jan-2008' 30};...
            100};
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Price the amortizing and vanilla caps.

Basis = 1;
Price = capbybk(BKTree, Strike, Settle, Maturity, CapReset, Basis, Principal)

Price = 2×1

    0.2226
    0.7422

Input Arguments
BKTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bktree.
Data Types: struct

Strike — Rate at which cap is exercised
decimal

Rate at which cap is exercised, specified as a NINST-by-1 vector of decimal values.
Data Types: double

Settle — Settlement date for cap
serial date number | date character vector | cell array of date character vectors

Settlement date for the cap, specified as a NINST-by-1 vector of serial date numbers or date
character vectors. The Settle date for every cap is set to the ValuationDate of the BK tree. The
cap argument Settle is ignored.
Data Types: double | char | cell

Maturity — Maturity date for cap
serial date number | date character vector | cell array of date character vectors

Maturity date for the cap, specified as a NINST-by-1 vector of serial date numbers or date character
vectors.
Data Types: double | char | cell

CapReset — Reset frequency payment per year
1 (default) | numeric

(Optional) Reset frequency payment per year, specified as a NINST-by-1 vector.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis representing the basis used when annualizing the input forward rate,
specified as a NINST-by-1 vector of integers.
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• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

(Optional) Notional principal amount, specified as a NINST-by-1 of notional principal amounts, or a
NINST-by-1 cell array, where each element is a NumDates-by-2 cell array where the first column is
dates and the second column is associated principal amount. The date indicates the last day that the
principal value is valid.

Use Principal to pass a schedule to compute the price for an amortizing cap.
Data Types: double | cell

Options — Derivatives pricing options structure
structure

(Optional) Derivatives pricing options structure, specified using derivset.
Data Types: struct

Output Arguments
Price — Expected price of cap at time 0
vector

Expected price of the cap at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure with values of cap at each node
vector

Tree structure with values of the cap at each node, returned as a MATLAB structure of trees
containing vectors of instrument prices and a vector of observation times for each node:
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• PriceTree.PTree contains cap prices.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell array describes

how nodes in that level connect to the next. For a given tree level, there are NumNodes elements
in the vector, and they contain the index of the node at the next level that the middle branch
connects to. Subtracting 1 from that value indicates where the up-branch connects to, and adding
1 indicated where the down branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array contains the
up, middle, and down transition probabilities for each node of the level.

More About
Cap

A cap is a contract that includes a guarantee that sets the maximum interest rate to be paid by the
holder, based on an otherwise floating interest rate.

The payoff for a cap is:

max(CurrentRate− CapRate, 0)

For more information, see “Cap” on page 2-12.

See Also
cfbybk | floorbybk | bktree | swapbybk | capbynormal

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Cap” on page 2-12
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3
“Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on page 1-
73

Introduced before R2006a

 capbybk

11-291



capbyblk
Price caps using Black option pricing model

Syntax
[CapPrice,Caplets] = capbyblk(RateSpec,Strike,Settle,Maturity,Volatility)
[CapPrice,Caplets] = capbyblk( ___ ,Name,Value)

Description
[CapPrice,Caplets] = capbyblk(RateSpec,Strike,Settle,Maturity,Volatility) price
caps using the Black option pricing model. capbyblk computes prices of vanilla caps and amortizing
caps.

[CapPrice,Caplets] = capbyblk( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Price a Cap Using the Black Option Pricing Model

Consider an investor who gets into a contract that caps the interest rate on a $100,000 loan at 8%
quarterly compounded for 3 months, starting on January 1, 2009. Assuming that on January 1, 2008
the zero rate is 6.9394% continuously compounded and the volatility is 20%, use this data to compute
the cap price. First, calculate the RateSpec:

ValuationDate = 'Jan-01-2008';
EndDates ='April-01-2010';
Rates = 0.069394;
Compounding = -1; 
Basis = 1;

RateSpec = intenvset('ValuationDate', ValuationDate, ...
'StartDates', ValuationDate,'EndDates', EndDates, ...
'Rates', Rates,'Compounding', Compounding,'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.8554
            Rates: 0.0694
         EndTimes: 2.2500
       StartTimes: 0
         EndDates: 734229
       StartDates: 733408
    ValuationDate: 733408
            Basis: 1
     EndMonthRule: 1

Compute the price of the cap.
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Settle = 'Jan-01-2009'; % cap starts in a year
Maturity = 'April-01-2009';
Volatility = 0.20;
CapRate = 0.08;
CapReset = 4;
Principal=100000;

CapPrice = capbyblk(RateSpec,  CapRate, Settle, Maturity, Volatility,...
'Reset',CapReset,'ValuationDate',ValuationDate,'Principal', Principal,...
'Basis', Basis)

CapPrice = 51.6125

Price a Cap Using a Different Curve to Generate the Future Forward Rates

Define the OIS and Libor rates.

Settle = datenum('15-Mar-2013');
CurveDates = daysadd(Settle,360*[1/12 2/12 3/12 6/12 1 2 3 4 5 7 10],1);
OISRates = [.0018 .0019 .0021 .0023 .0031 .006  .011 .017 .021 .026 .03]';
LiborRates = [.0045 .0047 .005 .0055 .0075 .0109  .0162 .0216 .0262 .0309 .0348]';

Create an associated RateSpec for the OIS and Libor curves.

OISCurve = intenvset('Rates',OISRates,'StartDate',Settle,'EndDates',CurveDates,'Compounding',2,'Basis',1);
LiborCurve = intenvset('Rates',LiborRates,'StartDate',Settle,'EndDates',CurveDates,'Compounding',2,'Basis',1);

Define the Cap instruments.

Maturity = {'15-Mar-2018';'15-Mar-2020'};
Strike = [0.04;0.05];
BlackVol = 0.2;

Price the cap instruments using the term structure OISCurve both for discounting the cash flows and
generating future forward rates.

[Price, Caplets] = capbyblk(OISCurve, Strike, Settle, Maturity, BlackVol)

Price = 2×1

    0.7472
    0.9890

Caplets = 2×7

         0    0.0000    0.0033    0.2996    0.4443       NaN       NaN
         0    0.0000    0.0003    0.1134    0.2112    0.2292    0.4349

Price the cap instruments using the term structure LiborCurve to generate future forward rates.
The term structure OISCurve is used for discounting the cash flows.

[PriceLC, CapletsLC] = capbyblk(OISCurve, Strike, Settle, Maturity, BlackVol,'ProjectionCurve',LiborCurve)

PriceLC = 2×1
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    1.3293
    1.6329

CapletsLC = 2×7

         0    0.0000    0.0337    0.4250    0.8706       NaN       NaN
         0    0.0000    0.0052    0.1767    0.4849    0.3663    0.5998

Compute the Price of Two Amortizing Caps Using the Black Model

Define the RateSpec.

Rates = [0.0358; 0.0421; 0.0473; 0.0527; 0.0543];
ValuationDate = '15-Nov-2011';
StartDates = ValuationDate;
EndDates = {'15-Nov-2012';'15-Nov-2013';'15-Nov-2014' ;'15-Nov-2015';'15-Nov-2016'};
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
             'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [5x1 double]
            Rates: [5x1 double]
         EndTimes: [5x1 double]
       StartTimes: [5x1 double]
         EndDates: [5x1 double]
       StartDates: 734822
    ValuationDate: 734822
            Basis: 0
     EndMonthRule: 1

Define the cap instruments.

Settle ='15-Nov-2011';
Maturity = '15-Nov-2015';
Strike = [0.03;0.035];
Reset = 1;
Principal ={{'15-Nov-2012' 100;'15-Nov-2013' 70;'15-Nov-2014' 40;'15-Nov-2015' 10}};

Price the amortizing caps.

Volatility = 0.10;  
Price = capbyblk (RateSpec, Strike, Settle, Maturity, Volatility,...
'Reset', Reset,'Principal', Principal)

Price = 2×1

    3.0339
    2.0141
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Price a Cap Using the Shifted Black Model

Create the RateSpec.

ValuationDate = 'Mar-01-2016';
EndDates = {'Mar-01-2017';'Mar-01-2018';'Mar-01-2019';'Mar-01-2020';'Mar-01-2021'};
Rates = [-0.21; -0.12; 0.01; 0.10; 0.20]/100;
Compounding = 1;
Basis = 1;

RateSpec = intenvset('ValuationDate',ValuationDate,'StartDates',ValuationDate, ...
'EndDates',EndDates,'Rates',Rates,'Compounding',Compounding,'Basis',Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [5x1 double]
            Rates: [5x1 double]
         EndTimes: [5x1 double]
       StartTimes: [5x1 double]
         EndDates: [5x1 double]
       StartDates: 736390
    ValuationDate: 736390
            Basis: 1
     EndMonthRule: 1

Price the cap with a negative strike using the Shifted Black model.

Settle = 'Jun-01-2016'; % Cap starts in 3 months.
Maturity = 'Sep-01-2016';
ShiftedBlackVolatility = 0.31;
CapRate = -0.003;  % -0.3 percent strike.
CapReset = 4;
Principal = 100000;
Shift = 0.01; % 1 percent shift.

CapPrice = capbyblk(RateSpec,CapRate,Settle,Maturity,ShiftedBlackVolatility,...
'Reset',CapReset,'ValuationDate',ValuationDate,'Principal',Principal,...
'Basis',Basis,'Shift',Shift)

CapPrice = 26.0733

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

Strike — Rate at which cap is exercised
decimal
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Rate at which cap is exercised, specified as a NINST-by-1 vector of decimal values.
Data Types: double

Settle — Settlement date for cap
serial date number | date character vector

Settlement date for the cap, specified as a serial date number or a date character vector.
Data Types: double | char

Maturity — Maturity date for cap
serial date number | date character vector | cell array of date character vectors

Maturity date for the cap, specified as a serial date number or date character vector.
Data Types: double | char

Volatility — Volatilities values
numeric

Volatilities values, specified as a NINST-by-1 vector of numeric values.

The Volatility input is not intended for volatility surfaces or cubes. If you specify a matrix for the
Volatility input, capbyblk internally converts it into a vector. capbyblk assumes that the
volatilities specified in the Volatility input are flat volatilities, which are applied equally to each of
the caplets.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [CapPrice,Caplets] =
capbyblk(RateSpec,Strike,Settle,Maturity,Volatility,'Reset',CapReset,'Princip
al',100000,'Basis',7)

Reset — Reset frequency payment per year
1 (default) | numeric

Reset frequency payment per year, specified as a NINST-by-1 vector.
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

Notional principal amount, specified as a NINST-by-1 vector or a NINST-by-1 cell array. When
Principal is a NINST-by-1 cell array, each element is a NumDates-by-2 cell array, where the first
column is dates and the second column is associated principal amount. The date indicates the last day
that the principal value is valid.

Use Principal to pass a schedule to compute the price for an amortizing cap.
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Data Types: double | cell

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis representing the basis used when annualizing the input forward rate, specified as a
NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

ProjectionCurve — Rate curve used in generating future forward rates
if ProjectionCurve is not specified, then RateSpec is used both for discounting cash flows and
projecting future forward rates (default) | structure

The rate curve to be used in generating the future forward rates. This structure must be created
using intenvset. Use this optional input if the forward curve is different from the discount curve.
Data Types: struct

Shift — Shift in decimals for shifted Black model
0 (no shift) (default) | positive decimal

Shift in decimals for the shifted Black model, specified using a scalar or NINST-by-1 vector of rate
shifts in positive decimals. Set this parameter to a positive rate shift in decimals to add a positive
shift to the forward rate and strike, which effectively sets a negative lower bound for the forward
rate. For example, a Shift of 0.01 is equal to a 1% shift.
Data Types: double

Output Arguments
CapPrice — Expected price of cap
vector
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Expected price of the cap, returned as a NINST-by-1 vector.

Caplets — Caplets
array

Caplets, returned as a NINST-by-NCF array of caplets, padded with NaNs.

More About
Cap

A cap is a contract that includes a guarantee that sets the maximum interest rate to be paid by the
holder, based on an otherwise floating interest rate.

The payoff for a cap is:

max(CurrentRate− CapRate, 0)

For more information, see “Cap” on page 2-12.

Shifted Black

The Shifted Black model is essentially the same as the Black’s model, except that it models the
movements of (F + Shift) as the underlying asset, instead of F (which is the forward rate in the case
of caplets).

This model allows negative rates, with a fixed negative lower bound defined by the amount of shift;
that is, the zero lower bound of Black’s model has been shifted.

Algorithms
Black Model

dF = σBlackFdw

call = e−γT FN(d1)− KN(d2)

put = e−γT KN(− d2)− FN(− d1)

d1 =
ln F

K +
σB2

2 T

σB T ,    d2 = d1− σB T

σB = σBlack

Where F is the forward value and K is the strike.
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Shifted Black Model

dF = σShif ted_Black F + Shif t dw

call = e−γT F + Shif t N(ds1)− K + Shif t N(ds2)

put = e−γT K + Shif t N(− ds2)− F + Shif t N(− ds1)

ds1 =
ln F + Shif t

K + Shif t +
σsB2

2 T

σsB T ,    ds2 = ds1− σsB T

σsB = σShif ted_Black

Where F+Shift is the forward value and K+Shift is the strike for the shifted version.

See Also
floorbyblk | intenvset | capbynormal

Topics
“Cap” on page 2-12
“Work with Negative Interest Rates Using Functions” on page 2-18
“Supported Interest-Rate Instrument Functions” on page 2-3
“Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on page 1-
73

External Websites
How to Price Interest Rate Options with Negative Interest Rates (3 min 05 sec)

Introduced in R2009a
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capbycir
Price cap instrument from Cox-Ingersoll-Ross interest-rate tree

Syntax
[Price,PriceTree] = capbycir(CIRTree,Strike,Settle,Maturity)
[Price,PriceTree] = capbycir( ___ ,Name,Value)

Description
[Price,PriceTree] = capbycir(CIRTree,Strike,Settle,Maturity) computes the price of
a cap instrument from a Cox-Ingersoll-Ross (CIR) interest-rate tree. capbycir computes prices of
vanilla caps and amortizing caps using a CIR++ model with the Nawalka-Beliaeva (NB) approach.

[Price,PriceTree] = capbycir( ___ ,Name,Value) adds additional name-value pair
arguments.

Examples

Price a Cap Using a CIR Interest-Rate Tree

Define the Strike for a cap.

Strike = 0.03;

Create a RateSpec using the intenvset function.

Rates = [0.035; 0.042147; 0.047345; 0.052707]; 
Dates = {'Jan-1-2017'; 'Jan-1-2018'; 'Jan-1-2019'; 'Jan-1-2020'; 'Jan-1-2021'}; 
ValuationDate = 'Jan-1-2017'; 
EndDates = Dates(2:end)'; 
Compounding = 1; 
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, 'EndDates',EndDates,'Rates', Rates, 'Compounding', Compounding); 

Create a CIR tree.

NumPeriods = length(EndDates); 
Alpha = 0.03; 
Theta = 0.02;  
Sigma = 0.1;   
Settle = '01-Jan-2017'; 
Maturity = '01-Jan-2021'; 
CIRTimeSpec = cirtimespec(ValuationDate, Maturity, NumPeriods); 
CIRVolSpec = cirvolspec(Sigma, Alpha, Theta); 

CIRT = cirtree(CIRVolSpec, RateSpec, CIRTimeSpec)

CIRT = struct with fields:
      FinObj: 'CIRFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
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    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [736696 737061 737426 737791]
     FwdTree: {1x4 cell}
     Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

Price the 3% cap.

[Price,PriceTree] = capbycir(CIRT,Strike,Settle,Maturity) 

Price = 7.9081

PriceTree = struct with fields:
     FinObj: 'CIRPriceTree'
       tObs: [0 1 2 3 4]
      PTree: {1x5 cell}
    Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
      Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

Input Arguments
CIRTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using cirtree.
Data Types: struct

Strike — Rate at which cap is exercised
decimal

Rate at which cap is exercised, specified as a NINST-by-1 vector of decimal values.
Data Types: double

Settle — Settlement date for cap
serial date number | date character vector | cell array of date character vectors | string array |
datetime

Settlement date for the cap, specified as a NINST-by-1 vector of serial date numbers, date character
vectors, string arrays, or datetime arrays. The Settle date for every cap is set to the
ValuationDate of the CIR tree. The cap argument Settle is ignored.
Data Types: double | char | cell | string | datetime

Maturity — Maturity date for cap
serial date number | date character vector | cell array of date character vectors | string array |
datetime

Maturity date for the cap, specified as a NINST-by-1 vector of serial date numbers, date character
vectors, string arrays, or datetime arrays.
Data Types: double | char | cell | string | datetime
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Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree] =
capbycir(CIRTree,CouponRate,Settle,Maturity,'Basis',3)

CapReset — Reset frequency payment per year
1 (default) | numeric

Reset frequency payment per year, specified as the comma-separated pair consisting of 'CapReset'
and a NINST-by-1 vector.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis representing the basis used when annualizing the input forward rate, specified as the
comma-separated pair consisting of 'Basis' and a NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

Notional principal amount, specified as the comma-separated pair consisting of 'Principal' and a
NINST-by-1 of notional principal amounts or a NINST-by-1 cell array.
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For the NINST-by-1 cell array, each element is a NumDates-by-2 cell array where the first column is
dates and the second column is associated principal amount. The date indicates the last day that the
principal value is valid.

Use Principal to pass a schedule to compute the price for an amortizing cap.
Data Types: double | cell

Output Arguments
Price — Expected price of cap at time 0
vector

Expected price of the cap at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure with values of cap at each node
vector

Tree structure with values of the cap at each node, returned as a MATLAB structure of trees
containing vectors of instrument prices and a vector of observation times for each node:

• PriceTree.PTree contains cap prices.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell array describes

how nodes in that level connect to the next. For a given tree level, there are NumNodes elements
in the vector, and they contain the index of the node at the next level that the middle branch
connects to. Subtracting 1 from that value indicates where the up-branch connects to, and adding
1 indicated where the down branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array contains the
up, middle, and down transition probabilities for each node of the level.

More About
Cap

A cap is a contract that includes a guarantee that sets the maximum interest rate to be paid by the
holder, based on an otherwise floating interest rate.

The payoff for a cap is:

max(CurrentRate− CapRate, 0)

For more information, see “Cap” on page 2-12.

References
[1] Cox, J., Ingersoll, J.,and S. Ross. "A Theory of the Term Structure of Interest Rates." Econometrica.

Vol. 53, 1985.

[2] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer Finance, 2006.

[3] Hirsa, A. Computational Methods in Finance. CRC Press, 2012.
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[4] Nawalka, S., Soto, G., and N. Beliaeva. Dynamic Term Structure Modeling. Wiley, 2007.

[5] Nelson, D. and K. Ramaswamy. "Simple Binomial Processes as Diffusion Approximations in
Financial Models." The Review of Financial Studies. Vol 3. 1990, pp. 393–430.

See Also
bondbycir | capbycir | fixedbycir | floatbycir | floorbycir | oasbycir | optbndbycir |
optfloatbycir | optembndbycir | optemfloatbycir | rangefloatbycir | swapbycir |
swaptionbycir | instcap

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Cap” on page 2-12
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced in R2018a
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capbyhjm
Price cap instrument from Heath-Jarrow-Morton interest-rate tree

Syntax
[Price,PriceTree] = capbyhjm(HJMTree,Strike,Settle,Maturity)
[Price,PriceTree] = capbyhjm( ___ ,CapReset,Basis,Principal,Options)

Description
[Price,PriceTree] = capbyhjm(HJMTree,Strike,Settle,Maturity) computes the price of
a cap instrument from a Heath-Jarrow-Morton interest-rate tree. capbyhjm computes prices of
vanilla caps and amortizing caps.

[Price,PriceTree] = capbyhjm( ___ ,CapReset,Basis,Principal,Options) adds optional
arguments.

Examples

Price a 3% Cap Instrument Using an HJM Forward-Rate Tree

Load the file deriv.mat, which provides HJMTree. The HJMTree structure contains the time and
forward-rate information needed to price the cap instrument.

load deriv.mat;

Set the required values. Other arguments will use defaults.

Strike = 0.03;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

Use capbyhjm to compute the price of the cap instrument.

Price = capbyhjm(HJMTree, Strike, Settle, Maturity)

Price = 6.2831

Compute the Price of an Amortizing Cap Using the HJM Model

Load deriv.mat to specify the HJMTree and then define the cap instrument.

load deriv.mat; 
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';
Strike = 0.045;
CapReset = 1;
Principal ={{'01-Jan-2001' 100;'01-Jan-2002' 80;'01-Jan-2003' 70;'01-Jan-2004' 30}};
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Price the amortizing cap.

Basis = 1;
Price = capbyhjm(HJMTree, Strike, Settle, Maturity, CapReset, Basis, Principal)

Price = 1.4588

Input Arguments
HJMTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using hjmtree.
Data Types: struct

Strike — Rate at which cap is exercised
decimal

Rate at which cap is exercised, specified as a NINST-by-1 vector of decimal values.
Data Types: double

Settle — Settlement date for cap
serial date number | date character vector | cell array of date character vectors

Settlement date for the cap, specified as a NINST-by-1 vector of serial date numbers or date
character vectors. The Settle date for every cap is set to the ValuationDate of the HJM tree. The
cap argument Settle is ignored.
Data Types: double | char | cell

Maturity — Maturity date for cap
serial date number | date character vector | cell array of date character vectors

Maturity date for the cap, specified as a NINST-by-1 vector of serial date numbers or date character
vectors.
Data Types: double | char | cell

CapReset — Reset frequency payment per year
1 (default) | numeric

(Optional) Reset frequency payment per year, specified as a NINST-by-1 vector.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis representing the basis used when annualizing the input forward rate,
specified as a NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
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• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

(Optional) Notional principal amount, specified as a NINST-by-1 of notional principal amounts, or a
NINST-by-1 cell array, where each element is a NumDates-by-2 cell array where the first column is
dates and the second column is associated principal amount. The date indicates the last day that the
principal value is valid.

Use Principal to pass a schedule to compute the price for an amortizing cap.
Data Types: double | cell

Options — Derivatives pricing options structure
structure

(Optional) Derivatives pricing options structure, specified using derivset.
Data Types: struct

Output Arguments
Price — Expected price of cap at time 0
vector

Expected price of the cap at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure with values of cap at each node
vector

Tree structure with values of the cap at each node, returned as a MATLAB structure of trees
containing vectors of instrument prices and a vector of observation times for each node:

• PriceTree.tObs contains the observation times.
• PriceTree.PBush contains the clean prices.
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More About
Cap

A cap is a contract that includes a guarantee that sets the maximum interest rate to be paid by the
holder, based on an otherwise floating interest rate.

The payoff for a cap is:

max(CurrentRate− CapRate, 0)

For more information, see “Cap” on page 2-12.

See Also
cfbyhjm | floorbyhjm | hjmtree | swapbyhjm | capbynormal

Topics
“Computing Instrument Prices” on page 2-81
“Cap” on page 2-12
“Pricing Options Structure” on page A-2
“Understanding Interest-Rate Tree Models” on page 2-66
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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capbyhw
Price cap instrument from Hull-White interest-rate tree

Syntax
[Price,PriceTree] = capbyhw(HWTree,Strike,Settle,Maturity)
[Price,PriceTree] = capbyhw( ___ ,CapReset,Basis,Principal,Options)

Description
[Price,PriceTree] = capbyhw(HWTree,Strike,Settle,Maturity) computes the price of a
cap instrument from a Hull-White interest-rate tree. capbyhw computes prices of vanilla caps and
amortizing caps.

[Price,PriceTree] = capbyhw( ___ ,CapReset,Basis,Principal,Options) adds optional
arguments.

Examples

Price a 3% Cap Instrument Using a Hull-White Interest-Rate Tree

Load the file deriv.mat, which provides HWTree. The HWTree structure contains the time and
interest-rate information needed to price the cap instrument.

load deriv.mat;

Set the required values. Other arguments will use defaults.

Strike = 0.03;
Settle = '01-Jan-2004';
Maturity = '01-Jan-2007';

Use capbyhw to compute the price of the cap instrument.

Price = capbyhw(HWTree, Strike, Settle, Maturity)

Price = 2.3090

Compute the Price of an Amortizing and Vanilla Caps Using the HW Model

Define the RateSpec.

Rates = [0.035; 0.042; 0.047; 0.052; 0.054];
ValuationDate = '01-April-2014';
StartDates = ValuationDate;
EndDates = {'01-April-2019'};
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)
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RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [5x1 double]
            Rates: [5x1 double]
         EndTimes: [5x1 double]
       StartTimes: [5x1 double]
         EndDates: 737516
       StartDates: 735690
    ValuationDate: 735690
            Basis: 0
     EndMonthRule: 1

Define the cap instruments.

Settle ='01-April-2014';
Maturity = '01-April-2018';
Strike = 0.055;
CapReset = 1;
Principal ={{'01-April-2015' 100;'01-April-2016' 60;'01-April-2017' 40;'01-April-2018' 20};
            100};

Build the HW Tree.

VolDates = ['01-April-2015';'01-April-2016';'01-April-2017';'01-April-2018'];
VolCurve = 0.05;
AlphaDates = '01-April-2018';
AlphaCurve = 0.10;

HWVolSpec = hwvolspec(RateSpec.ValuationDate, VolDates, VolCurve,... 
                      AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RateSpec.ValuationDate, VolDates, Compounding);
HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec)

HWTree = struct with fields:
      FinObj: 'HWFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [735690 736055 736421 736786]
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}
     Connect: {[2]  [2 3 4]  [2 3 4 5 6]}
     FwdTree: {1x4 cell}

Price the amortizing and vanilla caps.

Basis = 0;
Price  = capbyhw(HWTree, Strike, Settle, Maturity, CapReset, Basis, Principal)

Price = 2×1

    1.6754
    4.6149
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Input Arguments
HWTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using hwtree.
Data Types: struct

Strike — Rate at which cap is exercised
decimal

Rate at which cap is exercised, specified as a NINST-by-1 vector of decimal values.
Data Types: double

Settle — Settlement date for cap
serial date number | date character vector | cell array of date character vectors

Settlement date for the cap, specified as a NINST-by-1 vector of serial date numbers or date
character vectors. The Settle date for every cap is set to the ValuationDate of the HW tree. The
cap argument Settle is ignored.
Data Types: double | char | cell

Maturity — Maturity date for cap
serial date number | date character vector | cell array of date character vectors

Maturity date for the cap, specified as a NINST-by-1 vector of serial date numbers or date character
vectors.
Data Types: double | char | cell

CapReset — Reset frequency payment per year
1 (default) | numeric

(Optional) Reset frequency payment per year, specified as a NINST-by-1 vector.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis representing the basis used when annualizing the input forward rate,
specified as a NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
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• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

(Optional) Notional principal amount, specified as a NINST-by-1 of notional principal amounts, or a
NINST-by-1 cell array, where each element is a NumDates-by-2 cell array where the first column is
dates and the second column is associated principal amount. The date indicates the last day that the
principal value is valid.

Use Principal to pass a schedule to compute the price for an amortizing cap.
Data Types: double | cell

Options — Derivatives pricing options structure
structure

(Optional) Derivatives pricing options structure, specified using derivset.
Data Types: struct

Output Arguments
Price — Expected price of cap at time 0
vector

Expected price of the cap at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure with values of cap at each node
vector

Tree structure with values of the cap at each node, returned as a MATLAB structure of trees
containing vectors of instrument prices and a vector of observation times for each node:

• PriceTree.PTree contains cap prices.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell array describes

how nodes in that level connect to the next. For a given tree level, there are NumNodes elements
in the vector, and they contain the index of the node at the next level that the middle branch
connects to. Subtracting 1 from that value indicates where the up-branch connects to, and adding
1 indicated where the down branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array contains the
up, middle, and down transition probabilities for each node of the level.
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More About
Cap

A cap is a contract that includes a guarantee that sets the maximum interest rate to be paid by the
holder, based on an otherwise floating interest rate.

The payoff for a cap is:

max(CurrentRate− CapRate, 0)

For more information, see “Cap” on page 2-12.

See Also
cfbyhw | floorbyhw | hwtree | swapbyhw | capbynormal

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Calibrating Hull-White Model Using Market Data” on page 2-92
“Cap” on page 2-12
“Pricing Options Structure” on page A-2
“Understanding Interest-Rate Tree Models” on page 2-66
“Supported Interest-Rate Instrument Functions” on page 2-3
“Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on page 1-
73

Introduced before R2006a

 capbyhw

11-313



capbylg2f
Price cap using Linear Gaussian two-factor model

Syntax
CapPrice = capbylg2f(ZeroCurve,a,b,sigma,eta,rho,Strike,Maturity)
CapPrice = capbylg2f( ___ ,Name,Value)

Description
CapPrice = capbylg2f(ZeroCurve,a,b,sigma,eta,rho,Strike,Maturity) returns cap
price for a two-factor additive Gaussian interest-rate model.

CapPrice = capbylg2f( ___ ,Name,Value) adds optional name-value pair arguments.

Note Use the optional name-value pair argument, Notional, to pass a schedule to compute the
price for an amortizing cap.

Examples

Price a Cap Using a Linear Gaussian Two-Factor Model

Define the ZeroCurve, a, b, sigma, eta, and rho parameters to price the cap.

Settle = datenum('15-Dec-2007');
  
ZeroTimes = [3/12 6/12 1 5 7 10 20 30]';
ZeroRates = [0.033 0.034 0.035 0.040 0.042 0.044 0.048 0.0475]';
CurveDates = daysadd(Settle,360*ZeroTimes);
  
irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);
  
a = .07;
b = .5;
sigma = .01;
eta = .006;
rho = -.7;
  
CapMaturity = daysadd(Settle,360*[1:5 7 10 15 20 25 30],1);
  
Strike = [0.035 0.037 0.038 0.039 0.040 0.042 0.044 0.046 0.047 0.047 0.047]';
  
Price = capbylg2f(irdc,a,b,sigma,eta,rho,Strike,CapMaturity)

Price = 11×1

    0.0218
    0.3167
    0.7640
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    1.3055
    1.9152
    3.0909
    4.7998
    7.3122
    9.7917
   11.4568
      ⋮

Price an Amortizing Cap Using a Linear Gaussian Two-Factor Model

Define the ZeroCurve, a, b, sigma, eta, rho, and Notional parameters for the amortizing cap.

Settle = datenum('15-Dec-2007');
% Define ZeroCurve
ZeroTimes = [3/12 6/12 1 5 7 10 20 30]';
ZeroRates = [0.033 0.034 0.035 0.040 0.042 0.044 0.048 0.0475]';
CurveDates = daysadd(Settle,360*ZeroTimes);

irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);

% Define a, b, sigma, eta, and rho
a = .07;
b = .5;
sigma = .01;
eta = .006;
rho = -.7;

% Define the amortizing caps
CapMaturity = daysadd(Settle,360*[1:5 7 10 15 20 25 30],1);
Strike = [0.035 0.037 0.038 0.039 0.040 0.042 0.044 0.046 0.047 0.047 0.047]';
Notional = {{'15-Dec-2010' 100;'15-Dec-2014' 70;'15-Dec-2022' 40;'15-Dec-2037' 10}};

% Price the amortizing caps
Price = capbylg2f(irdc,a,b,sigma,eta,rho,Strike,CapMaturity, 'Notional', Notional)

Price = 11×1

    0.0218
    0.3167
    0.7640
    1.1150
    1.5162
    2.2952
    2.8006
    3.6532
    3.6963
    3.8628
      ⋮
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Input Arguments
ZeroCurve — Zero-curve for Linear Gaussian two-factor model
structure

Zero-curve for the Linear Gaussian two-factor model, specified using IRDataCurve or RateSpec.
Data Types: struct

a — Mean reversion for first factor for Linear Gaussian two-factor model
scalar numeric

Mean reversion for first factor for the Linear Gaussian two-factor model, specified as a scalar
numeric.
Data Types: single | double

b — Mean reversion for second factor for Linear Gaussian two-factor model
scalar numeric

Mean reversion for second factor for the Linear Gaussian two-factor model, specified as a scalar
numeric.
Data Types: single | double

sigma — Volatility for first factor for Linear Gaussian two-factor model
scalar numeric

Volatility for first factor for the Linear Gaussian two-factor model, specified as a scalar numeric.
Data Types: single | double

eta — Volatility for second factor for Linear Gaussian two-factor model
scalar numeric

Volatility for second factor for the Linear Gaussian two-factor model, specified as a scalar numeric.
Data Types: single | double

rho — Scalar correlation of the factors
scalar numeric

Scalar correlation of the factors, specified as a scalar numeric.
Data Types: single | double

Strike — Cap strike price
nonnegative integer | vector of nonnegative integers

Cap strike price, specified as a nonnegative integer using a NumCaps-by-1 vector.
Data Types: single | double

Maturity — Cap maturity date
serial date number | vector of serial date numbers | date character vector

Cap maturity date, specified using a NumCaps-by-1 vector of serial date numbers or date character
vectors.
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Data Types: single | double | char | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Price =
capbylg2f(irdc,a,b,sigma,eta,rho,Strike,CapMaturity,'Reset',1,'Notional',100)

Reset — Frequency of cap payments per year
2 (default) | positive integer from the set[1,2,3,4,6,12] | vector of positive integers from the set
[1,2,3,4,6,12]

Frequency of cap payments per year, specified as the comma-separated pair consisting of 'Reset'
and a positive integers for the values [1,2,4,6,12] in a NumCaps-by-1 vector.
Data Types: single | double

Notional — Notional value of cap
100 (default) | nonnegative integer | vector of nonnegative integers

Notional value of cap, specified as the comma-separated pair consisting of 'Notional' and a NINST-
by-1 of notional principal amounts or NINST-by-1 cell array where each element is a NumDates-by-2
cell array where the first column is dates and the second column is the associated principal amount.
The date indicates the last day that the principal value is valid.
Data Types: single | double

Output Arguments
CapPrice — Cap price
scalar | vector

Expected prices of cap, returned as a scalar or an NumCaps-by-1 vector.

More About
Cap

A cap is a contract that includes a guarantee that sets the maximum interest rate to be paid by the
holder, based on an otherwise floating interest rate.

The payoff for a cap is:

max(CurrentRate− CapRate, 0)

For more information, see “Cap” on page 2-12.
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Algorithms
The following defines the two-factor additive Gaussian interest rate model, given the ZeroCurve, a,
b, sigma, eta, and rho parameters:

r(t) = x(t) + y(t) + ϕ(t)

dx(t) = − a(x)(t)dt + σ(dW1(t), x(0) = 0

dy(t) = − b(y)(t)dt + η(dW2(t), y(0) = 0

where dW1(t)dW2(t) = ρdt is a two-dimensional Brownian motion with correlation ρ and ϕ is a
function chosen to match the initial zero curve.

References
[1] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer Finance, 2006.

See Also
floorbylg2f | swaptionbylg2f | LinearGaussian2F

Topics
“Price Swaptions with Interest-Rate Models Using Simulation” on page 2-101
“Pricing Bermudan Swaptions with Monte Carlo Simulation” on page 2-115
“Cap” on page 2-12
“Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on page 1-
73

Introduced in R2013a
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capbynormal
Price caps using Normal or Bachelier pricing model

Syntax
[CapPrice,Caplets] = capbynormal(RateSpec,Strike,Settle,Maturity,Volatility)
[CapPrice,Caplets] = capbynormal( ___ ,Name,Value)

Description
[CapPrice,Caplets] = capbynormal(RateSpec,Strike,Settle,Maturity,Volatility)
prices caps using the Normal (Bachelier) pricing model for negative rates. capbynormal computes
prices of vanilla caps and amortizing caps.

[CapPrice,Caplets] = capbynormal( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Price a Cap Using Normal Model for Negative Rates

Consider an investor who gets into a contract that caps the interest rate on a $100,000 loan at –.08%
quarterly compounded for 3 months, starting on January 1, 2009. Assuming that on January 1, 2008
the zero rate is .069394% continuously compounded and the volatility is 20%, use this data to
compute the cap price. First, calculate the RateSpec, and then use capbynormal to compute the
CapPrice.

ValuationDate = 'Jan-01-2008';
EndDates ='April-01-2010';
Rates = 0.0069394;
Compounding = -1;
Basis = 1;

RateSpec = intenvset('ValuationDate', ValuationDate, ...
'StartDates', ValuationDate,'EndDates', EndDates, ...
'Rates', Rates,'Compounding', Compounding,'Basis', Basis);

Settle = 'Jan-01-2009'; % cap starts in a year
Maturity = 'April-01-2009';
Volatility = 0.20;
CapRate = -0.008;
CapReset = 4;
Principal=100000;

CapPrice = capbynormal(RateSpec,  CapRate, Settle, Maturity, Volatility,...
'Reset',CapReset,'ValuationDate',ValuationDate,'Principal', Principal,...
'Basis', Basis)

CapPrice = 2.1682e+03
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Price a Cap Using capbynormal and Compare to capbyblk

Define the RateSpec.

Settle = datenum('20-Jan-2016');
ZeroTimes = [.5 1 2 3 4 5 7 10 20 30]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = datemnth(Settle,12*ZeroTimes);
RateSpec = intenvset('StartDate',Settle,'EndDates',ZeroDates,'Rates',ZeroRates)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 2
             Disc: [10x1 double]
            Rates: [10x1 double]
         EndTimes: [10x1 double]
       StartTimes: [10x1 double]
         EndDates: [10x1 double]
       StartDates: 736349
    ValuationDate: 736349
            Basis: 0
     EndMonthRule: 1

Define the cap instrument and price with capbyblk.

ExerciseDate = datenum('20-Jan-2026');

[~,ParSwapRate] = swapbyzero(RateSpec,[NaN 0],Settle,ExerciseDate)

ParSwapRate = 0.0216

Strike = .01;
BlackVol = .3;
NormalVol = BlackVol*ParSwapRate;

Price = capbyblk(RateSpec,Strike,Settle,ExerciseDate,BlackVol)

Price = 11.8693

Price the cap instrument using capbynormal.

Price_Normal = capbynormal(RateSpec,Strike,Settle,ExerciseDate,NormalVol)

Price_Normal = 12.5495

Price the cap instrument using capbynormal for a negative strike.

 Price_Normal = capbynormal(RateSpec,-.005,Settle,ExerciseDate,NormalVol)

Price_Normal = 24.4816
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Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

Strike — Rate at which cap is exercised
decimal

Rate at which cap is exercised, specified as a NINST-by-1 vector of decimal values.
Data Types: double

Settle — Settlement date for cap
serial date number | date character vector | datetime object | string object

Settlement date for the cap, specified as a NINST-by-1 vector of serial date numbers, date character
vectors, datetime objects, or string objects.
Data Types: double | char | datetime | string

Maturity — Maturity date for cap
serial date number | date character vector | datetime object | string object

Maturity date for the cap, specified as a NINST-by-1 vector of serial date numbers, date character
vectors, datetime objects, or string objects.
Data Types: double | char | datetime | string

Volatility — Normal volatilities values
numeric

Normal volatilities values, specified as a NINST-by-1 vector of numeric values.

For more information on the Normal model, see “Work with Negative Interest Rates Using Functions”
on page 2-18.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [CapPrice,Caplets] =
capbynormal(RateSpec,Strike,Settle,Maturity,Volatility,'Reset',CapReset,'Prin
cipal',100000,'Basis',7)

Reset — Reset frequency payment per year
1 (default) | numeric
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Reset frequency payment per year, specified as the comma-separated pair consisting of 'Reset' and
a NINST-by-1 vector.
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

Notional principal amount, specified as the comma-separated pair consisting of 'Principal' and a
NINST-by-1 of notional principal amounts, or a NINST-by-1 cell array. Each element in the NINST-by-1
cell array is a NumDates-by-2 cell array, where the first column is dates, and the second column is the
associated principal amount. The date indicates the last day that the principal value is valid.

Use Principal to pass a schedule to compute the price for an amortizing cap.
Data Types: double | cell

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis of instrument representing the basis used when annualizing the input forward rate,
specified as the comma-separated pair consisting of 'Basis'and a NINST-by-1 vector of integers.
Values are:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

ValuationDate — Observation date of investment horizon
if ValuationDate is not specified, then Settle is used (default) | serial date number | date
character vector | datetime object | string object

Observation date of the investment horizon, specified as the comma-separated pair consisting of
'ValuationDate' and a serial date number, date character vector, datetime object, or string array.
Data Types: double | char | datetime | string
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ProjectionCurve — Rate curve used in generating future cash flows
if ProjectionCurve is not specified, then RateSpec is used both for discounting cash flows and
projecting future cash flows (default) | structure

The rate curve to be used in projecting the future cash flows, specified as the comma-separated pair
consisting of 'ProjectionCurve' and rate curve structure. This structure must be created using
intenvset. Use this optional input if the forward curve is different from the discount curve.
Data Types: struct

Output Arguments
CapPrice — Expected price of cap
vector

Expected price of the cap, returned as a NINST-by-1 vector.

Caplets — Caplets
array

Caplets, returned as a NINST-by-NCF array of caplets, padded with NaNs.

More About
Cap

A cap is a contract that includes a guarantee that sets the maximum interest rate to be paid by the
holder, based on an otherwise floating interest rate.

The payoff for a cap is:

max(CurrentRate− CapRate, 0)

For more information, see “Cap” on page 2-12.

See Also
floorbynormal | intenvset | swaptionbynormal | capbyblk

Topics
“Calibrating Caplets Using the Normal (Bachelier) Model” on page 2-156
“Cap” on page 2-12
“Work with Negative Interest Rates Using Functions” on page 2-18
“Supported Interest-Rate Instrument Functions” on page 2-3
“Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on page 1-
73

External Websites
How to Price Interest Rate Options with Negative Interest Rates (3 min 05 sec)

Introduced in R2017a
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capvolstrip
Strip caplet volatilities from flat cap volatilities

Syntax
[CapletVols,CapletPaymentDates,CapStrikes] = capvolstrip(ZeroCurve,CapSettle,
CapMaturity,CapVolatility)
[CapletVols,CapletPaymentDates,CapStrikes] = capvolstrip( ___ ,Name,Value)

Description
[CapletVols,CapletPaymentDates,CapStrikes] = capvolstrip(ZeroCurve,CapSettle,
CapMaturity,CapVolatility) strips caplet volatilities from the flat cap volatilities by using the
bootstrapping method. The function interpolates the cap volatilities on each caplet payment date
before stripping the caplet volatilities.

[CapletVols,CapletPaymentDates,CapStrikes] = capvolstrip( ___ ,Name,Value)
specifies options using one or more name-value pair arguments in addition to the input arguments in
the previous syntax.

Examples

Stripping Caplet Volatilities from At-The-Money (ATM) Caps

Compute the zero curve for discounting and projecting forward rates.

ValuationDate = datenum('23-Jun-2015');
ZeroRates = [0.01 0.09 0.30 0.70 1.07 1.71]/100;
CurveDates = datemnth(ValuationDate, [0.25 0.5 1 2 3 5]*12);
ZeroCurve = IRDataCurve('Zero',ValuationDate,CurveDates,ZeroRates)

ZeroCurve = 
             Type: Zero
           Settle: 736138 (23-Jun-2015)
      Compounding: 2
            Basis: 0 (actual/actual)
     InterpMethod: linear
            Dates: [6x1 double]
             Data: [6x1 double]

Define the ATM cap volatility data.

CapSettle = datenum('25-Jun-2015');
CapMaturity = datenum({'27-Jun-2016';'26-Jun-2017';'25-Jun-2018'; ...
    '25-Jun-2019';'25-Jun-2020'});
CapVolatility = [0.29;0.38;0.42;0.40;0.38];

Strip caplet volatilities from ATM caps.

[CapletVols, CapletPaymentDates, ATMCapStrikes] = capvolstrip(ZeroCurve, ...
    CapSettle, CapMaturity, CapVolatility);
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PaymentDates = cellstr(datestr(CapletPaymentDates));
format;
table(PaymentDates, CapletVols, ATMCapStrikes)

ans=9×3 table
     PaymentDates      CapletVols    ATMCapStrikes
    _______________    __________    _____________

    {'27-Jun-2016'}        0.29        0.0052014  
    {'27-Dec-2016'}     0.34657        0.0071594  
    {'26-Jun-2017'}     0.41404        0.0091175  
    {'26-Dec-2017'}     0.42114         0.010914  
    {'25-Jun-2018'}     0.45297         0.012698  
    {'26-Dec-2018'}     0.37257         0.014222  
    {'25-Jun-2019'}     0.36184         0.015731  
    {'26-Dec-2019'}      0.3498         0.017262  
    {'25-Jun-2020'}     0.33668         0.018774  

Stripping Caplet Volatilities from Caps with the Same Strikes

Compute the zero curve for discounting and projecting forward rates.

ValuationDate = datenum('17-Feb-2015');
ZeroRates = [0.02 0.07 0.25 0.70 1.10 1.62]/100;
CurveDates = datemnth(ValuationDate, [0.25 0.5 1 2 3 5]*12);
ZeroCurve = IRDataCurve('Zero',ValuationDate,CurveDates,ZeroRates)

ZeroCurve = 
             Type: Zero
           Settle: 736012 (17-Feb-2015)
      Compounding: 2
            Basis: 0 (actual/actual)
     InterpMethod: linear
            Dates: [6x1 double]
             Data: [6x1 double]

Define the cap volatility data.

CapSettle = datenum('19-Feb-2015');
CapMaturity = datenum({'19-Feb-2016';'21-Feb-2017';'20-Feb-2018'; ...
    '19-Feb-2019';'19-Feb-2020'});
CapVolatility = [0.44;0.45;0.44;0.41;0.39];
CapStrike = 0.013;

Strip caplet volatilities from caps with the same strike.

[CapletVols, CapletPaymentDates, CapStrikes] = capvolstrip(ZeroCurve, ...
    CapSettle, CapMaturity, CapVolatility, 'Strike', CapStrike);

PaymentDates = cellstr(datestr(CapletPaymentDates));
format;
table(PaymentDates, CapletVols, CapStrikes)
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ans=9×3 table
     PaymentDates      CapletVols    CapStrikes
    _______________    __________    __________

    {'19-Feb-2016'}        0.44        0.013   
    {'19-Aug-2016'}     0.44495        0.013   
    {'21-Feb-2017'}     0.45256        0.013   
    {'21-Aug-2017'}     0.43835        0.013   
    {'20-Feb-2018'}     0.42887        0.013   
    {'20-Aug-2018'}     0.38157        0.013   
    {'19-Feb-2019'}     0.35237        0.013   
    {'19-Aug-2019'}      0.3525        0.013   
    {'19-Feb-2020'}     0.33136        0.013   

Stripping Caplet Volatilities Using Manually Specified Caplet Dates

Compute the zero curve for discounting and projecting forward rates.

ValuationDate = datenum('06-Mar-2015');
ZeroRates = [0.01 0.08 0.27 0.73 1.16 1.70]/100;
CurveDates = datemnth(ValuationDate, [0.25 0.5 1 2 3 5]*12);
ZeroCurve = IRDataCurve('Zero',ValuationDate,CurveDates,ZeroRates)

ZeroCurve = 
             Type: Zero
           Settle: 736029 (06-Mar-2015)
      Compounding: 2
            Basis: 0 (actual/actual)
     InterpMethod: linear
            Dates: [6x1 double]
             Data: [6x1 double]

Define the cap volatility data.

CapSettle = datenum('06-Mar-2015');
CapMaturity = datenum({'07-Mar-2016';'06-Mar-2017';'06-Mar-2018'; ...
    '06-Mar-2019';'06-Mar-2020'});
CapVolatility = [0.43;0.44;0.44;0.43;0.41];
CapStrike = 0.011;

Specify quarterly and semiannual dates.

CapletDates = [cfdates(CapSettle, '06-Mar-2016', 4) ...
     cfdates('06-Mar-2016', '06-Mar-2020', 2)]';
CapletDates(~isbusday(CapletDates)) =  ...
    busdate(CapletDates(~isbusday(CapletDates)), 'modifiedfollow');

Strip caplet volatilities using specified CapletDates.

[CapletVols, CapletPaymentDates, CapStrikes] = capvolstrip(ZeroCurve, ...
    CapSettle, CapMaturity, CapVolatility, 'Strike', CapStrike, ...
    'CapletDates', CapletDates);

PaymentDates = cellstr(datestr(CapletPaymentDates));
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format;
table(PaymentDates, CapletVols, CapStrikes)

ans=11×3 table
     PaymentDates      CapletVols    CapStrikes
    _______________    __________    __________

    {'08-Sep-2015'}        0.43        0.011   
    {'07-Dec-2015'}     0.42999        0.011   
    {'07-Mar-2016'}        0.43        0.011   
    {'06-Sep-2016'}     0.43538        0.011   
    {'06-Mar-2017'}     0.44396        0.011   
    {'06-Sep-2017'}     0.43999        0.011   
    {'06-Mar-2018'}     0.44001        0.011   
    {'06-Sep-2018'}     0.41934        0.011   
    {'06-Mar-2019'}     0.40985        0.011   
    {'06-Sep-2019'}     0.36818        0.011   
    {'06-Mar-2020'}     0.34657        0.011   

Stripping Caplet Volatilities from Caps Using the Shifted Black Model

Compute the zero curve for discounting and projecting forward rates.

ValuationDate = datenum('1-Mar-2016');
ZeroRates = [-0.38 -0.25 -0.21 -0.12 0.01 0.2]/100;
CurveDates = datemnth(ValuationDate, [0.25 0.5 1 2 3 5]*12);
ZeroCurve = IRDataCurve('Zero',ValuationDate,CurveDates,ZeroRates)

ZeroCurve = 
             Type: Zero
           Settle: 736390 (01-Mar-2016)
      Compounding: 2
            Basis: 0 (actual/actual)
     InterpMethod: linear
            Dates: [6x1 double]
             Data: [6x1 double]

Define the cap volatility (Shifted Black) data.

CapSettle = datenum('1-Mar-2016');
CapMaturity = datenum({'1-Mar-2017';'1-Mar-2018';'1-Mar-2019'; ...
    '2-Mar-2020';'1-Mar-2021'});
CapVolatility = [0.35;0.40;0.37;0.34;0.32]; % Shifted Black volatilities
Shift = 0.01; % 1 percent shift.
CapStrike = -0.001; % -0.1 percent strike.

Strip caplet volatilities from caps using the Shifted Black Model.

[CapletVols, CapletPaymentDates, CapStrikes] = capvolstrip(ZeroCurve, ...
CapSettle,CapMaturity,CapVolatility,'Strike',CapStrike,'Shift',Shift);

PaymentDates = string(datestr(CapletPaymentDates));
format;
table(PaymentDates,CapletVols,CapStrikes)
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ans=9×3 table
    PaymentDates     CapletVols    CapStrikes
    _____________    __________    __________

    "01-Mar-2017"        0.35        -0.001  
    "01-Sep-2017"     0.39129        -0.001  
    "01-Mar-2018"      0.4335        -0.001  
    "04-Sep-2018"     0.35284        -0.001  
    "01-Mar-2019"      0.3255        -0.001  
    "03-Sep-2019"      0.3011        -0.001  
    "02-Mar-2020"     0.27266        -0.001  
    "01-Sep-2020"     0.27698        -0.001  
    "01-Mar-2021"     0.25697        -0.001  

Stripping Caplet Volatilities from Caps Using Normal Model

Compute the zero curve for discounting and projecting forward rates.

ValuationDate = datenum('1-Jun-2018');
ZeroRates = [-0.38 -0.25 -0.21 -0.12 0.01 0.2]/100;
CurveDates = datemnth(ValuationDate, [0.25 0.5 1 2 3 5]*12);
ZeroCurve = IRDataCurve('Zero',ValuationDate,CurveDates,ZeroRates)

ZeroCurve = 
             Type: Zero
           Settle: 737212 (01-Jun-2018)
      Compounding: 2
            Basis: 0 (actual/actual)
     InterpMethod: linear
            Dates: [6x1 double]
             Data: [6x1 double]

Define the normal cap volatility data.

CapSettle = datenum('1-Jun-2018');
CapMaturity = datenum({'3-Jun-2019';'1-Jun-2020';'1-Jun-2021'; ...
    '1-Jun-2022';'1-Jun-2023'});
CapVolatility = [0.0057;0.0059;0.0057;0.0053;0.0051]; % Normal volatilities
CapStrike = -0.002; % -0.2 percent strike.

Strip caplet volatilities from caps using the Normal (Bachelier) model.

[CapletVols, CapletPaymentDates, CapStrikes] = capvolstrip(ZeroCurve, ...
    CapSettle,CapMaturity,CapVolatility,'Strike',CapStrike,'Model','normal');

PaymentDates = string(datestr(CapletPaymentDates));
format;
table(PaymentDates,CapletVols,CapStrikes)

ans=9×3 table
    PaymentDates     CapletVols    CapStrikes
    _____________    __________    __________

    "03-Jun-2019"       0.0057       -0.002  
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    "02-Dec-2019"    0.0058686       -0.002  
    "01-Jun-2020"    0.0060472       -0.002  
    "01-Dec-2020"    0.0055705       -0.002  
    "01-Jun-2021"    0.0053912       -0.002  
    "01-Dec-2021"    0.0047404       -0.002  
    "01-Jun-2022"     0.004357       -0.002  
    "01-Dec-2022"    0.0046481       -0.002  
    "01-Jun-2023"    0.0044477       -0.002  

Input Arguments
ZeroCurve — Zero rate curve
RateSpec object | IRDataCurve object

Zero rate curve, specified using a RateSpec or IRDataCurve object containing the zero rate curve
for discounting according to its day count convention. If you do not specify the optional argument
ProjectionCurve, the function uses ZeroCurve to compute the underlying forward rates as well.
The observation date of the ZeroCurve specifies the valuation date. For more information on
creating a RateSpec, see intenvset. For more information on creating an IRDataCurve object,
see IRDataCurve.
Data Types: struct

CapSettle — Common cap settle date
serial date number | date character vector

Common cap settle date, specified as a scalar serial date number or date character vector. The
CapSettle date cannot be earlier than the ZeroCurve valuation date.
Data Types: double | char

CapMaturity — Cap maturity dates
serial date numbers | date character vectors

Cap maturity dates, specified using serial date numbers or cell array of date character vectors as a
NCap-by-1 vector.
Data Types: double | char | cell

CapVolatility — Flat cap volatilities
vector of positive decimals

Flat cap volatilities, specified as an NCap-by-1 vector of positive decimals.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [CapletVols,CapletPaymentDates,CapStrikes] =
capvolstrip(ZeroCurve,CapSettle,CapMaturity,CapVolatility,'Strike',.2)
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Strike — Cap strike rate
If not specified, all caps are at-the-money and the function computes the ATM strike for each cap
maturing on each caplet payment date (default) | scalar decimal | vector

Cap strike rate, specified as the comma-separated pair consisting of 'Strike' and a scalar decimal
value or an NCapletVols-by-1 vector. Use Strike as a scalar to specify a single strike that applies
equally to all caps. Or, specify an NCapletVols-by-1 vector of strikes for the caps.
Data Types: double

CapletDates — Caplet reset and payment dates
if not specified, the default is to automatically generate periodic caplet dates (default) | serial date
numbers | date character vectors

Caplet reset and payment dates, specified as the comma-separated pair consisting of
'CapletDates' and an NCapletDates-by-1 vector using serial date numbers or a cell array of date
character vectors.

Use CapletDates to manually specify all caplet reset and payment dates. For example, some date
intervals may be quarterly, while others may be semiannual. All dates must be later than CapSettle
and cannot be later than the last CapMaturity date. Dates are adjusted according to the
BusDayConvention and Holidays inputs.

If CapletDates is not specified, the default is to automatically generate periodic caplet dates after
CapSettle based on the last CapMaturity date as the reference date, using the following optional
inputs: Reset, EndMonthRule, BusDayConvention, and Holidays.
Data Types: double | char | cell

Reset — Frequency of periodic payments per year within a cap
2 (default) | positive scalar integer with values 1,2, 3, 4, 6, or 12

Frequency of periodic payments per year within a cap, specified as the comma-separated pair
consisting of 'Reset' and a positive scalar integer with values 1,2, 3, 4, 6, or 12.

Note If you specify CapletDates, the function ignores the input for Reset.

Data Types: double

EndMonthRule — End-of-month rule flag for generating caplet dates
1 (in effect) (default) | scalar nonnegative integer [0,1]

End-of-month rule flag for generating caplet dates, specified as the comma-separated pair consisting
of 'EndMonthRule' and a scalar nonnegative integer [0, 1].

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

BusinessDayConvention — Business day conventions
'modifiedfollow' (default) | character vector with values 'actual', 'follow',
'modifiedfollow', 'previous', 'modifiedprevious'
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Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector. Use this argument to specify how the function
treats non-business days, which are days on which businesses are not open (such as weekends and
statutory holidays).

• 'actual' — Non-business days are effectively ignored. Cash flows that fall on non-business days
are assumed to be distributed on the actual date.

• 'follow' — Cash flows that fall on a non-business day are assumed to be distributed on the
following business day.

• 'modifiedfollow' — Cash flows that fall on a non-business day are assumed to be distributed
on the following business day. However, if the following business day is in a different month, the
previous business day is adopted instead.

• 'previous' — Cash flows that fall on a non-business day are assumed to be distributed on the
previous business day.

• 'modifiedprevious' — Cash flows that fall on a non-business day are assumed to be
distributed on the previous business day. However, if the previous business day is in a different
month, the following business day is adopted instead.

Data Types: char

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | vector of MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair consisting of
'Holidays' and NHolidays-by-1 vector of MATLAB date numbers.
Data Types: double

ProjectionCurve — Rate curve for computing underlying forward rates
if not specified, the default is to use the ZeroCurve input for computing the underlying forward rates
(default) | RateSpec object | IRDatCurve object

Rate curve for computing underlying forward rates, specified as the comma-separated pair consisting
of 'ProjectionCurve' and a RateSpec object or IRDatCurve object. For more information on
creating a RateSpec, see intenvset. For more information on creating an IRDataCurve object,
see IRDataCurve.
Data Types: struct

MaturityInterpMethod — Method for interpolating the cap volatilities on each caplet
maturity date before stripping the caplet volatilities
'linear' (default) | character vector with values: 'linear', 'nearest', 'next', 'previous',
'spline', 'pchip'

Method for interpolating the cap volatilities on each caplet maturity date before stripping the caplet
volatilities, specified as the comma-separated pair consisting of 'MaturityInterpMethod' and a
character vector with values: 'linear', 'nearest', 'next', 'previous', 'spline', or
'pchip'.

• 'linear' — Linear interpolation. The interpolated value at a query point is based on linear
interpolation of the values at neighboring grid points in each respective dimension. This is the
default interpolation method.

• 'nearest' — Nearest neighbor interpolation. The interpolated value at a query point is the value
at the nearest sample grid point.
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• 'next' — Next neighbor interpolation. The interpolated value at a query point is the value at the
next sample grid point.

• 'previous' — Previous neighbor interpolation. The interpolated value at a query point is the
value at the previous sample grid point.

• 'spline' — Spline interpolation using not-a-knot end conditions. The interpolated value at a
query point is based on a cubic interpolation of the values at neighboring grid points in each
respective dimension.

• 'pchip' — Shape-preserving piecewise cubic interpolation. The interpolated value at a query
point is based on a shape-preserving piecewise cubic interpolation of the values at neighboring
grid points.

For more information on interpolation methods, see interp1.

Note The function uses constant extrapolation to calculate volatilities falling outside the range of
user-supplied data.

Data Types: char

Limit — Upper bound of implied volatility search interval
10 (or 1000% per annum) (default) | positive scalar decimal

Upper bound of implied volatility search interval, specified as the comma-separated pair consisting of
'Limit' and a positive scalar decimal.
Data Types: double

Tolerance — Implied volatility search termination tolerance
1e-5 (default) | positive numeric scalar

Implied volatility search termination tolerance, specified as the comma-separated pair consisting of
'Tolerance' and a positive numeric scalar.
Data Types: double

OmitFirstCaplet — Flag to omit the first caplet payment in the caps
true (always omit the first caplet) (default) | logical

Flag to omit the first caplet payment in the caps, specified as the comma-separated pair consisting of
'OmitFirstCaplet' and a scalar logical.

If the caps are spot-starting, the first caplet payment is omitted. If the caps are forward-starting, the
first caplet payment is included. Regardless of the status of the caps, if you set this logical to false,
then the function includes the first caplet payment.

In general, “spot lag” is the delay between the fixing date and the effective date for LIBOR-like
indices. "Spot lag" determines whether a cap is spot-starting or forward-starting (Corb, 2012). Caps
are considered to be spot-starting if they settle within “spot lag” business days after the valuation
date. Those that settle later are considered to be forward-starting. The first caplet is omitted if caps
are spot-starting, while it is included if they are forward-starting (Tuckman, 2012).
Data Types: logical
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Shift — Shift in decimals for shifted SABR model
0 (no shift) (default) | positive scalar decimal

Shift in decimals for the shifted SABR model (to be used with the Shifted Black model), specified as
the comma-separated pair consisting of 'Shift' and a positive scalar decimal value. Set this
parameter to a positive shift in decimals to add a positive shift to the forward rate and strike, which
effectively sets a negative lower bound for the forward rate and strike. For example, a Shift value of
0.01 is equal to a 1% shift.
Data Types: double

Model — Model used for implied volatility
'lognormal' (default) | character vector with value of 'lognormal' or 'normal' | string scalar
with value of "lognormal" or "normal"

Model used for the implied volatility calculation, specified as the comma-separated pair consisting of
'Model' and a scalar character vector or string scalar with one of the following values:

• 'lognormal' - Implied Black (no shift) or Shifted Black volatility.
• 'normal' - Implied Normal (Bachelier) volatility. If you specify 'normal', Shift must be zero.

The capvolstrip function supports three volatility types.

'Model' Value 'Shift' Value Volatility Type
'lognormal' Shift = 0 Black
'lognormal' Shift > 0 Shifted Black
'normal' Shift = 0 Normal (Bachelier)

Data Types: char | string

Output Arguments
CapletVols — Stripped caplet volatilities
vector of decimals

Stripped caplet volatilities, returned as an NCapletVols-by-1 vector of decimals.

Note capvolstrip can output NaNs for some caplet volatilities. You might encounter this output if
no volatility matches the caplet price implied by the user-supplied cap data.

CapletPaymentDates — Payment dates
vector of date numbers

Payment dates (in date numbers), returned as an NCapletVols-by-1 vector of date numbers
corresponding to CapletVols.

CapStrikes — Cap strikes
vector of decimals

Cap strikes, returned as an NCapletVols-by-1 vector of strikes in decimals for caps maturing on the
corresponding CapletPaymentDates. CapStrikes are the same as the strikes of the corresponding
caplets that have been stripped.
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Limitations
When bootstrapping the caplet volatilities from ATM caps, the function reuses the caplet volatilities
stripped from the shorter maturity caps in the longer maturity caps without adjusting for the
difference in strike. capvolstrip follows the simplified approach described in Gatarek, 2006.

More About
Cap

A cap is a contract that includes a guarantee that sets the maximum interest rate to be paid by the
holder, based on an otherwise floating interest rate.

The payoff for a cap is:

max(CurrentRate− CapRate, 0)

For more information, see “Cap” on page 2-12.

At-The-Money

A cap or floor is at-the-money (ATM) if its strike is equal to the forward swap rate.

The forward swap rate is the fixed rate of a swap that makes the present value of the floating leg
equal to that of the fixed leg. In comparison, a caplet or floorlet is ATM if its strike is equal to the
forward rate (not the forward swap rate). In general (except over a single period), the forward rate is
not equal to the forward swap rate. So, to be precise, the individual caplets in an ATM cap have
slightly different moneyness and are only approximately ATM (Alexander, 2003).

In addition, the swap rate changes with swap maturity. Similarly, the ATM cap strike also changes
with cap maturity, so the ATM cap strikes are computed for each cap maturity before stripping the
caplet volatilities. As a result, when stripping the caplet volatilities from the ATM caps with
increasing maturities, the ATM strikes of consecutive caps are different.

References
[1] Alexander, C. "Common Correlation and Calibrating the Lognormal Forward Rate Model." Wilmott

Magazine, 2003.

[2] Corb, H. Interest Rate Swaps and Other Derivatives. Columbia Business School Publishing, 2012.

[3] Gatarek, D., P. Bachert, and R. Maksymiuk. The LIBOR Market Model in Practice. Chichester, UK:
Wiley, 2006.

[4] Tuckman, B., and Serrat, A. Fixed Income Securities: Tools for Today’s Markets. Hoboken, NJ:
Wiley, 2012.

See Also
interp1 | intenvset | floorvolstrip | capbyblk | capbynormal

Topics
“Price Swaptions with Negative Strikes Using the Shifted SABR Model” on page 2-26
“Cap” on page 2-12
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“Work with Negative Interest Rates Using Functions” on page 2-18

External Websites
How to Price Interest Rate Options with Negative Interest Rates (3 min 05 sec)

Introduced in R2016a
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cashbybls
Determine price of cash-or-nothing digital options using Black-Scholes model

Syntax
Price = cashbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,Payoff)

Description
Price = cashbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,Payoff)
computes the price for cash-or-nothing European digital options using the Black-Scholes option
pricing model.

Examples

Compute Cash-or-Nothing Option Prices Using the Black-Scholes Option Pricing Model

Consider a European call and put cash-or-nothing options on a futures contract with and exercise
strike price of $90, a fixed payoff of $10 that expires on October 1, 2008. Assume that on January 1,
2008, the contract trades at $110, and has a volatility of 25% per annum and the risk-free rate is
4.5% per annum. Using this data, calculate the price of the call and put cash-or-nothing options on
the futures contract. First, create the RateSpec:

Settle = 'Jan-1-2008';
Maturity = 'Oct-1-2008';
Rates = 0.045;
Compounding = -1;  
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9668
            Rates: 0.0450
         EndTimes: 0.7500
       StartTimes: 0
         EndDates: 733682
       StartDates: 733408
    ValuationDate: 733408
            Basis: 1
     EndMonthRule: 1

Define the StockSpec.

AssetPrice = 110;
Sigma = .25;
DivType = 'Continuous';
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DivAmount = Rates;
StockSpec = stockspec(Sigma, AssetPrice, DivType, DivAmount)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2500
         AssetPrice: 110
       DividendType: {'continuous'}
    DividendAmounts: 0.0450
    ExDividendDates: []

Define the call and put options.

OptSpec = {'call'; 'put'};
Strike = 90;
Payoff = 10;

Calculate the prices.

Pcon = cashbybls(RateSpec, StockSpec, Settle,...
Maturity, OptSpec, Strike, Payoff)

Pcon = 2×1

    7.6716
    1.9965

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification, see
stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities the
price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is
StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement or trade date
serial date number | date character vector

Settlement or trade date for the basket option, specified as an NINST-by-1 vector of serial date
numbers or date character vectors.
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Data Types: double | char | cell

Maturity — Maturity date
serial date number | date character vector

Maturity date for the basket option, specified as an NINST-by-1 vector of serial date numbers or date
character vectors.
Data Types: double | char | cell

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors with values 'call'
or 'put'

Definition of the option as 'call' or 'put', specified as an NINST-by-1 vector.
Data Types: char | cell

Strike — Strike price value
vector

Strike price value, specified as an NINST-by-1 vector.
Data Types: double

Payoff — Payoff values
vector

Payoff values (or the amount to be paid at expiration), specified as an NINST-by-1 vector.
Data Types: double

Output Arguments
Price — Expected prices for cash-or-nothing option
vector

Expected prices for cash-or-nothing option, returned as a NINST-by-1 vector.

See Also
assetbybls | cashsensbybls | gapbybls | supersharebybls

Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-79
“Pricing Using the Black-Scholes Model” on page 3-82
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2009a
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cashsensbybls
Determine price or sensitivities of cash-or-nothing digital options using Black-Scholes model

Syntax
PriceSens = cashsensbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,
Payoff)
PriceSens = cashsensbybls( ___ ,Name,Value)

Description
PriceSens = cashsensbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,
Payoff) computes the price or sensitivities for cash-or-nothing European digital options using the
Black-Scholes option pricing model.

PriceSens = cashsensbybls( ___ ,Name,Value) specifies options using one or more name-
value pair arguments in addition to the input arguments in the previous syntax.

Examples

Compute Cash-or-Nothing Option Prices and Sensitivities Using the Black-Scholes Option
Pricing Model

Consider a European call and put cash-or-nothing options on a futures contract with an exercise price
of $90, and a fixed payoff of $10 that expires on October 1, 2008. Assume that on January 1, 2008 the
contract trades at $110, and has a volatility of 25% per annum and the risk-free rate is 4.5% per
annum. Using this data, calculate the price and sensitivity of the call and put cash-or-nothing options
on the futures contract. First, create the RateSpec:

Settle = 'Jan-1-2008';
Maturity = 'Oct-1-2008';
Rates = 0.045;
Compounding = -1;  
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9668
            Rates: 0.0450
         EndTimes: 0.7500
       StartTimes: 0
         EndDates: 733682
       StartDates: 733408
    ValuationDate: 733408
            Basis: 1
     EndMonthRule: 1
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Define the StockSpec.

AssetPrice = 110;
Sigma = .25;
DivType = 'Continuous';
DivAmount = Rates;
StockSpec = stockspec(Sigma, AssetPrice, DivType, DivAmount)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2500
         AssetPrice: 110
       DividendType: {'continuous'}
    DividendAmounts: 0.0450
    ExDividendDates: []

Define the call and put options.

OptSpec = {'call'; 'put'};
Strike = 90;
Payoff = 10;

Compute the gamma, theta, and price.

OutSpec = { 'gamma';'theta';'price'};
[Gamma, Theta, Price] = cashsensbybls(RateSpec, StockSpec,...
Settle, Maturity, OptSpec, Strike, Payoff, 'OutSpec', OutSpec)

Gamma = 2×1

   -0.0050
    0.0050

Theta = 2×1

   -2.2489
    1.8139

Price = 2×1

    7.6716
    1.9965

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct
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StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification, see
stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities the
price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is
StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement or trade date
serial date number | date character vector

Settlement or trade date for the basket option, specified as an NINST-by-1 vector of serial date
numbers or date character vectors.
Data Types: double | char | cell

Maturity — Maturity date
serial date number | date character vector

Maturity date for the basket option, specified as an NINST-by-1 vector of serial date numbers or date
character vectors.
Data Types: double | char | cell

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors with values 'call'
or 'put'

Definition of the option as 'call' or 'put', specified as an NINST-by-1 vector.
Data Types: char | cell

Strike — Strike price value
vector

Strike price value, specified as an NINST-by-1 vector.
Data Types: double

Payoff — Payoff values
vector

Payoff values (or the amount to be paid at expiration), specified as an NINST-by-1 vector.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
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Example: [Gamma,Theta,Price] =
cashsensbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,Payoff,'OutSp
ec',{'gamma';'theta';'price'})

OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma', 'Vega',
'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with values 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a NOUT- by-1 or
a 1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output is Delta, Gamma, Vega, Lambda, Rho, Theta, and
Price, in that order. This is the same as specifying OutSpec to include each sensitivity.
Example: OutSpec = {'delta','gamma','vega','lambda','rho','theta','price'}
Data Types: char | cell

Output Arguments
PriceSens — Expected prices or sensitivities for cash-or-nothing option
vector

Expected prices or sensitivities (defined using OutSpec) for cash-or-nothing option, returned as a
NINST-by-1 vector.

See Also
cashbybls

Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-79
“Pricing Using the Black-Scholes Model” on page 3-82
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2009a
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cbondbycrr
Price convertible bonds from CRR binomial tree

Syntax
Price = cbondbycrr(CRRTree,CouponRate,Settle,Maturity,ConvRatio)
[Price,PriceTree] = cbondbycrr(CRRTree,CouponRate,Settle,Maturity,ConvRatio)
[Price,PriceTree,EquityTree,DebtTree] = cbondbycrr( ___ ,Name,Value)

Description
Price = cbondbycrr(CRRTree,CouponRate,Settle,Maturity,ConvRatio) prices
convertible bonds from a CRR binomial tree using the Tsiveriotis and Fernandes method.

[Price,PriceTree] = cbondbycrr(CRRTree,CouponRate,Settle,Maturity,ConvRatio)
prices convertible bonds from a CRR binomial tree using the Tsiveriotis and Fernandes method.

[Price,PriceTree,EquityTree,DebtTree] = cbondbycrr( ___ ,Name,Value) prices
convertible bonds from a CRR binomial tree using a credit spread or incorporating the risk of bond
default.

To incorporate the risk in the form of credit spread (Tsiveriotis-Fernandes method), use the optional
name-value pair input argument Spread. To incorporate default risk into the algorithm, specify the
optional name-value pair input arguments DefaultProbability and RecoveryRate.

Examples

Price Convertible Bond Using a CRR Tree

Price a convertible bond using the following data for the interest-rate term structure:

StartDates =  'Jan-1-2014'; 
EndDates = 'Jan-1-2015'; 
Rates = 0.1; 
Basis = 1;

Create the RateSpec and StockSpec.

Sigma = 0.3;
Price = 50;

RateSpec = intenvset('ValuationDate',StartDates,'StartDates',StartDates,'EndDates',EndDates,...
'Rates',Rates,'Compounding',-1,'Basis',Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9048
            Rates: 0.1000
         EndTimes: 1
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       StartTimes: 0
         EndDates: 735965
       StartDates: 735600
    ValuationDate: 735600
            Basis: 1
     EndMonthRule: 1

StockSpec = stockspec(Sigma,Price)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3000
         AssetPrice: 50
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Create the CRR tree for the equity.

Settle = '1-Jan-2014';
Maturity = '1-Oct-2014';
NumSteps = 3; 
TimeSpec = crrtimespec(Settle,Maturity,NumSteps);
CRRT = crrtree(StockSpec,RateSpec,TimeSpec)

CRRT = struct with fields:
       FinObj: 'BinStockTree'
       Method: 'CRR'
    StockSpec: [1x1 struct]
     TimeSpec: [1x1 struct]
     RateSpec: [1x1 struct]
         tObs: [0 0.2491 0.4982 0.7473]
         dObs: [735600 735691 735782 735873]
        STree: {[50]  [58.0757 43.0472]  [67.4558 50.0000 37.0613]  [78.3509 ... ]}
      UpProbs: [0.5465 0.5465 0.5465]

Define and price the convertible bond.

CouponRate = 0;
Period = 1;
ConvRatio = 2;
CallExDates = '1-Oct-2014';
CallStrike = 115;
AmericanCall = 1;
Spread = 0.05;

[Price,PriceTree,EqtTree,DbtTree] = cbondbycrr(CRRT,CouponRate,Settle,Maturity,ConvRatio,...
'Period',Period,'Spread',Spread,'CallExDates',CallExDates,'CallStrike',CallStrike,'AmericanCall',AmericanCall)

Price = 104.9490

PriceTree = struct with fields:
    FinObj: 'BinPriceTree'
     PTree: {1x4 cell}
      tObs: [0 0.2491 0.4982 0.7473]
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      dObs: [735600 735691 735782 735873]

EqtTree = struct with fields:
    FinObj: 'BinPriceTree'
     PTree: {[76.5211]  [116.1515 33.0103]  [134.9117 61.9209 0]  [156.7019 ... ]}
      tObs: [0 0.2491 0.4982 0.7473]
      dObs: [735600 735691 735782 735873]

DbtTree = struct with fields:
    FinObj: 'BinPriceTree'
     PTree: {[28.4278]  [0 65.0790]  [0 43.6821 96.3327]  [0 0 100.0000 100.0000]}
      tObs: [0 0.2491 0.4982 0.7473]
      dObs: [735600 735691 735782 735873]

Price a Convertible Bond Using a CRR Tree and Incorporate Default Risk Using
DefaultProbability and RecoveryRate

Create the interest-rate term structure RateSpec.

StartDates = 'Jan-1-2014'; 
EndDates = 'Jan-1-2016'; 
Rates = 0.025; 
Basis = 1; 
RateSpec = intenvset('ValuationDate',StartDates,'StartDates',...
StartDates,'EndDates',EndDates,'Rates',Rates,'Compounding',-1,'Basis',Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9512
            Rates: 0.0250
         EndTimes: 2
       StartTimes: 0
         EndDates: 736330
       StartDates: 735600
    ValuationDate: 735600
            Basis: 1
     EndMonthRule: 1

Create the StockSpec.

AssetPrice = 110; 
Sigma = 0.22; 
Div = 0.02; 
StockSpec = stockspec(Sigma,AssetPrice,'continuous',Div)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2200
         AssetPrice: 110
       DividendType: {'continuous'}
    DividendAmounts: 0.0200
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    ExDividendDates: []

Create the CRR tree for the equity.

Settle = '1-Jan-2014';
Maturity = '1-Oct-2014';
NumSteps = 3;
TimeSpec = crrtimespec(Settle,Maturity,NumSteps);
CRRT = crrtree(StockSpec,RateSpec,TimeSpec)

CRRT = struct with fields:
       FinObj: 'BinStockTree'
       Method: 'CRR'
    StockSpec: [1x1 struct]
     TimeSpec: [1x1 struct]
     RateSpec: [1x1 struct]
         tObs: [0 0.2491 0.4982 0.7473]
         dObs: [735600 735691 735782 735873]
        STree: {1x4 cell}
      UpProbs: [0.4782 0.4782 0.4782]

Define and price the convertible bond using the optional DefaultProbability and RecoveryRate
arguments.

CouponRate = 0;
Period = 1;
ConvRatio = 2;
CallExDates = '1-Oct-2014';
CallStrike = 115;
AmericanCall = 1;
DefaultProbability = .30;
RecoveryRate = .82;

[Price,PriceTree,EqtTree,DbtTree] = cbondbycrr(CRRT,CouponRate,Settle,Maturity,ConvRatio,...
'Period',Period,'CallExDates',CallExDates,'CallStrike',CallStrike,'AmericanCall',AmericanCall,...
'DefaultProbability',DefaultProbability,'RecoveryRate',RecoveryRate)

Price = 220

PriceTree = struct with fields:
    FinObj: 'BinPriceTree'
     PTree: {[220]  [245.5317 197.1233]  [274.0263 220.0000 176.6254]  [1x4 double]}
      tObs: [0 0.2491 0.4982 0.7473]
      dObs: [735600 735691 735782 735873]

EqtTree = struct with fields:
    FinObj: 'BinPriceTree'
     PTree: {[220]  [245.5317 197.1233]  [274.0263 220.0000 176.6254]  [1x4 double]}
      tObs: [0 0.2491 0.4982 0.7473]
      dObs: [735600 735691 735782 735873]

DbtTree = struct with fields:
    FinObj: 'BinPriceTree'
     PTree: {[0]  [0 0]  [0 0 0]  [0 0 0 0]}
      tObs: [0 0.2491 0.4982 0.7473]
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      dObs: [735600 735691 735782 735873]

Input Arguments
CRRTree — Stock tree structure
structure

Stock tree structure, specified by using crrtree.
Data Types: struct

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell array, where
each element is a NumDates-by-2 cell array. The first column of the NumDates-by-2 cell array is dates
and the second column is associated rates. The date indicates the last day that the coupon rate is
valid.
Data Types: double | cell

Settle — Settlement date
serial date number | date character vector

Settlement date, specified as an NINST-by-1 scalar using a serial date number or date character
vector.

Note The Settle date for every convertible bond is set to the ValuationDate of the CRR stock
tree. The bond argument, Settle, is ignored.

Data Types: double | char

Maturity — Maturity date
serial date number | date character vector

Maturity date, specified as an NINST-by-1 scalar using a serial date number or date character vector.
Data Types: double | char

ConvRatio — Number of shares convertible to one bond
nonnegative number

Number of shares convertible to one bond, specified as an NINST-by-1 with a nonnegative number.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
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Example: [Price,PriceTree,EquityTree,DebtTree] =
cbondbycrr(CRRT,CouponRate,Settle, Maturity,
ConvRatio,'Spread',Spread,'CallExDates',CallExDates,'CallStrike',CallStrike,'
AmericanCall',1)

Spread — Number of basis points over the reference rate
0 (default) | vector

Number of basis points over the reference rate, specified as the comma-separated pair consisting of
'Spread' and a NINST-by-1 vector.

Note To incorporate the risk in the form of credit spread (Tsiveriotis-Fernandes method), use the
optional input argument Spread. To incorporate default risk into the algorithm, specify the optional
input arguments DefaultProbability and RecoveryRate. Do not use Spread with
DefaultProbability and RecoveryRate.

Data Types: double

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a NINST-by-1
vector.
Data Types: double

IssueDate — Bond issue date
serial date number | date character vector

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a NINST-
by-1 vector using a serial date number or date character vector.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial date number | date character vector

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using a serial date number or date character vector.
Data Types: double | char

LastCouponDate — Irregular last coupon date
serial date number | date character vector

Irregular last coupon date, specified as the comma-separated pair consisting of 'LastCouponDate'
and a NINST-by-1 vector using a serial date number or date character vector.
Data Types: char | double

Face — Face value
100 (default) | nonnegative value | cell array of nonnegative values

Face value, specified as the comma-separated pair consisting of 'Face' and a NINST-by-1 vector of
nonnegative face values or a NINST-by-1 cell array, where each element is a NumDates-by-2 cell
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array. The first column of the NumDates-by-2 cell array is dates and the second column is the
associated face value. The date indicates the last day that the face value is valid.
Data Types: cell | double

CallStrike — Call strike price for European, Bermuda, or American option
nonnegative integer | vector of nonnegative integers

Call strike price for European, Bermuda, or American option, specified as the comma-separated pair
consisting of 'CallStrike' and one of the following values:

• For a European call option — NINST-by-1 vector of nonnegative integers
• For a Bermuda call option — NINST-by-NSTRIKES matrix of call strike price values, where each

row is the schedule for one call option. If a call option has fewer than NSTRIKES exercise
opportunities, the end of the row is padded with NaNs.

• For an American call option — NINST-by-1 vector of strike price values for each option.

Data Types: single | double

CallExDates — Call exercise date for European, Bermuda, or American option
serial date number | vector of serial date numbers | date character vector | cell array of date
character vectors

Call exercise date for European, Bermuda, or American option, specified as the comma-separated pair
consisting of 'CallExDates' and one of the following values:

• For a European option — NINST-by-1 vector of serial date numbers or date character vectors.
• For a Bermuda option — NINST-by-NSTRIKES matrix of exercise dates, where each row is the

schedule for one option. For a European option, there is only one CallExDate on the option
expiry date.

• For an American option — NINST-by-1 or NINST-by-2 matrix of exercise date boundaries. For each
instrument, the call option can be exercised on any tree date between or including the pair of
dates on that row. If CallExDates is NINST-by-1, the option can be exercised between the
ValuationDate of the CRR stock tree and the single listed CallExDate.

Data Types: char | cell | double

AmericanCall — Call option type indicator
0 if AmericanCall is NaN or not entered (default) | scalar | vector of positive integers[0,1]

Call option type, specified as the comma-separated pair consisting of 'AmericanCall' and a NINST-
by-1 vector of positive integer flags with values 0 or 1.

• For a European or Bermuda option — AmericanCall is 0 for each European or Bermuda option.
• For an American option — AmericanCall is 1 for each American option. The AmericanCall

argument is required to invoke American exercise rules.

Data Types: single | double

PutStrike — Put strike values for European, Bermuda, or American option
positive integer | vector of positive integers

Put strike values for European, Bermuda, or American option, specified as the comma-separated pair
consisting of 'PutStrike' and one of the following values:
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• For a European put option — NINST-by-1 vector of nonnegative integers
• For a Bermuda put option — NINST-by-NSTRIKES matrix of strike price values where each row is

the schedule for one option. If a put option has fewer than NSTRIKES exercise opportunities, the
end of the row is padded with NaNs.

• For an American put option — NINST-by-1 vector of strike price values for each option.

Data Types: single | double

PutExDates — Put exercise date for European, Bermuda, or American option
serial date number | vector of serial date numbers | date character vector | cell array of date
character vectors

Put exercise date for European, Bermuda, or American option, specified as the comma-separated pair
consisting of 'PutExDates' and one of the following values:

• For a European option — NINST-by-1 vector of serial date numbers or date character vectors.
• For a Bermuda option — NINST-by-NSTRIKES matrix of exercise dates where each row is the

schedule for one option. For a European option, there is only one PutExDate on the option expiry
date.

• For an American option — NINST-by-1 or NINST-by-2 matrix of exercise date boundaries. For each
instrument, the put option can be exercised on any tree date between or including the pair of
dates on that row. If PutExDates is NINST-by-1, the put option can be exercised between the
ValuationDate of the CRR stock tree and the single listed PutExDate.

Data Types: double | char | cell

AmericanPut — Put option type indicator
0 if AmericanPut is NaN or not entered (default) | positive integer [0,1] | vector of positive integers
[0,1]

Put option type, specified as the comma-separated pair consisting of 'AmericanPut' and a NINST-
by-1 vector of positive integer flags with values 0 or 1.

• For a European or Bermuda option — AmericanPut is 0 for each European or Bermuda option.
• For an American option — AmericanPut is 1 for each American option. The AmericanPut

argument is required to invoke American exercise rules.

Data Types: single | double

ConvDates — Convertible dates
MaturityDate (default) | serial date number | date character vector

Convertible dates, specified as the comma-separated pair consisting of 'ConvDates' and a NINST-
by-1 or NINST-by-2 matrix of serial date numbers or date character vectors. If ConvDates is not
specified, the bond is always convertible until maturity.

For each instrument, the bond can be converted on any tree date between or including the pair of
dates on that row.

If ConvDates is NINST-by-1, the bond can be converted between the ValuationDate of the CRR
stock tree and the single listed ConvDates.
Data Types: char | single | double
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DefaultProbability — Annual probability of default rate
0 (default) | nonnegative decimal

Annual probability of default rate, specified as the comma-separated pair consisting of
'DefaultProbability' and a NINST-by-1 nonnegative decimal value.

Note To incorporate default risk into the algorithm, specify the optional input arguments
DefaultProbability and RecoveryRate. To incorporate the risk in the form of credit spread
(Tsiveriotis-Fernandes method), use the optional input argument Spread. Do not use
DefaultProbability and RecoveryRate with Spread.

Data Types: single | double

RecoveryRate — Recovery rate
1 (default) | nonnegative decimal

Recovery rate, specified as the comma-separated pair consisting of 'RecoveryRate' and a NINST-
by-1 nonnegative decimal.

Note To incorporate default risk into the algorithm, specify the optional input arguments
DefaultProbability and RecoveryRate. To incorporate the risk in the form of credit spread
(Tsiveriotis-Fernandes method), use the optional input argument Spread. Do not use
DefaultProbability and RecoveryRate with Spread.

Data Types: single | double

Output Arguments
Price — Expected price at time 0
array

Expected price at time 0, returned as an NINST-by-1 array.

PriceTree — Structure with vector of convertible bond prices at each node
tree structure

Structure with a vector of convertible bond prices at each node, returned as a tree structure.

EquityTree — Structure with vector of convertible bond equity component at each node
tree structure

Structure with a vector of convertible bond equity component at each node, returned as a tree
structure.

DebtTree — Structure with vector of convertible bond debt component at each node
tree structure

Structure with a vector of convertible bond debt component at each node, returned as a tree
structure.
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More About
Callable Convertible

A convertible bond that is callable by the issuer. The issuer of the bond forces conversion, removing
the advantage that conversion is at the discretion of the bondholder.

Upon call, the bondholder can either convert the bond or redeem at the call price. This option enables
the issuer to control the price of the convertible bond and, if necessary, refinance the debt with a new
cheaper one.

Puttable Convertible

A convertible bond with a put feature allows the bondholder to sell back the bond at a premium on a
specific date.

This option protects the holder against rising interest rates by reducing the year to maturity.

Algorithms
cbondbycrr, cbondbyeqp, cbondbyitt, and cbondbysttreturn price information in the form of a
price vector and a price tree. These functions implement the risk in the form of either a credit spread
or incorporating the risk of bond default. To incorporate the risk in the form of credit spread
(Tsiveriotis-Fernandes method), use the optional name-value pair argument Spread. To incorporate
default risk into the algorithm, specify the optional name-value pair arguments
DefaultProbability and RecoveryRate.

References
[1] Tsiveriotis, K., and C. Fernandes. “Valuing Convertible Bonds with Credit Risk.” Journal of Fixed

Income. Vol. 8, 1998, pp. 95–102.

[2] Hull, J. Options, Futures and Other Derivatives. Fourth Edition. Prentice Hall, 2000, pp. 646–649.

See Also
crrtree | cbondbyeqp | instcbond | intenvset | stockspec | instadd | instdisp | eqpprice
| crrsens | eqpsens

Topics
“Convertible Bond” on page 2-4

Introduced in R2015a
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cbondbyeqp
Price convertible bonds from EQP binomial tree

Syntax
Price = cbondbyeqp(EQPTree,CouponRate,Settle,Maturity,ConvRatio)
[Price,PriceTree] = cbondbyeqp(EQPTree,CouponRate,Settle,Maturity,ConvRatio)
[Price,PriceTree,EquityTree,DebtTree] = cbondbyeqp( ___ ,Name,Value)

Description
Price = cbondbyeqp(EQPTree,CouponRate,Settle,Maturity,ConvRatio) prices
convertible bonds from an EQP binomial tree using the Tsiveriotis and Fernandes method.

[Price,PriceTree] = cbondbyeqp(EQPTree,CouponRate,Settle,Maturity,ConvRatio)
prices convertible bonds from an EQP binomial tree using the Tsiveriotis and Fernandes method.

[Price,PriceTree,EquityTree,DebtTree] = cbondbyeqp( ___ ,Name,Value) prices
convertible bonds from an EQP binomial tree using a credit spread or incorporating the risk of bond
default.

To incorporate the risk in the form of credit spread (Tsiveriotis-Fernandes method), use the optional
name-value pair input argument Spread. To incorporate default risk into the algorithm, specify the
optional name-value pair input arguments DefaultProbability and RecoveryRate.

Examples

Price Convertible Bond Using an EQP Tree

Create the interest-rate term structure RateSpec.

StartDates = 'Jan-1-2014'; 
EndDates = 'Jan-1-2016'; 
Rates = 0.025; 
Basis = 1; 
RateSpec = intenvset('ValuationDate',StartDates,'StartDates',StartDates,'EndDates',EndDates,...
'Rates',Rates,'Compounding',-1,'Basis',Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9512
            Rates: 0.0250
         EndTimes: 2
       StartTimes: 0
         EndDates: 736330
       StartDates: 735600
    ValuationDate: 735600
            Basis: 1
     EndMonthRule: 1
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Create the StockSpec.

AssetPrice = 110; 
Sigma = 0.22; 
Div = 0.02; 
StockSpec = stockspec(Sigma,AssetPrice,'continuous',Div)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2200
         AssetPrice: 110
       DividendType: {'continuous'}
    DividendAmounts: 0.0200
    ExDividendDates: []

Create the EQP tree for the equity.

NumSteps = 6;
TimeSpec = eqptimespec(StartDates,EndDates,NumSteps);
EQPTree = eqptree(StockSpec,RateSpec,TimeSpec)

EQPTree = struct with fields:
       FinObj: 'BinStockTree'
       Method: 'EQP'
    StockSpec: [1x1 struct]
     TimeSpec: [1x1 struct]
     RateSpec: [1x1 struct]
         tObs: [0 0.3333 0.6667 1 1.3333 1.6667 2]
         dObs: [735600 735721 735843 735965 736086 736208 736330]
        STree: {1x7 cell}
      UpProbs: [0.5000 0.5000 0.5000 0.5000 0.5000 0.5000]

Define the convertible bond. The convertible bond can be called starting on Jan 1, 2015 with a strike
price of 125.

Settle = 'Jan-1-2014'; 
Maturity = 'Jan-1-2016'; 
CouponRate = 0.03;
CallStrike = 125; 
Period = 1;
CallExDates = [datenum('Jan-1-2015') datenum('Jan-1-2016')];
ConvRatio = 1.5;

Price the convertible bond.

Spread = 0.045;

[Price,PriceTree,EqtTre,DbtTree] = cbondbyeqp(EQPTree,CouponRate,Settle,...
Maturity,ConvRatio,'Period',Period,'Spread',Spread,'CallExDates',...
CallExDates,'CallStrike',CallStrike,'AmericanCall',1)

Price = 165

PriceTree = struct with fields:
    FinObj: 'BinPriceTree'
     PTree: {1x7 cell}
      tObs: [0 0.3333 0.6667 1 1.3333 1.6667 2]
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      dObs: [735600 735721 735843 735965 736086 736208 736330]

EqtTre = struct with fields:
    FinObj: 'BinPriceTree'
     PTree: {1x7 cell}
      tObs: [0 0.3333 0.6667 1 1.3333 1.6667 2]
      dObs: [735600 735721 735843 735965 736086 736208 736330]

DbtTree = struct with fields:
    FinObj: 'BinPriceTree'
     PTree: {1x7 cell}
      tObs: [0 0.3333 0.6667 1 1.3333 1.6667 2]
      dObs: [735600 735721 735843 735965 736086 736208 736330]

Price a Convertible Bond Using an EQP Tree and Incorporate Default Risk Using
DefaultProbability and RecoveryRate

Create the interest-rate term structure RateSpec.

StartDates = 'Jan-1-2014'; 
EndDates = 'Jan-1-2016'; 
Rates = 0.025; 
Basis = 1; 
RateSpec = intenvset('ValuationDate',StartDates,'StartDates',...
StartDates,'EndDates',EndDates,'Rates',Rates,'Compounding',-1,'Basis',Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9512
            Rates: 0.0250
         EndTimes: 2
       StartTimes: 0
         EndDates: 736330
       StartDates: 735600
    ValuationDate: 735600
            Basis: 1
     EndMonthRule: 1

Create the StockSpec.

AssetPrice = 110; 
Sigma = 0.22; 
Div = 0.02; 
StockSpec = stockspec(Sigma,AssetPrice,'continuous',Div)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2200
         AssetPrice: 110
       DividendType: {'continuous'}
    DividendAmounts: 0.0200
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    ExDividendDates: []

Create the EQP tree for the equity.

NumSteps = 6;
TimeSpec = eqptimespec(StartDates,EndDates,NumSteps);
EQPTree = eqptree(StockSpec,RateSpec,TimeSpec)

EQPTree = struct with fields:
       FinObj: 'BinStockTree'
       Method: 'EQP'
    StockSpec: [1x1 struct]
     TimeSpec: [1x1 struct]
     RateSpec: [1x1 struct]
         tObs: [0 0.3333 0.6667 1 1.3333 1.6667 2]
         dObs: [735600 735721 735843 735965 736086 736208 736330]
        STree: {1x7 cell}
      UpProbs: [0.5000 0.5000 0.5000 0.5000 0.5000 0.5000]

Define and price the convertible bond using the optional DefaultProbability and RecoveryRate
arguments.

Settle = 'Jan-1-2014';
Maturity = 'Jan-1-2016';
CouponRate = 0.03;
CallStrike = 125;
Period = 1;
CallExDates = [datenum('Jan-1-2015') datenum('Jan-1-2016')];
ConvRatio = 1.5;
DefaultProbability = .30;
RecoveryRate = .82;

[Price,PriceTree,EqtTre,DbtTree] = cbondbyeqp(EQPTree,CouponRate,Settle,...
Maturity,ConvRatio,'Period',Period,'CallExDates',...
CallExDates,'CallStrike',CallStrike,'AmericanCall',1,...
'DefaultProbability',DefaultProbability,'RecoveryRate',RecoveryRate)

Price = 165

PriceTree = struct with fields:
    FinObj: 'BinPriceTree'
     PTree: {1x7 cell}
      tObs: [0 0.3333 0.6667 1 1.3333 1.6667 2]
      dObs: [735600 735721 735843 735965 736086 736208 736330]

EqtTre = struct with fields:
    FinObj: 'BinPriceTree'
     PTree: {1x7 cell}
      tObs: [0 0.3333 0.6667 1 1.3333 1.6667 2]
      dObs: [735600 735721 735843 735965 736086 736208 736330]

DbtTree = struct with fields:
    FinObj: 'BinPriceTree'
     PTree: {1x7 cell}
      tObs: [0 0.3333 0.6667 1 1.3333 1.6667 2]
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      dObs: [735600 735721 735843 735965 736086 736208 736330]

Input Arguments
EQPTree — Stock tree structure
structure

Stock tree structure, specified by using eqptree.
Data Types: struct

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell array, where
each element is a NumDates-by-2 cell array. The first column of the NumDates-by-2 cell array is dates
and the second column is associated rates. The date indicates the last day that the coupon rate is
valid.
Data Types: double | cell

Settle — Settlement date
serial date number | date character vector

Settlement date, specified as an NINST-by-1 scalar using a serial date number or date character
vector.

Note The Settle date for every convertible bond is set to the ValuationDate of the EQP stock
tree. The bond argument, Settle, is ignored.

Data Types: double | char

Maturity — Maturity date
serial date number | date character vector

Maturity date, specified as an NINST-by-1 scalar using a serial date number or date character vector.
Data Types: double | char

ConvRatio — Number of shares convertible to one bond
nonnegative number

Number of shares convertible to one bond, specified as an NINST-by-1 with a nonnegative number.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
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Example: [Price,PriceTree,EquityTree,DebtTree] =
cbondbyeqp(EQPT,CouponRate,Settle, Maturity,
ConvRatio,'Spread',Spread,'CallExDates',CallExDates,
'CallStrike',CallStrike,'AmericanCall',1)

Spread — Number of basis points over the reference rate
0 (default) | vector

Number of basis points over the reference rate, specified as the comma-separated pair consisting of
'Spread' and a NINST-by-1 vector.

Note To incorporate the risk in the form of credit spread (Tsiveriotis-Fernandes method), use the
optional input argument Spread. To incorporate default risk into the algorithm, specify the optional
input arguments DefaultProbability and RecoveryRate. Do not use Spread with
DefaultProbability and RecoveryRate.

Data Types: double

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a NINST-by-1
vector.
Data Types: double

IssueDate — Bond issue date
serial date number | date character vector

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a NINST-
by-1 vector using a serial date number or date character vector.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial date number | date character vector

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using a serial date number or date character vector.
Data Types: char | double

LastCouponDate — Irregular last coupon date
serial date number | date character vector

Irregular last coupon date, specified as the comma-separated pair consisting of 'LastCouponDate'
and a NINST-by-1 vector using a serial date number or date character vector.
Data Types: double | char

Face — Face value
100 (default) | nonnegative value | cell array of nonnegative values

Face value, specified as the comma-separated pair consisting of 'Face' and a NINST-by-1 vector of
nonnegative face values or an NINST-by-1 cell array where each element is a NumDates-by-2 cell
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array. The first column of the NumDates-by-2 cell array is dates and the second column is the
associated face value. The date indicates the last day that the face value is valid.
Data Types: cell | double

CallStrike — Call strike price for European, Bermuda, or American option
nonnegative integer | vector of nonnegative integers

Call strike price for European, Bermuda, or American option, specified as the comma-separated pair
consisting of 'CallStrike' and one of the following values:

• For a European call option — NINST-by-1 vector of nonnegative integers
• For a Bermuda call option — NINST-by-NSTRIKES matrix of strike price values, where each row is

the schedule for one call option. If an option has fewer than NSTRIKES exercise opportunities, the
end of the row is padded with NaNs.

• For an American call option — NINST-by-1 vector of strike price values for each call option.

Data Types: single | double

CallExDates — Call exercise date for European, Bermuda, or American option
serial date number | vector of serial date numbers | date character vector | cell array of date
character vectors

Call exercise date for European, Bermuda, or American option, specified as the comma-separated pair
consisting of 'CallExDates' and one of the following values:

• For a European option — NINST-by-1 vector of serial date numbers or date character vectors.
• For a Bermuda option — NINST-by-NSTRIKES matrix of exercise dates, where each row is the

schedule for one call option. For a European option, there is only one CallExDate on the option
expiry date.

• For an American option — NINST-by-1 or NINST-by-2 matrix of exercise date boundaries. For each
instrument, the call option can be exercised on any tree date between or including the pair of
dates on that row. If CallExDates is NINST-by-1, the call option can be exercised between the
ValuationDate of the EQP stock tree and the single listed CallExDate.

Data Types: double | char | cell

AmericanCall — Call option type indicator
0 if AmericanCall is NaN or not entered (default) | scalar | vector of positive integers[0,1]

Call option type, specified as the comma-separated pair consisting of 'AmericanCall' and a NINST-
by-1 vector with positive integer flags with values 0 or 1.

• For a European or Bermuda option — AmericanCall is 0 for each European or Bermuda option.
• For an American option — AmericanCall is 1 for each American option. The AmericanCall

argument is required to invoke American exercise rules.

Data Types: single | double

PutStrike — Put strike values for European, Bermuda, or American option
positive integer | vector of positive integers

Put strike values for European, Bermuda, or American option, specified as the comma-separated pair
consisting of 'PutStrike' and one of the following values:
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• For a European put option — NINST-by-1 vector of nonnegative integers
• For a Bermuda put option — NINST-by-NSTRIKES matrix of put strike price values, where each

row is the schedule for one put option. If a put option has fewer than NSTRIKES exercise
opportunities, the end of the row is padded with NaNs.

• For an American put option — NINST-by-1 vector of strike price values for each put option.

Data Types: single | double

PutExDates — Put exercise date for European, Bermuda, or American option
serial date number | vector of serial date numbers | date character vector | cell array of date
character vectors

Put exercise date for European, Bermuda, or American option, specified as the comma-separated pair
consisting of 'PutExDates' and one of the following values:

• For a European option — NINST-by-1 vector of serial date numbers or date character vectors.
• For a Bermuda option — NINST-by-NSTRIKES matrix of exercise dates, where each row is the

schedule for one put option. For a European option, there is only one PutExDate on the option
expiry date.

• For an American option — NINST-by-1 or NINST-by-2 matrix of exercise date boundaries. For each
instrument, the put option can be exercised on any tree date between or including the pair of
dates on that row. If PutExDates is NINST-by-1, the put option can be exercised between the
ValuationDate of the EQP stock tree and the single listed PutExDate.

Data Types: double | char | cell

AmericanPut — Put option type indicator
0 if AmericanPut is NaN or not entered (default) | positive integer [0,1] | vector of positive integers
[0,1]

Put option type, specified as the comma-separated pair consisting of 'AmericanPut' and a NINST-
by-1 vector of positive integer flags with values 0 or 1.

• For a European or Bermuda option — AmericanPut is 0 for each European or Bermuda option.
• For an American option — AmericanPut is 1 for each American option. The AmericanPut

argument is required to invoke American exercise rules.

Data Types: single | double

ConvDates — Convertible dates
MaturityDate (default) | serial date number | date character vector

Convertible dates, specified as the comma-separated pair consisting of 'ConvDates' and a NINST-
by-1 or NINST-by-2 matrix of serial date numbers or date character vectors. If ConvDates is not
specified, the bond is always convertible until maturity.

For each instrument, the bond can be converted on any tree date between or including the pair of
dates on that row.

If ConvDates is NINST-by-1, the bond can be converted between the ValuationDate of the EQP
stock tree and the single listed ConvDates.
Data Types: char | single | double
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DefaultProbability — Annual probability of default rate
0 (default) | nonnegative decimal

Annual probability of default rate, specified as the comma-separated pair consisting of
'DefaultProbability' and a NINST-by-1 nonnegative decimal value.

Note To incorporate default risk into the algorithm, specify the optional input arguments
DefaultProbability and RecoveryRate. To incorporate the risk in the form of credit spread
(Tsiveriotis-Fernandes method), use the optional input argument Spread. Do not use
DefaultProbability and RecoveryRate with Spread.

Data Types: single | double

RecoveryRate — Recovery rate
1 (default) | nonnegative decimal

Recovery rate, specified as the comma-separated pair consisting of 'RecoveryRate' and a NINST-
by-1 nonnegative decimal value.

Note To incorporate default risk into the algorithm, specify the optional input arguments
DefaultProbability and RecoveryRate. To incorporate the risk in the form of credit spread
(Tsiveriotis-Fernandes method), use the optional input argument Spread. Do not use
DefaultProbability and RecoveryRate with Spread.

Data Types: single | double

Output Arguments
Price — Expected price at time 0
array

Expected price at time 0, returned as an NINST-by-1 array.

PriceTree — Structure with vector of convertible bond prices at each node
tree structure

Structure with a vector of convertible bond prices at each node, returned as a tree structure.

EquityTree — Structure with vector of convertible bond equity component at each node
tree structure

Structure with a vector of convertible bond equity component at each node, returned as a tree
structure.

DebtTree — Structure with vector of convertible bond debt component at each node
tree structure

Structure with a vector of convertible bond debt component at each node, returned as a tree
structure.
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More About
Callable Convertible

A convertible bond that is callable by the issuer. The issuer of the bond forces conversion, removing
the advantage that conversion is at the discretion of the bondholder.

Upon call, the bondholder can either convert the bond or redeem at the call price. This option enables
the issuer to control the price of the convertible bond and, if necessary, refinance the debt with a new
cheaper one.

Puttable Convertible

A convertible bond with a put feature allows the bondholder to sell back the bond at a premium on a
specific date.

This option protects the holder against rising interest rates by reducing the year to maturity.

Algorithms
cbondbycrr, cbondbyeqp, cbondbyitt, and cbondbysttreturn price information in the form of a
price vector and a price tree. These functions implement the risk in the form of either a credit spread
or incorporating the risk of bond default. To incorporate the risk in the form of credit spread
(Tsiveriotis-Fernandes method), use the optional name-value pair argument Spread. To incorporate
default risk into the algorithm, specify the optional name-value pair arguments
DefaultProbability and RecoveryRate.

References
[1] Tsiveriotis, K., and C. Fernandes. “Valuing Convertible Bonds with Credit Risk.” Journal of Fixed

Income. Vol. 8, 1998, pp. 95–102.

[2] Hull, J. Options, Futures and Other Derivatives. Fourth Edition. Prentice Hall, 2000, pp. 646–649.

See Also
eqptree | cbondbycrr | instcbond | intenvset | stockspec | instadd | instdisp | eqpprice
| crrsens | eqpsens

Topics
“Convertible Bond” on page 2-4

Introduced in R2015a
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cbondbyitt
Price convertible bonds from ITT trinomial tree

Syntax
Price = cbondbyitt(ITTTree,CouponRate,Settle,Maturity,ConvRatio)
[Price,PriceTree] = cbondbyitt(ITTTree,CouponRate,Settle,Maturity,ConvRatio)
[Price,PriceTree,EquityTree,DebtTree] = cbondbyitt( ___ ,Name,Value)

Description
Price = cbondbyitt(ITTTree,CouponRate,Settle,Maturity,ConvRatio) prices
convertible bonds from an ITT trinomial tree using the Tsiveriotis and Fernandes method.

[Price,PriceTree] = cbondbyitt(ITTTree,CouponRate,Settle,Maturity,ConvRatio)
prices convertible bonds from an ITT trinomial tree using the Tsiveriotis and Fernandes method.

[Price,PriceTree,EquityTree,DebtTree] = cbondbyitt( ___ ,Name,Value) prices
convertible bonds from an ITT trinomial tree using a credit spread or incorporating the risk of bond
default.

To incorporate the risk in the form of credit spread (Tsiveriotis-Fernandes method), use the optional
name-value pair input argument Spread. To incorporate default risk into the algorithm, specify the
optional name-value pair input arguments DefaultProbability and RecoveryRate.

Examples

Price a Convertible Bond Using an ITT Tree

Price a convertible bond using the following data for an ITTTree from deriv.mat:

load deriv.mat

Use cbondbyitt to price a convertible bond using an ITT trinomial tree.

CouponRate = 0.05;
Settle = 'Jan-1-2006'; 
Maturity = 'Jan-1-2008'; 
Period = 1;
CallStrike = 65; 
CallExDates = 'Jan-1-2007';
ConvRatio = 1;
Spread = 0.015;

[Price,PriceTree,EqtTre,DbtTree] = cbondbyitt(ITTTree,CouponRate,Settle,Maturity,ConvRatio,...
'Period',Period,'Spread',Spread,'CallExDates',CallExDates,'CallStrike',CallStrike,'AmericanCall',1)

Price = 58.9170

PriceTree = struct with fields:
    FinObj: 'TrinPriceTree'
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     PTree: {1x5 cell}
      tObs: [0 1 2 3 4]
      dObs: [732678 733043 733408 733773 734139]

EqtTre = struct with fields:
    FinObj: 'TrinPriceTree'
     PTree: {[28.0629]  [66.3448 0 0]  [0 0 0 0 0]  [0 0 0 0 0 0 0]  [0 0 0 0 0 ... ]}
      tObs: [0 1 2 3 4]
      dObs: [732678 733043 733408 733773 734139]

DbtTree = struct with fields:
    FinObj: 'TrinPriceTree'
     PTree: {[30.8540]  [0 65 65]  [105 105 105 105 105]  [0 0 0 0 0 0 0]  [0 0 ... ]}
      tObs: [0 1 2 3 4]
      dObs: [732678 733043 733408 733773 734139]

Price a Convertible Bond Using an ITT Tree and Incorporate Default Risk Using
DefaultProbability and RecoveryRate

Price a convertible bond using the following data for an ITTTree from deriv.mat.

load deriv.mat

Use cbondbyitt to price a convertible bond using an ITT trinomial tree with the optional
DefaultProbability and RecoveryRate arguments.

CouponRate = 0.05;
Settle = 'Jan-1-2006';
Maturity = 'Jan-1-2008';
Period = 1;
CallStrike = 65;
CallExDates = 'Jan-1-2007';
ConvRatio = 1;
DefaultProbability = .30;
RecoveryRate = .82;

[Price,PriceTree,EqtTre,DbtTree] = cbondbyitt(ITTTree,CouponRate,Settle,Maturity,ConvRatio,...
'Period',Period,'CallExDates',CallExDates,'CallStrike',CallStrike,'AmericanCall',1,...
'DefaultProbability',DefaultProbability,'RecoveryRate',RecoveryRate)

Price = 50.6487

PriceTree = struct with fields:
    FinObj: 'TrinPriceTree'
     PTree: {1x5 cell}
      tObs: [0 1 2 3 4]
      dObs: [732678 733043 733408 733773 734139]

EqtTre = struct with fields:
    FinObj: 'TrinPriceTree'
     PTree: {[20.7895]  [66.3448 0 0]  [0 0 0 0 0]  [0 0 0 0 0 0 0]  [0 0 0 0 0 ... ]}
      tObs: [0 1 2 3 4]
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      dObs: [732678 733043 733408 733773 734139]

DbtTree = struct with fields:
    FinObj: 'TrinPriceTree'
     PTree: {[29.8591]  [0 65 65]  [105 105 105 105 105]  [0 0 0 0 0 0 0]  [0 0 ... ]}
      tObs: [0 1 2 3 4]
      dObs: [732678 733043 733408 733773 734139]

Input Arguments
ITTTree — Stock tree structure
structure

Stock tree structure, specified by using itttree.
Data Types: struct

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell array, where
each element is a NumDates-by-2 cell array. The first column of the NumDates-by-2 cell array is dates
and the second column is associated rates. The date indicates the last day that the coupon rate is
valid.
Data Types: double | cell

Settle — Settlement date
scalar for serial nonnegative date number | scalar for date character vector

Settlement date, specified as an NINST-by-1 scalar using a serial nonnegative date number or date
character vector.

Note The Settle date for every convertible bond is set to the ValuationDate of the standard
trinomial (STT) stock tree. The bond argument, Settle, is ignored.

Data Types: double | char

Maturity — Maturity date
scalar for serial nonnegative date number | scalar for date character vector

Maturity date, specified as an NINST-by-1 scalar using a serial nonnegative date number or date
character vector.
Data Types: double | char

ConvRatio — Number of shares convertible to one bond
nonnegative number

Number of shares convertible to one bond, specified as an NINST-by-1 with a nonnegative number.
Data Types: double
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree,EquityTree,DebtTree] =
cbondbyitt(ITTTree,CouponRate,Settle, Maturity,
ConvRatio,'Spread',Spread,'CallExDates',CallExDates,'CallStrike',CallStrike,'
AmericanCall',1)

Spread — Number of basis points over the reference rate
0 (default) | vector

Number of basis points over the reference rate, specified as the comma-separated pair consisting of
'Spread' and a NINST-by-1 vector.

Note To incorporate the risk in the form of credit spread (Tsiveriotis-Fernandes method), use the
optional input argument Spread. To incorporate default risk into the algorithm, specify the optional
input arguments DefaultProbability and RecoveryRate. Do not use Spread with
DefaultProbability and RecoveryRate.

Data Types: double

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a NINST-by-1
vector.
Data Types: double

IssueDate — Bond issue date
serial date number | date character vector

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a NINST-
by-1 vector using a serial date number or date character vector.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial date number | date character vector

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using a serial date number or date character vector.
Data Types: double | char

LastCouponDate — Irregular last coupon date
serial date number | date character vector

Irregular last coupon date, specified as the comma-separated pair consisting of 'LastCouponDate'
and a NINST-by-1 vector using a serial date number or date character vector.
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Data Types: double | char

Face — Face value
100 (default) | nonnegative value | cell array of nonnegative values

Face value, specified as the comma-separated pair consisting of 'Face' and a NINST-by-1 vector of
nonnegative face values or a NINST-by-1 cell array, where each element is a NumDates-by-2 cell
array. The first column of the NumDates-by-2 cell array is dates and the second column is the
associated face value. The date indicates the last day that the face value is valid.
Data Types: cell | double

CallStrike — Call strike price for European, Bermuda, or American option
nonnegative integer | vector of nonnegative integers

Call strike price for European, Bermuda, or American option, specified as the comma-separated pair
consisting of 'CallStrike' and one of the following values:

• For a European call option — NINST-by-1 vector of nonnegative integers.
• For a Bermuda call option — NINST-by-NSTRIKES matrix of call strike price values, where each

row is the schedule for one call option. If a call option has fewer than NSTRIKES exercise
opportunities, the end of the row is padded with NaNs.

• For an American call option — NINST-by-1 vector of strike price values for each option.

Data Types: single | double

CallExDates — Call exercise date for European, Bermuda, or American option
serial date number | vector of serial date numbers | date character vector | cell array of date
character vectors

Call exercise date for European, Bermuda, or American option, specified as the comma-separated pair
consisting of 'CallExDates' and one of the following values:

• For a European option — NINST-by-1 vector of serial date numbers or date character vectors.
• For a Bermuda option — NINST-by-NSTRIKES matrix of exercise dates, where each row is the

schedule for one option. For a European option, there is only one CallExDate on the option
expiry date.

• For an American option — NINST-by-1 or NINST-by-2 matrix of exercise date boundaries. For each
instrument, the call option can be exercised on any tree date between or including the pair of
dates on that row. If CallExDates is NINST-by-1, the option can be exercised between the
ValuationDate of the ITT stock tree and the single listed CallExDate.

Data Types: double | char | cell

AmericanCall — Call option type indicator
0 if AmericanCall is NaN or not entered (default) | positive integer [0,1] | vector of positive
integers [0,1]

Call option type, specified as the comma-separated pair consisting of 'AmericanCall' and a NINST-
by-1 vector of positive integer flags with values 0 or 1.

• For a European or Bermuda option — AmericanCall is 0 for each European or Bermuda option.
• For an American option — AmericanCall is 1 for each American option. The AmericanCall

argument is required to invoke American exercise rules.
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Data Types: single | double

PutStrike — Put strike values for European, Bermuda, or American option
positive integer | vector of positive integers

Put strike values for European, Bermuda, or American option, specified as the comma-separated pair
consisting of 'PutStrike' and one of the following values:

• For a European put option — NINST-by-1 vector of nonnegative integers.
• For a Bermuda put option — NINST-by-NSTRIKES matrix of strike price values where each row is

the schedule for one option. If a put option has fewer than NSTRIKES exercise opportunities, the
end of the row is padded with NaNs.

• For an American put option — NINST-by-1 vector of strike price values for each option.

Data Types: single | double

PutExDates — Put exercise date for European, Bermuda, or American option
serial date number | vector of serial date numbers | date character vector | cell array of date
character vectors

Put exercise date for European, Bermuda, or American option, specified as the comma-separated pair
consisting of 'PutExDates' and one of the following values:

• For a European option — NINST-by-1 vector of serial date numbers or date character vectors.
• For a Bermuda option — NINST-by-NSTRIKES matrix of exercise dates where each row is the

schedule for one option. For a European option, there is only one PutExDate on the option expiry
date.

• For an American option — NINST-by-1 or NINST-by-2 matrix of exercise date boundaries. For each
instrument, the put option can be exercised on any tree date between or including the pair of
dates on that row. If PutExDates is NINST-by-1, the put option can be exercised between the
ValuationDate of the ITT stock tree and the single listed PutExDate.

Data Types: double | char | cell

AmericanPut — Put option type indicator
0 if AmericanPut is NaN or not entered (default) | positive integer [0,1] | vector of positive integers
[0,1]

Put option type, specified as the comma-separated pair consisting of 'PutExDates' and a NINST-
by-1 vector of positive integer flags with values 0 or 1.

• For a European or Bermuda option — AmericanPut is 0 for each European or Bermuda option.
• For an American option — AmericanPut is 1 for each American option. The AmericanPut

argument is required to invoke American exercise rules.

Data Types: single | double

ConvDates — Convertible dates
MaturityDate (default) | serial date number | date character vector

Convertible dates, specified as the comma-separated pair consisting of 'ConvDates' and a NINST-
by-1 or NINST-by-2 matrix of serial date numbers or date character vectors. If ConvDates is not
specified, the bond is always convertible until maturity.
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For each instrument, the bond can be converted on any tree date between or including the pair of
dates on that row.

If ConvDates is NINST-by-1, the bond can be converted between the ValuationDate of the ITT
stock tree and the single listed ConvDates.
Data Types: char | single | double

DefaultProbability — Annual probability of default rate
0 (default) | nonnegative decimal

Annual probability of default rate, specified as the comma-separated pair consisting of
'DefaultProbability' and a NINST-by-1 nonnegative decimal value.

Note To incorporate default risk into the algorithm, specify the optional input arguments
DefaultProbability and RecoveryRate. To incorporate the risk in the form of credit spread
(Tsiveriotis-Fernandes method), use the optional input argument Spread. Do not use
DefaultProbability and RecoveryRate with Spread.

Data Types: single | double

RecoveryRate — Recovery rate
1 (default) | nonnegative decimal

Recovery rate, specified as the comma-separated pair consisting of 'RecoveryRate' and a NINST-
by-1 nonnegative decimal value.

Note To incorporate default risk into the algorithm, specify the optional input arguments
DefaultProbability and RecoveryRate. To incorporate the risk in the form of credit spread
(Tsiveriotis-Fernandes method), use the optional input argument Spread. Do not use
DefaultProbability and RecoveryRate with Spread.

Data Types: single | double

Output Arguments
Price — Expected price at time 0
array

Expected price at time 0, returned as an NINST-by-1 array.

PriceTree — Structure with vector of convertible bond prices at each node
tree structure

Structure with a vector of convertible bond prices at each node, returned as a tree structure.

EquityTree — Structure with vector of convertible bond equity component at each node
tree structure

Structure with a vector of convertible bond equity components at each node, returned as a tree
structure.
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DebtTree — Structure with vector of convertible bond debt component at each node
tree structure

Structure with a vector of convertible bond debt components at each node, returned as a tree
structure.

More About
Callable Convertible

A convertible bond that is callable by the issuer. The issuer of the bond forces conversion, removing
the advantage that conversion is at the discretion of the bondholder.

Upon call, the bondholder can either convert the bond or redeem at the call price. This option enables
the issuer to control the price of the convertible bond and, if necessary, refinance the debt with a new
cheaper bond.

Puttable Convertible

A convertible bond with a put feature allows the bondholder to sell back the bond at a premium on a
specific date.

This option protects the holder against rising interest rates by reducing the year to maturity.

Algorithms
cbondbycrr, cbondbyeqp, cbondbyitt, and cbondbysttreturn price information in the form of a
price vector and a price tree. These functions implement the risk in the form of either a credit spread
or incorporating the risk of bond default. To incorporate the risk in the form of credit spread
(Tsiveriotis-Fernandes method), use the optional name-value pair argument Spread. To incorporate
default risk into the algorithm, specify the optional name-value pair arguments
DefaultProbability and RecoveryRate.

References
[1] Tsiveriotis, K., and C. Fernandes. “Valuing Convertible Bonds with Credit Risk.” Journal of Fixed

Income. Vol 8, 1998, pp. 95–102.

[2] Hull, J. Options, Futures and Other Derivatives. Fourth Edition. Prentice Hall, 2000, pp. 646–649.

See Also
itttree | cbondbystt | instcbond | intenvset | stockspec | instadd | instdisp | ittprice
| ittsens

Topics
“Convertible Bond” on page 2-4

Introduced in R2015b
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cbondbystt
Price convertible bonds from standard trinomial tree

Syntax
Price = cbondbystt(STTTree,CouponRate,Settle,Maturity,ConvRatio)
[Price,PriceTree] = cbondbystt(STTTree,CouponRate,Settle,Maturity,ConvRatio)
[Price,PriceTree,EquityTree,DebtTree] = cbondbystt( ___ ,Name,Value)

Description
Price = cbondbystt(STTTree,CouponRate,Settle,Maturity,ConvRatio) prices
convertible bonds using a standard trinomial (STT) tree using the Tsiveriotis and Fernandes method.

[Price,PriceTree] = cbondbystt(STTTree,CouponRate,Settle,Maturity,ConvRatio)
prices convertible bonds using a standard trinomial (STT) tree using the Tsiveriotis and Fernandes
method.

[Price,PriceTree,EquityTree,DebtTree] = cbondbystt( ___ ,Name,Value) prices
convertible bonds from a standard trinomial (STT) tree using a credit spread or incorporating the risk
of bond default.

To incorporate the risk in the form of credit spread (Tsiveriotis-Fernandes method), use the optional
name-value pair input argument Spread. To incorporate default risk into the algorithm, specify the
optional name-value pair input arguments DefaultProbability and RecoveryRate.

Examples

Price a Convertible Bond Using a STTTree

Create a RateSpec.

StartDates = 'Jan-1-2015'; 
EndDates = 'Jan-1-2020'; 
Rates = 0.025; 
Basis = 1; 

RateSpec = intenvset('ValuationDate',StartDates,'StartDates',StartDates,...
'EndDates',EndDates,'Rates',Rates,'Compounding',-1,'Basis',Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.8825
            Rates: 0.0250
         EndTimes: 5
       StartTimes: 0
         EndDates: 737791
       StartDates: 735965
    ValuationDate: 735965
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            Basis: 1
     EndMonthRule: 1

Create a StockSpec.

AssetPrice = 80; 
Sigma = 0.12; 
StockSpec = stockspec(Sigma,AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1200
         AssetPrice: 80
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Create a STTTree.

TimeSpec = stttimespec(StartDates, EndDates, 20);
STTTree = stttree(StockSpec, RateSpec, TimeSpec)

STTTree = struct with fields:
       FinObj: 'STStockTree'
    StockSpec: [1x1 struct]
     TimeSpec: [1x1 struct]
     RateSpec: [1x1 struct]
         tObs: [0 0.2500 0.5000 0.7500 1 1.2500 1.5000 1.7500 2 2.2500 ... ]
         dObs: [735965 736056 736147 736238 736330 736421 736512 736604 ... ]
        STree: {1x21 cell}
        Probs: {1x20 cell}

Define the convertible bond. The convertible bond can be called starting on Jan 1, 2016 with a strike
price of 95.

CouponRate = 0.03;
Settle = 'Jan-1-2015'; 
Maturity = 'April-1-2018'; 
Period = 1;
CallStrike = 95; 
CallExDates = [datenum('Jan-1-2016') datenum('April-1-2018')];
ConvRatio = 1;
Spread = 0.025;

Price the convertible bond using the standard trinomial tree model.

[Price,PriceTree,EqtTre,DbtTree] = cbondbystt(STTTree,CouponRate,Settle,Maturity,ConvRatio,...
'Period',Period,'Spread',Spread,'CallExDates',CallExDates,'CallStrike',CallStrike,'AmericanCall',1)

Price = 90.2511

PriceTree = struct with fields:
    FinObj: 'TrinPriceTree'
     PTree: {1x21 cell}
      tObs: [0 0.2500 0.5000 0.7500 1 1.2500 1.5000 1.7500 2 2.2500 ... ]
      dObs: [735965 736056 736147 736238 736330 736421 736512 736604 ... ]
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EqtTre = struct with fields:
    FinObj: 'TrinPriceTree'
     PTree: {1x21 cell}
      tObs: [0 0.2500 0.5000 0.7500 1 1.2500 1.5000 1.7500 2 2.2500 ... ]
      dObs: [735965 736056 736147 736238 736330 736421 736512 736604 ... ]

DbtTree = struct with fields:
    FinObj: 'TrinPriceTree'
     PTree: {1x21 cell}
      tObs: [0 0.2500 0.5000 0.7500 1 1.2500 1.5000 1.7500 2 2.2500 ... ]
      dObs: [735965 736056 736147 736238 736330 736421 736512 736604 ... ]

Spread Effect Analysis for a Convertible Bond Using a STTTree

This example demonstrates the spread effect analysis of a 4% coupon convertible bond, callable at
110 at end of the second year, maturing in five years, with spreads of 0, 50, 100, and 150 BP.

Define the RateSpec.

StartDates = '1-Apr-2015';
EndDates = '1-Apr-2020';
Rates = 0.05;
Compounding = -1;
Basis = 1;
RateSpec = intenvset('StartDates',StartDates,'EndDates',EndDates,'Rates',Rates,...
'Compounding',Compounding,'Basis',Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.7788
            Rates: 0.0500
         EndTimes: 5
       StartTimes: 0
         EndDates: 737882
       StartDates: 736055
    ValuationDate: 736055
            Basis: 1
     EndMonthRule: 1

Define the convertible bond data.

Settle = '1-Apr-2015';
Maturity = '1-Apr-2020';
CouponRate = 0.04;
CallStrike = 110;
CallExDates = [datenum('1-Apr-2017') datenum(Maturity)];
ConvRatio = 1;
AmericanCall = 1;
Sigma = 0.3;
Spreads = 0:0.005:0.015;
Prices = 40:10:140;
convprice = zeros(length(Prices),length(Spreads));
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Define the TimeSpec for the Standard Trinomial Tree, create an STTTree using stttree, and price
the convertible bond using cbondbystt.

NumSteps = 200;
TimeSpec = stttimespec(StartDates, EndDates, NumSteps);

for PriceIdx = 1:length(Prices)
    StockSpec = stockspec(Sigma, Prices(PriceIdx));
    STTT = stttree(StockSpec, RateSpec, TimeSpec);
    convprice(PriceIdx,:) = cbondbystt(STTT,  CouponRate, Settle, Maturity, ConvRatio,...
    'Spread', Spreads(:),'CallExDates', CallExDates, 'CallStrike', CallStrike,...
    'AmericanCall', AmericanCall);
end

Plot the spread effect analysis for the convertible bond.

stock = repmat(Prices',1,length(Spreads));
plot(stock,convprice);
legend({'+0 bp'; '+50 bp'; '+100 bp'; '+150 bp'});
title ('Effect of Spread using Trinomial tree - 200 steps')
xlabel('Stock Price');
ylabel('Convertible Bond Price');
text(50, 150, ['Coupon 4% semiannual,', sprintf('\n'), ...
    '110 Call after 2 years,' sprintf('\n'), ...
    'maturing in 5 years.'],'fontweight','Bold')
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Price a Convertible Bond Using an STT Tree and Incorporate Default Risk Using
DefaultProbability and RecoveryRate

Create the interest-rate term structure RateSpec.

StartDates = 'Jan-1-2015';
EndDates = 'Jan-1-2020';
Rates = 0.025;
Basis = 1;

RateSpec = intenvset('ValuationDate',StartDates,'StartDates',StartDates,...
'EndDates',EndDates,'Rates',Rates,'Compounding',-1,'Basis',Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.8825
            Rates: 0.0250
         EndTimes: 5
       StartTimes: 0
         EndDates: 737791
       StartDates: 735965
    ValuationDate: 735965
            Basis: 1
     EndMonthRule: 1

Create the StockSpec.

AssetPrice = 80;
Sigma = 0.12;
StockSpec = stockspec(Sigma,AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1200
         AssetPrice: 80
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Create the STT tree for the equity.

TimeSpec = stttimespec(StartDates, EndDates, 20);
STTTree = stttree(StockSpec, RateSpec, TimeSpec)

STTTree = struct with fields:
       FinObj: 'STStockTree'
    StockSpec: [1x1 struct]
     TimeSpec: [1x1 struct]
     RateSpec: [1x1 struct]
         tObs: [0 0.2500 0.5000 0.7500 1 1.2500 1.5000 1.7500 2 2.2500 ... ]
         dObs: [735965 736056 736147 736238 736330 736421 736512 736604 ... ]
        STree: {1x21 cell}
        Probs: {1x20 cell}
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Define and price the convertible bond using the optional DefaultProbability and RecoveryRate
arguments.

CouponRate = 0.03;
Settle = 'Jan-1-2015';
Maturity = 'April-1-2018';
Period = 1;
CallStrike = 95;
CallExDates = [datenum('Jan-1-2016') datenum('April-1-2018')];
ConvRatio = 1;
DefaultProbability = .30;
RecoveryRate = .82;

[Price,PriceTree,EqtTre,DbtTree] = cbondbystt(STTTree,CouponRate,Settle,Maturity,ConvRatio,...
'Period',Period,'CallExDates',CallExDates,'CallStrike',CallStrike,'AmericanCall',1,...
'DefaultProbability',DefaultProbability,'RecoveryRate',RecoveryRate)

Price = 80

PriceTree = struct with fields:
    FinObj: 'TrinPriceTree'
     PTree: {1x21 cell}
      tObs: [0 0.2500 0.5000 0.7500 1 1.2500 1.5000 1.7500 2 2.2500 ... ]
      dObs: [735965 736056 736147 736238 736330 736421 736512 736604 ... ]

EqtTre = struct with fields:
    FinObj: 'TrinPriceTree'
     PTree: {1x21 cell}
      tObs: [0 0.2500 0.5000 0.7500 1 1.2500 1.5000 1.7500 2 2.2500 ... ]
      dObs: [735965 736056 736147 736238 736330 736421 736512 736604 ... ]

DbtTree = struct with fields:
    FinObj: 'TrinPriceTree'
     PTree: {1x21 cell}
      tObs: [0 0.2500 0.5000 0.7500 1 1.2500 1.5000 1.7500 2 2.2500 ... ]
      dObs: [735965 736056 736147 736238 736330 736421 736512 736604 ... ]

Input Arguments
STTTree — Stock tree structure for standard trinomial tree
structure

Stock tree structure for a standard trinomial tree, specified by using stttree.
Data Types: struct

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell array, where
each element is a NumDates-by-2 cell array. The first column of the NumDates-by-2 cell array is dates
and the second column is associated rates. The date indicates the last day that the coupon rate is
valid.
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Data Types: double | cell

Settle — Settlement date
scalar for serial nonnegative date number | scalar for date character vector

Settlement date, specified as an NINST-by-1 scalar using a serial nonnegative date number or date
character vector.

Note The Settle date for every convertible bond is set to the ValuationDate of the standard
trinomial (STT) stock tree. The bond argument, Settle, is ignored.

Data Types: double | char

Maturity — Maturity date
scalar for serial nonnegative date number | scalar for date character vector

Maturity date, specified as an NINST-by-1 scalar using a serial nonnegative date number or date
character vector.
Data Types: double | char

ConvRatio — Number of shares convertible to one bond
nonnegative number

Number of shares convertible to one bond, specified as an NINST-by-1 with a nonnegative number.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree,EquityTree,DebtTree] =
cbondbystt(STTTree,CouponRate,Settle,Maturity,ConvRatio,'Spread',Spread,'Call
ExDates',CallExDates,'CallStrike',CallStrike,'AmericanCall',1)

Spread — Number of basis points over the reference rate
0 (default) | vector

Number of basis points over the reference rate, specified as the comma-separated pair consisting of
'Spread' and a NINST-by-1 vector.

Note To incorporate the risk in the form of credit spread (Tsiveriotis-Fernandes method), use the
optional input argument Spread. To incorporate default risk into the algorithm, specify the optional
input arguments DefaultProbability and RecoveryRate. Do not use Spread with
DefaultProbability and RecoveryRate.

Data Types: double
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Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a NINST-by-1
vector.
Data Types: double

IssueDate — Bond issue date
serial date number | date character vector

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a NINST-
by-1 vector using a serial date number or date character vector.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial date number | date character vector

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 scalar using a serial date number or date character vector.
Data Types: double | char

LastCouponDate — Irregular last coupon date
serial date number | date character vector

Irregular last coupon date, specified as the comma-separated pair consisting of 'LastCouponDate'
and a NINST-by-1 using a serial date number or date character vector.
Data Types: double | char

Face — Face value
100 (default) | nonnegative value | cell array of nonnegative values

Face value, specified as the comma-separated pair consisting of 'Face' and a NINST-by-1 vector of
nonnegative face values or a NINST-by-1 cell array, where each element is a NumDates-by-2 cell
array. The first column of the NumDates-by-2 cell array is dates and the second column is the
associated face value. The date indicates the last day that the face value is valid.
Data Types: cell | double

CallStrike — Call strike price for European, Bermuda, or American option
nonnegative integer | vector of nonnegative integers

Call strike price for European, Bermuda, or American option, specified as the comma-separated pair
consisting of 'CallStrike' and one of the following values:

• For a European call option — NINST-by-1 vector of nonnegative integers
• For a Bermuda call option — NINST-by-NSTRIKES matrix of call strike price values, where each

row is the schedule for one call option. If a call option has fewer than NSTRIKES exercise
opportunities, the end of the row is padded with NaNs.

• For an American call option — NINST-by-1 vector of strike price values for each option.

Data Types: single | double
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CallExDates — Call exercise date for European, Bermuda, or American option
serial date number | vector of serial date numbers | date character vector | cell array of date
character vectors

Call exercise date for European, Bermuda, or American option, specified as the comma-separated pair
consisting of 'CallExDates' and one of the following values:

• For a European option — NINST-by-1 vector of serial date numbers or date character vectors.
• For a Bermuda option — NINST-by-NSTRIKES matrix of exercise dates, where each row is the

schedule for one option. For a European option, there is only one CallExDate on the option
expiry date.

• For an American option — NINST-by-1 or NINST-by-2 matrix of exercise date boundaries. For each
instrument, the call option can be exercised on any tree date between or including the pair of
dates on that row. If CallExDates is NINST-by-1, the option can be exercised between the
ValuationDate of the STT stock tree and the single listed CallExDate.

Data Types: double | char | cell

AmericanCall — Call option type indicator
0 if AmericanCall is NaN or not entered (default) | positive integer [0,1] | vector of positive
integers [0,1]

Call option type, specified as the comma-separated pair consisting of 'AmericanCall' and a NINST-
by-1 vector of positive integer flags with values 0 or 1.

• For a European or Bermuda option — AmericanCall is 0 for each European or Bermuda option.
• For an American option — AmericanCall is 1 for each American option. The AmericanCall

argument is required to invoke American exercise rules.

Data Types: single | double

PutStrike — Put strike values for European, Bermuda, or American option
positive integer | vector of positive integers

Put strike values for European, Bermuda, or American option, specified as the comma-separated pair
consisting of 'PutStrike' and one of the following values:

• For a European put option — NINST-by-1 vector of nonnegative integers.
• For a Bermuda put option — NINST-by-NSTRIKES matrix of strike price values where each row is

the schedule for one option. If a put option has fewer than NSTRIKES exercise opportunities, the
end of the row is padded with NaNs.

• For an American put option — NINST-by-1 vector of strike price values for each option.

Data Types: single | double

PutExDates — Put exercise date for European, Bermuda, or American option
serial date nonnegative number | vector of serial date numbers | date character vector | cell array of
date character vectors

Put exercise date for European, Bermuda, or American option, specified as the comma-separated pair
consisting of 'PutExDates' and one of the following values:

• For a European option — NINST-by-1 vector of serial date numbers or date character vectors.
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• For a Bermuda option — NINST-by-NSTRIKES matrix of exercise dates where each row is the
schedule for one option. For a European option, there is only one PutExDate on the option expiry
date.

• For an American option — NINST-by-1 or NINST-by-2 matrix of exercise date boundaries. For each
instrument, the put option can be exercised on any tree date between or including the pair of
dates on that row. If PutExDates is NINST-by-1, the put option can be exercised between the
ValuationDate of the STT stock tree and the single listed PutExDate.

Data Types: double | char | cell

AmericanPut — Put option type indicator
0 if AmericanPut is NaN or not entered (default) | positive integer [0,1] | vector of positive integers
[0,1]

Put option type, specified as the comma-separated pair consisting of 'AmericanPut' and a NINST-
by-1 vector of positive integer flags with values 0 or 1.

• For a European or Bermuda option — AmericanPut is 0 for each European or Bermuda option.
• For an American option — AmericanPut is 1 for each American option. The AmericanPut

argument is required to invoke American exercise rules.

Data Types: single | double

ConvDates — Convertible dates
MaturityDate (default) | serial date number | date character vector

Convertible dates, specified as the comma-separated pair consisting of 'ConvDates' and a NINST-
by-1 or NINST-by-2 matrix of serial date numbers or date character vectors. If ConvDates is not
specified, the bond is always convertible until maturity.

For each instrument, the bond can be converted on any tree date between or including the pair of
dates on that row.

If ConvDates is NINST-by-1, the bond can be converted between the ValuationDate of the
standard trinomial (STT) stock tree and the single listed ConvDates.
Data Types: single | double | char

DefaultProbability — Annual probability of default rate
0 (default) | nonnegative decimal

Annual probability of default rate, specified as the comma-separated pair consisting of
'DefaultProbability' and a NINST-by-1 nonnegative decimal value.

Note To incorporate default risk into the algorithm, specify the optional input arguments
DefaultProbability and RecoveryRate. To incorporate the risk in the form of credit spread
(Tsiveriotis-Fernandes method), use the optional input argument Spread. Do not use
DefaultProbability and RecoveryRate with Spread.

Data Types: single | double

RecoveryRate — Recovery rate
1 (default) | nonnegative decimal
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Recovery rate, specified as the comma-separated pair consisting of 'RecoveryRate' and a NINST-
by-1 nonnegative decimal value.

Note To incorporate default risk into the algorithm, specify the optional input arguments
DefaultProbability and RecoveryRate. To incorporate the risk in the form of credit spread
(Tsiveriotis-Fernandes method), use the optional input argument Spread. Do not use
DefaultProbability and RecoveryRate with Spread.

Data Types: single | double

Output Arguments
Price — Expected price at time 0
array

Expected price at time 0, returned as an NINST-by-1 array.

PriceTree — Structure with vector of convertible bond prices at each node
tree structure

Structure with a vector of convertible bond prices at each node, returned as a tree structure.

EquityTree — Structure with vector of convertible bond equity component at each node
tree structure

Structure with a vector of convertible bond equity components at each node, returned as a tree
structure.

DebtTree — Structure with vector of convertible bond debt component at each node
tree structure

Structure with a vector of convertible bond debt components at each node, returned as a tree
structure.

More About
Callable Convertible

A convertible bond that is callable by the issuer. The issuer of the bond forces conversion, removing
the advantage that conversion is at the discretion of the bondholder.

Upon call, the bondholder can either convert the bond or redeem at the call price. This option enables
the issuer to control the price of the convertible bond and, if necessary, refinance the debt with a new
cheaper bond.

Puttable Convertible

A convertible bond with a put feature allows the bondholder to sell back the bond at a premium on a
specific date.

This option protects the holder against rising interest rates by reducing the year to maturity.
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Algorithms
cbondbycrr, cbondbyeqp, cbondbyitt, and cbondbysttreturn price information in the form of a
price vector and a price tree. These functions implement the risk in the form of either a credit spread
or incorporating the risk of bond default. To incorporate the risk in the form of credit spread
(Tsiveriotis-Fernandes method), use the optional name-value pair argument Spread. To incorporate
default risk into the algorithm, specify the optional name-value pair arguments
DefaultProbability and RecoveryRate.

References
[1] Tsiveriotis, K., and C. Fernandes. “Valuing Convertible Bonds with Credit Risk.” Journal of Fixed

Income. Vol 8, 1998, pp. 95–102.

[2] Hull, J. Options, Futures and Other Derivatives. Fourth Edition. Prentice Hall, 2000, pp. 646–649.

See Also
stttree | cbondbyeqp | cbondbycrr | instcbond | intenvset | stockspec | instadd |
instdisp | sttprice | sttsens

Topics
“Convertible Bond” on page 2-4

Introduced in R2015b
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cfbybdt
Price cash flows from Black-Derman-Toy interest-rate tree

Syntax
[Price,PriceTree] = cfbybdt(BDTTree,CFlowAmounts,CFlowDates,Settle)
[Price,PriceTree] = cfbybdt( ___ ,Basis,Options)

Description
[Price,PriceTree] = cfbybdt(BDTTree,CFlowAmounts,CFlowDates,Settle) prices cash
flows from a Black-Derman-Toy interest-rate tree.

[Price,PriceTree] = cfbybdt( ___ ,Basis,Options) adds optional arguments.

Examples

Price a Portfolio Containing Two Cash Flow Instruments

Price a portfolio containing two cash flow instruments paying interest annually over the four-year
period from January 1, 2000 to January 1, 2004.

Load the file deriv.mat, which provides BDTTree. The BDTTree structure contains the time and
interest-rate information needed to price the instruments.

load deriv.mat;

The valuation date (settle date) specified in BDTTree is January 1, 2000 (date number 730486).

BDTTree.RateSpec.ValuationDate

ans = 730486

Provide values for the other required arguments.

CFlowAmounts =[5 NaN 5.5 105; 5 0 6 105];
CFlowDates = [730852, NaN, 731582, 731947; 
              730852, 731217, 731582, 731947];

Use this information to compute the prices of the two cash flow instruments.

[Price, PriceTree] = cfbybdt(BDTTree, CFlowAmounts, ... 
CFlowDates, BDTTree.RateSpec.ValuationDate)

Price = 2×1

   74.0112
   74.3671

PriceTree = struct with fields:
    FinObj: 'BDTPriceTree'
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      tObs: [0 1 2 3 4]
     PTree: {1x5 cell}

You can visualize the prices of the two cash flow instruments with the treeviewer function.

Input Arguments
BDTTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bdttree.
Data Types: struct

CFlowAmounts — Cash flow amounts
matrix

Cash flow amounts, specified as a Number of instruments (NINST) by maximum number of cash flows
(MOSTCFS) matrix of cash flow amounts. Each row is a list of cash flow values for one instrument. If
an instrument has fewer than MOSTCFS cash flows, the end of the row is padded with NaNs.
Data Types: double

CFlowDates — Cash flow dates
matrix

Cash flow dates, specified as NINST-by-MOSTCFS matrix. Each entry contains the serial date number
of the corresponding cash flow in CFlowAmounts.
Data Types: double

Settle — Settlement date
serial date number | date character vector

Settlement date, specified as a vector of serial date numbers or date character vectors. The Settle
date for every cash flow is set to the ValuationDate of the BDT tree. The cash flow argument,
Settle, is ignored.
Data Types: double | char

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis of the instrument, specified as a vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
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• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Options — Derivatives pricing options structure
structure

(Optional) Derivatives pricing options structure, specified using derivset.
Data Types: struct

Output Arguments
Price — Expected prices at time 0
vector

Expected prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing vectors of
instrument prices and observation times for each node. Within PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.

See Also
bdttree | bdtprice | cfamounts | instcf

Topics
“Computing Instrument Prices” on page 2-81
“Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-10
“Pricing Options Structure” on page A-2
“Understanding Interest-Rate Tree Models” on page 2-66
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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cfbybk
Price cash flows from Black-Karasinski interest-rate tree

Syntax
[Price,PriceTree] = cfbybk(BKTree,CFlowAmounts,CFlowDates,Settle)
[Price,PriceTree] = cfbybk( ___ ,Basis,Options)

Description
[Price,PriceTree] = cfbybk(BKTree,CFlowAmounts,CFlowDates,Settle) prices cash
flows from a Black-Karasinski interest-rate tree.

[Price,PriceTree] = cfbybk( ___ ,Basis,Options) adds optional arguments.

Examples

Price a Portfolio Containing Two Cash Flow Instruments

Price a portfolio containing two cash flow instruments paying interest annually over the four-year
period from January 1, 2005 to January 1, 2009.

Load the file deriv.mat, which provides BKTree. The BKTree structure contains the time and
interest-rate information needed to price the instruments.

load deriv.mat; 

The valuation date (settle date) specified in BKTree is January 1, 2004 (date number 731947).

BKTree.RateSpec.ValuationDate

ans =

      731947

Provide values for the other required arguments.

CFlowAmounts =[5 NaN 5.5 105; 5 0 6 105];
CFlowDates = [732678, NaN, 733408,733774; 
              732678, 733034, 733408, 734774];

Use this information to compute the prices of the two cash flow instruments.

[Price, PriceTree] = cfbybk(BKTree, CFlowAmounts, CFlowDates,... 
BKTree.RateSpec.ValuationDate)

Warning: Not all cash flows are aligned with the tree. Result will be approximated. 
> In cfbytrintree (line 88)
  In cfbybk (line 75) 

Price =
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   93.3600
   81.6218

PriceTree = 

  struct with fields:

     FinObj: 'BKPriceTree'
      PTree: {[2×1 double]  [2×3 double]  [2×5 double]  [2×5 double]  [2×5 double]}
       tObs: [0 1 2 3 4]
    Connect: {[2]  [2 3 4]  [2 2 3 4 4]}
      Probs: {[3×1 double]  [3×3 double]  [3×5 double]}

You can visualize the prices of the two cash flow instruments with the treeviewer function.

Input Arguments
BKTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bktree.
Data Types: struct

CFlowAmounts — Cash flow amounts
matrix

Cash flow amounts, specified as a Number of instruments (NINST) by maximum number of cash flows
(MOSTCFS) matrix of cash flow amounts. Each row is a list of cash flow values for one instrument. If
an instrument has fewer than MOSTCFS cash flows, the end of the row is padded with NaNs.
Data Types: double

CFlowDates — Cash flow dates
matrix

Cash flow dates, specified as NINST-by-MOSTCFS matrix. Each entry contains the serial date number
of the corresponding cash flow in CFlowAmounts.
Data Types: double

Settle — Settlement date
serial date number | date character vector

Settlement date, specified as a vector of serial date numbers or date character vectors. The Settle
date for every cash flow is set to the ValuationDate of the BK tree. The cash flow argument,
Settle, is ignored.
Data Types: double | char

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis of the instrument, specified as a vector of integers.
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• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Options — Derivatives pricing options structure
structure

(Optional) Derivatives pricing options structure, specified using derivset.
Data Types: struct

Output Arguments
Price — Expected prices at time 0
vector

Expected prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing vectors of
instrument prices and observation times for each node. Within PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell array describes

how nodes in that level connect to the next. For a given tree level, there are NumNodes elements
in the vector, and they contain the index of the node at the next level that the middle branch
connects to. Subtracting 1 from that value indicates where the up-branch connects to, and adding
1 indicated where the down branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array contains the
up, middle, and down transition probabilities for each node of the level.
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See Also
bktree | bkprice | cfamounts | instcf

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Pricing Options Structure” on page A-2
“Understanding Interest-Rate Tree Models” on page 2-66
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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cfbycir
Price cash flows from Cox-Ingersoll-Ross interest-rate tree

Syntax
[Price,PriceTree] = cfbycir(CIRTree,CFlowAmounts,CFlowDates,Settle)
[Price,PriceTree] = cfbycir( ___ ,Basis)

Description
[Price,PriceTree] = cfbycir(CIRTree,CFlowAmounts,CFlowDates,Settle) prices cash
flows from a Cox-Ingersoll-Ross (CIR) interest-rate tree using a CIR++ model with the Nawalka-
Beliaeva (NB) approach.

[Price,PriceTree] = cfbycir( ___ ,Basis) adds an optional argument for Basis.

Examples

Price a Portfolio Containing Two Cash Flow Instruments

Price a portfolio containing two cash flow instruments paying interest annually over the four-year
period from January 1, 2017 to June 1, 2020.

Load the file deriv.mat, which provides CIRTree. The CIRTree structure contains the time and
interest-rate information required to price the instruments.

load deriv.mat;

The valuation date (settle date) specified in the CIRTree is January 1, 2017 (serial date number
736696).

CIRTree.RateSpec.ValuationDate 

ans = 736696

Provide values for the other required arguments.

CFlowAmounts =[5 NaN 5.5 105; 5 0 6 105];
CFlowDates = [736847,NaN,737061,737212; 
              737426,737577,737791,737943];

Compute the prices of the two cash flow instruments using cfbycir.

[Price,PriceTree] = cfbycir(CIRTree, CFlowAmounts, CFlowDates,... 
CIRTree.RateSpec.ValuationDate)

Price = 2×1

  109.6845
   98.7246
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PriceTree = struct with fields:
     FinObj: 'CIRPriceTree'
      PTree: {1x5 cell}
       tObs: [0 1 2 3 4]
    Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
      Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

Input Arguments
CIRTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using cirtree.
Data Types: struct

CFlowAmounts — Cash flow amounts
matrix

Cash flow amounts, specified as a number of instruments (NINST) by maximum number of cash flows
(MOSTCFS) matrix of cash flow amounts. Each row is a list of cash flow values for one instrument. If
an instrument has fewer than MOSTCFS cash flows, the end of the row is padded with NaNs.
Data Types: double

CFlowDates — Cash flow dates
matrix

Cash flow dates, specified as NINST-by-MOSTCFS matrix. Each entry contains the serial date number
of the corresponding cash flow in CFlowAmounts.
Data Types: double

Settle — Settlement date
serial date number | date character vector | string array | datetime

Settlement date, specified as a vector of serial date numbers, date character vectors, string arrays, or
datetime arrays. The Settle date for every cash flow is set to the ValuationDate of the CIR tree.
The cash flow argument Settle is ignored.
Data Types: double | char | string | datetime

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis of the instrument, specified as a vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
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• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Output Arguments
Price — Expected prices at time 0
vector

Expected prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing vectors of
instrument prices and observation times for each node. Within PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell array describes

how nodes in that level connect to the next. For a given tree level, there are NumNodes elements
in the vector, and they contain the index of the node at the next level that the middle branch
connects to. Subtracting 1 from that value indicates where the up-branch connects to, and adding
1 indicated where the down branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array contains the
up, middle, and down transition probabilities for each node of the level.

References
[1] Cox, J., Ingersoll, J.,and S. Ross. "A Theory of the Term Structure of Interest Rates." Econometrica.

Vol. 53, 1985.

[2] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer Finance, 2006.

[3] Hirsa, A. Computational Methods in Finance. CRC Press, 2012.

[4] Nawalka, S., Soto, G., and N. Beliaeva. Dynamic Term Structure Modeling. Wiley, 2007.

[5] Nelson, D. and K. Ramaswamy. "Simple Binomial Processes as Diffusion Approximations in
Financial Models." The Review of Financial Studies. Vol 3. 1990, pp. 393–430.
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See Also
bondbycir | capbycir | cfbycir | fixedbycir | floatbycir | floorbycir | oasbycir |
optbndbycir | optfloatbycir | optembndbycir | optemfloatbycir | rangefloatbycir |
swapbycir | swaptionbycir | instcf

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Pricing Options Structure” on page A-2
“Understanding Interest-Rate Tree Models” on page 2-66
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced in R2018a
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cfbyhjm
Price cash flows from Heath-Jarrow-Morton interest-rate tree

Syntax
[Price,PriceTree] = cfbyhjm(HJMTree,CFlowAmounts,CFlowDates,Settle)
[Price,PriceTree] = cfbyhjm( ___ ,Basis,Options)

Description
[Price,PriceTree] = cfbyhjm(HJMTree,CFlowAmounts,CFlowDates,Settle) prices cash
flows from a Heath-Jarrow-Morton interest-rate tree.

[Price,PriceTree] = cfbyhjm( ___ ,Basis,Options) adds optional arguments.

Examples

Price a Portfolio Containing Two Cash Flow Instruments

Price a portfolio containing two cash flow instruments paying interest annually over the four-year
period from January 1, 2000 to January 1, 2004.

Load the file deriv.mat, which provides HJMTree. The HJMTree structure contains the time and
interest-rate information needed to price the instruments.

load deriv.mat;

The valuation date (settle date) specified in HJMTree is January 1, 2000 (date number 730486).

HJMTree.RateSpec.ValuationDate

ans = 730486

Provide values for the other required arguments.

CFlowAmounts =[5 NaN 5.5 105; 5 0 6 105];
CFlowDates = [730852, NaN, 731582, 731947; 
              730852, 731217, 731582, 731947];

Use this information to compute the prices of the two cash flow instruments.

[Price, PriceTree] = cfbyhjm(HJMTree, CFlowAmounts,... 
CFlowDates, HJMTree.RateSpec.ValuationDate)

Price = 2×1

   96.7805
   97.2188

PriceTree = struct with fields:
    FinObj: 'HJMPriceTree'
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      tObs: [0 1 2 3 4]
     PBush: {1x5 cell}

You can visualize the prices of the two cash flow instruments with the treeviewer function.

Input Arguments
HJMTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using hjmtree.
Data Types: struct

CFlowAmounts — Cash flow amounts
matrix

Cash flow amounts, specified as a Number of instruments (NINST) by maximum number of cash flows
(MOSTCFS) matrix of cash flow amounts. Each row is a list of cash flow values for one instrument. If
an instrument has fewer than MOSTCFS cash flows, the end of the row is padded with NaNs.
Data Types: double

CFlowDates — Cash flow dates
matrix

Cash flow dates, specified as NINST-by-MOSTCFS matrix. Each entry contains the serial date number
of the corresponding cash flow in CFlowAmounts.
Data Types: double

Settle — Settlement date
serial date number | date character vector

Settlement date, specified as a vector of serial date numbers or date character vectors. The Settle
date for every cash flow is set to the ValuationDate of the HJM tree. The cash flow argument,
Settle, is ignored.
Data Types: double | char

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis of the instrument, specified as a vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
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• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Options — Derivatives pricing options structure
structure

(Optional) Derivatives pricing options structure, specified using derivset.
Data Types: struct

Output Arguments
Price — Expected prices at time 0
vector

Expected prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing vectors of
instrument prices and observation times for each node. Within PriceTree:

• PriceTree.tObs contains the observation times.
• PriceTree.PBush contains the clean prices.

See Also
cfamounts | hjmprice | hjmtree | instcf

Topics
“Computing Instrument Prices” on page 2-81
“Pricing Options Structure” on page A-2
“Understanding Interest-Rate Tree Models” on page 2-66
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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cfbyhw
Price cash flows from Hull-White interest-rate tree

Syntax
[Price,PriceTree] = cfbyhw(HWTree,CFlowAmounts,CFlowDates,Settle)
[Price,PriceTree] = cfbyhw( ___ ,Basis,Options)

Description
[Price,PriceTree] = cfbyhw(HWTree,CFlowAmounts,CFlowDates,Settle) prices cash
flows from a Hull-White interest-rate tree.

[Price,PriceTree] = cfbyhw( ___ ,Basis,Options) adds optional arguments.

Examples

Price a Portfolio Containing Two Cash Flow Instruments

Price a portfolio containing two cash flow instruments paying interest annually over the four-year
period from January 1, 2005 to January 1, 2009.

Load the file deriv.mat, which provides HWTree. The HWTree structure contains the time and
interest-rate information needed to price the instruments.

load deriv.mat; 

The valuation date (settle date) specified in HWTree is January 1, 2004 (date number 731947).

HWTree.RateSpec.ValuationDate

ans =

      731947

Provide values for the other required arguments.

CFlowAmounts =[5 NaN 5.5 105; 5 0 6 105];
CFlowDates = [732678, NaN, 733408, 733774; 
              732678, 733034, 733408, 734774];

Use this information to compute the prices of the two cash flow instruments.

[Price, PriceTree] = cfbyhw(HWTree, CFlowAmounts, CFlowDates,... 
HWTree.RateSpec.ValuationDate)

Warning: Not all cash flows are aligned with the tree. Result will be approximated. 
> In cfbytrintree (line 88)
  In cfbyhw (line 75) 

Price =
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   93.3789
   81.7651

PriceTree = 

  struct with fields:

     FinObj: 'HWPriceTree'
      PTree: {[2×1 double]  [2×3 double]  [2×5 double]  [2×5 double]  [2×5 double]}
       tObs: [0 1 2 3 4]
    Connect: {[2]  [2 3 4]  [2 2 3 4 4]}
      Probs: {[3×1 double]  [3×3 double]  [3×5 double]}

You can visualize the prices of the two cash flow instruments with the treeviewer function.

Input Arguments
HWTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using hwtree.
Data Types: struct

CFlowAmounts — Cash flow amounts
matrix

Cash flow amounts, specified as a Number of instruments (NINST) by maximum number of cash flows
(MOSTCFS) matrix of cash flow amounts. Each row is a list of cash flow values for one instrument. If
an instrument has fewer than MOSTCFS cash flows, the end of the row is padded with NaNs.
Data Types: double

CFlowDates — Cash flow dates
matrix

Cash flow dates, specified as NINST-by-MOSTCFS matrix. Each entry contains the serial date number
of the corresponding cash flow in CFlowAmounts.
Data Types: double

Settle — Settlement date
serial date number | date character vector

Settlement date, specified as a vector of serial date numbers or date character vectors. The Settle
date for every cash flow is set to the ValuationDate of the HW tree. The cash flow argument,
Settle, is ignored.
Data Types: double | char

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis of the instrument, specified as a vector of integers.
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• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Options — Derivatives pricing options structure
structure

(Optional) Derivatives pricing options structure, specified using derivset.
Data Types: struct

Output Arguments
Price — Expected prices at time 0
vector

Expected prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing vectors of
instrument prices and observation times for each node. Within PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell array describes

how nodes in that level connect to the next. For a given tree level, there are NumNodes elements
in the vector, and they contain the index of the node at the next level that the middle branch
connects to. Subtracting 1 from that value indicates where the up-branch connects to, and adding
1 indicated where the down branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array contains the
up, middle, and down transition probabilities for each node of the level.

 cfbyhw

11-399



See Also
cfamounts | hwtree | hwprice | instcf

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Pricing Options Structure” on page A-2
“Understanding Interest-Rate Tree Models” on page 2-66
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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cfbyzero
Price cash flows from set of zero curves

Syntax
Price = cfbyzero(RateSpec,CFlowAmounts,CFlowDates,Settle)
Price = cfbyzero( ___ ,Basis)

Description
Price = cfbyzero(RateSpec,CFlowAmounts,CFlowDates,Settle) prices cash flows from a
set of zero curves.

Price = cfbyzero( ___ ,Basis) adds an optional argument.

Examples

Compute the Price and Sensitivity From the Interest-Rate Term Structure

This example shows how to price a portfolio containing two cash flow instruments paying interest
annually over the four-year period from January 1, 2000 to January 1, 2004. Load the file deriv.mat,
which provides ZeroRateSpec. The ZeroRateSpec structure contains the interest-rate information
needed to price the instruments.

load deriv.mat 
CFlowAmounts =[5 NaN 5.5 105;5 0 6 105];
CFlowDates = [730852, NaN, 731582,731947; 
              730852, 731217, 731582, 731947];
Settle = 730486;
Price = cfbyzero(ZeroRateSpec, CFlowAmounts, CFlowDates, Settle)

Price = 2×1

   96.7804
   97.2187

Input Arguments
RateSpec — Annualized zero rate term structure
structure

Annualized zero rate term structure, specified by the RateSpec obtained from intenvset. For
information on the interest-rate specification, see intenvset.
Data Types: struct

CFlowAmounts — Cash flow amounts
matrix
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Cash flow amounts, specified as a Number of instruments (NINST) by maximum number of cash flows
(MOSTCFS) matrix of cash flow amounts. Each row is a list of cash flow values for one instrument. If
an instrument has fewer than MOSTCFS cash flows, the end of the row is padded with NaNs.
Data Types: double

CFlowDates — Cash flow dates
matrix

Cash flow dates, specified as NINST-by-MOSTCFS matrix. Each entry contains the serial date number
of the corresponding cash flow in CFlowAmounts.
Data Types: double

Settle — Settlement date on which cash flows are priced
serial date number | date character vector

Settlement date on which the cash flows are priced, specified using a scalar or NINST-by-1 vector of
serial date numbers or date character vectors of the same value which represent the settlement date
for each cash flow. Settle must be earlier than Maturity.
Data Types: double | char

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis of the instrument, specified as a vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Output Arguments
Price — Cash flow prices
matrix
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Cash flow prices, returned as a NINST-by-NUMCURVES matrix where each column arises from one of
the zero curves.

See Also
bondbyzero | fixedbyzero | floatbyzero | swapbyzero

Topics
“Pricing Using Interest-Rate Term Structure” on page 2-61
“Understanding the Interest-Rate Term Structure” on page 2-48
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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chooserbybls
Price European simple chooser options using Black-Scholes model

Syntax
Price = chooserbybls(RateSpec,StockSpec,Settle,Maturity,Strike,ChooseDate)

Description
Price = chooserbybls(RateSpec,StockSpec,Settle,Maturity,Strike,ChooseDate)
computes the price for European simple chooser options using the Black-Scholes model.

Examples

Price European Simple Chooser Options Using the Black-Scholes Model

Consider a European chooser option with an exercise price of $60 on June 1, 2007. The option expires
on December 2, 2007. Assume the underlying stock provides a continuous dividend yield of 5% per
annum, is trading at $50, and has a volatility of 20% per annum. The annualized continuously
compounded risk-free rate is 10% per annum. Assume that the choice must be made on August 31,
2007. Using this data:

AssetPrice = 50;
Strike = 60;
Settlement = 'Jun-1-2007';
Maturity = 'Dec-2-2007'; 
ChooseDate = 'Aug-31-2007';
RiskFreeRate = 0.1;
Sigma = 0.20;
Yield = 0.05

Yield = 0.0500

Define the RateSpec and StockSpec.

RateSpec = intenvset('Compounding', -1, 'Rates', RiskFreeRate, 'StartDates',...
Settlement, 'EndDates', Maturity);
StockSpec = stockspec(Sigma, AssetPrice,'continuous',Yield);

Price the chooser option.

Price  = chooserbybls(RateSpec, StockSpec, Settlement, Maturity,...
Strike, ChooseDate)

Price = 8.9308

Input Arguments
RateSpec — Annualized zero rate term structure
structure
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Annualized zero rate term structure, specified by the RateSpec obtained from intenvset. For
information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for underlying asset, specified using StockSpec obtained from stockspec. For
information on the stock specification, see stockspec.

stockspec can handle other types of underlying assets. For example, stocks, stock indices, and
commodities. If dividends are not specified in StockSpec, dividends are assumed to be 0.

Note Only dividends of type continuous can be considered for choosers.

Data Types: struct

Settle — Settlement or trade dates
serial date numbers | cell array of character vectors

Settlement or trade dates, specified using an NINST-by-1 vector of serial date numbers or a cell array
of date character vectors. Settle must be earlier than Maturity.
Data Types: double | char | cell

Maturity — Maturity date
serial date numbers | cell array of character vectors

Maturity date, specified as an NINST-by-1 vector using serial date numbers or a cell array of date
character vectors.
Data Types: double | char | cell

Strike — Option strike price value
nonnegative integer

Option strike price value, specified with a NINST-by-1 vector of nonnegative integers.
Data Types: double

ChooseDate — Chooser dates
serial date numbers | cell array of character vectors

Choose dates, specified with a NINST-by-1 vector of serial date numbers or cell array of date
character vectors.
Data Types: double | char | cell

Output Arguments
Price — Expected prices
vector

Expected prices, returned as an NINST-by-1 vector.
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References
[1] Rubinstein, Mark. "Options for the Undecided." Risk. Vol 4, 1991.

See Also
blsprice | intenvset

Topics
“Pricing Using the Black-Scholes Model” on page 3-82
“Chooser Option” on page 3-23
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2008b
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cirprice
Instrument prices from Cox-Ingersoll-Ross interest-rate model

Syntax
Price = cirprice(CIRTree,InstSet)
[Price,PriceTree] = cirprice(CIRTree,InstSet)

Description
Price = cirprice(CIRTree,InstSet) computes prices for instruments using a Cox-Ingersoll-
Ross (CIR) interest rate tree created with cirtree. The CIR tree uses a CIR++ model with the
Nawalka-Beliaeva (NB) approach.

cirprice handles the following instrument type values: 'Bond', 'CashFlow','OptBond',
'Fixed', 'Float', 'Cap', 'Floor', 'Swap','Swaption', 'RangeFloat', 'OptFloat',
'OptEmFloat'.

[Price,PriceTree] = cirprice(CIRTree,InstSet) returns the optional output for
PriceTree.

Examples

Price Bonds Using a CIR Interest-Rate Tree

Define two bond instruments.

CouponRate= [0.035;0.04];
Settle= 'Jan-1-2017'; 
Maturity = 'Jan-1-2019'; 
Period = 1; 
InstSet = instbond(CouponRate, Settle, Maturity, Period)

InstSet = struct with fields:
        FinObj: 'Instruments'
    IndexTable: [1x1 struct]
          Type: {'Bond'}
     FieldName: {{11x1 cell}}
    FieldClass: {{11x1 cell}}
     FieldData: {{11x1 cell}}

instdisp(InstSet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face
1     Bond 0.035      01-Jan-2017    01-Jan-2019    1      0     1            NaN       NaN             NaN            NaN       100 
2     Bond 0.04       01-Jan-2017    01-Jan-2019    1      0     1            NaN       NaN             NaN            NaN       100 
 

Create a RateSpec using the intenvset function.
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Rates = [0.035; 0.042147; 0.047345; 0.052707]; 
Dates = {'Jan-1-2017'; 'Jan-1-2018'; 'Jan-1-2019'; 'Jan-1-2020'; 'Jan-1-2021'}; 
ValuationDate = 'Jan-1-2017'; 
EndDates = Dates(2:end)'; 
Compounding = 1; 
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, 'EndDates',EndDates,'Rates', Rates, 'Compounding', Compounding); 

Create a CIR tree.

NumPeriods = length(EndDates); 
Alpha = 0.03; 
Theta = 0.02;  
Sigma = 0.1;   
Settle = '01-Jan-2017'; 
Maturity = '01-Jan-2019'; 
CIRTimeSpec = cirtimespec(ValuationDate, Maturity, NumPeriods); 
CIRVolSpec = cirvolspec(Sigma, Alpha, Theta); 

CIRT = cirtree(CIRVolSpec, RateSpec, CIRTimeSpec)

CIRT = struct with fields:
      FinObj: 'CIRFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 0.5000 1 1.5000]
        dObs: [736696 736878 737061 737243]
     FwdTree: {1x4 cell}
     Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

Price the bonds.

Price = cirprice(CIRT,InstSet) 

Price = 2×1

   98.6793
   99.6228

Input Arguments
CIRTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using cirtree.
Data Types: struct

InstSet — Instrument variable
structure

Instrument variable containing a collection of NINST instruments, specified using instadd.
Instruments are categorized by type; each type can have different data fields. The stored data field is
a row vector or character vector for each instrument.
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Data Types: struct

Output Arguments
Price — Expected floating-rate note prices at time 0
vector

Expected floating-rate note prices at time 0, returned as a NINST-by-1 vector. The prices are
computed by backward dynamic programming on the interest-rate tree. If an instrument cannot be
priced, a NaN is returned in that entry.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing vectors of
instrument prices and accrued interest, and a vector of observation times for each node. Within
PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.

References
[1] Cox, J., Ingersoll, J.,and S. Ross. "A Theory of the Term Structure of Interest Rates." Econometrica.

Vol. 53, 1985.

[2] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer Finance, 2006.

[3] Hirsa, A. Computational Methods in Finance. CRC Press, 2012.

[4] Nawalka, S., Soto, G., and N. Beliaeva. Dynamic Term Structure Modeling. Wiley, 2007.

[5] Nelson, D. and K. Ramaswamy. "Simple Binomial Processes as Diffusion Approximations in
Financial Models." The Review of Financial Studies. Vol 3. 1990, pp. 393–430.

See Also
cirsens | bondbycir | capbycir | cfbycir | fixedbycir | floatbycir | floorbycir |
oasbycir | optbndbycir | optfloatbycir | optembndbycir | optemfloatbycir |
rangefloatbycir | swapbycir | swaptionbycir

Topics
“Computing Instrument Prices” on page 2-81
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced in R2018a
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cirsens
Instrument sensitivities and prices from Cox-Ingersoll-Ross interest-rate model

Syntax
[Delta,Gamma,Vega,Price] = cirsens(CIRTree,InstSet)

Description
[Delta,Gamma,Vega,Price] = cirsens(CIRTree,InstSet) computes dollar sensitivities and
prices for instruments using a Cox-Ingersoll-Ross (CIR) interest rate tree created with cirtree. The
CIR tree uses a CIR++ model with the Nawalka-Beliaeva (NB) approach.

Note All sensitivities are returned as dollar sensitivities. To find the per-dollar sensitivities, divide by
the respective instrument price.

cirsens handles the following instrument type values: 'Bond', 'CashFlow','OptBond', 'Fixed',
'Float', 'Cap', 'Floor', 'Swap','Swaption', 'RangeFloat', 'OptFloat', 'OptEmFloat'.

Examples

Compute Instrument Sensitivities Using a CIR Interest-Rate Tree

Define and set up two bond instruments. Compute Delta and Gamma for the bond instruments
contained in the instrument set.

CouponRate= [0.035;0.04];
Settle= 'Jan-1-2017'; 
Maturity = 'Jan-1-2019'; 
Period = 1; 
InstSet = instbond(CouponRate, Settle, Maturity, Period)

InstSet = struct with fields:
        FinObj: 'Instruments'
    IndexTable: [1x1 struct]
          Type: {'Bond'}
     FieldName: {{11x1 cell}}
    FieldClass: {{11x1 cell}}
     FieldData: {{11x1 cell}}

instdisp(InstSet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face
1     Bond 0.035      01-Jan-2017    01-Jan-2019    1      0     1            NaN       NaN             NaN            NaN       100 
2     Bond 0.04       01-Jan-2017    01-Jan-2019    1      0     1            NaN       NaN             NaN            NaN       100 
 

Create a RateSpec using the intenvset function.
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Rates = [0.035; 0.042147; 0.047345; 0.052707]; 
Dates = {'Jan-1-2017'; 'Jan-1-2018'; 'Jan-1-2019'; 'Jan-1-2020'; 'Jan-1-2021'}; 
ValuationDate = 'Jan-1-2017'; 
EndDates = Dates(2:end)'; 
Compounding = 1; 
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, 'EndDates',EndDates,'Rates', Rates, 'Compounding', Compounding); 

Create a CIR tree.

NumPeriods = length(EndDates); 
Alpha = 0.03; 
Theta = 0.02;  
Sigma = 0.1;   
Settle = '01-Jan-2017'; 
Maturity = '01-Jan-2019'; 
CIRTimeSpec = cirtimespec(Settle, Maturity, NumPeriods); 
CIRVolSpec = cirvolspec(Sigma, Alpha, Theta); 

CIRT = cirtree(CIRVolSpec, RateSpec, CIRTimeSpec)

CIRT = struct with fields:
      FinObj: 'CIRFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 0.5000 1 1.5000]
        dObs: [736696 736878 737061 737243]
     FwdTree: {1x4 cell}
     Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

Calculate the Delta and Gamma sensitivities for the two bonds.

[Delta, Gamma] = cirsens(CIRT,InstSet) 

Delta = 2×1

 -186.1885
 -187.5390

Gamma = 2×1

  532.8675
  536.3132

Input Arguments
CIRTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using cirtree.
Data Types: struct
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InstSet — Instrument variable
structure

Instrument variable containing a collection of NINST instruments, specified using instadd.
Instruments are categorized by type; each type can have different data fields. The stored data field is
a row vector or character vector for each instrument.
Data Types: struct

Output Arguments
Delta — Rate of change of instruments prices with respect to changes in interest rate
vector

Rate of change of instruments prices with respect to changes in the interest rate, returned as a
NINST-by-1 vector of deltas. Delta is computed by finite differences in calls to cirtree.

Note Delta is calculated based on yield shifts of 100 basis points.

Gamma — Rate of change of instruments deltas with respect to changes in interest rate
vector

Rate of change of instruments deltas with respect to changes in the interest rate, returned as a
NINST-by-1 vector of gammas. Gamma is computed by finite differences in calls to cirtree.

Note Gamma is calculated based on yield shifts of 100 basis points.

Vega — Rate of change of instruments prices with respect to changes in volatility
vector

Rate of change of instruments prices with respect to changes in the volatility, returned as a NINST-
by-1 vector of vegas. Volatility is Sigma (t,T) of the interest rate. Vega is computed by finite
differences in calls to cirtree. For information on the volatility process, see cirvolspec.

Note Vega is calculated based on 1% shift in the volatility process.

Price — Price of each instrument
vector

Price of each instrument, returned as a NINST-by-1 vector. The prices are computed by backward
dynamic programming on the interest-rate tree. If an instrument cannot be priced, a NaN is returned
in that entry.

References
[1] Cox, J., Ingersoll, J.,and S. Ross. "A Theory of the Term Structure of Interest Rates." Econometrica.

Vol. 53, 1985.

[2] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer Finance, 2006.
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[3] Hirsa, A. Computational Methods in Finance. CRC Press, 2012.

[4] Nawalka, S., Soto, G., and N. Beliaeva. Dynamic Term Structure Modeling. Wiley, 2007.

[5] Nelson, D. and K. Ramaswamy. "Simple Binomial Processes as Diffusion Approximations in
Financial Models." The Review of Financial Studies. Vol 3. 1990, pp. 393–430.

See Also
cirprice | bondbycir | capbycir | cfbycir | fixedbycir | floatbycir | floorbycir |
oasbycir | optbndbycir | optfloatbycir | optembndbycir | optemfloatbycir |
rangefloatbycir | swapbycir | swaptionbycir

Topics
“Computing Instrument Prices” on page 2-81
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced in R2018a
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classfin
Create financial structure or return financial structure class name

Syntax
Obj = classfin(ClassName)
Obj = classfin(Struct,ClassName)
ClassName = classfin(Obj)

Description
Obj = classfin(ClassName) create a financial structure of class ClassName.

Obj = classfin(Struct,ClassName) create a converted MATLAB financial structure of class
ClassName.

ClassName = classfin(Obj) returns a character vector containing a financial structure's class
name.

Examples

Create a Financial Structure

This example shows how to create a financial structure HJMTimeSpec and complete its fields.
(Typically, the function hjmtimespec is used to create HJMTimeSpec structures).

TimeSpec = classfin('HJMTimeSpec'); 
TimeSpec.ValuationDate = datenum('Dec-10-1999'); 
TimeSpec.Maturity = datenum('Dec-10-2002'); 
TimeSpec.Compounding = 2; 
TimeSpec.Basis = 0; 
TimeSpec.EndMonthRule = 1;
TimeSpec

TimeSpec = struct with fields:
           FinObj: 'HJMTimeSpec'
    ValuationDate: 730464
         Maturity: 731560
      Compounding: 2
            Basis: 0
     EndMonthRule: 1

Convert an Existing MATLAB Structure into a Financial Structure

This example shows how to convert an existing MATLAB structure into a financial structure.

TSpec.ValuationDate = datenum('Dec-10-1999'); 
TSpec.Maturity = datenum('Dec-10-2002'); 
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TSpec.Compounding = 2; 
TSpec.Basis = 0; 
TSpec.EndMonthRule = 0; 
TimeSpec = classfin(TSpec, 'HJMTimeSpec')

TimeSpec = struct with fields:
    ValuationDate: 730464
         Maturity: 731560
      Compounding: 2
            Basis: 0
     EndMonthRule: 0
           FinObj: 'HJMTimeSpec'

Return a Character Vector Containing a Financial Structure's Class Name

This example shows how to obtain a character vector containing a financial structure's class name.

load deriv.mat 
ClassName = classfin(HJMTree)

ClassName = 
'HJMFwdTree'

Input Arguments
ClassName — Name of a financial structure class
character vector

Name of a financial structure class, specified by a character vector.
Data Types: char

Struct — Structure for conversion
structure

Structure for conversion, specified as a MATLAB structure
Data Types: struct

Obj — Name of a financial structure
object

Name of a financial structure, specified with an instance of an object.
Data Types: object

Output Arguments
Obj — Name of a financial structure
object

Name of a financial structure, returned as an instance of an object.
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ClassName — Name of a financial structure class
character vector

Name of a financial structure class, specified by a character vector.

See Also
isafin

Topics
“Portfolio Creation Using Functions” on page 1-6
“Instrument Constructors” on page 1-15
“Hedging” on page 4-2

Introduced before R2006a
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cirtimespec
Specify time structure for Cox-Ingersoll-Ross tree

Syntax
TimeSpec = cirtimespec(ValuationDate,Maturity,NumPeriods)
TimeSpec = cirtimespec( ___ ,Name,Value)

Description
TimeSpec = cirtimespec(ValuationDate,Maturity,NumPeriods) creates a time spec for a
Cox-Ingersoll-Ross (CIR) tree.

TimeSpec = cirtimespec( ___ ,Name,Value) adds additional name-value pair arguments.

Examples

Set the Number of Levels and Node Times for a CIR Tree

Set the number of levels and node times for an CIR tree by specifying a four-period tree with time
steps of 1 year.

ValuationDate = 'Jan-1-2017'; 
Maturity = '01-Jan-2021'; 
NumPeriods = 4

NumPeriods = 4

CIRTimeSpec = cirtimespec(ValuationDate, Maturity, NumPeriods)

CIRTimeSpec = struct with fields:
           FinObj: 'CIRTimeSpec'
    ValuationDate: 736696
         Maturity: 738157
       NumPeriods: 4
      Compounding: 1
            Basis: 0
     EndMonthRule: 1
             tObs: [0 1 2 3 4]
             dObs: [736696 737061 737426 737791 738157]

Input Arguments
ValuationDate — Date marking the pricing date and first observation tree
serial date number | date character vector

Date marking the pricing date and first observation in the tree, specified as a scalar using a serial
date number or date character vector.
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Data Types: double | char

Maturity — Date marking the depth of tree
serial date number | date character vector

Date marking the depth of the tree, specified as a scalar using a serial date number or date character
vector.
Data Types: double | char

NumPeriods — Determines how many time steps are in tree
nonnegative integer

Determines how many time steps are in tree, specified as a scalar using a nonnegative integer value.
Data Types: double

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: TimeSpec = cirtimespec(Valuationdate,Maturity,NumPeriods,'Basis',3)

Compounding — Frequency at which the rates are compounded when annualized
1 (default) | integer with value of 1, 2, 3, 4, 6, or 12

Frequency at which the rates are compounded when annualized, specified as the comma-separated
pair consisting of 'Compounding' and a scalar value:

• 1 — Annual compounding
• 2 — Semiannual compounding
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding

Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13

Day count basis, specified as the comma-separated pair consisting of 'Basis' and a scalar value:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
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• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month
having 30 or fewer days, specified as the comma-separated pair consisting of 'EndMonthRule' and
a nonnegative integer [0, 1] using a scalar.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

Output Arguments
TimeSpec — Time layout for CIR tree
structure

Time layout for the CIRTree, returned as a structure.

See Also
cirtree

Introduced in R2018a
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cirvolspec
Specify Cox-Ingersoll-Ross interest-rate volatility process

Syntax
VolSpec = cirvolspec(Sigma,Alpha,Theta)

Description
VolSpec = cirvolspec(Sigma,Alpha,Theta) creates a Cox-Ingersoll-Ross (CIR) VolSpec.

Examples

Create a Structure Specifying the Volatility for cirtree

Create a Cox-Ingersoll-Ross volatility specification (CIRVolSpec) using the following data.

Alpha = 0.03; 
Theta = 0.02;  
Sigma = 0.1;   
CIRVolSpec = cirvolspec(Sigma,Alpha,Theta)

CIRVolSpec = struct with fields:
    FinObj: 'CIRVolSpec'
     Sigma: 0.1000
     Alpha: 0.0300
     Theta: 0.0200

Input Arguments
Sigma — Volatility
numeric

Volatility, specified as a scalar using a numeric value.
Data Types: double

Alpha — Mean reversion speed
numeric

Mean reversion speed, specified as a scalar using a numeric value.
Data Types: double

Theta — Mean reversion level or long-term mean of short rate
numeric

Mean reversion level or long-term mean of the short rate, specified as a scalar using a numeric value.
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Data Types: double

Output Arguments
VolSpec — Volatility model for CIR tree
structure

Volatility model for the CIRTree, returned as a structure.

See Also
cirtree

Introduced in R2018a
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cirtree
Build a Cox-Ingersoll-Ross interest-rate tree

Syntax
CIRTree = cirvolspec(VolSpec,RateSpec,TimeSpec)

Description
CIRTree = cirvolspec(VolSpec,RateSpec,TimeSpec) builds a Cox-Ingersoll-Ross (CIR)
interest-rate tree. The CIR tree uses a CIR++ model with the Nawalka-Beliaeva (NB) approach.

Examples

Create a CIR Tree

Create a RateSpec using the intenvset function.

Rates = [0.035; 0.042147; 0.047345; 0.052707]; 
Dates = {'Jan-1-2017'; 'Jan-1-2018'; 'Jan-1-2019'; 'Jan-1-2020'; 'Jan-1-2021'}; 
ValuationDate = 'Jan-1-2017'; 
EndDates = Dates(2:end)'; 
Compounding = 1; 
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, 'EndDates',EndDates,'Rates', Rates, 'Compounding', Compounding); 

Create a CIR tree.

NumPeriods = length(EndDates); 
Alpha = 0.03; 
Theta = 0.02;  
Sigma = 0.1;   
Settle = '01-Jan-2017'; 
Maturity = '01-Jan-2021'; 
CIRTimeSpec = cirtimespec(Settle, Maturity, NumPeriods); 
CIRVolSpec = cirvolspec(Sigma, Alpha, Theta); 

CIRT = cirtree(CIRVolSpec, RateSpec, CIRTimeSpec)

CIRT = struct with fields:
      FinObj: 'CIRFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [736696 737061 737426 737791]
     FwdTree: {1x4 cell}
     Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}
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Input Arguments
VolSpec — Volatility process specification
structure

Volatility process specification, specified using the VolSpec output obtained from cirvolspec.
Data Types: struct

RateSpec — Interest-rate specification for initial risk-free rate curve
structure

Interest-rate specification for initial risk-free rate curve, specified by the RateSpec obtained from
intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

TimeSpec — Time tree layout specification
structure

Time tree layout specification, specified using the TimeSpec output obtained from cirtimespec.
Data Types: struct

Output Arguments
CIRTree — Time and interest-rate information of a recombining tree
structure

Time and interest-rate information of a recombining tree, returned as a structure.

See Also
cirtimespec | cirvolspec

Topics
“Use treeviewer to Examine HWTree and PriceTree When Pricing European Callable Bond” on page
2-195

Introduced in R2018a
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compoundbycrr
Price compound option from Cox-Ross-Rubinstein binomial tree

Syntax
[Price,PriceTree] = compoundbycrr(CRRTree,UOptSpec,UStrike,USettle,
UExerciseDates,UAmericanOpt,COptSpec,CStrike,CSettle,CExerciseDates)
[Price,PriceTree] = compoundbycrr( ___ ,CAmericanOpt)

Description
[Price,PriceTree] = compoundbycrr(CRRTree,UOptSpec,UStrike,USettle,
UExerciseDates,UAmericanOpt,COptSpec,CStrike,CSettle,CExerciseDates) prices
compound options from a Cox-Ross-Rubinstein binomial tree.

[Price,PriceTree] = compoundbycrr( ___ ,CAmericanOpt) adds an optional argument for
CAmericanOpt.

Examples

Price a Compound Option Using a CRR Binomial Tree

This example shows how to price a compound option using a CRR binomial tree by loading the file
deriv.mat, which provides CRRTree. The CRRTree structure contains the stock specification and
time information needed to price the option.

load deriv.mat

UOptSpec = 'Call';
UStrike = 130;
USettle = '01-Jan-2003';
UExerciseDates = '01-Jan-2006';
UAmericanOpt = 1;
COptSpec = 'Put';
CStrike = 5;
CSettle = '01-Jan-2003';
CExerciseDates = '01-Jan-2005';

Price = compoundbycrr(CRRTree, UOptSpec, UStrike, USettle, ... 
UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle, ... 
CExerciseDates)

Price = 2.8482

Input Arguments
CRRTree — Stock tree structure
structure
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Stock tree structure, specified by using crrtree.
Data Types: struct

UOptSpec — Definition of underlying option
character vector with value 'call' or 'put'

Definition of underlying option, specified as 'call' or 'put' using a character vector.
Data Types: char

UStrike — Underlying option strike price value
nonnegative integer

Underlying option strike price value, specified with a nonnegative integer using a 1-by-1 vector.
Data Types: double

USettle — Underlying option settlement date or trade date
serial date number | date character vector

Underlying option settlement date or trade date, specified as a 1-by-1 vector using a serial date
number or character vector.
Data Types: double | char

UExerciseDates — Underlying option exercise date
serial date number | date character vector

Underlying option exercise date, specified as a serial date number or date character vector:

• For a European option, use a1-by-1 vector of the underlying exercise date. For a European option,
there is only one ExerciseDates on the option expiry date.

• For an American option, use a 1-by-2 vector of the underlying exercise date boundaries. The
option can be exercised on any tree date. If only one non-NaN date is listed, or if ExerciseDates
is 1-by-1, the option can be exercised between ValuationDate of the stock tree and the single
listed ExerciseDates.

Data Types: double | char

UAmericanOpt — Underlying option type
0 European (default) | scalar with values 0 or 1

Underlying option type, specified as NINST-by-1 positive integer scalar flags with values:

• 0 — European
• 1 — American

If UAmericanOpt is a NaN or is unspecified, the option is a European option.
Data Types: double

COptSpec — Definition of compound option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'

 compoundbycrr

11-425



Definition of compound option, specified as 'call' or 'put' using a character vector or a cell array
of character vectors with values 'call' or 'put'.
Data Types: char | cell

CStrike — Compound option strike price values
nonnegative integers

Compound option strike price values for a European and American option, specified with a
nonnegative integer using a NINST-by-1 matrix. Each row is the schedule for one option.
Data Types: double

CSettle — Compound option settlement date or trade date
serial date number | date character vector

Compound option settlement date or trade date, specified as a 1-by-1 vector using a serial date
number or date character vector.
Data Types: double | char

CExerciseDates — Compound option exercise dates
serial date number | date character vector

Compound option exercise dates, specified as serial date numbers or date character vectors:

• For a European option, use aNINST-by-1 matrix of the compound exercise dates. Each row is the
schedule for one option. For a European option, there is only one ExerciseDates on the option
expiry date.

• For an American option, use a NINST-by-2 vector of the compound exercise date boundaries. For
each instrument, the option can be exercised on any tree date between or including the pair of
dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the
option can be exercised between ValuationDate of the stock tree and the single listed
ExerciseDates.

Data Types: double | char

CAmericanOpt — Compound option type
0 European (default) | scalar with values 0 or 1

(Optional) Compound option type, specified as NINST-by-1 positive integer scalar flags with values:

• 0 — European
• 1 — American

If CAmericanOpt is a NaN or is unspecified, the option is a European option.
Data Types: double

Output Arguments
Price — Expected prices for compound options at time 0
vector

Expected prices for compound options at time 0, returned as a NINST-by-1 vector.
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PriceTree — Structure with vector of compound option prices at each node
tree structure

Structure with a vector of compound option prices at each node, returned as a tree structure.

PriceTree is a MATLAB structure of trees containing vectors of instrument prices and a vector of
observation times for each node.

PriceTree.PTree contains the prices.

PriceTree.tObs contains the observation times.

PriceTree.dObs contains the observation dates.

More About
Compound Option

A compound option is basically an option on an option; it gives the holder the right to buy or sell
another option.

With a compound option, a vanilla stock option serves as the underlying instrument. Compound
options thus have two strike prices and two exercise dates. For more information, see “Compound
Option” on page 3-23.

References
[1] Rubinstein, Mark. “Double Trouble.” Risk. Vol. 5, 1991, p. 73.

See Also
crrtree | instcompound

Topics
“Computing Prices Using CRR” on page 3-65
“Graphical Representation of Equity Derivative Trees” on page 3-73
“Compound Option” on page 3-23
“Supported Equity Derivative Functions” on page 3-19

Introduced before R2006a
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compoundbyeqp
Price compound option from Equal Probabilities binomial tree

Syntax
[Price,PriceTree] = compoundbyeqp(EQPTree,UOptSpec,UStrike,USettle,
UExerciseDates,UAmericanOpt,COptSpec,CStrike,CSettle,CExerciseDates)
[Price,PriceTree] = compoundbyeqp( ___ ,CAmericanOpt)

Description
[Price,PriceTree] = compoundbyeqp(EQPTree,UOptSpec,UStrike,USettle,
UExerciseDates,UAmericanOpt,COptSpec,CStrike,CSettle,CExerciseDates) prices
compound options from a Equal Probabilities binomial tree.

[Price,PriceTree] = compoundbyeqp( ___ ,CAmericanOpt) adds an optional argument for
CAmericanOpt.

Examples

Price a Compound Option Using an EQP Equity Tree

This example shows how to price a compound option using a EQP equity tree by loading the file
deriv.mat, which provides EQPTree. The EQPTree structure contains the stock specification and
time information needed to price the option.

load deriv.mat
UOptSpec = 'Call';
UStrike = 130;
USettle = '01-Jan-2003';
UExerciseDates = '01-Jan-2006';
UAmericanOpt = 1;
COptSpec = 'Put';
CStrike = 5;
CSettle = '01-Jan-2003';
CExerciseDates = '01-Jan-2005';

Price = compoundbyeqp(EQPTree, UOptSpec, UStrike, USettle, ... 
UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle, ... 
CExerciseDates)

Price = 3.3931

Input Arguments
EQPTree — Stock tree structure
structure

Stock tree structure, specified by using eqptree.
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Data Types: struct

UOptSpec — Definition of underlying option
character vector with value 'call' or 'put'

Definition of underlying option, specified as 'call' or 'put' using a character vector.
Data Types: char

UStrike — Underlying option strike price value
nonnegative integer

Underlying option strike price value, specified with a nonnegative integer using a 1-by-1 vector.
Data Types: double

USettle — Underlying option settlement date or trade date
serial date number | date character vector

Underlying option settlement date or trade date, specified as a 1-by-1 vector using a serial date
number or character vector.
Data Types: double | char

UExerciseDates — Underlying option exercise date
serial date number | date character vector

Underlying option exercise date, specified as a serial date number or date character vector:

• For a European option, use a1-by-1 vector of the underlying exercise date. For a European option,
there is only one ExerciseDates on the option expiry date.

• For an American option, use a 1-by-2 vector of the underlying exercise date boundaries. The
option can be exercised on any tree date. If only one non-NaN date is listed, or if ExerciseDates
is 1-by-1, the option can be exercised between ValuationDate of the stock tree and the single
listed ExerciseDates.

Data Types: double | char

UAmericanOpt — Underlying option type
0 European (default) | scalar with values 0 or 1

Underlying option type, specified as NINST-by-1 positive integer scalar flags with values:

• 0 — European
• 1 — American

If UAmericanOpt is a NaN or is unspecified, the option is a European option.
Data Types: double

COptSpec — Definition of compound option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'

Definition of compound option, specified as 'call' or 'put' using a character vector or a cell array
of character vectors with values 'call' or 'put'.
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Data Types: char | cell

CStrike — Compound option strike price values
nonnegative integers

Compound option strike price values for a European and American option, specified with a
nonnegative integer using a NINST-by-1 matrix. Each row is the schedule for one option.
Data Types: double

CSettle — Compound option settlement date or trade date
serial date number | date character vector

Compound option settlement date or trade date, specified as a 1-by-1 vector using a serial date
number or date character vector.
Data Types: double | char

CExerciseDates — Compound option exercise dates
serial date number | date character vector

Compound option exercise dates, specified as serial date numbers or date character vectors:

• For a European option, use aNINST-by-1 matrix of the compound exercise dates. Each row is the
schedule for one option. For a European option, there is only one ExerciseDates on the option
expiry date.

• For an American option, use a NINST-by-2 vector of the compound exercise date boundaries. For
each instrument, the option can be exercised on any tree date between or including the pair of
dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the
option can be exercised between ValuationDate of the stock tree and the single listed
ExerciseDates.

Data Types: double | char

CAmericanOpt — Compound option type
0 European (default) | scalar with values 0 or 1

(Optional) Compound option type, specified as NINST-by-1 positive integer scalar flags with values:

• 0 — European
• 1 — American

If CAmericanOpt is a NaN or is unspecified, the option is a European option.
Data Types: double

Output Arguments
Price — Expected prices for compound options at time 0
vector

Expected prices for compound options at time 0, returned as a NINST-by-1 vector.

PriceTree — Structure with vector of compound option prices at each node
tree structure
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Structure with a vector of compound option prices at each node, returned as a tree structure.

PriceTree is a MATLAB structure of trees containing vectors of instrument prices and a vector of
observation times for each node.

PriceTree.PTree contains the prices.

PriceTree.tObs contains the observation times.

PriceTree.dObs contains the observation dates.

More About
Compound Option

A compound option is basically an option on an option; it gives the holder the right to buy or sell
another option.

With a compound option, a vanilla stock option serves as the underlying instrument. Compound
options thus have two strike prices and two exercise dates. For more information, see “Compound
Option” on page 3-23.

References
[1] Rubinstein, Mark. “Double Trouble.” Risk. Vol. 5, 1991, p. 73.

See Also
eqptree | instcompound

Topics
“Computing Prices Using CRR” on page 3-65
“Graphical Representation of Equity Derivative Trees” on page 3-73
“Compound Option” on page 3-23
“Supported Equity Derivative Functions” on page 3-19

Introduced before R2006a
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compoundbyitt
Price compound option from implied trinomial tree (ITT)

Syntax
[Price,PriceTree] = compoundbyitt(ITTTree,UOptSpec,UStrike,USettle,
UExerciseDates,UAmericanOpt,COptSpec,CStrike,CSettle,CExerciseDates)
[Price,PriceTree] = compoundbyitt( ___ ,CAmericanOpt)

Description
[Price,PriceTree] = compoundbyitt(ITTTree,UOptSpec,UStrike,USettle,
UExerciseDates,UAmericanOpt,COptSpec,CStrike,CSettle,CExerciseDates) prices
compound options from a Equal Probabilities binomial tree.

[Price,PriceTree] = compoundbyitt( ___ ,CAmericanOpt) adds an optional argument for
CAmericanOpt.

Examples

Price a Compound Option Using an ITT Tree

This example shows how to price a compound option using a ITT tree by loading the file deriv.mat,
which provides ITTTree. The ITTTree structure contains the stock specification and time
information needed to price the option.

load deriv.mat

UOptSpec = 'Call';
UStrike = 99;
USettle = '01-Jan-2006';
UExerciseDates = '01-Jan-2010';
UAmericanOpt = 1;
COptSpec = 'Put';
CStrike = 5;
CSettle = '01-Jan-2006';
CExerciseDates = '01-Jan-2010';

Price = compoundbyitt(ITTTree, UOptSpec, UStrike, USettle, ... 
UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle, ... 
CExerciseDates)

Price = 2.7271

Input Arguments
ITTTree — Stock tree structure
structure
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Stock tree structure, specified by using itttree.
Data Types: struct

UOptSpec — Definition of underlying option
character vector with value 'call' or 'put'

Definition of underlying option, specified as 'call' or 'put' using a character vector.
Data Types: char

UStrike — Underlying option strike price value
nonnegative integer

Underlying option strike price value, specified with a nonnegative integer using a 1-by-1 vector.
Data Types: double

USettle — Underlying option settlement date or trade date
serial date number | date character vector

Underlying option settlement date or trade date, specified as a 1-by-1 vector using a serial date
number or character vector.
Data Types: double | char

UExerciseDates — Underlying option exercise date
serial date number | date character vector

Underlying option exercise date, specified as a serial date number or date character vector:

• For a European option, use a1-by-1 vector of the underlying exercise date. For a European option,
there is only one ExerciseDates on the option expiry date.

• For an American option, use a 1-by-2 vector of the underlying exercise date boundaries. The
option can be exercised on any tree date. If only one non-NaN date is listed, or if ExerciseDates
is 1-by-1, the option can be exercised between ValuationDate of the stock tree and the single
listed ExerciseDates.

Data Types: double | char

UAmericanOpt — Underlying option type
0 European (default) | scalar with values 0 or 1

Underlying option type, specified as NINST-by-1 positive integer scalar flags with values:

• 0 — European
• 1 — American

If UAmericanOpt is a NaN or is unspecified, the option is a European option.
Data Types: double

COptSpec — Definition of compound option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'
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Definition of compound option, specified as 'call' or 'put' using a character vector or a cell array
of character vectors with values 'call' or 'put'.
Data Types: char | cell

CStrike — Compound option strike price values
nonnegative integers

Compound option strike price values for a European and American option, specified with a
nonnegative integer using a NINST-by-1 matrix. Each row is the schedule for one option.
Data Types: double

CSettle — Compound option settlement date or trade date
serial date number | date character vector

Compound option settlement date or trade date, specified as a 1-by-1 vector using a serial date
number or date character vector.
Data Types: double | char

CExerciseDates — Compound option exercise dates
serial date number | date character vector

Compound option exercise dates, specified as serial date numbers or date character vectors:

• For a European option, use aNINST-by-1 matrix of the compound exercise dates. Each row is the
schedule for one option. For a European option, there is only one ExerciseDates on the option
expiry date.

• For an American option, use a NINST-by-2 vector of the compound exercise date boundaries. For
each instrument, the option can be exercised on any tree date between or including the pair of
dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the
option can be exercised between ValuationDate of the stock tree and the single listed
ExerciseDates.

Data Types: double | char

CAmericanOpt — Compound option type
0 European (default) | scalar with values 0 or 1

(Optional) Compound option type, specified as NINST-by-1 positive integer scalar flags with values:

• 0 — European
• 1 — American

If CAmericanOpt is a NaN or is unspecified, the option is a European option.
Data Types: double

Output Arguments
Price — Expected prices for compound options at time 0
vector

Expected prices for compound options at time 0, returned as a NINST-by-1 vector.
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PriceTree — Structure with vector of compound option prices at each node
tree structure

Structure with a vector of compound option prices at each node, returned as a tree structure.

PriceTree is a MATLAB structure of trees containing vectors of instrument prices and a vector of
observation times for each node.

PriceTree.PTree contains the prices.

PriceTree.tObs contains the observation times.

PriceTree.dObs contains the observation dates.

More About
Compound Option

A compound option is basically an option on an option; it gives the holder the right to buy or sell
another option.

With a compound option, a vanilla stock option serves as the underlying instrument. Compound
options thus have two strike prices and two exercise dates. For more information, see “Compound
Option” on page 3-23.

References
[1] Rubinstein, Mark. “Double Trouble.” Risk. Vol. 5, 1991, p. 73.

See Also
itttree | instcompound

Topics
“Computing Prices Using CRR” on page 3-65
“Graphical Representation of Equity Derivative Trees” on page 3-73
“Compound Option” on page 3-23
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2007a
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compoundbystt
Price compound options using standard trinomial tree

Syntax
[Price,PriceTree] = compoundbystt(STTTree,UOptSpec,UStrike,USettle,
UExerciseDates,UAmericanOpt,COptSpec,CStrike,CSettle,CExerciseDates)
[Price,PriceTree] = compoundbystt( ___ ,Name,Value)

Description
[Price,PriceTree] = compoundbystt(STTTree,UOptSpec,UStrike,USettle,
UExerciseDates,UAmericanOpt,COptSpec,CStrike,CSettle,CExerciseDates) prices
compound options using a standard trinomial (STT) tree.

[Price,PriceTree] = compoundbystt( ___ ,Name,Value) adds an optional name-value pair
argument for CAmericanOpt.

Examples

Price a Compound Option Using the Standard Trinomial Tree Model

Create a RateSpec.

StartDates = 'Jan-1-2009'; 
EndDates = 'Jan-1-2013'; 
Rates = 0.035; 
Basis = 1; 
Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates,'Compounding', Compounding, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.8694
            Rates: 0.0350
         EndTimes: 4
       StartTimes: 0
         EndDates: 735235
       StartDates: 733774
    ValuationDate: 733774
            Basis: 1
     EndMonthRule: 1

Create a StockSpec.

AssetPrice = 85; 
Sigma = 0.15; 
StockSpec = stockspec(Sigma, AssetPrice)
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StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1500
         AssetPrice: 85
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Create an STTTree.

NumPeriods = 4;
TimeSpec = stttimespec(StartDates, EndDates, 4);
STTTree = stttree(StockSpec, RateSpec, TimeSpec)

STTTree = struct with fields:
       FinObj: 'STStockTree'
    StockSpec: [1x1 struct]
     TimeSpec: [1x1 struct]
     RateSpec: [1x1 struct]
         tObs: [0 1 2 3 4]
         dObs: [733774 734139 734504 734869 735235]
        STree: {1x5 cell}
        Probs: {[3x1 double]  [3x3 double]  [3x5 double]  [3x7 double]}

Define the compound option and compute the price.

USettle = '1/1/09';
UExerciseDates = '1/1/12';
UOptSpec =  'call';
UStrike = 95;
UAmericanOpt = 1;
CSettle = '1/1/09';
CExerciseDates = '1/1/11';
COptSpec = 'put';
CStrike = 5;
CAmericanOpt = 1;

Price= compoundbystt(STTTree, UOptSpec, UStrike, USettle, UExerciseDates,...
UAmericanOpt, COptSpec, CStrike, CSettle,CExerciseDates, CAmericanOpt)

Price = 1.7090

Input Arguments
STTTree — Stock tree structure for standard trinomial tree
structure

Stock tree structure for standard trinomial tree, specified by using stttree.
Data Types: struct

UOptSpec — Definition of underlying option
character vector with value 'call' or 'put'

Definition of underlying option, specified as 'call' or 'put' using a character vector.
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Data Types: char

UStrike — Underlying option strike price value
nonnegative integer

Underlying option strike price value, specified with a nonnegative integer using a 1-by-1 vector.
Data Types: double

USettle — Underlying option settlement date or trade date
serial date number | date character vector

Underlying option settlement date or trade date, specified as a 1-by-1 vector using a serial date
number or character vector.
Data Types: double | char

UExerciseDates — Underlying option exercise date
serial date number | date character vector

Underlying option exercise date, specified as a serial date number or date character vector:

• For a European option, use a1-by-1 vector of the underlying exercise date. For a European option,
there is only one ExerciseDates on the option expiry date.

• For an American option, use a 1-by-2 vector of the underlying exercise date boundaries. The
option can be exercised on any tree date. If only one non-NaN date is listed, or if ExerciseDates
is 1-by-1, the option can be exercised between ValuationDate of the stock tree and the single
listed ExerciseDates.

Data Types: double | char

UAmericanOpt — Underlying option type
0 European (default) | scalar with values 0 or 1

Underlying option type, specified as NINST-by-1 positive integer scalar flags with values:

• 0 — European
• 1 — American

If UAmericanOpt is a NaN or is unspecified, the option is a European option.
Data Types: single | double

COptSpec — Definition of compound option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'

Definition of compound option, specified as 'call' or 'put' using a character vector or a cell array
of character vectors with values 'call' or 'put'.
Data Types: char | cell

CStrike — Compound option strike price values
nonnegative integers

Compound option strike price values for a European and American option, specified with a
nonnegative integer using a NINST-by-1 matrix. Each row is the schedule for one option.
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Data Types: double

CSettle — Compound option settlement date or trade date
serial date number | date character vector

Compound option settlement date or trade date, specified as a 1-by-1 vector using a serial date
number or date character vector.
Data Types: double | char

CExerciseDates — Compound option exercise dates
serial date number | date character vector

Compound option exercise dates, specified as serial date numbers or date character vectors:

• For a European option, use aNINST-by-1 matrix of the compound exercise dates. Each row is the
schedule for one option. For a European option, there is only one ExerciseDates on the option
expiry date.

• For an American option, use a NINST-by-2 vector of the compound exercise date boundaries. For
each instrument, the option can be exercised on any tree date between or including the pair of
dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the
option can be exercised between ValuationDate of the stock tree and the single listed
ExerciseDates.

Data Types: double | char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Price =
compoundbystt(STTTree,UOptSpec,UStrike,USettle,UExerciseDates,UAmericanOpt,CO
ptSpec,CStrike,CSettle,CExerciseDates,'CAmericanOpt',1)

CAmericanOpt — Compound option type
0 European (default) | scalar with values [0,1]

Compound option type, specified as the comma-separated pair consisting of 'CAmericanOpt' and a
NINST-by-1 positive integer scalar flags with values:

• 0 — European
• 1 — American

Data Types: single | double

Output Arguments
Price — Expected prices for compound options at time 0
vector

Expected prices for compound options at time 0, returned as a NINST-by-1 vector.
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PriceTree — Structure with vector of compound option prices at each node
tree structure

Structure with a vector of compound option prices at each node, returned as a tree structure.

PriceTree is a MATLAB structure of trees containing vectors of instrument prices and a vector of
observation times for each node.

PriceTree.PTree contains the prices.

PriceTree.tObs contains the observation times.

PriceTree.dObs contains the observation dates.

More About
Compound Option

A compound option is basically an option on an option; it gives the holder the right to buy or sell
another option.

With a compound option, a vanilla stock option serves as the underlying instrument. Compound
options thus have two strike prices and two exercise dates. For more information, see “Compound
Option” on page 3-23.

See Also
stttimespec | stttree | sttprice | sttsens | instcompound

Topics
“Compound Option” on page 3-23
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2015b
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crrprice
Instrument prices from Cox-Ross-Rubinstein tree

Syntax
[Price,PriceTree] = crrprice(CRRTree,InstSet)
[Price,PriceTree] = crrprice( ___ ,Options)

Description
[Price,PriceTree] = crrprice(CRRTree,InstSet) computes stock option prices using a CRR
binomial tree created with crrtree. All instruments contained in a financial instrument variable,
InstSet, are priced.

crrprice handles instrument types: 'Asian', 'Barrier', 'Compound', 'CBond', 'Lookback',
'OptStock'. See instadd to construct defined types.

[Price,PriceTree] = crrprice( ___ ,Options) adds an optional input argument for Options.

Examples

Price Barrier and Lookback Options in the Instrument Set

Load the CRR tree and instruments from the data file deriv.mat. Price the barrier and lookback
options contained in the instrument set.

load deriv.mat; 
CRRSubSet = instselect(CRRInstSet,'Type', ... 
{'Barrier', 'Lookback'}); 

instdisp(CRRSubSet)

Index Type    OptSpec Strike Settle         ExerciseDates  AmericanOpt BarrierSpec Barrier Rebate Name     Quantity
1     Barrier call    105    01-Jan-2003    01-Jan-2006    1           ui          102     0      Barrier1 1       
 
Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name      Quantity
2     Lookback call    115    01-Jan-2003    01-Jan-2006    0           Lookback1 7       
3     Lookback call    115    01-Jan-2003    01-Jan-2007    0           Lookback2 9       
 

Price the barrier and lookback options.

[Price, PriceTree] = crrprice(CRRTree,CRRSubSet)

Price = 3×1

   12.1272
    7.6015
   11.7772
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PriceTree = struct with fields:
    FinObj: 'BinPriceTree'
     PTree: {1x5 cell}
      tObs: [0 1 2 3 4]
      dObs: [731582 731947 732313 732678 733043]

You can use treeviewer to see the prices of these three instruments along the price tree.

Input Arguments
CRRTree — Stock price tree structure
structure

Stock price tree structure, specified by using crrtree.
Data Types: struct
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InstSet — Instrument variable
structure

Instrument variable containing a collection of NINST instruments, specified using instadd.
Instruments are categorized by type; each type can have different data fields. The stored data field is
a row vector or character vector for each instrument.
Data Types: struct

Options — Derivatives pricing options structure
structure

(Optional) Derivatives pricing options structure, created using derivset.
Data Types: struct

Output Arguments
Price — Price for each instrument
vector

Price for each instrument, returned as a NINST-by-1 vector. The prices are computed by backward
dynamic programming on the stock tree. If an instrument cannot be priced, a NaN is returned in that
entry.

Related single-type pricing functions are:

• asianbycrr: Price an Asian option from a CRR tree.
• barrierbycrr: Price a barrier option from a CRR tree.
• cbondbycrr: Price convertible bonds from a CRR tree.
• compoundbycrr: Price a compound option from a CRR tree.
• lookbackbycrr: Price a lookback option from a CRR tree.
• optstockbycrr: Price an American, Bermuda, or European option from a CRR tree.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing vectors of
instrument prices and accrued interest, and a vector of observation times for each node. Within
PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.
• PriceTree.dObs contains the observation dates.

See Also
crrsens | crrtree | instadd | instcbond | cbondbycrr

Topics
“Computing Prices Using CRR” on page 3-65
“Graphical Representation of Equity Derivative Trees” on page 3-73
“Pricing Options Structure” on page A-2
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“Supported Equity Derivative Functions” on page 3-19

Introduced before R2006a
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crrsens
Instrument prices and sensitivities from Cox-Ross-Rubinstein tree

Syntax
[Delta,Gamma,Vega,Price] = crrsens(CRRTree,InstSet)
[Delta,Gamma,Vega,Price] = crrsens( ___ ,Options)

Description
[Delta,Gamma,Vega,Price] = crrsens(CRRTree,InstSet) computes instrument sensitivities
and prices for instruments using a binomial tree created with the crrtree function. All sensitivities
are returned as dollar sensitivities. To find the per-dollar sensitivities, divide by the respective
instrument price.

crrsens handles instrument types: 'Asian', 'Barrier', 'Compound', 'CBond', 'Lookback',
'OptStock'. See instadd for information on instrument types.

[Delta,Gamma,Vega,Price] = crrsens( ___ ,Options) adds an optional input argument for
Options.

Examples

Compute Sensitivities for Barrier and Lookback Instruments Using a crrtree

Load the CRR tree and instruments from the data file deriv.mat. Compute the Delta and Gamma
sensitivities of the barrier and lookback options contained in the instrument set.

load deriv.mat; 
CRRSubSet = instselect(CRRInstSet,'Type', ... 
{'Barrier', 'Lookback'}); 

instdisp(CRRSubSet)

Index Type    OptSpec Strike Settle         ExerciseDates  AmericanOpt BarrierSpec Barrier Rebate Name     Quantity
1     Barrier call    105    01-Jan-2003    01-Jan-2006    1           ui          102     0      Barrier1 1       
 
Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name      Quantity
2     Lookback call    115    01-Jan-2003    01-Jan-2006    0           Lookback1 7       
3     Lookback call    115    01-Jan-2003    01-Jan-2007    0           Lookback2 9       
 

Obtain the Delta and Gamma for the barrier and lookback options contained in the instrument set.

[Delta, Gamma] = crrsens(CRRTree, CRRSubSet)

Delta = 3×1

    0.6885
    0.6049
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    0.8187

Gamma = 3×1

    0.0310
   -0.0000
         0

Input Arguments
CRRTree — Stock tree structure
structure

Stock tree structure, specified by using crrtree.
Data Types: struct

InstSet — Instrument variable
structure

Instrument variable containing a collection of NINST instruments, specified using instadd.
Instruments are categorized by type; each type can have different data fields. The stored data field is
a row vector or character vector for each instrument.
Data Types: struct

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, created using derivset.
Data Types: struct

Output Arguments
Delta — Rate of change of instruments prices with respect to changes in the stock price
vector

Rate of change of instruments prices with respect to changes in the stock price, returned as a NINST-
by-1 vector of deltas.

For path-dependent options ('Lookback' and 'Asian'), Delta and Gamma are computed by finite
differences in calls to crrprice. For the rest of the options ('OptStock', 'Barrier', 'CBond',
and 'Compound'), Delta and Gamma are computed from the CRRTree and the corresponding option
price tree.

Gamma — Rate of change of instruments deltas with respect to changes in stock price
vector

Rate of change of instruments deltas with respect to changes in the stock price, returned as a NINST-
by-1 vector of gammas.

For path-dependent options ('Lookback' and 'Asian'), Delta and Gamma are computed by finite
differences in calls to crrprice. For the rest of the options ('OptStock', 'Barrier', 'CBond',
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and 'Compound'), Delta and Gamma are computed from the CRRTree and the corresponding option
price tree.

Vega — Rate of change of instruments prices with respect to changes in volatility of the
stock
vector

Rate of change of instruments prices with respect to changes in the volatility of the stock, returned as
a NINST-by-1 vector of vegas. Vega is computed by finite differences in calls to crrtree.

Price — Price of each instrument
vector

Price of each instrument, returned as a NINST-by-1 vector. The prices are computed by backward
dynamic programming on the stock tree. If an instrument cannot be priced, a NaN is returned in that
entry.

References
[1] Chriss, Neil. Black-Scholes and Beyond: Option Pricing Models. McGraw-Hill, 1996, pp 308-312.

See Also
crrprice | crrtree | cbondbycrr | instcbond

Topics
“Computing Prices Using CRR” on page 3-65
“Graphical Representation of Equity Derivative Trees” on page 3-73
“Pricing Options Structure” on page A-2
“Supported Equity Derivative Functions” on page 3-19

Introduced before R2006a
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crrtimespec
Specify time structure for Cox-Ross-Rubinstein tree

Syntax
TimeSpec = crrtimespec(ValuationDate,Maturity,NumPeriods)

Description
TimeSpec = crrtimespec(ValuationDate,Maturity,NumPeriods) sets the number of levels
and node times for a CRR binomial tree (crrtree).

Examples

Set the Number of Levels and Node Times for a CRR Binomial Tree

This example shows how to specify a four-period CRR tree with time steps of 1 year.

ValuationDate = '1-July-2002';
Maturity = '1-July-2006';
TimeSpec = crrtimespec(ValuationDate, Maturity, 4)

TimeSpec = struct with fields:
           FinObj: 'BinTimeSpec'
    ValuationDate: 731398
         Maturity: 732859
       NumPeriods: 4
            Basis: 0
     EndMonthRule: 1
             tObs: [0 1 2 3 4]
             dObs: [731398 731763 732128 732493 732859]

Input Arguments
ValuationDate — Pricing date and first observation in the tree
serial date number | character vector date

Pricing date and first observation in the crrtree, specified as a scalar date using a serial date
number or date character vector.
Data Types: double | char

Maturity — Date marking the depth of the CRR stock tree
serial date number | date character vector

Date marking the depth of the crrtree binomial tree, specified as scalar serial date number or date
character vector.
Data Types: double | char
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NumPeriods — Number of time steps in the CRR stock tree
integer

Number of time steps in the crrtree binomial tree, specified as scalar integer value.
Data Types: double

Output Arguments
TimeSpec — Specification for the time layout for crrtree
structure

Specification for the time layout for crrtree, returned as a structure.

See Also
crrtree | stockspec

Topics
“Building Equity Binary Trees” on page 3-3
“Examining Equity Trees” on page 3-14
“Understanding Equity Trees” on page 3-2
“Differences Between CRR and EQP Tree Structures” on page 3-17
“Supported Equity Derivative Functions” on page 3-19

Introduced before R2006a
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crrtree
Build Cox-Ross-Rubinstein stock tree

Syntax
CRRTree = crrtree(StockSpec,RateSpec,TimeSpec)

Description
CRRTree = crrtree(StockSpec,RateSpec,TimeSpec) builds a Cox-Ross-Rubinstein stock tree.

Examples

Create a CRR Tree

Using the data provided, create a stock specification (StockSpec), rate specification (RateSpec),
and tree time layout specification (TimeSpec). Then use these specifications to create a CRR tree
with crrtree.

Sigma = 0.20;
AssetPrice = 50;
DividendType = 'cash';
DividendAmounts = [0.50; 0.50; 0.50; 0.50];
ExDividendDates = {'03-Jan-2003'; '01-Apr-2003'; '05-July-2003';
'01-Oct-2003'};

StockSpec = stockspec(Sigma, AssetPrice, DividendType, ...
DividendAmounts, ExDividendDates);

RateSpec = intenvset('Rates', 0.05, 'StartDates',...
'01-Jan-2003', 'EndDates', '31-Dec-2003','Compounding',-1);

ValuationDate = '1-Jan-2003';
Maturity = '31-Dec-2003';
TimeSpec = crrtimespec(ValuationDate, Maturity, 4);

CRRTree = crrtree(StockSpec, RateSpec, TimeSpec)

CRRTree = struct with fields:
       FinObj: 'BinStockTree'
       Method: 'CRR'
    StockSpec: [1x1 struct]
     TimeSpec: [1x1 struct]
     RateSpec: [1x1 struct]
         tObs: [0 0.2493 0.4986 0.7479 0.9972]
         dObs: [731582 731673 731764 731855 731946]
        STree: {1x5 cell}
      UpProbs: [0.5378 0.5378 0.5378 0.5378]
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Input Arguments
StockSpec — Stock specification
structure

Stock specification, specified by the StockSpec obtained from stockspec. See stockspec for
information on creating a stock specification.
Data Types: struct

RateSpec — Interest-rate specification for initial risk-free rate curve
structure

Interest-rate specification for initial risk-free rate curve, specified by the RateSpec obtained from
intenvset. For information on the interest-rate specification, see intenvset.

Note The standard CRR tree assumes a constant interest rate, but RateSpec allows you to specify
an interest-rate curve with varying rates. If you specify variable interest rates, the resulting tree is
not a standard CRR tree.

Data Types: struct

TimeSpec — Tree time layout specification
structure

Tree time layout specification, specified by the TimeSpec obtained from crrtimespec. The
TimeSpec defines the observation dates of the CRR binomial tree. See crrtimespec for information
on the tree structure.
Data Types: struct

Output Arguments
CRRTree — CRR binomial tree
structure

CRR binomial tree, returned as a structure specifying the time layout for the tree.

See Also
crrtimespec | intenvset | stockspec

Topics
“Building Equity Binary Trees” on page 3-3
“Examining Equity Trees” on page 3-14
“Use treeviewer to Examine HWTree and PriceTree When Pricing European Callable Bond” on page
2-195
“Understanding Equity Trees” on page 3-2
“Differences Between CRR and EQP Tree Structures” on page 3-17
“Supported Equity Derivative Functions” on page 3-19

Introduced before R2006a
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cvtree
Convert inverse-discount tree to interest-rate tree

Syntax
RateTree = cvtree(Tree)

Description
RateTree = cvtree(Tree) converts a tree structure using inverse-discount notation to a tree
structure using rate notation for forward rates.

Examples

Convert a Hull-White Tree Using Inverse-Discount Notation

Convert a Hull-White tree using inverse-discount notation to a Hull-White tree displaying interest-rate
notation.

load deriv.mat;
HWTree

HWTree = struct with fields:
      FinObj: 'HWFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [731947 732313 732678 733043]
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}
     Connect: {[2]  [2 3 4]  [2 2 3 4 4]}
     FwdTree: {1x4 cell}

HWTree.FwdTree{1}

ans = 1.0279

HWTree.FwdTree{2}

ans = 1×3

    1.0528    1.0356    1.0186

Use treeviewer to display the path of interest rates expressed in inverse-discount notation.

treeviewer(HWTree)
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Use cvtree to convert the inverse-discount notation to interest-rate notation.

RTree = cvtree(HWTree)

RTree = struct with fields:
      FinObj: 'HWRateTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [731947 732313 732678 733043]
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}
     Connect: {[2]  [2 3 4]  [2 2 3 4 4]}
    RateTree: {1x4 cell}

RTree.RateTree{1}

ans = 0.0275

RTree.RateTree{2}

ans = 1×3

    0.0514    0.0349    0.0185
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use treeviewer to display the converted tree, showing the path of interest rates expressed as
forward rates.

treeviewer(RTree)

Input Arguments
Tree — Tree structure
HJM Tree | BDT Tree | HW Tree | BK Tree | CIR Tree

Tree structure, specified by Heath-Jarrow-Morton, Black-Derman-Toy, Hull-White, Black-Karasinski, or
Cox-Ingersoll-Ross tree structure that uses inverse-discount notation for forward rates.
Data Types: struct

Output Arguments
RateTree — Tree structure using rate notation for forward rates
structure

Tree structure using rate notation for forward rates, returned as a tree structure.

See Also
disc2rate | rate2disc
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Topics
“Graphical Representation of Trees” on page 2-220

Introduced before R2006a
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date2time
Time and frequency from dates

Syntax
[Times,F] = date2time(Settle,Maturity)
[Times,F] = date2time( ___ ,Compounding,Basis,EndMonthRule)

Description
[Times,F] = date2time(Settle,Maturity) computes time factors appropriate to compounded
rate quotes beyond the settlement date.

[Times,F] = date2time( ___ ,Compounding,Basis,EndMonthRule) add additional optional
arguments.

Examples

Time and Frequency from Dates

This example shows how to compute time and frequency from dates.

Settle = '1-Sep-2002';
Maturity = datenum(['31-Aug-2005'; '28-Feb-2006'; '15-Jun-2006'; 
                 '31-Dec-2006']);
Compounding = 2;
Basis = 0;
EndMonthRule = 1;
Times = date2time(Settle, Maturity, Compounding, Basis, EndMonthRule)

Times = 4×1

    5.9945
    6.9945
    7.5738
    8.6576

Input Arguments
Settle — Settlement date
date character vector | serial date number

Settlement date, specified as a scalar serial date number or date character vector.
Data Types: char | double

Maturity — Maturity dates
date character vector | serial date number
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Maturity dates, specified as a scalar numeric or an N-by-1 vector of dates.
Data Types: double

Compounding — Rate at which the input zero rates were compounded when annualized
2 (default) | integer with value of 1, 2, 3, 4, 6, 12, 365, or -1

(Optional) Rate at which the input zero rates were compounded when annualized, specified as a
scalar integer value.

• If Compounding = 1, 2, 3, 4, 6, 12:

Disc = (1 + Z/F)^(-T), where F is the compounding frequency, Z is the zero rate, and T is the
time in periodic units; for example, T = F is one year.

• If Compounding = 365:

Disc = (1 + Z/F)^(-T), where F is the number of days in the basis year and T is a number of
days elapsed computed by basis.

• If Compounding = −1:

Disc = exp(-T*Z), where T is time in years.

Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis, specified as a scalar or an N-by-1 vector using the following values:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer [0,1]

 date2time

11-457



(Optional) End-of-month rule flag, specified as a scalar or an N-by-1 vector of end-of-month rules.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: logical

Output Arguments
Times — Time factors appropriate to compounded rate quotes between Settle and
Maturity dates
vector

Time factors appropriate to compounded rate quotes between Settle and Maturity dates, returned
as an N-by-1 vector.

F — Frequency
numeric

Frequency, returned as a scalar of related compounding frequencies.

Note To obtain accurate results from this function, the Basis and Maturity arguments must be
consistent. If the Maturity argument contains months that have 31 days, Basis must be one of the
values that allow months to contain more than 30 days; for example, Basis = 0, 3, or 7.

date2time is the inverse of time2date.

See Also
cftimes | disc2rate | rate2disc | time2date

Topics
“Modeling the Interest-Rate Term Structure” on page 2-57
“Interest-Rate Term Conversions” on page 2-53
“Interest Rates Versus Discount Factors” on page 2-48
“Graphical Representation of Trees” on page 2-220
“Understanding the Interest-Rate Term Structure” on page 2-48

Introduced before R2006a
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datedisp
Display date entries

Syntax
datedisp(NumMat,DateForm)
CharMat = datedisp(NumMat,DateForm)

Description
datedisp(NumMat,DateForm) displays the matrix with the serial dates formatted as date character
vectors, using a matrix with mixed numeric entries and serial date number entries. Integers between
datenum('01-Jan-1900') and datenum('01-Jan-2200') are assumed to be serial date
numbers, while all other values are treated as numeric entries.

CharMat = datedisp(NumMat,DateForm) displays the output matrix CharMat.

Examples

Display Date Entries

This example shows how to display dates for serial date numbers.

NumMat = [ 730730, 0.03, 1200, 730100;
           730731, 0.05, 1000, NaN]

NumMat = 2×4
105 ×

    7.3073    0.0000    0.0120    7.3010
    7.3073    0.0000    0.0100       NaN

datedisp(NumMat)

01-Sep-2000   0.03   1200   11-Dec-1998   
02-Sep-2000   0.05   1000      NaN        

Input Arguments
NumMat — Numeric matrix to display
numeric

Numeric matrix to display, specified as numeric values for serial date numbers.
Data Types: double

DateForm — date format
character vector
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(Optional) Date format, specified as a character vector. See datestr for available and default format
flags.
Data Types: char

Output Arguments
CharMat — Character array representing the matrix
array

Character array representing the matrix, returned as an array. If no output variable is assigned,
datedisp prints the array to the display.

Tips
This function is identical to the datedisp function in Financial Toolbox software.

See Also
datenum | datestr

Topics
“Modeling the Interest-Rate Term Structure” on page 2-57
“Interest-Rate Term Conversions” on page 2-53
“Interest Rates Versus Discount Factors” on page 2-48
“Graphical Representation of Trees” on page 2-220
“Understanding the Interest-Rate Term Structure” on page 2-48

Introduced before R2006a
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derivget
Get derivatives pricing options

Syntax
Value = derivget(Options,ParameterName)

Description
Value = derivget(Options,ParameterName) extracts the value of the specified
ParameterName argument values from the derivative Options structure.

Examples

Get Derivatives Pricing Options

Enable the display of additional diagnostic information that appears when executing pricing functions

Options = derivset('Diagnostics','on')

Options = struct with fields:
      Diagnostics: 'on'
         Warnings: 'on'
        ConstRate: 'on'
    BarrierMethod: 'unenhanced'

Use derivget to extract the value of Diagnostics from the Options structure.

Value = derivget(Options, 'Diagnostics')

Value = 
'on'

Use derivget to extract the value of ConstRate.

Value   = derivget(Options, 'ConstRate')

Value = 
'on'

If the value of 'ConstRate' is not previously set with derivset, the answer represents the default
setting for 'ConstRate'.

Find the value of 'BarrierMethod' in this Options structure.

derivget(Options ,'BarrierMethod')

ans = 
'unenhanced'
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Input Arguments
Options — Existing options specification
structure

Existing options specification, specified as a structure obtained from a previous call to derivset.
Data Types: struct

ParameterName — Parameter name to be accessed in Options structure
character vector with value of 'Diagnostics', 'Warnings', 'ConstRate', or 'BarrierMethod'

Parameter name to be accessed in Options structure, specified as a character vector for one of the
following:

• 'Diagnostics' — Print diagnostic information with a returned value of 'on' or 'off'. This
option applies only for HJM, BDT, HW and BK pricing.

• 'Warnings' — Display warnings with a returned value of 'on' or 'off'. This option applies
only for HJM, BDT, HW and BK pricing.

• 'ConstRate' — Assume constant rates between tree nodes with a returned value of 'on' or
'off'. This option applies only for HJM, BDT, HW and BK pricing.

• BarrierMethod — Method for pricing Barrier option. The returned values are either
'unenhanced' that uses no correction calculation or 'interp' that uses an enhanced valuation
interpolating between nodes on barrier boundaries.

Data Types: char

Output Arguments
Value — Value
character vector

Value, returned as a character vector depending on the specified ParameterName.

See Also
barrierbycrr | barrierbyeqp | derivset

Topics
“Computing Instrument Prices” on page 2-81
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2

Introduced before R2006a
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derivset
Set or modify derivatives pricing options

Syntax
Options = derivset(Options,Name,Value)
Options = derivset(Name,Value)
Options = derivset(OldOptions,NewOptions)
Options = derivset
derivset

Description
Options = derivset(Options,Name,Value) modifies an existing derivatives pricing options
structure Options by changing the specified name-value pair argument values.

Options = derivset(Name,Value) creates a derivatives pricing options structure Options using
the specified name-value pair argument values. Any unspecified name-value arguments are set to
default values for when the Options output is passed to the derivatives function.

Options = derivset(OldOptions,NewOptions) combines an existing options structure
OldOptions with a new options structure NewOptions. Any parameters in NewOptions with
nonempty values overwrite the corresponding old parameters in OldOptions.

Options = derivset creates an options structure Options where all the parameters are set to the
default values.

derivset with no input or output arguments displays all parameter names and information about
their possible values.

Examples

Set or Modify Derivatives Pricing Options

Enable the display of additional diagnostic information that appears when executing pricing functions

Options = derivset('Diagnostics','on')

Options = struct with fields:
      Diagnostics: 'on'
         Warnings: 'on'
        ConstRate: 'on'
    BarrierMethod: 'unenhanced'

Change the ConstRate parameter in the existing Options structure so that the assumption of
constant rates between tree nodes no longer applies.

Options = derivset(Options, 'ConstRate', 'off')
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Options = struct with fields:
      Diagnostics: 'on'
         Warnings: 'on'
        ConstRate: 'off'
    BarrierMethod: 'unenhanced'

With no input or output arguments, derivset displays all parameter names and information about
their possible values.

derivset

            Diagnostics: [ on   | {off} ]
               Warnings: [ {on} | off   ]
              ConstRate: [ {on} | off   ]
          BarrierMethod: [ {unenhanced} | interp ]

Input Arguments
Options — Existing options specification
structure

Existing options specification, specified as a structure obtained from a previous call to derivset.
Data Types: struct

OldOptions — Existing options specification
structure

Existing options specification, specified as a structure obtained from a previous call to derivset.
Data Types: struct

NewOptions — New options specification
structure

New options specification, specified as a structure.
Data Types: struct

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Options = derivset(Options, 'ConstRate', 'off')

Diagnostics — Print diagnostic information
character vectors with value 'on' or 'off'

Print diagnostic information, specified as the comma-separated pair consisting of 'Diagnostics'
and a character vector. This option applies only for HJM, BDT, HW and BK pricing.
Data Types: char
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Warnings — Display warnings
character vectors with value 'on' or 'off'

Display warnings, specified as the comma-separated pair consisting of 'Warnings' and a character
vector. This option applies only for HJM, BDT, HW and BK pricing.
Data Types: char

ConstRate — Assume constant rates between tree nodes
character vectors with value 'on' or 'off'

Assume constant rates between tree nodes, specified as the comma-separated pair consisting of
'ConstRate' and a character vector. This option applies only for HJM, BDT, HW and BK pricing.
Data Types: char

BarrierMethod — Method for pricing Barrier option
'unenhanced' (default) | character vector with value of 'unenhanced' or 'interp'

Method for pricing Barrier option, specified as the comma-separated pair consisting of
'BarrierMethod' and a character vector. Specifying 'unenhanced' uses no correction calculation.
Specifying 'interp' uses an enhanced valuation interpolating between nodes on barrier boundaries.
Data Types: char

Output Arguments
Options — Options specification
structure

Options specification, returned as a structure encapsulating the properties of a derivatives option.

See Also
barrierbycrr | barrierbyeqp | derivget

Topics
“Computing Instrument Prices” on page 2-81
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2

Introduced before R2006a
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disc2rate
Interest rates from cash flow discounting factors

Syntax
Rates = disc2rate(Compounding,Disc,EndTimes,StartTimes)
[Rates,EndTimes,StartTimes] = disc2rate(Compounding,Disc,EndTimes,StartTimes,
ValuationDate,Basis,EndMonthRule)

Description
Rates = disc2rate(Compounding,Disc,EndTimes,StartTimes) computes interest rates from
discount factors where interval points are input as times in periodic units.

disc2rate computes the yields over a series of NPOINTS time intervals given the cash flow
discounts over those intervals. NCURVES different rate curves can be translated at once if they have
the same time structure. The time intervals can represent a zero or a forward curve.

The output Rates is an NPOINTS-by-NCURVES column vector of yields in decimal form over the
NPOINTS time intervals.

[Rates,EndTimes,StartTimes] = disc2rate(Compounding,Disc,EndTimes,StartTimes,
ValuationDate,Basis,EndMonthRule) computes interest rates from discount factors where
ValuationDate is passed and interval points are input as dates.

You can specify the investment intervals either with input times or with input dates. Entering
ValuationDate invokes the date interpretation; omitting ValuationDate invokes the default time
interpretations.

Examples

Compute Interest Rates from Cash Flow Discounting Factors

This example shows the two uses of disc2rate.

Interval Points Are Input as Times in Periodic Units

Compute rates from a zero curve at 6 months, 12 months, and 24 months, given the discount factors
for these periods. The times to the cash flows are 1, 2, and 4. disc2rate assumes that the valuation
date corresponds to time = 0.

Compounding = 2;
Disc = [0.9756; 0.9426; 0.8799];
EndTimes   = [1; 2; 4];
Rates = disc2rate(Compounding, Disc, EndTimes)

Rates = 3×1

    0.0500
    0.0600
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    0.0650

Interval Points Are Input as Dates

Compute rates from a zero curve at 6 months, 12 months, and 24 months, given the discount factors
for these periods. Use dates to specify the ending time horizon.

Compounding = 2;
Disc = [0.9756; 0.9426; 0.8799];
EndDates = ['10/15/97'; '04/15/98'; '04/15/99'];
ValuationDate = '4/15/97'; 
Rates = disc2rate(Compounding, Disc, EndDates, [], ValuationDate)

Rates = 3×1

    0.0500
    0.0600
    0.0650

Input Arguments
Compounding — Compounding rate
integer with value of 0, 1, 2, 3, 4, 6, 12, 365, -1

Compounding rate for which the input zero rates are compounded when annualized, specified as one
of the following scalar integers. Compounding determines the formula for the discount factors
(Disc):

• If Compounding = 0 for simple interest:

• Disc = 1/(1 + Z * T), where T is time in years and simple interest assumes annual times
F = 1.

• If Compounding = 1, 2, 3, 4, 6, 12:

• Disc = (1 + Z/F)^(-T), where F is the compounding frequency, Z is the zero rate, and T is
the time in periodic units, for example, T = F is one year.

• If Compounding = 365:

• Disc = (1 + Z/F)^(-T), where F is the number of days in the basis year and T is a number
of days elapsed computed by basis.

• If Compounding = -1:

• Disc = exp(-T*Z), where T is time in years.

Data Types: double

Disc — Discounts
matrix

Discounts, specified as a number of points (NPOINTS) by number of curves (NCURVES) matrix of
discounts. Disc are unit bond prices over investment intervals from StartTimes, when the cash
flow is valued, to EndTimes, when the cash flow is received.
Data Types: double
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EndTimes — End times
numeric | date character vector | serial date number

End times, specified as a scalar or an NPOINTS-by-1 column vector of times in periodic units ending
the interval to discount over. When EndTimes is not a date, the value for EndTimes is T computed
from SIA semi-annual time factors, Tsemi, by the formula T = Tsemi/2 * F, where F is the
compounding frequency. F is set to 1 for continuous compounding.

Note When ValuationDate is not passed, EndTimes is interpreted as times. If Compounding =
365 (daily), EndTimes is measured in days.

Data Types: double | char

StartTimes — Start times
numeric | date character vector | serial date number

Start times, specified a scalar or an NPOINTS-by-1 column vector of times in periodic units starting
the interval to discount over. StartDates must be earlier than EndDates. When StarTimes is not a
date, the value for StartTimes is T computed from SIA semi-annual time factors, Tsemi, by the
formula T = Tsemi/2 * F, where F is the compounding frequency. F is set to 1 for continuous
compounding.

Note When ValuationDate is not passed, StartTimes is interpreted as times. If Compounding =
365 (daily), StartTimes is measured in days.

Data Types: double | char

ValuationDate — Observation date of the investment horizons entered in StartTimes and
EndTimes
date character vector | serial date number

Observation date of the investment horizons entered in StartTimes and EndTimes, specified as
scalar date.

Note You can specify the investment intervals either with input times or with input dates. Entering
ValuationDate invokes the date interpretation; omitting ValuationDate invokes the default time
interpretations.

Data Types: double | char

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis of the instrument when using dates for StartTimes and EndTimes, specified as a
scalar or an NINST-by-1 vector of integers..

• 0 = actual/actual
• 1 = 30/360 (SIA)

11 Functions

11-468



• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer with values 0 or 1

End-of-month rule flag when using dates for StartTimes and EndTimes, specified as a scalar or an
NINST-by-1 vector of nonnegative integers. This rule applies only when Maturity is an end-of-month
date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: double

Output Arguments
Rates — Rates
vector

Rates, returned as an NPOINTS-by-NCURVES column vector of in decimal form over NPOINTS time
intervals.

EndTimes — Times ending the interval to discount over
vector

Times ending the interval to discount over, returned as an NPOINTS-by-1 column vector, measured in
periodic units.

StartTimes — Times starting the interval to discount over
vector

Times starting the interval to discount over, returned as an NPOINTS-by-1 column vector, measured in
periodic units.
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See Also
rate2disc | ratetimes

Topics
“Modeling the Interest-Rate Term Structure” on page 2-57
“Interest-Rate Term Conversions” on page 2-53
“Interest Rates Versus Discount Factors” on page 2-48
“Understanding the Interest-Rate Term Structure” on page 2-48

Introduced before R2006a
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eqpprice
Instrument prices from Equal Probabilities binomial tree

Syntax
[Price,PriceTree] = eqpprice(EQPTree,InstSet)
[Price,PriceTree] = eqpprice( ___ ,Options)

Description
[Price,PriceTree] = eqpprice(EQPTree,InstSet) computes stock option prices using an
EQP binomial tree created with eqptree. All instruments contained in a financial instrument
variable, InstSet, are priced.

eqpprice handles instrument types: 'Asian', 'Barrier', 'Compound', 'CBond', 'Lookback',
'OptStock'. See instadd to construct defined types.

[Price,PriceTree] = eqpprice( ___ ,Options) adds an optional input argument for Options.

Examples

Price the Put Options Contained in the Instrument Set

Load the EQP tree and instruments from the data file deriv.mat. Price the put options contained in
the instrument set.

load deriv.mat; 
EQPSubSet = instselect(EQPInstSet, 'FieldName', 'OptSpec', ...
'Data', 'put')

EQPSubSet = struct with fields:
        FinObj: 'Instruments'
    IndexTable: [1x1 struct]
          Type: {5x1 cell}
     FieldName: {5x1 cell}
    FieldClass: {5x1 cell}
     FieldData: {5x1 cell}

instdisp(EQPSubSet)

Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name  Quantity
1     OptStock put     105    01-Jan-2003    01-Jan-2006    0           Put1   5      
 
Index Type  OptSpec Strike Settle         ExerciseDates  AmericanOpt AvgType    AvgPrice AvgDate Name   Quantity
2     Asian put     110    01-Jan-2003    01-Jan-2006    0           arithmetic NaN      NaN     Asian1 4       
3     Asian put     110    01-Jan-2003    01-Jan-2007    0           arithmetic NaN      NaN     Asian2 6       
 

Price the put options.
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[Price, PriceTree] = eqpprice(EQPTree, EQPSubSet)

Price = 3×1

    2.6375
    4.7444
    3.9178

PriceTree = struct with fields:
    FinObj: 'BinPriceTree'
     PTree: {1x5 cell}
      tObs: [0 1 2 3 4]
      dObs: [731582 731947 732313 732678 733043]

You can use treeviewer to see the prices of these three instruments along the price tree.
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Input Arguments
EQPTree — Stock price tree structure
structure

Stock price tree structure, specified by using eqptree.
Data Types: struct

InstSet — Instrument variable
structure

Instrument variable containing a collection of NINST instruments, specified using instadd.
Instruments are categorized by type; each type can have different data fields. The stored data field is
a row vector or character vector for each instrument.
Data Types: struct

Options — Derivatives pricing options structure
structure

(Optional) Derivatives pricing options structure, created using derivset.
Data Types: struct

Output Arguments
Price — Price for each instrument
vector

Price for each instrument, returned as a NINST-by-1 vector. The prices are computed by backward
dynamic programming on the stock tree. If an instrument cannot be priced, a NaN is returned in that
entry.

Related single-type pricing functions are:

• asianbyeqp: Price an Asian option from an EQP tree.
• barrierbyeqp: Price a barrier option from an EQP tree.
• cbondbyeqp: Price convertible bonds from an EQP tree.
• compoundbyeqp: Price a compound option from an EQP tree.
• lookbackbyeqp: Price a lookback option from an EQP tree.
• optstockbyeqp: Price an American, Bermuda, or European option from an EQP tree.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing vectors of
instrument prices and accrued interest, and a vector of observation times for each node. Within
PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.
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• PriceTree.dObs contains the observation dates.

See Also
eqpsens | eqptimespec | eqptree | instadd | instcbond | cbondbyeqp

Topics
“Computing Prices Using EQP” on page 3-66
“Graphical Representation of Equity Derivative Trees” on page 3-73
“Pricing Options Structure” on page A-2
“Supported Equity Derivative Functions” on page 3-19

Introduced before R2006a
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eqpsens
Instrument prices and sensitivities from Equal Probabilities binomial tree

Syntax
[Delta,Gamma,Vega,Price] = eqpsens(EQPTree,InstSet)
[Delta,Gamma,Vega,Price] = eqpsens( ___ ,Options)

Description
[Delta,Gamma,Vega,Price] = eqpsens(EQPTree,InstSet) computes instrument sensitivities
and prices for instruments using a binomial tree created with the eqptree function. All sensitivities
are returned as dollar sensitivities. To find the per-dollar sensitivities, divide by the respective
instrument price.

eqpsens handles instrument types: 'Asian', 'Barrier', 'Compound', 'CBond', 'Lookback',
and 'OptStock'. See instadd for information on instrument types.

[Delta,Gamma,Vega,Price] = eqpsens( ___ ,Options) adds an optional input argument for
Options.

Examples

Compute Sensitivities for Instruments Using an eqptree

Load the EQP tree and instruments from the data file deriv.mat. Compute the Delta and Gamma
sensitivities of the put options contained in the instrument set.

load deriv.mat; 

EQPSubSet = instselect(EQPInstSet, 'FieldName', 'OptSpec', ...
'Data', 'put')

EQPSubSet = struct with fields:
        FinObj: 'Instruments'
    IndexTable: [1x1 struct]
          Type: {5x1 cell}
     FieldName: {5x1 cell}
    FieldClass: {5x1 cell}
     FieldData: {5x1 cell}

instdisp(EQPSubSet)

Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name  Quantity
1     OptStock put     105    01-Jan-2003    01-Jan-2006    0           Put1   5      
 
Index Type  OptSpec Strike Settle         ExerciseDates  AmericanOpt AvgType    AvgPrice AvgDate Name   Quantity
2     Asian put     110    01-Jan-2003    01-Jan-2006    0           arithmetic NaN      NaN     Asian1 4       
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3     Asian put     110    01-Jan-2003    01-Jan-2007    0           arithmetic NaN      NaN     Asian2 6       
 

Obtain the Delta and Gamma for the put options contained in the instrument set.

[Delta, Gamma] = eqpsens(EQPTree, EQPSubSet)

Delta = 3×1

   -0.2336
   -0.5443
   -0.4516

Gamma = 3×1

    0.0218
    0.0000
    0.0000

Input Arguments
EQPTree — Stock tree structure
structure

Stock tree structure, specified by using eqptree.
Data Types: struct

InstSet — Instrument variable
structure

Instrument variable containing a collection of NINST instruments, specified using instadd.
Instruments are categorized by type; each type can have different data fields. The stored data field is
a row vector or character vector for each instrument.
Data Types: struct

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, created using derivset.
Data Types: struct

Output Arguments
Delta — Rate of change of instruments prices with respect to changes in the stock price
vector

Rate of change of instruments prices with respect to changes in the stock price, returned as a NINST-
by-1 vector of deltas.

For path-dependent options ('Lookback' and 'Asian'), Delta and Gamma are computed by finite
differences in calls to eqpprice. For the rest of the options ('OptStock', 'Barrier', 'CBond',
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and 'Compound'), Delta and Gamma are computed from the EQPTree and the corresponding option
price tree.

Gamma — Rate of change of instruments deltas with respect to changes in stock price
vector

Rate of change of instruments deltas with respect to changes in the stock price, returned as a NINST-
by-1 vector of gammas.

For path-dependent options ('Lookback' and 'Asian'), Delta and Gamma are computed by finite
differences in calls to eqpprice. For the rest of the options ('OptStock', 'Barrier', 'CBond',
and 'Compound'), Delta and Gamma are computed from the EQPTree and the corresponding option
price tree.

Vega — Rate of change of instruments prices with respect to changes in volatility of the
stock
vector

Rate of change of instruments prices with respect to changes in the volatility of the stock, returned as
a NINST-by-1 vector of vegas. Vega is computed by finite differences in calls to eqptree.

Price — Price of each instrument
vector

Price of each instrument, returned as a NINST-by-1 vector. The prices are computed by backward
dynamic programming on the stock tree. If an instrument cannot be priced, a NaN is returned in that
entry.

References
[1] Chriss, Neil. Black-Scholes and Beyond: Option Pricing Models. McGraw-Hill, 1996, pp 308-312.

See Also
eqpprice | eqptree | cbondbyeqp | instcbond

Topics
“Computing Prices Using EQP” on page 3-66
“Graphical Representation of Equity Derivative Trees” on page 3-73
“Pricing Options Structure” on page A-2
“Supported Equity Derivative Functions” on page 3-19

Introduced before R2006a
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eqptimespec
Specify time structure for Equal Probabilities binomial tree

Syntax
TimeSpec = eqptimespec(ValuationDate,Maturity,NumPeriods)

Description
TimeSpec = eqptimespec(ValuationDate,Maturity,NumPeriods) sets the number of levels
and node times for an equal probabilities tree (eqptree).

Examples

Set the Number of Levels and Node Times for an EQP Tree

This example shows how to set the number of levels and node times for an EQP tree by specifying a
four-period tree with time steps of 1 year.

ValuationDate = '1-July-2002';
Maturity = '1-July-2006';
TimeSpec = eqptimespec(ValuationDate, Maturity, 4)

TimeSpec = struct with fields:
           FinObj: 'BinTimeSpec'
    ValuationDate: 731398
         Maturity: 732859
       NumPeriods: 4
            Basis: 0
     EndMonthRule: 1
             tObs: [0 1 2 3 4]
             dObs: [731398 731763 732128 732493 732859]

Input Arguments
ValuationDate — Pricing date and first observation in the tree
serial date number | character vector date

Pricing date and first observation in the eqptree, specified as a scalar date using a serial date
number or date character vector.
Data Types: double | char

Maturity — Date marking the depth of the EQP stock tree
serial date number | date character vector

Date marking the depth of the eqptree binomial tree, specified as scalar serial date number or date
character vector.
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Data Types: double | char

NumPeriods — Number of time steps in the EQP tree
integer

Number of time steps in the eqptree binomial tree, specified as scalar integer value.
Data Types: double

Output Arguments
TimeSpec — Specification for the time layout for eqptree
structure

Specification for the time layout for eqptree, returned as a structure.

See Also
eqptree | stockspec

Topics
“Computing Prices Using EQP” on page 3-66
“Graphical Representation of Equity Derivative Trees” on page 3-73
“Pricing Options Structure” on page A-2
“Supported Equity Derivative Functions” on page 3-19

Introduced before R2006a
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eqptree
Build Equal Probabilities stock tree

Syntax
EQPTree = eqptree(StockSpec,RateSpec,TimeSpec)

Description
EQPTree = eqptree(StockSpec,RateSpec,TimeSpec) builds an Equal Probabilities stock tree.

Examples

Create an EQP Tree

Using the data provided, create a stock specification (StockSpec), rate specification (RateSpec),
and tree time layout specification (TimeSpec). Then use these specifications to create an EQP stock
tree with eqptree.

Sigma = 0.20;
AssetPrice = 50;
DividendType = 'cash';
DividendAmounts = [0.50; 0.50; 0.50; 0.50];
ExDividendDates = {'03-Jan-2003'; '01-Apr-2003'; '05-July-2003'; 
'01-Oct-2003'};

StockSpec = stockspec(Sigma, AssetPrice, DividendType, ... 
DividendAmounts, ExDividendDates);

RateSpec = intenvset('Rates', 0.05, 'StartDates',... 
'01-Jan-2003', 'EndDates', '31-Dec-2003');

ValuationDate = '1-Jan-2003';
Maturity = '31-Dec-2003';
TimeSpec = eqptimespec(ValuationDate, Maturity, 4);

EQPTree = eqptree(StockSpec, RateSpec, TimeSpec)

Warning: RateSpec was not created with continuous compounding. Compounding will
be set to continuous while leaving discount factors unaltered. This will result
in the recalculation of the interest rates. 

EQPTree = 

  struct with fields:

       FinObj: 'BinStockTree'
       Method: 'EQP'
    StockSpec: [1×1 struct]
     TimeSpec: [1×1 struct]
     RateSpec: [1×1 struct]
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         tObs: [0 0.2493 0.4986 0.7479 0.9972]
         dObs: [731582 731673 731764 731855 731946]
        STree: {1×5 cell}
      UpProbs: [0.5000 0.5000 0.5000 0.5000]]

Use treeviewer to observe the tree you have created.

Input Arguments
StockSpec — Stock specification
structure

Stock specification, specified by the StockSpec obtained from stockspec. See stockspec for
information on creating a stock specification.
Data Types: struct

RateSpec — Interest-rate specification for initial risk-free rate curve
structure

Interest-rate specification for initial risk-free rate curve, specified by the RateSpec obtained from
intenvset. For information on the interest-rate specification, see intenvset.

Note The standard equal probabilities tree assumes a constant interest rate, but RateSpec allows
you to specify an interest-rate curve with varying rates. If you specify variable interest rates, the
resulting tree is not a standard equal probabilities tree.

Data Types: struct

TimeSpec — Tree time layout specification
structure

Tree time layout specification, specified by the TimeSpec obtained from eqptimespec. The
TimeSpec defines the observation dates of the EQP stock tree. See eqptimespec for information on
the tree structure.
Data Types: struct

Output Arguments
EQPTree — EQP stock tree
structure

EQP stock tree, returned as a structure specifying the time layout for the tree.

See Also
eqptimespec | intenvset | stockspec

Topics
“Computing Prices Using EQP” on page 3-66
“Graphical Representation of Equity Derivative Trees” on page 3-73
“Use treeviewer to Examine HWTree and PriceTree When Pricing European Callable Bond” on page
2-195
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“Pricing Options Structure” on page A-2
“Supported Equity Derivative Functions” on page 3-19

Introduced before R2006a
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fixedbybdt
Price fixed-rate note from Black-Derman-Toy interest-rate tree

Syntax
[Price,PriceTree] = fixedbybdt(BDTTree,CouponRate,Settle,Maturity)
[Price,PriceTree] = fixedbybdt( ___ ,Name,Value)

Description
[Price,PriceTree] = fixedbybdt(BDTTree,CouponRate,Settle,Maturity) prices a fixed-
rate note from a Black-Derman-Toy interest-rate tree.

[Price,PriceTree] = fixedbybdt( ___ ,Name,Value) adds additional name-value pair
arguments.

Examples

Price a 10% Fixed-Rate Note Using a BDT Interest-Rate Tree

This example shows how to price a 10% fixed-rate note using a BDT interest-rate tree by loading the
file deriv.mat, which provides BDTTree. The BDTTree structure contains the time and interest-rate
information needed to price the note.

load deriv.mat 

CouponRate = 0.10;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';
FixedReset = 1;

Price = fixedbybdt(BDTTree, CouponRate, Settle, Maturity, FixedReset)

Price = 92.9974

Input Arguments
BDTTree — Interest-rate structure
structure

Interest-rate tree structure, created by bdttree
Data Types: struct

CouponRate — Coupon annual rate
decimal

Coupon annual rate, specified as a NINST-by-1 vector.
Data Types: double
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Settle — Settlement date
serial date number | character vector

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers or date
character vectors.

The Settle date for every fixed-rate note is set to the ValuationDate of the BDT Tree. The fixed-
rate note argument Settle is ignored.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector

Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character vectors
representing the maturity date for each fixed-rate note.
Data Types: char | double

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree] =
fixedbybdt(BDTTree,CouponRate,Settle,Maturity,'FixedReset',4)

FixedReset — Frequency of payments per year
1 (default) | vector

Frequency of payments per year, specified as the comma-separated pair consisting of 'FixedReset'
and a NINST-by-1 vector.
Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13

Day count basis representing the basis used when annualizing the input forward rate tree, specified
as the comma-separated pair consisting of 'Basis' and a NINST-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
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• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amounts or principal value schedules
100 (default) | vector or cell array

Notional principal amounts, specified as the comma-separated pair consisting of 'Principal' and a
vector or cell array.

Principal accepts a NINST-by-1 vector or NINST-by-1 cell array, where each element of the cell
array is a NumDates-by-2 cell array and the first column is dates and the second column is its
associated notional principal value. The date indicates the last day that the principal value is valid.
Data Types: cell | double

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure using derivset.
Data Types: struct

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month
having 30 or fewer days, specified as the comma-separated pair consisting of 'EndMonthRule' and
a nonnegative integer [0, 1] using a NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-separated pair
consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 vector of logicals with values of 0 (false)
or 1 (true).
Data Types: logical

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers
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Holidays used in computing business days, specified as the comma-separated pair consisting of
'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 cell array of character vectors of
business day conventions. The selection for business day convention determines how non-business
days are treated. Non-business days are defined as weekends plus any other date that businesses are
not open (e.g. statutory holidays). Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-business days
are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on the
following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day. However if the following business day is in a different month, the
previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed on the
previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day. However if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell

Output Arguments
Price — Expected fixed-rate note prices at time 0
vector

Expected fixed-rate note prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing vectors of
instrument prices and accrued interest, and a vector of observation times for each node. Within
PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.
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More About
Fixed-Rate Note

A fixed-rate note is a long-term debt security with a preset interest rate and maturity, by which the
interest must be paid.

The principal may or may not be paid at maturity. In Financial Instruments Toolbox, the principal is
always paid at maturity. For more information, see “Fixed-Rate Note” on page 2-9.

See Also
bdttree | bondbybdt | capbybdt | cfbybdt | floatbybdt | floorbybdt | swapbybdt

Topics
“Computing Instrument Prices” on page 2-81
“Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-10
“Fixed-Rate Note” on page 2-9
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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fixedbybk
Price fixed-rate note from Black-Karasinski interest-rate tree

Syntax
[Price,PriceTree] = fixedbybk(BKTree,CouponRate,Settle,Maturity)
[Price,PriceTree] = fixedbybk( ___ ,Name,Value)

Description
[Price,PriceTree] = fixedbybk(BKTree,CouponRate,Settle,Maturity) prices a fixed-
rate note from a Black-Karasinski interest-rate tree.

[Price,PriceTree] = fixedbybk( ___ ,Name,Value) adds additional name-value pair
arguments.

Examples

Price a 5% Fixed-Rate Note Using a Black-Karasinski Interest-Rate Tree

Load the file deriv.mat, which provides BKTree. The BKTree structure contains the time and
interest-rate information needed to price the note.

load deriv.mat;

Set the required values. Other arguments will use defaults.

CouponRate = 0.05;
Settle = '01-Jan-2004';
Maturity = '01-Jan-2006';

Use fixedbybk to compute the price of the note.

Price = fixedbybk(BKTree, CouponRate, Settle, Maturity)

Price = 103.5126

Input Arguments
BKTree — Interest-rate structure
structure

Interest-rate tree structure, created by bktree
Data Types: struct

CouponRate — Coupon annual rate
decimal

Coupon annual rate, specified as a NINST-by-1 vector.
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Data Types: double

Settle — Settlement date
serial date number | character vector

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers or date
character vectors.

The Settle date for every fixed-rate note is set to the ValuationDate of the BK Tree. The fixed-
rate note argument Settle is ignored.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector

Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character vectors
representing the maturity date for each fixed-rate note.
Data Types: char | double

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree] =
fixedbybk(BKTree,CouponRate,Settle,Maturity,'FixedReset',4)

FixedReset — Frequency of payments per year
1 (default) | vector

Frequency of payments per year, specified as the comma-separated pair consisting of 'FixedReset'
and a NINST-by-1 vector.
Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13

Day count basis representing the basis used when annualizing the input forward rate tree, specified
as the comma-separated pair consisting of 'Basis' and a NINST-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)

 fixedbybk

11-489



• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amounts or principal value schedules
100 (default) | vector or cell array

Notional principal amounts, specified as the comma-separated pair consisting of 'Principal' and a
vector or cell array.

Principal accepts a NINST-by-1 vector or NINST-by-1 cell array, where each element of the cell
array is a NumDates-by-2 cell array and the first column is dates and the second column is its
associated notional principal value. The date indicates the last day that the principal value is valid.
Data Types: cell | double

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure using derivset.
Data Types: struct

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month
having 30 or fewer days, specified as the comma-separated pair consisting of 'EndMonthRule' and
a nonnegative integer [0, 1] using a NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-separated pair
consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 vector of logicals with values of 0 (false)
or 1 (true).
Data Types: logical

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers
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Holidays used in computing business days, specified as the comma-separated pair consisting of
'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 cell array of character vectors of
business day conventions. The selection for business day convention determines how non-business
days are treated. Non-business days are defined as weekends plus any other date that businesses are
not open (e.g. statutory holidays). Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-business days
are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on the
following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day. However if the following business day is in a different month, the
previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed on the
previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day. However if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell

Output Arguments
Price — Expected fixed-rate note prices at time 0
vector

Expected fixed-rate note prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing vectors of
instrument prices and accrued interest, and a vector of observation times for each node. Within
PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell array describes

how nodes in that level connect to the next. For a given tree level, there are NumNodes elements
in the vector, and they contain the index of the node at the next level that the middle branch
connects to. Subtracting 1 from that value indicates where the up-branch connects to, and adding
1 indicated where the down branch connects to.

 fixedbybk

11-491



• PriceTree.Probs contains the probability arrays. Each element of the cell array contains the
up, middle, and down transition probabilities for each node of the level.

More About
Fixed-Rate Note

A fixed-rate note is a long-term debt security with a preset interest rate and maturity, by which the
interest must be paid.

The principal may or may not be paid at maturity. In Financial Instruments Toolbox, the principal is
always paid at maturity. For more information, see “Fixed-Rate Note” on page 2-9.

See Also
bktree | bondbybk | capbybk | cfbybk | floatbybk | floorbybk | swapbybk

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Fixed-Rate Note” on page 2-9
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3
“Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on page 1-
73

Introduced before R2006a
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fixedbycir
Price fixed rate note from Cox-Ingersoll-Ross interest-rate tree

Syntax
[Price,PriceTree] = fixedbycir(CIRTree,CouponRate,Settle,Maturity)
[Price,PriceTree] = fixedbycir( ___ ,Name,Value)

Description
[Price,PriceTree] = fixedbycir(CIRTree,CouponRate,Settle,Maturity) prices a fixed-
rate note from a Cox-Ingersoll-Ross (CIR) interest-rate tree using a CIR++ model with the Nawalka-
Beliaeva (NB) approach.

[Price,PriceTree] = fixedbycir( ___ ,Name,Value) adds additional name-value pair
arguments.

Examples

Price a Fixed-Rate Note Using a CIR Interest-Rate Tree

Define the CouponRate for a fixed-rate note.

CouponRate = 0.03;

Create a RateSpec using the intenvset function.

Rates = [0.035; 0.042147; 0.047345; 0.052707]; 
Dates = {'Jan-1-2017'; 'Jan-1-2018'; 'Jan-1-2019'; 'Jan-1-2020'; 'Jan-1-2021'}; 
ValuationDate = 'Jan-1-2017'; 
EndDates = Dates(2:end)'; 
Compounding = 1; 
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, 'EndDates',EndDates,'Rates', Rates, 'Compounding', Compounding); 

Create a CIR tree.

NumPeriods = length(EndDates); 
Alpha = 0.03; 
Theta = 0.02;  
Sigma = 0.1;   
Settle = '01-Jan-2017'; 
Maturity = '01-Jan-2021'; 
CIRTimeSpec = cirtimespec(ValuationDate, Maturity, NumPeriods); 
CIRVolSpec = cirvolspec(Sigma, Alpha, Theta); 

CIRT = cirtree(CIRVolSpec, RateSpec, CIRTimeSpec)

CIRT = struct with fields:
      FinObj: 'CIRFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
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    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [736696 737061 737426 737791]
     FwdTree: {1x4 cell}
     Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

Price the 3% fixed-rate note.

[Price,PriceTree] = fixedbycir(CIRT,CouponRate,Settle,Maturity) 

Price = 92.1422

PriceTree = struct with fields:
     FinObj: 'CIRPriceTree'
       tObs: [0 1 2 3 4]
       dObs: [736696 737061 737426 737791 738157]
      PTree: {1x5 cell}
     AITree: {[0]  [0 0 0]  [0 0 0 0 0]  [0 0 0 0 0 0 0]  [0 0 0 0 0 0 0]}
    Connect: {[3x1 double]  [3x3 double]  [3x5 double]}

Input Arguments
CIRTree — Interest-rate structure
structure

Interest-rate tree structure, created by cirtree
Data Types: struct

CouponRate — Coupon annual rate
decimal

Coupon annual rate, specified as a NINST-by-1 vector.
Data Types: double

Settle — Settlement date
serial date number | character vector | string array | datetime

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers, date
character vectors, string arrays, or datetime arrays.

The Settle date for every fixed-rate note is set to the ValuationDate of the CIR tree. The fixed-
rate note argument Settle is ignored.
Data Types: char | double | string | datetime

Maturity — Maturity date
serial date number | character vector | string array | datetime

Maturity date, specified as a NINST-by-1 vector of serial date numbers, date character vectors, string
arrays, or datetime arrays representing the maturity date for each fixed-rate note.
Data Types: char | double | string | datetime
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Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree] =
fixedbycir(CIRTree,CouponRate,Settle,Maturity,'FixedReset',4)

FixedReset — Frequency of payments per year
1 (default) | vector

Frequency of payments per year, specified as the comma-separated pair consisting of 'FixedReset'
and a NINST-by-1 vector.
Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13

Day count basis representing the basis used when annualizing the input forward rate tree, specified
as the comma-separated pair consisting of 'Basis' and a NINST-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amounts or principal value schedules
100 (default) | vector or cell array

Notional principal amounts, specified as the comma-separated pair consisting of 'Principal' and a
vector or cell array.
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Principal accepts a NINST-by-1 vector or NINST-by-1 cell array, where each element of the cell
array is a NumDates-by-2 cell array and the first column is dates and the second column is its
associated notional principal value. The date indicates the last day that the principal value is valid.
Data Types: cell | double

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month
having 30 or fewer days, specified as the comma-separated pair consisting of 'EndMonthRule' and
a nonnegative integer [0, 1] using a NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-separated pair
consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 vector of logicals with values of 0 (false)
or 1 (true).
Data Types: logical

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair consisting of
'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 cell array of character vectors of
business day conventions. The selection for business day convention determines how nonbusiness
days are treated. Nonbusiness days are defined as weekends plus any other date that businesses are
not open (e.g. statutory holidays). Values are:

• actual — Nonbusiness days are effectively ignored. Cash flows that fall on nonbusiness days are
assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on the
following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day. However if the following business day is in a different month, the
previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed on the
previous business day.
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• modifiedprevious — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day. However if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell

Output Arguments
Price — Expected fixed-rate note prices at time 0
vector

Expected fixed-rate note prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing vectors of
instrument prices and accrued interest, and a vector of observation times for each node. Within
PriceTree:

• PriceTree.tObs contains the observation times.
• PriceTree.dObs contains the observation dates.
• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.

More About
Fixed-Rate Note

A fixed-rate note is a long-term debt security with a preset interest rate and maturity, by which the
interest must be paid.

The principal may or may not be paid at maturity. In Financial Instruments Toolbox, the principal is
always paid at maturity. For more information, see “Fixed-Rate Note” on page 2-9.

References
[1] Cox, J., Ingersoll, J.,and S. Ross. "A Theory of the Term Structure of Interest Rates." Econometrica.

Vol. 53, 1985.

[2] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer Finance, 2006.

[3] Hirsa, A. Computational Methods in Finance. CRC Press, 2012.

[4] Nawalka, S., Soto, G., and N. Beliaeva. Dynamic Term Structure Modeling. Wiley, 2007.

[5] Nelson, D. and K. Ramaswamy. "Simple Binomial Processes as Diffusion Approximations in
Financial Models." The Review of Financial Studies. Vol 3. 1990, pp. 393–430.
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See Also
bondbycir | capbycir | cfbycir | floatbycir | floorbycir | oasbycir | optbndbycir |
optfloatbycir | optembndbycir | optemfloatbycir | rangefloatbycir | swapbycir |
swaptionbycir | instfixed

Topics
“Computing Instrument Prices” on page 2-81
“Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-10
“Fixed-Rate Note” on page 2-9
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced in R2018a
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fixedbyhjm
Price fixed-rate note from Heath-Jarrow-Morton interest-rate tree

Syntax
[Price,PriceTree] = fixedbyhjm(HJMTree,CouponRate,Settle,Maturity)
[Price,PriceTree] = fixedbyhjm( ___ ,Name,Value)

Description
[Price,PriceTree] = fixedbyhjm(HJMTree,CouponRate,Settle,Maturity) prices a fixed-
rate note from a Heath-Jarrow-Morton interest-rate tree.

[Price,PriceTree] = fixedbyhjm( ___ ,Name,Value) adds additional name-value pair
arguments.

Examples

Price a 4% Fixed-Rate Note Using an HJM Forward-Rate Tree

This example shows how to price a 4% fixed-rate note using an HJM forward-rate tree by loading the
file deriv.mat, which provides HJMTree. The HJMTree structure contains the time and forward-rate
information needed to price the note.

load deriv.mat 

CouponRate = 0.04;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';

Price = fixedbyhjm(HJMTree, CouponRate, Settle, Maturity)

Price = 98.7159

Input Arguments
HJMTree — Interest-rate structure
structure

Interest-rate tree structure, created by hjmtree
Data Types: struct

CouponRate — Coupon annual rate
decimal

Coupon annual rate, specified as a NINST-by-1 vector.
Data Types: double
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Settle — Settlement date
serial date number | character vector

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers or date
character vectors.

The Settle date for every fixed-rate note is set to the ValuationDate of the HJM tree. The fixed-
rate note argument Settle is ignored.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector

Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character vectors
representing the maturity date for each fixed-rate note.
Data Types: char | double

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree] =
fixedbyhjm(HJMTree,CouponRate,Settle,Maturity,'FixedReset',4)

FixedReset — Frequency of payments per year
1 (default) | vector

Frequency of payments per year, specified as the comma-separated pair consisting of 'FixedReset'
and a NINST-by-1 vector.
Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13

Day count basis representing the basis used when annualizing the input forward rate tree, specified
as the comma-separated pair consisting of 'Basis' and a NINST-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
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• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amounts or principal value schedules
100 (default) | vector or cell array

Notional principal amounts, specified as the comma-separated pair consisting of 'Principal' and a
vector or cell array.

Principal accepts a NINST-by-1 vector or NINST-by-1 cell array, where each element of the cell
array is a NumDates-by-2 cell array and the first column is dates and the second column is its
associated notional principal value. The date indicates the last day that the principal value is valid.
Data Types: cell | double

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure using derivset.
Data Types: struct

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month
having 30 or fewer days, specified as the comma-separated pair consisting of 'EndMonthRule' and
a nonnegative integer [0, 1] using a NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-separated pair
consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 vector of logicals with values of 0 (false)
or 1 (true).
Data Types: logical

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers
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Holidays used in computing business days, specified as the comma-separated pair consisting of
'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 cell array of character vectors of
business day conventions. The selection for business day convention determines how non-business
days are treated. Non-business days are defined as weekends plus any other date that businesses are
not open (e.g. statutory holidays). Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-business days
are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on the
following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day. However if the following business day is in a different month, the
previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed on the
previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day. However if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell

Output Arguments
Price — Expected fixed-rate note prices at time 0
vector

Expected fixed-rate note prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing vectors of
instrument prices and accrued interest, and a vector of observation times for each node. Within
PriceTree:

• PriceTree.PBush contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.
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More About
Fixed-Rate Note

A fixed-rate note is a long-term debt security with a preset interest rate and maturity, by which the
interest must be paid.

The principal may or may not be paid at maturity. In Financial Instruments Toolbox, the principal is
always paid at maturity. For more information, see “Fixed-Rate Note” on page 2-9.

See Also
bondbyhjm | capbyhjm | cfbyhjm | floatbyhjm | floorbyhjm | hjmtree | swapbyhjm

Topics
“Computing Instrument Prices” on page 2-81
“Fixed-Rate Note” on page 2-9
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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fixedbyhw
Price fixed-rate note from Hull-White interest-rate tree

Syntax
[Price,PriceTree] = fixedbyhw(HWTree,CouponRate,Settle,Maturity)
[Price,PriceTree] = fixedbyhw( ___ ,Name,Value)

Description
[Price,PriceTree] = fixedbyhw(HWTree,CouponRate,Settle,Maturity) prices a fixed-
rate note from a Hull-White interest-rate tree.

[Price,PriceTree] = fixedbyhw( ___ ,Name,Value) adds additional name-value pair
arguments.

Examples

Price a 5% Fixed-Rate Note Using a Hull-White Interest-Rate Tree

Load the file deriv.mat, which provides HWTree. The HWTree structure contains the time and
interest-rate information needed to price the note.

load deriv.mat;

Set the required values. Other arguments will use defaults.

CouponRate = 0.05;
Settle = '01-Jan-2004';
Maturity = '01-Jan-2006';

Use fixedbyhw to compute the price of the note.

Price = fixedbyhw(HWTree, CouponRate, Settle, Maturity)

Price = 103.5126

Input Arguments
HWTree — Interest-rate structure
structure

Interest-rate tree structure, created by hwtree
Data Types: struct

CouponRate — Coupon annual rate
decimal

Coupon annual rate, specified as a NINST-by-1 vector.
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Data Types: double

Settle — Settlement date
serial date number | character vector

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers or date
character vectors.

The Settle date for every fixed-rate note is set to the ValuationDate of the HW tree. The fixed-
rate note argument Settle is ignored.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector

Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character vectors
representing the maturity date for each fixed-rate note.
Data Types: char | double

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree] =
fixedbyhw(HWTree,CouponRate,Settle,Maturity,'FixedReset',4)

FixedReset — Frequency of payments per year
1 (default) | vector

Frequency of payments per year, specified as the comma-separated pair consisting of 'FixedReset'
and a NINST-by-1 vector.
Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13

Day count basis representing the basis used when annualizing the input forward rate tree, specified
as the comma-separated pair consisting of 'Basis' and a NINST-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
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• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amounts or principal value schedules
100 (default) | vector or cell array

Notional principal amounts, specified as the comma-separated pair consisting of 'Principal' and a
vector or cell array.

Principal accepts a NINST-by-1 vector or NINST-by-1 cell array, where each element of the cell
array is a NumDates-by-2 cell array and the first column is dates and the second column is its
associated notional principal value. The date indicates the last day that the principal value is valid.
Data Types: cell | double

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure using derivset.
Data Types: struct

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month
having 30 or fewer days, specified as the comma-separated pair consisting of 'EndMonthRule' and
a nonnegative integer [0, 1] using a NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-separated pair
consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 vector of logicals with values of 0 (false)
or 1 (true).
Data Types: logical

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers
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Holidays used in computing business days, specified as the comma-separated pair consisting of
'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 cell array of character vectors of
business day conventions. The selection for business day convention determines how non-business
days are treated. Non-business days are defined as weekends plus any other date that businesses are
not open (e.g. statutory holidays). Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-business days
are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on the
following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day. However if the following business day is in a different month, the
previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed on the
previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day. However if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell

Output Arguments
Price — Expected fixed-rate note prices at time 0
vector

Expected fixed-rate note prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing vectors of
instrument prices and accrued interest, and a vector of observation times for each node. Within
PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell array describes

how nodes in that level connect to the next. For a given tree level, there are NumNodes elements
in the vector, and they contain the index of the node at the next level that the middle branch
connects to. Subtracting 1 from that value indicates where the up-branch connects to, and adding
1 indicated where the down branch connects to.
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• PriceTree.Probs contains the probability arrays. Each element of the cell array contains the
up, middle, and down transition probabilities for each node of the level.

More About
Fixed-Rate Note

A fixed-rate note is a long-term debt security with a preset interest rate and maturity, by which the
interest must be paid.

The principal may or may not be paid at maturity. In Financial Instruments Toolbox, the principal is
always paid at maturity. For more information, see “Fixed-Rate Note” on page 2-9.

See Also
bondbyhw | capbyhw | cfbyhw | floatbyhw | floorbyhw | hwtree | swapbyhw

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Calibrating Hull-White Model Using Market Data” on page 2-92
“Fixed-Rate Note” on page 2-9
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3
“Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on page 1-
73

Introduced before R2006a
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fixedbyzero
Price fixed-rate note from set of zero curves

Syntax
[Price,DirtyPrice,CFlowAmounts,CFlowDates] = fixedbyzero(RateSpec,CouponRate,
Settle,Maturity)
[Price,DirtyPrice,CFlowAmounts,CFlowDates] = fixedbyzero( ___ ,Name,Value)

Description
[Price,DirtyPrice,CFlowAmounts,CFlowDates] = fixedbyzero(RateSpec,CouponRate,
Settle,Maturity) prices a fixed-rate note from a set of zero curves.

[Price,DirtyPrice,CFlowAmounts,CFlowDates] = fixedbyzero( ___ ,Name,Value) adds
additional name-value pair arguments.

Examples

Price a 4% Fixed-Rate Note Using a Set of Zero Curves

This example shows how to price a 4% fixed-rate note using a set of zero curves by loading the file
deriv.mat, which provides ZeroRateSpec, the interest-rate term structure needed to price the
note.

load deriv.mat 

CouponRate = 0.04;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';

Price = fixedbyzero(ZeroRateSpec, CouponRate, Settle, Maturity)

Price = 98.7159

Pricing a Fixed-Fixed Cross Currency Swap

Assume that a financial institution has an existing swap with three years left to maturity where they
are receiving 5% per year in yen and paying 8% per year in USD. The reset frequency for the swap is
annual, the principals for the two legs are 1200 million yen and $10 million USD, and both term
structures are flat.

Settle = datenum('15-Aug-2015');
Maturity = datenum('15-Aug-2018');
Reset = 1;

r_d = .09;
r_f = .04;
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FixedRate_d = .08;
FixedRate_f = .05;

Principal_d = 10000000;
Principal_f = 1200000000;

S0 = 1/110;

Construct term structures.

RateSpec_d = intenvset('StartDate',Settle,'EndDate',Maturity,'Rates',r_d,'Compounding',-1);
RateSpec_f = intenvset('StartDate',Settle,'EndDate',Maturity,'Rates',r_f,'Compounding',-1);

Use fixedbyzero:

B_d = fixedbyzero(RateSpec_d,FixedRate_d,Settle,Maturity,'Principal',Principal_d,'Reset',Reset);
B_f = fixedbyzero(RateSpec_f,FixedRate_f,Settle,Maturity,'Principal',Principal_f,'Reset',Reset);

Compute swap price. Based on Hull (see References), a cross currency swap can be valued with the
following formula V_swap = S0*B_f − B_d.

V_swap = S0*B_f - B_d

V_swap = 1.5430e+06

Input Arguments
RateSpec — Annualized zero rate term structure
structure

Annualized zero rate term structure, specified using intenvset to create a RateSpec.
Data Types: struct

CouponRate — Annual rate
decimal

Annual rate, specified as NINST-by-1 decimal annual rate or a NINST-by-1 cell array where each
element is a NumDates-by-2 cell array and the first column is dates and the second column is
associated rates. The date indicates the last day that the coupon rate is valid.
Data Types: double | cell

Settle — Settlement date
serial date number | character vector

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers or date
character vectors.

Settle must be earlier than Maturity.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector
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Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character vectors
representing the maturity date for each fixed-rate note.
Data Types: char | double

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,DirtyPrice,CFlowAmounts,CFlowDates] =
fixedbyzero(RateSpec,CouponRate,Settle,Maturity,'Principal',Principal)

FixedReset — Frequency of payments per year
1 (default) | vector

Frequency of payments per year, specified as the comma-separated pair consisting of 'FixedReset'
and a NINST-by-1 vector.
Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13

Day count basis, specified as the comma-separated pair consisting of 'Basis' and a NINST-by-1
vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amounts or principal value schedules
100 (default) | vector or cell array
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Notional principal amounts, specified as the comma-separated pair consisting of 'Principal' and a
vector or cell array.

Principal accepts a NINST-by-1 vector or NINST-by-1 cell array, where each element of the cell
array is a NumDates-by-2 cell array and the first column is dates and the second column is its
associated notional principal value. The date indicates the last day that the principal value is valid.
Data Types: cell | double

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month
having 30 or fewer days, specified as the comma-separated pair consisting of 'EndMonthRule' and
a nonnegative integer [0, 1] using a NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-separated pair
consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 vector of logicals with values of 0 (false)
or 1 (true).
Data Types: logical

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair consisting of
'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 cell array of character vectors of
business day conventions. The selection for business day convention determines how non-business
days are treated. Non-business days are defined as weekends plus any other date that businesses are
not open (e.g. statutory holidays). Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-business days
are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on the
following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day. However if the following business day is in a different month, the
previous business day is adopted instead.
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• previous — Cash flows that fall on a non-business day are assumed to be distributed on the
previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day. However if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell

Output Arguments
Price — Fixed-rate note prices
matrix

Floating-rate note prices, returned as a (NINST) by number of curves (NUMCURVES) matrix. Each
column arises from one of the zero curves.

DirtyPrice — Dirty bond price
matrix

Dirty bond price (clean + accrued interest), returned as a NINST- by-NUMCURVES matrix. Each
column arises from one of the zero curves.

CFlowAmounts — Cash flow amounts
matrix

Cash flow amounts, returned as a NINST- by-NUMCFS matrix of cash flows for each bond.

CFlowDates — Cash flow dates
matrix

Cash flow dates, returned as a NINST- by-NUMCFS matrix of payment dates for each bond.

More About
Fixed-Rate Note

A fixed-rate note is a long-term debt security with a preset interest rate and maturity, by which the
interest must be paid.

The principal may or may not be paid at maturity. In Financial Instruments Toolbox, the principal is
always paid at maturity. For more information, see “Fixed-Rate Note” on page 2-9.

References
[1] Hull, J. Options, Futures, and Other Derivatives. Prentice-Hall, 2011.

See Also
bondbyzero | cfbyzero | floatbyzero | swapbyzero

Topics
“Pricing Using Interest-Rate Term Structure” on page 2-61
“Fixed-Rate Note” on page 2-9
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“Understanding Interest-Rate Tree Models” on page 2-66
“Supported Interest-Rate Instrument Functions” on page 2-3
“Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on page 1-
73

Introduced before R2006a
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floatbybdt
Price floating-rate note from Black-Derman-Toy interest-rate tree

Syntax
[Price,PriceTree] = floatbybdt(BDTTree,Spread,Settle,Maturity)
[Price,PriceTree] = floatbybdt( ___ ,Name,Value)

Description
[Price,PriceTree] = floatbybdt(BDTTree,Spread,Settle,Maturity) prices a floating-
rate note from a Black-Derman-Toy interest-rate tree.

floatbybdt computes prices of vanilla floating-rate notes, amortizing floating-rate notes, capped
floating-rate notes, floored floating-rate notes and collared floating-rate notes.

[Price,PriceTree] = floatbybdt( ___ ,Name,Value) adds additional name-value pair
arguments.

Examples

Price a Floating-Rate Note Using a BDT Tree

Price a 20-basis point floating-rate note using a BDT interest-rate tree.

Load the file deriv.mat, which provides BDTTree. The BDTTree structure contains the time and
interest-rate information needed to price the note.

load deriv.mat;

Define the floating-rate note using the required arguments. Other arguments use defaults.

Spread = 20;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';

Use floatbybdt to compute the price of the note.

Price = floatbybdt(BDTTree, Spread, Settle, Maturity)

Price = 100.4865

Price an Amortizing Floating-Rate Note

Price an amortizing floating-rate note using the Principal input argument to define the
amortization schedule.

Create the RateSpec.
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Rates = [0.03583; 0.042147; 0.047345; 0.052707; 0.054302];
ValuationDate = '15-Nov-2011';
StartDates = ValuationDate;
EndDates = {'15-Nov-2012';'15-Nov-2013';'15-Nov-2014' ;'15-Nov-2015';'15-Nov-2016'};
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [5x1 double]
            Rates: [5x1 double]
         EndTimes: [5x1 double]
       StartTimes: [5x1 double]
         EndDates: [5x1 double]
       StartDates: 734822
    ValuationDate: 734822
            Basis: 0
     EndMonthRule: 1

Create the floating-rate instrument using the following data:

Settle ='15-Nov-2011';
Maturity = '15-Nov-2015';
Spread = 15;

Define the floating-rate note amortizing schedule.

Principal ={{'15-Nov-2012' 100;'15-Nov-2013' 70;'15-Nov-2014' 40;'15-Nov-2015' 10}};

Build the BDT tree and assume volatility is 10%.

MatDates = {'15-Nov-2012'; '15-Nov-2013';'15-Nov-2014';'15-Nov-2015';'15-Nov-2016';'15-Nov-2017'};
BDTTimeSpec = bdttimespec(ValuationDate, MatDates);
Volatility = 0.10;  
BDTVolSpec = bdtvolspec(ValuationDate, MatDates, Volatility*ones(1,length(MatDates))');
BDTT = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);

Compute the price of the amortizing floating-rate note.

Price = floatbybdt(BDTT, Spread, Settle, Maturity, 'Principal', Principal)

Price = 100.3059

Price a Collar with a Floating-Rate Note

Price a collar with a floating-rate note using the CapRate and FloorRate input argument to define
the collar pricing.

Create the RateSpec.

Rates = [0.0287; 0.03024; 0.03345; 0.03861; 0.04033];
ValuationDate = '1-April-2012';
StartDates = ValuationDate;
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EndDates = {'1-April-2013';'1-April-2014';'1-April-2015' ;...
'1-April-2016';'1-April-2017'};
Compounding = 1;

Create the RateSpec.

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

Build the BDT tree and assume volatility is 5%.

MatDates = {'1-April-2013'; '1-April-2014';'1-April-2015';'1-April-2016';'1-April-2017';'1-April-2018'};
BDTTimeSpec = bdttimespec(ValuationDate, MatDates);
Volatility = 0.05;  
BDTVolSpec = bdtvolspec(ValuationDate, MatDates, Volatility*ones(1,length(MatDates))');
BDTT = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);

Create the floating rate note instrument.

Settle ='1-April-2012';
Maturity = '1-April-2016';
Spread = 10;
Principal = 100;

Compute the price of a collared floating-rate note.

CapStrike = {{'1-April-2013' 0.03; '1-April-2015' 0.055}};
FloorStrike = {{'1-April-2013' 0.025; '1-April-2015' 0.04}};

Price = floatbybdt(BDTT, Spread, Settle, Maturity, 'CapRate',...
CapStrike, 'FloorRate', FloorStrike)

Price = 101.2414

Pricing a Floating-Rate Note When the Reset Dates Are Not Tree Level Dates

When using floatbybdt to price floating-rate notes, there are cases where the dates specified in the
BDT tree TimeSpec are not aligned with the cash flow dates.

Price floating-rate notes using the following data:

ValuationDate = '01-Sep-2013'; 
Rates = [0.0235; 0.0239; 0.0311; 0.0323]; 
EndDates = {'01-Sep-2014'; '01-Sep-2015'; '01-Sep-2016';'01-Sep-2017'};

Create the RateSpec.

RateSpec = intenvset('ValuationDate',ValuationDate,'StartDates',...
ValuationDate,'EndDates',EndDates,'Rates',Rates,'Compounding', 1);

Build the BDT tree.
VolCurve = [.10; .11; .11; .12];

BDTVolatilitySpec = bdtvolspec(RateSpec.ValuationDate, EndDates,... 
                               VolCurve); 

BDTTimeSpec = bdttimespec(RateSpec.ValuationDate, EndDates, 1); 
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BDTT = bdttree(BDTVolatilitySpec, RateSpec, BDTTimeSpec); 

Compute the price of the floating-rate note using the following data:
Spread = 5; 
Settle = '01-Sep-2013';
Maturity = '01-Dec-2015'; 
Reset = 2; 

Price = floatbybdt(BDTT, Spread, Settle, Maturity, 'FloatReset', Reset)

Warning: Not all cash flows are aligned with the tree. Result will be approximated. 
> In floatengbybdt at 204
  In floatbybdt at 123 
Error using floatengbybdt (line 299)
Instrument '1 ' has cash flow dates that span across tree nodes.

Error in floatbybdt (line 123)
[Price, PriceTree, CFTree, TLPpal] = floatengbybdt(BDTTree, Spread, Settle, Maturity, OArgs{:});

This error indicates that it is not possible to determine the applicable rate used to calculate the payoff
at the reset dates, given that the applicable rate needed cannot be calculated (the information was
lost due to the recombination of the tree nodes). Note, if the reset period for an FRN spans more than
one tree level, calculating the payment becomes impossible due to the recombining nature of the
tree. That is, the tree path connecting the two consecutive reset dates cannot be uniquely determined
because there is more than one possible path for connecting the two payment dates. The simplest
solution is to place the tree levels at the cash flow dates of the instrument, which is done by
specifying BDTTimeSpec. It is also acceptable to have reset dates between tree levels, as long as
there are reset dates on the tree levels.

To recover from this error, build a tree that lines up with the instrument.
Basis = intenvget(RateSpec, 'Basis');
EOM = intenvget(RateSpec, 'EndMonthRule');
resetDates = cfdates(ValuationDate, Maturity, Reset ,Basis, EOM);
BDTTimeSpec = bdttimespec(RateSpec.ValuationDate,resetDates,Reset);
BDTT = bdttree(BDTVolatilitySpec, RateSpec, BDTTimeSpec);

Price = floatbybdt(BDTT, Spread, RateSpec.ValuationDate, ...
                   Maturity, 'FloatReset', Reset)

Price =

  100.1087

Input Arguments
BDTTree — Interest-rate structure
structure

Interest-rate tree structure, created by bdttree
Data Types: struct

Spread — Number of basis points over the reference rate
vector

Number of basis points over the reference rate, specified as a NINST-by-1 vector.
Data Types: double

Settle — Settlement date
serial date number | character vector
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Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers or date
character vectors.

The Settle date for every floating-rate note is set to the ValuationDate of the BDT tree. The
floating-rate note argument Settle is ignored.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector

Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character vectors
representing the maturity date for each floating-rate note.
Data Types: char | double

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree] =
floatbybdt(BDTTree,Spread,Settle,Maturity,'Basis',3)

FloatReset — Frequency of payments per year
1 (default) | vector

Frequency of payments per year, specified as the comma-separated pair consisting of 'FloatReset'
and a NINST-by-1 vector.

Note Payments on floating-rate notes (FRNs) are determined by the effective interest-rate between
reset dates. If the reset period for an FRN spans more than one tree level, calculating the payment
becomes impossible due to the recombining nature of the tree. That is, the tree path connecting the
two consecutive reset dates cannot be uniquely determined because there is more than one possible
path for connecting the two payment dates.

Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13

Day count basis representing the basis used when annualizing the input forward rate tree, specified
as the comma-separated pair consisting of 'Basis' and a NINST-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
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• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amounts or principal value schedules
100 (default) | vector or cell array

Notional principal amounts, specified as the comma-separated pair consisting of 'Principal' and a
vector or cell array.

Principal accepts a NINST-by-1 vector or NINST-by-1 cell array, where each element of the cell
array is a NumDates-by-2 cell array and the first column is dates and the second column is its
associated notional principal value. The date indicates the last day that the principal value is valid.
Data Types: cell | double

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure using derivset.
Data Types: struct

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month
having 30 or fewer days, specified as the comma-separated pair consisting of 'EndMonthRule' and
a nonnegative integer [0, 1] using a NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-separated pair
consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 vector of logicals with values of 0 (false)
or 1 (true).
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Data Types: logical

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair consisting of
'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 cell array of character vectors of
business day conventions. The selection for business day convention determines how non-business
days are treated. Non-business days are defined as weekends plus any other date that businesses are
not open (e.g. statutory holidays). Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-business days
are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on the
following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day. However if the following business day is in a different month, the
previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed on the
previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day. However if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell

CapRate — Annual cap rate
decimal

Annual cap rate, specified as the comma-separated pair consisting of 'CapRate' and a NINST-by-1
decimal annual rate or NINST-by-1 cell array, where each element is a NumDates-by-2 cell array, and
the cell array first column is dates, and the second column is associated cap rates. The date indicates
the last day that the cap rate is valid.
Data Types: double | cell

FloorRate — Annual floor rate
decimal

Annual floor rate, specified as the comma-separated pair consisting of 'FloorRate' and a NINST-
by-1 decimal annual rate or NINST-by-1 cell array, where each element is a NumDates-by-2 cell array,
and the cell array first column is dates, and the second column is associated floor rates. The date
indicates the last day that the floor rate is valid.
Data Types: double | cell
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Output Arguments
Price — Expected floating-rate note prices at time 0
vector

Expected floating-rate note prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing vectors of
instrument prices and accrued interest, and a vector of observation times for each node. Within
PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.

More About
Floating-Rate Note

A floating-rate note is a security like a bond, but the interest rate of the note is reset periodically,
relative to a reference index rate, to reflect fluctuations in market interest rates.

See Also
bdttree | bondbybdt | capbybdt | cfbybdt | fixedbybdt | floorbybdt | swapbybdt

Topics
“Computing Instrument Prices” on page 2-81
“Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-10
“Floating-Rate Note” on page 2-10
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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floatbybk
Price floating-rate note from Black-Karasinski interest-rate tree

Syntax
[Price,PriceTree] = floatbybk(BKTree,Spread,Settle,Maturity)
[Price,PriceTree] = floatbybk( ___ ,Name,Value)

Description
[Price,PriceTree] = floatbybk(BKTree,Spread,Settle,Maturity) prices a floating-rate
note from a Black-Karasinski interest-rate tree.

floatbybk computes prices of vanilla floating-rate notes, amortizing floating-rate notes, capped
floating-rate notes, floored floating-rate notes and collared floating-rate notes.

[Price,PriceTree] = floatbybk( ___ ,Name,Value) adds additional name-value pair
arguments.

Examples

Price a Floating-Rate Note Using a Black-Karasinski Tree

Price a 20-basis point floating-rate note using a Black-Karasinski interest-rate tree.

Load the file deriv.mat, which provides BKTree. The BKTree structure contains the time and
interest-rate information needed to price the note.

load deriv.mat;

Define the floating-rate note using the required arguments. Other arguments use defaults.

Spread = 20;
Settle = '01-Jan-2005';
Maturity = '01-Jan-2006';

Use floatbybk to compute the price of the note.

Price = floatbybk(BKTree, Spread, Settle, Maturity)

Warning: Floating range notes are valued at Tree ValuationDate rather than Settle.

Price = 100.3825

Price an Amortizing Floating-Rate Note

Price an amortizing floating-rate note using the Principal input argument to define the
amortization schedule.
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Create the RateSpec.

Rates = [0.03583; 0.042147; 0.047345; 0.052707; 0.054302];
ValuationDate = '15-Nov-2011';
StartDates = ValuationDate;
EndDates = {'15-Nov-2012';'15-Nov-2013';'15-Nov-2014' ;'15-Nov-2015';'15-Nov-2016'};
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [5x1 double]
            Rates: [5x1 double]
         EndTimes: [5x1 double]
       StartTimes: [5x1 double]
         EndDates: [5x1 double]
       StartDates: 734822
    ValuationDate: 734822
            Basis: 0
     EndMonthRule: 1

Create the floating-rate instrument using the following data:

Settle ='15-Nov-2011';
Maturity = '15-Nov-2015';
Spread = 15;

Define the floating-rate note amortizing schedule.

Principal ={{'15-Nov-2012' 100;'15-Nov-2013' 70;'15-Nov-2014' 40;'15-Nov-2015' 10}};

Build the BK tree and assume the volatility is 10%.

VolDates = ['15-Nov-2012'; '15-Nov-2013';'15-Nov-2014';'15-Nov-2015';'15-Nov-2016';'15-Nov-2017'];
VolCurve = 0.1;
AlphaDates = '15-Nov-2017';
AlphaCurve = 0.1;

BKVolSpec = bkvolspec(RateSpec.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
BKTimeSpec = bktimespec(RateSpec.ValuationDate, VolDates, Compounding);
BKT = bktree(BKVolSpec, RateSpec, BKTimeSpec);

Compute the price of the amortizing floating-rate note.

Price = floatbybk(BKT, Spread, Settle, Maturity, 'Principal', Principal)

Price = 100.3059

Price a Collar with a Floating-Rate Note

Price a collar with a floating-rate note using the CapRate and FloorRate input argument to define
the collar pricing.
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Price a portfolio of collared floating-rate notes using the following data:

Rates = [0.0287; 0.03024; 0.03345; 0.03861; 0.04033];
ValuationDate = '1-April-2012';
StartDates = ValuationDate;
EndDates = {'1-April-2013';'1-April-2014';'1-April-2015' ;...
'1-April-2016';'1-April-2017'};
Compounding = 1;

Create the RateSpec.

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

Build the BK tree and assume the volatility to be 5%.

VolDates = ['1-April-2013';'1-April-2014';'1-April-2015';'1-April-2016';...
'1-April-2017';'1-April-2018'];
VolCurve = 0.05;
AlphaDates = '15-Nov-2018';
AlphaCurve = 0.1;

BKVolSpec = bkvolspec(RateSpec.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
BKTimeSpec = bktimespec(RateSpec.ValuationDate, VolDates, Compounding);
BKT = bktree(BKVolSpec, RateSpec, BKTimeSpec);

Create the floating-rate note instrument.

Settle ='1-April-2012';
Maturity = '1-April-2016';
Spread = [15;10];
Principal = 100;

Compute the price of the two vanilla floaters.

Price = floatbybk(BKT, Spread, Settle, Maturity)

Price = 2×1

  100.5519
  100.3680

Compute the price of the collared floating-rate notes.

CapStrike = {{'1-April-2013' 0.045; '1-April-2014' 0.05;...
'1-April-2015' 0.06}; 0.06};
         
FloorStrike = {{'1-April-2013' 0.035; '1-April-2014' 0.04;...
'1-April-2015' 0.05}; 0.03};
PriceCollared = floatbybk(BKT, Spread, Settle, Maturity,...
'CapRate', CapStrike,'FloorRate', FloorStrike)

PriceCollared = 2×1

  102.8537
  100.4918
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Pricing a Floating-Rate Note When the Reset Dates Are Not Tree Level Dates

When using floatbybk to price floating-rate notes, there are cases where the dates specified in the
BK tree Time Specs are not aligned with the cash flow dates.

Price floating-rate notes using the following data:
ValuationDate      = '13-Sep-2013'; 
ForwardRatesVector = [ 0.0001; 0.0001; 0.0010; 0.0015]; 
EndDatesVector     = ['13-Dec-2013'; '14-Mar-2014'; '13-Jun-2014'; '13-Sep-2014'];

Create the RateSpec.
RateSpec = intenvset('ValuationDate',ValuationDate,'StartDates',...
ValuationDate,'EndDates',EndDatesVector,'Rates',ForwardRatesVector,'Compounding', 1);

Build the BK tree.
Volcurve         = 0.1;                         
Alpha            = 0.01; 
BKVolatilitySpec = bkvolspec(RateSpec.ValuationDate, ... 
                  EndDatesVector, Volcurve,... 
                  EndDatesVector, Alpha); 

BKTimeSpec = bktimespec(RateSpec.ValuationDate, EndDatesVector, 1); 

BKT = bktree(BKVolatilitySpec, RateSpec, BKTimeSpec); 

Create the floating-rate note instrument using the following data;
Spread      = 0; 
Maturity    = '13-Jun-2014'; 
reset = 4; 

Compute the price of the floating-rate note.
Price = floatbybk(BKT, Spread, RateSpec.ValuationDate,...
Maturity, 'FloatReset', reset)

Warning: Not all cash flows are aligned with the tree. Result will be approximated. 
> In floatengbytrintree at 214
  In floatbybk at 136 
Error using floatengbytrintree (line 319)
Instrument '1 ' has cash flow dates that span across tree nodes.

Error in floatbybk (line 136)
[Price, PriceTree, CFTree] = floatengbytrintree(BKTree, Spread, Settle, Maturity, OArgs{:});

This error indicates that it is not possible to determine the applicable rate used to calculate the payoff
at the reset dates, given that the applicable rate needed cannot be calculated (the information was
lost due to the recombination of the tree nodes). Note, if the reset period for an FRN spans more than
one tree level, calculating the payment becomes impossible due to the recombining nature of the
tree. That is, the tree path connecting the two consecutive reset dates cannot be uniquely determined
because there is more than one possible path for connecting the two payment dates. The simplest
solution is to place the tree levels at the cash flow dates of the instrument, which is done by
specifying BKTimeSpec. It is also acceptable to have reset dates between tree levels, as long as there
are reset dates on the tree levels.

To recover from this error, build a tree that lines up with the instrument.
Basis = intenvget(RateSpec, 'Basis');
EOM = intenvget(RateSpec, 'EndMonthRule');
resetDates = cfdates(ValuationDate, Maturity,reset,Basis,EOM);
BKTimeSpec = bktimespec(RateSpec.ValuationDate,resetDates,reset);
BKT        = bktree(BKVolatilitySpec, RateSpec, BKTimeSpec);
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Price      = floatbybk(BKT, Spread, RateSpec.ValuationDate, ...
             Maturity, 'FloatReset', reset)

Price =

  100.0004

Input Arguments
BKTree — Interest-rate structure
structure

Interest-rate tree structure, created by bktree
Data Types: struct

Spread — Number of basis points over the reference rate
vector

Number of basis points over the reference rate, specified as a NINST-by-1 vector.
Data Types: double

Settle — Settlement date
serial date number | character vector

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers or date
character vectors.

The Settle date for every floating-rate note is set to the ValuationDate of the BK tree. The
floating-rate note argument Settle is ignored.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector

Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character vectors
representing the maturity date for each floating-rate note.
Data Types: char | double

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree] = floatbybk(BKTree,Spread,Settle,Maturity,'Basis',3)

FloatReset — Frequency of payments per year
1 (default) | vector

Frequency of payments per year, specified as the comma-separated pair consisting of 'FloatReset'
and a NINST-by-1 vector.
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Note Payments on floating-rate notes (FRNs) are determined by the effective interest-rate between
reset dates. If the reset period for an FRN spans more than one tree level, calculating the payment
becomes impossible due to the recombining nature of the tree. That is, the tree path connecting the
two consecutive reset dates cannot be uniquely determined because there is more than one possible
path for connecting the two payment dates.

Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13

Day count basis representing the basis used when annualizing the input forward rate tree, specified
as the comma-separated pair consisting of 'Basis' and a NINST-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amounts or principal value schedules
100 (default) | vector or cell array

Notional principal amounts, specified as the comma-separated pair consisting of 'Principal' and a
vector or cell array.

Principal accepts a NINST-by-1 vector or NINST-by-1 cell array, where each element of the cell
array is a NumDates-by-2 cell array and the first column is dates and the second column is its
associated notional principal value. The date indicates the last day that the principal value is valid.
Data Types: cell | double

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure using derivset.
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Data Types: struct

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month
having 30 or fewer days, specified as the comma-separated pair consisting of 'EndMonthRule' and
a nonnegative integer [0, 1] using a NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-separated pair
consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 vector of logicals with values of 0 (false)
or 1 (true).
Data Types: logical

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair consisting of
'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 cell array of character vectors of
business day conventions. The selection for business day convention determines how non-business
days are treated. Non-business days are defined as weekends plus any other date that businesses are
not open (e.g. statutory holidays). Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-business days
are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on the
following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day. However if the following business day is in a different month, the
previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed on the
previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day. However if the previous business day is in a different month, the
following business day is adopted instead.
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Data Types: char | cell

CapRate — Annual cap rate
decimal

Annual cap rate, specified as the comma-separated pair consisting of 'CapRate' and a NINST-by-1
decimal annual rate or NINST-by-1 cell array, where each element is a NumDates-by-2 cell array, and
the cell array first column is dates, and the second column is associated cap rates. The date indicates
the last day that the cap rate is valid.
Data Types: double | cell

FloorRate — Annual floor rate
decimal

Annual floor rate, specified as the comma-separated pair consisting of 'FloorRate' and a NINST-
by-1 decimal annual rate or NINST-by-1 cell array, where each element is a NumDates-by-2 cell array,
and the cell array first column is dates, and the second column is associated floor rates. The date
indicates the last day that the floor rate is valid.
Data Types: double | cell

Output Arguments
Price — Expected floating-rate note prices at time 0
vector

Expected floating-rate note prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing vectors of
instrument prices and accrued interest, and a vector of observation times for each node. Within
PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell array describes

how nodes in that level connect to the next. For a given tree level, there are NumNodes elements
in the vector, and they contain the index of the node at the next level that the middle branch
connects to. Subtracting 1 from that value indicates where the up-branch connects to, and adding
1 indicated where the down branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array contains the
up, middle, and down transition probabilities for each node of the level.

More About
Floating-Rate Note

A floating-rate note is a security like a bond, but the interest rate of the note is reset periodically,
relative to a reference index rate, to reflect fluctuations in market interest rates.
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See Also
bktree | bondbybk | capbybk | cfbybk | fixedbybk | floorbybk | swapbybk

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Floating-Rate Note” on page 2-10
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3
“Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on page 1-
73

Introduced before R2006a
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floatbycir
Price floating-rate note from Cox-Ingersoll-Ross interest-rate tree

Syntax
[Price,PriceTree] = floatbycir(CIRTree,Spread,Settle,Maturity)
[Price,PriceTree] = floatbycir( ___ ,Name,Value)

Description
[Price,PriceTree] = floatbycir(CIRTree,Spread,Settle,Maturity) prices a floating-
rate note from a Cox-Ingersoll-Ross (CIR) interest-rate tree.

floatbycir computes prices of vanilla floating-rate notes, amortizing floating-rate notes, capped
floating-rate notes, floored floating-rate notes, and collared floating-rate notes using a CIR++ model
with the Nawalka-Beliaeva (NB) approach.

[Price,PriceTree] = floatbycir( ___ ,Name,Value) adds additional name-value pair
arguments.

Examples

Price a Floating-Rate Note Using a CIR Interest-Rate Tree

Define a Spread of 20-basis points for a floating-rate note.

Spread = 20;

Create a RateSpec using the intenvset function.

Rates = [0.035; 0.042147; 0.047345; 0.052707]; 
Dates = {'Jan-1-2017'; 'Jan-1-2018'; 'Jan-1-2019'; 'Jan-1-2020'; 'Jan-1-2021'}; 
ValuationDate = 'Jan-1-2017'; 
EndDates = Dates(2:end)'; 
Compounding = 1; 
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, 'EndDates',EndDates,'Rates', Rates, 'Compounding', Compounding); 

Create a CIR tree.

NumPeriods = length(EndDates); 
Alpha = 0.03; 
Theta = 0.02;  
Sigma = 0.1;   
Settle = '01-Jan-2017'; 
Maturity = '01-Jan-2021'; 
CIRTimeSpec = cirtimespec(ValuationDate, Maturity, NumPeriods); 
CIRVolSpec = cirvolspec(Sigma, Alpha, Theta); 

CIRT = cirtree(CIRVolSpec, RateSpec, CIRTimeSpec)

CIRT = struct with fields:
      FinObj: 'CIRFwdTree'
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     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [736696 737061 737426 737791]
     FwdTree: {1x4 cell}
     Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

Price the 20-basis point floating-rate note.

[Price,PriceTree] = floatbycir(CIRT,Spread,Settle,Maturity) 

Price = 100.7143

PriceTree = struct with fields:
     FinObj: 'CIRPriceTree'
      PTree: {1x5 cell}
     AITree: {[0]  [0 0 0]  [0 0 0 0 0]  [0 0 0 0 0 0 0]  [0 0 0 0 0 0 0]}
       tObs: [0 1 2 3 4]
    Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
      Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

Input Arguments
CIRTree — Interest-rate tree structure
structure

Interest-rate tree structure, created by cirtree
Data Types: struct

Spread — Number of basis points over the reference rate
vector

Number of basis points over the reference rate, specified as a NINST-by-1 vector.
Data Types: double

Settle — Settlement date
serial date number | character vector | string array | datetime

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers, date
character vectors, string arrays, or datetime arrays.

The Settle date for every floating-rate note is set to the ValuationDate of the CIR tree. The
floating-rate note argument Settle is ignored.
Data Types: char | double | string | datetime

Maturity — Maturity date
serial date number | character vector | string array | datetime
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Maturity date, specified as a NINST-by-1 vector of serial date numbers, date character vectors, string
arrays, or datetime arrays representing the maturity date for each floating-rate note.
Data Types: char | double | string | datetime

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree] =
floatbycir(CIRTree,Spread,Settle,Maturity,'Basis',3)

FloatReset — Frequency of payments per year
1 (default) | vector

Frequency of payments per year, specified as the comma-separated pair consisting of 'FloatReset'
and a NINST-by-1 vector.

Note Payments on floating-rate notes (FRNs) are determined by the effective interest-rate between
reset dates. If the reset period for an FRN spans more than one tree level, calculating the payment
becomes impossible due to the recombining nature of the tree. That is, the tree path connecting the
two consecutive reset dates cannot be uniquely determined because there is more than one possible
path for connecting the two payment dates.

Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13

Day count basis representing the basis used when annualizing the input forward rate tree, specified
as the comma-separated pair consisting of 'Basis' and a NINST-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)

11 Functions

11-534



• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amounts or principal value schedules
100 (default) | vector or cell array

Notional principal amounts, specified as the comma-separated pair consisting of 'Principal' and a
vector or cell array.

Principal accepts a NINST-by-1 vector or NINST-by-1 cell array, where each element of the cell
array is a NumDates-by-2 cell array, and the first column is dates and the second column is its
associated notional principal value. The date indicates the last day that the principal value is valid.
Data Types: cell | double

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month
having 30 or fewer days, specified as the comma-separated pair consisting of 'EndMonthRule' and
a nonnegative integer [0, 1] using a NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-separated pair
consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 vector of logicals with values of 0 (false)
or 1 (true).
Data Types: logical

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair consisting of
'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 cell array of character vectors of
business day conventions. The selection for business day convention determines how nonbusiness
days are treated. Nonbusiness days are defined as weekends plus any other date that businesses are
not open (e.g. statutory holidays). Values are:
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• actual — Nonbusiness days are effectively ignored. Cash flows that fall on nonbusiness days are
assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on the
following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day. However if the following business day is in a different month, the
previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed on the
previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day. However if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell

CapRate — Annual cap rate
decimal

Annual cap rate, specified as the comma-separated pair consisting of 'CapRate' and a NINST-by-1
decimal annual rate or NINST-by-1 cell array, where each element is a NumDates-by-2 cell array, and
the cell array first column is dates, and the second column is associated cap rates. The date indicates
the last day that the cap rate is valid.
Data Types: double | cell

FloorRate — Annual floor rate
decimal

Annual floor rate, specified as the comma-separated pair consisting of 'FloorRate' and a NINST-
by-1 decimal annual rate or NINST-by-1 cell array.

For the NINST-by-1 cell array, each element is a NumDates-by-2 cell array, where the cell array first
column is dates, and the second column is associated floor rates. The date indicates the last day that
the floor rate is valid.
Data Types: double | cell

Output Arguments
Price — Expected floating-rate note prices at time 0
vector

Expected floating-rate note prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing vectors of
instrument prices and accrued interest, and a vector of observation times for each node. Within
PriceTree:

• PriceTree.PTree contains the clean prices.
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• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell array describes

how nodes in that level connect to the next. For a given tree level, there are NumNodes elements
in the vector, and they contain the index of the node at the next level that the middle branch
connects to. Subtracting 1 from that value indicates where the up-branch connects to, and adding
1 indicated where the down branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array contains the
up, middle, and down transition probabilities for each node of the level.

More About
Floating-Rate Note

A floating-rate note is a security like a bond, but the interest rate of the note is reset periodically,
relative to a reference index rate, to reflect fluctuations in market interest rates.

References
[1] Cox, J., Ingersoll, J.,and S. Ross. "A Theory of the Term Structure of Interest Rates." Econometrica.

Vol. 53, 1985.

[2] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer Finance, 2006.

[3] Hirsa, A. Computational Methods in Finance. CRC Press, 2012.

[4] Nawalka, S., Soto, G., and N. Beliaeva. Dynamic Term Structure Modeling. Wiley, 2007.

[5] Nelson, D. and K. Ramaswamy. "Simple Binomial Processes as Diffusion Approximations in
Financial Models." The Review of Financial Studies. Vol 3. 1990, pp. 393–430.

See Also
bondbycir | capbycir | cfbycir | fixedbycir | floorbycir | oasbycir | optbndbycir |
optfloatbycir | optembndbycir | optemfloatbycir | rangefloatbycir | swapbycir |
swaptionbycir | instfloat

Topics
“Computing Instrument Prices” on page 2-81
“Floating-Rate Note” on page 2-10
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced in R2018a
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floatbyhjm
Price floating-rate note from Heath-Jarrow-Morton interest-rate tree

Syntax
[Price,PriceTree] = floatbyhjm(HJMTree,Spread,Settle,Maturity)
[Price,PriceTree] = floatbyhjm( ___ ,Name,Value)

Description
[Price,PriceTree] = floatbyhjm(HJMTree,Spread,Settle,Maturity) prices a floating-
rate note from a Heath-Jarrow-Morton interest-rate tree.

floatbyhjm computes prices of vanilla floating-rate notes, amortizing floating-rate notes, capped
floating-rate notes, floored floating-rate notes and collared floating-rate notes.

[Price,PriceTree] = floatbyhjm( ___ ,Name,Value) adds additional name-value pair
arguments.

Examples

Price a Floating-Rate Note Using an HJM Tree

Price a 20-basis point floating-rate note using an HJM forward-rate tree.

Load the file deriv.mat, which provides HJMTree. The HJMTree structure contains the time and
interest-rate information needed to price the note.

load deriv.mat;

Define the floating-rate note using the required arguments. Other arguments use defaults.

Spread = 20;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';

Use floatbyhjm to compute the price of the note.

Price = floatbyhjm(HJMTree, Spread, Settle, Maturity)

Price = 100.5529

Price an Amortizing Floating-Rate Note

Price an amortizing floating-rate note using the Principal input argument to define the
amortization schedule.

Create the RateSpec.
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Rates = [0.03583; 0.042147; 0.047345; 0.052707; 0.054302];
ValuationDate = '15-Nov-2011';
StartDates = ValuationDate;
EndDates = {'15-Nov-2012';'15-Nov-2013';'15-Nov-2014' ;'15-Nov-2015';'15-Nov-2016'};
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [5x1 double]
            Rates: [5x1 double]
         EndTimes: [5x1 double]
       StartTimes: [5x1 double]
         EndDates: [5x1 double]
       StartDates: 734822
    ValuationDate: 734822
            Basis: 0
     EndMonthRule: 1

Create the floating-rate instrument using the following data:

Settle ='15-Nov-2011';
Maturity = '15-Nov-2015';
Spread = 15;

Define the floating-rate note amortizing schedule.

Principal ={{'15-Nov-2012' 100;'15-Nov-2013' 70;'15-Nov-2014' 40;'15-Nov-2015' 10}};

Build the HJM tree using the following data:

MatDates = {'15-Nov-2012'; '15-Nov-2013';'15-Nov-2014';'15-Nov-2015';'15-Nov-2016';'15-Nov-2017'};
HJMTimeSpec = hjmtimespec(RateSpec.ValuationDate, MatDates);
Volatility = [.10; .08; .06; .04];
CurveTerm = [ 1; 2; 3; 4];
HJMVolSpec = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);
HJMT = hjmtree(HJMVolSpec,RateSpec,HJMTimeSpec);

Compute the price of the amortizing floating-rate note.

Price = floatbyhjm(HJMT, Spread, Settle, Maturity, 'Principal', Principal)

Price = 100.3059

Price a Collar with a Floating-Rate Note

Price a collar with a floating-rate note using the CapRate and FloorRate input argument to define
the collar pricing.

Price a portfolio of collared floating-rate notes using the following data:

Rates = [0.0287; 0.03024; 0.03345; 0.03861; 0.04033];
ValuationDate = '1-April-2012';
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StartDates = ValuationDate;
EndDates = {'1-April-2013';'1-April-2014';'1-April-2015' ;...
'1-April-2016';'1-April-2017'};
Compounding = 1;

Create the RateSpec.

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

Build the HJM tree with the following data:

MatDates = {'1-April-2013'; '1-April-2014';'1-April-2015';...
'1-April-2016';'1-April-2017';'1-April-2018'};
HJMTimeSpec = hjmtimespec(RateSpec.ValuationDate, MatDates);
Volatility = [.10; .08; .06; .04];
CurveTerm = [ 1; 2; 3; 4];
HJMVolSpec = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);
HJMT = hjmtree(HJMVolSpec,RateSpec,HJMTimeSpec);

Create the floating-rate note instrument.

Settle ='1-April-2012';
Maturity = '1-April-2016';
Spread = 10;
Principal = 100;

Compute the price of two capped collared floating-rate notes.

CapStrike = [0.04;0.055];
PriceCapped = floatbyhjm(HJMT, Spread, Settle, Maturity,...
'CapRate', CapStrike)

PriceCapped = 2×1

   98.9986
  100.2051

Compute the price of two collared floating-rate notes.

FloorStrike = [0.035;0.040];
PriceCollared = floatbyhjm(HJMT, Spread, Settle, Maturity,...
'CapRate', CapStrike, 'FloorRate', FloorStrike)

PriceCollared = 2×1

   99.9246
  102.2321

Input Arguments
HJMTree — Interest-rate structure
structure

Interest-rate tree structure, created by hjmtree
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Data Types: struct

Spread — Number of basis points over the reference rate
vector

Number of basis points over the reference rate, specified as a NINST-by-1 vector.
Data Types: double

Settle — Settlement date
serial date number | character vector

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers or date
character vectors.

The Settle date for every floating-rate note is set to the ValuationDate of the HJM tree. The
floating-rate note argument Settle is ignored.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector

Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character vectors
representing the maturity date for each floating-rate note.
Data Types: char | double

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree] =
floatbyhjm(HJMTree,Spread,Settle,Maturity,'Basis',3)

FloatReset — Frequency of payments per year
1 (default) | vector

Frequency of payments per year, specified as the comma-separated pair consisting of 'FloatReset'
and a NINST-by-1 vector.

Note Payments on floating-rate notes (FRNs) are determined by the effective interest-rate between
reset dates. If the reset period for an FRN spans more than one tree level, calculating the payment
becomes impossible due to the recombining nature of the tree. That is, the tree path connecting the
two consecutive reset dates cannot be uniquely determined because there is more than one possible
path for connecting the two payment dates.

Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13
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Day count basis representing the basis used when annualizing the input forward rate tree, specified
as the comma-separated pair consisting of 'Basis' and a NINST-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amounts or principal value schedules
100 (default) | vector or cell array

Notional principal amounts, specified as the comma-separated pair consisting of 'Principal' and a
vector or cell array.

Principal accepts a NINST-by-1 vector or NINST-by-1 cell array, where each element of the cell
array is a NumDates-by-2 cell array and the first column is dates and the second column is its
associated notional principal value. The date indicates the last day that the principal value is valid.
Data Types: cell | double

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure using derivset.
Data Types: struct

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month
having 30 or fewer days, specified as the comma-separated pair consisting of 'EndMonthRule' and
a nonnegative integer [0, 1] using a NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.

11 Functions

11-542



• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-separated pair
consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 vector of logicals with values of 0 (false)
or 1 (true).
Data Types: logical

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair consisting of
'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 cell array of character vectors of
business day conventions. The selection for business day convention determines how non-business
days are treated. Non-business days are defined as weekends plus any other date that businesses are
not open (e.g. statutory holidays). Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-business days
are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on the
following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day. However if the following business day is in a different month, the
previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed on the
previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day. However if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell

CapRate — Annual cap rate
decimal

Annual cap rate, specified as the comma-separated pair consisting of 'CapRate' and a NINST-by-1
decimal annual rate or NINST-by-1 cell array, where each element is a NumDates-by-2 cell array, and
the cell array first column is dates, and the second column is associated cap rates. The date indicates
the last day that the cap rate is valid.
Data Types: double | cell
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FloorRate — Annual floor rate
decimal

Annual floor rate, specified as the comma-separated pair consisting of 'FloorRate' and a NINST-
by-1 decimal annual rate or NINST-by-1 cell array, where each element is a NumDates-by-2 cell array,
and the cell array first column is dates, and the second column is associated floor rates. The date
indicates the last day that the floor rate is valid.
Data Types: double | cell

Output Arguments
Price — Expected floating-rate note prices at time 0
vector

Expected floating-rate note prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing vectors of
instrument prices and accrued interest, and a vector of observation times for each node. Within
PriceTree:

• PriceTree.PBush contains the clean prices.
• PriceTree.AIBush contains the accrued interest.
• PriceTree.tObs contains the observation times.

More About
Floating-Rate Note

A floating-rate note is a security like a bond, but the interest rate of the note is reset periodically,
relative to a reference index rate, to reflect fluctuations in market interest rates.

See Also
bondbyhjm | capbyhjm | cfbyhjm | fixedbyhjm | floorbyhjm | hjmtree | swapbyhjm

Topics
“Computing Instrument Prices” on page 2-81
“Floating-Rate Note” on page 2-10
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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floatbyhw
Price floating-rate note from Hull-White interest-rate tree

Syntax
[Price,PriceTree] = floatbyhw(HWTree,Spread,Settle,Maturity)
[Price,PriceTree] = floatbyhw( ___ ,Name,Value)

Description
[Price,PriceTree] = floatbyhw(HWTree,Spread,Settle,Maturity) prices a floating-rate
note from a Hull-White interest-rate tree.

floatbyhw computes prices of vanilla floating-rate notes, amortizing floating-rate notes, capped
floating-rate notes, floored floating-rate notes and collared floating-rate notes.

[Price,PriceTree] = floatbyhw( ___ ,Name,Value) adds additional name-value pair
arguments.

Examples

Price a Floating-Rate Note Using a Hull-White Tree

Price a 20-basis point floating-rate note using a Hull-White interest-rate tree.

Load the file deriv.mat, which provides HWTree. The HWTree structure contains the time and
interest-rate information needed to price the note.

load deriv.mat;

Define the floating-rate note using the required arguments. Other arguments use defaults.

Spread = 20;
Settle = '01-Jan-2004';
Maturity = '01-Jan-2007';

Use floatbyhw to compute the price of the note.

Price = floatbyhw(HWTree, Spread, Settle, Maturity)

Price = 100.5618

Price an Amortizing Floating-Rate Note

Price an amortizing floating-rate note using the Principal input argument to define the
amortization schedule.

Create the RateSpec.

 floatbyhw

11-545



Rates = [0.03583; 0.042147; 0.047345; 0.052707; 0.054302];
ValuationDate = '15-Nov-2011';
StartDates = ValuationDate;
EndDates = {'15-Nov-2012';'15-Nov-2013';'15-Nov-2014' ;'15-Nov-2015';'15-Nov-2016'};
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [5x1 double]
            Rates: [5x1 double]
         EndTimes: [5x1 double]
       StartTimes: [5x1 double]
         EndDates: [5x1 double]
       StartDates: 734822
    ValuationDate: 734822
            Basis: 0
     EndMonthRule: 1

Create the floating-rate instrument using the following data:

Settle ='15-Nov-2011';
Maturity = '15-Nov-2015';
Spread = 15;

Define the floating-rate note amortizing schedule.

Principal ={{'15-Nov-2012' 100;'15-Nov-2013' 70;'15-Nov-2014' 40;'15-Nov-2015' 10}};

Build the HW tree and assume the volatility is 10%.

VolDates = ['15-Nov-2012'; '15-Nov-2013';'15-Nov-2014';'15-Nov-2015';'15-Nov-2016';'15-Nov-2017'];
VolCurve = 0.1;
AlphaDates = '15-Nov-2017';
AlphaCurve = 0.1;

HWVolSpec = hwvolspec(RateSpec.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RateSpec.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVolSpec, RateSpec, HWTimeSpec);

Compute the price of the amortizing floating-rate note.

Price = floatbyhw(HWT, Spread, Settle, Maturity, 'Principal', Principal)

Price = 100.3059

Price a Collar with a Floating-Rate Note

Price a collar with a floating-rate note using the CapRate and FloorRate input argument to define
the collar pricing.

Price two collared floating-rate notes using the following data:
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Rates = [0.0287; 0.03024; 0.03345; 0.03861; 0.04033];
ValuationDate = '1-April-2012';
StartDates = ValuationDate;
EndDates = {'1-April-2013';'1-April-2014';'1-April-2015' ;...
'1-April-2016';'1-April-2017'};
Compounding = 1;

Create the RateSpec.

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

Build the HW tree and assume the volatility to be 5%.

VolDates = ['1-April-2013';'1-April-2014';'1-April-2015';...
'1-April-2016';'1-April-2017';'1-April-2018'];
VolCurve = 0.05;
AlphaDates = '15-Nov-2018';
AlphaCurve = 0.1;

HWVolSpec = hwvolspec(RateSpec.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RateSpec.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVolSpec, RateSpec, HWTimeSpec);

Create the floating-rate note instrument.

Settle ='1-April-2012';
Maturity = '1-April-2016';
Spread = 10;
Principal = 100;

Compute the price of a vanilla floater.

Price = floatbyhw(HWT, Spread, Settle, Maturity)

Price = 100.3680

Compute the price of the collared floating-rate notes.

CapStrike = {{'1-April-2014' 0.045; '1-April-2015' 0.05;...
 '1-April-2016' 0.06}; 0.06};
         
FloorStrike = {{'1-April-2014' 0.035; '1-April-2015' 0.04;...
 '1-April-2016' 0.05}; 0.03};
PriceCollared = floatbyhw(HWT, Spread, Settle, Maturity,....
'CapRate', CapStrike,'FloorRate', FloorStrike)

PriceCollared = 2×1

  102.0458
  100.9299
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Pricing a Floating-Rate Note When the Reset Dates Are Not Tree Level Dates

When using floatbyhw to price floating-rate notes, there are cases where the dates specified in the
HW tree TimeSpec are not aligned with the cash flow dates.

Price floating-rate notes using the following data:
ValuationDate = '01-Sep-2013'; 
Rates = [0.0001; 0.0001; 0.0010; 0.0015]; 
EndDates = ['01-Dec-2013'; '01-Mar-2014'; '01-Jun-2014'; '01-Sep-2014'];

Create the RateSpec.
RateSpec = intenvset('ValuationDate',ValuationDate,'StartDates',...
ValuationDate,'EndDates',EndDates,'Rates',Rates,'Compounding', 1);

Build the HW tree.
Volcurve = 0.1;                         
Alpha = 0.01; 
HWVolatilitySpec = hwvolspec(RateSpec.ValuationDate, ... 
                             EndDates, Volcurve,... 
                             EndDates, Alpha); 

HWTimeSpec = hwtimespec(RateSpec.ValuationDate, EndDates, 1); 

HWT = hwtree(HWVolatilitySpec, RateSpec, HWTimeSpec); 

Compute the price of the floating-rate note using the following data.
Spread = 10; 
Settle = '01-Sep-2013'; 
Maturity = '01-Jun-2014'; 
Reset = 2; 

Price = floatbyhw(HWT, Spread, Settle, Maturity, 'FloatReset', Reset)

Error using floatengbytrintree (line 318)
Instrument '1 ' has cash flow dates that span across tree nodes.

Error in floatbyhw (line 136)
        [Price, PriceTree, CFTree] = floatengbytrintree(HWTree, Spread, Settle, Maturity, OArgs{:});

This error indicates that it is not possible to determine the applicable rate used to calculate the payoff
at the reset dates, given that the applicable rate needed cannot be calculated (the information was
lost due to the recombination of the tree nodes). Note, if the reset period for an FRN spans more than
one tree level, calculating the payment becomes impossible due to the recombining nature of the
tree. That is, the tree path connecting the two consecutive reset dates cannot be uniquely determined
because there is more than one possible path for connecting the two payment dates. The simplest
solution is to place the tree levels at the cash flow dates of the instrument, which is done by
specifying HWTimeSpec. It is also acceptable to have reset dates between tree levels, as long as there
are reset dates on the tree levels.

To recover from this error, build a tree that lines up with the instrument.
Basis = intenvget(RateSpec, 'Basis');
EOM = intenvget(RateSpec, 'EndMonthRule');
resetDates = cfdates(ValuationDate, Maturity, Reset, Basis, EOM);
HWTimeSpec = hwtimespec(RateSpec.ValuationDate,resetDates, Reset);
HWT = hwtree(HWVolatilitySpec, RateSpec, HWTimeSpec);

Price = floatbyhw(HWT, Spread, RateSpec.ValuationDate, ...
                  Maturity, 'FloatReset', Reset)
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Price =

  100.0748

Input Arguments
HWTree — Interest-rate structure
structure

Interest-rate tree structure, created by hwtree
Data Types: struct

Spread — Number of basis points over the reference rate
vector

Number of basis points over the reference rate, specified as a NINST-by-1 vector.
Data Types: double

Settle — Settlement date
serial date number | character vector

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers or date
character vectors.

The Settle date for every floating-rate note is set to the ValuationDate of the HW tree. The
floating-rate note argument Settle is ignored.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector

Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character vectors
representing the maturity date for each floating-rate note.
Data Types: char | double

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree] = floatbyhw(HWTree,Spread,Settle,Maturity,'Basis',3)

FloatReset — Frequency of payments per year
1 (default) | vector

Frequency of payments per year, specified as the comma-separated pair consisting of 'FloatReset'
and a NINST-by-1 vector.

Note Payments on floating-rate notes (FRNs) are determined by the effective interest-rate between
reset dates. If the reset period for an FRN spans more than one tree level, calculating the payment
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becomes impossible due to the recombining nature of the tree. That is, the tree path connecting the
two consecutive reset dates cannot be uniquely determined because there is more than one possible
path for connecting the two payment dates.

Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13

Day count basis representing the basis used when annualizing the input forward rate tree, specified
as the comma-separated pair consisting of 'Basis' and a NINST-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amounts or principal value schedules
100 (default) | vector or cell array

Notional principal amounts, specified as the comma-separated pair consisting of 'Principal' and a
vector or cell array.

Principal accepts a NINST-by-1 vector or NINST-by-1 cell array, where each element of the cell
array is a NumDates-by-2 cell array and the first column is dates and the second column is its
associated notional principal value. The date indicates the last day that the principal value is valid.
Data Types: cell | double

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure using derivset.
Data Types: struct
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EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month
having 30 or fewer days, specified as the comma-separated pair consisting of 'EndMOnthRule' and
a nonnegative integer [0, 1] using a NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-separated pair
consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 vector of logicals with values of 0 (false)
or 1 (true).
Data Types: logical

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair consisting of
'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 cell array of character vectors of
business day conventions. The selection for business day convention determines how non-business
days are treated. Non-business days are defined as weekends plus any other date that businesses are
not open (e.g. statutory holidays). Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-business days
are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on the
following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day. However if the following business day is in a different month, the
previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed on the
previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day. However if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell
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CapRate — Annual cap rate
decimal

Annual cap rate, specified as the comma-separated pair consisting of 'CapRate' and a NINST-by-1
decimal annual rate or NINST-by-1 cell array, where each element is a NumDates-by-2 cell array, and
the cell array first column is dates, and the second column is associated cap rates. The date indicates
the last day that the cap rate is valid.
Data Types: double | cell

FloorRate — Annual floor rate
decimal

Annual floor rate, specified as the comma-separated pair consisting of 'FloorRate' and a NINST-
by-1 decimal annual rate or NINST-by-1 cell array, where each element is a NumDates-by-2 cell array,
and the cell array first column is dates, and the second column is associated floor rates. The date
indicates the last day that the floor rate is valid.
Data Types: double | cell

Output Arguments
Price — Expected floating-rate note prices at time 0
vector

Expected floating-rate note prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing vectors of
instrument prices and accrued interest, and a vector of observation times for each node. Within
PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell array describes

how nodes in that level connect to the next. For a given tree level, there are NumNodes elements
in the vector, and they contain the index of the node at the next level that the middle branch
connects to. Subtracting 1 from that value indicates where the up-branch connects to, and adding
1 indicated where the down branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array contains the
up, middle, and down transition probabilities for each node of the level.

More About
Floating-Rate Note

A floating-rate note is a security like a bond, but the interest rate of the note is reset periodically,
relative to a reference index rate, to reflect fluctuations in market interest rates.
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See Also
bondbyhw | capbyhw | cfbyhw | fixedbyhw | floorbyhw | hwtree | swapbyhw

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Calibrating Hull-White Model Using Market Data” on page 2-92
“Floating-Rate Note” on page 2-10
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3
“Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on page 1-
73

Introduced before R2006a
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floatbyzero
Price floating-rate note from set of zero curves

Syntax
[Price,DirtyPrice,CFlowAmounts,CFlowDates] = floatbyzero(RateSpec,Spread,
Settle,Maturity)
[Price,DirtyPrice,CFlowAmounts,CFlowDates] = floatbyzero( ___ ,Name,Value)

Description
[Price,DirtyPrice,CFlowAmounts,CFlowDates] = floatbyzero(RateSpec,Spread,
Settle,Maturity) prices a floating-rate note from a set of zero curves.

floatbyzero computes prices of vanilla floating-rate notes and amortizing floating-rate notes.

[Price,DirtyPrice,CFlowAmounts,CFlowDates] = floatbyzero( ___ ,Name,Value) adds
additional name-value pair arguments.

Examples

Price a Floating-Rate Note Using a Set of Zero Curves

Price a 20-basis point floating-rate note using a set of zero curves.

Load deriv.mat, which provides ZeroRateSpec, the interest-rate term structure, needed to price
the bond.

load deriv.mat;

Define the floating-rate note using the required arguments. Other arguments use defaults.

Spread = 20;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';

Use floatbyzero to compute the price of the note.

Price = floatbyzero(ZeroRateSpec, Spread, Settle, Maturity)

Price = 100.5529

Price an Amortizing Floating-Rate Note

Price an amortizing floating-rate note using the Principal input argument to define the
amortization schedule.

Create the RateSpec.
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Rates = [0.03583; 0.042147; 0.047345; 0.052707; 0.054302];
ValuationDate = '15-Nov-2011';
StartDates = ValuationDate;
EndDates = {'15-Nov-2012';'15-Nov-2013';'15-Nov-2014' ;'15-Nov-2015';'15-Nov-2016'};
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [5x1 double]
            Rates: [5x1 double]
         EndTimes: [5x1 double]
       StartTimes: [5x1 double]
         EndDates: [5x1 double]
       StartDates: 734822
    ValuationDate: 734822
            Basis: 0
     EndMonthRule: 1

Create the floating-rate instrument using the following data:

Settle ='15-Nov-2011';
Maturity = '15-Nov-2015';
Spread = 15;

Define the floating-rate note amortizing schedule.

Principal ={{'15-Nov-2012' 100;'15-Nov-2013' 70;'15-Nov-2014' 40;'15-Nov-2015' 10}};

Compute the price of the amortizing floating-rate note.

Price  = floatbyzero(RateSpec, Spread, Settle, Maturity, 'Principal', Principal)

Price = 100.3059

Specify the Rate at the Instrument’s Starting Date When It Cannot Be Obtained from the
RateSpec

If Settle is not on a reset date of a floating-rate note, floatbyzero attempts to obtain the latest
floating rate before Settle from RateSpec or the LatestFloatingRate parameter. When the
reset date for this rate is out of the range of RateSpec (and LatestFloatingRate is not specified),
floatbyzero fails to obtain the rate for that date and generates an error. This example shows how
to use the LatestFloatingRate input parameter to avoid the error.

Create the error condition when a floating-rate instrument’s StartDate cannot be determined from
the RateSpec.
load deriv.mat;

Spread = 20;
Settle = '01-Jan-2000';
Maturity = '01-Dec-2003';

Price = floatbyzero(ZeroRateSpec, Spread, Settle, Maturity)
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Error using floatbyzero (line 256)
The rate at the instrument starting date cannot be obtained from RateSpec.
 Its reset date (01-Dec-1999) is out of the range of dates contained in RateSpec.
 This rate is required to calculate cash flows at the instrument starting date.
 Consider specifying this rate with the 'LatestFloatingRate' input parameter.

Here, the reset date for the rate at Settle was 01-Dec-1999, which was earlier than the valuation
date of ZeroRateSpec (01-Jan-2000). This error can be avoided by specifying the rate at the
instrument’s starting date using the LatestFloatingRate name-value pair argument.

Define LatestFloatingRate and calculate the floating-rate price.
Price = floatbyzero(ZeroRateSpec, Spread, Settle, Maturity, 'LatestFloatingRate', 0.03)

Price =

  100.0285

Price a Floating-Rate Note Using a Different Curve to Generate Floating Cash Flows

Define the OIS and Libor rates.

Settle = datenum('15-Mar-2013');
CurveDates = daysadd(Settle,360*[1/12 2/12 3/12 6/12 1 2 3 4 5 7 10],1);
OISRates = [.0018 .0019 .0021 .0023 .0031 .006  .011 .017 .021 .026 .03]';
LiborRates = [.0045 .0047 .005 .0055 .0075 .011 .016 .022 .026 .030 .0348]';

Plot the dual curves.

figure,plot(CurveDates,OISRates,'r');hold on;plot(CurveDates,LiborRates,'b')
datetick
legend({'OIS Curve', 'Libor Curve'})
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Create an associated RateSpec for the OIS and Libor curves.

OISCurve = intenvset('Rates',OISRates,'StartDate',Settle,'EndDates',CurveDates);
LiborCurve = intenvset('Rates',LiborRates,'StartDate',Settle,'EndDates',CurveDates);

Define the floating-rate note.

Maturity = datenum('15-Mar-2018');

Compute the price for the floating-rate note. The LiborCurve term structure will be used to
generate the floating cash flows of the floater instrument. The OISCurve term structure will be used
for discounting the cash flows.

Price = floatbyzero(OISCurve,0,Settle,Maturity,'ProjectionCurve',LiborCurve)

Price = 102.4214

Some instruments require using different interest-rate curves for generating the floating cash flows
and discounting. This is when the ProjectionCurve parameter is useful. When you provide both
RateSpec and ProjectionCurve, floatbyzero uses the RateSpec for the purpose of discounting
and it uses the ProjectionCurve for generating the floating cash flows.

Input Arguments
RateSpec — Annualized zero rate term structure
structure
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Annualized zero rate term structure, specified using intenvset to create a RateSpec.
Data Types: struct

Spread — Number of basis points over the reference rate
vector

Number of basis points over the reference rate, specified as a NINST-by-1 vector.
Data Types: double

Settle — Settlement date
serial date number | character vector

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers or date
character vectors.

Settle must be earlier than Maturity.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector

Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character vectors
representing the maturity date for each floating-rate note.
Data Types: char | double

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,DirtyPrice,CFlowAmounts,CFlowDates] =
floatbyzero(RateSpec,Spread,Settle,Maturity,'Principal',Principal)

FloatReset — Frequency of payments per year
1 (default) | vector

Frequency of payments per year, specified as the comma-separated pair consisting of 'FloatReset'
and a NINST-by-1 vector.
Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13

Day count basis, specified as the comma-separated pair consisting of 'Basis' and a NINST-by-1
vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
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• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amounts or principal value schedules
100 (default) | vector or cell array

Notional principal amounts, specified as the comma-separated pair consisting of 'Principal' and a
vector or cell array.

Principal accepts a NINST-by-1 vector or NINST-by-1 cell array, where each element of the cell
array is a NumDates-by-2 cell array and the first column is dates and the second column is its
associated notional principal value. The date indicates the last day that the principal value is valid.
Data Types: cell | double

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month
having 30 or fewer days, specified as the comma-separated pair consisting of 'EndMonthRule' and
a nonnegative integer [0, 1] using a NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

LatestFloatingRate — Rate for the next floating payment
if not specified, the floating rate at the previous reset date is computed from RateSpec (default) |
numeric

Rate for the next floating payment set at the last reset date, specified as the comma-separated pair
consisting of 'LatestFloatingRate' and a NINST-by-1.
Data Types: double

ProjectionCurve — Rate curve used in generating future forward rates
if not specified, then RateSpec is used both for discounting cash flows and projecting future forward
rates (default) | structure
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The rate curve to be used in generating the future forward rates, specified as the comma-separated
pair consisting of 'ProjectionCurve' and a structure created using intenvset. Use this optional
input if the forward curve is different from the discount curve.
Data Types: struct

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-separated pair
consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 vector of logicals with values of 0 (false)
or 1 (true).
Data Types: logical

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair consisting of
'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 cell array of character vectors of
business day conventions. The selection for business day convention determines how non-business
days are treated. Non-business days are defined as weekends plus any other date that businesses are
not open (e.g. statutory holidays). Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-business days
are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on the
following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day. However if the following business day is in a different month, the
previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed on the
previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day. However if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell

Output Arguments
Price — Floating-rate note prices
matrix

Floating-rate note prices, returned as a (NINST) by number of curves (NUMCURVES) matrix. Each
column arises from one of the zero curves.
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DirtyPrice — Dirty note price
matrix

Dirty note price (clean + accrued interest), returned as a NINST- by-NUMCURVES matrix. Each column
arises from one of the zero curves.

CFlowAmounts — Cash flow amounts
matrix

Cash flow amounts, returned as a NINST- by-NUMCFS matrix of cash flows for each note. If there is
more than one curve specified in the RateSpec input, then the first NCURVES rows correspond to the
first note, the second NCURVES rows correspond to the second note, and so on.

CFlowDates — Cash flow dates
matrix

Cash flow dates, returned as a NINST- by-NUMCFS matrix of payment dates for each note.

More About
Floating-Rate Note

A floating-rate note is a security like a bond, but the interest rate of the note is reset periodically,
relative to a reference index rate, to reflect fluctuations in market interest rates.

See Also
bondbyzero | cfbyzero | fixedbyzero | swapbyzero | intenvset

Topics
“Pricing Using Interest-Rate Term Structure” on page 2-61
“Floating-Rate Note” on page 2-10
“Understanding Interest-Rate Tree Models” on page 2-66
“Supported Interest-Rate Instrument Functions” on page 2-3
“Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on page 1-
73

Introduced before R2006a
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floorbybdt
Price floor instrument from Black-Derman-Toy interest-rate tree

Syntax
[Price,PriceTree] = floorbybdt(BDTTree,Strike,Settle,Maturity)
[Price,PriceTree] = floorbybdt( ___ ,FloorReset,Basis,Principal,Options)

Description
[Price,PriceTree] = floorbybdt(BDTTree,Strike,Settle,Maturity) computes the price
of a floor instrument from a Black-Derman-Toy interest-rate tree. floorbybdt computes prices of
vanilla floors and amortizing floors.

[Price,PriceTree] = floorbybdt( ___ ,FloorReset,Basis,Principal,Options) adds
optional arguments.

Examples

Price a 10% Floor Instrument Using a BDT Interest-Rate Tree

Load the file deriv.mat, which provides BDTTree. BDTTree contains the time and interest-rate
information needed to price the floor instrument.

load deriv.mat;

Set the required values. Other arguments will use defaults.

Strike = 0.10;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

Use floorbybdt to compute the price of the floor instrument.

Price = floorbybdt(BDTTree, Strike, Settle, Maturity)

Price = 0.2428

Price a 10% Floor Instrument Using a Newly Created BDT Interest-Rate Tree

First set the required arguments for the three needed specifications.

Compounding = 1; 
ValuationDate = '01-01-2000'; 
StartDate = ValuationDate; 
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003'; 
'01-01-2004'; '01-01-2005']; 
Rates = [.1; .11; .12; .125; .13]; 
Volatility = [.2; .19; .18; .17; .16];
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Create the specifications.

RateSpec = intenvset('Compounding', Compounding,... 
'ValuationDate', ValuationDate,... 
'StartDates', StartDate,... 
'EndDates', EndDates,... 
'Rates', Rates); 
BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding); 
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility);

Create the BDT tree from the specifications.

BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec)

BDTTree = struct with fields:
      FinObj: 'BDTFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3 4]
        dObs: [730486 730852 731217 731582 731947]
        TFwd: {[5x1 double]  [4x1 double]  [3x1 double]  [2x1 double]  [4]}
      CFlowT: {[5x1 double]  [4x1 double]  [3x1 double]  [2x1 double]  [5]}
     FwdTree: {1x5 cell}

Set the floor arguments. Remaining arguments will use defaults.

FloorStrike = 0.10; 
Settlement = ValuationDate; 
Maturity = '01-01-2002'; 
FloorReset = 1;

Use floorbybdt to find the price of the floor instrument.

Price= floorbybdt(BDTTree, FloorStrike, Settlement, Maturity,... 
FloorReset)

Price = 0.0863

Compute the Price of an Amortizing Floor Using the BDT Model

Define the RateSpec.

Rates = [0.03583; 0.042147; 0.047345; 0.052707; 0.054302];
ValuationDate = '15-Nov-2011';
StartDates = ValuationDate;
EndDates = {'15-Nov-2012';'15-Nov-2013';'15-Nov-2014' ;'15-Nov-2015';'15-Nov-2016'};
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [5x1 double]

 floorbybdt

11-563



            Rates: [5x1 double]
         EndTimes: [5x1 double]
       StartTimes: [5x1 double]
         EndDates: [5x1 double]
       StartDates: 734822
    ValuationDate: 734822
            Basis: 0
     EndMonthRule: 1

Define the floor instrument.

Settle ='15-Nov-2011';
Maturity = '15-Nov-2015';
Strike = 0.039;
Reset = 1;
Principal ={{'15-Nov-2012' 100;'15-Nov-2013' 70;'15-Nov-2014' 40;'15-Nov-2015' 10}};

Build the BDT Tree.

BDTTimeSpec = bdttimespec(ValuationDate, EndDates);
Volatility = 0.10;  
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility*ones(1,length(EndDates))');
BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec)

BDTTree = struct with fields:
      FinObj: 'BDTFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3 4]
        dObs: [734822 735188 735553 735918 736283]
        TFwd: {[5x1 double]  [4x1 double]  [3x1 double]  [2x1 double]  [4]}
      CFlowT: {[5x1 double]  [4x1 double]  [3x1 double]  [2x1 double]  [5]}
     FwdTree: {1x5 cell}

Price the amortizing floor.

Basis = 0;
Price = floorbybdt(BDTTree, Strike, Settle, Maturity, Reset, Basis, Principal)

Price = 0.3060

Input Arguments
BDTTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bdttree.
Data Types: struct

Strike — Rate at which floor is exercised
decimal

Rate at which the floor is exercised, specified as a NINST-by-1 vector of decimal values.
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Data Types: double

Settle — Settlement date for floor
serial date number | date character vector | cell array of date character vectors

Settlement date for the floor, specified as a NINST-by-1 vector of serial date numbers or date
character vectors. The Settle date for every floor is set to the ValuationDate of the BDT tree. The
floor argument Settle is ignored.
Data Types: double | char | cell

Maturity — Maturity date for floor
serial date number | date character vector | cell array of date character vectors

Maturity date for the floor, specified as a NINST-by-1 vector of serial date numbers or date character
vectors.
Data Types: double | char | cell

FloorReset — Reset frequency payment per year
1 (default) | numeric

(Optional) Reset frequency payment per year, specified as a NINST-by-1 vector.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis representing the basis used when annualizing the input forward rate,
specified as a NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double
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Principal — Notional principal amount
100 (default) | numeric

(Optional) Notional principal amount, specified as a NINST-by-1 of notional principal amounts, or a
NINST-by-1 cell array, where each element is a NumDates-by-2 cell array where the first column is
dates and the second column is associated principal amount. The date indicates the last day that the
principal value is valid.

Use Principal to pass a schedule to compute the price for an amortizing floor.
Data Types: double | cell

Options — Derivatives pricing options structure
structure

(Optional) Derivatives pricing options structure, specified using derivset.
Data Types: struct

Output Arguments
Price — Expected price of floor at time 0
vector

Expected price of the floor at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure with values of floor at each node
vector

Tree structure with values of the floor at each node, returned as a MATLAB structure of trees
containing vectors of instrument prices and a vector of observation times for each node:

• PriceTree.PTree contains floor prices.
• PriceTree.tObs contains the observation times.

More About
Floor

A floor is a contract that includes a guarantee setting the minimum interest rate to be received by the
holder, based on an otherwise floating interest rate.

The payoff for a floor is:

max(FloorRate− CurrentRate, 0)

See Also
bdttree | capbybdt | cfbybdt | swapbybdt | floorbynormal

Topics
“Computing Instrument Prices” on page 2-81
“Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-10
“Floor” on page 2-12
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“Pricing Options Structure” on page A-2
“Understanding Interest-Rate Tree Models” on page 2-66
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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floorbybk
Price floor instrument from Black-Karasinski interest-rate tree

Syntax
[Price,PriceTree] = floorbybk(BKTree,Strike,Settle,Maturity)
[Price,PriceTree] = floorbybk( ___ ,Reset,Basis,Principal,Options)

Description
[Price,PriceTree] = floorbybk(BKTree,Strike,Settle,Maturity) computes the price of
a floor instrument from a Black-Karasinski interest-rate tree. floorbybk computes prices of vanilla
floors and amortizing floors.

[Price,PriceTree] = floorbybk( ___ ,Reset,Basis,Principal,Options) adds optional
arguments.

Examples

Price a 3% Floor Instrument Using a Black-Karasinski Interest-Rate Tree

Load the file deriv.mat, which provides BKTree. The BKTree structure contains the time and
interest rate information needed to price the floor instrument.

load deriv.mat;

Set the required values. Other arguments will use defaults.

Strike = 0.03;
Settle = '01-Jan-2004';
Maturity = '01-Jan-2007';

Use floorbybk to compute the price of the floor instrument.

Price = floorbybk(BKTree, Strike, Settle, Maturity)

Price = 0.2061

Compute the Price of an Amortizing and Vanilla Floors Using the BK Model

Load deriv.mat to specify the BKTree and then define the floor instrument.

load deriv.mat; 
Settle = '01-Jan-2004';
Maturity = '01-Jan-2008';
Strike = 0.045;
Reset = 1;
Principal ={{'01-Jan-2005' 100;'01-Jan-2006' 60;'01-Jan-2007' 30;'01-Jan-2008' 30};...
            100};
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Price the amortizing and vanilla floors.

Basis = 1;
Price = floorbybk(BKTree, Strike, Settle, Maturity, Reset, Basis, Principal)

Price = 2×1

    2.2000
    2.5564

Input Arguments
BKTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bktree.
Data Types: struct

Strike — Rate at which cap is exercised
decimal

Rate at which cap is exercised, specified as a NINST-by-1 vector of decimal values.
Data Types: double

Settle — Settlement date for floor
serial date number | date character vector | cell array of date character vectors

Settlement date for the floor, specified as a NINST-by-1 vector of serial date numbers or date
character vectors. The Settle date for every floor is set to the ValuationDate of the BK tree. The
floor argument Settle is ignored.
Data Types: double | char | cell

Maturity — Maturity date for floor
serial date number | date character vector | cell array of date character vectors

Maturity date for the floor, specified as a NINST-by-1 vector of serial date numbers or date character
vectors.
Data Types: double | char | cell

Reset — Reset frequency payment per year
1 (default) | numeric

(Optional) Reset frequency payment per year, specified as a NINST-by-1 vector.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis representing the basis used when annualizing the input forward rate,
specified as a NINST-by-1 vector of integers.
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• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

(Optional) Notional principal amount, specified as a NINST-by-1 of notional principal amounts, or a
NINST-by-1 cell array, where each element is a NumDates-by-2 cell array where the first column is
dates and the second column is associated principal amount. The date indicates the last day that the
principal value is valid.

Use Principal to pass a schedule to compute the price for an amortizing floor.
Data Types: double | cell

Options — Derivatives pricing options structure
structure

(Optional) Derivatives pricing options structure, specified using derivset.
Data Types: struct

Output Arguments
Price — Expected price of floor at time 0
vector

Expected price of the floor at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure with values of floor at each node
vector

Tree structure with values of the floor at each node, returned as a MATLAB structure of trees
containing vectors of instrument prices and a vector of observation times for each node:
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• PriceTree.PTree contains floor prices.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell array describes

how nodes in that level connect to the next. For a given tree level, there are NumNodes elements
in the vector, and they contain the index of the node at the next level that the middle branch
connects to. Subtracting 1 from that value indicates where the up-branch connects to, and adding
1 indicated where the down branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array contains the
up, middle, and down transition probabilities for each node of the level.

More About
Floor

A floor is a contract that includes a guarantee setting the minimum interest rate to be received by the
holder, based on an otherwise floating interest rate.

The payoff for a floor is:

max(FloorRate− CurrentRate, 0)

See Also
bktree | capbybk | cfbybk | swapbybk | floorbynormal

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Floor” on page 2-12
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3
“Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on page 1-
73

Introduced before R2006a
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floorbycir
Price floor instrument from Cox-Ingersoll-Ross interest-rate tree

Syntax
[Price,PriceTree] = floorbycir(CIRTree,Strike,Settle,Maturity)
[Price,PriceTree] = floorbycir( ___ ,Name,Value)

Description
[Price,PriceTree] = floorbycir(CIRTree,Strike,Settle,Maturity) computes the price
of a floor instrument from a Cox-Ingersoll-Ross (CIR) interest-rate tree. floorbycir computes prices
of vanilla floors and amortizing floors using a CIR++ model with the Nawalka-Beliaeva (NB)
approach.

[Price,PriceTree] = floorbycir( ___ ,Name,Value) adds additional name-value pair
arguments.

Examples

Price a Floor Using a CIR Interest-Rate Tree

Define the Strike for a floor.

Strike = 0.02;

Create a RateSpec using the intenvset function.

Rates = [0.035; 0.042147; 0.047345; 0.052707]; 
Dates = {'Jan-1-2017'; 'Jan-1-2018'; 'Jan-1-2019'; 'Jan-1-2020'; 'Jan-1-2021'}; 
ValuationDate = 'Jan-1-2017'; 
EndDates = Dates(2:end)'; 
Compounding = 1; 
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, 'EndDates',EndDates,'Rates', Rates, 'Compounding', Compounding); 

Create a CIR tree.

NumPeriods = length(EndDates); 
Alpha = 0.03; 
Theta = 0.02;  
Sigma = 0.1;   
Settle = '01-Jan-2017'; 
Maturity = '01-Jan-2021'; 
CIRTimeSpec = cirtimespec(ValuationDate, Maturity, NumPeriods); 
CIRVolSpec = cirvolspec(Sigma, Alpha, Theta); 

CIRT = cirtree(CIRVolSpec, RateSpec, CIRTimeSpec)

CIRT = struct with fields:
      FinObj: 'CIRFwdTree'
     VolSpec: [1x1 struct]
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    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [736696 737061 737426 737791]
     FwdTree: {1x4 cell}
     Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

Price the 2% floor.

[Price,PriceTree] = floorbycir(CIRT,Strike,Settle,Maturity) 

Price = 1.4211e-14

PriceTree = struct with fields:
     FinObj: 'CIRPriceTree'
       tObs: [0 1 2 3 4]
      PTree: {1x5 cell}
    Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
      Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

Input Arguments
CIRTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using cirtree.
Data Types: struct

Strike — Rate at which cap is exercised
decimal

Rate at which cap is exercised, specified as a NINST-by-1 vector of decimal values.
Data Types: double

Settle — Settlement date for floor
serial date number | date character vector | cell array of date character vectors | string array |
datetime

Settlement date for the floor, specified as a NINST-by-1 vector of serial date numbers, date character
vectors, string arrays, or datetime arrays. The Settle date for every floor is set to the
ValuationDate of the CIR tree. The floor argument Settle is ignored.
Data Types: double | char | cell | datetime

Maturity — Maturity date for floor
serial date number | date character vector | cell array of date character vectors | string array |
datetime

Maturity date for the floor, specified as a NINST-by-1 vector of serial date numbers, date character
vectors, string arrays, or datetime arrays.
Data Types: double | char | cell | datetime

 floorbycir

11-573



Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree] =
floorbycir(CIRTree,CouponRate,Settle,Maturity,'Basis',3)

FloorReset — Reset frequency payment per year
1 (default) | numeric

Reset frequency payment per year, specified as the comma-separated pair consisting of
'FloorReset' and a NINST-by-1 vector.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis representing the basis used when annualizing the input forward rate, specified as the
comma-separated pair consisting of 'Basis' and a NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

Notional principal amount, specified as the comma-separated pair consisting of 'Principal' and a
NINST-by-1 of notional principal amounts, or a NINST-by-1 cell array.
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For the NINST-by-1 cell array, each element is a NumDates-by-2 cell array where the first column is
dates, and the second column is associated principal amount. The date indicates the last day that the
principal value is valid.

Use Principal to pass a schedule to compute the price for an amortizing floor.
Data Types: double | cell

Output Arguments
Price — Expected price of floor at time 0
vector

Expected price of the floor at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure with values of floor at each node
vector

Tree structure with values of the floor at each node, returned as a MATLAB structure of trees
containing vectors of instrument prices and a vector of observation times for each node:

• PriceTree.PTree contains floor prices.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell array describes

how nodes in that level connect to the next. For a given tree level, there are NumNodes elements
in the vector, and they contain the index of the node at the next level that the middle branch
connects to. Subtracting 1 from that value indicates where the up-branch connects to, and adding
1 indicated where the down branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array contains the
up, middle, and down transition probabilities for each node of the level.

More About
Floor

A floor is a contract that includes a guarantee setting the minimum interest rate to be received by the
holder, based on an otherwise floating interest rate.

The payoff for a floor is:

max(FloorRate− CurrentRate, 0)

References
[1] Cox, J., Ingersoll, J.,and S. Ross. "A Theory of the Term Structure of Interest Rates." Econometrica.

Vol. 53, 1985.

[2] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer Finance, 2006.

[3] Hirsa, A. Computational Methods in Finance. CRC Press, 2012.

[4] Nawalka, S., Soto, G., and N. Beliaeva. Dynamic Term Structure Modeling. Wiley, 2007.
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[5] Nelson, D. and K. Ramaswamy. "Simple Binomial Processes as Diffusion Approximations in
Financial Models." The Review of Financial Studies. Vol 3. 1990, pp. 393–430.

See Also
bondbycir | capbycir | cfbycir | fixedbycir | floatbycir | oasbycir | optbndbycir |
optfloatbycir | optembndbycir | optemfloatbycir | rangefloatbycir | swapbycir |
swaptionbycir | instfloor

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Floor” on page 2-12
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced in R2018a
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floorbyblk
Price floors using Black option pricing model

Syntax
[FloorPrice,Floorlets] = floorbyblk(RateSpec,Strike,Settle,Maturity,
Volatility)
[FloorPrice,Floorlets] = floorbyblk( ___ ,Name,Value)

Description
[FloorPrice,Floorlets] = floorbyblk(RateSpec,Strike,Settle,Maturity,
Volatility) price floors using the Black option pricing model. floorbyblk computes prices of
vanilla floors and amortizing floors.

[FloorPrice,Floorlets] = floorbyblk( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Price a Floor Using the Black Option Pricing Model

This example shows how to price a floor using the Black option pricing model. Consider an investor
who gets into a contract that floors the interest rate on a $100,000 loan at 6% quarterly compounded
for 3 months, starting on January 1, 2009. Assuming that on January 1, 2008 the zero rate is 6.9394%
continuously compounded and the volatility is 20%, use this data to compute the floor price.

ValuationDate = 'Jan-01-2008';  
EndDates ='April-01-2010';
Rates = 0.069394;
Compounding = -1; 
Basis = 1;

% calculate the RateSpec
RateSpec = intenvset('ValuationDate', ValuationDate, ...
'StartDates', ValuationDate,'EndDates', EndDates, ...
'Rates', Rates,'Compounding', Compounding,'Basis', Basis);

Settle = 'Jan-01-2009'; % floor starts in a year
Maturity = 'April-01-2009';
Volatility = 0.20;
FloorRate = 0.06;
FloorReset = 4;
Principal=100000;

FloorPrice = floorbyblk(RateSpec, FloorRate, Settle, Maturity, Volatility,...
'Reset',FloorReset,'ValuationDate',ValuationDate,'Principal', Principal,...
'Basis', Basis)

FloorPrice = 37.4864
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Price a Floor Using a Different Curve to Generate the Future Forward Rates

Define the OIS and Libor rates.

Settle = datenum('15-Mar-2013');
CurveDates = daysadd(Settle,360*[1/12 2/12 3/12 6/12 1 2 3 4 5 7 10],1);
OISRates = [.0018 .0019 .0021 .0023 .0031 .006  .011 .017 .021 .026 .03]';
LiborRates = [.0045 .0047 .005 .0055 .0075 .0109  .0162 .0216 .0262 .0309 .0348]';

Create an associated RateSpec for the OIS and Libor curves.

OISCurve = intenvset('Rates',OISRates,'StartDate',Settle,'EndDates',CurveDates,'Compounding',2,'Basis',1);
LiborCurve = intenvset('Rates',LiborRates,'StartDate',Settle,'EndDates',CurveDates,'Compounding',2,'Basis',1);

Define the Floor instruments.

Maturity = {'15-Mar-2018';'15-Mar-2020'};
Strike = [.04;.05];
BlackVol = .2;

Price the floor instruments using the term structure OISCurve both for discounting the cash flows
and generating future forward rates.

[Price, Floorlets] = floorbyblk(OISCurve, Strike, Settle, Maturity, BlackVol)

Price = 2×1

    9.9808
   16.9057

Floorlets = 2×7

    3.6783    3.0706    1.8275    0.7280    0.6764       NaN       NaN
    4.6753    4.0587    2.7921    1.4763    1.3442    1.4130    1.1462

Price the floor instruments using the term structure LiborCurve to generate future forward rates.
The term structure OISCurve is used for discounting the cash flows.

[PriceLC, FloorletsLC] = floorbyblk(OISCurve, Strike, Settle, Maturity, BlackVol,'ProjectionCurve',LiborCurve)

PriceLC = 2×1

    8.0524
   14.3184

FloorletsLC = 2×7

    3.2385    2.5338    1.2895    0.5889    0.4017       NaN       NaN
    4.2355    3.5219    2.2286    1.2751    0.9169    1.1698    0.9706
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Compute the Price of an Amortizing Floor Using the Black Model

Define the RateSpec.

Rates = [0.0358; 0.0421; 0.0473; 0.0527; 0.0543];
ValuationDate = '15-Nov-2011';
StartDates = ValuationDate;
EndDates = {'15-Nov-2012';'15-Nov-2013';'15-Nov-2014' ;'15-Nov-2015';'15-Nov-2016'};
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
             'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [5x1 double]
            Rates: [5x1 double]
         EndTimes: [5x1 double]
       StartTimes: [5x1 double]
         EndDates: [5x1 double]
       StartDates: 734822
    ValuationDate: 734822
            Basis: 0
     EndMonthRule: 1

Define the floor instrument.

Settle ='15-Nov-2011';
Maturity = '15-Nov-2015';
Strike = 0.05;
Reset = 2;
Principal ={{'15-Nov-2012' 100;'15-Nov-2013' 70;'15-Nov-2014' 40;'15-Nov-2015' 10}};

Price the amortizing floor.

Volatility = 0.20;
Price = floorbyblk(RateSpec, Strike, Settle, Maturity, Volatility,...
'Reset',Reset,'Principal', Principal)

Price = 1.9315

Price a Floor Using the Shifted Black Model

Create the RateSpec.

ValuationDate = 'Mar-01-2016';
EndDates = {'Mar-01-2017';'Mar-01-2018';'Mar-01-2019';'Mar-01-2020';'Mar-01-2021'};
Rates = [-0.21; -0.12; 0.01; 0.10; 0.20]/100;
Compounding = 1;
Basis = 1;

RateSpec = intenvset('ValuationDate',ValuationDate,'StartDates',ValuationDate, ...
'EndDates',EndDates,'Rates',Rates,'Compounding',Compounding,'Basis',Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
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      Compounding: 1
             Disc: [5x1 double]
            Rates: [5x1 double]
         EndTimes: [5x1 double]
       StartTimes: [5x1 double]
         EndDates: [5x1 double]
       StartDates: 736390
    ValuationDate: 736390
            Basis: 1
     EndMonthRule: 1

Price the floor with a negative strike using the Shifted Black model.

Settle = 'Jun-01-2016'; % Floor starts in 3 months.
Maturity = 'Sep-01-2016';
ShiftedBlackVolatility = 0.31;
FloorRate = -0.001;  % -0.1 percent strike.
FloorReset = 4;
Principal = 100000;
Shift = 0.01; % 1 percent shift.

FloorPrice = floorbyblk(RateSpec,FloorRate,Settle,Maturity,ShiftedBlackVolatility,...
'Reset',FloorReset,'ValuationDate',ValuationDate,'Principal',Principal,...
'Basis',Basis,'Shift',Shift)

FloorPrice = 31.2099

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

Strike — Rate at which floor is exercised
decimal

Rate at which floor is exercised, specified as a NINST-by-1 vector of decimal values.
Data Types: double

Settle — Settlement date for floor
serial date number | date character vector

Settlement date for the floor, specified as a serial date number or a date character vector.
Data Types: double | char

Maturity — Maturity date for floor
serial date number | date character vector | cell array of date character vectors

Maturity date for the floor, specified as a serial date number or date character vector.
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Data Types: double | char

Volatility — Volatilities values
numeric

Volatilities values, specified as a NINST-by-1 vector of numeric values.

The Volatility input is not intended for volatility surfaces or cubes. If you specify a matrix for the
Volatility input, floorbyblk internally converts it into a vector. floorbyblk assumes that the
volatilities specified in the Volatility input are flat volatilities, which are applied equally to each of
the floorlets.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [FloorPrice,Floorlets] =
floorbyblk(RateSpec,Strike,Settle,Maturity,Volatility,'Reset',CapReset,'Princ
ipal',100000,'Basis',7)

Reset — Reset frequency payment per year
1 (default) | numeric

Reset frequency payment per year, specified as a NINST-by-1 vector.
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

Notional principal amount, specified as a NINST-by-1 of notional principal amounts, or a NINST-by-1
cell array. When Principal is a NINST-by-1 cell array, each element is a NumDates-by-2 cell array,
where the first column is dates and the second column is associated principal amount. The date
indicates the last day that the principal value is valid.

Use Principal to pass a schedule to compute the price for an amortizing floor.
Data Types: double | cell

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis representing the basis used when annualizing the input forward rate, specified as a
NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
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• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

ProjectionCurve — Rate curve used in generating future forward rates
if ProjectionCurve is not specified, then RateSpec is used both for discounting cash flows and
projecting future forward rates (default) | structure

The rate curve to be used in generating the future forward rates. This structure must be created
using intenvset. Use this optional input if the forward curve is different from the discount curve.
Data Types: struct

Shift — Shift in decimals for shifted Black model
0 (no shift) (default) | positive decimal

Shift in decimals for the shifted Black model, specified using a scalar or NINST-by-1 vector of rate
shifts in positive decimals. Set this parameter to a positive rate shift in decimals to add a positive
shift to the forward rate and strike, which effectively sets a negative lower bound for the forward
rate. For example, a Shift of 0.01 is equal to a 1% shift.
Data Types: double

Output Arguments
FloorPrice — Expected price of floor
vector

Expected price of the floor, returned as a NINST-by-1 vector.

Floorlets — Floorlets
array

Floorlets, returned as a NINST-by-NCF array of floorlets, padded with NaNs.

More About
Floor

A floor is a contract that includes a guarantee setting the minimum interest rate to be received by the
holder, based on an otherwise floating interest rate.
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The payoff for a floor is:

max(FloorRate− CurrentRate, 0)

Shifted Black

The Shifted Black model is essentially the same as the Black’s model, except that it models the
movements of (F + Shift) as the underlying asset, instead of F (which is the forward rate in the case
of floorlets).

This model allows negative rates, with a fixed negative lower bound defined by the amount of shift;
that is, the zero lower bound of Black’s model has been shifted.

Algorithms
Black Model

dF = σBlackFdw

call = e−γT FN(d1)− KN(d2)

put = e−γT KN(− d2)− FN(− d1)

d1 =
ln F

K +
σB2

2 T

σB T ,    d2 = d1− σB T

σB = σBlack

Where F is the forward value and K is the strike.

Shifted Black Model

dF = σShif ted_Black F + Shif t dw

call = e−γT F + Shif t N(ds1)− K + Shif t N(ds2)

put = e−γT K + Shif t N(− ds2)− F + Shif t N(− ds1)

ds1 =
ln F + Shif t

K + Shif t +
σsB2

2 T

σsB T ,    ds2 = ds1− σsB T

σsB = σShif ted_Black

Where F+Shift is the forward value and K+Shift is the strike for the shifted version.

See Also
capbyblk | intenvset | floorbynormal

Topics
“Floor” on page 2-12
“Work with Negative Interest Rates Using Functions” on page 2-18
“Supported Interest-Rate Instrument Functions” on page 2-3
“Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on page 1-
73
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External Websites
How to Price Interest Rate Options with Negative Interest Rates (3 min 05 sec)

Introduced in R2009a
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floorbyhjm
Price floor instrument from Heath-Jarrow-Morton interest-rate tree

Syntax
[Price,PriceTree] = floorbyhjm(HJMTree,Strike,Settle,Maturity)
[Price,PriceTree] = floorbyhjm( ___ ,FloorReset,Basis,Principal,Options)

Description
[Price,PriceTree] = floorbyhjm(HJMTree,Strike,Settle,Maturity) computes the price
of a floor instrument from a Heath-Jarrow-Morton interest-rate tree. floorbyhjm computes prices of
vanilla floors and amortizing floors.

[Price,PriceTree] = floorbyhjm( ___ ,FloorReset,Basis,Principal,Options) adds
optional arguments.

Examples

Price a 3% Floor Instrument Using an HJM Forward-Rate Tree

This example shows how to price a 3% floor instrument using an HJM forward-rate tree by loading
the file deriv.mat, which provides HJMTree. The HJMTree structure contains the time and forward-
rate information needed to price the floor instrument.

load deriv.mat;

Strike = 0.03;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

Price = floorbyhjm(HJMTree, Strike, Settle, Maturity)

Price = 0.0486

Compute the Price of an Amortizing Floor Using the HJM Model

Load deriv.mat to specify the HJMTree and then define the floor instrument.

load deriv.mat; 
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';
Strike = 0.05;
FloorReset = 1;
Principal ={{'01-Jan-2001' 100;'01-Jan-2002' 80;'01-Jan-2003' 70;'01-Jan-2004' 30}};

Price the amortizing floor.
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Price = floorbyhjm(HJMTree, Strike, Settle, Maturity, FloorReset, Principal)

Price = 2.8215

Input Arguments
HJMTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using hjmtree.
Data Types: struct

Strike — Rate at which floor is exercised
decimal

Rate at which the floor is exercised, specified as a NINST-by-1 vector of decimal values.
Data Types: double

Settle — Settlement date for floor
serial date number | date character vector | cell array of date character vectors

Settlement date for the floor, specified as a NINST-by-1 vector of serial date numbers or date
character vectors. The Settle date for every floor is set to the ValuationDate of the HJM tree. The
floor argument Settle is ignored.
Data Types: double | char | cell

Maturity — Maturity date for floor
serial date number | date character vector | cell array of date character vectors

Maturity date for the floor, specified as a NINST-by-1 vector of serial date numbers or date character
vectors.
Data Types: double | char | cell

FloorReset — Reset frequency payment per year
1 (default) | numeric

(Optional) Reset frequency payment per year, specified as a NINST-by-1 vector.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis representing the basis used when annualizing the input forward rate,
specified as a NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
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• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

(Optional) Notional principal amount, specified as a NINST-by-1 of notional principal amounts, or a
NINST-by-1 cell array, where each element is a NumDates-by-2 cell array where the first column is
dates and the second column is associated principal amount. The date indicates the last day that the
principal value is valid.

Use Principal to pass a schedule to compute the price for an amortizing floor.
Data Types: double | cell

Options — Derivatives pricing options structure
structure

(Optional) Derivatives pricing options structure, specified using derivset.
Data Types: struct

Output Arguments
Price — Expected price of floor at time 0
vector

Expected price of the floor at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure with values of floor at each node
vector

Tree structure with values of the floor at each node, returned as a MATLAB structure of trees
containing vectors of instrument prices and a vector of observation times for each node:

• PriceTree.tObs contains the observation times.
• PriceTree.PBush contains the clean prices.
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More About
Floor

A floor is a contract that includes a guarantee setting the minimum interest rate to be received by the
holder, based on an otherwise floating interest rate.

The payoff for a floor is:

max(FloorRate− CurrentRate, 0)

See Also
capbyhjm | cfbyhjm | hjmtree | swapbyhjm | floorbynormal

Topics
“Computing Instrument Prices” on page 2-81
“Floor” on page 2-12
“Pricing Options Structure” on page A-2
“Understanding Interest-Rate Tree Models” on page 2-66
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a

11 Functions

11-588



floorbyhw
Price floor instrument from Hull-White interest-rate tree

Syntax
[Price,PriceTree] = floorbyhw(HWTree,Strike,Settle,Maturity)
[Price,PriceTree] = floorbyhw( ___ ,FloorReset,Basis,Principal,Options)

Description
[Price,PriceTree] = floorbyhw(HWTree,Strike,Settle,Maturity) computes the price of
a floor instrument from a Hull-White interest-rate tree. capbyhw computes prices of vanilla floors and
amortizing floors.

[Price,PriceTree] = floorbyhw( ___ ,FloorReset,Basis,Principal,Options) adds
optional arguments.

Examples

Price a 3% Floor Instrument Using a Hull-White Interest-Rate Tree

Load the file deriv.mat, which provides HWTree. The HWTree structure contains the time and
interest rate information needed to price the floor instrument.

load deriv.mat;

Set the required values. Other arguments will use defaults.

Strike = 0.03;
Settle = '01-Jan-2004';
Maturity = '01-Jan-2007';

Use floorbyhw to compute the price of the floor instrument.

Price = floorbyhw(HWTree, Strike, Settle, Maturity)

Price = 0.4186

Compute the Price of an Amortizing and Vanilla Floors Using the HW Model

Define the RateSpec.

Rates = [0.035; 0.042; 0.047; 0.052; 0.054];
ValuationDate = '01-April-2014';
StartDates = ValuationDate;
EndDates = {'01-April-2019'};
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)
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RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [5x1 double]
            Rates: [5x1 double]
         EndTimes: [5x1 double]
       StartTimes: [5x1 double]
         EndDates: 737516
       StartDates: 735690
    ValuationDate: 735690
            Basis: 0
     EndMonthRule: 1

Define the floor instruments.

Settle ='01-April-2014';
Maturity = '01-April-2018';
Strike = 0.05;
FloorReset = 1;
Principal ={{'01-April-2015' 100;'01-April-2016' 60;'01-April-2017' 40;'01-April-2018' 20};
            100};

Build the HW Tree.

VolDates = ['01-April-2015';'01-April-2016';'01-April-2017';'01-April-2018'];
VolCurve = 0.05;
AlphaDates = '01-April-2018';
AlphaCurve = 0.10;

HWVolSpec = hwvolspec(RateSpec.ValuationDate, VolDates, VolCurve,... 
                      AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RateSpec.ValuationDate, VolDates, Compounding);
HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec)

HWTree = struct with fields:
      FinObj: 'HWFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [735690 736055 736421 736786]
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}
     Connect: {[2]  [2 3 4]  [2 3 4 5 6]}
     FwdTree: {1x4 cell}

Price the amortizing and vanilla floors.

Basis = 0;
Price  = floorbyhw(HWTree, Strike, Settle, Maturity, FloorReset, Basis, Principal)

Price = 2×1

    4.8675
   10.3881
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Input Arguments
HWTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using hwtree.
Data Types: struct

Strike — Rate at which floor is exercised
decimal

Rate at which the floor is exercised, specified as a NINST-by-1 vector of decimal values.
Data Types: double

Settle — Settlement date for floor
serial date number | date character vector | cell array of date character vectors

Settlement date for the floor, specified as a NINST-by-1 vector of serial date numbers or date
character vectors. The Settle date for every floor is set to the ValuationDate of the HW tree. The
floor argument Settle is ignored.
Data Types: double | char | cell

Maturity — Maturity date for floor
serial date number | date character vector | cell array of date character vectors

Maturity date for the floor, specified as a NINST-by-1 vector of serial date numbers or date character
vectors.
Data Types: double | char | cell

FloorReset — Reset frequency payment per year
1 (default) | numeric

(Optional) Reset frequency payment per year, specified as a NINST-by-1 vector.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis representing the basis used when annualizing the input forward rate,
specified as a NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
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• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

(Optional) Notional principal amount, specified as a NINST-by-1 of notional principal amounts, or a
NINST-by-1 cell array, where each element is a NumDates-by-2 cell array where the first column is
dates and the second column is associated principal amount. The date indicates the last day that the
principal value is valid.

Use Principal to pass a schedule to compute the price for an amortizing floor.
Data Types: double | cell

Options — Derivatives pricing options structure
structure

(Optional) Derivatives pricing options structure, specified using derivset.
Data Types: struct

Output Arguments
Price — Expected price of floor at time 0
vector

Expected price of the floor at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure with values of floor at each node
vector

Tree structure with values of the floor at each node, returned as a MATLAB structure of trees
containing vectors of instrument prices and a vector of observation times for each node:

• PriceTree.PTree contains floor prices.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell array describes

how nodes in that level connect to the next. For a given tree level, there are NumNodes elements
in the vector, and they contain the index of the node at the next level that the middle branch
connects to. Subtracting 1 from that value indicates where the up-branch connects to, and adding
1 indicated where the down branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array contains the
up, middle, and down transition probabilities for each node of the level.
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More About
Floor

A floor is a contract that includes a guarantee setting the minimum interest rate to be received by the
holder, based on an otherwise floating interest rate.

The payoff for a floor is:

max(FloorRate− CurrentRate, 0)

See Also
capbyhw | cfbyhw | hwtree | swapbyhw | floorbynormal

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Calibrating Hull-White Model Using Market Data” on page 2-92
“Floor” on page 2-12
“Pricing Options Structure” on page A-2
“Understanding Interest-Rate Tree Models” on page 2-66
“Supported Interest-Rate Instrument Functions” on page 2-3
“Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on page 1-
73

Introduced before R2006a
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floorbylg2f
Price floor using Linear Gaussian two-factor model

Syntax
FloorPrice = floorbylg2f(ZeroCurve,a,b,sigma,eta,rho,Strike,Maturity)
FloorPrice = floorbylg2f( ___ ,Name,Value)

Description
FloorPrice = floorbylg2f(ZeroCurve,a,b,sigma,eta,rho,Strike,Maturity) returns
the floor price for a two-factor additive Gaussian interest-rate model.

FloorPrice = floorbylg2f( ___ ,Name,Value) adds optional name-value pair arguments.

Note Use the optional name-value pair argument, Notional, to pass a schedule to compute the
price for an amortizing floor.

Examples

Price a Floor Using a Linear Gaussian Two-Factor Model

Define the ZeroCurve, a, b, sigma, eta, and rho parameters to compute the floor price.

Settle = datenum('15-Dec-2007');
 
ZeroTimes = [3/12 6/12 1 5 7 10 20 30]';
ZeroRates = [0.033 0.034 0.035 0.040 0.042 0.044 0.048 0.0475]';
CurveDates = daysadd(Settle,360*ZeroTimes,1);
 
irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);
 
a = .07;
b = .5;
sigma = .01;
eta = .006;
rho = -.7;
 
FloorMaturity = daysadd(Settle,360*[1:5 7 10 15 20 25 30],1);
 
Strike = [0.035 0.037 0.038 0.039 0.040 0.042 0.044 0.046 0.047 0.047 0.047]';
 
Price = floorbylg2f(irdc,a,b,sigma,eta,rho,Strike,FloorMaturity)

Price = 11×1

         0
    0.4190
    0.8485
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    1.3365
    1.8671
    3.1091
    4.9807
    7.8518
    9.8297
   11.4578
      ⋮

Price an Amortizing Floor Using a Linear Gaussian Two-Factor Model

Define the ZeroCurve, a, b, sigma, eta, rho, and Notional parameters for the amortizing floor.

Settle = datenum('15-Dec-2007');
% Define ZeroCurve
ZeroTimes = [3/12 6/12 1 5 7 10 20 30]';
ZeroRates = [0.033 0.034 0.035 0.040 0.042 0.044 0.048 0.0475]';
CurveDates = daysadd(Settle,360*ZeroTimes);

irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);

% Define a, b, sigma, eta, and rho
a = .07;
b = .5;
sigma = .01;
eta = .006;
rho = -.7;

% Define the amortizing floors
FloorMaturity = daysadd(Settle,360*[1:5 7 10 15 20 25 30],1);
Strike = [0.025 0.036 0.037 0.038 0.039 0.041 0.043 0.045 0.046 0.046 0.046]';
Notional = {{'15-Dec-2012' 100;'15-Dec-2017' 70;'15-Dec-2022' 40;'15-Dec-2037' 10}};

% Price the amortizing floors
Price = floorbylg2f(irdc,a,b,sigma,eta,rho,Strike,FloorMaturity,'Notional',Notional)

Price = 11×1

         0
    0.2776
    0.6630
    1.1062
    1.5938
    2.5589
    3.9582
    5.4985
    6.1113
    6.2670
      ⋮
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Input Arguments
ZeroCurve — Zero curve for Linear Gaussian two-factor model
structure

Zero curve for the Linear Gaussian two-factor model, specified using IRDataCurve or RateSpec.
Data Types: struct

a — Mean reversion for first factor for Linear Gaussian two-factor model
scalar

Mean reversion for the first factor for the Linear Gaussian two-factor model, specified as a scalar.
Data Types: single | double

b — Mean reversion for second factor for Linear Gaussian two-factor model
scalar

Mean reversion for the second factor for the Linear Gaussian two-factor model, specified as a scalar.
Data Types: single | double

sigma — Volatility for first factor for Linear Gaussian two-factor model
scalar

Volatility for the first factor for the Linear Gaussian two-factor model, specified as a scalar.
Data Types: single | double

eta — Volatility for second factor for Linear Gaussian two-factor model
scalar

Volatility for the second factor for the Linear Gaussian two-factor model, specified as a scalar.
Data Types: single | double

rho — Scalar correlation of factors
scalar

Scalar correlation of the factors, specified as a scalar.
Data Types: single | double

Strike — Floor strike price
nonnegative integer | vector of nonnegative integers

Floor strike price specified, as a nonnegative integer using a NumFloors-by-1 vector of floor strike
prices.
Data Types: single | double

Maturity — Floor maturity date
serial date number | vector of serial date numbers | date character vector

Floor maturity date, specified using a NumFloors-by-1 vector of serial date numbers or date
character vectors.
Data Types: single | double | char | cell
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Price =
floorbylg2f(irdc,a,b,sigma,eta,rho,Strike,FloorMaturity,'Reset',1,'Notional',
100)

Reset — Frequency of floor payments per year
2 (default) | positive integer from the set [1,2,3,4,6,12] | vector of positive integers from the set
[1,2,3,4,6,12]

Frequency of floor payments per year, specified as the comma-separated pair consisting of 'Reset'
and positive integers for the values [1,2,4,6,12] in a NumFloors-by-1 vector.
Data Types: single | double

Notional — Notional value of floor
100 (default) | nonnegative integer | vector of nonnegative integers

NINST-by-1 of notional principal amounts or NINST-by-1 cell array where each element is a
NumDates-by-2 cell array where the first column is dates and the second column is the associated
principal amount. The date indicates the last day that the principal value is valid.
Data Types: single | double

Output Arguments
FloorPrice — Floor price
scalar | vector

Floor price, returned as a scalar or a NumFloors-by-1 vector.

More About
Floor

A floor is a contract that includes a guarantee setting the minimum interest rate to be received by the
holder, based on an otherwise floating interest rate.

The payoff for a floor is:

max(FloorRate− CurrentRate, 0)

Algorithms
The following defines the two-factor additive Gaussian interest-rate model, given the ZeroCurve, a,
b, sigma, eta, and rho parameters:

r(t) = x(t) + y(t) + ϕ(t)
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dx(t) = − a(x)(t)dt + σ(dW1(t), x(0) = 0

dy(t) = − b(y)(t)dt + η(dW2(t), y(0) = 0

where dW1(t)dW2(t) = ρdt is a two-dimensional Brownian motion with correlation ρ and ϕ is a
function chosen to match the initial zero curve.

References
[1] Brigo, D. and F. Mercurio, Interest Rate Models - Theory and Practice. Springer Finance, 2006.

See Also
capbylg2f | swaptionbylg2f | LinearGaussian2F

Topics
“Price Swaptions with Interest-Rate Models Using Simulation” on page 2-101
“Pricing Bermudan Swaptions with Monte Carlo Simulation” on page 2-115
“Floor” on page 2-12
“Supported Interest-Rate Instrument Functions” on page 2-3
“Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on page 1-
73

Introduced in R2013a
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floorbynormal
Price floors using Normal or Bachelier pricing model

Syntax
[FloorPrice,Floorlets] = floorbynormal(RateSpec,Strike,Settle,Maturity,
Volatility)
[FloorPrice,Floorlets] = floorbynormal( ___ ,Name,Value)

Description
[FloorPrice,Floorlets] = floorbynormal(RateSpec,Strike,Settle,Maturity,
Volatility) prices floors using the Normal (Bachelier) pricing model for negative rates.
floorbynormal computes prices of vanilla floors and amortizing floors.

[FloorPrice,Floorlets] = floorbynormal( ___ ,Name,Value) adds optional name-value
pair arguments.

Examples

Price a Floor Using Normal Model for Negative Rates

Consider an investor who gets into a contract that floors the interest rate on a $100,000 loan at –.6%
quarterly compounded for 3 months, starting on January 1, 2009. Assuming that on January 1, 2008
the zero rate is .69394% continuously compounded and the volatility is 20%, use this data to compute
the floor price. First, calculate the RateSpec, and then use floorbynormal to compute the
FloorPrice.

ValuationDate = 'Jan-01-2008';
EndDates ='April-01-2010';
Rates = 0.0069394;
Compounding = -1;
Basis = 1;

% calculate the RateSpec
RateSpec = intenvset('ValuationDate', ValuationDate, ...
'StartDates', ValuationDate,'EndDates', EndDates, ...
'Rates', Rates,'Compounding', Compounding,'Basis', Basis);

Settle = 'Jan-01-2009'; % floor starts in a year
Maturity = 'April-01-2009';
Volatility = 0.20;
FloorRate = -0.006;
FloorReset = 4;
Principal=100000;

FloorPrice = floorbynormal(RateSpec, FloorRate, Settle, Maturity, Volatility,...
'Reset',FloorReset,'ValuationDate',ValuationDate,'Principal', Principal,...
'Basis', Basis)

FloorPrice = 1.8212e+03
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Price a Floor Using floorbynormal and Compare to floorbyblk

Define the RateSpec.

Settle = datenum('20-Jan-2016');
ZeroTimes = [.5 1 2 3 4 5 7 10 20 30]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = datemnth(Settle,12*ZeroTimes);
RateSpec = intenvset('StartDate',Settle,'EndDates',ZeroDates,'Rates',ZeroRates)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 2
             Disc: [10x1 double]
            Rates: [10x1 double]
         EndTimes: [10x1 double]
       StartTimes: [10x1 double]
         EndDates: [10x1 double]
       StartDates: 736349
    ValuationDate: 736349
            Basis: 0
     EndMonthRule: 1

Define the floor instrument and price with floorbyblk.

ExerciseDate = datenum('20-Jan-2026');

[~,ParSwapRate] = swapbyzero(RateSpec,[NaN 0],Settle,ExerciseDate)

ParSwapRate = 0.0216

Strike = .01;
BlackVol = .3;
NormalVol = BlackVol*ParSwapRate;

Price = floorbyblk(RateSpec,Strike,Settle,ExerciseDate,BlackVol)

Price = 1.2297

Price the floor instrument using floorbynormal.

Price_Normal = floorbynormal(RateSpec,Strike,Settle,ExerciseDate,NormalVol)

Price_Normal = 1.9099

Price the floor instrument using floorbynormal for a negative strike.

 Price_Normal = floorbynormal(RateSpec,-.005,Settle,ExerciseDate,NormalVol)

Price_Normal = 0.0857
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Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

Strike — Rate at which floor is exercised
decimal

Rate at which floor is exercised, specified as a NINST-by-1 vector of decimal values.
Data Types: double

Settle — Settlement date for floor
serial date number | date character vector | datetime object | string object

Settlement date for the floor, specified as a NINST-by-1 vector of serial date numbers, date character
vectors, datetime objects, or string objects.
Data Types: double | char | datetime | string

Maturity — Maturity date for floor
serial date number | date character vector | datetime object | string object

Maturity date for the floor, specified as a NINST-by-1 vector of serial date numbers, date character
vectors, datetime objects, or string objects.
Data Types: double | char | datetime | string

Volatility — Normal volatilities values
numeric

Normal volatilities values, specified as a NINST-by-1 vector of numeric values.

For more information on the Normal model, see “Work with Negative Interest Rates Using Functions”
on page 2-18.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [FloorPrice,Floorlets] =
floorbynormal(RateSpec,Strike,Settle,Maturity,Volatility,'Reset',CapReset,'Pr
incipal',100000,'Basis',7)

Reset — Reset frequency payment per year
1 (default) | numeric
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Reset frequency payment per year, specified as the comma-separated pair consisting of 'Reset' and
a NINST-by-1 vector.
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

Notional principal amount, specified as the comma-separated pair consisting of 'Principal' and a
NINST-by-1 vector or a NINST-by-1 cell array. Each element in the NINST-by-1 cell array is a
NumDates-by-2 cell array, where the first column is dates, and the second column is the associated
principal amount. The date indicates the last day that the principal value is valid.

Use Principal to pass a schedule to compute the price for an amortizing cap.
Data Types: double | cell

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis of instrument representing the basis used when annualizing the input forward rate,
specified as the comma-separated pair consisting of 'Basis' and a NINST-by-1 vector of integers.
Values are:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

ValuationDate — Observation date of investment horizon
if ValuationDate is not specified, then Settle is used (default) | serial date number | date
character vector | datetime object | string object

Observation date of the investment horizon, specified as the comma-separated pair consisting of
'ValuationDate' and a serial date number, date character vector, datetime object, or string array.
Data Types: double | char | datetime | string
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ProjectionCurve — Rate curve used in generating future cash flows
if ProjectionCurve is not specified, then RateSpec is used both for discounting cash flows and
projecting future cash flows (default) | structure

The rate curve to be used in projecting the future cash flows, specified as the comma-separated pair
consisting of 'ProjectionCurve' and a rate curve structure. This structure must be created using
intenvset. Use this optional input if the forward curve is different from the discount curve.
Data Types: struct

Output Arguments
FloorPrice — Expected price of floor
vector

Expected price of the floor, returned as a NINST-by-1 vector.

Floorlets — Floorlets
array

Floorlets, returned as a NINST-by-NCF array of caplets, padded with NaNs.

More About
Floor

A floor is a contract that includes a guarantee setting the minimum interest rate to be received by the
holder, based on an otherwise floating interest rate.

The payoff for a floor is:

max(FloorRate− CurrentRate, 0)

See Also
capbynormal | intenvset | swaptionbynormal | floorbyblk

Topics
“Calibrating Floorlets Using the Normal (Bachelier) Model” on page 2-160
“Floor” on page 2-12
“Work with Negative Interest Rates Using Functions” on page 2-18
“Supported Interest-Rate Instrument Functions” on page 2-3
“Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on page 1-
73

External Websites
How to Price Interest Rate Options with Negative Interest Rates (3 min 05 sec)

Introduced in R2017a
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floorvolstrip
Strip floorlet volatilities from flat floor volatilities

Syntax
[FloorletVols,FloorletPaymentDates,FloorStrikes] = floorvolstrip(ZeroCurve,
FloorSettle,FloorMaturity,FloorVolatility)
[FloorletVols,FloorletPaymentDates,FloorStrikes] = floorvolstrip( ___ ,
Name,Value)

Description
[FloorletVols,FloorletPaymentDates,FloorStrikes] = floorvolstrip(ZeroCurve,
FloorSettle,FloorMaturity,FloorVolatility) strips floorlet volatilities from the flat floor
volatilities by using the bootstrapping method. The function interpolates the cap volatilities on each
floorlet payment date before stripping the floorlet volatilities.

[FloorletVols,FloorletPaymentDates,FloorStrikes] = floorvolstrip( ___ ,
Name,Value) specifies options using one or more name-value pair arguments in addition to the input
arguments in the previous syntax.

Examples

Stripping Floorlet Volatilities from At-The-Money (ATM) Floors

Compute the zero curve for discounting and projecting forward rates.

ValuationDate = datenum('10-Aug-2015');
ZeroRates = [0.12 0.24 0.40 0.73 1.09 1.62]/100;             
CurveDates = datemnth(ValuationDate, [0.25 0.5 1 2 3 5]*12);
ZeroCurve = IRDataCurve('Zero',ValuationDate,CurveDates,ZeroRates)

ZeroCurve = 
             Type: Zero
           Settle: 736186 (10-Aug-2015)
      Compounding: 2
            Basis: 0 (actual/actual)
     InterpMethod: linear
            Dates: [6x1 double]
             Data: [6x1 double]

Define the ATM floor volatility data.

FloorSettle = datenum('12-Aug-2015');
FloorMaturity = datenum({'12-Aug-2016';'14-Aug-2017';'13-Aug-2018';...
    '12-Aug-2019',;'12-Aug-2020'});
FloorVolatility = [0.31;0.39;0.43;0.42;0.40];

Strip floorlet volatilities from ATM floors.
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[FloorletVols, FloorletPaymentDates, ATMFloorStrikes] = floorvolstrip(ZeroCurve,...
    FloorSettle, FloorMaturity, FloorVolatility);

PaymentDates = cellstr(datestr(FloorletPaymentDates));
format;
table(PaymentDates, FloorletVols, ATMFloorStrikes)

ans=9×3 table
     PaymentDates      FloorletVols    ATMFloorStrikes
    _______________    ____________    _______________

    {'12-Aug-2016'}         0.31          0.0056551   
    {'13-Feb-2017'}       0.3646          0.0073508   
    {'14-Aug-2017'}      0.41948          0.0090028   
    {'12-Feb-2018'}      0.43152           0.010827   
    {'13-Aug-2018'}      0.46351           0.012617   
    {'12-Feb-2019'}      0.40407           0.013862   
    {'12-Aug-2019'}      0.39863           0.015105   
    {'12-Feb-2020'}       0.3674           0.016369   
    {'12-Aug-2020'}      0.35371            0.01762   

Stripping Floorlet Volatilities from Floors with the Same Strikes

Compute the zero curve for discounting and projecting forward rates.

ValuationDate = datenum('10-Jun-2015');
ZeroRates = [0.02 0.10 0.28 0.75 1.15 1.80]/100;
CurveDates = datemnth(ValuationDate, [0.25 0.5 1 2 3 5]*12);
ZeroCurve = IRDataCurve('Zero',ValuationDate,CurveDates,ZeroRates)

ZeroCurve = 
             Type: Zero
           Settle: 736125 (10-Jun-2015)
      Compounding: 2
            Basis: 0 (actual/actual)
     InterpMethod: linear
            Dates: [6x1 double]
             Data: [6x1 double]

Define the floor volatility data.

FloorSettle = datenum('12-Jun-2015');
FloorMaturity = datenum({'13-Jun-2016';'12-Jun-2017';'12-Jun-2018';...
    '12-Jun-2019';'12-Jun-2020'});
FloorVolatility = [0.41;0.43;0.43;0.41;0.38];
FloorStrike = 0.015;

Strip floorlet volatilities from floors with the same strike.

[FloorletVols, FloorletPaymentDates, FloorStrikes] = floorvolstrip(ZeroCurve, ...
    FloorSettle, FloorMaturity, FloorVolatility, 'Strike', FloorStrike);

PaymentDates = cellstr(datestr(FloorletPaymentDates));
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format;
table(PaymentDates, FloorletVols, FloorStrikes)

ans=9×3 table
     PaymentDates      FloorletVols    FloorStrikes
    _______________    ____________    ____________

    {'13-Jun-2016'}         0.41          0.015    
    {'12-Dec-2016'}         0.42          0.015    
    {'12-Jun-2017'}      0.43433          0.015    
    {'12-Dec-2017'}      0.43001          0.015    
    {'12-Jun-2018'}         0.43          0.015    
    {'12-Dec-2018'}      0.39173          0.015    
    {'12-Jun-2019'}      0.37244          0.015    
    {'12-Dec-2019'}      0.32056          0.015    
    {'12-Jun-2020'}      0.28308          0.015    

Stripping Floorlet Volatilities Using Manually Specified Floorlet Dates

Compute the zero curve for discounting and projecting forward rates.

ValuationDate = datenum('19-May-2015');
ZeroRates = [0.02 0.07 0.23 0.63 1.01 1.60]/100;
CurveDates = datemnth(ValuationDate, [0.25 0.5 1 2 3 5]*12);
ZeroCurve = IRDataCurve('Zero',ValuationDate,CurveDates,ZeroRates)

ZeroCurve = 
             Type: Zero
           Settle: 736103 (19-May-2015)
      Compounding: 2
            Basis: 0 (actual/actual)
     InterpMethod: linear
            Dates: [6x1 double]
             Data: [6x1 double]

Define the floor volatility data.

FloorSettle = datenum('19-May-2015');
FloorMaturity = datenum({'19-May-2016';'19-May-2017';'21-May-2018'; ...
    '20-May-2019';'19-May-2020'});
FloorVolatility = [0.39;0.42;0.43;0.42;0.40];
FloorStrike = 0.010;

Specify the quarterly and semiannual dates.

FloorletDates = [cfdates(FloorSettle, '19-May-2016', 4)...
     cfdates('19-May-2016', '19-May-2020', 2)]'; 
FloorletDates(~isbusday(FloorletDates)) = ...
    busdate(FloorletDates(~isbusday(FloorletDates)), 'modifiedfollow');

Strip floorlet volatilities using specified FloorletDates.

[FloorletVols, FloorletPaymentDates, FloorStrikes] = floorvolstrip(ZeroCurve, ...
    FloorSettle, FloorMaturity, FloorVolatility, 'Strike', FloorStrike, ...
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    'FloorletDates', FloorletDates);

PaymentDates = cellstr(datestr(FloorletPaymentDates));
format;
table(PaymentDates, FloorletVols, FloorStrikes)

ans=11×3 table
     PaymentDates      FloorletVols    FloorStrikes
    _______________    ____________    ____________

    {'19-Nov-2015'}         0.39           0.01    
    {'19-Feb-2016'}         0.39           0.01    
    {'19-May-2016'}         0.39           0.01    
    {'21-Nov-2016'}       0.4058           0.01    
    {'19-May-2017'}       0.4307           0.01    
    {'20-Nov-2017'}      0.43317           0.01    
    {'21-May-2018'}      0.44309           0.01    
    {'19-Nov-2018'}      0.40831           0.01    
    {'20-May-2019'}      0.39831           0.01    
    {'19-Nov-2019'}       0.3524           0.01    
    {'19-May-2020'}      0.32765           0.01    

Stripping Floorlet Volatilities from Floors Using the Shifted Black Model

Compute the zero curve for discounting and projecting forward rates.

ValuationDate = datenum('3-May-2016');
ZeroRates = [-0.31 -0.21 -0.15 -0.10 0.009 0.19]/100;
CurveDates = datemnth(ValuationDate, [0.25 0.5 1 2 3 5]*12);
ZeroCurve = IRDataCurve('Zero',ValuationDate,CurveDates,ZeroRates)

ZeroCurve = 
             Type: Zero
           Settle: 736453 (03-May-2016)
      Compounding: 2
            Basis: 0 (actual/actual)
     InterpMethod: linear
            Dates: [6x1 double]
             Data: [6x1 double]

Define the floor volatility (Shifted Black) data.

FloorSettle = datenum('3-May-2016');
FloorMaturity = datenum({'3-May-2017';'3-May-2018';'3-May-2019'; ...
    '4-May-2020';'3-May-2021'});
FloorVolatility = [0.42;0.45;0.43;0.40;0.36]; % Shifted Black volatilities
Shift = 0.01; % 1 percent shift.
FloorStrike = -0.001; % -0.1 percent strike.

Strip floorlet volatilities from floors using the Shifted Black Model.

[FloorletVols, FloorletPaymentDates, FloorStrikes] = floorvolstrip(ZeroCurve, ...
FloorSettle,FloorMaturity,FloorVolatility,'Strike',FloorStrike,'Shift',Shift);
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PaymentDates = string(datestr(FloorletPaymentDates));
format;
table(PaymentDates,FloorletVols,FloorStrikes)

ans=9×3 table
    PaymentDates     FloorletVols    FloorStrikes
    _____________    ____________    ____________

    "03-May-2017"         0.42          -0.001   
    "03-Nov-2017"      0.44575          -0.001   
    "03-May-2018"      0.47092          -0.001   
    "05-Nov-2018"      0.41911          -0.001   
    "03-May-2019"      0.40197          -0.001   
    "04-Nov-2019"      0.36262          -0.001   
    "04-May-2020"      0.33615          -0.001   
    "03-Nov-2020"      0.27453          -0.001   
    "03-May-2021"      0.23045          -0.001   

Stripping Floorlet Volatilities from Floors Using Normal Model

Compute the zero curve for discounting and projecting forward rates.

ValuationDate = datenum('1-May-2018');
ZeroRates = [-0.31 -0.27 -0.18 -0.05 0.015 0.22]/100;
CurveDates = datemnth(ValuationDate, [0.25 0.5 1 2 3 5]*12);
ZeroCurve = IRDataCurve('Zero',ValuationDate,CurveDates,ZeroRates)

ZeroCurve = 
             Type: Zero
           Settle: 737181 (01-May-2018)
      Compounding: 2
            Basis: 0 (actual/actual)
     InterpMethod: linear
            Dates: [6x1 double]
             Data: [6x1 double]

Define the normal floor volatility data.

FloorSettle = datenum('1-May-2018');
FloorMaturity = datenum({'1-May-2019';'1-May-2020';'3-May-2021'; ...
    '2-May-2022';'1-May-2023'});
FloorVolatility = [0.0065;0.0067;0.0064;0.0058;0.0055]; % Normal volatilities
FloorStrike = -0.005; % -0.5 percent strike.

Strip floorlet volatilities from floors using the Normal (Bachelier) model.

[FloorletVols, FloorletPaymentDates, FloorStrikes] = floorvolstrip(ZeroCurve, ...
    FloorSettle,FloorMaturity,FloorVolatility,'Strike',FloorStrike,'Model','normal');

PaymentDates = string(datestr(FloorletPaymentDates));
format;
table(PaymentDates,FloorletVols,FloorStrikes)

ans=9×3 table
    PaymentDates     FloorletVols    FloorStrikes
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    _____________    ____________    ____________

    "01-May-2019"        0.0065         -0.005   
    "01-Nov-2019"     0.0066644         -0.005   
    "01-May-2020"     0.0068354         -0.005   
    "02-Nov-2020"      0.006266         -0.005   
    "03-May-2021"     0.0060101         -0.005   
    "01-Nov-2021"      0.004942         -0.005   
    "02-May-2022"     0.0042668         -0.005   
    "01-Nov-2022"     0.0047986         -0.005   
    "01-May-2023"     0.0044738         -0.005   

Input Arguments
ZeroCurve — Zero rate curve
RateSpec object | IRDataCurve object

Zero rate curve, specified using a RateSpec or IRDataCurve object containing the zero rate curve
for discounting according to its day count convention. If you do not specify the optional argument
ProjectionCurve, the function uses ZeroCurve to compute the underlying forward rates as well.
The observation date of the ZeroCurve specifies the valuation date. For more information on
creating a RateSpec, see intenvset. For more information on creating an IRDataCurve object,
see IRDataCurve.
Data Types: struct

FloorSettle — Common floor settle date
serial date number | date character vector

Common floor settle date, specified as a scalar serial date number or date character vector. The
FloorSettle date cannot be earlier than the ZeroCurve valuation date.
Data Types: double | char

FloorMaturity — Floor maturity dates
serial date numbers | date character vectors

Floor maturity dates, specified using serial date numbers or cell array of date character vectors as an
NFloor-by-1 vector.
Data Types: double | char | cell

FloorVolatility — Flat floor volatilities
vector of positive decimals

Flat floor volatilities, specified as an NFloor-by-1 vector of positive decimals.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
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Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [FloorletVols,FloorletPaymentDates,FloorStrikes] =
floorvolstrip(ZeroCurve,FloorSettle,FloorMaturity,FloorVolatility,'Strike',.2
)

Strike — Floor strike rate
if not specified, all floors are at-the-money and the function computes the ATM strike for each floor
maturing on each floorlet payment date (default) | scalar decimal | vector

Floor strike rate, specified as the comma-separated pair consisting of 'Strike' and a scalar decimal
value or an NFloorletVols-by-1 vector. Use Strike as a scalar to specify a single strike that
applies equally to all floors. Or, specify an NCapletVols-by-1 vector of strikes for the floors.
Data Types: double

FloorletDates — Floorlet reset and payment dates
If not specified, the default is to automatically generate periodic floorlet dates (default) | serial date
numbers | date character vectors

Floorlet reset and payment dates, specified as the comma-separated pair consisting of
'FloorletDates' and an NFloorletDates-by-1 vector using serial date numbers or a cell array of
date character vectors.

Use FloorletDates to manually specify all floorlet reset and payment dates. For example, some
date intervals may be quarterly while others may be semiannual. All dates must be later than
FloorSettle and cannot be later than the last FloorMaturity date. Dates are adjusted according
to the BusDayConvention and Holidays inputs.

If FloorletDates is not specified, the default is to automatically generate periodic floorlet dates
after FloorSettle based on the last FloorMaturity date as the reference date, using the
following optional inputs: Reset, EndMonthRule, BusDayConvention, and Holidays.
Data Types: double | char | cell

Reset — Frequency of periodic payments per year within a floor
2 (default) | positive scalar integer with values 1,2, 3, 4, 6, or 12

Frequency of periodic payments per year within a floor, specified as the comma-separated pair
consisting of 'Reset' and a positive scalar integer with values 1,2, 3, 4, 6, or 12.

Note If you specify FloorletDates, the function ignores the input for Reset.

Data Types: double

EndMonthRule — End-of-month rule flag for generating floorlet dates
1 (in effect) (default) | scalar nonnegative integer [0,1]

End-of-month rule flag for generating floorlet dates, specified as the comma-separated pair consisting
of 'EndMonthRule' and a nonnegative integer [0, 1].

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical
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BusinessDayConvention — Business day conventions
'modifiedfollow' (default) | character vector with values 'actual', 'follow',
'modifiedfollow', 'previous', 'modifiedprevious'

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector. Use this argument to specify how the function
treats non-business days, which are days on which businesses are not open (such as weekends and
statutory holidays).

• 'actual' — Non-business days are effectively ignored. Cash flows that fall on non-business days
are assumed to be distributed on the actual date.

• 'follow' — Cash flows that fall on a non-business day are assumed to be distributed on the
following business day.

• 'modifiedfollow' — Cash flows that fall on a non-business day are assumed to be distributed
on the following business day. However, if the following business day is in a different month, the
previous business day is adopted instead.

• 'previous' — Cash flows that fall on a non-business day are assumed to be distributed on the
previous business day.

• 'modifiedprevious' — Cash flows that fall on a non-business day are assumed to be
distributed on the previous business day. However, if the previous business day is in a different
month, the following business day is adopted instead.

Data Types: char

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | vector of MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair consisting of
'Holidays' and NHolidays-by-1 vector of MATLAB date numbers.
Data Types: double

ProjectionCurve — Rate curve for computing underlying forward rates
if not specified, the default is to use the ZeroCurve input for computing the underlying forward rates
(default) | RateSpec object | IRDatCurve object

Rate curve for computing underlying forward rates, specified as the comma-separated pair consisting
of 'ProjectionCurve' and a RateSpec object or IRDatCurve object. For more information on
creating a RateSpec, see intenvset. For more information on creating an IRDataCurve object,
see IRDataCurve.
Data Types: struct

MaturityInterpMethod — Method for interpolating floor volatilities on each floorlet
maturity date before stripping floorlet volatilities
'linear' (default) | character vector with values: 'linear', 'nearest', 'next', 'previous',
'spline', 'pchip'

Method for interpolating the floor volatilities on each floorlet maturity date before stripping the
floorlet volatilities, specified as the comma-separated pair consisting of 'MaturityInterpMethod'
and a character vector with values: 'linear', 'nearest', 'next', 'previous', 'spline', or
'pchip'.
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• 'linear' — Linear interpolation. The interpolated value at a query point is based on linear
interpolation of the values at neighboring grid points in each respective dimension. This is the
default interpolation method.

• 'nearest' — Nearest neighbor interpolation. The interpolated value at a query point is the value
at the nearest sample grid point.

• 'next' — Next neighbor interpolation. The interpolated value at a query point is the value at the
next sample grid point.

• 'previous' — Previous neighbor interpolation. The interpolated value at a query point is the
value at the previous sample grid point.

• 'spline' — Spline interpolation using not-a-knot end conditions. The interpolated value at a
query point is based on a cubic interpolation of the values at neighboring grid points in each
respective dimension.

• 'pchip' — Shape-preserving piecewise cubic interpolation. The interpolated value at a query
point is based on a shape-preserving piecewise cubic interpolation of the values at neighboring
grid points.

For more information on interpolation methods, see interp1.

Note The function uses constant extrapolation to calculate volatilities falling outside the range of
user-supplied data.

Data Types: char

Limit — Upper bound of implied volatility search interval
10 (or 1000% per annum) (default) | positive scalar decimal

Upper bound of implied volatility search interval, specified as the comma-separated pair consisting of
'Limit' and a positive scalar decimal.
Data Types: double

Tolerance — Implied volatility search termination tolerance
1e-5 (default) | positive scalar

Implied volatility search termination tolerance, specified as the comma-separated pair consisting of
'Tolerance' and a positive scalar.
Data Types: double

OmitFirstFloorlet — Flag to omit the first floorlet payment in the floors
true always omit the first floorlet (default) | logical

Flag to omit the first floorlet payment in the floors, specified as the comma-separated pair consisting
of 'OmitFirstFloorlet' and a scalar logical.

If the floors are spot-starting, the first floorlet payment is omitted. If the floors are forward-starting,
the first floorlet payment is included. Regardless of the status of the floors, if you set this logical to
false, then the function includes the first floorlet payment.

In general, “spot lag” is the delay between the fixing date and the effective date for LIBOR-like
indices. "Spot lag" determines whether a floor is spot-starting or forward-starting (Corb, 2012).
Floors are considered to be spot-starting if they settle within “spot lag” business days after the
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valuation date. Those that settle later are considered to be forward-starting. The first floorlet is
omitted if floors are spot-starting, while it is included if they are forward-starting (Tuckman, 2012).
Data Types: logical

Shift — Shift in decimals for shifted SABR model
0 (no shift) (default) | positive scalar decimal

Shift in decimals for the shifted SABR model (to be used with the Shifted Black model), specified as
the comma-separated pair consisting of 'Shift' and a positive scalar decimal value. Set this
parameter to a positive shift in decimals to add a positive shift to the forward rate and strike, which
effectively sets a negative lower bound for the forward rate and strike. For example, a Shift value of
0.01 is equal to a 1% shift.
Data Types: double

Model — Model used for implied volatility
'lognormal' (default) | character vector with value of 'lognormal' or 'normal' | string scalar
with value of "lognormal" or "normal"

Model used for the implied volatility calculation, specified as the comma-separated pair consisting of
'Model' and a scalar character vector or string scalar with one of the following values:

• 'lognormal' - Implied Black (no shift) or Shifted Black volatility.
• 'normal' - Implied Normal (Bachelier) volatility. If you specify 'normal', Shift must be zero.

The floorvolstrip function supports three volatility types.

'Model' Value 'Shift' Value Volatility Type
'lognormal' Shift = 0 Black
'lognormal' Shift > 0 Shifted Black
'normal' Shift = 0 Normal (Bachelier)

Data Types: char | string

Output Arguments
FloorletVols — Stripped floorlet volatilities
vector of decimals

Stripped floorlet volatilities, returned as a NFloorletVols-by-1 vector of decimals.

Note floorvolstrip can output NaNs for some caplet volatilities. You might encounter this output
if no volatility matches the caplet price implied by the user-supplied cap data.

FloorletPaymentDates — Payment dates
vector of date numbers

Payment dates (in date numbers), returned as an NFloorletVols-by-1 vector of date numbers
corresponding to FloorletVols.
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FloorStrikes — Floor strikes
vector of decimals

Floor strikes, returned as a NFloorletVols-by-1 vector of strikes in decimals for floors maturing on
the corresponding FloorletPaymentDates.

Limitations
When bootstrapping the floorlet volatilities from ATM floors, the function reuses the floorlet
volatilities stripped from the shorter maturity floors in the longer maturity floors without adjusting for
the difference in strike. floorvolstrip follows the simplified approach described in Gatarek, 2006.

More About
Floor

A floor is a contract that includes a guarantee setting the minimum interest rate to be received by the
holder, based on an otherwise floating interest rate.

The payoff for a floor is:

max(FloorRate− CurrentRate, 0)

At-The-Money

A cap or floor is at-the-money (ATM) if its strike is equal to the forward swap rate.

The forward swap rate is the fixed rate of a swap that makes the present value of the floating leg
equal to that of the fixed leg. In comparison, a caplet or floorlet is ATM if its strike is equal to the
forward rate (not the forward swap rate). In general (except over a single period), the forward rate is
not equal to the forward swap rate. So, to be precise, the individual caplets in an ATM cap have
slightly different moneyness and are only approximately ATM (Alexander, 2003).

In addition, the swap rate changes with swap maturity. Similarly, the ATM cap strike also changes
with cap maturity, so the ATM cap strikes are computed for each cap maturity before stripping the
caplet volatilities. As a result, when stripping the caplet volatilities from the ATM caps with
increasing maturities, the ATM strikes of consecutive caps are different.

References
[1] Alexander, C. "Common Correlation and Calibrating the Lognormal Forward Rate Model." Wilmott

Magazine, 2003.

[2] Corb, H. Interest Rate Swaps and Other Derivatives. Columbia Business School Publishing, 2012.

[3] Gatarek, D., P. Bachert, and R. Maksymiuk. The LIBOR Market Model in Practice. Chichester, UK:
Wiley, 2006.

[4] Tuckman, B., and Serrat, A. Fixed Income Securities: Tools for Today’s Markets. Hoboken, NJ:
Wiley, 2012.

See Also
interp1 | intenvset | capvolstrip | floorbyblk | floorbynormal
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Topics
“Price Swaptions with Negative Strikes Using the Shifted SABR Model” on page 2-26
“Floor” on page 2-12
“Work with Negative Interest Rates Using Functions” on page 2-18

External Websites
How to Price Interest Rate Options with Negative Interest Rates (3 min 05 sec)

Introduced in R2016a

 floorvolstrip

11-615

https://www.mathworks.com/videos/how-to-price-interest-rate-options-with-negative-interest-rates-1491923238337.html


gapbybls
Determine price of gap digital options using Black-Scholes model

Syntax
Price = gapbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,
StrikeThreshold)

Description
Price = gapbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,
StrikeThreshold) calculates gap European digital option prices using the Black-Scholes option
pricing model.

Examples

Compute Gap Option Prices Using the Black-Scholes Option Pricing Model

This example shows how to compute gap option prices using the Black-Scholes option pricing model.
Consider a gap call and put options on a nondividend paying stock with a strike of 57 and expiring on
January 1, 2008. On July 1, 2008 the stock is trading at 50. Using this data, compute the price of the
option if the risk-free rate is 9%, the strike threshold is 50, and the volatility is 20%.

Settle = 'Jan-1-2008';
Maturity = 'Jul-1-2008';
Compounding = -1; 
Rates = 0.09;
% calculate the RateSpec
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', 1);
% define the StockSpec
AssetPrice = 50;
Sigma = .2;
StockSpec = stockspec(Sigma, AssetPrice);
% define the call and put options
OptSpec = {'call'; 'put'};
Strike = 57;
StrikeThreshold = 50;
% calculate the price
Pgap = gapbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec,...
Strike, StrikeThreshold)

Pgap = 2×1

   -0.0053
    4.4866
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Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification, see
stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities the
price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is
StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement or trade date
serial date number | date character vector

Settlement or trade date for the basket option, specified as an NINST-by-1 vector of serial date
numbers or date character vectors.
Data Types: double | char | cell

Maturity — Maturity date
serial date number | date character vector

Maturity date for the basket option, specified as an NINST-by-1 vector of serial date numbers or date
character vectors.
Data Types: double | char | cell

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors with values 'call'
or 'put'

Definition of the option as 'call' or 'put', specified as an NINST-by-1 vector.
Data Types: char | cell

Strike — Pay-off strike value
vector

Pay-off strike value, specified as an NINST-by-1 vector.
Data Types: double

StrikeThreshold — Strike values that determine if the option pays off
vector

Strike values that determine if the option pays off, specified as an NINST-by-1 vector.
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Data Types: double

Output Arguments
Price — Expected prices for gap option
vector

Expected prices for gap option, returned as a NINST-by-1 vector.

More About
Gap Option

A gap option is a digital option in which one strike decides if the option is in or out of money and
another strike decides the size the size of the payoff.

See Also
assetbybls | cashbybls | gapsensbybls | supersharebybls

Topics
“Pricing Using the Black-Scholes Model” on page 3-82
“Digital Option” on page 3-26
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2009a
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gapsensbybls
Determine price or sensitivities of gap digital options using Black-Scholes model

Syntax
PriceSens = gapsensbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,
StrikeThreshold)
PriceSens = gapsensbybls( ___ ,Name,Value)

Description
PriceSens = gapsensbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,
StrikeThreshold) calculates gap European digital option prices or sensitivities using the Black-
Scholes option pricing model.

PriceSens = gapsensbybls( ___ ,Name,Value) specifies options using one or more name-value
pair arguments in addition to the input arguments in the previous syntax.

Examples

Compute Gap Option Prices and Sensitivities Using the Black-Scholes Option Pricing Model

This example shows how to compute gap option prices and sensitivities using the Black-Scholes
option pricing model. Consider a gap call and put options on a nondividend paying stock with a strike
of 57 and expiring on January 1, 2008. On July 1, 2008 the stock is trading at 50. Using this data,
compute the price and sensitivity of the option if the risk-free rate is 9%, the strike threshold is 50,
and the volatility is 20%.

Settle = 'Jan-1-2008';
Maturity = 'Jul-1-2008';
Compounding = -1; 
Rates = 0.09;
%create the RateSpec
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', 1);
% define the StockSpec
AssetPrice = 50;
Sigma = .2;
StockSpec = stockspec(Sigma, AssetPrice);
% define the call and put options
OptSpec = {'call'; 'put'};
Strike = 57;
StrikeThreshold = 50;
% compute the price
Pgap = gapbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec,...
Strike, StrikeThreshold)

Pgap = 2×1

   -0.0053
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    4.4866

% compute the gamma and delta
OutSpec = {'gamma'; 'delta'};
[Gamma ,Delta] = gapsensbybls(RateSpec, StockSpec, Settle, Maturity,... 
OptSpec, Strike, StrikeThreshold, 'OutSpec', OutSpec)

Gamma = 2×1

    0.0724
    0.0724

Delta = 2×1

    0.2852
   -0.7148

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification, see
stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities the
price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is
StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement or trade date
serial date number | date character vector

Settlement or trade date for the basket option, specified as an NINST-by-1 vector of serial date
numbers or date character vectors.
Data Types: double | char | cell

Maturity — Maturity date
serial date number | date character vector

Maturity date for the basket option, specified as an NINST-by-1 vector of serial date numbers or date
character vectors.
Data Types: double | char | cell
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OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors with values 'call'
or 'put'

Definition of the option as 'call' or 'put', specified as an NINST-by-1 vector.
Data Types: char | cell

Strike — Pay-off strike value
vector

Pay-off strike value, specified as an NINST-by-1 vector.
Data Types: double

StrikeThreshold — Strike values that determine if the option pays off
vector

Strike values that determine if the option pays off, specified as an NINST-by-1 vector.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Gamma,Delta] =
gapsensbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,StrikeThreshol
d,'OutSpec',{'gamma'; 'delta'})

OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma', 'Vega',
'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with values 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a NOUT- by-1 or
a 1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output is Delta, Gamma, Vega, Lambda, Rho, Theta, and
Price, in that order. This is the same as specifying OutSpec to include each sensitivity.
Example: OutSpec = {'delta','gamma','vega','lambda','rho','theta','price'}
Data Types: char | cell

Output Arguments
PriceSens — Expected prices or sensitivities for gap option
vector

Expected prices or sensitivities (defined using OutSpec) for gap option, returned as a NINST-by-1
vector.
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More About
Gap Option

A gap option is a digital option in which one strike decides if the option is in or out of money and
another strike decides the size the size of the payoff.

See Also
gapbybls

Topics
“Pricing Using the Black-Scholes Model” on page 3-82
“Digital Option” on page 3-26
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2009a
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hedgeopt
Allocate optimal hedge for target costs or sensitivities

Syntax
[PortSens,PortCost,PortHolds] = hedgeopt(Sensitivities,Price,CurrentHolds)
[PortSens,PortCost,PortHolds] = hedgeopt( ___ ,FixedInd,NumCosts,TargetCost,
TargetSensConSet)

Description
[PortSens,PortCost,PortHolds] = hedgeopt(Sensitivities,Price,CurrentHolds)
allocates an optimal hedge by one of two criteria:

• Minimize portfolio sensitivities (exposure) for a given set of target costs.
• Minimize the cost of hedging a portfolio given a set of target sensitivities.

Hedging involves the fundamental tradeoff between portfolio insurance and the cost of insurance
coverage. This function lets investors modify portfolio allocations among instruments to achieve
either of the criteria. The chosen criterion is inferred from the input argument list. The problem is
cast as a constrained linear least-squares problem.

[PortSens,PortCost,PortHolds] = hedgeopt( ___ ,FixedInd,NumCosts,TargetCost,
TargetSensConSet) adds additional optional arguments.

Examples

Allocate Optimal Hedge for Target Costs

To illustrate the hedging facility, consider the portfolio HJMInstSet obtained from the example file
deriv.mat. The portfolio consists of eight instruments: two bonds, one bond option, one fixed-rate
note, one floating-rate note, one cap, one floor, and one swap.

In this examples, portfolio target sensitivities are treated as equality constraints during the
optimization process. You can use hedgeopt to specify what sensitivities you want, and hedgeopt
computes what what it will cost to get those sensitivities.

load deriv.mat;

Compute the price and sensitivities

warning('off')
[Delta, Gamma, Vega, Price] = hjmsens(HJMTree, HJMInstSet)

Delta = 8×1

 -272.6462
 -347.4315
   -8.0781
 -272.6462
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   -1.0445
  294.9700
  -47.1629
 -282.0465

Gamma = 8×1
103 ×

    1.0299
    1.6227
    0.6434
    1.0299
    0.0033
    6.8526
    8.4600
    1.0597

Vega = 8×1

    0.0000
   -0.0397
   34.0746
    0.0000
         0
   93.6946
   93.6946
    0.0000

Price = 8×1

   98.7159
   97.5280
    0.0486
   98.7159
  100.5529
    6.2831
    0.0486
    3.6923

Extract the current portfolio holdings.

warning('on')
Holdings = instget(HJMInstSet, 'FieldName', 'Quantity')

Holdings = 8×1

   100
    50
   -50
    80
     8
    30
    40
    10
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For convenience place the delta, gamma, and vega sensitivity measures into a matrix of sensitivities.

Sensitivities = [Delta Gamma Vega];

Each row of the Sensitivities matrix is associated with a different instrument in the portfolio, and
each column with a different sensitivity measure.

Summarize the portfolio information.

disp([Price  Holdings  Sensitivities])

   1.0e+03 *

    0.0987    0.1000   -0.2726    1.0299    0.0000
    0.0975    0.0500   -0.3474    1.6227   -0.0000
    0.0000   -0.0500   -0.0081    0.6434    0.0341
    0.0987    0.0800   -0.2726    1.0299    0.0000
    0.1006    0.0080   -0.0010    0.0033         0
    0.0063    0.0300    0.2950    6.8526    0.0937
    0.0000    0.0400   -0.0472    8.4600    0.0937
    0.0037    0.0100   -0.2820    1.0597    0.0000

The first column above is the dollar unit price of each instrument, the second is the holdings of each
instrument (the quantity held or the number of contracts), and the third, fourth, and fifth columns are
the dollar delta, gamma, and vega sensitivities, respectively.

The current portfolio sensitivities are a weighted average of the instruments in the portfolio.

TargetSens  = Holdings' * Sensitivities

TargetSens = 1×3
105 ×

   -0.6191    7.8895    0.0485

Maintaining Existing Allocations

To illustrate using hedgeopt, suppose that you want to maintain your existing portfolio. hedgeopt
minimizes the cost of hedging a portfolio given a set of target sensitivities. If you want to maintain
your existing portfolio composition and exposure, you should be able to do so without spending any
money. To verify this, set the target sensitivities to the current sensitivities.

FixedInd = [1 2 3 4 5 6 7 8];
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,Holdings, FixedInd, [], [], TargetSens)

Sens = 1×3
105 ×

   -0.6191    7.8895    0.0485

Cost = 0

Quantity = 1×8

   100    50   -50    80     8    30    40    10
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Portfolio composition and sensitivities are unchanged, and the cost associated with doing nothing is
zero. The cost is defined as the change in portfolio value. This number cannot be less than zero
because the rebalancing cost is defined as a nonnegative number.

If Value0 and Value1 represent the portfolio value before and after rebalancing, respectively, the
zero cost can also be verified by comparing the portfolio values.

Value0 = Holdings' * Price

Value0 = 2.3675e+04

Value1 = Quantity * Price

Value1 = 2.3675e+04

Partially Hedged Portfolio

Building on this example, suppose you want to know the cost to achieve an overall portfolio dollar
sensitivity of [-23000 -3300 3000], while allowing trading only in instruments 2, 3, and 6 (holding
the positions of instruments 1, 4, 5, 7, and 8 fixed). To find the cost, first set the target portfolio
dollar sensitivity.

TargetSens = [-23000 -3300 3000];

Specify the instruments to be fixed.

FixedInd = [1 4 5 7 8];

Use hedgeopt:

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,Holdings, FixedInd, [], [], TargetSens)

Sens = 1×3
104 ×

   -2.3000   -0.3300    0.3000

Cost = 1.9174e+04

Quantity = 1×8

  100.0000 -141.0267  137.2638   80.0000    8.0000  -57.9606   40.0000   10.0000

Recompute Value1, the portfolio value after rebalancing.

Value1 = Quantity * Price

Value1 = 4.5006e+03

As expected, the cost, $19174.02, is the difference between Value0 and Value1, $23674.62 —
$4500.60. Only the positions in instruments 2, 3, and 6 are changed.

Fully Hedged Portfolio

The example has illustrated a partial hedge, but perhaps the most interesting case involves the cost
associated with a fully hedged portfolio (simultaneous delta, gamma, and vega neutrality). In this
case, set the target sensitivity to a row vector of 0s and call hedgeopt again.
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TargetSens = [0 0 0];
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price, Holdings, FixedInd, [], [], TargetSens)

Sens = 1×3
10-10 ×

    0.1091    0.5821    0.0045

Cost = 2.3056e+04

Quantity = 1×8

  100.0000 -182.3615  -19.5501   80.0000    8.0000  -32.9674   40.0000   10.0000

Examining the outputs reveals that you have obtained a fully hedged portfolio but at an expense of
over $20,000 and Quantity defines the positions required to achieve a fully hedged portfolio.

The resulting new portfolio value is

Value1 = Quantity * Price

Value1 = 618.7168

Input Arguments
Sensitivities — Sensitivities of each instrument
matrix

Sensitivities of each instrument, specified as a number of instruments (NINST) by number of
sensitivities (NSENS) matrix of dollar sensitivities. Each row represents a different instrument. Each
column represents a different sensitivity.
Data Types: double

Price — Instrument prices
vector

Instrument prices, specified as an NINST-by-1 vector.
Data Types: double

CurrentHolds — Contracts allocated to each instrument
vector

Contracts allocated to each instrument, specified as an NINST-by-1 vector.
Data Types: double

FixedInd — Number of fixed instruments
[ ] (default) | vector

(Optional) Number of fixed instruments, specified as an NFIXED-by-1 vector of indices of instruments
to hold fixed. For example, to hold the first and third instruments of a 10 instrument portfolio
unchanged, set FixedInd = [1 3]. Default = [], no instruments held fixed.
Data Types: double
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NumCosts — Number of points generated along the cost frontier
10 (default) | integer

(Optional) Number of points generated along the cost frontier when a vector of target costs
(TargetCost) is not defined, specified as an integer. The default is 10 equally spaced points between
the point of minimum cost and the point of minimum exposure. When specifying TargetCost, enter
NumCosts as an empty matrix [].
Data Types: double

TargetCost — Target cost values along the cost frontier
[ ] (default) | vector

(Optional) Target cost values along the cost frontier, specified as a vector. If TargetCost is empty, or
not entered, hedgeopt evaluates NumCosts equally spaced target costs between the minimum cost
and minimum exposure. When specified, the elements of TargetCost should be positive numbers
that represent the maximum amount of money the owner is willing to spend to rebalance the
portfolio.
Data Types: double

TargetSens — Target sensitivity values of the portfolio
[ ] (default) | vector

(Optional) Target sensitivity values of the portfolio, specified as a 1-by-NSENS vector containing the
target sensitivity values of the portfolio. When specifying TargetSens, enter NumCosts and
TargetCost as empty matrices [].
Data Types: double

ConSet — Additional conditions on the portfolio reallocations
[ ] (default) | matrix

(Optional) Additional conditions on the portfolio reallocations, specified as a number of constraints
(NCONS) by number of instruments (NINST) matrix of additional conditions on the portfolio
reallocations. An eligible NINST-by-1 vector of contract holdings, PortWts, satisfies all the
inequalities A*PortWts <= b, where A = ConSet(:,1:end-1) and b = ConSet(:,end).

Note The user-specified constraints included in ConSet may be created with the functions pcalims
or portcons. However, the portcons default PortHolds positivity constraints are typically
inappropriate for hedging problems since short-selling is usually required.

NPOINTS, the number of rows in PortSens and PortHolds and the length of PortCost , is inferred
from the inputs. When the target sensitivities, TargetSens, is entered, NPOINTS = 1; otherwise
NPOINTS = NumCosts, or is equal to the length of the TargetCost vector.

Not all problems are solvable (for example, the solution space may be infeasible or unbounded, or the
solution may fail to converge). When a valid solution is not found, the corresponding rows of
PortSens, PortHolds, and the elements of PortCost are padded with NaNs as placeholders.

Data Types: double
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Output Arguments
PortSens — Portfolio dollar sensitivities
matrix

Portfolio dollar sensitivities, returned as a number of points (NPOINTS-by-NSENS) matrix. When a
perfect hedge exists, PortSens is zeros. Otherwise, the best hedge possible is chosen.

Note Not all problems are solvable (for example, the solution space may be infeasible, unbounded, or
insufficiently constrained), or the solution may fail to converge. When a valid solution is not found,
the corresponding rows of PortSens and PortHolds and elements of PortCost are padded with
NaN's as placeholders. In addition, the solution may not be unique.

PortCost — Total portfolio costs
vector

Total portfolio costs, returned as a 1-by-NPOINTS vector.

PortHolds — Contracts allocated to each instrument
matrix

Contracts allocated to each instrument, returned as an NPOINTS-by-NINST matrix. These are the
reallocated portfolios.

See Also
hedgeslf | pcalims | portcons | portopt | lsqlin

Topics
“Portfolio Creation Using Functions” on page 1-6
“Hedging with hedgeopt” on page 4-4
“Instrument Constructors” on page 1-15
“Hedging” on page 4-2
“Supported Equity Derivative Functions” on page 3-19

Introduced before R2006a
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hedgeslf
Self-financing hedge

Syntax
[PortSens,PortValue,PortHolds] = hedgeslf(Sensitivities,Price,CurrentHolds)
[PortSens,PortValue,PortHolds] = hedgeslf( ___ ,FixedInd,ConSet)

Description
[PortSens,PortValue,PortHolds] = hedgeslf(Sensitivities,Price,CurrentHolds)
allocates a self-financing hedge among a collection of instruments. hedgeslf finds the reallocation in
a portfolio of financial instruments that hedges the portfolio against market moves and that is closest
to being self-financing (maintaining constant portfolio value). By default the first instrument entered
is hedged with the other instruments.

hedgeslf attempts to find the allocations of the portfolio that will make it closest to being self-
financing, while reducing the sensitivities to zero. If no solution is found, hedgeslf finds the
allocations that will minimize the sensitivities. If the resulting portfolio is self-financing, PortValue
is equal to the value of the original portfolio.

[PortSens,PortValue,PortHolds] = hedgeslf( ___ ,FixedInd,ConSet) adds additional
optional arguments.

Examples

Pricing and Hedging a Portfolio Using the Black-Karasinski Model

This example illustrates how MATLAB® can be used to create a portfolio of interest-rate derivatives
securities, and price it using the Black-Karasinski interest-rate model. The example also shows some
hedging strategies to minimize exposure to market movements.

Create the Interest-Rate Term Structure Based on Reported Data

The structure RateSpec is an interest-rate term structure that defines the initial rate specification
from which the tree rates are derived. Use the information of annualized zero coupon rates in the
table below to populate the RateSpec structure.

  From             To           Rate
27 Feb 2007    27 Feb 2008      0.0493
27 Feb 2007    27 Feb 2009      0.0459
27 Feb 2007    27 Feb 2010      0.0450
27 Feb 2007    27 Feb 2012      0.0446
27 Feb 2007    27 Feb 2014      0.0445
27 Feb 2007    27 Feb 2017      0.0450
27 Feb 2007    27 Feb 2027      0.0473

This data could be retrieved from the Federal Reserve Statistical Release page by using the Datafeed
Toolbox™. In this case, the Datafeed Toolbox™ will connect to FRED® and pull back the rates of the
following treasury notes.
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  Terms    Symbol
 =======   ======
    1   =  DGS1
    2   =  DGS2
    3   =  DGS3
    5   =  DGS5
    7   =  DGS7
    10  =  DGS10
    20  =  DGS20

Create the connection object:

  c = fred;

Create the symbol fetch list:

FredNames   = { ...    
  'DGS1'; ...      % 1  Year
  'DGS2'; ...      % 2  Year
  'DGS3'; ...      % 3  Year
  'DGS5'; ...      % 5  Year
  'DGS7'; ...      % 7  Year
  'DGS10'; ...     % 10 Year
  'DGS20'};        % 20 Year

Define the Terms:

Terms = [ 1; ...      % 1  Year
          2; ...      % 2  Year
          3; ...      % 3  Year
          5; ...      % 5  Year
          7; ...      % 7  Year
         10; ...      % 10 Year
         20];         % 20 Year

Set the StartDate to Feb 27, 2007:

  StartDate = datenum('Feb-27-2007');

  FredRet = fetch(c,FredNames,StartDate); 

Set the ValuationDate based on the StartDate:

  ValuationDate = StartDate;

  EndDates = [];

  Rates =[];

Create the EndDates:

  for idx = 1:length(FredRet)    

   %Pull the rates associated with Feb 27, 2007. All the Fred Rates come
   %back as percents
   Rates = [Rates; ...
       FredRet(idx).Data(1,2) / 100];

    %Determine the EndDates by adding the Term to the year of the
    %StartDate      
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    EndDates = [EndDates; ...
       round(datenum(...
           year(StartDate)+ Terms(idx,1), ...
           month(StartDate),...
           day(StartDate)))];

  end

Use the function intenvset to create the RateSpec with the following data:

Compounding = 1;
StartDate = '27-Feb-2007';
Rates = [0.0493; 0.0459; 0.0450; 0.0446; 0.0446; 0.0450; 0.0473];
EndDates = {'27-Feb-2008'; '27-Feb-2009';'27-Feb-2010'; '27-Feb-2012';...   
            '27-Feb-2014' ; '27-Feb-2017'; '27-Feb-2027'};  
ValuationDate = StartDate;

RateSpec = intenvset('Compounding',Compounding,'StartDates', StartDate,...
                     'EndDates', EndDates, 'Rates', Rates,'ValuationDate', ValuationDate)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [7x1 double]
            Rates: [7x1 double]
         EndTimes: [7x1 double]
       StartTimes: [7x1 double]
         EndDates: [7x1 double]
       StartDates: 733100
    ValuationDate: 733100
            Basis: 0
     EndMonthRule: 1

Specify the Volatility Model

Create the structure VolSpec that specifies the volatility process with the following data.

Volatility = [0.011892; 0.01563; 0.02021; 0.02125; 0.02165; 0.02065; 0.01803];
Alpha = [0.0001];
VolSpec = bkvolspec(ValuationDate, EndDates, Volatility, EndDates(end), Alpha)

VolSpec = struct with fields:
             FinObj: 'BKVolSpec'
      ValuationDate: 733100
           VolDates: [7x1 double]
           VolCurve: [7x1 double]
         AlphaCurve: 1.0000e-04
         AlphaDates: 740405
    VolInterpMethod: 'linear'

Specify the Time Structure of the Tree

The structure TimeSpec specifies the time structure for an interest-rate tree. This structure defines
the mapping between the observation times at each level of the tree and the corresponding dates.

TimeSpec = bktimespec(ValuationDate, EndDates)
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TimeSpec = struct with fields:
           FinObj: 'BKTimeSpec'
    ValuationDate: 733100
         Maturity: [7x1 double]
      Compounding: -1
            Basis: 0
     EndMonthRule: 1

Create the BK Tree

Use the previously computed values for RateSpec, VolSpec, and TimeSpec to create the BK tree.

BKTree = bktree(VolSpec, RateSpec, TimeSpec)

BKTree = struct with fields:
      FinObj: 'BKFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3 5 7 10]
        dObs: [733100 733465 733831 734196 734926 735657 736753]
      CFlowT: {1x7 cell}
       Probs: {1x6 cell}
     Connect: {[2]  [2 3 4]  [2 3 4 5 6]  [2 3 3 4 5 5 6]  [2 3 4 5 6 7 8]  [2 2 ... ]}
     FwdTree: {1x7 cell}

Visualize the interest rate evolution along the tree by looking at the output structure BKTree. The
function bktree returns an inverse discount tree, which you can convert into an interest rate tree
with the cvtree function.

BKTreeR = cvtree(BKTree)

BKTreeR = struct with fields:
      FinObj: 'BKRateTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3 5 7 10]
        dObs: [733100 733465 733831 734196 734926 735657 736753]
      CFlowT: {1x7 cell}
       Probs: {1x6 cell}
     Connect: {[2]  [2 3 4]  [2 3 4 5 6]  [2 3 3 4 5 5 6]  [2 3 4 5 6 7 8]  [2 2 ... ]}
    RateTree: {1x7 cell}

Look at the upper, middle and lower branch paths of the tree.

OldFormat = get(0, 'format');  
format short

%Rate at root node:
RateRoot      = trintreepath(BKTreeR, 0) 

RateRoot = 0.0481
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%Rates along upper branch:
RatePathUp    = trintreepath(BKTreeR, [1 1 1 1 1 1]) 

RatePathUp = 7×1

    0.0481
    0.0425
    0.0446
    0.0478
    0.0510
    0.0555
    0.0620

%Rates along middle branch:
RatePathMiddle = trintreepath(BKTreeR, [2 2 2 2 2 2]) 

RatePathMiddle = 7×1

    0.0481
    0.0416
    0.0423
    0.0430
    0.0436
    0.0449
    0.0484

%Rates along lower branch:
RatePathDown = trintreepath(BKTreeR, [3 3 3 3 3 3])

RatePathDown = 7×1

    0.0481
    0.0408
    0.0401
    0.0388
    0.0373
    0.0363
    0.0378

You can also display a graphical representation of the tree to examine interactively the rates on the
nodes of the tree until maturity. The function treeviewer displays the structure of the rate tree in
the left window. The tree visualization in the right window is blank, but by selecting Table/Diagram
and clicking on the nodes you can examine the rates along the paths.

treeviewer(BKTreeR);
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Create an Instrument Portfolio

Create a portfolio consisting of two bonds instruments and an option on the 5% bond.

% Two Bonds
CouponRate = [0.04;0.05]; 
Settle = '27 Feb 2007'; 
Maturity = {'27 Feb 2009';'27 Feb 2010'};
Period = 1;

% American Option on the 5% Bond
OptSpec = {'call'};
Strike = 98;
ExerciseDates = '27 Feb 2010';
AmericanOpt = 1;

InstSet = instadd('Bond', CouponRate, Settle,  Maturity, Period);
InstSet = instadd(InstSet,'OptBond', 2, OptSpec, Strike, ExerciseDates, AmericanOpt);

% Assign Names and Holdings
Holdings = [10; 15;3];
Names = {'4% Bond'; '5% Bond'; 'Option 98'};

InstSet = instsetfield(InstSet, 'Index',1:3, 'FieldName', {'Quantity'}, 'Data', Holdings );
InstSet = instsetfield(InstSet, 'Index',1:3, 'FieldName', {'Name'}, 'Data', Names );

Examine the set of instruments contained in the variable InstSet.
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instdisp(InstSet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face Quantity Name     
1     Bond 0.04       27-Feb-2007    27-Feb-2009    1      0     1            NaN       NaN             NaN            NaN       100  10       4% Bond  
2     Bond 0.05       27-Feb-2007    27-Feb-2010    1      0     1            NaN       NaN             NaN            NaN       100  15       5% Bond  
 
Index Type    UnderInd OptSpec Strike ExerciseDates  AmericanOpt Quantity Name     
3     OptBond 2        call    98     27-Feb-2010    1           3        Option 98
 

Price the Portfolio Using the BK Model

Calculate the price of each instrument in the portfolio.

[Price, PTree] = bkprice(BKTree, InstSet)

Price = 3×1

   98.8841
  101.3470
    3.3470

PTree = struct with fields:
     FinObj: 'BKPriceTree'
      PTree: {1x8 cell}
     AITree: {1x8 cell}
     ExTree: {1x8 cell}
       tObs: [0 1 2 3 5 7 10 20]
    Connect: {[2]  [2 3 4]  [2 3 4 5 6]  [2 3 3 4 5 5 6]  [2 3 4 5 6 7 8]  [2 2 3 ... ]}
      Probs: {1x6 cell}

The prices in the output vector Price correspond to the prices at observation time zero (tObs = 0),
which is defined as the Valuation Date of the interest-rate tree.

In the Price vector, the first element, 98.884, represents the price of the first instrument (4% Bond);
the second element, 101.347, represents the price of the second instrument (5% Bond), and 3.347
represents the price of the American call option.

You can also display a graphical representation of the price tree to examine the prices on the nodes of
the tree until maturity.

treeviewer(PTree,InstSet);
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Add More Instruments to the Existing Portfolio

Add instruments to the existing portfolio: cap, floor, floating rate note, vanilla swap and a puttable
and callable bond.

% Cap
StrikeC =0.035;
InstSet = instadd(InstSet,'Cap', StrikeC, Settle, '27 Feb 2010');

% Floor
StrikeF =0.05;
InstSet = instadd(InstSet,'Floor', StrikeF, Settle, '27 Feb 2009');

% Floating Rate Note
InstSet = instadd(InstSet,'Float', 30, Settle, '27 Feb 2009');

% Vanilla Swap
 LegRate =[0.04 5];
 InstSet = instadd(InstSet,'Swap', LegRate, Settle, '27 Feb 2010');

% Puttable and Callable Bonds
InstSet = instadd(InstSet,'OptEmBond', CouponRate, Settle, '27 Feb 2010', {'put';'call'},...
                  Strike, '27 Feb 2010','AmericanOpt', 1, 'Period', 1);

% Process Names and Holdings
Holdings = [15 ;5 ;8; 7; 9; 4];
Names = {'3.5% Cap';'5% Floor';'30BP Float';'4%/5BP Swap'; 'PuttBond'; 'CallBond' };
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InstSet = instsetfield(InstSet, 'Index',4:9, 'FieldName', {'Quantity'}, 'Data', Holdings );
InstSet = instsetfield(InstSet, 'Index',4:9, 'FieldName', {'Name'}, 'Data', Names );

Examine the set of instruments contained in the variable InstSet.

instdisp(InstSet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face Quantity Name     
1     Bond 0.04       27-Feb-2007    27-Feb-2009    1      0     1            NaN       NaN             NaN            NaN       100  10       4% Bond  
2     Bond 0.05       27-Feb-2007    27-Feb-2010    1      0     1            NaN       NaN             NaN            NaN       100  15       5% Bond  
 
Index Type    UnderInd OptSpec Strike ExerciseDates  AmericanOpt Quantity Name     
3     OptBond 2        call    98     27-Feb-2010    1           3        Option 98
 
Index Type Strike Settle         Maturity       CapReset Basis Principal Quantity Name       
4     Cap  0.035  27-Feb-2007    27-Feb-2010    1        0     100       15       3.5% Cap   
 
Index Type  Strike Settle         Maturity       FloorReset Basis Principal Quantity Name       
5     Floor 0.05   27-Feb-2007    27-Feb-2009    1          0     100       5        5% Floor   
 
Index Type  Spread Settle         Maturity       FloatReset Basis Principal EndMonthRule CapRate FloorRate Quantity Name       
6     Float 30     27-Feb-2007    27-Feb-2009    1          0     100       1            Inf     -Inf      8        30BP Float 
 
Index Type LegRate   Settle         Maturity       LegReset Basis Principal LegType EndMonthRule StartDate Quantity Name       
7     Swap [0.04  5] 27-Feb-2007    27-Feb-2010    [NaN]    0     100       [NaN]   1            NaN       7        4%/5BP Swap
 
Index Type      CouponRate Settle         Maturity       OptSpec Strike ExerciseDates                Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face AmericanOpt Quantity Name       
8     OptEmBond 0.04       27-Feb-2007    27-Feb-2010    put     98     27-Feb-2007   27-Feb-2010    1      0     1            NaN       NaN             NaN            NaN       100  1           9        PuttBond   
9     OptEmBond 0.05       27-Feb-2007    27-Feb-2010    call    98     27-Feb-2007   27-Feb-2010    1      0     1            NaN       NaN             NaN            NaN       100  1           4        CallBond   
 

Hedging

The idea behind hedging is to minimize exposure to market movements. As the underlying changes,
the proportions of the instruments forming the portfolio may need to be adjusted to keep the
sensitivities within the desired range.

Calculate sensitivities using the BK model.

[Delta, Gamma, Vega, Price] = bksens(BKTree, InstSet);

Get the current portfolio holdings.

Holdings = instget(InstSet, 'FieldName', 'Quantity');

Create a matrix of sensitivities.

Sensitivities = [Delta Gamma Vega];

Each row of the Sensitivities matrix is associated with a different instrument in the portfolio, and
each column with a different sensitivity measure.

format bank
disp([Price  Holdings  Sensitivities])

         98.88         10.00       -185.47        528.47             0
        101.35         15.00       -277.51       1045.05             0
          3.35          3.00       -223.52      11843.32             0
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          2.77         15.00        250.04       2921.11         -0.00
          0.75          5.00       -132.97      11566.69             0
        100.56          8.00         -0.80          2.02             0
         -1.53          7.00       -272.08       1027.85          0.00
         98.60          9.00       -168.92      21712.82             0
         98.00          4.00        -53.99     -10798.27             0

The first column above is the dollar unit price of each instrument, the second column is the number of
contracts of each instrument, and the third, fourth, and fifth columns are the dollar delta, gamma,
and vega sensitivities.

The current portfolio sensitivities are a weighted average of the instruments in the portfolio.

TargetSens  = Holdings' * Sensitivities

TargetSens = 1×3

      -7249.21     317573.92         -0.00

Obtain a Neutral Sensitivity Portfolio Using hedgeslf

Suppose you want to obtain a delta, gamma and vega neutral portfolio. The function hedgeslf finds
the reallocation in a portfolio of financial instruments closest to being self-financing (maintaining
constant portfolio value).

[Sens, Value1, Quantity]= hedgeslf(Sensitivities, Price,Holdings)

Sens = 3×1

         -0.00
         -0.00
         -0.00

Value1 = 
       4637.54

Quantity = 9×1

         10.00
          5.26
         -5.11
          7.06
         -3.05
         12.45
         -7.36
          8.47
         10.37

The function hedgeslf returns the portfolio dollar sensitivities (Sens), the value of the rebalanced
portfolio (Value1) and the new allocation for each instrument (Quantity). If Value0 and Value1
represent the portfolio value before and after rebalancing, you can verify the cost by comparing the
portfolio values.

Value0 = Holdings' * Price
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Value0 = 
       4637.54

In this example, the portfolio is fully hedged (simultaneous delta, gamma, and vega neutrality) and
self-financing (the values of the portfolio before and after balancing (Value0 and Value1) are the
same.

Adding Constraints to Hedge a Portfolio

Suppose that you want to place upper and lower bounds on the individual instruments in the
portfolio. Let's say that you want to bound the position of all instruments to within +/- 11 contracts.

Applying these constraints disallows the current positions in the fifth and eighth instruments. All
other instruments are currently within the upper/lower bounds.

% Specify the lower and upper bounds
LowerBounds = [-11  -11  -11  -11  -11  -11  -11  -11  -11];
UpperBounds = [ 11   11   11   11   11   11   11   11   11];

% Use the function portcons to build the constraints
ConSet = portcons('AssetLims', LowerBounds, UpperBounds);

% Apply the constraints to the portfolio
[Sens, Value, Quantity1] = hedgeslf(Sensitivities, Price, Holdings, [], ConSet)

Sens = 3×1

             0
             0
             0

Value = 
             0

Quantity1 = 9×1

             0
             0
             0
             0
             0
             0
             0
             0
             0

Observe that the hedgeslf function enforces the bounds on the fifth and eighth instruments, and the
portfolio continues to be fully hedged and self-financing.
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set(0, 'format', OldFormat);

Input Arguments
Sensitivities — Sensitivities of each instrument
matrix

Sensitivities of each instrument, specified as a number of instruments (NINST) by number of
sensitivities (NSENS) matrix of dollar sensitivities. Each row represents a different instrument. Each
column represents a different sensitivity.
Data Types: double

Price — Instrument prices
vector

Instrument prices, specified as an NINST-by-1 vector.
Data Types: double

CurrentHolds — Contracts allocated to each instrument
vector

Contracts allocated to each instrument, specified as an NINST-by-1 vector.
Data Types: double

FixedInd — Number of fixed instruments
1 (default) | vector

(Optional) Number of fixed instruments, specified as an NFIXED-by-1 vector of indices of instruments
to hold fixed. For example, to hold the first and third instruments of a 10 instrument portfolio
unchanged, set FixedInd = [1 3]. The default is FixedInd = 1; the holdings in the first
instrument are held fixed. If no instruments are to be held fixed, enter FixedInd = [ ].
Data Types: double

ConSet — Additional conditions on the portfolio reallocations
[ ] (default) | matrix

(Optional) Additional conditions on the portfolio reallocations, specified as a number of constraints
(NCONS) by number of instruments (NINST) matrix of additional conditions on the portfolio
reallocations. An eligible NINST-by-1 vector of contract holdings, PortWts, satisfies all the
inequalities A*PortWts <= b, where A = ConSet(:,1:end-1) and b = ConSet(:,end).

Note Constraints PortHolds(FixedInd) = CurrentHolds(FixedInd) are appended to any
constraints passed in ConSet. Pass FixedInd = [ ] to specify all constraints through ConSet. The
default constraints generated by portcons are inappropriate, since they require the sum of all
holdings to be positive and equal to 1.

Data Types: double
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Output Arguments
PortSens — Portfolio dollar sensitivities
vector

Portfolio dollar sensitivities, returned as a number of points NSENS-by-1 vector. When a perfect hedge
exists, PortSens is zeros. Otherwise, the best hedge possible is chosen.

PortValue — Total portfolio value
numeric

Total portfolio value, returned as a scalar value. When a perfectly self-financing hedge exists,
PortValue is equal to the value dot(Price,CurrentHolds) of the initial portfolio.

PortHolds — Contracts allocated to each instrument
vector

Contracts allocated to each instrument, returned as an NINST-by-1 vector. This is the reallocated
portfolio.

See Also
hedgeopt | lsqlin | portcons

Topics
“Portfolio Creation Using Functions” on page 1-6
“Self-Financing Hedges with hedgeslf” on page 4-9
“Instrument Constructors” on page 1-15
“Hedging” on page 4-2
“Supported Equity Derivative Functions” on page 3-19

Introduced before R2006a
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hjmprice
Instrument prices from Heath-Jarrow-Morton interest-rate tree

Syntax
[Price,PriceTree] = hjmprice(HJMTree,InstSet)
[Price,PriceTree] = hjmprice( ___ ,Options)

Description
[Price,PriceTree] = hjmprice(HJMTree,InstSet) computes arbitrage-free prices for
instruments using an interest-rate tree created with hjmtree. All instruments contained in a
financial instrument variable, InstSet, are priced.

hjmprice handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'OptEmBond',
'OptEmBond', 'OptFloat', 'OptEmFloat', 'Fixed', 'Float', 'Cap', 'Floor',
'RangeFloat', 'Swap'. See instadd to construct defined types.

[Price,PriceTree] = hjmprice( ___ ,Options) adds an optional input argument for Options.

Examples

Price the Cap and Bond Instruments Contained in an Instrument Set

Load the HJM tree and instruments from the data file deriv.mat.
load deriv.mat; 
HJMSubSet = instselect(HJMInstSet,'Type', {'Bond', 'Cap'}); 

instdisp(HJMSubSet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face Name    Quantity
1     Bond 0.04       01-Jan-2000    01-Jan-2003    1      NaN   NaN          NaN       NaN             NaN            NaN       NaN  4% bond 100     
2     Bond 0.04       01-Jan-2000    01-Jan-2004    2      NaN   NaN          NaN       NaN             NaN            NaN       NaN  4% bond  50     
 
Index Type Strike Settle         Maturity       CapReset Basis Principal Name   Quantity
3     Cap  0.03   01-Jan-2000    01-Jan-2004    1        NaN   NaN       3% Cap 30       

Use hjmprice to price the instruments.

[Price, PriceTree] = hjmprice(HJMTree, HJMSubSet)

Warning: Not all cash flows are aligned with the tree. Result will be approximated. 
> In checktree (line 289)
  In hjmprice (line 85) 

Price =

   98.7159
   97.5280
    6.2831

PriceTree = 

    FinObj: 'HJMPriceTree'
     PBush: {[3x1 double]  [3x1x2 double]  [3x2x2 double]  [3x4x2 double]  [3x8 double]}
    AIBush: {[3x1 double]  [3x1x2 double]  [3x2x2 double]  [3x4x2 double]  [3x8 double]}
      tObs: [0 1 2 3 4]
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You can use treeviewer to see the prices of these three instruments along the price tree.

treeviewer(PriceTree)

Price Multi-Stepped Coupon Bonds

The data for the interest-rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

Create a RateSpec.

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RS = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x1 double]
            Rates: [4x1 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: 734139
    ValuationDate: 734139
            Basis: 0
     EndMonthRule: 1
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Create a portfolio of stepped coupon bonds with different maturities.

Settle = '01-Jan-2010';
Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2011' .042;'01-Jan-2012' .05; '01-Jan-2013' .06; '01-Jan-2014' .07}};

ISet = instbond(CouponRate, Settle, Maturity, 1);
instdisp(ISet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face
1     Bond [Cell]     01-Jan-2010    01-Jan-2011    1      0     1            NaN       NaN             NaN            NaN       100 
2     Bond [Cell]     01-Jan-2010    01-Jan-2012    1      0     1            NaN       NaN             NaN            NaN       100 
3     Bond [Cell]     01-Jan-2010    01-Jan-2013    1      0     1            NaN       NaN             NaN            NaN       100 
4     Bond [Cell]     01-Jan-2010    01-Jan-2014    1      0     1            NaN       NaN             NaN            NaN       100 
 

Build the tree with the following data:

Volatility = [.2; .19; .18; .17];
CurveTerm = [ 1;  2;   3;   4];
HJMTimeSpec = hjmtimespec(ValuationDate, EndDates);
HJMVolSpec = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);
HJMT = hjmtree(HJMVolSpec,RS,HJMTimeSpec)

HJMT = struct with fields:
      FinObj: 'HJMFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [734139 734504 734869 735235]
        TFwd: {[4x1 double]  [3x1 double]  [2x1 double]  [3]}
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
     FwdTree: {[4x1 double]  [3x1x2 double]  [2x2x2 double]  [1x4x2 double]}

Compute the price of the stepped coupon bonds.

PHJM = hjmprice(HJMT, ISet)

PHJM = 4×1

  100.6763
  100.7368
  100.9266
  101.0115

Price a Portfolio of Stepped Callable Bonds and Stepped Vanilla Bonds

The data for the interest-rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;
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Create a RateSpec.

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RS = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x1 double]
            Rates: [4x1 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: 734139
    ValuationDate: 734139
            Basis: 0
     EndMonthRule: 1

Create an instrument portfolio of three stepped callable bonds and three stepped vanilla bonds and
display the instrument portfolio.

Settle = '01-Jan-2010';
Maturity = {'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2011' .042;'01-Jan-2012' .05; '01-Jan-2013' .06; '01-Jan-2014' .07}};
OptSpec='call';
Strike=100;
ExerciseDates='01-Jan-2011'; %Callable in one year

% Bonds with embedded option 
ISet = instoptembnd(CouponRate, Settle, Maturity, OptSpec, Strike,...
ExerciseDates, 'Period', 1);
                    
% Vanilla bonds 
ISet = instbond(ISet, CouponRate, Settle, Maturity, 1);

instdisp(ISet)

Index Type      CouponRate Settle         Maturity       OptSpec Strike ExerciseDates  Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face AmericanOpt
1     OptEmBond [Cell]     01-Jan-2010    01-Jan-2012    call    100    01-Jan-2011    1      0     1            NaN       NaN             NaN            NaN       100  0          
2     OptEmBond [Cell]     01-Jan-2010    01-Jan-2013    call    100    01-Jan-2011    1      0     1            NaN       NaN             NaN            NaN       100  0          
3     OptEmBond [Cell]     01-Jan-2010    01-Jan-2014    call    100    01-Jan-2011    1      0     1            NaN       NaN             NaN            NaN       100  0          
 
Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face
4     Bond [Cell]     01-Jan-2010    01-Jan-2012    1      0     1            NaN       NaN             NaN            NaN       100 
5     Bond [Cell]     01-Jan-2010    01-Jan-2013    1      0     1            NaN       NaN             NaN            NaN       100 
6     Bond [Cell]     01-Jan-2010    01-Jan-2014    1      0     1            NaN       NaN             NaN            NaN       100 
 

Build the tree with the following data:

Volatility = [.2; .19; .18; .17];
CurveTerm = [ 1;  2;   3;   4];
HJMTimeSpec = hjmtimespec(ValuationDate, EndDates);
HJMVolSpec = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);
HJMT = hjmtree(HJMVolSpec,RS,HJMTimeSpec)

HJMT = struct with fields:
      FinObj: 'HJMFwdTree'
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     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [734139 734504 734869 735235]
        TFwd: {[4x1 double]  [3x1 double]  [2x1 double]  [3]}
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
     FwdTree: {[4x1 double]  [3x1x2 double]  [2x2x2 double]  [1x4x2 double]}

Price the instrument set using hjmprice.

PHJM = hjmprice(HJMT, ISet)

PHJM = 6×1

  100.3682
  100.1557
   99.9232
  100.7368
  100.9266
  101.0115

The first three rows correspond to the price of the stepped callable bonds and the last three rows
correspond to the price of the stepped vanilla bonds.

Compute the Price of a Portfolio of Instruments

The data for the interest-rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2011';
StartDates = ValuationDate;
EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
Compounding = 1;

Create a RateSpec.

RS = intenvset('ValuationDate', ValuationDate, 'StartDates',...
StartDates, 'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RS = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x1 double]
            Rates: [4x1 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: 734504
    ValuationDate: 734504
            Basis: 0
     EndMonthRule: 1
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Create an instrument portfolio with two range notes and a floating rate note with the following data
and display the results:

Spread = 200;
Settle = 'Jan-1-2011';
Maturity = 'Jan-1-2014';

% First Range Note
RateSched(1).Dates = {'Jan-1-2012'; 'Jan-1-2013'  ; 'Jan-1-2014'};
RateSched(1).Rates  = [0.045 0.055; 0.0525  0.0675; 0.06 0.08];

% Second Range Note
RateSched(2).Dates = {'Jan-1-2012'; 'Jan-1-2013' ; 'Jan-1-2014'};
RateSched(2).Rates  = [0.048 0.059; 0.055  0.068 ; 0.07 0.09];

% Create an InstSet
InstSet = instadd('RangeFloat', Spread, Settle, Maturity, RateSched);

% Add a floating-rate note
InstSet = instadd(InstSet, 'Float', Spread, Settle, Maturity);

% Display the portfolio instrument
instdisp(InstSet)

Index Type       Spread Settle         Maturity       RateSched FloatReset Basis Principal EndMonthRule
1     RangeFloat 200    01-Jan-2011    01-Jan-2014    [Struct]  1          0     100       1           
2     RangeFloat 200    01-Jan-2011    01-Jan-2014    [Struct]  1          0     100       1           
 
Index Type  Spread Settle         Maturity       FloatReset Basis Principal EndMonthRule CapRate FloorRate
3     Float 200    01-Jan-2011    01-Jan-2014    1          0     100       1            Inf     -Inf     
 

The data to build the tree is as follows:

Volatility = [.2; .19; .18; .17];
CurveTerm = [ 1;  2;   3;   4];
MaTree = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
HJMTS = hjmtimespec(ValuationDate, MaTree);
HJMVS = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);
HJMT = hjmtree(HJMVS, RS, HJMTS)

HJMT = struct with fields:
      FinObj: 'HJMFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [734504 734869 735235 735600]
        TFwd: {[4x1 double]  [3x1 double]  [2x1 double]  [3]}
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
     FwdTree: {[4x1 double]  [3x1x2 double]  [2x2x2 double]  [1x4x2 double]}

Price the portfolio.

Price = hjmprice(HJMT, InstSet)

Price = 3×1
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   91.1555
   90.6656
  105.5147

Create a Float-Float Swap and Price with hjmprice

Use instswap to create a float-float swap and price the swap with hjmprice.

RateSpec = intenvset('Rates',.05,'StartDate',today,'EndDate',datemnth(today,60));
IS = instswap([.02 .03],today,datemnth(today,60),[], [], [], [1 1]);
VolSpec = hjmvolspec('Constant', .2);
TimeSpec = hjmtimespec(today,cfdates(today,datemnth(today,60),1));
HJMTree = hjmtree(VolSpec,RateSpec,TimeSpec);
hjmprice(HJMTree,IS)

ans = -4.3220

Price Multiple Swaps with hjmprice

Use instswap to create multiple swaps and price the swaps with hjmprice.

RateSpec = intenvset('Rates',.05,'StartDate',today,'EndDate',datemnth(today,60));
IS = instswap([.03 .02],today,datemnth(today,60),[], [], [], [1 1]);
IS = instswap(IS,[200 300],today,datemnth(today,60),[], [], [], [0 0]);
IS = instswap(IS,[.08 300],today,datemnth(today,60),[], [], [], [1 0]);
VolSpec = hjmvolspec('Constant', .2);
TimeSpec = hjmtimespec(today,cfdates(today,datemnth(today,60),1));
HJMTree = hjmtree(VolSpec,RateSpec,TimeSpec);
hjmprice(HJMTree,IS)

ans = 3×1

    4.3220
   -4.3220
   -0.2701

Input Arguments
HJMTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using hjmtree.
Data Types: struct

InstSet — Instrument variable
structure
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Instrument variable containing a collection of NINST instruments, specified using instadd.
Instruments are categorized by type; each type can have different data fields. The stored data field is
a row vector or character vector for each instrument.
Data Types: struct

Options — Derivatives pricing options structure
structure

(Optional) Derivatives pricing options structure, created using derivset.
Data Types: struct

Output Arguments
Price — Price for each instrument
vector

Price for each instrument, returned as a NINST-by-1 vector. The prices are computed by backward
dynamic programming on the interest-rate tree. If an instrument cannot be priced, a NaN is returned
in that entry.

Related single-type pricing functions are:

• bondbyhjm — Price a bond from an HJM tree.
• capbyhjm — Price a cap from an HJM tree.
• cfbyhjm — Price an arbitrary set of cash flows from an HJM tree.
• fixedbyhjm — Price a fixed-rate note from an HJM tree.
• floatbyhjm — Price a floating-rate note from an HJM tree.
• floorbyhjm — Price a floor from an HJM tree.
• optbndbyhjm — Price a bond option from an HJM tree.
• optembndbyhjm — Price a bond with embedded option by an HJM tree.
• optfloatbybdt — Price a floating-rate note with an option from an HJM tree.
• optemfloatbybdt — Price a floating-rate note with an embedded option from an HJM tree.
• rangefloatbyhjm — Price range floating note using an HJM tree.
• swapbyhjm — Price a swap from an HJM tree.
• swaptionbyhjm — Price a swaption from an HJM tree.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing vectors of
instrument prices and accrued interest, and a vector of observation times for each node. Within
PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.
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See Also
hjmsens | hjmtree | hjmvolspec | instadd | intenvprice | intenvsens

Topics
“Computing Instrument Prices” on page 2-81
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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hjmsens
Instrument prices and sensitivities from Heath-Jarrow-Morton interest-rate tree

Syntax
[Delta,Gamma,Vega,Price] = hjmsens(HJMTree,InstSet)
[Delta,Gamma,Vega,Price] = hjmsens( ___ ,Options)

Description
[Delta,Gamma,Vega,Price] = hjmsens(HJMTree,InstSet) computes instrument sensitivities
and prices for instruments using an interest-rate tree created with the hjmtree function. All
sensitivities are returned as dollar sensitivities. To find the per-dollar sensitivities, divide by the
respective instrument price.

hjmsens handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'OptEmBond',
'OptEmBond', 'OptFloat', 'OptEmFloat', 'Fixed', 'Float', 'Cap', 'Floor',
'RangeFloat', 'Swap'. See instadd for information on instrument types.

[Delta,Gamma,Vega,Price] = hjmsens( ___ ,Options) adds an optional input argument for
Options.

Examples

Compute Instrument Sensitivities Using an HJM Interest-Rate Tree

Load the tree and instruments from the deriv.mat data file. Compute Delta and Gamma for the cap
and bond instruments contained in the instrument set.

load deriv.mat; 
HJMSubSet = instselect(HJMInstSet,'Type', {'Fixed', 'Cap'});  
instdisp(HJMSubSet)

Index Type  CouponRate Settle         Maturity       FixedReset Basis Principal Name     Quantity
1     Fixed 0.04       01-Jan-2000    01-Jan-2003    1          NaN   NaN       4% Fixed 80      
 
Index Type Strike Settle         Maturity       CapReset Basis Principal Name   Quantity
2     Cap  0.03   01-Jan-2000    01-Jan-2004    1        NaN   NaN       3% Cap 30      
 

Compute the Delta and Gamma for the cap and bond instruments.

[Delta, Gamma] = hjmsens(HJMTree, HJMSubSet)

Delta = 2×1

 -272.6462
  294.9700

Gamma = 2×1
103 ×
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    1.0299
    6.8526

Input Arguments
HJMTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using hjmtree.
Data Types: struct

InstSet — Instrument variable
structure

Instrument variable containing a collection of NINST instruments, specified using instadd.
Instruments are categorized by type; each type can have different data fields. The stored data field is
a row vector or character vector for each instrument.
Data Types: struct

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, created using derivset.
Data Types: struct

Output Arguments
Delta — Rate of change of instruments prices with respect to changes in interest rate
vector

Rate of change of instruments prices with respect to changes in the interest rate, returned as a
NINST-by-1 vector of deltas. Delta is computed by finite differences in calls to hjmtree.

Note Delta is calculated based on yield shifts of 100 basis points.

Gamma — Rate of change of instruments deltas with respect to changes in interest rate
vector

Rate of change of instruments deltas with respect to changes in the interest rate, returned as a
NINST-by-1 vector of gammas. Gamma is computed by finite differences in calls to hjmtree.

Note Gamma is calculated based on yield shifts of 100 basis points.

Vega — Rate of change of instruments prices with respect to changes in volatility
vector
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Rate of change of instruments prices with respect to changes in the volatility, returned as a NINST-
by-1 vector of vegas. Volatility is σ t, T  of the interest rate. Vega is computed by finite differences in
calls to hjmtree. For information on the volatility process, see hjmvolspec.

Note Vega is calculated based on 1% shift in the volatility process.

Price — Price of each instrument
vector

Price of each instrument, returned as a NINST-by-1 vector. The prices are computed by backward
dynamic programming on the interest-rate tree. If an instrument cannot be priced, a NaN is returned
in that entry.

See Also
hjmprice | hjmtree | hjmvolspec | instadd

Topics
“Computing Instrument Sensitivities” on page 2-89
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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hjmtimespec
Specify time structure for Heath-Jarrow-Morton interest-rate tree

Syntax
TimeSpec = hjmtimespec(ValuationDate,Maturity)
TimeSpec = hjmtimespec( ___ ,Compounding)

Description
TimeSpec = hjmtimespec(ValuationDate,Maturity) sets the number of levels and node times
for a hjmtree and determines the mapping between dates and time for rate quoting.

TimeSpec = hjmtimespec( ___ ,Compounding) adds the optional argument Compounding.

Examples

Set the Number of Levels and Node Times for an HJM Tree

This example shows how to specify an eight-period tree with semiannual nodes (every six months)
and use exponential compounding to report rates.

Compounding = -1;
ValuationDate = '15-Jan-1999';
Maturity = datemnth(ValuationDate, 6*(1:8)');
TimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding)

TimeSpec = struct with fields:
           FinObj: 'HJMTimeSpec'
    ValuationDate: 730135
         Maturity: [8x1 double]
      Compounding: -1
            Basis: 0
     EndMonthRule: 1

Input Arguments
ValuationDate — Pricing date and first observation in the tree
serial date number | character vector date

Pricing date and first observation in the tree, specified as a scalar date using a serial date number or
date character vector.
Data Types: double | char

Maturity — Dates marking the cash flow dates of the tree
serial date number | date character vector
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Dates marking the cash flow dates of the tree, specified as NLEVELS-by-1 vector of serial date
numbers or date character vectors. Cash flows with these maturities fall on tree nodes. Maturity
should be in increasing order.
Data Types: double | char | cell

Compounding — Rate at which the input zero rates were compounded when annualized
1 (default) | integer with value of 1, 2, 3, 4, 6, 12, 365, or -1

(Optional) Rate at which the input zero rates were compounded when annualized, specified as a
scalar integer value.

• If Compounding = 1, 2, 3, 4, 6, 12:

Disc = (1 + Z/F)^(-T), where F is the compounding frequency, Z is the zero rate, and T is the
time in periodic units; for example, T = F is one year.

• If Compounding = 365:

Disc = (1 + Z/F)^(-T), where F is the number of days in the basis year and T is a number of
days elapsed computed by basis.

• If Compounding = −1:

Disc = exp(-T*Z), where T is time in years.

Data Types: double

Output Arguments
TimeSpec — Specification for the time layout for hjmtree
structure

Specification for the time layout for hjmtree, returned as a structure. The state observation dates
are [ValuationDate; Maturity(1:end-1)]. Because a forward rate is stored at the last
observation, the tree can value cash flows out to Maturity(end).

See Also
hjmtree | hjmvolspec

Topics
“Specifying the Time Structure (TimeSpec)” on page 2-70
“Creating Trees” on page 2-72
“Examining Trees” on page 2-72
“Understanding Interest-Rate Tree Models” on page 2-66
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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hjmtree
Build Heath-Jarrow-Morton interest-rate tree

Syntax
HJMTree = hjmtree(VolSpec,RateSpec,TimeSpec)

Description
HJMTree = hjmtree(VolSpec,RateSpec,TimeSpec) creates a structure containing time and
forward-rate information on a bushy tree.

Examples

Create a HJMTree

Using the data provided, create a HJM volatility specification (using hjmvolspec), rate specification
(using intenvset), and tree time layout specification (using hjmtimespec). Then use these
specifications to create a HJM tree using hjmtree.

Compounding = 1;
ValuationDate = '01-01-2000';
StartDate = ['01-01-2000'; '01-01-2001'; '01-01-2002'; '01-01-2003'; '01-01-2004'];
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003'; '01-01-2004'; '01-01-2005'];
Rates = [.1; .11; .12; .125; .13];
Volatility = [.2; .19; .18; .17; .16];
CurveTerm = [1; 2; 3; 4; 5]; 

HJMVolSpec = hjmvolspec('Stationary', Volatility , CurveTerm);

RateSpec = intenvset('Compounding', Compounding,...
                     'ValuationDate', ValuationDate,...
                     'StartDates', StartDate,...
                     'EndDates', EndDates,...
                     'Rates', Rates);

HJMTimeSpec = hjmtimespec(ValuationDate, EndDates, Compounding);
HJMTree = hjmtree(HJMVolSpec, RateSpec, HJMTimeSpec)

HJMTree = struct with fields:
      FinObj: 'HJMFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3 4]
        dObs: [730486 730852 731217 731582 731947]
        TFwd: {[5x1 double]  [4x1 double]  [3x1 double]  [2x1 double]  [4]}
      CFlowT: {[5x1 double]  [4x1 double]  [3x1 double]  [2x1 double]  [5]}
     FwdTree: {1x5 cell}
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Use treeviewer to observe the tree you have created.

treeviewer(HJMTree)

Input Arguments
VolSpec — Volatility process specification
structure

Volatility process specification, specified using the VolSpec output obtained from hjmvolspec.
VolSpec sets the number of factors and the rules for computing the volatility σ t, T  for each factor.
Data Types: struct

RateSpec — Interest-rate specification for initial risk-free rate curve
structure

Interest-rate specification for initial rate curve, specified by the RateSpec obtained from
intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

TimeSpec — Time tree layout specification
structure
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Time tree layout specification, specified using the TimeSpec output obtained from hjmtimespec.
The TimeSpec defines the observation dates of the HJM tree and the Compounding rule for date to
time mapping and price-yield formulas.
Data Types: struct

Output Arguments
HJMTree — Time and interest-rate information of a bushy tree
structure

Time and interest-rate information of a bushy tree, returned as a structure.

See Also
hjmprice | hjmtimespec | hjmvolspec | intenvset

Topics
“Creating Trees” on page 2-72
“Examining Trees” on page 2-72
“Use treeviewer to Examine HWTree and PriceTree When Pricing European Callable Bond” on page
2-195
“Understanding Interest-Rate Tree Models” on page 2-66
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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hjmvolspec
Specify Heath-Jarrow-Morton interest-rate volatility process

Syntax
VolSpec = hjmvolspec(Factor,Sigma_0)
VolSpec = hjmvolspec(Factor,CurveVol,CurveTerm)
VolSpec = hjmvolspec(Factor,Sigma_0,Lambda)
VolSpec = hjmvolspec(Factor,Sigma_0,CurveDecay,CurveTerm)
VolSpec = hjmvolspec(Factor,CurveProp,CurveTerm,MaxSpot)

Description
VolSpec = hjmvolspec(Factor,Sigma_0) creates a Constant volatility (Ho-Lee) structure for
hjmtree by specifying the Factor as 'Constant'.

VolSpec = hjmvolspec(Factor,CurveVol,CurveTerm) creates a Stationary volatility structure
for hjmtree by specifying the Factor as 'Stationary'.

VolSpec = hjmvolspec(Factor,Sigma_0,Lambda) creates an Exponential volatility structure
for hjmtree by specifying the Factor as 'Exponential'.

VolSpec = hjmvolspec(Factor,Sigma_0,CurveDecay,CurveTerm) creates a Vasicek, Hull-
White volatility structure for hjmtree by specifying the Factor as 'Vasicek'.

VolSpec = hjmvolspec(Factor,CurveProp,CurveTerm,MaxSpot) creates a Nearly
proportional stationary volatility structure for hjmtree by specifying the Factor as
'Proportional'.

Examples

Compute the VolSpec Structure to Specify a Proportional Volatility Model for HJMTree

This example shows how to compute the VolSpec structure to specify the volatility model for
hjmtree when volatility is single-factor proportional.

CurveProp = [0.11765; 0.08825; 0.06865];
CurveTerm = [1; 2; 3];
VolSpec = hjmvolspec('Proportional', CurveProp, CurveTerm, 1e6)

VolSpec = struct with fields:
          FinObj: 'HJMVolSpec'
    FactorModels: {'Proportional'}
      FactorArgs: {{1x3 cell}}
      SigmaShift: 0
      NumFactors: 1
       NumBranch: 2
         PBranch: [0.5000 0.5000]
     Fact2Branch: [-1 1]
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Compute the VolSpec Structure to Specify an Exponential Volatility Model for HJMTree

This example shows how to compute the VolSpec structure to specify the volatility model for
hjmtree when volatility is two-factor exponential and constant.

VolSpec = hjmvolspec('Exponential', 0.1, 1, 'Constant', 0.2)

VolSpec = struct with fields:
          FinObj: 'HJMVolSpec'
    FactorModels: {'Exponential'  'Constant'}
      FactorArgs: {{1x2 cell}  {1x1 cell}}
      SigmaShift: 0
      NumFactors: 2
       NumBranch: 3
         PBranch: [0.2500 0.2500 0.5000]
     Fact2Branch: [2x3 double]

Input Arguments
Factor — Volatility factor
character vector with value of 'Constant', 'Stationary', 'Exponential', 'Vasicek', or
'Proportional'

Volatility factor, specified as a character vector with one of the following values:

• 'Constant'

σ t, T  = Sigma_0
• 'Stationary'

σ t, T  = Vol(T- t) = Vol(Term)
• 'Exponential'

σ t, T  = Sigma_0*exp(-Lambda*(T-t))
• 'Vasicek'

σ t, T  = Sigma_0*exp(-Decay(T-t))
• 'Proportional'

σ t, T  = Prop(T-t)*max(SpotRate(t),MaxSpot)

Note You can specify more than one Factor by concatenating Factor names and their associated
parameters.

Data Types: char

Sigma_0 — Base volatility over a unit time
numeric
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Base volatility over a unit, specified as a scalar numeric value.
Data Types: double

Lambda — Decay factor
numeric

Decay factor, specified as a scalar numeric value.
Data Types: double

CurveVol — Number of curve Vol values at sample points
numeric vector

Number of curve Vol values at sample points, specified as a NCURVES-by1 vector.
Data Types: double

CurveTerm — Number of curve Term values at sample points
numeric vector

Number of curve Term values at sample points, specified as a NCURVES-by-1 vector.
Data Types: double

CurveDecay — Number of curve Decay values at sample points
numeric vector

Number of curve Decay values at sample points, specified as a NPOINTS-by-1 vector.
Data Types: double

CurveProp — Number of curve Prop values at sample points
numeric vector

Number of curve Prop values at sample points, specified as a NCURVES-by-1 vector.
Data Types: double

MaxSpot — Maximum spot rate
numeric

Maximum spot rate, specified as a scalar numeric value.
Data Types: double

Output Arguments
VolSpec — Specification for the volatility model for bktree
structure

Structure specifying the volatility model for bktree. hjmvolspec defines an HJM forward-rate
volatility process based on the specified input Factor.
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More About
Volatility Process

The volatility process is σ t, T , where t is the observation time and T is the starting time of a forward
rate.

In a stationary process, the volatility term is T–t. Multiple factors can be specified sequentially.

The time values T, t, and Term are in coupon interval units specified by the Compounding input of
hjmtimespec. For instance if Compounding = 2, Term = 1 is a semiannual period (six months).

See Also
hjmtimespec | hjmtree

Topics
“Specifying the Volatility Model (VolSpec)” on page 2-68
“Creating Trees” on page 2-72
“Examining Trees” on page 2-72
“Understanding Interest-Rate Tree Models” on page 2-66
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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HullWhite1F
Create Hull-White one-factor model

Description
The Hull-White one-factor model is specified using the zero curve, alpha, and sigma parameters.

Specifically, the HullWhite1F model is defined using the following equations:

dr = [θ(t)− a(t)r]dt + σ(t)dW

where:

dr is the change in the short-term interest rate over a small interval.

r is the short-term interest rate.

Θ(t) is a function of time determining the average direction in which r moves, chosen such that
movements in r are consistent with today's zero coupon yield curve.

α is the mean reversion rate.

dt is a small change in time.

σ is the annual standard deviation of the short rate.

W is the Brownian motion.

Creation

Syntax
HW1F = HullWhite1F(ZeroCurve,Alpha,Sigma)

Description

HW1F = HullWhite1F(ZeroCurve,Alpha,Sigma) creates a HullWhite1F (HW1F) object using
the required arguments to set the Properties on page 11-664.

Properties
ZeroCurve — Zero curve
IRDataCurve object | RateSpec

Zero curve, specified as an output from IRDataCurve or a RateSpec that is obtained from
intenvset. This is the zero curve used to evolve the path of future interest rates.
Data Types: object | struct
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Alpha — Mean reversion
numeric

Mean reversion, specified either as a scalar or function handle which takes time as input and returns
a scalar mean reversion value.
Data Types: double

Sigma — Volatility
numeric

Volatility, specified either as a scalar or function handle which takes time as input and returns a
scalar mean volatility.
Data Types: double

Object Functions
simTermStructs Simulate term structures for Hull-White one-factor model

Examples

Create a Hull-White One-Factor Model Using an IRDataCurve

Create a Hull-White one-factor model using an IRDataCurve.

Settle = datenum('15-Dec-2007');
CurveTimes = [1:5 7 10 20]';
ZeroRates = [.01 .018 .024 .029 .033 .034 .035 .034]';
CurveDates = daysadd(Settle,360*CurveTimes,1);
 
irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);
    
alpha = .1;
sigma = .01;
 
HW1F = HullWhite1F(irdc,alpha,sigma)

HW1F = 
  HullWhite1F with properties:

    ZeroCurve: [1x1 IRDataCurve]
        Alpha: @(t,V)inAlpha
        Sigma: @(t,V)inSigma

Use the simTermStructs method with the HullWhite1F model to simulate term structures.

SimPaths = simTermStructs(HW1F, 10,'nTrials',100);

Create a Hull-White One-Factor Model Using a RateSpec

Create a Hull-White one-factor model using a RateSpec.
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Settle = datenum('15-Dec-2007');
CurveTimes = [1:5 7 10 20]';
ZeroRates = [.01 .018 .024 .029 .033 .034 .035 .034]';
CurveDates = daysadd(Settle,360*CurveTimes,1);
 
RateSpec = intenvset('Rates',ZeroRates,'EndDates',CurveDates,'StartDate',Settle);

alpha = .1;
sigma = .01;
 
HW1F = HullWhite1F(RateSpec,alpha,sigma)

HW1F = 
  HullWhite1F with properties:

    ZeroCurve: [1x1 IRDataCurve]
        Alpha: @(t,V)inAlpha
        Sigma: @(t,V)inSigma

Use the simTermStructs method with the HullWhite1F model to simulate term structures.

SimPaths = simTermStructs(HW1F, 10,'nTrials',100);

Simulate the Price of a Bond Using a Hull-White One-Factor Model Until the Bond's Maturity

Define the zero curve data.

Settle = datenum('4-Apr-2016');
ZeroTimes = [3/12 6/12 1 5 7 10 20 30]';
ZeroRates = [0.033 0.034 0.035 0.040 0.042 0.044 0.048 0.0475]';
ZeroDates = datemnth(Settle,ZeroTimes*12);
RateSpec = intenvset('StartDates', Settle,'EndDates', ZeroDates, 'Rates', ZeroRates)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 2
             Disc: [8x1 double]
            Rates: [8x1 double]
         EndTimes: [8x1 double]
       StartTimes: [8x1 double]
         EndDates: [8x1 double]
       StartDates: 736424
    ValuationDate: 736424
            Basis: 0
     EndMonthRule: 1

Define the bond parameters.

Maturity = datemnth(Settle,12*5);
CouponRate = 0;

Define the Hull-White parameters.
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alpha = .1;
sigma = .01;
HW1F = HullWhite1F(RateSpec,alpha,sigma)

HW1F = 
  HullWhite1F with properties:

    ZeroCurve: [1x1 IRDataCurve]
        Alpha: @(t,V)inAlpha
        Sigma: @(t,V)inSigma

Define the simulation parameters.

nTrials = 100;
nPeriods = 12*5;
deltaTime = 1/12;
SimZeroCurvePaths = simTermStructs(HW1F, nPeriods,'nTrials',nTrials,'deltaTime',deltaTime);
SimDates = datemnth(Settle,1:nPeriods);

Preallocate and initialize for the simulation.

SimBondPrice = zeros(nPeriods+1,nTrials);
SimBondPrice(1,:,:) = bondbyzero(RateSpec,CouponRate,Settle,Maturity);
SimBondPrice(end,:,:) = 100;

Compute the bond values for each simulation date and path, note that you can vectorize over the trial
dimension.

for periodidx=1:nPeriods-1
    simRateSpec = intenvset('StartDate',SimDates(periodidx),'EndDates',...
        datemnth(SimDates(periodidx),ZeroTimes*12),'Rates',squeeze(SimZeroCurvePaths(periodidx+1,:,:)));
    SimBondPrice(periodidx+1,:) = bondbyzero(simRateSpec,CouponRate,SimDates(periodidx),Maturity);
end

plot([Settle SimDates],SimBondPrice)
datetick
ylabel('Bond Price')
xlabel('Simulation Dates')
title('Simulated Bond Price')
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Simulate the Total Return of a Bond Portfolio Until Maturity

Define the zero curve data.

Settle = datenum('4-Apr-2016');
ZeroTimes = [3/12 6/12 1 5 7 10 20 30]';
ZeroRates = [-0.01 -0.009 -0.0075 -0.003 -0.002 -0.001 0.002 0.0075]';
ZeroDates = datemnth(Settle,ZeroTimes*12);
RateSpec = intenvset('StartDates', Settle,'EndDates', ZeroDates, 'Rates', ZeroRates)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 2
             Disc: [8x1 double]
            Rates: [8x1 double]
         EndTimes: [8x1 double]
       StartTimes: [8x1 double]
         EndDates: [8x1 double]
       StartDates: 736424
    ValuationDate: 736424
            Basis: 0
     EndMonthRule: 1

Define the bond parameters for the five bonds in the portfolio.
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Maturity = datemnth(Settle,12*5);  % All bonds have the same maturity
CouponRate = [0.035;0.04;0.02;0.015;0.042];  % Different coupon rates for the bonds
nBonds = length(CouponRate);

Define the Hull-White parameters.

alpha = .1;
sigma = .01;
HW1F = HullWhite1F(RateSpec,alpha,sigma)

HW1F = 
  HullWhite1F with properties:

    ZeroCurve: [1x1 IRDataCurve]
        Alpha: @(t,V)inAlpha
        Sigma: @(t,V)inSigma

Define the simulation parameters.

nTrials = 1000;
nPeriods = 12*5;
deltaTime = 1/12;
SimZeroCurvePaths = simTermStructs(HW1F, nPeriods,'nTrials',nTrials,'deltaTime',deltaTime);
SimDates = datemnth(Settle,1:nPeriods);

Preallocate and initialize for the simulation.

SimBondPrice = zeros(nPeriods+1,nBonds,nTrials);
SimBondPrice(1,:,:) = repmat(bondbyzero(RateSpec,CouponRate,Settle,Maturity)',[1 1 nTrials]);
SimBondPrice(end,:,:) = 100;

[BondCF,BondCFDates,~,CFlowFlags] = cfamounts(CouponRate,Settle,Maturity);
BondCF(CFlowFlags == 4) = BondCF(CFlowFlags == 4) - 100;
SimBondCF = zeros(nPeriods+1,nBonds,nTrials);

Compute bond values for each simulation date and path. Note that you can vectorize over the trial
dimension.

for periodidx=1:nPeriods
    if periodidx < nPeriods
        simRateSpec = intenvset('StartDate',SimDates(periodidx),'EndDates',...
            datemnth(SimDates(periodidx),ZeroTimes*12),'Rates',squeeze(SimZeroCurvePaths(periodidx+1,:,:)));
        SimBondPrice(periodidx+1,:,:) = bondbyzero(simRateSpec,CouponRate,SimDates(periodidx),Maturity);
    end
    
    simidx = SimDates(periodidx) == BondCFDates;
    SimCF = zeros(1,nBonds);
    SimCF(any(simidx,2)) = BondCF(simidx);
    ReinvestRate = 1 + SimZeroCurvePaths(periodidx+1,1,:);
    SimBondCF(periodidx+1,:,:) = bsxfun(@times,bsxfun(@plus,SimBondCF(periodidx,:,:),SimCF),ReinvestRate);
end

Compute the total return series.

TotalCF = SimBondPrice + SimBondCF;

Assume the bond portfolio is equally weighted and plot the simulated bond portfolio returns.
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TotalCF = squeeze(sum(TotalCF,2));

TotRetSeries = bsxfun(@rdivide,TotalCF(2:end,:),TotalCF(1,:)) - 1;
plot(SimDates,TotRetSeries)
datetick
ylabel('Bond Portfolio Returns')
xlabel('Simulation Dates')
title('Simulated Bond Portfolio Returns')

More About
Hull-White One-Factor Model

The Hull-White model is a single-factor, no-arbitrage yield curve model in which the short-term rate of
interest is the random factor or state variable.

No-arbitrage means that the model parameters are consistent with the bond prices implied in the
zero coupon yield curve.

References
[1] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer Finance, 2006.

[2] Hull, J. Options, Futures, and Other Derivatives. Prentice-Hall, 2011.
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See Also
LinearGaussian2F | LiborMarketModel | hwcalbycap | hwcalbyfloor | simTermStructs

Topics
“Price Swaptions with Interest-Rate Models Using Simulation” on page 2-101
“Pricing Bermudan Swaptions with Monte Carlo Simulation” on page 2-115
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced in R2013a
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simTermStructs
Simulate term structures for Hull-White one-factor model

Syntax
[ZeroRates,ForwardRates] = simTermStructs(HW1F,nPeriods)
[ZeroRates,ForwardRates] = simTermStructs( ___ ,Name,Value)

Description
[ZeroRates,ForwardRates] = simTermStructs(HW1F,nPeriods) simulates future zero curve
paths using a specified HullWhite1F object.

[ZeroRates,ForwardRates] = simTermStructs( ___ ,Name,Value) adds optional name-value
pair arguments.

Examples

Simulate Term Structures for the HullWhite1F Model

Create a HW1F object.

Settle = datenum('15-Dec-2007');
CurveTimes = [1:5 7 10 20]';
ZeroRates = [.01 .018 .024 .029 .033 .034 .035 .034]';
CurveDates = daysadd(Settle,360*CurveTimes,1);

irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);

alpha = .1;
sigma = .01;
 
HW1F = HullWhite1F(irdc,alpha,sigma)

HW1F = 
  HullWhite1F with properties:

    ZeroCurve: [1x1 IRDataCurve]
        Alpha: @(t,V)inAlpha
        Sigma: @(t,V)inSigma

Simulate the term structures for the specified HW1F object.

SimPaths = simTermStructs(HW1F, 10,'nTrials',100);

Input Arguments
HW1F — HullWhite1F object
object
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HullWhite1F object, specified using the HW1F object created using HullWhite1F.
Data Types: object

nPeriods — Number of simulation periods
numeric

Number of simulation periods, specified as a numeric value. For example, to simulate 12 years with
an annual spacing, specify 12 as the nPeriods input and 1 as the optional deltaTime input (note
that the default value for deltaTime is 1).
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [ZeroRates,ForwardRates] =
simTermStructs(HW1F,NPeriods,'nTrials',100,'deltaTime',dt)

deltaTime — Time step between nPeriods
1 (default) | numeric

Time step between nPeriods measured in years, specified as the comma-separated pair consisting of
'deltaTime' and a scalar numeric value. For example, to simulate 12 years with an annual spacing,
specify 12 as the nPeriods input and 1 as the optional deltaTime input (note that the default value
for deltaTime is 1).
Data Types: double

nTrials — Number of simulated trials
1 (default) | positive integer

Number of simulated trials (sample paths), specified as the comma-separated pair consisting of
'nTrials' and a positive scalar integer value of nPeriods observations each. If you do not specify
a value for this argument, the default is 1, indicating a single path of correlated state variables.
Data Types: double

antithetic — Flag indicating whether antithetic sampling is used to generate Gaussian
random variates
false (default) | positive integer

Flag indicating whether antithetic sampling is used to generate the Gaussian random variates that
drive the zero-drift, unit-variance rate Brownian vector dW(t), specified as the comma-separated pair
consisting of 'antithetic' and a Boolean scalar flag. For details, see simBySolution.
Data Types: logical

Z — Direct specification of dependent random noise process
Gaussian variates generated by simBySolution function (default) | numeric

Direct specification of the dependent random noise process, specified as the comma-separated pair
consisting of 'Z' and a numeric value. The Z value is used to generate the zero-drift, unit-variance
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rate Brownian vector dW(t) that drives the simulation. For details, see simBySolution for the HWV
model. If you do not specify a value for Z, simBySolution generates Gaussian variates.
Data Types: double

Tenor — Maturities to compute at each time step
tenor of HullWhite1F object zero curve (default) | numeric vector

Maturities to compute at each time step, specified as the comma-separated pair consisting of
'Tenor' and a numeric vector.

Tenor enables you to choose a different set of rates to output than the underlying rates. For example,
you may want to simulate quarterly data but only report annual rates; this can be done by specifying
the optional input Tenor.
Data Types: double

Output Arguments
ZeroRates — Simulated zero-rate term structures
matrix

Simulated zero-rate term structures, returned as a nPeriods+1-by-nTenors-by-nTrials matrix.

ForwardRates — Simulated forward-rate term structures
matrix

Simulated zero-rate term structures, returned as a nPeriods+1-by-nTenors-by-nTrials matrix.
The ForwardRates output is computed using the simulated short rates and by using the model
definition to recover the entire yield curve at each simulation date.

See Also
HullWhite1F

Topics
“Price Swaptions with Interest-Rate Models Using Simulation” on page 2-101
“Pricing Bermudan Swaptions with Monte Carlo Simulation” on page 2-115
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced in R2013a
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hwcalbycap
Calibrate Hull-White tree using caps

Syntax
[Alpha,Sigma,OptimOut] = hwcalbycap(RateSpec,MarketStrikeMarketMaturity,
MarketVolatility)
[Alpha,Sigma,OptimOut = hwcalbycap(RateSpec,MarketStrikeMarketMaturity,
MarketVolatility,Strike,Settle,Maturity)
[Alpha,Sigma,OptimOut] = hwcalbycap( ___ ,Name,Value)

Description
[Alpha,Sigma,OptimOut] = hwcalbycap(RateSpec,MarketStrikeMarketMaturity,
MarketVolatility) calibrates the Alpha (mean reversion) and Sigma (volatility) using cap market
data and the Hull-White model using the entire cap surface.

The Hull-White calibration functions (hwcalbycap and hwcalbyfloor) support three models: Black
(default), Bachelier or Normal, and Shifted Black. For more information, see the optional arguments
for Shift and Model.

[Alpha,Sigma,OptimOut = hwcalbycap(RateSpec,MarketStrikeMarketMaturity,
MarketVolatility,Strike,Settle,Maturity) estimates the Alpha (mean reversion) and
Sigma (volatility) using cap market data and the Hull-White model to price a cap at a particular
maturity/volatility using the additional optional input arguments for Strike, Settle, and Maturity.

Strike, Settle, and Maturity arguments are specified to calibrate to a specific point on the
market volatility surface. If omitted, the calibration is performed across all the market instruments

For an example of calibrating using the Hull-White model with Strike, Settle, and Maturity input
arguments, see “Calibrating Hull-White Model Using Market Data” on page 2-92.

[Alpha,Sigma,OptimOut] = hwcalbycap( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Calibrate Hull-White Model from Market Data Using the Entire Cap Volatility Surface

This example shows how to use hwcalbycap input arguments for MarketStrike,
MarketMaturity, and MarketVolatility to calibrate the HW model using the entire cap volatility
surface.

Cap market volatility data covering two strikes over 12 maturity dates.
Reset = 4;
MarketStrike = [0.0590; 0.0790];

MarketMaturity = {'21-Mar-2008'; '21-Jun-2008'; '21-Sep-2008'; '21-Dec-2008';
    '21-Mar-2009'; '21-Jun-2009'; '21-Sep-2009'; '21-Dec-2009';
    '21-Mar-2010'; '21-Jun-2010'; '21-Sep-2010'; '21-Dec-2010'};
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MarketMaturity = datenum(MarketMaturity);

MarketVolaltility = [0.1533 0.1731 0.1727 0.1752 0.1809 0.1800 0.1805 0.1802...
    0.1735 0.1757 0.1755 0.1755;
    0.1526 0.1730 0.1726 0.1747 0.1808 0.1792 0.1797 0.1794...
    0.1733 0.1751 0.1750 0.1745];

Plot market volatility surface.
[AllMaturities,AllStrikes] = meshgrid(MarketMaturity,MarketStrike);
figure;
surf(AllMaturities,AllStrikes,MarketVolaltility)
datetick
xlabel('Maturity')
ylabel('Strike')
zlabel('Volatility')
title('Market Volatility Data')

Set interest rate term structure and create a RateSpec.
Settle = '21-Jan-2008';
Compounding = 4;
Basis = 0;
Rates= [0.0627; 0.0657; 0.0691; 0.0717; 0.0739; 0.0755; 0.0765; 0.0772;
    0.0779; 0.0783; 0.0786; 0.0789];
EndDates = {'21-Mar-2008';'21-Jun-2008';'21-Sep-2008';'21-Dec-2008';...
    '21-Mar-2009';'21-Jun-2009';'21-Sep-2009';'21-Dec-2009';....
    '21-Mar-2010';'21-Jun-2010';'21-Sep-2010';'21-Dec-2010'};
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
    'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding,...
    'Basis',Basis)

RateSpec = 

           FinObj: 'RateSpec'
      Compounding: 4
             Disc: [12x1 double]
            Rates: [12x1 double]
         EndTimes: [12x1 double]
       StartTimes: [12x1 double]
         EndDates: [12x1 double]
       StartDates: 733428
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    ValuationDate: 733428
            Basis: 0
     EndMonthRule: 1

Calibrate Hull-White model from market data.
o = optimoptions('lsqnonlin','TolFun',1e-5,'Display','off');

[Alpha, Sigma] = hwcalbycap(RateSpec, MarketStrike, MarketMaturity,...
    MarketVolaltility, 'Reset', Reset,'Basis', Basis, 'OptimOptions', o)

Warning: LSQNONLIN did not converge to an optimal solution. It exited with exitflag = 3.
 
> In hwcalbycapfloor>optimizeOverCapSurface at 232
  In hwcalbycapfloor at 79
  In hwcalbycap at 81 

Alpha =

    0.0943

Sigma =

    0.0146

Compare with Black prices.
BlkPrices = capbyblk(RateSpec,AllStrikes(:), Settle, AllMaturities(:),...
    MarketVolaltility(:),'Reset',Reset,'Basis',Basis);

BlkPrices =

    0.0604
         0
    0.2729
    0.0006
    0.6498
    0.0412
    1.1121
    0.1426
    1.6426
    0.3131
    2.1869
    0.4998
    2.7056
    0.6894
    3.2124
    0.8815
    3.7311
    1.0686
    4.2246
    1.2790
    4.7027
    1.4810
    5.1877
    1.6919

Setup Hull-White tree using calibrated parameters, alpha, and sigma.
VolDates    = EndDates;
VolCurve    = Sigma*ones(numel(EndDates),1);
AlphaDates  = EndDates;
AlphaCurve  = Alpha*ones(numel(EndDates),1);
HWVolSpec   = hwvolspec(Settle, VolDates, VolCurve, AlphaDates, AlphaCurve);

HWTimeSpec  = hwtimespec(Settle, EndDates, Compounding);
HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec, 'Method', 'HW2000')
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HWTree = 

      FinObj: 'HWFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 0.6593 1.6612 2.6593 3.6612 4.6593 5.6612 6.6593 7.6612 8.6593 9.6612 10.6593]
        dObs: [733428 733488 733580 733672 733763 733853 733945 734037 734128 734218 734310 734402]
      CFlowT: {1x12 cell}
       Probs: {1x11 cell}
     Connect: {1x11 cell}
     FwdTree: {1x12 cell}

Compute Hull-White prices based on the calibrated tree.
HWPrices = capbyhw(HWTree, AllStrikes(:), Settle, AllMaturities(:), Reset, Basis)

HWPrices =

    0.0601
         0
    0.2788
         0
    0.6580
    0.0518
    1.1254
    0.1485
    1.6591
    0.3123
    2.2076
    0.5022
    2.7319
    0.6883
    3.2459
    0.8774
    3.7771
    1.0900
    4.2769
    1.2875
    4.7645
    1.4845
    5.2572
    1.6921

Plot Black prices against the calibrated Hull-White tree prices.
figure;
plot(AllMaturities(:), BlkPrices, 'or', AllMaturities(:), HWPrices, '*b');
datetick('x', 2)
xlabel('Maturity');
ylabel('Price');
title('Black and Calibrated (HW) Prices');
legend('Black Price', 'Calibrated HW Tree Price','Location', 'NorthWest');
grid on
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Calibrating Caplets Using the Normal (Bachelier) Model

This example shows how to use hwcalbycap to calibrate market data with the Normal (Bachelier)
model to price caplets. Use the Normal (Bachelier) model to perform calibrations when working with
negative interest rates, strikes, and normal implied volatilities.

Consider a cap with these parameters:

Settle = 'Dec-30-2016';
Maturity = 'Dec-30-2019';
Strike = -0.001075;
Reset = 2;
Principal = 100;
Basis = 0;

The caplets and market data for this example are defined as:

capletDates = cfdates(Settle, Maturity, Reset, Basis);
datestr(capletDates')

ans = 6x11 char array
    '30-Jun-2017'
    '30-Dec-2017'
    '30-Jun-2018'
    '30-Dec-2018'
    '30-Jun-2019'
    '30-Dec-2019'

% Market data information
MarketStrike = [-0.0013; 0];
MarketMat =  {'30-Jun-2017';'30-Dec-2017';'30-Jun-2018'; '30-Dec-2018';'30-Jun-2019'; '30-Dec-2019'};
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MarketVol = [0.184 0.2329 0.2398 0.2467 0.2906 0.3348;   % First row in table corresponding to Strike 1 
             0.217 0.2707 0.2760 0.2814 0.3160 0.3508];  % Second row in table corresponding to Strike 2

Define the RateSpec using intenvset.

Rates= [-0.002210;-0.002020;-0.00182;-0.001343;-0.001075];
ValuationDate = 'Dec-30-2016';
EndDates = {'30-Jun-2017';'Dec-30-2017';'30-Jun-2018';'Dec-30-2018';'Dec-30-2019'};
Compounding = 2;
Basis = 0;

RateSpec = intenvset('ValuationDate', ValuationDate, ...
'StartDates', ValuationDate, 'EndDates', EndDates, ...
'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis);

Use hwcalbycap to find values for the volatility parameters Alpha and Sigma using the Normal
(Bachelier) model.

format short
o=optimoptions('lsqnonlin','TolFun',100*eps);
warning ('off','fininst:hwcalbycapfloor:NoConverge')
[Alpha, Sigma, OptimOut] = hwcalbycap(RateSpec, MarketStrike, MarketMat,...
MarketVol, Strike, Settle, Maturity, 'Reset', Reset, 'Principal', Principal,...
'Basis', Basis, 'OptimOptions', o, 'model', 'normal')

Local minimum possible.
lsqnonlin stopped because the size of the current step is less than
the value of the step size tolerance.

Alpha = 1.0000e-06

Sigma = 0.3384

OptimOut = struct with fields:
     resnorm: 1.5181e-04
    residual: [5x1 double]
    exitflag: 2
      output: [1x1 struct]
      lambda: [1x1 struct]
    jacobian: [5x2 double]

The OptimOut.residual field of the OptimOut structure is the optimization residual. This value
contains the difference between the Normal (Bachelier) caplets and those calculated during the
optimization. Use the OptimOut.residual value to calculate the percentual difference (error)
compared to Normal (Bachelier) caplet prices, and then decide whether the residual is acceptable.
There is almost always some residual, so decide if it is acceptable to parameterize the market with a
single value of Alpha and Sigma.

Price the caplets using the market data and Normal (Bachelier) model to obtain the reference caplet
values. To determine the effectiveness of the optimization, calculate reference caplet values using the
Normal (Bachelier) formula and the market data. Note, you must first interpolate the market data to
obtain the caplets for calculation.

MarketMatNum = datenum(MarketMat);
[Mats, Strikes] = meshgrid(MarketMatNum, MarketStrike);
FlatVol = interp2(Mats, Strikes, MarketVol, datenum(Maturity), Strike, 'spline');
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[CapPrice, Caplets] = capbynormal(RateSpec, Strike, Settle, Maturity, FlatVol,...
'Reset', Reset, 'Basis', Basis, 'Principal', Principal); 
Caplets = Caplets(2:end)'

Caplets = 5×1

    4.7392
    6.7799
    8.2609
    9.6136
   10.6455

Compare the optimized values and Normal (Bachelier) values, and display the results graphically.
After calculating the reference values for the caplets, compare the values analytically and graphically
to determine whether the calculated single values of Alpha and Sigma provide an adequate
approximation.

OptimCaplets = Caplets+OptimOut.residual;

disp('   ');

   

disp(' Bachelier   Calibrated Caplets');

 Bachelier   Calibrated Caplets

disp([Caplets        OptimCaplets])

    4.7392    4.7453
    6.7799    6.7851
    8.2609    8.2657
    9.6136    9.6112
   10.6455   10.6379

plot(MarketMatNum(2:end), Caplets, 'or', MarketMatNum(2:end), OptimCaplets, '*b');
datetick('x', 2)
xlabel('Caplet Maturity');
ylabel('Caplet Price');
ylim ([0 16]);
title('Bachelier and Calibrated Caplets');
h = legend('Bachelier Caplets', 'Calibrated Caplets');
set(h, 'color', [0.9 0.9 0.9]);
set(h, 'Location', 'SouthEast');
set(gcf, 'NumberTitle', 'off')
grid on
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Input Arguments
RateSpec — Interest-rate specification for initial rate curve
structure

Interest-rate specification for initial rate curve, specified by the RateSpec obtained from
intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

MarketStrike — Market cap strike
vector

Market cap strike, specified as a NINST-by-1 vector.
Data Types: double

MarketMaturity — Market cap maturity date
vector

Market cap maturity dates, specified as a NINST-by-1 vector.
Data Types: double

MarketVolatility — Market flat volatilities
matrix
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Market flat volatilities, specified as a NSTRIKES-by-NMATS matrix of market flat volatilities, where
NSTRIKES is the number of caplet strikes from MarketStrike and NMATS is the caplet maturity
dates from MarketMaturity.
Data Types: double

Strike — Rate at which cap is exercised
decimal scalar

(Optional) Rate at which the cap is exercised, specified as a decimal scalar value.
Data Types: single

Settle — Settlement date of the cap
serial date number | date character vector

(Optional) Settlement date of the cap, specified as a scalar serial date number or date character.
Data Types: single | char

Maturity — Maturity date of the cap
serial date number | date character vector

(optional) Maturity date of the cap, specified as scalar serial date number or date character vector.
Data Types: single | char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Alpha,Sigma,OptimOut] =
hwcalbycap(RateSpec,MarketStrike,MarketMaturity,MarketVolaltility,'Reset',2,'
Principal',100000,'Basis',3,'OptimOptions',o)

Reset — Frequency of payments per year
1 (default) | numeric

Frequency of payments per year, specified as the comma-separated pair consisting of 'Reset' and a
scalar numeric value.
Data Types: double

Principal — Notional principal amount
100 (default) | nonnegative integer

Notional principal amount, specified as the comma-separated pair consisting of 'Principal' and a
scalar nonnegative integer.
Data Types: single

Basis — Day-count basis used when annualizing the input forward rate
0 (actual/actual) (default) | integers of the set [0...13]
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Day-count basis used when annualizing the input forward rate, specified as the comma-separated pair
consisting of 'Basis' and a scalar value. Values are:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: single

LB — Lower bounds
[0;0] (default) | numeric vector

Lower bounds, specified as the comma-separated pair consisting of 'LB' and a 2-by-1 vector of the
lower bounds, defined as [LBSigma; LBAlpha], used in the search algorithm function. For more
information, see lsqnonlin.
Data Types: double

UB — Upper bounds
[ ] (unbound) (default) | numeric vector

Upper bounds, specified as the comma-separated pair consisting of 'UB' and a 2-by-1 vector of the
upper bounds, defined as [UBSigma; LBAlpha], used in the search algorithm function. For more
information, see lsqnonlin.
Data Types: double

XO — Initial values
[0.5;0.5] (default) | numeric vector

Initial values, specified as the comma-separated pair consisting of 'XO' and a 2-by-1 vector of the
initial values, defined as [Sigma0; Alpha0], used in the search algorithm function. For more
information, see lsqnonlin.
Data Types: double

OptimOptions — Optimization parameters
structure
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Optimization parameters, specified as the comma-separated pair consisting of 'OptimOptions' and
a structure defined by using optimoptions.
Data Types: struct

Shift — Shift in decimals for shifted Black model
0 (no shift) (default) | positive decimal

Shift in decimals for the shifted Black model, specified as the comma-separated pair consisting of
'Shift' and a scalar positive decimal value. Set this parameter to a positive shift in decimals to add
a positive shift to forward rate and Strike, which effectively sets a negative lower bound for forward
rate and Strike. For example, a Shift value of 0.01 is equal to a 1% shift.
Data Types: single

Model — Indicator for model used for calibration routine
lognormal (Black model) (default) | values are normal and lognormal

Indicator for model used for calibration routine, specified as the comma-separated pair consisting of
'Model' and a scalar character vector with a value of normal or lognormal.
Data Types: char

Output Arguments
Alpha — Mean reversion value obtained from calibrating the cap using market information
scalar numeric

Mean reversion value obtained from calibrating the cap using market information, returned as a
scalar value.

Sigma — Volatility value obtained from calibrating cap using market information
scalar numeric

Volatility value obtained from calibrating the cap using market information, returned as a scalar.

OptimOut — Optimization results
numeric structure

Optimization results, returned as a structure.

See Also
capbyblk | hwcalbyfloor | hwtree | lsqnonlin | HullWhite1F

Topics
“Price Swaptions with Interest-Rate Models Using Simulation” on page 2-101
“Pricing Bermudan Swaptions with Monte Carlo Simulation” on page 2-115
“Calibrating Hull-White Model Using Market Data” on page 2-92
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced in R2009a
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hwcalbyfloor
Calibrate Hull-White tree using floors

Syntax
[Alpha,Sigma,OptimOut] = hwcalbyfloor(RateSpec,MarketStrikeMarketMaturity,
MarketVolatility)
[Alpha,Sigma,OptimOut = hwcalbyfloor(RateSpec,MarketStrikeMarketMaturity,
MarketVolatility,Strike,Settle,Maturity)
[Alpha,Sigma,OptimOut] = hwcalbyfloor( ___ ,Name,Value)

Description
[Alpha,Sigma,OptimOut] = hwcalbyfloor(RateSpec,MarketStrikeMarketMaturity,
MarketVolatility) calibrates the Alpha (mean reversion) and Sigma (volatility) using floor
market data and the Hull-White model using the entire floor surface.

The Hull-White calibration functions (hwcalbyfloor and hwcalbycap) support three models: Black
(default), Bachelier or Normal, and Shifted Black. For more information, see the optional arguments
for Shift and Model.

[Alpha,Sigma,OptimOut = hwcalbyfloor(RateSpec,MarketStrikeMarketMaturity,
MarketVolatility,Strike,Settle,Maturity) estimates the Alpha (mean reversion) and
Sigma (volatility) using floor market data and the Hull-White model to price a floor at a particular
maturity/volatility using the additional optional input arguments for Strike, Settle, and Maturity.

Strike, Settle, and Maturity arguments are specified to calibrate to a specific point on the
market volatility surface. If omitted, the calibration is performed across all the market instruments

For an example of calibrating using the Hull-White model with Strike, Settle, and Maturity input
arguments, see “Calibrating Hull-White Model Using Market Data” on page 2-92.

[Alpha,Sigma,OptimOut] = hwcalbyfloor( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Calibrate Hull-White Model from Market Data Using the Entire Floor Volatility Surface

This example shows how to use hwcalbyfloor input arguments for MarketStrike,
MarketMaturity, and MarketVolatility to calibrate the HW model using the entire floor
volatility surface.

Floor market volatility data covering two strikes over 12 maturity dates.
Reset = 4;
MarketStrike = [0.0590; 0.0790];

MarketMaturity = {'21-Mar-2008'; '21-Jun-2008'; '21-Sep-2008'; '21-Dec-2008';
    '21-Mar-2009'; '21-Jun-2009'; '21-Sep-2009'; '21-Dec-2009';
    '21-Mar-2010'; '21-Jun-2010'; '21-Sep-2010'; '21-Dec-2010'};
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MarketMaturity = datenum(MarketMaturity);

MarketVolaltility = [0.1533 0.1731 0.1727 0.1752 0.1809 0.1800 0.1805 0.1802...
    0.1735 0.1757 0.1755 0.1755;
    0.1526 0.1730 0.1726 0.1747 0.1808 0.1792 0.1797 0.1794...
    0.1733 0.1751 0.1750 0.1745];

Plot market volatility surface.
[AllMaturities,AllStrikes] = meshgrid(MarketMaturity,MarketStrike);
figure;
surf(AllMaturities,AllStrikes,MarketVolaltility)
datetick
xlabel('Maturity')
ylabel('Strike')
zlabel('Volatility')
title('Market Volatility Data')

Set interest rate term structure and create a RateSpec.
Settle = '21-Jan-2008';
Compounding = 4;
Basis = 0;
Rates= [0.0627; 0.0657; 0.0691; 0.0717; 0.0739; 0.0755; 0.0765; 0.0772;
    0.0779; 0.0783; 0.0786; 0.0789];
EndDates = {'21-Mar-2008';'21-Jun-2008';'21-Sep-2008';'21-Dec-2008';...
    '21-Mar-2009';'21-Jun-2009';'21-Sep-2009';'21-Dec-2009';....
    '21-Mar-2010';'21-Jun-2010';'21-Sep-2010';'21-Dec-2010'};
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
    'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding,...
    'Basis',Basis)

RateSpec = 

           FinObj: 'RateSpec'
      Compounding: 4
             Disc: [12x1 double]
            Rates: [12x1 double]
         EndTimes: [12x1 double]
       StartTimes: [12x1 double]
         EndDates: [12x1 double]
       StartDates: 733428
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    ValuationDate: 733428
            Basis: 0
     EndMonthRule: 1

Calibrate Hull-White model from market data.
o = optimoptions('lsqnonlin','TolFun',1e-5,'Display','off');

[Alpha, Sigma] = hwcalbyfloor(RateSpec, MarketStrike, MarketMaturity,...
    MarketVolaltility, 'Reset', Reset,'Basis', Basis, 'OptimOptions', o)

Warning: LSQNONLIN did not converge to an optimal solution. It exited with exitflag = 3.
 
> In hwcalbycapfloor>optimizeOverCapSurface at 232
  In hwcalbycapfloor at 79
  In hwcalbyfloor at 81 

Alpha =

    0.0835

Sigma =

    0.0145

Compare with Black prices.
BlkPrices = floorbyblk(RateSpec,AllStrikes(:), Settle, AllMaturities(:),...
    MarketVolaltility(:),'Reset',Reset,'Basis',Basis)

BlkPrices =

         0
    0.2659
    0.0010
    0.5426
    0.0021
    0.6841
    0.0042
    0.7947
    0.0081
    0.8970
    0.0128
    0.9947
    0.0217
    1.1145
    0.0340
    1.2448
    0.0402
    1.3415
    0.0610
    1.4947
    0.0827
    1.6458
    0.1071
    1.7951

Setup Hull-White tree using calibrated parameters, alpha, and sigma.
VolDates    = EndDates;
VolCurve    = Sigma*ones(numel(EndDates),1);
AlphaDates  = EndDates;
AlphaCurve  = Alpha*ones(numel(EndDates),1);
HWVolSpec   = hwvolspec(Settle, VolDates, VolCurve, AlphaDates, AlphaCurve);
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HWTimeSpec  = hwtimespec(Settle, EndDates, Compounding);
HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec, 'Method', 'HW2000')

HWTree = 

      FinObj: 'HWFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 0.6593 1.6612 2.6593 3.6612 4.6593 5.6612 6.6593 7.6612 8.6593 9.6612 10.6593]
        dObs: [733428 733488 733580 733672 733763 733853 733945 734037 734128 734218 734310 734402]
      CFlowT: {1x12 cell}
       Probs: {1x11 cell}
     Connect: {1x11 cell}
     FwdTree: {1x12 cell}

Compute Hull-White prices based on the calibrated tree.
HWPrices = floorbyhw(HWTree, AllStrikes(:), Settle, AllMaturities(:), Reset, Basis) 

HWPrices =

         0
    0.2644
    0.0067
    0.5404
    0.0101
    0.6924
    0.0169
    0.7974
    0.0236
    0.8919
    0.0320
    0.9919
    0.0460
    1.1074
    0.0649
    1.2340
    0.0829
    1.3558
    0.1096
    1.4957
    0.1406
    1.6418
    0.1724
    1.7877

Plot Black prices against the calibrated Hull-White tree prices.
figure;
plot(AllMaturities(:), BlkPrices, 'or', AllMaturities(:), HWPrices, '*b');
datetick('x', 2)
xlabel('Maturity');
ylabel('Price');
title('Black and Calibrated (HW) Prices');
legend('Black Price', 'Calibrated HW Tree Price','Location', 'NorthWest');
grid on
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Calibrating Floorlets Using the Normal (Bachelier) Model

This example shows how to use hwcalbyfloor to calibrate market data with the Normal (Bachelier)
model to price floorlets. Use the Normal (Bachelier) model to perform calibrations when working with
negative interest rates, strikes, and normal implied volatilities.

Consider a floor with these parameters:

Settle = 'Dec-30-2016';
Maturity = 'Dec-30-2019';
Strike = -0.004075;
Reset = 2;
Principal = 100;
Basis = 0;

The floorlets and market data for this example are defined as:

floorletDates = cfdates(Settle, Maturity, Reset, Basis);
datestr(floorletDates')

ans = 6x11 char array
    '30-Jun-2017'
    '30-Dec-2017'
    '30-Jun-2018'
    '30-Dec-2018'
    '30-Jun-2019'
    '30-Dec-2019'

% Market data information
MarketStrike = [-0.00595; 0];
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MarketMat =  {'30-Jun-2017';'30-Dec-2017';'30-Jun-2018'; '30-Dec-2018';'30-Jun-2019'; '30-Dec-2019'};
MarketVol = [0.184 0.2329 0.2398 0.2467 0.2906 0.3348;   % First row in table corresponding to Strike 1 
             0.217 0.2707 0.2760 0.2814 0.3160 0.3508];  % Second row in table corresponding to Strike 2

Define the RateSpec using intenvset.

Rates= [-0.003210;-0.003020;-0.00182;-0.001343;-0.001075];
ValuationDate = 'Dec-30-2016';
EndDates = {'30-Jun-2017';'Dec-30-2017';'30-Jun-2018';'Dec-30-2018';'Dec-30-2019'};
Compounding = 2;
Basis = 0;

RateSpec = intenvset('ValuationDate', ValuationDate, ...
'StartDates', ValuationDate, 'EndDates', EndDates, ...
'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis);

Use hwcalbyfloor to find values for the volatility parameters Alpha and Sigma using the Normal
(Bachelier) model.

format short
o=optimoptions('lsqnonlin','TolFun',100*eps);
warning ('off','fininst:hwcalbycapfloor:NoConverge')
[Alpha, Sigma, OptimOut] = hwcalbyfloor(RateSpec, MarketStrike, MarketMat,...
MarketVol, Strike, Settle, Maturity, 'Reset', Reset, 'Principal', Principal,...
'Basis', Basis, 'OptimOptions', o, 'model', 'normal')

Local minimum possible.
lsqnonlin stopped because the size of the current step is less than
the value of the step size tolerance.

Alpha = 1.0000e-06

Sigma = 0.3410

OptimOut = struct with fields:
     resnorm: 1.9233e-04
    residual: [5x1 double]
    exitflag: 2
      output: [1x1 struct]
      lambda: [1x1 struct]
    jacobian: [5x2 double]

The OptimOut.residual field of the OptimOut structure is the optimization residual. This value
contains the difference between the Normal (Bachelier) floorlets and those calculated during the
optimization. Use the OptimOut.residual value to calculate the percentual difference (error)
compared to Normal (Bachelier) floorlet prices, and then decide whether the residual is acceptable.
There is almost always some residual, so decide if it is acceptable to parameterize the market with a
single value of Alpha and Sigma.

Price the floorlets using the market data and Normal (Bachelier) model to obtain the reference
floorlet values. To determine the effectiveness of the optimization, calculate reference floorlet values
using the Normal (Bachelier) formula and the market data. Note, you must first interpolate the
market data to obtain the floorlets for calculation.

MarketMatNum = datenum(MarketMat);
[Mats, Strikes] = meshgrid(MarketMatNum, MarketStrike);
FlatVol = interp2(Mats, Strikes, MarketVol, datenum(Maturity), Strike, 'spline');
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[FloorPrice, Floorlets] = floorbynormal(RateSpec, Strike, Settle, Maturity, FlatVol,...
'Reset', Reset, 'Basis', Basis, 'Principal', Principal); 
Floorlets = Floorlets(2:end)'

Floorlets = 5×1

    4.7637
    6.7180
    8.1833
    9.5825
   10.6090

Compare the optimized values and Normal (Bachelier) values, and display the results graphically.
After calculating the reference values for the floorlets, compare the values analytically and
graphically to determine whether the calculated single values of Alpha and Sigma provide an
adequate approximation.

OptimFloorlets = Floorlets+OptimOut.residual;

disp('   ');

   

disp(' Bachelier   Calibrated Floorlets');

 Bachelier   Calibrated Floorlets

disp([Floorlets        OptimFloorlets])

    4.7637    4.7685
    6.7180    6.7263
    8.1833    8.1878
    9.5825    9.5795
   10.6090   10.6007

plot(MarketMatNum(2:end), Floorlets, 'or', MarketMatNum(2:end), OptimFloorlets, '*b');
datetick('x', 2)
xlabel('Floorlet Maturity');
ylabel('Floorlet Price');
ylim ([0 16]);
title('Bachelier and Calibrated Floorlets');
h = legend('Bachelier Floorlets', 'Calibrated Floorlets');
set(h, 'color', [0.9 0.9 0.9]);
set(h, 'Location', 'SouthEast');
set(gcf, 'NumberTitle', 'off')
grid on
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Input Arguments
RateSpec — Interest-rate specification for initial rate curve
structure

Interest-rate specification for initial rate curve, specified by the RateSpec obtained from
intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

MarketStrike — Market floor strike
vector

Market floor strike, specified as a NINST-by-1 vector.
Data Types: double

MarketMaturity — Market floor maturity date
vector

Market floor maturity dates, specified as a NINST-by-1 vector.
Data Types: double

MarketVolatility — Market flat volatilities
matrix
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Market flat volatilities, specified as a NSTRIKES-by-NMATS matrix of market flat volatilities, where
NSTRIKES is the number of caplet strikes from MarketStrike and NMATS is the caplet maturity
dates from MarketMaturity.
Data Types: double

Strike — Rate at which floor is exercised
decimal scalar

(Optional) Rate at which the floor is exercised, specified as a decimal scalar value.
Data Types: single

Settle — Settlement date of the floor
serial date number | date character vector

(Optional) Settlement date of the floor, specified as a scalar serial date number or date character.
Data Types: single | char

Maturity — Maturity date of the floor
serial date number | date character vector

(optional) Maturity date of the floor, specified as scalar serial date number or date character vector.
Data Types: single | char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Alpha,Sigma,OptimOut] =
hwcalbyfloor(RateSpec,MarketStrike,MarketMaturity,MarketVolaltility,'Reset',2
,'Principal',100000,'Basis',3,'OptimOptions',o)

Reset — Frequency of payments per year
1 (default) | numeric

Frequency of payments per year, specified as the comma-separated pair consisting of 'Reset' and a
scalar numeric value.
Data Types: double

Principal — Notional principal amount
100 (default) | nonnegative integer

Notional principal amount, specified as the comma-separated pair consisting of 'Principal' and a
scalar nonnegative integer.
Data Types: single

Basis — Day-count basis used when annualizing the input forward rate
0 (actual/actual) (default) | integers of the set [0...13]
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Day-count basis used when annualizing the input forward rate, specified as the comma-separated pair
consisting of 'Basis' and a scalar value. Values are:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: single

LB — Lower bounds
[0;0] (default) | numeric vector

Lower bounds, specified as the comma-separated pair consisting of 'LB' and a 2-by-1 vector of the
lower bounds, defined as [LBSigma; LBAlpha], used in the search algorithm function. For more
information, see lsqnonlin.
Data Types: double

UB — Upper bounds
[ ] (unbound) (default) | numeric vector

Upper bounds, specified as the comma-separated pair consisting of 'UB' and a 2-by-1 vector of the
upper bounds, defined as [UBSigma; LBAlpha], used in the search algorithm function. For more
information, see lsqnonlin.
Data Types: double

XO — Initial values
[0.5;0.5] (default) | numeric vector

Initial values, specified as the comma-separated pair consisting of 'XO' and a 2-by-1 vector of the
initial values, defined as [Sigma0; Alpha0], used in the search algorithm function. For more
information, see lsqnonlin.
Data Types: double

OptimOptions — Optimization parameters
structure
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Optimization parameters, specified as the comma-separated pair consisting of 'OptimOptions' and
a structure defined by using optimoptions.
Data Types: struct

Shift — Shift in decimals for shifted Black model
0 (no shift) (default) | positive decimal

Shift in decimals for the shifted Black model, specified as the comma-separated pair consisting of
'Shift' and a scalar positive decimal value. Set this parameter to a positive shift in decimals to add
a positive shift to forward rate and Strike, which effectively sets a negative lower bound for forward
rate and Strike. For example, a Shift value of 0.01 is equal to a 1% shift.
Data Types: single

Model — Indicator for model used for calibration routine
lognormal (Black model) (default) | values are normal and lognormal

Indicator for model used for calibration routine, specified as the comma-separated pair consisting of
'Model' and a scalar character vector with a value of normal or lognormal.
Data Types: char

Output Arguments
Alpha — Mean reversion value obtained from calibrating the floor using market information
scalar numeric

Mean reversion value obtained from calibrating the floor using market information, returned as a
scalar value.

Sigma — Volatility value obtained from calibrating floor using market information
scalar numeric

Volatility value obtained from calibrating the floor using market information, returned as a scalar.

OptimOut — Optimization results
numeric structure

Optimization results, returned as a structure.

See Also
floorbyblk | hwcalbycap | hwtree | lsqnonlin | HullWhite1F

Topics
“Price Swaptions with Interest-Rate Models Using Simulation” on page 2-101
“Pricing Bermudan Swaptions with Monte Carlo Simulation” on page 2-115
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced in R2009a
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hwprice
Instrument prices from Hull-White interest-rate tree

Syntax
[Price,PriceTree] = hwprice(HWTree,InstSet)
[Price,PriceTree] = hwprice( ___ ,Options)

Description
[Price,PriceTree] = hwprice(HWTree,InstSet) computes arbitrage-free prices for
instruments using an interest-rate tree created with hwtree. All instruments contained in a financial
instrument variable, InstSet, are priced.

hwprice handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'OptEmBond',
'OptEmBond', 'OptFloat', 'OptEmFloat', 'Fixed', 'Float', 'Cap', 'Floor',
'RangeFloat', 'Swap'. See instadd to construct defined types.

[Price,PriceTree] = hwprice( ___ ,Options) adds an optional input argument for Options.

Examples

Price the Cap and Bond Instruments Contained in an Instrument Set

Load the HW tree and instruments from the data file deriv.mat.

load deriv.mat; 
HWSubSet = instselect(HWInstSet,'Type', {'Bond', 'Cap'}); 

instdisp(HWSubSet)

instdisp(HWSubSet)
Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face Name    Quantity
1     Bond 0.04       01-Jan-2004    01-Jan-2007    1      0     1            NaN       NaN             NaN            NaN       100  4% bond 20      
2     Bond 0.04       01-Jan-2004    01-Jan-2008    1      0     1            NaN       NaN             NaN            NaN       100  4% bond 15      
 
Index Type Strike Settle         Maturity       CapReset Basis Principal Name   Quantity
3     Cap  0.06   01-Jan-2004    01-Jan-2008    1        0     100       6% Cap 10      

Price the cap and bond instruments.

[Price, PriceTree] = hwprice(HWTree, HWSubSet);

100.9188
 99.3296
  0.5837

You can use treeviewer to see the prices of these three instruments along the price tree.
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Price Multi-Stepped Coupon Bonds

The data for the interest-rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

Create the RateSpec.

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RS = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x1 double]
            Rates: [4x1 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: 734139
    ValuationDate: 734139
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            Basis: 0
     EndMonthRule: 1

Create a portfolio of stepped coupon bonds with different maturities.

Settle = '01-Jan-2010';
Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2011' .042;'01-Jan-2012' .05; '01-Jan-2013' .06; '01-Jan-2014' .07}};

ISet = instbond(CouponRate, Settle, Maturity, 1);
instdisp(ISet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face
1     Bond [Cell]     01-Jan-2010    01-Jan-2011    1      0     1            NaN       NaN             NaN            NaN       100 
2     Bond [Cell]     01-Jan-2010    01-Jan-2012    1      0     1            NaN       NaN             NaN            NaN       100 
3     Bond [Cell]     01-Jan-2010    01-Jan-2013    1      0     1            NaN       NaN             NaN            NaN       100 
4     Bond [Cell]     01-Jan-2010    01-Jan-2014    1      0     1            NaN       NaN             NaN            NaN       100 
 

Build the tree with the following data:

VolDates = ['1-Jan-2011'; '1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014'];
VolCurve = 0.01;
AlphaDates = '01-01-2014';
AlphaCurve = 0.1;

HWVolSpec = hwvolspec(RS.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RS.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVolSpec, RS, HWTimeSpec)

HWT = struct with fields:
      FinObj: 'HWFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [734139 734504 734869 735235]
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}
     Connect: {[2]  [2 3 4]  [2 3 4 5 6]}
     FwdTree: {1x4 cell}

Compute the price of the stepped coupon bonds.

PHW = hwprice(HWT, ISet)

PHW = 4×1

  100.6763
  100.7368
  100.9266
  101.0115
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Price a Portfolio of Stepped Callable Bonds and Stepped Vanilla Bonds

The data for the interest-rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

Create a RateSpec.

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RS = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x1 double]
            Rates: [4x1 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: 734139
    ValuationDate: 734139
            Basis: 0
     EndMonthRule: 1

Create an instrument portfolio of three stepped callable bonds and three stepped vanilla bonds.

Settle = '01-Jan-2010';
Maturity = {'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2011' .042;'01-Jan-2012' .05; '01-Jan-2013' .06; '01-Jan-2014' .07}};
OptSpec='call';
Strike=100;
ExerciseDates='01-Jan-2011'; %Callable in one year

Bonds with embedded option.

ISet = instoptembnd(CouponRate, Settle, Maturity, OptSpec, Strike,...
ExerciseDates, 'Period', 1);

Vanilla bonds.

ISet = instbond(ISet, CouponRate, Settle, Maturity, 1);

Display the instrument portfolio.

instdisp(ISet)

Index Type      CouponRate Settle         Maturity       OptSpec Strike ExerciseDates  Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face AmericanOpt
1     OptEmBond [Cell]     01-Jan-2010    01-Jan-2012    call    100    01-Jan-2011    1      0     1            NaN       NaN             NaN            NaN       100  0          
2     OptEmBond [Cell]     01-Jan-2010    01-Jan-2013    call    100    01-Jan-2011    1      0     1            NaN       NaN             NaN            NaN       100  0          
3     OptEmBond [Cell]     01-Jan-2010    01-Jan-2014    call    100    01-Jan-2011    1      0     1            NaN       NaN             NaN            NaN       100  0          
 
Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face
4     Bond [Cell]     01-Jan-2010    01-Jan-2012    1      0     1            NaN       NaN             NaN            NaN       100 
5     Bond [Cell]     01-Jan-2010    01-Jan-2013    1      0     1            NaN       NaN             NaN            NaN       100 
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6     Bond [Cell]     01-Jan-2010    01-Jan-2014    1      0     1            NaN       NaN             NaN            NaN       100 
 

Build the tree with the following data:

VolDates = ['1-Jan-2011'; '1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014'];
VolCurve = 0.01;
AlphaDates = '01-01-2014';
AlphaCurve = 0.1;

HWVolSpec = hwvolspec(RS.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RS.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVolSpec, RS, HWTimeSpec)

HWT = struct with fields:
      FinObj: 'HWFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [734139 734504 734869 735235]
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}
     Connect: {[2]  [2 3 4]  [2 3 4 5 6]}
     FwdTree: {1x4 cell}

Compute the price of the stepped callable bonds and the stepped vanilla bonds.

PHW = hwprice(HWT, ISet)

PHW = 6×1

  100.4089
  100.2043
  100.0197
  100.7368
  100.9266
  101.0115

The first three rows correspond to the price of the stepped callable bonds and the last three rows
correspond to the price of the stepped vanilla bonds.

Compute the Price of a Portfolio of Instruments

The data for the interest-rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2011';
StartDates = ValuationDate;
EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
Compounding = 1;

Create a RateSpec.
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RS = intenvset('ValuationDate', ValuationDate, 'StartDates',...
StartDates, 'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RS = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x1 double]
            Rates: [4x1 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: 734504
    ValuationDate: 734504
            Basis: 0
     EndMonthRule: 1

Create an instrument portfolio with two range notes and a floating rate note with the following data:

Spread = 200;
Settle = 'Jan-1-2011';
Maturity = 'Jan-1-2014';

% First Range Note
RateSched(1).Dates = {'Jan-1-2012'; 'Jan-1-2013'  ; 'Jan-1-2014'};
RateSched(1).Rates  = [0.045 0.055; 0.0525  0.0675; 0.06 0.08];

% Second Range Note
RateSched(2).Dates = {'Jan-1-2012'; 'Jan-1-2013' ; 'Jan-1-2014'};
RateSched(2).Rates  = [0.048 0.059; 0.055  0.068 ; 0.07 0.09];

Create InstSet, add a floating-rate note, and display the portfolio instruments.

InstSet = instadd('RangeFloat', Spread, Settle, Maturity, RateSched);

% Add a floating-rate note
InstSet = instadd(InstSet, 'Float', Spread, Settle, Maturity);

% Display the portfolio instrument
instdisp(InstSet)

Index Type       Spread Settle         Maturity       RateSched FloatReset Basis Principal EndMonthRule
1     RangeFloat 200    01-Jan-2011    01-Jan-2014    [Struct]  1          0     100       1           
2     RangeFloat 200    01-Jan-2011    01-Jan-2014    [Struct]  1          0     100       1           
 
Index Type  Spread Settle         Maturity       FloatReset Basis Principal EndMonthRule CapRate FloorRate
3     Float 200    01-Jan-2011    01-Jan-2014    1          0     100       1            Inf     -Inf     
 

The data to build the tree is as follows:

VolDates = ['1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014';'1-Jan-2015'];
VolCurve = 0.01;
AlphaDates = '01-01-2015';
AlphaCurve = 0.1;

HWVS = hwvolspec(RS.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
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HWTS = hwtimespec(RS.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVS, RS, HWTS)

HWT = struct with fields:
      FinObj: 'HWFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [734504 734869 735235 735600]
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}
     Connect: {[2]  [2 3 4]  [2 3 4 5 6]}
     FwdTree: {1x4 cell}

Price the portfolio.

Price = hwprice(HWT, InstSet)

Price = 3×1

   99.3327
   98.1580
  105.5147

Create a Float-Float Swap and Price with hwprice

Use instswap to create a float-float swap and price the swap with hwprice.

RateSpec = intenvset('Rates',.05,'StartDate',today,'EndDate',datemnth(today,60));
IS = instswap([.02 .03],today,datemnth(today,60),[], [], [], [1 1]);
VolSpec = hwvolspec(today,datemnth(today,60),.01,datemnth(today,60),.1);
TimeSpec = hwtimespec(today,cfdates(today,datemnth(today,60),1));
HWTree = hwtree(VolSpec,RateSpec,TimeSpec);
hwprice(HWTree,IS)

ans = -4.3220

Price Multiple Swaps with hwprice

Use instswap to create multiple swaps and price the swaps with hwprice.

RateSpec = intenvset('Rates',.05,'StartDate',today,'EndDate',datemnth(today,60));
IS = instswap([.03 .02],today,datemnth(today,60),[], [], [], [1 1]);
IS = instswap(IS,[200 300],today,datemnth(today,60),[], [], [], [0 0]);
IS = instswap(IS,[.08 300],today,datemnth(today,60),[], [], [], [1 0]);
VolSpec = hwvolspec(today,datemnth(today,60),.01,datemnth(today,60),.1);
TimeSpec = hwtimespec(today,cfdates(today,datemnth(today,60),1));
HWTree = hwtree(VolSpec,RateSpec,TimeSpec);
hwprice(HWTree,IS)
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ans = 3×1

    4.3220
   -4.3220
   -0.2701

Input Arguments
HWTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using hwtree.
Data Types: struct

InstSet — Instrument variable
structure

Instrument variable containing a collection of NINST instruments, specified using instadd.
Instruments are categorized by type; each type can have different data fields. The stored data field is
a row vector or character vector for each instrument.
Data Types: struct

Options — Derivatives pricing options structure
structure

(Optional) Derivatives pricing options structure, created using derivset.
Data Types: struct

Output Arguments
Price — Price for each instrument
vector

Price for each instrument, returned as a NINST-by-1 vector. The prices are computed by backward
dynamic programming on the interest-rate tree. If an instrument cannot be priced, a NaN is returned
in that entry.

Related single-type pricing functions are:

• bondbyhw: Price a bond from a Hull-White tree.
• capbyhw: Price a cap from a Hull-White tree.
• cfbyhw: Price an arbitrary set of cash flows from a Hull-White tree.
• fixedbyhw: Price a fixed-rate note from a Hull-White tree.
• floatbyhw: Price a floating-rate note from a Hull-White tree.
• floorbyhw: Price a floor from a Hull-White tree.
• optbndbyhw: Price a bond option from a Hull-White tree.
• optembndbyhw: Price a bond with embedded option by a Hull-White tree.
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• optfloatbybdt: Price a floating-rate note with an option from a Hull-White tree.
• optemfloatbybdt: Price a floating-rate note with an embedded option from a Hull-White tree.
• rangefloatbyhw: Price range floating note using a Hull-White tree.
• swapbyhw: Price a swap from a Hull-White tree.
• swaptionbyhw: Price a swaption from a Hull-White tree.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing vectors of
instrument prices and accrued interest, and a vector of observation times for each node. Within
PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell array describes

how nodes in that level connect to the next. For a given tree level, there are NumNodes elements
in the vector, and they contain the index of the node at the next level that the middle branch
connects to. Subtracting 1 from that value indicates where the up-branch connects to, and adding
1 indicated where the down branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array contains the
up, middle, and down transition probabilities for each node of the level.

See Also
hwsens | hwtree | instadd | intenvprice | intenvsens

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Calibrating Hull-White Model Using Market Data” on page 2-92
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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hwsens
Instrument prices and sensitivities from Hull-White interest-rate tree

Syntax
[Delta,Gamma,Vega,Price] = hwsens(HWTree,InstSet)
[Delta,Gamma,Vega,Price] = hwsens( ___ ,Options)

Description
[Delta,Gamma,Vega,Price] = hwsens(HWTree,InstSet) computes instrument sensitivities
and prices for instruments using an interest-rate tree created with the hwtree function. All
sensitivities are returned as dollar sensitivities. To find the per-dollar sensitivities, divide by the
respective instrument price.

hwsens handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'OptEmBond',
'OptEmBond', 'OptFloat', 'OptEmFloat', 'Fixed', 'Float', 'Cap', 'Floor',
'RangeFloat', 'Swap'. See instadd for information on instrument types.

[Delta,Gamma,Vega,Price] = hwsens( ___ ,Options) adds an optional input argument for
Options.

Examples

Compute Instrument Sensitivities Using an HW Interest-Rate Tree

Load the tree and instruments from the deriv.mat data file. Compute Delta and Gamma for the cap
and bond instruments contained in the instrument set.

load deriv.mat; 
HWSubSet = instselect(HWInstSet,'Type', {'Bond', 'Cap'}); 

instdisp(HWSubSet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face Name    Quantity
1     Bond 0.04       01-Jan-2004    01-Jan-2007    1      0     1            NaN       NaN             NaN            NaN       100  4% bond 20      
2     Bond 0.04       01-Jan-2004    01-Jan-2008    1      0     1            NaN       NaN             NaN            NaN       100  4% bond 15      
 
Index Type Strike Settle         Maturity       CapReset Basis Principal Name   Quantity
3     Cap  0.06   01-Jan-2004    01-Jan-2008    1        0     100       6% Cap 10      
 

Compute the Delta and Gamma for the cap and bond instruments.

[Delta, Gamma] = hwsens(HWTree, HWSubSet)

Delta = 3×1

 -291.2580
 -374.6368
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   60.9580

Gamma = 3×1
103 ×

    0.8584
    1.4609
    5.5994

Input Arguments
HWTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using hwtree.
Data Types: struct

InstSet — Instrument variable
structure

Instrument variable containing a collection of NINST instruments, specified using instadd.
Instruments are categorized by type; each type can have different data fields. The stored data field is
a row vector or character vector for each instrument.
Data Types: struct

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, created using derivset.
Data Types: struct

Output Arguments
Delta — Rate of change of instruments prices with respect to changes in interest rate
vector

Rate of change of instruments prices with respect to changes in the interest rate, returned as a
NINST-by-1 vector of deltas. Delta is computed by finite differences in calls to hwtree.

Note Delta is calculated based on yield shifts of 100 basis points.

Gamma — Rate of change of instruments deltas with respect to changes in interest rate
vector

Rate of change of instruments deltas with respect to changes in the interest rate, returned as a
NINST-by-1 vector of gammas. Gamma is computed by finite differences in calls to hwtree.

Note Gamma is calculated based on yield shifts of 100 basis points.
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Vega — Rate of change of instruments prices with respect to changes in volatility
vector

Rate of change of instruments prices with respect to changes in the volatility, returned as a NINST-
by-1 vector of vegas. Volatility is σ t, T  of the interest rate. Vega is computed by finite differences in
calls to hwtree. For information on the volatility process, see hwvolspec.

Note Vega is calculated based on 1% shift in the volatility process.

Price — Price of each instrument
vector

Price of each instrument, returned as a NINST-by-1 vector. The prices are computed by backward
dynamic programming on the interest-rate tree. If an instrument cannot be priced, a NaN is returned
in that entry.

See Also
hwprice | hwtree | hwvolspec | instadd

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Calibrating Hull-White Model Using Market Data” on page 2-92
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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hwtimespec
Specify time structure for Hull-White interest-rate tree

Syntax
TimeSpec = hwtimespec(ValuationDate,Maturity)
TimeSpec = hwtimespec( ___ ,Compounding)

Description
TimeSpec = hwtimespec(ValuationDate,Maturity) sets the number of levels and node times
for a hwtree and determines the mapping between dates and time for rate quoting.

TimeSpec = hwtimespec( ___ ,Compounding) adds the optional argument Compounding.

Examples

Set the Number of Levels and Node Times for a Hull-White Tree

This example shows how to specify a four-period tree with annual nodes and use annual compounding
to report rates.

ValuationDate = 'Jan-1-2004';
Maturity = ['12-31-2004'; '12-31-2005'; '12-31-2006'; 
'12-31-2007'];
Compounding = 1;
TimeSpec = hwtimespec(ValuationDate, Maturity, Compounding)

TimeSpec = struct with fields:
           FinObj: 'HWTimeSpec'
    ValuationDate: 731947
         Maturity: [4x1 double]
      Compounding: 1
            Basis: 0
     EndMonthRule: 1

Input Arguments
ValuationDate — Pricing date and first observation in the tree
serial date number | character vector date

Pricing date and first observation in the tree, specified as a scalar date using a serial date number or
date character vector.
Data Types: double | char

Maturity — Dates marking the cash flow dates of the tree
serial date number | date character vector
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Dates marking the cash flow dates of the tree, specified as NLEVELS-by-1 vector of serial date
numbers or date character vectors. Cash flows with these maturities fall on tree nodes. Maturity
should be in increasing order.
Data Types: double | char | cell

Compounding — Rate at which the input zero rates were compounded when annualized
1 (default) | integer with value of 1, 2, 3, 4, 6, 12, 365, or -1

(Optional) Rate at which the input zero rates were compounded when annualized, specified as a
scalar integer value.

• If Compounding = 1, 2, 3, 4, 6, 12:

Disc = (1 + Z/F)^(-T), where F is the compounding frequency, Z is the zero rate, and T is the
time in periodic units; for example, T = F is one year.

• If Compounding = 365:

Disc = (1 + Z/F)^(-T), where F is the number of days in the basis year and T is a number of
days elapsed computed by basis.

• If Compounding = −1:

Disc = exp(-T*Z), where T is time in years.

Data Types: double

Output Arguments
TimeSpec — Specification for the time layout for hwtree
structure

Specification for the time layout for hwtree, returned as a structure. The state observation dates are
[ValuationDate; Maturity(1:end-1)]. Because a forward rate is stored at the last observation,
the tree can value cash flows out to Maturity(end).

See Also
hwtree | hwvolspec

Topics
“Specifying the Time Structure (TimeSpec)” on page 2-70
“Creating Trees” on page 2-72
“Examining Trees” on page 2-72
“Calibrating Hull-White Model Using Market Data” on page 2-92
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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hwtree
Build Hull-White interest-rate tree

Syntax
HWTree = hwtree(VolSpec,RateSpec,TimeSpec)
HWTree = hwtree( ___ ,Name,Value)

Description
HWTree = hwtree(VolSpec,RateSpec,TimeSpec) builds a Hull-White interest-rate tree.

HWTree = hwtree( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Create an HWTree

Using the data provided, create a Hull-White volatility specification (VolSpec), rate specification
(RateSpec), and tree time layout specification (TimeSpec). Then, use these specifications to create a
Hull-White tree using hwtree.

Compounding = -1;
ValuationDate = '01-01-2004';
StartDate = ValuationDate;
VolDates = ['12-31-2004'; '12-31-2005'; '12-31-2006'; 
'12-31-2007'];
VolCurve = 0.01;
AlphaDates = '01-01-2008';
AlphaCurve = 0.1;
Rates = [0.0275; 0.0312; 0.0363; 0.0415];

HWVolSpec = hwvolspec(ValuationDate, VolDates, VolCurve,...  
AlphaDates, AlphaCurve);

RateSpec = intenvset('Compounding', Compounding,...
                     'ValuationDate', ValuationDate,...
                     'StartDates', ValuationDate,...
                     'EndDates', VolDates,...
                     'Rates', Rates);
 
HWTimeSpec = hwtimespec(ValuationDate, VolDates, Compounding);
HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec)

HWTree = struct with fields:
      FinObj: 'HWFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 0.9973 1.9973 2.9973]
        dObs: [731947 732312 732677 733042]
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      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [3.9973]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}
     Connect: {[2]  [2 3 4]  [2 3 4 5 6]}
     FwdTree: {1x4 cell}

Use treeviewer to observe the tree you have created.

Input Arguments
VolSpec — Volatility process specification
structure

Volatility process specification, specified using the VolSpec obtained from hwvolspec. See
hwvolspec for information on the volatility process.
Data Types: struct

RateSpec — Interest-rate specification for initial rate curve
structure

Interest-rate specification for initial rate curve, specified by the RateSpec obtained from
intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

TimeSpec — Time layout specification
structure

Time layout specification, specified using the TimeSpec obtained from hwtimespec. The TimeSpec
defines the observation dates of the HW tree and the compounding rule for date to time mapping and
price-yield formulas. See hwtimespec for information on the tree structure.
Data Types: struct

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: HWTree = hwtree(VolSpec,RateSpec,TimeSpec,'Method','HW1996')

Method — Hull-White method upon which tree-node connectivity algorithm is based
HW2000 (default) | character vector with values of HW1996 or HW2000

Hull-White method upon which the tree-node connectivity algorithm is based, specified a character
vector with a value of HW1996 or HW2000.

Note hwtree supports two tree-node connectivity algorithms. HW1996 is based on the original paper
published in the Journal of Derivatives, and HW2000 is the general version of the algorithm, as
specified in the paper published in August 2000.
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Data Types: char

Output Arguments
HWTree — Hull-White interest-rate tree
structure

Hull-White interest-rate tree, returned as a structure containing time and interest rate information of
a trinomial recombining tree.

The HWTree structure returned contains all the information necessary to propagate back any cash
flows occurring during the time span of the tree. The main fields of HWTree are:

• HWTree.tObs contains the time factor of each level of the tree.
• HWTree.dObs contains the date of each level of the tree.
• HWTree.Probs contains a cell array of 3-by-N numeric arrays with the up/mid/down probabilities

of each node of the tree except for the last level. The cells in the cell array are ordered from root
node. The arrays are 3-by-N with the first row corresponding to an up-move, the mid row to a mid-
move and so on. Each column of the array represents a node starting from the top node of a given
level.

• HWTree.Connect contains a cell array with connectivity information for each node of the tree.
The arrangement is similar to HWTree.Probs, with the exception that it has only one row in each
cell. The number represents the node in the next level to which the middle branch connects to.
The top branch connects to the value above (minus one) and the lower branch connects to the
value below (plus one).

• HWTree.FwdTree contains the forward spot rate from one node to the next. The forward spot rate
is defined as the inverse of the discount factor.

References
[1] Hull, J., and A. White. "Using Hull-White Interest Rate Trees." Journal of Derivatives. 1996.

[2] Hull, J., and A. White. "The General Hull-White Model and Super Calibration.” August 2000.

See Also
hwcalbycap | hwcalbyfloor | hwprice | hwtimespec | hwvolspec | intenvset

Topics
“Creating Trees” on page 2-72
“Examining Trees” on page 2-72
“Use treeviewer to Examine HWTree and PriceTree When Pricing European Callable Bond” on page
2-195
“Calibrating Hull-White Model Using Market Data” on page 2-92
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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hwvolspec
Specify Hull-White interest-rate volatility process

Syntax
VolSpec = hwvolspec(ValuationDate,VolDates,VolCurve,AlphaDates,AlphaCurve)
VolSpec = hwvolspec( ___ ,InterpMethod)

Description
VolSpec = hwvolspec(ValuationDate,VolDates,VolCurve,AlphaDates,AlphaCurve)
creates a structure specifying the volatility for hwtree.

The volatility process is such that the variance of r(t + dt) - r(t) is defined as follows: V =
(Volatility.^2 .* (1 - exp(-2*Alpha .* dt))) ./ (2 * Alpha). For more information
on using Hull-White interest rate trees, see “Hull-White (HW) and Black-Karasinski (BK) Modeling” on
page B-2.

VolSpec = hwvolspec( ___ ,InterpMethod) adds the optional argument InterpMethod.

Examples

Create a Structure Specifying the Volatility for hwtree

This example shows how to create a Hull-White volatility specification (VolSpec) using the following
data.

ValuationDate = '01-01-2004';
StartDate = ValuationDate;
VolDates = ['12-31-2004'; '12-31-2005'; '12-31-2006'; 
'12-31-2007'];
VolCurve = 0.01;
AlphaDates = '01-01-2008';
AlphaCurve = 0.1;

HWVolSpec = hwvolspec(ValuationDate, VolDates, VolCurve,...  
AlphaDates, AlphaCurve)

HWVolSpec = struct with fields:
             FinObj: 'HWVolSpec'
      ValuationDate: 731947
           VolDates: [4x1 double]
           VolCurve: [4x1 double]
         AlphaCurve: 0.1000
         AlphaDates: 733408
    VolInterpMethod: 'linear'

11 Functions

11-714



Input Arguments
ValuationDate — Observation date of the investment horizon
serial date number | character vector date

Observation date of the investment horizon, specified as a scalar date using a serial date number or
date character vector.
Data Types: double | char

VolDates — Number of points of yield volatility end dates
serial date number | date character vector

Number of points of yield volatility end dates, specified as a NPOINTS-by-1 vector of serial date
numbers or date character vectors.
Data Types: double | char | cell

VolCurve — Yield volatility values
decimal

Yield volatility values, specified as a NPOINTS-by-1 vector of decimal values. The term structure of
VolCurve is the yield volatility represented by the value of the volatility of the yield from time t = 0
to time t + i, where i is any point within the volatility curve.

Note The number of points in VolCurve and AlphaCurve do not have to be the same.

Data Types: double

AlphaDates — Mean reversion end dates
serial date number | date character vector

Mean reversion end dates, specified as a NPOINTS-by-1 vector of serial date numbers or date
character vectors.
Data Types: double | char | cell

AlphaCurve — Positive mean reversion values
positive decimal

Positive mean reversion values, specified as a NPOINTS-by-1 vector of positive decimal values.

Note The number of points in VolCurve and AlphaCurve do not have to be the same.

Data Types: double

InterpMethod — Interpolation method
'linear' (default) | character vector with values supported by interp1

(Optional) Interpolation method, specified as a character vector with values supported by interp1.
Data Types: char
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Output Arguments
VolSpec — Specification for the volatility model for hwtree
structure

Structure specifying the volatility model for hwtree.

See Also
hwcalbycap | hwcalbyfloor | interp1

Topics
“Specifying the Volatility Model (VolSpec)” on page 2-68
“Creating Trees” on page 2-72
“Examining Trees” on page 2-72
“Calibrating Hull-White Model Using Market Data” on page 2-92
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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impvbybaw
Calculate implied volatility using Barone-Adesi and Whaley option pricing model

Syntax
Volatility = impvbybaw(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,
OptPrice)
Volatility = impvbybaw( ___ ,Name,Value)

Description
Volatility = impvbybaw(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,
OptPrice) calculates implied volatility using the Barone-Adesi and Whaley option pricing model.

Volatility = impvbybaw( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Compute the Implied Volatility for an American Option Using the Barone-Adesi and Whaley
Option Pricing Model

This example shows how to compute implied volatility using the Barone-Adesi and Whaley option
pricing model. Consider three American call options with exercise prices of $100 that expire on July
1, 2017. The underlying stock is trading at $100 on January 1, 2017 and pays a continuous dividend
yield of 10%. The annualized continuously compounded risk-free rate is 10% per annum, and the
option prices are $4.063, $6.77 and $9.46. Using this data, calculate the implied volatility of the stock
using the Barone-Adesi and Whaley option pricing model.

AssetPrice = 100;
Settle = 'Jan-1-2017';
Maturity = 'Jul-1-2017';
Strike = 100;
DivAmount = 0.1;
Rate = 0.05;

Define the RateSpec.

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rate, 'Compounding', -1, 'Basis', 1)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9753
            Rates: 0.0500
         EndTimes: 0.5000
       StartTimes: 0
         EndDates: 736877
       StartDates: 736696
    ValuationDate: 736696
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            Basis: 1
     EndMonthRule: 1

Define the StockSpec.

StockSpec = stockspec(NaN, AssetPrice, {'continuous'}, DivAmount)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: NaN
         AssetPrice: 100
       DividendType: {'continuous'}
    DividendAmounts: 0.1000
    ExDividendDates: []

Define the American option.

OptSpec = {'call'};
OptionPrice = [4.063;6.77;9.46];

Compute the implied volatility for the American option.

ImpVol =  impvbybaw(RateSpec, StockSpec, Settle, Maturity, OptSpec,...
Strike, OptionPrice)

ImpVol = 3×1

    0.1802
    0.2808
    0.3803

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification, see
stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities the
price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is
StockSpec.DividendAmounts.
Data Types: struct
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Settle — Settlement date
serial date number | date character vector | datetime object

Settlement date for the American option, specified as a NINST-by-1 matrix using a serial date number,
a date character vector, or a datetime object.
Data Types: double | char | datetime

Maturity — Maturity date
serial date number | date character vector | datetime object

Maturity date for the American option, specified as a NINST-by-1 matrix using a serial date number, a
date character vector, or a datetime object.
Data Types: double | char | datetime

OptSpec — Definition of option
character vector with values 'call' or 'put' | string array with values 'call' or 'put'

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of character vectors
or string arrays with values 'call' or 'put'.
Data Types: char | string

Strike — American option strike price value
nonnegative scalar | nonnegative vector

American option strike price value, specified as a nonnegative scalar or NINST-by-1 matrix of strike
price values. Each row is the schedule for one option.
Data Types: single | double

OptPrice — American option price
nonnegative scalar | nonnegative vector

American option prices from which the implied volatility of the underlying asset is derived, specified
as a nonnegative scalar or NINST-by-1 matrix of strike price values.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Volatility =
impvbybaw(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,OptionPrice)

Limit — Lower and upper bound of implied volatility search interval
[0.1 10] (or 10% to 1000% per annum) (default) | positive value

Lower and upper bound of implied volatility search interval, specified as the comma-separated pair
consisting of 'Limit' and a 1-by-2 positive vector.
Data Types: double
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Tolerance — Implied volatility search termination tolerance
1e-6 (default) | positive scalar

Implied volatility search termination tolerance, specified as the comma-separated pair consisting of
'Tolerance' and a positive scalar.
Data Types: double

Output Arguments
Volatility — Expected implied volatility values
matrix

Expected implied volatility values, returned as a NINST-by-1 matrix. If no solution can be found, a
NaN is returned.

References
[1] Barone-Adesi, G. and Robert E. Whaley. “Efficient Analytic Approximation of American Option

Values.” The Journal of Finance. Volume 42, Issue 2 (June 1987), 301–320.

[2] Haug, E. The Complete Guide to Option Pricing Formulas. Second Edition. McGraw-Hill
Education, January 2007.

See Also
optstockbybaw | optstocksensbybaw

Topics
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2017a
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impvbybjs
Determine implied volatility using Bjerksund-Stensland 2002 option pricing model

Syntax
Volatility = impvbybjs(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,
OptPrice)
Volatility = impvbybjs( ___ ,Name,Value)

Description
Volatility = impvbybjs(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,
OptPrice) computes implied volatility using the Bjerksund-Stensland 2002 pricing model.

Note impvbybjs computes implied volatility of American options with continuous dividend yield
using the Bjerksund-Stensland option pricing model.

Volatility = impvbybjs( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Compute the Implied Volatility Using the Bjerksund-Stensland 2002 Option Pricing Model

This example shows how to compute implied volatility using the Bjerksund-Stensland 2002 option
pricing model. Consider three American call options with exercise prices of $100 that expire on July
1, 2008. The underlying stock is trading at $100 on January 1, 2008 and pays a continuous dividend
yield of 10%. The annualized continuously compounded risk-free rate is 10% per annum and the
option prices are $4.063, $6.77 and $9.46. Using this data, calculate the implied volatility of the stock
using the Bjerksund-Stensland 2002 option pricing model.

AssetPrice = 100;
Settle = 'Jan-1-2008';
Maturity = 'Jul-1-2008';
Strike = 100;
DivAmount = 0.1;
Rate = 0.1;

% define the RateSpec and StockSpec
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rate, 'Compounding', -1, 'Basis', 1);

StockSpec = stockspec(NaN, AssetPrice, {'continuous'}, DivAmount);

OptSpec = {'call'};
OptionPrice = [4.063;6.77;9.46];

ImpVol =  impvbybjs(RateSpec, StockSpec, Settle, Maturity, OptSpec,...
Strike, OptionPrice)
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ImpVol = 3×1

    0.1500
    0.2501
    0.3500

The implied volatility is 15% for the first call, and 25% and 35% for the second and third call options.

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification, see
stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities the
price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is
StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement date
serial date number | date character vector

Settlement date, specified as a NINST-by-1 vector of serial date numbers or a date character vectors.
Data Types: double | char

Maturity — Maturity date
serial date number | date character vector

Maturity date for the American option, specified as a NINST-by-1 vector of serial date numbers or a
date character vectors.
Data Types: double | char

OptSpec — Definition of option
character vector with values 'call' or 'put'

Definition of the option from which the implied volatility is derived, specified as a NINST-by-1 cell
array of character vectors with a value of 'call' or 'put'.
Data Types: char | cell

Strike — Option strike price value
nonnegative scalar | nonnegative vector
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Option strike price value, specified as a nonnegative scalar or NINST-by-1 vector of strike price
values. Each row is the schedule for one option.
Data Types: double

OptPrice — American option price
nonnegative scalar | nonnegative vector

American option prices from which the implied volatility of the underlying asset is derived, specified
as a nonnegative scalar or NINST-by-1 vector.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Volatility =
impvbybjs(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,OptPrice,'Limit',
[0.2 20],'Tolerance',1e-5)

Limit — Lower and upper bound of implied volatility search interval
[0.1 10] (10% to 1000% per annum) (default) | positive vector

Lower and upper bound of implied volatility search interval, specified as the comma-separated pair
consisting of 'Limit' and a 1-by-2 positive vector.
Data Types: double

Tolerance — Implied volatility search termination tolerance
1e-6 (default) | positive scalar

Implied volatility search termination tolerance, specified as the comma-separated pair consisting of
'Tolerance' and a positive scalar.
Data Types: double

Output Arguments
Volatility — Expected implied volatility values
vector

Expected implied volatility values, returned as a NINST-by-1 vector. If no solution can be found, a NaN
is returned.

References
[1] Bjerksund, P. and G. Stensland. “Closed-Form Approximation of American Options.” Scandinavian

Journal of Management. Vol. 9, 1993, Suppl., pp. S88–S99.

[2] Bjerksund, P. and G. Stensland. “Closed Form Valuation of American Options.” Discussion paper,
2002.

 impvbybjs

11-723



See Also
optstockbybjs | optstocksensbybjs

Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-79
“Pricing Using the Bjerksund-Stensland Model” on page 3-84
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2008b
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impvbyblk
Determine implied volatility using Black option pricing model

Syntax
Volatility = impvbyblk(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,
OptPrice)
Volatility = impvbyblk( ___ ,Name,Value)

Description
Volatility = impvbyblk(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,
OptPrice) computes implied volatility using the Black option pricing model.

Volatility = impvbyblk( ___ ,Name,Value) specifies options using one or more name-value
pair arguments in addition to the input arguments in the previous syntax.

Examples

Compute the Implied Volatility Using the Black Option Pricing Model

This example shows how to compute the implied volatility using the Black option pricing model.
Consider a European call and put options on a futures contract with exercise prices of $30 for the put
and $40 for the call that expire on September 1, 2008. Assume that on May 1, 2008 the contract is
trading at $35. The annualized continuously compounded risk-free rate is 5% per annum. Find the
implied volatilities of the stock, if on that date, the call price is $1.14 and the put price is $0.82.

AssetPrice = 35;
Strike = [30; 40];
Rates = 0.05;
Settle = 'May-01-08';
Maturity = 'Sep-01-08';

% define the RateSpec and StockSpec
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1);

StockSpec = stockspec(NaN, AssetPrice);

% define the options
OptSpec = {'put';'call'};

Price = [1.14;0.82];
Volatility = impvbyblk(RateSpec, StockSpec, Settle, Maturity, OptSpec,...
Strike, Price,'Method','jackel2016')

Volatility = 2×1

    0.4052
    0.3021
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The implied volatility is 41% and 30%.

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification, see
stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities the
price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is
StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement date
serial date number | date character vector

Settlement date, specified as a NINST-by-1 vector of serial date numbers or a date character vectors.
Data Types: double | char

Maturity — Maturity date
serial date number | date character vector

Maturity date for the American option, specified as a NINST-by-1 vector of serial date numbers or a
date character vectors.
Data Types: double | char

OptSpec — Definition of option
character vector with values 'call' or 'put'

Definition of the option from which the implied volatility is derived, specified as a NINST-by-1 cell
array of character vectors with a value of 'call' or 'put'.
Data Types: char | cell

Strike — Option strike price
nonnegative scalar | nonnegative vector

Option strike price value, specified as a nonnegative scalar or NINST-by-1 vector of strike prices.
Each row is the schedule for one option.
Data Types: double

OptPrice — European option price
nonnegative scalar | nonnegative vector
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European option prices from which the implied volatility of the underlying asset is derived, specified
as a nonnegative scalar or NINST-by-1 vector.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Volatility =
impvbyblk(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,OptPrice,'Limit',
5,'Tolerance',1e-5)

Limit — Upper bound of implied volatility search interval
10 (1000% per annum) (default) | positive value

Upper bound of implied volatility search interval, specified as the comma-separated pair consisting of
'Limit' and a positive scalar.

Note If you are using Method with a value of 'jackel2016', the Limit argument is ignored.

Data Types: double

Tolerance — Implied volatility search termination tolerance
1e-6 (default) | positive scalar

Implied volatility search termination tolerance, specified as the comma-separated pair consisting of
'Tolerance' and a positive scalar.

Note If you are using Method with a value of 'jackel2016', the Tolerance argument is ignored.

Data Types: double

Method — Method for computing implied volatility
'jackel2016' (default) | character vector with values 'search' or 'jackel2016' | string with
values "search" or "jackel2016"

Method for computing implied volatility, specified as the comma-separated pair consisting of
'Method' and a character vector with a value of 'search' or 'jackel2016' or a string with a
value of "search" or "jackel2016".
Data Types: char | string

Output Arguments
Volatility — Expected implied volatility values
vector
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Expected implied volatility values, returned as a NINST-by-1 vector. If no solution can be found, a NaN
is returned.

References
[1] Jäckel, Peter. "Let's Be Rational." Wilmott Magazine., January, 2015 (https://

onlinelibrary.wiley.com/doi/abs/10.1002/wilm.10395).

See Also
optstockbyblk | optstocksensbyblk

Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-79
“Pricing Using the Black Model” on page 3-83
“Black Model” on page 3-80
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2008b
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impvbybls
Determine implied volatility using Black-Scholes option pricing model

Syntax
Volatility = impvbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,
OptPrice)
Volatility = impvbybls( ___ ,Name,Value)

Description
Volatility = impvbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,
OptPrice) computes implied volatility using the Black-Scholes option pricing model.

Volatility = impvbybls( ___ ,Name,Value) specifies options using one or more name-value
pair arguments in addition to the input arguments in the previous syntax.

Examples

Compute the Implied Volatility Using the Black-Scholes Option Pricing Model

This example shows how to compute the implied volatility using the Black-Scholes option pricing
model. Consider a European call and put options with an exercise price of $40 that expires on June 1,
2008. The underlying stock is trading at $45 on January 1, 2008 and the risk-free rate is 5% per
annum. The option price is $7.10 for the call and $2.85 for the put. Using this data, calculate the
implied volatility of the European call and put using the Black-Scholes option pricing model.

AssetPrice = 45;
Settlement = 'Jan-01-2008';
Maturity = 'June-01-2008';
Strike = 40;
Rates = 0.05;
OptionPrice = [7.10; 2.85];
OptSpec = {'call';'put'};

% define the RateSpec and StockSpec
RateSpec = intenvset('ValuationDate', Settlement, 'StartDates', Settlement,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', 1);

StockSpec = stockspec(NaN, AssetPrice);

ImpvVol =  impvbybls(RateSpec, StockSpec, Settlement, Maturity, OptSpec,...
Strike, OptionPrice,'Method','jackel2016')

ImpvVol = 2×1

    0.3175
    0.4878

The implied volatility is 31.75% for the call and 48.78% for the put.
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Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification, see
stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities the
price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is
StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement date
serial date number | date character vector

Settlement date, specified as a NINST-by-1 vector of serial date numbers or a date character vectors.
Data Types: double | char

Maturity — Maturity date
serial date number | date character vector

Maturity date for the American option, specified as a NINST-by-1 vector of serial date numbers or a
date character vectors.
Data Types: double | char

OptSpec — Definition of option
character vector with values 'call' or 'put'

Definition of the option from which the implied volatility is derived, specified as a NINST-by-1 cell
array of character vectors with a value of 'call' or 'put'.
Data Types: char | cell

Strike — Option strike price
nonnegative scalar | nonnegative vector

Option strike price value, specified as a nonnegative scalar or NINST-by-1 vector of strike prices.
Each row is the schedule for one option.
Data Types: double

OptPrice — European option price
nonnegative scalar | nonnegative vector
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European option prices from which the implied volatility of the underlying asset is derived, specified
as a nonnegative scalar or NINST-by-1 vector.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Volatility =
impvbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,OptPrice,'Limit',
5,'Tolerance',1e-5)

Limit — Upper bound of implied volatility search interval
10 (1000% per annum) (default) | positive value

Upper bound of implied volatility search interval, specified as the comma-separated pair consisting of
'Limit' and a positive scalar.

Note If you are using Method with a value of 'jackel2016', the Limit argument is ignored.

Data Types: double

Tolerance — Implied volatility search termination tolerance
1e-6 (default) | positive scalar

Implied volatility search termination tolerance, specified as the comma-separated pair consisting of
'Tolerance' and a positive scalar.

Note If you are using Method with a value of 'jackel2016', the Tolerance argument is ignored.

Data Types: double

Method — Method for computing implied volatility
'jackel2016' (default) | character vector with values 'search' or 'jackel2016' | string with
values "search" or "jackel2016"

Method for computing implied volatility, specified as the comma-separated pair consisting of
'Method' and a character vector with a value of 'search' or 'jackel2016' or a string with a
value of "search" or "jackel2016".
Data Types: char | string

Output Arguments
Volatility — Expected implied volatility values
vector
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Expected implied volatility values, returned as a NINST-by-1 vector. If no solution can be found, a NaN
is returned.

References
[1] Jäckel, Peter. "Let's Be Rational." Wilmott Magazine., January, 2015 (https://

onlinelibrary.wiley.com/doi/abs/10.1002/wilm.10395).

See Also
optstockbybls | optstocksensbybls

Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-79
“Pricing Using the Black-Scholes Model” on page 3-82
“Pricing European Call Options Using Different Equity Models” on page 3-88
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2008b
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impvbyrgw
Determine implied volatility using Roll-Geske-Whaley option pricing model for American call option

Syntax
Volatility = impvbyrgw(RateSpec,StockSpec,Settle,Maturity,Strike,OptPrice)
Volatility = impvbyrgw( ___ ,Name,Value)

Description
Volatility = impvbyrgw(RateSpec,StockSpec,Settle,Maturity,Strike,OptPrice)
computes implied volatility using Roll-Geske-Whaley option pricing model for American call option.

Note impvbyrgw computes implied volatility of American calls with a single cash dividend using the
Roll-Geske-Whaley option pricing model.

Volatility = impvbyrgw( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Compute the Implied Volatility Using the Roll-Geske-Whaley Option Pricing Model

This example shows how to compute the implied volatility using the Roll-Geske-Whaley option pricing
model. Assume that on July 1, 2008 a stock is trading at $13 and pays a single cash dividend of $0.25
on November 1, 2008. The American call option with a strike price of $15 expires on July 1, 2009 and
is trading at $1.346. The annualized continuously compounded risk-free rate is 5% per annum.
Calculate the implied volatility of the stock using the Roll-Geske-Whaley option pricing model.

AssetPrice = 13;
Strike = 15;
Rates = 0.05;
Settle = 'July-01-08';
Maturity = 'July-01-09';

% define the RateSpec and StockSpec
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
 'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1);

StockSpec = stockspec(NaN, AssetPrice, {'cash'}, 0.25, {'Nov 1,2008'});

Price = [1.346];
Volatility = impvbyrgw(RateSpec, StockSpec, Settle, Maturity, Strike, Price)

Volatility = 0.3539
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Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification, see
stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities the
price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is
StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement date
serial date number | date character vector

Settlement date, specified as a NINST-by-1 vector of serial date numbers or a date character vectors.
Data Types: double | char

Maturity — Maturity date
serial date number | date character vector

Maturity date for the American option, specified as a NINST-by-1 vector of serial date numbers or a
date character vectors.
Data Types: double | char

Strike — Option strike price value
nonnegative scalar | nonnegative vector

Option strike price value, specified as a nonnegative scalar or NINST-by-1 vector of strike price
values. Each row is the schedule for one option.
Data Types: double

OptPrice — American option price
nonnegative scalar | nonnegative vector

American option prices from which the implied volatility of the underlying asset is derived, specified
as a nonnegative scalar or NINST-by-1 vector.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
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Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Volatility =
impvbyrgw(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,OptPrice,'Limit',
5,'Tolerance',1e-5)

Limit — Upper bound of implied volatility search interval
10 (1000% per annum) (default) | positive value

Upper bound of implied volatility search interval, specified as the comma-separated pair consisting of
'Limit' and a positive scalar.
Data Types: double

Tolerance — Implied volatility search termination tolerance
1e-6 (default) | positive scalar

Implied volatility search termination tolerance, specified as the comma-separated pair consisting of
'Tolerance' and a positive scalar.
Data Types: double

Output Arguments
Volatility — Expected implied volatility values
vector

Expected implied volatility values, returned as a NINST-by-1 vector. If no solution can be found, a NaN
is returned.

See Also
optstockbyrgw | optstocksensbyrgw

Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-79
“Pricing Using the Roll-Geske-Whaley Model” on page 3-84
“Roll-Geske-Whaley Model” on page 3-80
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2008b
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instadd
Add types to instrument collection

Syntax
InstSet = instadd(InstSetOld,TypeString,Data1,Data2, ...)
InstSet = instadd('CashFlow',CFlowAmounts,CFlowDates,Settle,Basis)
InstSet = instadd('CashFlow',CFlowAmounts,CFlowDates,Settle,Basis)
InstSet =
instadd('Barrier',OptSpec,Strike,Settle,ExerciseDates,AmericanOpt,BarrierType
,Barrier,Rebate)
InstSet =
instadd('Bond',CouponRate,Settle,Maturity,Period,Basis,EndMonthRule,IssueDate
,FirstCouponDate,LastCouponDate,StartDate,Face)
InstSet =
instadd('CBond',CouponRate,Settle,Maturity,ConvRatio'CallStrike',CallStrike,'
CallExDates',CallExDates,'AmericanCall',AmericanCall,'PutStrike',PutStrike,
'PutExDates',PutExDates,'AmericanPut',AmericanPut,'Period',Period,'Face',Face
,'Spread',Spread,'IssueDate',IssueDate,'FirstCouponDate',FirstCouponDate,'Las
tCouponDate',LastCouponDate,'StartDate',StartDate)
InstSet =
instadd('OptEmBond',CouponRate,Settle,Maturity,OptSpec,Strike,ExerciseDates,'
AmericanOpt',AmericanOpt,'Period',Period,'Basis',Basis,'EndMonthRule',EndMont
hRule,'Face',Face,
'IssueDate',IssueDate,'FirstCouponDate',FirstCouponDate,'LastCouponDate',Last
CouponDate,'StartDate',StartDate)
InstSet =
instadd('OptBond',BondIndex,OptSpec,Strike,ExerciseDates,AmericanOpt)
InstSet = instadd('Cap',Strike,Settle,Maturity,Reset,Basis,Principal)
InstSet =
instadd('Compound',UOptSpec,UStrike,USettle,UExerciseDates,UAmericanOpt,COptS
pec,CStrike,CSettle,CExerciseDates,CAmericanOpt)
InstSet =
instadd('Fixed',CouponRate,Settle,Maturity,Reset,Basis,Principal,EndMonthRule
)
InstSet =
instadd('Float',Spread,Settle,Maturity,Reset,Basis,Principal,EndMonthRule,Cap
Rate,FloorRate)
InstSet = instadd('Floor',Strike,Settle,Maturity,Reset,Basis,Principal)
InstSet = instadd('Lookback',OptSpec,Strike,Settle,ExerciseDates,AmericanOpt)
InstSet = instadd('OptFloat',OptSpec,Strike,Settle,ExerciseDates,AmericanOpt)
InstSet =
instadd('OptEmFloat',OptSpec,Strike,Settle,ExerciseDates,AmericanOpt,Reset,Ba
sis,EndMonthRule,Principal)
InstSet =
instadd('RangeFloat',Spread,Settle,Maturity,RateSched,Reset,Basis,Principal,E
ndMonthRule)
InstSet = instadd('OptStock',OptSpec,Strike,Settle,Maturity,AmericanOpt)

11 Functions

11-736



InstSet =
instadd('Swap',LegRate,Settle,Maturity,LegReset,Basis,Principal,LegType,EndMo
nthRule,StartDate)
InstSet =
instadd('Swaption',OptSpec,Strike,ExerciseDates,Spread,Settle,Maturity,Americ
anOpt,SwapReset,Basis,Principal)

Description
InstSet = instadd(InstSetOld,TypeString,Data1,Data2, ...) adds an instrument to an
existing collection.

InstSet = instadd('CashFlow',CFlowAmounts,CFlowDates,Settle,Basis) adds an
arbitrary cash flow instrument. (See also instcf.)

InstSet = instadd('CashFlow',CFlowAmounts,CFlowDates,Settle,Basis) adds an asian
instrument. (See also instasian.)

InstSet =
instadd('Barrier',OptSpec,Strike,Settle,ExerciseDates,AmericanOpt,BarrierType
,Barrier,Rebate) adds a barrier instrument. (See also instbarrier.)

InstSet =
instadd('Bond',CouponRate,Settle,Maturity,Period,Basis,EndMonthRule,IssueDate
,FirstCouponDate,LastCouponDate,StartDate,Face) adds a bond instrument. (See also
instbond.)

InstSet =
instadd('CBond',CouponRate,Settle,Maturity,ConvRatio'CallStrike',CallStrike,'
CallExDates',CallExDates,'AmericanCall',AmericanCall,'PutStrike',PutStrike,
'PutExDates',PutExDates,'AmericanPut',AmericanPut,'Period',Period,'Face',Face
,'Spread',Spread,'IssueDate',IssueDate,'FirstCouponDate',FirstCouponDate,'Las
tCouponDate',LastCouponDate,'StartDate',StartDate) adds a convertible bond
instrument. (See also instcbond.)

InstSet =
instadd('OptEmBond',CouponRate,Settle,Maturity,OptSpec,Strike,ExerciseDates,'
AmericanOpt',AmericanOpt,'Period',Period,'Basis',Basis,'EndMonthRule',EndMont
hRule,'Face',Face,
'IssueDate',IssueDate,'FirstCouponDate',FirstCouponDate,'LastCouponDate',Last
CouponDate,'StartDate',StartDate) adds a bond with embedded option instrument. (See also
instoptembnd. )

InstSet =
instadd('OptBond',BondIndex,OptSpec,Strike,ExerciseDates,AmericanOpt) adds a
bond option instrument. (See also instoptbnd.)

InstSet = instadd('Cap',Strike,Settle,Maturity,Reset,Basis,Principal) adds a cap
instrument. (See also instcap.)

InstSet =
instadd('Compound',UOptSpec,UStrike,USettle,UExerciseDates,UAmericanOpt,COptS
pec,CStrike,CSettle,CExerciseDates,CAmericanOpt) adds a compound instrument. (See
also instcompound.)
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InstSet =
instadd('Fixed',CouponRate,Settle,Maturity,Reset,Basis,Principal,EndMonthRule
) adds a fixed-rate note instrument. (See also instfixed.)

InstSet =
instadd('Float',Spread,Settle,Maturity,Reset,Basis,Principal,EndMonthRule,Cap
Rate,FloorRate) adds a floating-rate note instrument. (See also instfloat.)

InstSet = instadd('Floor',Strike,Settle,Maturity,Reset,Basis,Principal) adds a
floor instrument. (See also instfloor.)

InstSet = instadd('Lookback',OptSpec,Strike,Settle,ExerciseDates,AmericanOpt)
adds a lookback instrument. (See also instlookback.)

InstSet = instadd('OptFloat',OptSpec,Strike,Settle,ExerciseDates,AmericanOpt)
adds a floating-rate option instrument. (See also instoptfloat.)

InstSet =
instadd('OptEmFloat',OptSpec,Strike,Settle,ExerciseDates,AmericanOpt,Reset,Ba
sis,EndMonthRule,Principal) adds a floating-rate embedded option instrument. (See also
instoptemfloat.)

InstSet =
instadd('RangeFloat',Spread,Settle,Maturity,RateSched,Reset,Basis,Principal,E
ndMonthRule) adds a range floating note instrument. (See also instrangefloat.)

InstSet = instadd('OptStock',OptSpec,Strike,Settle,Maturity,AmericanOpt) adds a
stock option instrument. (See also instoptstock.)

InstSet =
instadd('Swap',LegRate,Settle,Maturity,LegReset,Basis,Principal,LegType,EndMo
nthRule,StartDate) adds a swap instrument. (See also instswap.)

InstSet =
instadd('Swaption',OptSpec,Strike,ExerciseDates,Spread,Settle,Maturity,Americ
anOpt,SwapReset,Basis,Principal) adds a swaption instrument. (See also instswaption.)

instadd stores instruments of types 'Asian', 'Barrier', 'Bond', 'Cap', 'CashFlow',
'Compound', 'Fixed', 'Float', 'Floor', 'Lookback', 'OptBond', 'OptStock', 'Swap', or
'Swaption'. Financial Instruments Toolbox provides pricing and sensitivity routines for these
instruments.

Input Arguments
InstSetOld

Variable containing a collection of instruments. Instruments are classified by type; each type can have
different data fields. The stored data field is a row vector or character vector for each instrument. For
more information on instrument data parameters, see the reference entries for individual instrument
types. For example, see instcap for additional information on the cap instrument.
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Output Arguments
InstSet

InstSet is an instrument set variable containing the new input data.

Examples

Create a Portfolio with Two Cap Instruments and a 4% Bond

Define the bond:

Strike = [0.06; 0.07]; 
CouponRate = 0.04; 
Settle = '06-Feb-2000'; 
Maturity = '15-Jan-2003';

Create a portfolio with two cap instruments and a 4% bond and then display the portfolio:

InstSet = instadd('Cap', Strike, Settle, Maturity); 
InstSet = instadd(InstSet, 'Bond', CouponRate, Settle, Maturity);
instdisp(InstSet)

Index Type Strike Settle         Maturity       CapReset Basis Principal
1     Cap  0.06   06-Feb-2000    15-Jan-2003    1        0     100      
2     Cap  0.07   06-Feb-2000    15-Jan-2003    1        0     100      
 
Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face
3     Bond 0.04       06-Feb-2000    15-Jan-2003    2      0     1            NaN       NaN             NaN            NaN       100 
 

See Also
instasian | instbarrier | instbond | instcap | instcf | instcompound | instfixed |
instfloat | instfloor | instlookback | instoptbnd | instoptembnd | instoptstock |
instswap | instswaption | instaddfield | instdisp | instcbond

Topics
“Portfolio Creation Using Functions” on page 1-6
“Creating Instruments or Properties” on page 1-16
“Instrument Constructors” on page 1-15

Introduced before R2006a
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instaddfield
Add new instruments to instrument collection

Syntax
InstSetNew = instaddfield(InstSet,Name,Value)
InstSet = instaddfield(Name,Value)

Description
InstSetNew = instaddfield(InstSet,Name,Value) adds instruments to an existing
instrument set InstSet. The output InstSetNew is a new instrument set containing the input data.

InstSet = instaddfield(Name,Value) creates an instrument variable InstSet.

Examples

Add New Instruments to Instrument Collection

Build a portfolio around the following July options.

Strike = (95:5:105)' 

Strike = 3×1

    95
   100
   105

CallP = [12.2; 9.2; 6.8] 

CallP = 3×1

   12.2000
    9.2000
    6.8000

Enter three call options with data fields Strike, Price, and Opt.

InstSet = instaddfield('Type','Option','FieldName',...
{'Strike','Price','Opt'}, 'Data',{ Strike, CallP, 'Call'}); 
instdisp(InstSet) 

Index Type   Strike Price Opt 
1     Option  95    12.2  Call
2     Option 100     9.2  Call
3     Option 105     6.8  Call
 

Add a futures contract and set the input parsing class.
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InstSet = instaddfield(InstSet,'Type','Futures',... 
'FieldName',{'Delivery','F'},'FieldClass',{'date','dble'},... 
'Data' ,{'01-Jul-99',104.4 });  
instdisp(InstSet) 

Index Type   Strike Price Opt 
1     Option  95    12.2  Call
2     Option 100     9.2  Call
3     Option 105     6.8  Call
 
Index Type    Delivery       F    
4     Futures 01-Jul-1999    104.4
 

Add a put option.

FN = instfields(InstSet,'Type','Option') 

FN = 3x1 cell
    {'Strike'}
    {'Price' }
    {'Opt'   }

InstSet = instaddfield(InstSet,'Type','Option',...
'FieldName',FN, 'Data',{105, 7.4, 'Put'}); 
instdisp(InstSet)

Index Type   Strike Price Opt 
1     Option  95    12.2  Call
2     Option 100     9.2  Call
3     Option 105     6.8  Call
 
Index Type    Delivery       F    
4     Futures 01-Jul-1999    104.4
 
Index Type   Strike Price Opt 
5     Option 105     7.4  Put 
 

Make a placeholder for another put.

InstSet = instaddfield(InstSet,'Type','Option',...
'FieldName','Opt','Data','Put') 

InstSet = struct with fields:
        FinObj: 'Instruments'
    IndexTable: [1x1 struct]
          Type: {2x1 cell}
     FieldName: {2x1 cell}
    FieldClass: {2x1 cell}
     FieldData: {2x1 cell}

instdisp(InstSet)

Index Type   Strike Price Opt 
1     Option  95    12.2  Call
2     Option 100     9.2  Call
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3     Option 105     6.8  Call
 
Index Type    Delivery       F    
4     Futures 01-Jul-1999    104.4
 
Index Type   Strike Price Opt 
5     Option 105     7.4  Put 
6     Option NaN     NaN  Put 
 

Add a cash instrument.

InstSet = instaddfield(InstSet, 'Type', 'TBill',... 
'FieldName','Price','Data',99)  

InstSet = struct with fields:
        FinObj: 'Instruments'
    IndexTable: [1x1 struct]
          Type: {3x1 cell}
     FieldName: {3x1 cell}
    FieldClass: {3x1 cell}
     FieldData: {3x1 cell}

instdisp(InstSet) 

Index Type   Strike Price Opt 
1     Option  95    12.2  Call
2     Option 100     9.2  Call
3     Option 105     6.8  Call
 
Index Type    Delivery       F    
4     Futures 01-Jul-1999    104.4
 
Index Type   Strike Price Opt 
5     Option 105     7.4  Put 
6     Option NaN     NaN  Put 
 
Index Type  Price
7     TBill 99   
 

Input Arguments
InstSet — Instrument variable
structure

Instrument variable containing a collection of instruments, specified as InstSet structure.
Instruments are classified by type; each type can have different data fields. The stored data field is a
row vector or character vector for each instrument.
Data Types: struct
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: InstSet = instaddfield('Type','Option','FieldName',
{'Strike','Price','Opt'},'Data',{Strike,CallP,'Call'})

FieldName — Name of each data field for instrument
cell array of character vectors

Name of each data field for an instrument, specified as the comma-separated pair consisting of
'FieldName' and an NFIELDS-by-1 cell array of character vectors.
Data Types: char | cell

Data — Data contents for each field
array | cell array

Data contents for each field, specified as the comma-separated pair consisting of 'Data' and an
NINST-by-M array or NFIELDS-by-1 cell array.
Data Types: double | cell

FieldClass — Data class of each field
vector

Data class of each field, specified as the comma-separated pair consisting of 'FieldClass' and an
NFIELDS-by-1 cell array of character vectors.
Data Types: char | cell

Type — Type of instrument added
character vector

Type of instrument added, specified as the comma-separated pair consisting of 'Type' and a
character vector. Instruments of different types can have different FieldName collections.
Data Types: char

Output Arguments
InstSetNew — Instrument set variable containing new input data added to existing
InstSet
structure

Instrument set variable containing the new input data added to an existing InstSet , returned as a
structure.

InstSet — New Instrument set variable containing input data
structure

New Instrument set variable containing input data, returned as a structure.
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See Also
instdisp | instget | instgetcell | instsetfield | instadd

Topics
“Portfolio Creation Using Functions” on page 1-6
“Creating Instruments or Properties” on page 1-16
“Instrument Constructors” on page 1-15

Introduced before R2006a
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instasian
Construct Asian option

Syntax
InstSet = instasian(OptSpec,Strike,Settle,ExerciseDates)
InstSet = instasian(InstSet,OptSpec,Strike,Settle,ExerciseDates)
InstSet = instasian( ___ ,AmericanOpt,AvgType,AvgPrice,AvgDate)
[FieldList,ClassList,TypeString = instasian

Description
InstSet = instasian(OptSpec,Strike,Settle,ExerciseDates) creates a new instrument
set containing Asian instruments.

InstSet = instasian(InstSet,OptSpec,Strike,Settle,ExerciseDates) adds Asian
instruments to an existing instrument set.

InstSet = instasian( ___ ,AmericanOpt,AvgType,AvgPrice,AvgDate) adds optional
arguments.

[FieldList,ClassList,TypeString = instasian lists field meta-data for the Asian
instrument.

Examples

Create an Asian Option Instrument

Load the example instrument set, deriv.mat, and set the required values for an asian option
instrument.

load deriv.mat

Create a subportfolio with barrier and lookback options.

CRRSubSet = instselect(CRRInstSet,'Type',{'Barrier', 'Lookback'});

Define the asian instrument.

OptSpec = 'put';
Strike = NaN;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2004';

Add a floating strike asian option to the instrument set.

InstSet = instasian(CRRSubSet, OptSpec, Strike, Settle, ExerciseDates);
instdisp(InstSet)

Index Type    OptSpec Strike Settle         ExerciseDates  AmericanOpt BarrierSpec Barrier Rebate Name     Quantity
1     Barrier call    105    01-Jan-2003    01-Jan-2006    1           ui          102     0      Barrier1 1       
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Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name      Quantity
2     Lookback call    115    01-Jan-2003    01-Jan-2006    0           Lookback1 7       
3     Lookback call    115    01-Jan-2003    01-Jan-2007    0           Lookback2 9       
 
Index Type  OptSpec Strike Settle         ExerciseDates  AmericanOpt AvgType    AvgPrice AvgDate Name   Quantity
4     Asian put     NaN    01-Jan-2003    01-Jan-2004    0           arithmetic NaN      NaN            NaN     
 

Input Arguments
InstSet — Instrument variable
structure

Instrument variable, specified only when adding asian instruments to an existing instrument set. For
more information on the InstSet variable, see instget.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'

Definition of option, specified as 'call' or 'put' using a scalar character vector or an NINST-by-1
cell array of character vectors.
Data Types: char | cell

Strike — Option strike price value
nonnegative integer | vector of nonnegative integer

Option strike price value, specified with a scalar nonnegative integer or an NINST-by-1 vector of
strike price values.
Data Types: double

Settle — Settlement dates or trade dates
serial date number | date character vector

Settlement date or trade date for the Asian option, specified as scalar or an NINST-by-1 vector using
serial date numbers or date character vectors.
Data Types: double | char

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as an NINST-by-1 vector using serial date numbers or date character
vectors .

For a European option (when AmericanOpt = 0):

NINST-by-1 vector of exercise dates. Each row is the schedule for one option. For a European option,
there is only one exercise date, the option expiry date.

For an American option ( when AmericanOpt = 1):
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NINST-by-2 vector of exercise date boundaries. For each instrument, the option can be exercised on
any tree date between or including the pair of dates on that row. If only one non-NaN date is listed, or
if ExerciseDates is an NINST-by-1, the option can be exercised between the valuation date of the
stock tree and the single listed exercise date.
Data Types: double | char

AmericanOpt — Indicator for American option
0 (default) | integer value 0 or 1

(Optional) Indicator for American option, specified as a scalar or an NINST-by-1 vector.

If AmericanOpt = 0, NaN, or is unspecified, the option is a European option. If AmericanOpt = 1,
the option is an American option.
Data Types: double

AvgType — Averaging type
'arithmetic' (default) | character vector with value 'arithmetic' or 'geometric'

(Optional) Averaging type, specified as a character vector with a value of 'arithmetic' for
arithmetic average or 'geometric' for geometric average.
Data Types: char

AvgPrice — Average price of underlying asset at the Settle date
current stock price of the underlying asset (default) | numeric

(Optional) Average price of underlying asset at the Settle date, specified as a scalar numeric.

Note Use AvgPrice when AvgDate < Settle.

Data Types: double

AvgDate — Date averaging period begins
Settle date (default) | serial date number | date character vector

(Optional) Date averaging period begins, specified as a scalar using a serial date number or date
character vector.
Data Types: char | double

Output Arguments
InstSet — Variable containing a collection of instruments
structure

Variable containing a collection of instruments, returned as a structure. Instruments are broken down
by type and each type can have different data fields. Each stored data field has a row vector or string
for each instrument. For more information on the InstSet variable, see instget.

FieldList — Name of each data field for Asian instrument
cell array of character vectors
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Name of each data field for an Asian instrument, returned as an NFIELDS-by-1 cell array of character
vectors.

ClassList — Data class for each field
cell array of character vectors

Data class for each field, returned as an NFIELDS-by-1 cell array of character vectors. The class
determines how arguments are parsed. Valid character vectors are 'dble', 'date', and 'char'.

TypeString — Type of instrument
character vector

Type of instrument, returned as a character vector. For an Asian option instrument, TypeString =
'Asian'.

More About
Asian Option

An Asian option is a path-dependent option with a payoff linked to the average value of the underlying
asset during the life (or some part of the life) of the option.

Asian options are similar to lookback options in that there are two types of Asian options: fixed
(average price option) and floating (average strike option). Fixed Asian options have a specified
strike, while floating Asian options have a strike equal to the average value of the underlying asset
over the life of the option. For more information, see “Asian Option” on page 3-34.

See Also
instdisp | instget | instgetcell | instsetfield | instadd

Topics
“Pricing Equity Derivatives Using Trees” on page 3-64
“Creating Instruments or Properties” on page 1-16
“Asian Option” on page 3-34
“Instrument Constructors” on page 1-15
“Supported Equity Derivative Functions” on page 3-19
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced before R2006a
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instbarrier
Construct barrier option

Syntax
InstSet = instbarrier(OptSpec,Strike,Settle,ExerciseDates,AmericanOpt,
BarrierSpec,Barrier,Rebate)
InstSet = instbarrier(InstSetOld,OptSpec,Strike,Settle,ExerciseDates,
AmericanOpt,BarrierSpec,Barrier,Rebate)
[FieldList,ClassList,TypeString] = instbarrier

Description
InstSet = instbarrier(OptSpec,Strike,Settle,ExerciseDates,AmericanOpt,
BarrierSpec,Barrier,Rebate) constructs a barrier instrument.

Data arguments are NINST-by-1 vectors, scalar, or empty. Fill in unspecified entries vectors with NaN.
Only one data argument is required to create the instrument. The others can be omitted or passed as
empty matrices [].

InstSet = instbarrier(InstSetOld,OptSpec,Strike,Settle,ExerciseDates,
AmericanOpt,BarrierSpec,Barrier,Rebate) adds barrier options to an existing instrument
variable InstSetOld).

[FieldList,ClassList,TypeString] = instbarrier lists field metadata for the barrier
instrument.

Examples

Create Two Barrier Option Instruments

Create an instrument set of two barrier options with the following data:

OptSpec = {'put';'call'};
Strike = 112;
Settle = '01-Jan-2012';
ExerciseDates = '01-Jan-2015';
BarrierSpec = {'do';'ui'};
Barrier = [101;102];
AmericanOpt = 0;

Create the instrument set (InstSet) for the two barrier options.

InstSet = instbarrier(OptSpec, Strike, Settle, ExerciseDates,AmericanOpt, BarrierSpec, Barrier);

Display the instrument set.

instdisp(InstSet)

Index Type    OptSpec Strike Settle         ExerciseDates  AmericanOpt BarrierSpec Barrier Rebate
1     Barrier put     112    01-Jan-2012    01-Jan-2015    0           do          101     0     
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2     Barrier call    112    01-Jan-2012    01-Jan-2015    0           ui          102     0     
 

Input Arguments
OptSpec — Definition of option
character vector with values 'call' or 'put'

Definition of an option as 'call' or 'put', specified as a NINST-by-1 list of character vector values.
Data Types: char

Strike — Option strike price value
integer

Option strike price value, specified as an NINST-by-1 vector of strike values. Each row is the schedule
for one option.
Data Types: double

Settle — Settlement or trade date
serial date number | date character vector

Settlement date for the barrier option, specified as a NINST-by-1 vector of serial date numbers or
date character vectors.
Data Types: double | char

ExerciseDates — Option exercise dates
date character vector | serial date number

Option exercise dates, specified as a date character vector or a serial date number:

• For a European option (AmericanOpt = 0), specified as a NINST-by-1 vector of exercise dates.
Each row is the schedule for one option. For a European option, there is only one exercise date,
the option expiry date.

• For an American option (AmericanOpt = 1), specified as a NINST-by-2 vector of exercise date
boundaries. For each instrument, the option can be exercised on any tree date between or
including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is
NINST-by-1, the option can be exercised between the valuation date of the stock tree and the
single listed exercise date.

Data Types: double | char

AmericanOpt — Flag for American option
integer with values 0 or 1

Flag for American option, specified as an integer with values 0 or 1. If AmericanOpt = 0, NaN, or is
unspecified, the option is a European option. If AmericanOpt = 1, the option is an American option.
Data Types: logical

BarrierSpec — Barrier option type
character vector with values: 'UI', 'UO', 'DI', 'DO'

Barrier option type, specified as a character vector with the following values:
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• 'UI' — Up Knock In

This option becomes effective when the price of the underlying asset passes above the barrier
level. It gives the option holder the right, but not the obligation, to buy/sell (call/put) the
underlying security at the strike price if the underlying asset goes above the barrier level during
the life of the option.

• 'UO' — Up Knock Out

This option gives the option holder the right, but not the obligation, to buy/sell (call/put) the
underlying security at the strike price as long as the underlying asset does not go above the
barrier level during the life of the option. This option terminates when the price of the underlying
asset passes above the barrier level. Usually, with an up-and-out option, the rebate is paid if the
spot price of the underlying reaches or exceeds the barrier level.

• 'DI' — Down Knock In

This option becomes effective when the price of the underlying stock passes below the barrier
level. It gives the option holder the right, but not the obligation, to buy/sell (call/put) the
underlying security at the strike price if the underlying security goes below the barrier level
during the life of the option. With a down-and-in option, the rebate is paid if the spot price of the
underlying does not reach the barrier level during the life of the option.

• 'DO' — Down Knock Up

This option gives the option holder the right, but not the obligation, to buy/sell (call/put) the
underlying asset at the strike price as long as the underlying asset does not go below the barrier
level during the life of the option. This option terminates when the price of the underlying security
passes below the barrier level. Usually the option holder receives a rebate amount if the option
expires worthless.

Option Barrier Type Payoff if Barrier Crossed Payoff if Barrier not
Crossed

Call/Put Down Knock-out Worthless Standard Call/Put
Call/Put Down Knock-in Call/Put Worthless
Call/Put Up Knock-out Worthless Standard Call/Put
Call/Put Up Knock-in Standard Call/Put Worthless

Data Types: char

Barrier — Barrier value
integer

Barrier value, specified as a vector of values.
Data Types: double

Rebate — Rebate value
integer

(Optional) Rebate value, specified as a vector of values.
Data Types: double

InstSetOld — Instrument variable
structure
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(Optional) Instrument variable, this argument is specified only when adding barrier instruments to an
existing instrument set. See instget for more information on the InstSet variable.
Data Types: struct

Output Arguments
InstSet — Instrument variable for barrier option
structure

Instrument variable for barrier option, returned as a structure. See instget for more information on
the InstSet variable.

FieldList — Fields in InstSet instrument
cell array of character vectors

Fields in InstSet instrument are returned as a (NFIELDS-by-1) cell array of character vectors listing
the name of each data field for this instrument type.

ClassList — Data class of each field in InstSet instrument
cell array of character vectors

Data class of each field in InstSet instrument, returned as an NFIELDS-by-1 cell array of character
vectors listing the data class of each field. The class determines how arguments are parsed. Valid
character vectors are 'dble', 'date', and 'char'.

TypeString — Type of instrument added to InstSet instrument
character vector

Type of instrument added to InstSet instrument, returned as a character vector specifying the type
of instrument added. For a barrier option instrument, TypeString = 'Barrier'.

More About
Barrier Option

A barrier option has not only a strike price but also a barrier level and sometimes a rebate.

A rebate is a fixed amount that is paid if the option cannot be exercised because the barrier level has
been reached or not reached. The payoff for this type of option depends on whether the underlying
asset crosses the predetermined trigger value (barrier level), indicated by Barrier, during the life of
the option.

See Also
instadd | instdisp | instget | barrierbyls | barrierbyfd | barrierbystt | barrierbyitt |
barrierbybls | barrierbycrr | barrierbyeqp

Topics
“Pricing Equity Derivatives Using Trees” on page 3-64
“Creating Instruments or Properties” on page 1-16
“Instrument Constructors” on page 1-15
“Supported Equity Derivative Functions” on page 3-19
“Choose Instruments, Models, and Pricers” on page 1-53
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instbond
Construct bond instrument

Syntax
InstSet = instbond(CouponRate,Settle,Maturity)
InstSet = instbond(InstSet,CouponRate,Settle,Maturity)
InstSet = instbond( ___ ,Period,Basis,EndMonthRule,IssueDate,FirstCouponDate,
LastCouponDate,StartDate,Face)
[FieldList,ClassList,TypeString] = instbond

Description
InstSet = instbond(CouponRate,Settle,Maturity) creates a new instrument set containing
Bond instruments.

InstSet = instbond(InstSet,CouponRate,Settle,Maturity) adds Bond instruments to an
existing instrument set.

InstSet = instbond( ___ ,Period,Basis,EndMonthRule,IssueDate,FirstCouponDate,
LastCouponDate,StartDate,Face) adds optional arguments.

[FieldList,ClassList,TypeString] = instbond lists field meta-data for the Bond instrument.

Examples

Create a Bond Instrument

Create a new instrument variable with the following information:

CouponRate= [0.035;0.04];
Settle= 'Nov-1-2013'; 
Maturity = 'Nov-1-2014'; 
Period =1; 

InstSet = instbond(CouponRate, Settle, Maturity, ...
Period)

InstSet = struct with fields:
        FinObj: 'Instruments'
    IndexTable: [1x1 struct]
          Type: {'Bond'}
     FieldName: {{11x1 cell}}
    FieldClass: {{11x1 cell}}
     FieldData: {{11x1 cell}}

Display the instrument set.

instdisp(InstSet)
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Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face
1     Bond 0.035      01-Nov-2013    01-Nov-2014    1      0     1            NaN       NaN             NaN            NaN       100 
2     Bond 0.04       01-Nov-2013    01-Nov-2014    1      0     1            NaN       NaN             NaN            NaN       100 
 

Input Arguments
InstSet — Instrument variable
structure

Instrument variable, specified only when adding Bond instruments to an existing instrument set. For
more information on the InstSet variable, see instget.
Data Types: struct

CouponRate — Coupon rate indicating the annual percentage rate
decimal

Coupon rate indicating the annual percentage rate, specified as an NINST-by-1 vector or an NINST-
by-1 cell array of decimal annual rates, or decimal annual rate schedules. For the latter case of a
variable coupon schedule, each element of the cell array is a NumDates-by-2 cell array, where the
first column is dates and the second column is its associated rate. The date indicates the last day that
the coupon rate is valid.
Data Types: double | cell

Settle — Settlement dates
serial date number | date character vector

Settlement dates, specified as scalar or an NINST-by-1 vector using serial date numbers or date
character vectors.

Note Settle must be earlier than Maturity.

Data Types: double | char

Maturity — Maturity dates
serial date number | date character vector

Maturity dates, specified as scalar or an NINST-by-1 vector using serial date numbers or date
character vectors.
Data Types: double | char

Period — Coupons per year
2 per year (default) | vector

(Optional) Coupons per year, specified as a scalar or an NINST-by-1 vector. Values for Period are 1,
2, 3, 4, 6, and 12.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13
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(Optional) Day-count basis, specified as scalar or an NINST-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

(Optional) End-of-month rule flag for generating dates when Maturity is an end-of-month date for a
month having 30 or fewer days, specified as a scalar or a nonnegative integer [0, 1] using an NINST-
by-1 vector.

• 0 = Ignore rule, meaning that a bond's coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond's coupon payment date is always the last actual day of the
month.

Data Types: logical

IssueDate — Bond issue date
serial date number | date character vector

(Optional) Bond issue date, specified as a scalar or an NINST-by-1 vector using a serial date number
or date character vector.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial date number | date character vector

(Optional) Irregular first coupon date, specified as a scalar or an NINST-by-1 vector using a serial
date number or date character vector.
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When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes
precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate,
the cash flow payment dates are determined from other inputs.
Data Types: double | char

LastCouponDate — Irregular last coupon date
serial date number | date character vector

(Optional) Irregular last coupon date, specified as a scalar or an NINST-by-1 vector using a serial
nonnegative date number or date character vector.

In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the
coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate,
regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not
specify a LastCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char

StartDate — Forward starting date of payments
Settle date (default) | serial date number | date character vector

Forward starting date of payments (the date from which a bond cash flow is considered), specified as
a scalar or an NINST-by-1 vector using serial date numbers or date character vectors.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double

Face — Face value
100 (default) | nonnegative value | cell array of nonnegative values

(Optional) Face or par value, specified as a scalar or an NINST-by-1 vector of nonnegative face values
or an NINST-by-1 cell array of face values or face value schedules. For the latter case, each element
of the cell array is a NumDates-by-2 cell array, where the first column is dates and the second column
is its associated face value. The date indicates the last day that the face value is valid.
Data Types: cell | double

Output Arguments
InstSet — Variable containing a collection of instruments
structure

Variable containing a collection of instruments, returned as a structure. Instruments are broken down
by type and each type can have different data fields. Each stored data field has a row vector or string
for each instrument. For more information on the InstSet variable, see instget.

FieldList — Name of each data field for Bond instrument
cell array of character vectors

Name of each data field for a Bond instrument, returned as an NFIELDS-by-1 cell array of character
vectors.

ClassList — Data class for each field
cell array of character vectors
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Data class for each field, returned as an NFIELDS-by-1 cell array of character vectors. The class
determines how arguments are parsed. Valid character vectors are 'dble', 'date', and 'char'.

TypeString — Type of instrument
character vector

Type of instrument, returned as a character vector. For a Bond instrument, TypeString = 'Bond'.

See Also
hjmprice | instaddfield | instdisp | instget | intenvprice

Topics
“Creating Instruments or Properties” on page 1-16
“Bond” on page 2-3
“Instrument Constructors” on page 1-15
“Supported Interest-Rate Instrument Functions” on page 2-3
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced before R2006a
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instcap
Construct cap instrument

Syntax
InstSet = instcap(Strike,Settle,Maturity)
InstSet = instcap(InstSet,Strike,Settle,Maturity)
InstSet = instcap( ___ ,CapReset,Basis,Principal)
[FieldList,ClassList,TypeString] = instcap

Description
InstSet = instcap(Strike,Settle,Maturity) creates a new instrument set containing Cap
instruments.

InstSet = instcap(InstSet,Strike,Settle,Maturity) adds Cap instruments to an existing
instrument set.

InstSet = instcap( ___ ,CapReset,Basis,Principal) adds optional arguments.

[FieldList,ClassList,TypeString] = instcap lists field meta-data for the Cap instrument.

Examples

Create Two Cap Instruments

Create a new instrument variable with the following information:

Strike = [0.035; 0.045];
Settle= 'Jan-1-2013'; 
Maturity = 'Jan-1-2014'; 
Reset = 1;
Basis = 1;
Principal = 1000;

Create the new cap instruments.

InstSet = instcap(Strike, Settle, Maturity, Reset, Basis, Principal)

InstSet = struct with fields:
        FinObj: 'Instruments'
    IndexTable: [1x1 struct]
          Type: {'Cap'}
     FieldName: {{6x1 cell}}
    FieldClass: {{6x1 cell}}
     FieldData: {{6x1 cell}}

Display the cap instruments.

instdisp(InstSet)
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Index Type Strike Settle         Maturity       CapReset Basis Principal
1     Cap  0.035  01-Jan-2013    01-Jan-2014    1        1     1000     
2     Cap  0.045  01-Jan-2013    01-Jan-2014    1        1     1000     
 

Input Arguments
InstSet — Instrument variable
structure

Instrument variable, specified only when adding Cap instruments to an existing instrument set. For
more information on the InstSet variable, see instget.
Data Types: struct

Strike — Rate at which cap is exercised
decimal

Rate at which the Cap is exercised, specified as a scalar or an NINST-by-1 vector of decimal values.
Data Types: double

Settle — Settlement dates
serial date number | date character vector

Settlement dates, specified as scalar or an NINST-by-1 vector using serial date numbers or date
character vectors.

Note Settle must be earlier than Maturity.

Data Types: double | char

Maturity — Maturity dates
serial date number | date character vector

Maturity dates, specified as scalar or an NINST-by-1 vector using serial date numbers or date
character vectors.
Data Types: double | char

CapReset — Reset frequency payment per year
1 (default) | numeric

(Optional) Reset frequency payment per year, specified as a scalar or an NINST-by-1 vector.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis, specified as scalar or an NINST-by-1 vector.

• 0 = actual/actual
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• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

(Optional) Notional principal amount, specified as a scalar or an NINST-by-1 of notional principal
amounts, or an NINST-by-1 cell array, where each element is a NumDates-by-2 cell array where the
first column is dates and the second column is associated principal amount. The date indicates the
last day that the principal value is valid.

Use Principal to pass a schedule to compute the price for an amortizing Cap.
Data Types: double | cell

Output Arguments
InstSet — Variable containing a collection of instruments
structure

Variable containing a collection of instruments, returned as a structure. Instruments are broken down
by type and each type can have different data fields. Each stored data field has a row vector or string
for each instrument. For more information on the InstSet variable, see instget.

FieldList — Name of each data field for Cap instrument
cell array of character vectors

Name of each data field for a Cap instrument, returned as an NFIELDS-by-1 cell array of character
vectors.

ClassList — Data class for each field
cell array of character vectors

Data class for each field, returned as an NFIELDS-by-1 cell array of character vectors. The class
determines how arguments are parsed. Valid character vectors are 'dble', 'date', and 'char'.
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TypeString — Type of instrument
character vector

Type of instrument, returned as a character vector. For a Cap option instrument, TypeString =
'Cap'.

More About
Cap

A cap is a contract that includes a guarantee that sets the maximum interest rate to be paid by the
holder, based on an otherwise floating interest rate.

The payoff for a cap is:

max(CurrentRate− CapRate, 0)

For more information, see “Cap” on page 2-12.

See Also
instbond | instfloor | instdisp | instswap | intenvprice | instaddfield | hjmprice

Topics
“Creating Instruments or Properties” on page 1-16
“Cap” on page 2-12
“Instrument Constructors” on page 1-15
“Supported Interest-Rate Instrument Functions” on page 2-3
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced before R2006a
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instcbond
Construct CBond instrument for convertible bond

Syntax
ISet = instcbond(CouponRate,Settle,Maturity,ConvRatio)
ISet = instcbond( ___ ,Name,Value)

ISet = instcbond(ISet,CouponRate,Settle,Maturity,ConvRatio)
ISet = instcbond( ___ ,Name,Value)

[FieldList,ClassList,TypeString] = instcbond

Description
ISet = instcbond(CouponRate,Settle,Maturity,ConvRatio) creates a CBond instrument
variable from data arrays.

ISet = instcbond( ___ ,Name,Value) creates a CBond instrument variable from data arrays
using optional name-value pair arguments.

ISet = instcbond(ISet,CouponRate,Settle,Maturity,ConvRatio) adds a CBond to an
existing instrument set.

ISet = instcbond( ___ ,Name,Value) adds a CBond instrument to an existing instrument set
using optional name-value pair arguments.

[FieldList,ClassList,TypeString] = instcbond lists the field metadata for the CBond
instrument.

Examples

Create a CBond Instrument

Create a CBond instrument.

CouponRate = 0.03;
Settle = 'Jan-1-2014';
Maturity = 'Jan-1-2016'; 
CallStrike = 125; 
CallExDates = [datenum('Jan-1-2015') datenum('Jan-1-2016')];

ConvRatio = 1.5;
Spread = 0.045;
 
InstSet = instcbond(CouponRate,Settle,Maturity,ConvRatio,...
'Spread',Spread,'CallExDates',CallExDates,'CallStrike',CallStrike,...
'AmericanCall', 1);

Display the InstSet for the convertible bond.
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instdisp(InstSet)

Index Type  CouponRate Settle         Maturity       ConvRatio Period IssueDate FirstCouponDate LastCouponDate StartDate Face Spread CallStrike CallExDates                  AmericanCall PutStrike PutExDates AmericanPut ConvDates      DefaultProbability RecoveryRate
1     CBond 0.03       01-Jan-2014    01-Jan-2016    1.5       2      NaN       NaN             NaN            NaN       100  0.045  125        01-Jan-2015   01-Jan-2016    1            NaN       NaN        0           01-Jan-2016    NaN                NaN         
 

Add a CBond Instrument to an Existing Portfolio Set

Create a bond instrument using instbond.

CouponRate= [0.035;0.04];
Settle= 'Nov-1-2013';
Maturity = 'Nov-1-2014';
Period =1;

InstSet = instbond(CouponRate,Settle,Maturity, ...
Period);

Add a CBond instrument to the existing portfolio set.

ConvRatio = 1.5;
InstSet = instadd(InstSet,'CBond',CouponRate,Settle,Maturity,ConvRatio);
instdisp(InstSet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face
1     Bond 0.035      01-Nov-2013    01-Nov-2014    1      0     1            NaN       NaN             NaN            NaN       100 
2     Bond 0.04       01-Nov-2013    01-Nov-2014    1      0     1            NaN       NaN             NaN            NaN       100 
 
Index Type  CouponRate Settle         Maturity       ConvRatio Period IssueDate FirstCouponDate LastCouponDate StartDate Face Spread CallStrike CallExDates AmericanCall PutStrike PutExDates AmericanPut ConvDates      DefaultProbability RecoveryRate
3     CBond 0.035      01-Nov-2013    01-Nov-2014    1.5       2      NaN       NaN             NaN            NaN       100  NaN    NaN        NaN         0            NaN       NaN        0           01-Nov-2014    NaN                NaN         
4     CBond 0.04       01-Nov-2013    01-Nov-2014    1.5       2      NaN       NaN             NaN            NaN       100  NaN    NaN        NaN         0            NaN       NaN        0           01-Nov-2014    NaN                NaN         
 

[FieldList,ClassList,TypeString] = instcbond

FieldList = 20x1 cell
    {'CouponRate'        }
    {'Settle'            }
    {'Maturity'          }
    {'ConvRatio'         }
    {'Period'            }
    {'IssueDate'         }
    {'FirstCouponDate'   }
    {'LastCouponDate'    }
    {'StartDate'         }
    {'Face'              }
    {'Spread'            }
    {'CallStrike'        }
    {'CallExDates'       }
    {'AmericanCall'      }
    {'PutStrike'         }
    {'PutExDates'        }
    {'AmericanPut'       }
    {'ConvDates'         }
    {'DefaultProbability'}
    {'RecoveryRate'      }
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ClassList = 20x1 cell
    {'cell'}
    {'date'}
    {'date'}
    {'dble'}
    {'dble'}
    {'date'}
    {'date'}
    {'date'}
    {'date'}
    {'cell'}
    {'dble'}
    {'dble'}
    {'date'}
    {'dble'}
    {'dble'}
    {'date'}
    {'dble'}
    {'date'}
    {'dble'}
    {'dble'}

TypeString = 
'CBond'

Input Arguments
CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 positive decimal annual rate or an NINST-by-1 cell
array, where each element is a NumDates-by-2 cell array. The first column of the NumDates-by-2 cell
array is dates and the second column is associated rates. The date indicates the last day that the
coupon rate is valid.
Data Types: double | cell

Settle — Settlement date
scalar for serial nonnegative date number | scalar for date character vector

Settlement date, specified as an NINST-by-1 scalar using a serial nonnegative date number or date
character vector.

Note The Settle date for every convertible bond is set to the ValuationDate of the stock tree.
The bond argument, Settle, is ignored.

Data Types: double | char

Maturity — Maturity date
scalar for serial nonnegative date number | scalar for date character vector

Maturity date, specified as an NINST-by-1 scalar using a serial nonnegative date number or date
character vector.
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Data Types: double | char

ConvRatio — Number of shares convertible to one bond
nonnegative scalar

Number of shares convertible to one bond, specified as an NINST-by-1 nonnegative scalar.
Data Types: double

ISet — Variable containing a collection of instruments
structure

Variable containing a collection of instruments, specified as a structure. Use thus argument to add a
CBond (convertible bond) to an existing instrument set (ISet). Instruments within ISet are broken
down by type, and each type can have different data fields. For more information on theISet
variable, see instget.
Data Types: struct

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: InstSet =
instcbond(CouponRate,Settle,Maturity,ConvRatio,'Spread',Spread,'CallExDates',
CallExDates,'CallStrike',CallStrike,'AmericanCall', 1)

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a NINST-by-1
vector.
Data Types: double

IssueDate — Bond issue date
scalar for serial date number | scalar for date character vector

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a NINST-
by-1 scalar using a serial date number or date character vector.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
scalar for serial date number | scalar for date character vector

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 scalar using a serial date number or date character vector.
Data Types: double | char

LastCouponDate — Irregular last coupon date
scalar for serial date number | scalar for date character vector
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Irregular last coupon date, specified as the comma-separated pair consisting of 'LastCouponDate'
and a NINST-by-1 scalar using a serial date number or date character vector.
Data Types: double | char

Face — Face value
100 (default) | scalar of nonnegative value | cell array of nonnegative values

Face value, specified as the comma-separated pair consisting of 'Face' and a NINST-by-1 scalar of
nonnegative face values or an NINST-by-1 cell array, where each element is a NumDates-by-2 cell
array. The first column of the NumDates-by-2 cell array is dates and the second column is the
associated face value. The date indicates the last day that the face value is valid.
Data Types: cell | double

Spread — Number of basis points over the reference rate
0 (default) | vector

Number of basis points over the reference rate, specified as the comma-separated pair consisting of
'Spread' and a NINST-by-1 vector.
Data Types: double

CallStrike — Call strike price for European, Bermuda, or American option
nonnegative integer | vector of nonnegative integers

Call strike price for European, Bermuda, or American option, specified as the comma-separated pair
consisting of 'CallStrike' and one of the following values:

• For a European call option — NINST-by-1 vector of nonnegative integers
• For a Bermuda call option — NINST-by-NSTRIKES matrix of strike price values, where each row is

the schedule for one call option. If a call option has fewer than NSTRIKES exercise opportunities,
the end of the row is padded with NaNs.

• For an American call option — NINST-by-1 vector of strike price values for each call option.

Data Types: single | double

CallExDates — Call exercise date for European, Bermuda, or American option
serial date number | vector of serial date numbers | date character vector | cell array of date
character vectors

Call exercise date for European, Bermuda, or American option, specified as the comma-separated pair
consisting of 'CallExDates' and one of the following values:

• For a European option — NINST-by-1 vector of serial date numbers or date character vectors.
• For a Bermuda option — NINST-by-NSTRIKES matrix of exercise dates, where each row is the

schedule for one call option. For a European option, there is only one CallExDate on the option
expiry date.

• For an American option — NINST-by-1 or NINST-by-2 matrix of exercise date boundaries. For each
instrument, the call option can be exercised on any tree date between or including the pair of
dates on that row. If CallExDates is NINST-by-1, the call option can be exercised between the
ValuationDate of the stock tree and the single listed CallExDate.

Data Types: double | char | cell
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AmericanCall — Call option type indicator
0 if AmericanCall is NaN or not entered (default) | scalar | vector of positive integers[0,1]

Call option type, specified as the comma-separated pair consisting of 'AmericanCall' and a NINST-
by-1 positive integer scalar flags with values 0 or 1.

• For a European or Bermuda option — AmericanCall is 0 for each European or Bermuda option.
• For an American option — AmericanCall is 1 for each American option. The AmericanCall

argument is required to invoke American exercise rules.

Data Types: single | double

PutStrike — Put strike values for European, Bermuda, or American option
scalar | vector of positive integers[0,1]

Put strike values for a European, Bermuda, or American option, specified as the comma-separated
pair consisting of 'PutStrike' and one of the following values:

• For a European put option — NINST-by-1 vector of nonnegative integers
• For a Bermuda put option — NINST-by-NSTRIKES matrix of strike price values, where each row is

the schedule for one put option. If a put option has fewer than NSTRIKES exercise opportunities,
the end of the row is padded with NaNs.

• For an American put option — NINST-by-1 vector of strike price values for each put option.

Data Types: single | double

PutExDates — Put exercise date for European, Bermuda, or American option
serial date number | vector of serial date numbers | date character vector | cell array of date
character vectors

Put exercise date for a European, Bermuda, or American option, specified as the comma-separated
pair consisting of 'PutExDates' and one of the following values:

• For a European option — NINST-by-1 vector serial date numbers or date character vectors.
• For a Bermuda option — NINST-by-NSTRIKES matrix of exercise dates, where each row is the

schedule for one put option. For a European option, there is only one PutExDate on the option
expiry date.

• For an American option — NINST-by-1 or NINST-by-2 matrix of exercise date boundaries. For each
instrument, the put option can be exercised on any tree date between or including the pair of
dates on that row. If PutExDates is NINST-by-1, the put option can be exercised between the
ValuationDate of the stock tree and the single listed PutExDate.

Data Types: double | char | cell

AmericanPut — Put option type indicator
0 if AmericanPut is NaN or not entered (default) | scalar | vector of positive integers[0,1]

Put option type, specified as the comma-separated pair consisting of 'AmericanPut' and a NINST-
by-1 positive integer scalar flags with values 0 or 1.

• For a European or Bermuda option — AmericanPut is 0 for each European or Bermuda option.
• For an American option — AmericanPut is 1 for each American option. The AmericanPut

argument is required to invoke American exercise rules.
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Data Types: single | double

ConvDates — Convertible dates
MaturityDate (default) | scalar for serial date number | scalar for date character vector

Convertible dates, specified as the comma-separated pair consisting of 'ConvDates' and a NINST-
by-1 or NINST-by-2 matrix of serial nonnegative date numbers or date character vectors. If
ConvDates is not specified, the bond is always convertible until maturity.

For each instrument, the bond can be converted on any tree date between or including the pair of
dates on that row.

If ConvDates is NINST-by-1, the bond can be converted between the ValuationDate of the stock
tree and the single listed ConvDates.
Data Types: single | double | char

Output Arguments
ISet — Variable containing a collection of instruments
character vector | row vector

Variable containing a collection of instruments, returned as a row vector or character vector for each
instrument. Instruments are broken down by type and each type can have different data fields. For
more information on theISet variable, see instget.

FieldList — Name of each data field for instrument type
cell array of character vectors

Name of each data field for instrument type, returned as an NFIELDS-by-1 cell array of character
vectors.

ClassList — Data class of each field
cell array of character vectors with valid values of 'dble', 'date', and 'char'

Data class of each field, returned as an NFIELDS-by-1 cell array of character vectors with valid
character vector values of 'dble', 'date', and 'char'.

TypeString — Type of instrument added
character vector

Type of instrument added, returned as character vector. When adding a CBond, the TypeString =
'CBond'.

See Also
cbondbycrr | instadd | instdisp | cbondbyeqp | crrprice | eqpprice | eqpsens | crrsens

Topics
“Convertible Bond” on page 2-4

Introduced in R2015a
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instcf
Construct cash flow instrument

Syntax
InstSet = instcf(CFlowAmounts,CFlowDates,Settle)
InstSet = instcf(InstSet,CFlowAmounts,CFlowDates,Settle)
InstSet = instcf( ___ ,Basis)
[FieldList,ClassList,TypeString] = instcf

Description
InstSet = instcf(CFlowAmounts,CFlowDates,Settle) creates a new instrument set
containing CashFlow instruments.

InstSet = instcf(InstSet,CFlowAmounts,CFlowDates,Settle) adds CashFlow instruments
to an existing instrument set.

InstSet = instcf( ___ ,Basis) adds an optional argument.

[FieldList,ClassList,TypeString] = instcf lists field meta-data for the CashFlow
instrument.

Examples

Create Two Cash Flow Instruments

Create a new instrument variable with the following information:

CFlowAmounts =[5 NaN 5.5 105; 5 0 6 105];
CFlowDates = [732678, NaN, 733408,733774; 
              732678, 733034, 733408, 734774];
Settle= 'Jan-1-2015';
Basis = 1;

Create the new cash flow instruments.

InstSet = instcf(CFlowAmounts,CFlowDates,Settle,Basis)

InstSet = struct with fields:
        FinObj: 'Instruments'
    IndexTable: [1x1 struct]
          Type: {'CashFlow'}
     FieldName: {{4x1 cell}}
    FieldClass: {{4x1 cell}}
     FieldData: {{4x1 cell}}

Display the cash flow instruments.

instdisp(InstSet)
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Index Type     CFlowAmounts                                CFlowDates                                               Settle         Basis
1     CashFlow 5           NaN           5.5           105 01-Jan-2006      NaN        01-Jan-2008   01-Jan-2009    01-Jan-2015    1    
2     CashFlow 5             0             6           105 01-Jan-2006   23-Dec-2006   01-Jan-2008   28-Sep-2011    01-Jan-2015    1    
 

Input Arguments
InstSet — Instrument variable
structure

Instrument variable, specified only when adding CashFlow instruments to an existing instrument set.
For more information on the InstSet variable, see instget.
Data Types: struct

CFlowAmounts — Cash flow amounts
matrix

Cash flow amounts, specified as a number of instruments (NINST) by maximum number of cash flows
(MOSTCFS) matrix of cash flow amounts. Each row is a list of cash flow values for one instrument. If
an instrument has fewer than MOSTCFS cash flows, the end of the row is padded with NaNs.
Data Types: double

CFlowDates — Cash flow dates
matrix

Cash flow dates, specified as an NINST-by-MOSTCFS matrix. Each entry contains the serial date
number of the corresponding cash flow in CFlowAmounts.
Data Types: double

Settle — Settlement date
serial date number | date character vector

Settlement date on which the cash flows are priced, specified as a scalar serial date number or a date
character vector.
Data Types: double | char

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis, specified as scalar or an NINST-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
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• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Output Arguments
InstSet — Variable containing a collection of instruments
structure

Variable containing a collection of instruments, returned as a structure. Instruments are broken down
by type and each type can have different data fields. Each stored data field has a row vector or string
for each instrument. For more information on the InstSet variable, see instget.

FieldList — Name of each data field for CashFlow instrument
cell array of character vectors

Name of each data field for a CashFlow instrument, returned as an NFIELDS-by-1 cell array of
character vectors.

ClassList — Data class for each field
cell array of character vectors

Data class for each field, returned as an NFIELDS-by-1 cell array of character vectors. The class
determines how arguments are parsed. Valid character vectors are 'dble', 'date', and 'char'.

TypeString — Type of instrument
character vector

Type of instrument, returned as a character vector. For a CashFlow instrument, TypeString =
'CashFlow'.

See Also
instadd | instdisp | instget | intenvprice

Topics
“Creating Instruments or Properties” on page 1-16
“Instrument Constructors” on page 1-15
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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instcompound
Construct compound option

Syntax
InstSet = instcompound(UOptSpec,UStrike,USettle,UExerciseDates,UAmericanOpt,
COptSpec,CStrike,CSettle,CExerciseDates,CAmericanOpt)
InstSet = instcompound(InstSet,UOptSpec,UStrike,USettle,UExerciseDates,
UAmericanOpt,COptSpec,CStrike,CSettle,CExerciseDates,CAmericanOpt)
[FieldList,ClassList,TypeString] = instcompound

Description
InstSet = instcompound(UOptSpec,UStrike,USettle,UExerciseDates,UAmericanOpt,
COptSpec,CStrike,CSettle,CExerciseDates,CAmericanOpt) creates a new instrument set
containing Compound option instruments.

InstSet = instcompound(InstSet,UOptSpec,UStrike,USettle,UExerciseDates,
UAmericanOpt,COptSpec,CStrike,CSettle,CExerciseDates,CAmericanOpt) adds
Compound option instruments to an existing instrument set.

[FieldList,ClassList,TypeString] = instcompound lists field meta-data for the Compound
option instrument.

Examples

Create a Compound Option Instrument

Define a compound option instrument with the following data:

UOptSpec = 'Call';
UStrike = 130;
USettle = '01-Jan-2012';
UExerciseDates = '01-Jan-2015';
UAmericanOpt = 0;
COptSpec = 'Put';
CStrike = 5;
CSettle = '01-Jan-2012';
CExerciseDates = '01-Jan-2014';
CAmericanOpt = 0;

InstSet = instcompound(UOptSpec, UStrike, USettle,UExerciseDates, ...
UAmericanOpt, COptSpec, CStrike, CSettle,CExerciseDates, CAmericanOpt)

InstSet = struct with fields:
        FinObj: 'Instruments'
    IndexTable: [1x1 struct]
          Type: {'Compound'}
     FieldName: {{10x1 cell}}
    FieldClass: {{10x1 cell}}
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     FieldData: {{10x1 cell}}

InstSet = instcompound(UOptSpec, UStrike, USettle,UExerciseDates, ...
UAmericanOpt, COptSpec, CStrike, CSettle,CExerciseDates)

InstSet = struct with fields:
        FinObj: 'Instruments'
    IndexTable: [1x1 struct]
          Type: {'Compound'}
     FieldName: {{10x1 cell}}
    FieldClass: {{10x1 cell}}
     FieldData: {{10x1 cell}}

Display the instrument set.

instdisp(InstSet)

Index Type     UOptSpec UStrike USettle        UExerciseDates UAmericanOpt COptSpec CStrike CSettle        CExerciseDates CAmericanOpt
1     Compound Call     130     01-Jan-2012    01-Jan-2015    0            Put      5       01-Jan-2012    01-Jan-2014    0           
 

Input Arguments
InstSet — Instrument variable
structure

Instrument variable, specified only when adding Compound option instruments to an existing
instrument set. For more information on the InstSet variable, see instget.
Data Types: struct

UOptSpec — Definition of underlying option
character vector with value 'call' or 'put'

Definition of underlying option, specified as 'call' or 'put' using a character vector.
Data Types: char

UStrike — Underlying option strike price value
nonnegative integer

Underlying option strike price value, specified with a nonnegative integer using a 1-by-1 vector.
Data Types: double

USettle — Underlying option settlement date or trade date
serial date number | date character vector

Underlying option settlement date or trade date, specified as a 1-by-1 vector using a serial date
number or character vector.
Data Types: double | char

UExerciseDates — Underlying option exercise date
serial date number | date character vector
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Underlying option exercise date, specified as a serial date number or date character vector:

• For a European option, use a1-by-1 vector of the underlying exercise date. For a European option,
there is only one ExerciseDates on the option expiry date.

• For an American option, use a 1-by-2 vector of the underlying exercise date boundaries. The
option can be exercised on any tree date. If only one non-NaN date is listed, or if ExerciseDates
is 1-by-1, the option can be exercised between ValuationDate of the stock tree and the single
listed ExerciseDates.

Data Types: double | char

UAmericanOpt — Underlying option type
0 European (default) | scalar with values 0 or 1

Underlying option type, specified as NINST-by-1 positive integer scalar flags with values:

• 0 — European
• 1 — American

If UAmericanOpt is a NaN or is unspecified, the option is a European option.
Data Types: double

COptSpec — Definition of compound option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'

Definition of compound option, specified as 'call' or 'put' using a character vector or a cell array
of character vectors with values 'call' or 'put'.
Data Types: char | cell

CStrike — Compound option strike price values
nonnegative integers

Compound option strike price values for a European and American option, specified with a
nonnegative integer using a NINST-by-1 matrix. Each row is the schedule for one option.
Data Types: double

CSettle — Compound option settlement date or trade date
serial date number | date character vector

Compound option settlement date or trade date, specified as a 1-by-1 vector using a serial date
number or date character vector.
Data Types: double | char

CExerciseDates — Compound option exercise dates
serial date number | date character vector

Compound option exercise dates, specified as serial date numbers or date character vectors:

• For a European option, use aNINST-by-1 matrix of the compound exercise dates. Each row is the
schedule for one option. For a European option, there is only one ExerciseDates on the option
expiry date.
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• For an American option, use a NINST-by-2 vector of the compound exercise date boundaries. For
each instrument, the option can be exercised on any tree date between or including the pair of
dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the
option can be exercised between ValuationDate of the stock tree and the single listed
ExerciseDates.

Data Types: double | char

CAmericanOpt — Compound option type
0 European (default) | scalar with values 0 or 1

(Optional) Compound option type, specified as NINST-by-1 positive integer scalar flags with values:

• 0 — European
• 1 — American

If CAmericanOpt is a NaN or is unspecified, the option is a European option.
Data Types: double

Output Arguments
InstSet — Variable containing a collection of instruments
structure

Variable containing a collection of instruments, returned as a structure. Instruments are broken down
by type and each type can have different data fields. Each stored data field has a row vector or string
for each instrument. For more information on the InstSet variable, see instget.

FieldList — Name of each data field for Compound option instrument
cell array of character vectors

Name of each data field for a Compound option instrument, returned as an NFIELDS-by-1 cell array
of character vectors.

ClassList — Data class for each field
cell array of character vectors

Data class for each field, returned as an NFIELDS-by-1 cell array of character vectors. The class
determines how arguments are parsed. Valid character vectors are 'dble', 'date', and 'char'.

TypeString — Type of instrument
character vector

Type of instrument, returned as a character vector. For a Compound option instrument, TypeString
= 'Compound'.

More About
Compound Option

A compound option is basically an option on an option; it gives the holder the right to buy or sell
another option.
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With a compound option, a vanilla stock option serves as the underlying instrument. Compound
options thus have two strike prices and two exercise dates. For more information, see “Compound
Option” on page 3-23.

See Also
instadd | instdisp | instget

Topics
“Creating Instruments or Properties” on page 1-16
“Pricing Equity Derivatives Using Trees” on page 3-64
“Compound Option” on page 3-23
“Supported Equity Derivative Functions” on page 3-19

Introduced before R2006a
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instdelete
Complement of instrument set by matching conditions

Syntax
ISubSet = instdelete(InstSet,Name,Value)

Description
ISubSet = instdelete(InstSet,Name,Value) deletes instruments are from ISubSet if all the
name-value pairs Field, Index, and Type conditions are met. An instrument meets an individual
Field condition if the stored data matches any of the rows listed in the Data.

Examples

Remove Instrument from Instrument Set

Retrieve the instrument set variable ExampleInst from the data file InstSetExamples.mat. The
variable contains three types of instruments: Option, Futures, and TBill.

load InstSetExamples; 
instdisp(ExampleInst)

Index Type   Strike Price Opt  Contracts
1     Option  95    12.2  Call     0    
2     Option 100     9.2  Call     0    
3     Option 105     6.8  Call  1000    
 
Index Type    Delivery       F     Contracts
4     Futures 01-Jul-1999    104.4 -1000    
 
Index Type   Strike Price Opt  Contracts
5     Option 105     7.4  Put  -1000    
6     Option  95     2.9  Put      0    
 
Index Type  Price Maturity       Contracts
7     TBill 99    01-Jul-1999    6        
 

Create a new variable, ISet, with all Options deleted.

ISet = instdelete(ExampleInst, 'Type','Option');
instdisp(ISet) 

Index Type    Delivery       F     Contracts
1     Futures 01-Jul-1999    104.4 -1000    
 
Index Type  Price Maturity       Contracts
2     TBill 99    01-Jul-1999    6        
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Input Arguments
InstSet — Instrument variable for collection of instruments
structure

Instrument variable for a collection of instruments, specified as an instrument set structure.
Instruments are classified by type; each type can have different data fields. The stored data field is a
row vector or character vector for each instrument. For more information on the InstSet variable,
see instget.
Data Types: struct

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: ISet = instdelete(ExampleInst,'Type','Option')

FieldName — Number of fields
vector

Number of fields, specified as the comma-separated pair consisting of 'FieldName' and an
NFIELDS-by-1 cell array of character vectors listing the name of each data field to match with data
values.
Data Types: char | cell

Data — Number of values
vector

Number of values, specified as the comma-separated pair consisting of 'Data' and a NVALUES-by-M
array or NFIELDS-by-1 cell array of acceptable data values for each field. Each row lists a data row
value to search for in the corresponding FieldName. The number of columns is arbitrary and
matching ignores trailing NaNs or spaces.
Data Types: char | cell

Index — Number of instruments
vector

Number of instruments, specified as the comma-separated pair consisting of 'Index' and a NINST-
by-1 vector restricting positions of instruments to check for matches. The default is all indices
available in the instrument variable.
Data Types: char | cell

Type — Number of types
vector

Number of types, specified as the comma-separated pair consisting of 'Type' and a NTYPES-by-1 cell
array of character vectors restricting instruments to match one of types. The default is all types in the
instrument variable.
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Data Types: char | cell

Output Arguments
ISubSet — Updated variable containing a collection of instruments
structure

Updated variable containing a collection of instruments, returned as an instrument set structure.
ISubSet contains instruments not matching the input criteria. Instruments are deleted from
ISubSet if all the Field, Index, and Type conditions are met. An instrument meets an individual
Field condition if the stored data matches any of the rows listed in the Data. See instfind for
more examples on matching criteria.

See Also
instaddfield | instfind | instget | instselect

Topics
“Portfolio Creation Using Functions” on page 1-6
“Instrument Constructors” on page 1-15

Introduced before R2006a
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instdisp
Display instruments

Syntax
CharTable = instdisp(InstSet)

Description
CharTable = instdisp(InstSet) creates a character array displaying the contents of an
instrument collection InstSet. If instdisp is called without an output argument, the table is
displayed in the Command Window.

Note When using instdisp, a value of NaN in one of the columns for an instrument indicates that
the default value for that parameter will be used in the instrument’s pricing function.

Examples

Retrieve Instrument from Instrument Set

Retrieve the instrument set variable ExampleInst from the data file InstSetExamples.mat.
ExampleInst contains three types of instruments: Option, Futures, and TBill.

load InstSetExamples; 
instdisp(ExampleInst)

Index Type   Strike Price Opt  Contracts
1     Option  95    12.2  Call     0    
2     Option 100     9.2  Call     0    
3     Option 105     6.8  Call  1000    
 
Index Type    Delivery       F     Contracts
4     Futures 01-Jul-1999    104.4 -1000    
 
Index Type   Strike Price Opt  Contracts
5     Option 105     7.4  Put  -1000    
6     Option  95     2.9  Put      0    
 
Index Type  Price Maturity       Contracts
7     TBill 99    01-Jul-1999    6        
 

Create a swap instrument and use instdisp to display the instrument. Notice that value of NaN in
two columns for this instrument indicates that the default values for LegReset and LegType
parameters will be used in the swap instrument’s pricing function.

LegRate1 = [0.065, 0];
Settle1 = datenum('jan-1-2007');
Maturity1 = datenum('jan-1-2012');
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ISet = instswap(LegRate1, Settle1, Maturity1);
instdisp(ISet) 

Index Type LegRate    Settle         Maturity       LegReset Basis Principal LegType EndMonthRule StartDate
1     Swap [0.065  0] 01-Jan-2007    01-Jan-2012    [NaN]    0     100       [NaN]   1            NaN      
 

Input Arguments
InstSet — Instrument variable for collection of instruments
structure

Instrument variable for a collection of instruments, specified as an instrument set structure.
Instruments are classified by type; each type can have different data fields. The stored data field is a
row vector or character vector for each instrument. For more information on the InstSet variable,
see instget.
Data Types: struct

Output Arguments
CharTable — Table of instruments
array

Table of instruments, returned as a character array. For each instrument row, the Index and Type
are printed along with the field contents. Field headers are printed at the tops of the columns.

See Also
datestr | num2str | instaddfield | instget | instcbond

Topics
“Portfolio Creation Using Functions” on page 1-6
“Instrument Constructors” on page 1-15

Introduced before R2006a
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instfields
List field names

Syntax
FieldList = instfields(InstSet,Name,Value)

Description
FieldList = instfields(InstSet,Name,Value) retrieves the list of fields stored in an
instrument variable for the name-value pair argument Type.

Examples

Obtain Field Information for Instrument in Instrument Set

Retrieve the instrument set variable ExampleInst from the data file InstSetExamples.mat.
ExampleInst contains three types of instruments: Option, Futures, and TBill.

load InstSetExamples; 
instdisp(ExampleInst)

Index Type   Strike Price Opt  Contracts
1     Option  95    12.2  Call     0    
2     Option 100     9.2  Call     0    
3     Option 105     6.8  Call  1000    
 
Index Type    Delivery       F     Contracts
4     Futures 01-Jul-1999    104.4 -1000    
 
Index Type   Strike Price Opt  Contracts
5     Option 105     7.4  Put  -1000    
6     Option  95     2.9  Put      0    
 
Index Type  Price Maturity       Contracts
7     TBill 99    01-Jul-1999    6        
 

Get the fields listed for type 'Option'.

[FieldList, ClassList] = instfields(ExampleInst, 'Type','Option') 

FieldList = 4x1 cell
    {'Strike'   }
    {'Price'    }
    {'Opt'      }
    {'Contracts'}

ClassList = 4x1 cell
    {'dble'}
    {'dble'}
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    {'char'}
    {'dble'}

Get the fields listed for types 'Option' and 'TBill'.

FieldList = instfields(ExampleInst, 'Type', {'Option', 'TBill'})

FieldList = 5x1 cell
    {'Strike'   }
    {'Opt'      }
    {'Price'    }
    {'Maturity' }
    {'Contracts'}

Get all the fields listed in any type in the variable.

FieldList = instfields(ExampleInst) 

FieldList = 7x1 cell
    {'Delivery' }
    {'F'        }
    {'Strike'   }
    {'Opt'      }
    {'Price'    }
    {'Maturity' }
    {'Contracts'}

Input Arguments
InstSet — Instrument variable for collection of instruments
structure

Instrument variable for a collection of instruments, specified as an instrument set structure.
Instruments are classified by type; each type can have different data fields. The stored data field is a
row vector or character vector for each instrument. For more information on the InstSet variable,
see instget.
Data Types: struct

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: FieldList = instfields(ExampleInst,'Type','Option')

Type — Number of types
vector
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Number of types, specified as the comma-separated pair consisting of 'Type' and a NTYPES-by-1 cell
array of character vectors restricting instruments to match one of the types. The default is all types in
the instrument variable.
Data Types: char | cell

Output Arguments
FieldList — Number of fields
structure

Number of fields, returned as an NFIELDS-by-1 cell array of character vectors listing the name of
each data field corresponding to the listed Type.

See Also
instdisp | instlength | insttypes

Topics
“Portfolio Creation Using Functions” on page 1-6
“Instrument Constructors” on page 1-15

Introduced before R2006a
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instfind
Search instruments for matching conditions

Syntax
IndexMatch = instfind(InstSet,'Field','Data')
IndexMatch = instfind( ___ ,Name,Value)

Description
IndexMatch = instfind(InstSet,'Field','Data') returns indices of instruments matching
name-value pair arguments for 'Field' and 'Data'.

IndexMatch = instfind( ___ ,Name,Value) adds optional name-value pair arguments for
Index and Type.

Examples

Search Instruments in Instrument Set for Matching Information

Retrieve the instrument set variable ExampleInst from the data file InstSetExamples.mat.
ExampleInst contains three types of instruments: Option, Futures, and TBill.

load InstSetExamples; 
instdisp(ExampleInst)

Index Type   Strike Price Opt  Contracts
1     Option  95    12.2  Call     0    
2     Option 100     9.2  Call     0    
3     Option 105     6.8  Call  1000    
 
Index Type    Delivery       F     Contracts
4     Futures 01-Jul-1999    104.4 -1000    
 
Index Type   Strike Price Opt  Contracts
5     Option 105     7.4  Put  -1000    
6     Option  95     2.9  Put      0    
 
Index Type  Price Maturity       Contracts
7     TBill 99    01-Jul-1999    6        
 

Make a vector, Opt95, containing the indexes within ExampleInst of the options struck at 95.

Opt95 = instfind(ExampleInst, 'FieldName','Strike','Data','95')

Opt95 = 2×1

     1
     6
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Locate the futures and Treasury bill instruments within ExampleInst.

Types = instfind(ExampleInst,'Type',{'Futures';'TBill'})

Types = 2×1

     4
     7

Input Arguments
InstSet — Instrument variable for collection of instruments
structure

Instrument variable for a collection of instruments, specified as an instrument set structure.
Instruments are classified by type; each type can have different data fields. The stored data field is a
row vector or character vector for each instrument. For more information on the InstSet variable,
see instget.
Data Types: struct

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: IndexMatch = instfind(ExampleInst,'Type',{'Futures';'TBill'})

Field — Number of fields
vector

Number of fields, specified as the comma-separated pair consisting of 'FieldName' and an
NFIELDS-by-1 cell array of character vectors listing the name of each data field to match with data
values.
Data Types: char | cell

Data — Number of values
vector

Number of values, specified as the comma-separated pair consisting of 'Data' and a NVALUES-by-M
array or NFIELDS-by-1 cell array of acceptable data values for each field. Each row lists a data row
value to search for in the corresponding FieldName. The number of columns is arbitrary and
matching ignores trailing NaNs or spaces.
Data Types: char | cell

Index — Number of instruments
vector
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Number of instruments, specified as the comma-separated pair consisting of 'Index' and a NINST-
by-1 vector restricting positions of instruments to check for matches. The default is all indices
available in the instrument variable.
Data Types: char | cell

Type — Number of types
vector

Number of types, specified as the comma-separated pair consisting of 'Type' and a NTYPES-by-1 cell
array of character vectors restricting instruments to match one of types. The default is all types in the
instrument variable.
Data Types: char | cell

Output Arguments
IndexMatch — Positions of instruments matching the input criteria
structure

Positions of instruments matching the input criteria, returned as an NINST-by-1 vector of positions of
instruments matching the input criteria. Instruments are returned in IndexMatch if all the Field,
Index, and Type conditions are met.

See Also
instaddfield | instget | instgetcell | instselect

Topics
“Portfolio Creation Using Functions” on page 1-6
“Searching or Subsetting a Portfolio” on page 1-17
“Instrument Constructors” on page 1-15

Introduced before R2006a
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instfixed
Construct fixed-rate instrument

Syntax
InstSet = instfixed(CouponRate,Settle,Maturity)
InstSet = instfixed(InstSet,CouponRate,Settle,Maturity)
InstSet = instfixed( ___ ,FixedReset,Basis,Principal,EndMonthRule)
[FieldList,ClassList,TypeString] = instfixed

Description
InstSet = instfixed(CouponRate,Settle,Maturity) creates a new instrument set
containing Fixed-Rate instruments.

InstSet = instfixed(InstSet,CouponRate,Settle,Maturity) adds Fixed-Rate instruments
to an existing instrument set.

InstSet = instfixed( ___ ,FixedReset,Basis,Principal,EndMonthRule) adds optional
arguments.

[FieldList,ClassList,TypeString] = instfixed lists field meta-data for the Fixed-Rate
instrument.

Examples

Create a Fixed-Rate Instrument

Define the characteristics of the fixed-rate instrument.

CouponRate = .03;
Settle = datenum('15-Mar-2013');
Maturity = datenum('15-Mar-2018');
FixedReset = 4;
Basis = 1;
Principal = 1000;
EndMonthRule = 1;

Create the new cap instrument.

ISet = instfixed(CouponRate, Settle, Maturity, FixedReset, Basis, Principal,EndMonthRule)

ISet = struct with fields:
        FinObj: 'Instruments'
    IndexTable: [1x1 struct]
          Type: {'Fixed'}
     FieldName: {{7x1 cell}}
    FieldClass: {{7x1 cell}}
     FieldData: {{7x1 cell}}
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Display the fixed-rate instrument.

instdisp(ISet)

Index Type  CouponRate Settle         Maturity       FixedReset Basis Principal EndMonthRule
1     Fixed 0.03       15-Mar-2013    15-Mar-2018    4          1     1000      1           
 

Input Arguments
InstSet — Instrument variable
structure

Instrument variable, specified only when adding Cap instruments to an existing instrument set. For
more information on the InstSet variable, see instget.
Data Types: struct

CouponRate — Coupon annual rate
decimal

Coupon annual rate, specified as a scalar or an NINST-by-1 vector.
Data Types: double

Settle — Settlement date
serial date number | character vector

Settlement date for the fixed-rate instrument, specified as a scalar or an NINST-by-1 vector of serial
date numbers or date character vectors.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector

Maturity date, specified as a scalar or an NINST-by-1 vector of serial date numbers or date character
vectors representing the maturity date for each fixed-rate note.
Data Types: char | double

FixedReset — Frequency of payments per year
1 (default) | vector

(Optional) Frequency of payments per year, specified as a scalar or an NINST-by-1 vector.
Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day count basis, specified as a scalar or an NINST-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
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• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amounts or principal value schedules
100 (default) | vector or cell array

(Optional) Notional principal amounts, specified as a scalar, vector, or cell array.

Principal accepts a NINST-by-1 vector or NINST-by-1 cell array, where each element of the cell
array is a NumDates-by-2 cell array and the first column is dates and the second column is its
associated notional principal value. The date indicates the last day that the principal value is valid.
Data Types: cell | double

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

(Optional) End-of-month rule flag for generating dates when Maturity is an end-of-month date for a
month having 30 or fewer days, specified as a nonnegative integer 0 or 1 using a scalar or an NINST-
by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

Output Arguments
InstSet — Variable containing a collection of instruments
structure

Variable containing a collection of instruments, returned as a structure. Instruments are broken down
by type and each type can have different data fields. Each stored data field has a row vector or string
for each instrument. For more information on the InstSet variable, see instget.
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FieldList — Name of each data field for Fixed-Rate instrument
cell array of character vectors

Name of each data field for a Fixed-Rate instrument, returned as an NFIELDS-by-1 cell array of
character vectors.

ClassList — Data class for each field
cell array of character vectors

Data class for each field, returned as an NFIELDS-by-1 cell array of character vectors. The class
determines how arguments are parsed. Valid character vectors are 'dble', 'date', and 'char'.

TypeString — Type of instrument
character vector

Type of instrument, returned as a character vector. For a Fixed-Rate instrument, TypeString =
'Fixed'.

More About
Fixed-Rate Note

A fixed-rate note is a long-term debt security with a preset interest rate and maturity, by which the
interest must be paid.

The principal may or may not be paid at maturity. In Financial Instruments Toolbox, the principal is
always paid at maturity. For more information, see “Fixed-Rate Note” on page 2-9.

See Also
hjmprice | instaddfield | instbond | instcap | instdisp | instswap | intenvprice

Topics
“Creating Instruments or Properties” on page 1-16
“Supported Interest-Rate Instrument Functions” on page 2-3
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced before R2006a
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instfloat
Construct floating-rate instrument

Syntax
InstSet = instfloat(Spread,Settle,Maturity)
InstSet = instfloat(InstSet,Spread,Settle,Maturity)
InstSet = instfloat( ___ ,FloatReset,Basis,Principal,EndMonthRule,CapRate,
FloorRate)
[FieldList,ClassList,TypeString] = instfixed

Description
InstSet = instfloat(Spread,Settle,Maturity) creates a new instrument set containing
Float instruments.

InstSet = instfloat(InstSet,Spread,Settle,Maturity) adds Float instruments to an
existing instrument set.

InstSet = instfloat( ___ ,FloatReset,Basis,Principal,EndMonthRule,CapRate,
FloorRate) adds optional arguments.

[FieldList,ClassList,TypeString] = instfixed lists field meta-data for the Float
instrument.

Examples

Create a Floating-Rate Instrument

Define the characteristics of the floating-rate instrument.

Spread = 2;
Settle = datenum('15-Mar-2013');
Maturity = datenum('15-Mar-2018');
FloatReset = 4;
Basis = 1;
Principal = 1000;
EndMonthRule = 1;
CapRate = 0.35;
FloorRate = 0.27;

Create the new floating-rate instrument.

ISet = instfloat(Spread, Settle, Maturity, FloatReset, Basis, Principal, ...
EndMonthRule, CapRate, FloorRate)

ISet = struct with fields:
        FinObj: 'Instruments'
    IndexTable: [1x1 struct]
          Type: {'Float'}
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     FieldName: {{9x1 cell}}
    FieldClass: {{9x1 cell}}
     FieldData: {{9x1 cell}}

Display the floating-rate instrument.

instdisp(ISet)

Index Type  Spread Settle         Maturity       FloatReset Basis Principal EndMonthRule CapRate FloorRate
1     Float 2      15-Mar-2013    15-Mar-2018    4          1     1000      1            0.35    0.27     
 

Input Arguments
InstSet — Instrument variable
structure

Instrument variable, specified only when adding Float instruments to an existing instrument set. For
more information on the InstSet variable, see instget.
Data Types: struct

Spread — Number of basis points over the reference rate
vector

Number of basis points over the reference rate, specified as a scalar or an NINST-by-1 vector.
Data Types: double

Settle — Settlement date
serial date number | character vector

Settlement date, specified as a scalar or an NINST-by-1 vector of serial date numbers or date
character vectors.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector

Maturity date, specified as a scalar or an NINST-by-1 vector of serial date numbers or date character
vectors representing the maturity date for each floating-rate note.
Data Types: char | double

FloatReset — Frequency of payments per year
1 (default) | vector

(Optional) Frequency of payments per year, specified as a scalar or an NINST-by-1 vector.
Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day count basis, specified as a scalar or an NINST-by-1 vector.
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• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amounts or principal value schedules
100 (default) | vector or cell array

(Optional) Notional principal amounts, specified as a scalar, vector, or cell array.

Principal accepts a NINST-by-1 vector or NINST-by-1 cell array, where each element of the cell
array is a NumDates-by-2 cell array and the first column is dates and the second column is its
associated notional principal value. The date indicates the last day that the principal value is valid.
Data Types: cell | double

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

(Optional) End-of-month rule flag for generating dates when Maturity is an end-of-month date for a
month having 30 or fewer days, specified a scalar nonnegative integer 0 or 1 or an NINST-by-1
vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

CapRate — Annual cap rate
decimal

(Optional) Annual cap rate, specified as a scalar or an NINST-by-1 decimal annual rate or NINST-by-1
cell array, where each element is a NumDates-by-2 cell array, and the cell array first column is dates,
and the second column is associated cap rates. The date indicates the last day that the cap rate is
valid.
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Data Types: double | cell

FloorRate — Annual floor rate
decimal

(Optional) Annual floor rate, specified as a scalar or an NINST-by-1 decimal annual rate or NINST-
by-1 cell array, where each element is a NumDates-by-2 cell array, and the cell array first column is
dates, and the second column is associated floor rates. The date indicates the last day that the floor
rate is valid.
Data Types: double | cell

Output Arguments
InstSet — Variable containing a collection of instruments
structure

Variable containing a collection of instruments, returned as a structure. Instruments are broken down
by type and each type can have different data fields. Each stored data field has a row vector or string
for each instrument. For more information on the InstSet variable, see instget.

FieldList — Name of each data field for Float instrument
cell array of character vectors

Name of each data field for a Float instrument, returned as an NFIELDS-by-1 cell array of character
vectors.

ClassList — Data class for each field
cell array of character vectors

Data class for each field, returned as an NFIELDS-by-1 cell array of character vectors. The class
determines how arguments are parsed. Valid character vectors are 'dble', 'date', and 'char'.

TypeString — Type of instrument
character vector

Type of instrument, returned as a character vector. For a Float instrument, TypeString =
'Float'.

More About
Floating-Rate Note

A floating-rate note is a security like a bond, but the interest rate of the note is reset periodically,
relative to a reference index rate, to reflect fluctuations in market interest rates.

See Also
hjmprice | instaddfield | instbond | instcap | instdisp | instswap | intenvprice

Topics
“Creating Instruments or Properties” on page 1-16
“Supported Interest-Rate Instrument Functions” on page 2-3
“Choose Instruments, Models, and Pricers” on page 1-53
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Introduced in R2012b
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instfloor
Construct floor instrument

Syntax
InstSet = instfloor(Strike,Settle,Maturity)
InstSet = instfloor(InstSet,Strike,Settle,Maturity)
InstSet = instfloor( ___ ,FloorReset,Basis,Principal)
[FieldList,ClassList,TypeString] = instfloor

Description
InstSet = instfloor(Strike,Settle,Maturity) creates a new instrument set containing
Floor instruments.

InstSet = instfloor(InstSet,Strike,Settle,Maturity) adds Floor instruments to an
existing instrument set.

InstSet = instfloor( ___ ,FloorReset,Basis,Principal) adds optional arguments.

[FieldList,ClassList,TypeString] = instfloor lists field meta-data for the Floor
instrument.

Examples

Create a Floor Instrument

Define the characteristics of the floor instrument.

Strike = 0.22;
Settle = datenum('15-Mar-2013');
Maturity = datenum('15-Mar-2018');
FloorReset = 4;
Basis = 1;
Principal = 1000;

Create the new floor instrument.

ISet = instfloor(Strike, Settle, Maturity, FloorReset, Basis, Principal)

ISet = struct with fields:
        FinObj: 'Instruments'
    IndexTable: [1x1 struct]
          Type: {'Floor'}
     FieldName: {{6x1 cell}}
    FieldClass: {{6x1 cell}}
     FieldData: {{6x1 cell}}

Display the floor instrument.
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instdisp(ISet)

Index Type  Strike Settle         Maturity       FloorReset Basis Principal
1     Floor 0.22   15-Mar-2013    15-Mar-2018    4          1     1000     
 

Input Arguments
InstSet — Instrument variable
structure

Instrument variable, specified only when adding Floor instruments to an existing instrument set. For
more information on the InstSet variable, see instget.
Data Types: struct

Strike — Rate at which floor is exercised
decimal

Rate at which the floor is exercised, specified as a scalar or an NINST-by-1 vector of decimal values.
Data Types: double

Settle — Settlement date for floor
serial date number | date character vector | cell array of date character vectors

Settlement date for the floor, specified as a scalar or an NINST-by-1 vector of serial date numbers or
date character vectors.
Data Types: double | char | cell

Maturity — Maturity date for floor
serial date number | date character vector | cell array of date character vectors

Maturity date for the floor, specified as a scalar or an NINST-by-1 vector of serial date numbers or
date character vectors.
Data Types: double | char | cell

FloorReset — Reset frequency payment per year
1 (default) | numeric

(Optional) Reset frequency payment per year, specified as a scalar or an NINST-by-1 vector.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis, specified as a scalar or an NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
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• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

(Optional) Notional principal amount, specified as a scalar or an NINST-by-1 of notional principal
amounts, or a NINST-by-1 cell array, where each element is a NumDates-by-2 cell array where the
first column is dates and the second column is associated principal amount. The date indicates the
last day that the principal value is valid.

Use Principal to pass a schedule to compute the price for an amortizing floor.
Data Types: double | cell

Output Arguments
InstSet — Variable containing a collection of instruments
structure

Variable containing a collection of instruments, returned as a structure. Instruments are broken down
by type and each type can have different data fields. Each stored data field has a row vector or string
for each instrument. For more information on the InstSet variable, see instget.

FieldList — Name of each data field for Floor instrument
cell array of character vectors

Name of each data field for a Floor instrument, returned as an NFIELDS-by-1 cell array of character
vectors.

ClassList — Data class for each field
cell array of character vectors

Data class for each field, returned as an NFIELDS-by-1 cell array of character vectors. The class
determines how arguments are parsed. Valid character vectors are 'dble', 'date', and 'char'.

TypeString — Type of instrument
character vector
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Type of instrument, returned as a character vector. For a Floor instrument, TypeString =
'Floor'.

More About
Floor

A floor is a contract that includes a guarantee setting the minimum interest rate to be received by the
holder, based on an otherwise floating interest rate.

The payoff for a floor is:

max(FloorRate− CurrentRate, 0)

See Also
hjmprice | instaddfield | instbond | instcap | instdisp | instswap | intenvprice

Topics
“Creating Instruments or Properties” on page 1-16
“Supported Interest-Rate Instrument Functions” on page 2-3
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced before R2006a
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instget
Data from instrument variable

Syntax
Data = instget(InstSet,Name,Value)

Description
Data = instget(InstSet,Name,Value) retrieves Data from an instrument variable.

Examples

Retrieve Data Arrays From Instrument Variable

Retrieve the instrument set ExampleInst from the data file InstSetExamples.mat. ExampleInst
contains three types of instruments: Option, Futures, and TBill.

load InstSetExamples; 
instdisp(ExampleInst)

Index Type   Strike Price Opt  Contracts
1     Option  95    12.2  Call     0    
2     Option 100     9.2  Call     0    
3     Option 105     6.8  Call  1000    
 
Index Type    Delivery       F     Contracts
4     Futures 01-Jul-1999    104.4 -1000    
 
Index Type   Strike Price Opt  Contracts
5     Option 105     7.4  Put  -1000    
6     Option  95     2.9  Put      0    
 
Index Type  Price Maturity       Contracts
7     TBill 99    01-Jul-1999    6        
 

Extract the price from all instruments.

P = instget(ExampleInst,'FieldName','Price')

P = 7×1

   12.2000
    9.2000
    6.8000
       NaN
    7.4000
    2.9000
   99.0000
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Get all the prices and the number of contracts held.

[P,C] = instget(ExampleInst, 'FieldName', {'Price', 'Contracts'})

P = 7×1

   12.2000
    9.2000
    6.8000
       NaN
    7.4000
    2.9000
   99.0000

C = 7×1

           0
           0
        1000
       -1000
       -1000
           0
           6

Compute a value V. Create a new variable ISet that appends V to ExampleInst.

V = P.*C 

V = 7×1

           0
           0
        6800
         NaN
       -7400
           0
         594

ISet = instsetfield(ExampleInst, 'FieldName', 'Value', 'Data',V); 
instdisp(ISet) 

Index Type   Strike Price Opt  Contracts Value
1     Option  95    12.2  Call     0         0
2     Option 100     9.2  Call     0         0
3     Option 105     6.8  Call  1000      6800
 
Index Type    Delivery       F     Contracts Value
4     Futures 01-Jul-1999    104.4 -1000     NaN  
 
Index Type   Strike Price Opt  Contracts Value
5     Option 105     7.4  Put  -1000     -7400
6     Option  95     2.9  Put      0         0
 
Index Type  Price Maturity       Contracts Value
7     TBill 99    01-Jul-1999    6         594  
 

 instget

11-803



Look at only the instruments that have nonzero Contracts.

Ind = find(C ~= 0)

Ind = 4×1

     3
     4
     5
     7

Get the Type and Opt parameters from those instruments. (Only options have a stored 'Opt' field.)

[T,O] = instget(ExampleInst, 'Index', Ind, 'FieldName',{'Type', 'Opt'})

T = 4x7 char array
    'Option '
    'Futures'
    'Option '
    'TBill  '

O = 4x4 char array
    'Call'
    '    '
    'Put '
    '    '

Create a report of holdings Type, Opt, and Value.

rstring = [T, O, num2str(V(Ind))] 

rstring = 4x16 char array
    'Option Call 6800'
    'Futures      NaN'
    'Option Put -7400'
    'TBill        594'

Input Arguments
InstSet — Instrument variable
structure

Instrument variable containing a collection of instruments, specified as InstSet structure.
Instruments are classified by type; each type can have different data fields. The stored data field is a
row vector or character vector for each instrument.
Data Types: struct

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
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Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Data = instget(ExampleInst,'FieldName','Price')

FieldName — Name of each data field for instrument
all fields available for returned set of instruments (default) | cell array of character vectors

Name of each data field for an instrument, specified as the comma-separated pair consisting of
'FieldName' and an NFIELDS-by-1 cell array of character vectors. FieldName entries can also be
either Type or Index; these return type strings and index numbers respectively.
Data Types: char | cell

Index — Number of instruments
all indices available in instrument variable (default) | vector

Number of instruments, specified as the comma-separated pair consisting of 'Index' and an NINST-
by-1 vector of positions of instruments to work on. If Type is also entered, instruments referenced
must be one of the types and contained in Index.
Data Types: double

Type — Number of types
all types in the instrument variable (default) | character vector

Number of types, specified as the comma-separated pair consisting of 'Type' and a NTYPES-by-1 cell
array of character vectors restricting instruments worked on to match one of Type types.
Data Types: char | cell

Output Arguments
Data — Data contents
array

Data content, returned as an NINST-by-M array of data contents for the first field in FieldName. Each
row corresponds to a separate instrument in the specified Index. Unavailable data is returned as
NaN or as spaces.

See Also
instaddfield | instdisp | intenvprice | instgetcell

Topics
“Portfolio Creation Using Functions” on page 1-6
“Instrument Constructors” on page 1-15

Introduced before R2006a
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instgetcell
Data and context from instrument variable

Syntax
[DataList,FieldList,ClassList,IndexSet,TypeSet] = instgetcell(InstSet,
Name,Value)

Description
[DataList,FieldList,ClassList,IndexSet,TypeSet] = instgetcell(InstSet,
Name,Value) retrieves data and context from an instrument variable.

Note instgetcell is best used for programming where the structure of the instrument variable is
not known. instget gives more direct access to the data in a variable.

Examples

Retrieve Data and Context from Instrument Variable

Retrieve the instrument set ExampleInst from the data file InstSetExamples.mat. ExampleInst
contains three types of instruments: Option, Futures, and TBill.

load InstSetExamples; 
instdisp(ExampleInst)

Index Type   Strike Price Opt  Contracts
1     Option  95    12.2  Call     0    
2     Option 100     9.2  Call     0    
3     Option 105     6.8  Call  1000    
 
Index Type    Delivery       F     Contracts
4     Futures 01-Jul-1999    104.4 -1000    
 
Index Type   Strike Price Opt  Contracts
5     Option 105     7.4  Put  -1000    
6     Option  95     2.9  Put      0    
 
Index Type  Price Maturity       Contracts
7     TBill 99    01-Jul-1999    6        
 

Get the prices and contracts from all instruments.

FieldList = {'Price'; 'Contracts'} 

FieldList = 2x1 cell
    {'Price'    }
    {'Contracts'}
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DataList = instgetcell(ExampleInst, 'FieldName', FieldList ) 

DataList=2×1 cell array
    {7x1 double}
    {7x1 double}

P = DataList{1} 

P = 7×1

   12.2000
    9.2000
    6.8000
       NaN
    7.4000
    2.9000
   99.0000

C = DataList{2}

C = 7×1

           0
           0
        1000
       -1000
       -1000
           0
           6

Get all the option data: Strike, Price, Opt, Contracts.

[DataList, FieldList, ClassList] = instgetcell(ExampleInst,'Type','Option')

DataList=4×1 cell array
    {5x1 double}
    {5x1 double}
    {5x4 char  }
    {5x1 double}

FieldList = 4x1 cell
    {'Strike'   }
    {'Price'    }
    {'Opt'      }
    {'Contracts'}

ClassList = 4x1 cell
    {'dble'}
    {'dble'}
    {'char'}
    {'dble'}

Look at the data as a comma-separated list.
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DataList{:}

ans = 5×1

    95
   100
   105
   105
    95

ans = 5×1

   12.2000
    9.2000
    6.8000
    7.4000
    2.9000

ans = 5x4 char array
    'Call'
    'Call'
    'Call'
    'Put '
    'Put '

ans = 5×1

           0
           0
        1000
       -1000
           0

Input Arguments
InstSet — Instrument variable
structure

Instrument variable containing a collection of instruments, specified as InstSet structure.
Instruments are classified by type; each type can have different data fields. The stored data field is a
row vector or character vector for each instrument.
Data Types: struct

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: DataList = instgetcell(ExampleInst,'FieldName',FieldList)
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FieldName — Name of each data field for instrument
all fields available for returned set of instruments (default) | cell array of character vectors

Name of each data field for an instrument, specified as the comma-separated pair consisting of
'FieldName' and an NFIELDS-by-1 cell array of character vectors. FieldName entries can also be
either Type or Index; these return type strings and index numbers respectively.
Data Types: char | cell

Index — Number of instruments
all indices available in instrument variable (default) | vector

Number of instruments, specified as the comma-separated pair consisting of 'Index' and an NINST-
by-1 vector of positions of instruments to work on. If Type is also entered, instruments referenced
must be one of the types and contained in Index.
Data Types: double

Type — Number of types
all types in the instrument variable (default) | character vector

Number of types, specified as the comma-separated pair consisting of 'Type' and a NTYPES-by-1 cell
array of character vectors restricting instruments worked on to match one of Type types.
Data Types: char | cell

Output Arguments
DataList — Data contents for each field
cell array

Data content for each field, returned as an NFIELDS-by-1 cell array of data contents for each field.
Each cell is an NINST-by-M array, where each row corresponds to a separate instrument in IndexSet.
Any data which is not available is returned as NaN or as spaces.

FieldList — Name of each field in DataList
cell array

Name of each field in DataList, returned as an NFIELDS-by-1 cell array of character vectors.

ClassList — Data class of each field
array

Data class of each field, returned as an NFIELDS-by-1 cell array of character vectors. The class
determines how arguments are parsed. Valid character vectors are 'dble', 'date', and 'char'.

IndexSet — Positions of instruments
cell array

Positions of instruments, returned as an NINST-by-1 vector of positions of instruments returned in
DataList.

TypeSet — Type of each instrument
cell array
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Type of each instrument, returned as an NINST-by-1 cell array of character vectors listing the type of
each instrument row returned in DataList.

See Also
instaddfield | instdisp | instget

Topics
“Portfolio Creation Using Functions” on page 1-6
“Instrument Constructors” on page 1-15

Introduced before R2006a
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instlength
Count instruments

Syntax
NInst = instlength(InstSet)

Description
NInst = instlength(InstSet) computes NInst, the number of instruments contained in the
variable InstSet.

Examples

Count Instruments in Instrument Variable

Retrieve the instrument set ExampleInst from the data file InstSetExamples.mat. ExampleInst
contains three types of instruments: Option, Futures, and TBill.

load InstSetExamples; 
instdisp(ExampleInst)

Index Type   Strike Price Opt  Contracts
1     Option  95    12.2  Call     0    
2     Option 100     9.2  Call     0    
3     Option 105     6.8  Call  1000    
 
Index Type    Delivery       F     Contracts
4     Futures 01-Jul-1999    104.4 -1000    
 
Index Type   Strike Price Opt  Contracts
5     Option 105     7.4  Put  -1000    
6     Option  95     2.9  Put      0    
 
Index Type  Price Maturity       Contracts
7     TBill 99    01-Jul-1999    6        
 

Count the number of instruments contained in the variable ExampleInst.

NInst = instlength(ExampleInst)

NInst = 7

Input Arguments
InstSet — Instrument variable
structure
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Instrument variable containing a collection of instruments, specified as InstSet structure.
Instruments are classified by type; each type can have different data fields. The stored data field is a
row vector or character vector for each instrument.
Data Types: struct

Output Arguments
NInst — Number of instruments in InstSet
numeric

Number of instruments in InstSet, returned as a numeric value.

See Also
instdisp | instfields | insttypes

Topics
“Portfolio Creation Using Functions” on page 1-6
“Instrument Constructors” on page 1-15

Introduced before R2006a
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instlookback
Construct lookback option

Syntax
InstSet = instlookback(OptSpec,Strike,Settle,ExerciseDates)
InstSet = instlookback(InstSet,OptSpec,Strike,Settle,ExerciseDates)
InstSet = instlookback( ___ ,AmericanOpt)
[FieldList,ClassList,TypeString] = instlookback

Description
InstSet = instlookback(OptSpec,Strike,Settle,ExerciseDates) creates a new
instrument set containing Lookback instruments.

InstSet = instlookback(InstSet,OptSpec,Strike,Settle,ExerciseDates) adds
Lookback instruments to an existing instrument set.

InstSet = instlookback( ___ ,AmericanOpt) adds an optional argument.

[FieldList,ClassList,TypeString] = instlookback lists field meta-data for the Lookback
instrument.

Examples

Create a Lookback Option Instrument

Define a floating strike lookback instrument with the following data:

OptSpec = 'call';
Strike = NaN;
Settle = '01-Jan-2012';
ExerciseDates = '01-Jan-2015';

Create the instrument set.

InstSet = instlookback(OptSpec, Strike, Settle, ExerciseDates);

Display the lookback instrument.

instdisp(InstSet)

Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt
1     Lookback call    NaN    01-Jan-2012    01-Jan-2015    0          
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Input Arguments
InstSet — Instrument variable
structure

Instrument variable, specified only when adding Lookback instruments to an existing instrument set.
For more information on the InstSet variable, see instget.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'

Definition of option, specified as a scalar 'call' or 'put' using a character vector or an NINST-by-1
cell array of character vectors for 'call' or 'put'.
Data Types: char | cell

Strike — Option strike price value
matrix of nonnegative integers

Option strike price value, specified as a scalar nonnegative integer or an NINST-by-1 matrix of strike
price values. Each row is the schedule for one option.
Data Types: double

Settle — Settlement date or trade date
serial date number | date character vector

Settlement date or trade date for the lookback option, specified as a scalar or an NINST-by-1 matrix
of settlement or trade dates using serial date numbers or date character vectors.
Data Types: double | char

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a scalar, matrix, or vector using serial date numbers or date
character vectors:

• For a European option, use an NINST-by-1 matrix of exercise dates. Each row is the schedule for
one option. For a European option, there is only one ExerciseDates on the option expiry date.

• For an American option, use a NINST-by-2 vector of exercise date boundaries. The option can be
exercised on any tree date between or including the pair of dates on that row. If only one non-NaN
date is listed, or if ExerciseDates is a NINST-by-1 vector of serial date numbers or cell array of
character vectors, the option can be exercised between ValuationDate of the stock tree and the
single listed ExerciseDates.

Data Types: double | char

AmericanOpt — Option type
0 European (default) | integer with values 0 or 1

(Optional) Option type, specified as a scalar or an NINST-by-1 integer flags with values:
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• 0 — European
• 1 — American

Data Types: single | double

Output Arguments
InstSet — Variable containing a collection of instruments
structure

Variable containing a collection of instruments, returned as a structure. Instruments are broken down
by type and each type can have different data fields. Each stored data field has a row vector or string
for each instrument. For more information on the InstSet variable, see instget.

FieldList — Name of each data field for Lookback instrument
cell array of character vectors

Name of each data field for a Lookback instrument, returned as an NFIELDS-by-1 cell array of
character vectors.

ClassList — Data class for each field
cell array of character vectors

Data class for each field, returned as an NFIELDS-by-1 cell array of character vectors. The class
determines how arguments are parsed. Valid character vectors are 'dble', 'date', and 'char'.

TypeString — Type of instrument
character vector

Type of instrument, returned as a character vector. For a Lookback instrument, TypeString =
'Lookback'.

More About
Lookback Option

A lookback option is a path-dependent option based on the maximum or minimum value the
underlying asset achieves during the entire life of the option.

Financial Instruments Toolbox software supports two types of lookback options: fixed and floating.
Fixed lookback options have a specified strike price, while floating lookback options have a strike
price determined by the asset path. For more information, see “Lookback Option” on page 3-39.

See Also
instadd | instdisp | instget

Topics
“Pricing Equity Derivatives Using Trees” on page 3-64
“Creating Instruments or Properties” on page 1-16
“Supported Equity Derivative Functions” on page 3-19
“Choose Instruments, Models, and Pricers” on page 1-53
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Introduced before R2006a
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instoptbnd
Construct bond option

Syntax
InstSet = instoptbnd(BondIndex,OptSpec,Strike,ExerciseDates)
InstSet = instoptbnd(InstSet,BondIndex,OptSpec,Strike,ExerciseDates)
InstSet = instoptbnd( ___ ,AmericanOpt)
[FieldList,ClassList,TypeString] = instoptbnd

Description
InstSet = instoptbnd(BondIndex,OptSpec,Strike,ExerciseDates) creates a new
instrument set containing Bond option instruments.

InstSet = instoptbnd(InstSet,BondIndex,OptSpec,Strike,ExerciseDates) adds Bond
option instruments to an existing instrument set.

InstSet = instoptbnd( ___ ,AmericanOpt) adds an optional argument.

[FieldList,ClassList,TypeString] = instoptbnd lists field meta-data for the Bond option
instrument.

Examples

Create a Bond Option Instrument

Create a new instrument variable with the following information:

BondIndex = 1;
OptSpec = 'call';
Strike= 85;
ExerciseDates = 'Nov-1-2014'; 
AmericanOpt = 1;
CouponRate= [0.035;0.04];
Settle= 'Nov-1-2013'; 
Maturity = 'Nov-1-2014'; 
Period =1;

Create the instrument portfolio with two bonds.

InstSet = instbond(CouponRate, Settle, Maturity, ...
Period)

InstSet = struct with fields:
        FinObj: 'Instruments'
    IndexTable: [1x1 struct]
          Type: {'Bond'}
     FieldName: {{11x1 cell}}
    FieldClass: {{11x1 cell}}
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     FieldData: {{11x1 cell}}

Create an option on the first bond

InstSet = instoptbnd(InstSet, BondIndex, OptSpec, Strike, ExerciseDates, AmericanOpt)

InstSet = struct with fields:
        FinObj: 'Instruments'
    IndexTable: [1x1 struct]
          Type: {2x1 cell}
     FieldName: {2x1 cell}
    FieldClass: {2x1 cell}
     FieldData: {2x1 cell}

Display the instrument set.

instdisp(InstSet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face
1     Bond 0.035      01-Nov-2013    01-Nov-2014    1      0     1            NaN       NaN             NaN            NaN       100 
2     Bond 0.04       01-Nov-2013    01-Nov-2014    1      0     1            NaN       NaN             NaN            NaN       100 
 
Index Type    UnderInd OptSpec Strike ExerciseDates  AmericanOpt
3     OptBond 1        call    85     01-Nov-2014    1          
 

Input Arguments
InstSet — Instrument variable
structure

Instrument variable, specified only when adding Bond option instruments to an existing instrument
set. For more information on the InstSet variable, see instget.
Data Types: struct

BondIndex — Number of Bond instruments
vector

Number of Bond instruments, specified as a scalar or an NINST-by-1 vector of indices pointing to
underlying instruments of Type 'Bond' which are stored in InstSet. See instbond for information
on specifying the bond data.
Data Types: double

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'

Definition of option, specified as a scalar 'call' or 'put' using a character vector or an NINST-by-1
cell array of character vectors for 'call' or 'put'.
Data Types: char | cell
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Strike — Option strike price value
matrix of nonnegative integers | vector of nonnegative integers

Option strike price value, specified as a scalar nonnegative integer or an NINST-by-1 vector of strike
price values for a European option, an NINST by number of strikes (NSTRIKES) matrix of strike price
values for a Bermuda option, or an NINST-by-1 vector of strike price values for each American option.
Each row is the schedule for one option. If an option has fewer than NSTRIKES exercise
opportunities, the end of the row is padded with NaNs.

Note The interpretation of the Strike and ExerciseDates depends upon the setting of the
AmericanOpt. If AmericanOpt = 0, NaN, or is unspecified, the option is a European or Bermuda
option. If AmericanOpt = 1, the option is an American option.

Data Types: double

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a scalar or an NINST-by-2 vector of exercise date boundaries. For
each instrument, the option can be exercised on any coupon date between or including the pair of
dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the option
can be exercised between the underlying bond Settle and the single listed exercise date.
Data Types: double | char

AmericanOpt — Option type
0 European (default) | integer with values 0 or 1

(Optional) Option type, specified as a scalar or an NINST-by-1 integer flags with values:

• 0 — European
• 1 — American

Data Types: single | double

Output Arguments
InstSet — Variable containing a collection of instruments
structure

Variable containing a collection of instruments, returned as a structure. Instruments are broken down
by type and each type can have different data fields. Each stored data field has a row vector or string
for each instrument. For more information on the InstSet variable, see instget.

FieldList — Name of each data field for Bond option instrument
cell array of character vectors

Name of each data field for a Bond option instrument, returned as an NFIELDS-by-1 cell array of
character vectors.

ClassList — Data class for each field
cell array of character vectors
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Data class for each field, returned as an NFIELDS-by-1 cell array of character vectors. The class
determines how arguments are parsed. Valid character vectors are 'dble', 'date', and 'char'.

TypeString — Type of instrument
character vector

Type of instrument, returned as a character vector. For a Bond option instrument, TypeString =
'OptBond'.

More About
Bond Option

A bond option gives the holder the right to sell a bond back to the issuer (put) or to redeem a bond
from its current owner (call) at a specific price and on a specific date.

Financial Instruments Toolbox supports three types of put and call options on bonds:

• American option: An option that you exercise any time until its expiration date.
• European option: An option that you exercise only on its expiration date.
• Bermuda option: A Bermuda option resembles a hybrid of American and European options. You

can exercise it on predetermined dates only, usually monthly.

For more information, see “Bond Options” on page 2-6.

See Also
instadd | instdisp | instget | hjmprice

Topics
“Creating Instruments or Properties” on page 1-16
“Supported Interest-Rate Instrument Functions” on page 2-3
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced before R2006a
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instoptembnd
Construct bond with embedded option

Syntax
InstSet = instoptembnd(CouponRate,Settle,Maturity,OptSpec,Strike,
ExerciseDates)
InstSet = instoptembnd(InstSet,CouponRate,Settle,Maturity,OptSpec,Strike,
ExerciseDates)
InstSet = instoptembnd( ___ ,Name,Value)
[FieldList,ClassList,TypeString] = instoptembnd

Description
InstSet = instoptembnd(CouponRate,Settle,Maturity,OptSpec,Strike,
ExerciseDates) creates a new instrument set containing Bond with embedded option instruments.

InstSet = instoptembnd(InstSet,CouponRate,Settle,Maturity,OptSpec,Strike,
ExerciseDates) adds Bond with embedded option instruments to an existing instrument set.

InstSet = instoptembnd( ___ ,Name,Value) uses additional name-value pairs in addition to the
required arguments in the previous syntax.

[FieldList,ClassList,TypeString] = instoptembnd lists field meta-data for the Bond option
instrument.

Examples

Create a Bond With an Embedded Option

This example shows how to create a bond with an embedded option using the following data.

Settle = 'jan-1-2007';
Maturity   = 'jan-1-2010'; 
CouponRate = 0.07;
OptSpec = 'call'; 
Strike= 100;  
ExerciseDates= {'jan-1-2008' '01-Jan-2010'}; 
AmericanOpt=1;
Period = 1;

InstSet = instoptembnd(CouponRate, ...
Settle, Maturity, OptSpec, Strike,  ExerciseDates,'AmericanOpt', AmericanOpt, ...
'Period', Period);

% display the instrument
 instdisp(InstSet)

Index Type      CouponRate Settle         Maturity       OptSpec Strike ExerciseDates                Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face AmericanOpt
1     OptEmBond 0.07       01-Jan-2007    01-Jan-2010    call    100    01-Jan-2008   01-Jan-2010    1      0     1            NaN       NaN             NaN            NaN       100  1          
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Input Arguments
InstSet — Instrument variable
structure

Instrument variable, specified only when adding Bond embedded option instruments to an existing
instrument set. For more information on the InstSet variable, see instget.
Data Types: struct

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as a scalar or an NINST-by-1 decimal annual rate or NINST-by-1 cell
array, where each element is a NumDates-by-2 cell array. The first column of the NumDates-by-2 cell
array is dates and the second column is associated rates. The date indicates the last day that the
coupon rate is valid.
Data Types: double | cell

Settle — Settlement date
serial date number | date character vector

Settlement date, specified as a scalar or an NINST-by-1 vector of serial date numbers or date
character vectors.
Data Types: double | char

Maturity — Maturity date
serial date number | date character vector

Maturity date, specified as a scalar or an NINST-by-1 vector of serial date numbers or date character
vectors.
Data Types: double | char

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'

Definition of option, specified as a scalar or an NINST-by-1 cell array of character vectors.
Data Types: char

Strike — Option strike price values
nonnegative integer

Option strike price value, specified as a scalar or an NINST-by-1 or an NINST-by-NSTRIKES
depending on the type of option:

• European option — NINST-by-1 vector of strike price values.
• Bermuda option — NINST by number of strikes (NSTRIKES) matrix of strike price values. Each

row is the schedule for one option. If an option has fewer than NSTRIKES exercise opportunities,
the end of the row is padded with NaNs.
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• American option — NINST-by-1 vector of strike price values for each option.

Data Types: double

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as scalar or an NINST-by-1, NINST-by-2, or NINST-by-NSTRIKES
using serial date numbers or date character vectors, depending on the type of option:

• For a European option, use a NINST-by-1 vector of dates. For a European option, there is only one
ExerciseDates on the option expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKES vector of dates.
• For an American option, use a NINST-by-2 vector of exercise date boundaries. The option can be

exercised on any date between or including the pair of dates on that row.

Data Types: double | char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: InstSet =
instoptembnd(InstSet,CouponRate,Settle,Maturity,OptSpec,Strike,ExerciseDates,
'Period',1,'AmericanOp',1)

AmericanOpt — Option type
0 European/Bermuda (default) | integer with values 0 or 1

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and a scalar or an
NINST-by-1 positive integer flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a scalar or an
NINST-by-1 vector.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis, specified as the comma-separated pair consisting of 'Basis' and a scalar or an
NINST-by-1 vector of integers.
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• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer with values 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
scalar nonnegative integer or an NINST-by-1 vector. This rule applies only when Maturity is an end-
of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: double

IssueDate — Bond issue date
serial date number | date character vector

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a scalar or
an NINST-by-1 vector using serial date numbers or date character vectors.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial date number | date character vector

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a scalar or an NINST-by-1 vector using serial date numbers date or date
character vectors.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes
precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate,
the cash flow payment dates are determined from other inputs.
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Data Types: double | char

LastCouponDate — Irregular last coupon date
serial date number | date character vector

Irregular last coupon date, specified as the comma-separated pair consisting of 'LastCouponDate'
and a scalar or an NINST-by-1 vector using serial date numbers or date character vectors.

In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the
coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate,
regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not
specify a LastCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: char | double

StartDate — Forward starting date of payments
serial date number | date character vector

Forward starting date of payments (the date from which a bond cash flow is considered), specified as
the comma-separated pair consisting of 'StartDate' and a scalar or an NINST-by-1 vector using
serial date numbers or date character vectors. The StartDate is the date when a bond actually
starts (that is, the date from which a bond's cash flows can be considered). To make an option
embedded bond instrument forward starting, specify this date as a future date.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double

Face — Face value
100 (default) | NINST-by-1 vector | NINST-by-1 cell array

Face or par value, specified as the comma-separated pair consisting of 'Face' and a scalar or an
NINST-by-1 vector or an NINST-by-1 cell array where each element is a NumDates-by-2 cell array
where the first column is dates and the second column is associated face value. The date indicates the
last day that the face value is valid.

Note Instruments without a Face schedule are treated as either vanilla bonds or stepped coupon
bonds with embedded options.

Data Types: double

Output Arguments
InstSet — Variable containing a collection of instruments
structure

Variable containing a collection of instruments, returned as a structure. Instruments are broken down
by type and each type can have different data fields. Each stored data field has a row vector or string
for each instrument. For more information on the InstSet variable, see instget.

FieldList — Name of each data field for Bond embedded option instrument
cell array of character vectors
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Name of each data field for a Bond embedded option instrument, returned as an NFIELDS-by-1 cell
array of character vectors.

ClassList — Data class for each field
cell array of character vectors

Data class for each field, returned as an NFIELDS-by-1 cell array of character vectors. The class
determines how arguments are parsed. Valid character vectors are 'dble', 'date', and 'char'.

TypeString — Type of instrument
character vector

Type of instrument, returned as a character vector. For a Bond embedded option instrument,
TypeString = 'OptEmBond'.

More About
Vanilla Bond with Embedded Option

A vanilla coupon bond is a security representing an obligation to repay a borrowed amount at a
designated time and to make periodic interest payments until that time.

The issuer of a bond makes the periodic interest payments until the bond matures. At maturity, the
issuer pays to the holder of the bond the principal amount owed (face value) and the last interest
payment. A vanilla bond with an embedded option is where an option contract has an underlying
asset of a vanilla bond.

Stepped Coupon Bond with Callable and Puttable Features

A step-up and step-down bond is a debt security with a predetermined coupon structure over time.

With these instruments, coupons increase (step up) or decrease (step down) at specific times during
the life of the bond. Stepped coupon bonds can have options features (call and puts).

Sinking Fund Bond with Call Embedded Option

A sinking fund bond is a coupon bond with a sinking fund provision.

This provision obligates the issuer to amortize portions of the principal prior to maturity, affecting
bond prices since the time of the principal repayment changes. This means that investors receive the
coupon and a portion of the principal paid back over time. These types of bonds reduce credit risk,
since it lowers the probability of investors not receiving their principal payment at maturity.

The bond may have a sinking fund call option provision allowing the issuer to retire the sinking fund
obligation either by purchasing the bonds to be redeemed from the market or by calling the bond via
a sinking fund call, whichever is cheaper. If interest rates are high, then the issuer buys back the
requirement amount of bonds from the market since bonds are cheap, but if interest rates are low
(bond prices are high), then most likely the issuer is buying the bonds at the call price. Unlike a call
feature, however, if a bond has a sinking fund call option provision, it is an obligation, not an option,
for the issuer to buy back the increments of the issue as stated. Because of this, a sinking fund bond
trades at a lower price than a non-sinking fund bond.

Amortizing Callable or Puttable Bond

Amortizing callable or puttable bonds work under a scheduled Face.
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An amortizing callable bond gives the issuer the right to call back the bond, but instead of paying the
Face amount at maturity, it repays part of the principal along with the coupon payments. An
amortizing puttable bond, repays part of the principal along with the coupon payments and gives the
bondholder the right to sell the bond back to the issuer.

See Also
instadd | instdisp | instget

Topics
“Creating Instruments or Properties” on page 1-16
“Supported Interest-Rate Instrument Functions” on page 2-3
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2008a
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instoptfloat
Create option instrument on floating-rate note or add instrument to current portfolio

Syntax
InstSet = instoptfloat(FloatIndex,OptSpec,Strike,ExerciseDates)
InstSet = instoptfloat(FloatIndex,OptSpec,Strike,ExerciseDates,AmericanOpt)

InstSet = instoptfloat(InstSetOld, ___ )

[FieldList,ClassList,TypeString] = instoptfloat

Description
InstSet = instoptfloat(FloatIndex,OptSpec,Strike,ExerciseDates) to specify a
European option for a floating-rate note.

InstSet = instoptfloat(FloatIndex,OptSpec,Strike,ExerciseDates,AmericanOpt) to
specify an American or Bermuda option for a floating-rate note.

InstSet = instoptfloat(InstSetOld, ___ ) to add instruments to an existing portfolio.

[FieldList,ClassList,TypeString] = instoptfloat lists the field metadata for the
'OptFloat' instrument.

Examples

Create an Instrument Portfolio with a Call Option for a Floating-Rate Note

Define the floating-rate note:

Settle = 'Nov-1-2012';
Maturity   = 'Nov-1-2015'; 
Spread = 50;
Reset = 1;

Create InstSet:

InstSet = instfloat(Spread, Settle, Maturity, Reset)

InstSet = struct with fields:
        FinObj: 'Instruments'
    IndexTable: [1x1 struct]
          Type: {'Float'}
     FieldName: {{9x1 cell}}
    FieldClass: {{9x1 cell}}
     FieldData: {{9x1 cell}}

Display the instrument:
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instdisp(InstSet)

Index Type  Spread Settle         Maturity       FloatReset Basis Principal EndMonthRule CapRate FloorRate
1     Float 50     01-Nov-2012    01-Nov-2015    1          0     100       1            Inf     -Inf     
 

Add a European call option to the instrument portfolio:

OptSpec = 'call'; 
Strike = 100;  
ExerciseDates = 'Nov-1-2015';

Create InstSet:

InstSet = instoptfloat(InstSet, 1, OptSpec, Strike, ExerciseDates)

InstSet = struct with fields:
        FinObj: 'Instruments'
    IndexTable: [1x1 struct]
          Type: {2x1 cell}
     FieldName: {2x1 cell}
    FieldClass: {2x1 cell}
     FieldData: {2x1 cell}

Display the instrument:

instdisp(InstSet)

Index Type  Spread Settle         Maturity       FloatReset Basis Principal EndMonthRule CapRate FloorRate
1     Float 50     01-Nov-2012    01-Nov-2015    1          0     100       1            Inf     -Inf     
 
Index Type     UnderInd OptSpec Strike ExerciseDates  AmericanOpt
2     OptFloat 1        call    100    01-Nov-2015    0          
 

Input Arguments
FloatIndex — Indices pointing to underlying instruments
vector of nonnegative integers

Indices pointing to underlying instruments of Type 'Float' specified by a NINST-by-1 vector. The
instruments of Type 'Float' are also stored in the InstSet variable. For more information, see
instfloat.
Data Types: double

OptSpec — Definition of option
character vector | cell array of character vectors

Definition of option as 'call' or 'put' specified as a NINST-by-1 cell array of character vectors for
'call' or 'put'.
Data Types: char | cell

Strike — Option strike price values for European, Bermuda, or American option
nonnegative integer | vector of nonnegative integers
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Option strike price values for option (European, Bermuda, or American) specified as nonnegative
integers using as NINST-by-NSTRIKES vector of strike price values.

• For a European or Bermuda option — NINST-by-NSTRIKES matrix of strike price values. Each row
is the schedule for one option. If an option has fewer than NSTRIKES exercise opportunities, the
end of the row is padded with NaNs.

• For an American Option — NINST-by-1 vector of strike price values for each option.

Data Types: single | double

ExerciseDates — Exercise date for option (European, Bermuda, or American)
serial date number | vector of serial date numbers | date character vector | cell array of date
character vectors

Exercise date for option (European, Bermuda, or American), specified as serial date numbers or date
character vectors using a NINST-by-NSTRIKES or NINST-by-2 vector of for the option exercise dates,
depending on the option type.

• For a European or Bermuda option — NINST-by-NSTRIKES matrix of exercise dates. Each row is
the schedule for one option. For a European option, there is only one ExerciseDate on the
option expiry date

• For an American option — NINST-by-2 vector of exercise date boundaries. For each instrument,
the option can be exercised on any coupon date between or including the pair of dates on that row.
If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the option can be
exercised between the underlying bond Settle date and the single listed ExerciseDate.

Data Types: double | char | cell

AmericanOpt — Option type
0 if AmericanOpt is NaN or not entered (default) | scalar | vector of positive integers[0,1]

Option type specified as NINST-by-1 positive integer scalar flags with values.

• For a European or Bermuda option — AmericanOpt is 0 for each European or Bermuda option.
• For an American option — AmericanOpt is 1 for each American option. The AmericanOpt

argument is required to invoke American exercise rules.

Data Types: single | double

InstSetOld — Variable containing an existing collection of instruments
struct

Variable containing an existing collection of instruments, specified as a struct. For more information
on the InstSet variable, see instget.
Data Types: struct

Output Arguments
InstSet — Variable containing a collection of instruments
scalar | vector

Variable containing a collection of instruments returned as a scalar or vector with the instruments
broken down by type and each type can have different data fields. Each stored data field has a row
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vector or character vector for each instrument. For more information on the InstSet variable, see
instget.

FieldList — Data field for instrument type
character vector | cell array of character vectors

Data field for instrument type returned as a NFIELDS-by-1 cell array of character vectors listing the
name of each data field for this instrument type.

ClassList — Data class of each field
character vector with value: 'dble', 'date', 'char' | cell array of character vectors with values:
'dble', 'date', 'char'

Data class of each field returned as aNFIELDS-by-1 cell array of character vectors listing the data
class of each field. The class determines how arguments are parsed.

TypeString — Type of instrument added
character vector with value 'OptFloat'

Type of instrument added returned as a character vector. The character vector for a floating-rate
option instrument is TypeString = 'OptFloat'.

See Also
instadd | instoptemfloat

Topics
“Creating Instruments or Properties” on page 1-16
“Supported Interest-Rate Instrument Functions” on page 2-3
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2013a
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instoptemfloat
Create embedded option instrument on floating-rate note or add instrument to current portfolio

Syntax
InstSet = instopemtfloat(Spread,Settle,Maturity,OptSpec,Strike,ExerciseDates)
InstSet = instopemtfloat( ___ ,Name,Value)

InstSet = instopemtfloat(InstSetOld,Spread,Settle,Maturity,OptSpec,Strike,
ExerciseDates)
[FieldList,ClassList,TypeString] = instoptemfloat

Description
InstSet = instopemtfloat(Spread,Settle,Maturity,OptSpec,Strike,ExerciseDates)
creates an embedded option instrument for a floating-rate note.

InstSet = instopemtfloat( ___ ,Name,Value) adds optional name-value pair arguments.

InstSet = instopemtfloat(InstSetOld,Spread,Settle,Maturity,OptSpec,Strike,
ExerciseDates) to add 'OptEmFloat' instruments to an instrument variable.

[FieldList,ClassList,TypeString] = instoptemfloat lists field metadata for the
'OptEmFloat' instrument.

Examples

Create an Instrument Portfolio with a Embedded Option Floating-Rate Note

Define the embedded call option:

Settle = 'Nov-1-2012';
Maturity   = 'Nov-1-2015'; 
Spread = 25;
OptSpec = 'call'; 
Strike= 100;  
ExerciseDates = 'Nov-1-2015'; 
Reset = 1;

Create InstSet:

InstSet = instoptemfloat(Spread, Settle, Maturity, OptSpec,...
Strike,  ExerciseDates,'FloatReset', Reset)

InstSet = struct with fields:
        FinObj: 'Instruments'
    IndexTable: [1x1 struct]
          Type: {'OptEmFloat'}
     FieldName: {{13x1 cell}}
    FieldClass: {{13x1 cell}}
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     FieldData: {{13x1 cell}}

Display the instrument:

instdisp(InstSet)

Index Type       Spread Settle         Maturity       OptSpec Strike ExerciseDates  FloatReset Basis Principal EndMonthRule CapRate FloorRate AmericanOpt
1     OptEmFloat 25     01-Nov-2012    01-Nov-2015    call    100    01-Nov-2015    1          0     100       1            Inf     -Inf      0          
 

Input Arguments
Spread — Number of basis points over the reference rate
nonnegative integer | vector of nonnegative integers

Number of basis points over the reference rate specified as a vector of nonnegative integers for the
number of instruments (NINST)-by-1).
Data Types: single | double

Settle — Settlement dates of floating-rate note
ValuationDate of HW Tree (default) | serial date number | character vector | cell array of character
vectors

Settlement dates of floating-rate note, specified as serial date numbers or date character vectors
using a NINST-by-1 vector or cell array of character vector dates.
Data Types: double | char | cell

Maturity — Floating-rate note maturity date
serial date number | character vector | cell array of character vectors

Floating-rate note maturity date, specified as date character vectors or as serial date numbers using
a NINST-by-1 vector or cell array of character vector dates.
Data Types: double | char | cell

OptSpec — Definition of option
character vector | cell array of character vectors

Definition of option as 'call' or 'put' specified as a NINST-by-1 cell array of character vectors for
'call' or 'put'.
Data Types: char | cell

Strike — Embedded option strike price values
nonnegative integer | vector of nonnegative integers

Embedded option strike price values for option specified as nonnegative integers using as NINST-by-
NSTRIKES or NINST-by-1 vector of strike price values, depending on the type of option.

• For a European or Bermuda Option — NINST-by-NSTRIKES matrix of strike price values where
each row is the schedule for one option. If an option has fewer than NSTRIKES exercise
opportunities, the end of the row is padded with NaNs.
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• For an American Option — NINST-by-1 vector of strike price values for each option.

Data Types: single | double

ExerciseDates — Exercise date for embedded option
serial date nonnegative number | vector of serial date nonnegative numbers | date character vector |
cell array of date character vectors

Exercise date for embedded option, specified as serial date nonnegative numbers or date character
vectors using a NINST-by-NSTRIKES or NINST-by-2 vector of the option exercise dates, depending on
the type of option.

• For a European or Bermuda Option — NINST-by-NSTRIKES of exercise dates where each row is
the schedule for one option. For a European option, there is only one ExerciseDate on the
option expiry date.

• For an American Option — NINST-by-2 vector of exercise date boundaries. For each instrument,
the option can be exercised on any coupon date between or including the pair of dates on that row.
If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the option can be
exercised between the underlying bond Settle date and the single listed ExerciseDate.

Data Types: double | char | cell

InstSetOld — Variable containing an existing collection of instruments
struct

Variable containing an existing collection of instruments, specified as a struct. Instruments are
classified by type; each type can have different data fields. The stored data field is a row vector or
character vector for each instrument. For more information on instrument data parameters, see the
reference entries for individual instrument types. For example, see instfloat for additional
information on the float instrument.
Data Types: struct

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: InstSet =
instoptemfloat(Spread,Settle,Maturity,OptSpec,Strike,ExerciseDates,'FloatRese
t',Reset)

AmericanOpt — Embedded option type
0 if AmericanOpt is NaN or not entered (default) | scalar | vector of positive integers[0,1]

Embedded option type, specified as the comma-separated pair consisting of 'AmericanOpt' and a
NINST-by-1 positive integer scalar flags with values:

• For a European or Bermuda option — AmericanOpt is 0 for each European or Bermuda option.
The default is 0 if AmericanOpt is NaN or not entered.

• For an American option — AmericanOpt is 1 for each American option. The AmericanOpt
argument is required to invoke American exercise rules.
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Data Types: single | double

FloatReset — Frequency of payments per year
1 (default) | positive integer from the set[1,2,3,4,6, 12] | vector of positive integers from the set
[1,2,3,4,6,12]

Frequency of payments per year, specified as the comma-separated pair consisting of 'FloatReset'
and positive integers for the values 1,2,4,6,12] in a NINST-by-1 vector.
Data Types: single | double

Basis — Day-count basis of the instrument
0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive integers of the
set [1...13]

Day-count basis of the instrument, specified as the comma-separated pair consisting of 'Basis' and
a positive integer using a NINST-by-1 vector. The Basis value represents the basis used when
annualizing the input forward-rate tree.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: single | double

Principal — Principal values
100 (default) | nonnegative integer | vector of nonnegative integers | cell array of nonnegative
integers

Principal values, specified as the comma-separated pair consisting of 'Principal' and a
nonnegative integer using a NINST-by-1 vector of notional principal amounts.
Data Types: single | double

Options — Structure containing derivatives pricing options
structure

Structure containing derivatives pricing options, specified as the comma-separated pair consisting of
'Options' and a structure using derivset.
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Data Types: struct

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
nonnegative integer [0, 1] using a NINST-by-1 vector. This rule applies only when Maturity is an
end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: single | double

Output Arguments
InstSet — Variable containing a collection of instruments
scalar | vector

Variable containing a collection of instruments returned as a scalar or vector with the instruments
broken down by type and each type can have different data fields. Each stored data field has a row
vector or character vector for each instrument. For more information on the InstSet variable, see
instget.

FieldList — Name of each data field
character vector | cell array of character vectors

NFIELDS-by-1 cell array of character vectors listing the name of each data field for this instrument
type.

ClassList — Determines how arguments are parsed
character vector with value: 'dble', 'date', or 'char' | cell array of character vectors with
values: 'dble', 'date', or 'char'

NFIELDS-by-1 cell array of character vectors listing the data class of each field.

TypeString — Type of instrument added
character vector with value 'OptEmFloat'

Character vector specifying the type of instrument added where TypeString = 'OptEmFloat'.

See Also
instadd | instoptfloat

Topics
“Creating Instruments or Properties” on page 1-16
“Basis” on page 2-229
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced in R2013a
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instoptstock
Construct stock option

Syntax
InstSet = instoptstock(OptSpec,Strike,Settle,ExerciseDates)
InstSet = instoptstock(InstSet,OptSpec,Strike,Settle,ExerciseDates)
InstSet = instoptstock( ___ ,AmericanOpt)
[FieldList,ClassList,TypeString] = instoptstock

Description
InstSet = instoptstock(OptSpec,Strike,Settle,ExerciseDates) creates a new
instrument set containing stock option instruments.

InstSet = instoptstock(InstSet,OptSpec,Strike,Settle,ExerciseDates) adds stock
option instruments to an existing instrument set.

InstSet = instoptstock( ___ ,AmericanOpt) adds an optional argument for AmericanOpt.

[FieldList,ClassList,TypeString] = instoptstock lists field meta-data for the stock
option instrument.

Examples

Create a Stock Option Instrument

Create an instrument set of two stock options with the following data:

OptSpec = {'put';'call'};
Strike = [95;98];
Settle = '01-May-2012';
ExerciseDates = {'01-May-2014';'01-May-2015'};
AmericanOpt = [0;1];

Create the stock option instruments.

InstSet = instoptstock(OptSpec, Strike,Settle, ExerciseDates, AmericanOpt)

InstSet = struct with fields:
        FinObj: 'Instruments'
    IndexTable: [1x1 struct]
          Type: {'OptStock'}
     FieldName: {{5x1 cell}}
    FieldClass: {{5x1 cell}}
     FieldData: {{5x1 cell}}

Display the instrument set.

instdisp(InstSet)
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Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt
1     OptStock put     95     01-May-2012    01-May-2014    0          
2     OptStock call    98     01-May-2012    01-May-2015    1          
 

Input Arguments
InstSet — Instrument variable
structure

Instrument variable, specified only when adding stock option instruments to an existing instrument
set. For more information on the InstSet variable, see instget.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'

Definition of option, specified as a scalar 'call' or 'put' or an NINST-by-1 cell array of character
vectors.
Data Types: char | cell

Strike — Option strike price values
nonnegative integer

Option strike price value, specified with a scalar or an NINST-by-1 or an NINST-by-NSTRIKES
depending on the option type:

• For a European option, use an NINST-by-1 vector of strike prices.
• For a Bermuda option, use an NINST-by-NSTRIKES matrix of strike prices. Each row is the

schedule for one option. If an option has fewer than NSTRIKES exercise opportunities, the end of
the row is padded with NaNs.

• For an American option, use an NINST-by-1 of strike prices.

Note The interpretation of the Strike and ExerciseDates arguments depends upon the setting of
the AmericanOpt argument. If AmericanOpt = 0, NaN, or is unspecified, the option is a European
or Bermuda option. If AmericanOpt = 1, the option is an American option.

Data Types: double

Settle — Settlement date or trade date
serial date number | date character vector

Settlement date or trade date, specified as a scalar or an NINST-by-1 vector of date character vectors
or serial date numbers.
Data Types: char | double

ExerciseDates — Option exercise dates
serial date number | date character vector
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Option exercise dates, specified as a scalar or an NINST-by-1,NINST-by-2, or an NINST-by-NSTRIKES
using serial date numbers or date character vectors, depending on the option type:

• For a European option, use an NINST-by-1 vector of dates. Each row is the schedule for one
option. For a European option, there is only one ExerciseDates on the option expiry date.

• For a Bermuda option, use an NINST-by-NSTRIKES vector of dates. Each row is the schedule for
one option.

• For an American option, use an NINST-by-2 vector of exercise date boundaries. The option can be
exercised on any date between or including the pair of dates on that row.

Note The interpretation of the Strike and ExerciseDates arguments depends upon the setting of
the AmericanOpt argument. If AmericanOpt = 0, NaN, or is unspecified, the option is a European
or Bermuda option. If AmericanOpt = 1, the option is an American option.

Data Types: double | char

AmericanOpt — Option type
0 European or Bermuda (default) | integer with values of 0 or 1

(Optional) Option type, specified as a scalar or an NINST-by-1 vector of integer flags with values:

• 0 — European or Bermuda
• 1 — American

Data Types: double

Output Arguments
InstSet — Variable containing a collection of instruments
structure

Variable containing a collection of instruments, returned as a structure. Instruments are broken down
by type and each type can have different data fields. Each stored data field has a row vector or string
for each instrument. For more information on the InstSet variable, see instget.

FieldList — Name of each data field for stock option instrument
cell array of character vectors

Name of each data field for a stock option instrument, returned as an NFIELDS-by-1 cell array of
character vectors.

ClassList — Data class for each field
cell array of character vectors

Data class for each field, returned as an NFIELDS-by-1 cell array of character vectors. The class
determines how arguments are parsed. Valid character vectors are 'dble', 'date', and 'char'.

TypeString — Type of instrument
character vector

Type of instrument, returned as a character vector. For a stock option instrument, TypeString =
'OptStock'.
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More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.

See Also
instadd | instdisp | instget

Topics
“Pricing Equity Derivatives Using Trees” on page 3-64
“Creating Instruments or Properties” on page 1-16
“Supported Equity Derivative Functions” on page 3-19
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced before R2006a
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instrangefloat
Construct range note instrument

Syntax
InstSet = instrangefloat(Spread,Settle,Maturity,RateSched,Reset,Basis,
Principal,EndMonthRule)
InstSet = instrangefloat( ___ ,Reset,Basis,Principal,EndMonthRule)
InstSet = instoptstock(InstSet, ___ )

Description
InstSet = instrangefloat(Spread,Settle,Maturity,RateSched,Reset,Basis,
Principal,EndMonthRule) creates a range instrument from data arrays.

InstSet = instrangefloat( ___ ,Reset,Basis,Principal,EndMonthRule) creates a range
instrument from data arrays using optional arguments.

InstSet = instoptstock(InstSet, ___ ) adds new range set instrument to an existing
instrument set.

Examples

Create a Range Note Instrument

Create an instrument portfolio with a range note.

Spread = 100;
Settle = 'Jan-1-2011';
Maturity = 'Jan-1-2014';

RateSched.Dates = {'Jan-1-2012'; 'Jan-1-2013'  ; 'Jan-1-2014'};
RateSched.Rates  = [0.045 0.055; 0.0525  0.0675; 0.06 0.08];

% Create InstSet
InstSet = instrangefloat(Spread, Settle, Maturity, RateSched);

% Display the portfolio instrument
instdisp(InstSet)

Index Type       Spread Settle         Maturity       RateSched FloatReset Basis Principal EndMonthRule
1     RangeFloat 100    01-Jan-2011    01-Jan-2014    [Struct]  1          0     100       1           
 

Add a second range note instrument to the portfolio. Second Range Note:

Spread2 = 200;
Settle2 = 'Jan-1-2011';
Maturity2 = 'Jan-1-2013';
RateSched2.Dates = {'Jan-1-2012'; 'Jan-1-2013'};
RateSched2.Rates  = [0.048 0.059; 0.055  0.068];
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InstSet = instrangefloat(InstSet, Spread2, Settle2, Maturity2, RateSched2);

% Display the portfolio instrument
instdisp(InstSet)

Index Type       Spread Settle         Maturity       RateSched FloatReset Basis Principal EndMonthRule
1     RangeFloat 100    01-Jan-2011    01-Jan-2014    [Struct]  1          0     100       1           
2     RangeFloat 200    01-Jan-2011    01-Jan-2013    [Struct]  1          0     100       1           
 

Input Arguments
InstSet — Instrument variable
structure

Instrument variable, specified only when adding stock option instruments to an existing instrument
set. For more information on the InstSet variable, see instget.
Data Types: struct

Spread — Number of basis points over the reference rate
numeric

Number of basis points over the reference rate, specified as a scalar numeric.
Data Types: double

Settle — Settlement date of floating-rate note
serial date number | date character vector

Settlement date of floating-rate note, specified as an NINST-by-1 vector of date character vectors or
serial date numbers.
Data Types: char | double

Maturity — Maturity date of floating-rate note
serial date number | date character vector

Maturity date of floating-rate note, specified as an NINST-by-1 vector of date character vectors or
serial date numbers.
Data Types: char | double

RateSched — Range of dates within which cash flows are nonzero
serial date number | date character vector

Range of dates within which cash flows are nonzero, specified as an NINST-by-1 structure where each
element of the structure array contains two fields:

• RateSched.Dates — NDates-by-1 cell array of dates corresponding to the range schedule.
• RateSched.Rates —NDates-by-2 array with the first column containing the lower bound of the

range and the second column containing the upper bound of the range. Cash flow for date
RateSched.Dates(n) is nonzero for rates in the range RateSched.Rates(n,1) < Rate <
RateSched.Rate (n,2).
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Data Types: double | char

Reset — Frequency of payments per year
1 (default) | integer

(Optional) Frequency of payments per year, specified as an NINST-by-1 vector.
Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day count basis, specified as an NINST-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

(Optional) Notional principal amounts, specified and an NINST-by-1 vector.
Data Types: double

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

(Optional) End-of-month rule flag for generating dates when Maturity is an end-of-month date for a
month having 30 or fewer days, specified as an NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical
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Output Arguments
InstSet — Variable containing a collection of instruments
structure

Variable containing a collection of instruments, returned as a structure. Instruments are divided by
type and each type can have different data fields. Each stored data field has a row vector or character
vector for each instrument. Values are:

• FieldList — NFIELDS-by-1 cell array of character vectors listing the name of each data field for
this instrument type.

• ClassList — NFIELDS-by-1 cell array of character vectors listing the data class of each field.
The class determines how arguments are parsed. Valid character vectors are'dble', 'date', and
'char'.

• TypeString — Character vector specifying the type of instrument added. TypeString =
'RangeFloat'.

For more information on the InstSet variable, see instget.

More About
Range Note Instrument

A range note is a structured (market-linked) security whose coupon rate is equal to the reference rate
as long as the reference rate is within a certain range.

If the reference rate is outside of the range, the coupon rate is 0 for that period. This type of
instrument entitles the holder to cash flows that depend on the level of some reference interest rate
and are floored to be positive. The note holder gets direct exposure to the reference rate. In return
for the drawback that no interest is paid for the time the range is left, they offer higher coupon rates
than comparable standard products, like vanilla floating notes.

References
[1] Jarrow, Robert. “Modelling Fixed Income Securities and Interest Rate Options.” Stanford

Economics and Finance. 2nd Edition. 2002.

See Also
instbond | instcap | instswap | instaddfield | instdisp | intenvprice | rangefloatbybk |
rangefloatbybdt | rangefloatbyhw | rangefloatbyhjm

Topics
“Creating Instruments or Properties” on page 1-16
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced in R2012a
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instselect
Create instrument subset by matching conditions

Syntax
InstSubSet = instselect(InstSet,Name,Value)

Description
InstSubSet = instselect(InstSet,Name,Value) returns a variable containing a collection of
instruments matching the input criteria.

Examples

Create Instrument Subset

Retrieve the instrument set variable ExampleInst from the data file InstSetExamples.mat.
ExampleInst contains three types of instruments: Option, Futures, and TBill.

load InstSetExamples; 
instdisp(ExampleInst)

Index Type   Strike Price Opt  Contracts
1     Option  95    12.2  Call     0    
2     Option 100     9.2  Call     0    
3     Option 105     6.8  Call  1000    
 
Index Type    Delivery       F     Contracts
4     Futures 01-Jul-1999    104.4 -1000    
 
Index Type   Strike Price Opt  Contracts
5     Option 105     7.4  Put  -1000    
6     Option  95     2.9  Put      0    
 
Index Type  Price Maturity       Contracts
7     TBill 99    01-Jul-1999    6        
 

Make a new portfolio containing only options struck at 95.

Opt95 = instselect(ExampleInst, 'FieldName', 'Strike','Data', '95') 

Opt95 = struct with fields:
        FinObj: 'Instruments'
    IndexTable: [1x1 struct]
          Type: {3x1 cell}
     FieldName: {3x1 cell}
    FieldClass: {3x1 cell}
     FieldData: {3x1 cell}

instdisp(Opt95)
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Index Type   Strike Price Opt  Contracts
1     Option  95    12.2  Call     0    
2     Option  95     2.9  Put      0    
 

Make a new portfolio containing only futures and Treasury bills.

FutTBill = instselect(ExampleInst,'Type',{'Futures';'TBill'})

FutTBill = struct with fields:
        FinObj: 'Instruments'
    IndexTable: [1x1 struct]
          Type: {3x1 cell}
     FieldName: {3x1 cell}
    FieldClass: {3x1 cell}
     FieldData: {3x1 cell}

instdisp(FutTBill)

Index Type    Delivery       F     Contracts
1     Futures 01-Jul-1999    104.4 -1000    
 
Index Type  Price Maturity       Contracts
2     TBill 99    01-Jul-1999    6        
 

Input Arguments
InstSet — Instrument variable
structure

Instrument variable containing a collection of instruments, specified as InstSet structure.
Instruments are classified by type; each type can have different data fields. The stored data field is a
row vector or character vector for each instrument. For more information on the InstSet variable,
see instget.
Data Types: struct

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Opt95 = instselect(ExampleInst,'FieldName','Strike','Data','95')

FieldName — Name of each data field for instrument
cell array of character vectors

Name of each data field for an instrument, specified as the comma-separated pair consisting of
'FieldName' and an NFIELDS-by-1 cell array of character vectors.
Data Types: char | cell
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Data — Data values for field
cell array of character vectors

Data values for field, specified as the comma-separated pair consisting of 'Data' and an NVALUES-
by-M array or NFIELDS-by-1 cell array of acceptable data values for each field. Each row lists a data
row value to search for in the corresponding FieldName. The number of columns is arbitrary and
matching ignores trailing NaNs or spaces.
Data Types: double | cell

Index — Number of instruments
all types in the instrument variable (default) | vector

Number of instruments, specified as the comma-separated pair consisting of 'Index' and an NINST-
by-1 vector restricting positions of instruments to check for matches. The default is all indices
available in the instrument variable.
Data Types: double

Type — Number of types
all types in the instrument variable (default) | character vector

Number of types, specified as the comma-separated pair consisting of 'Type' and a NTYPES-by-1 cell
array of character vectors restricting instruments to match one of Type types. The default is all types
in the instrument variable.
Data Types: char | cell

Output Arguments
InstSubSet — Variable containing a collection of instruments matching input criteria
structure

Variable containing a collection of instruments matching the input criteria, returned as a structure.
Instruments are returned in InstSubSet if all the FieldName, Index, and Type conditions are met.
An instrument meets an individual FieldName condition if the value matches any of the rows listed in
the Data for that FieldName. See instfind for examples on matching criteria.

See Also
instaddfield | instdelete | instfind | instget | instgetcell

Topics
“Portfolio Creation Using Functions” on page 1-6
“Instrument Constructors” on page 1-15

Introduced before R2006a
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instsetfield
Add or reset data for existing instruments

Syntax
InstSet = instsetfield(InstSet,Name,Value)

Description
InstSet = instsetfield(InstSet,Name,Value) resets or adds fields to every instrument.

Examples

Add or Reset Data for Existing Instruments

Retrieve the instrument set ExampleInstSF from the data file InstSetExamples.mat.
ExampleInstSF contains three types of instruments: Option, Futures, and TBill.

load InstSetExamples; 
ISet = ExampleInstSF;
instdisp(ISet)

Index Type   Strike Price Opt 
1     Option  95    12.2  Call
2     Option 100     9.2  Call
3     Option 105     6.8  Call
 
Index Type    Delivery       F    
4     Futures 01-Jul-1999    104.4
 
Index Type   Strike Price Opt 
5     Option 105     7.4  Put 
6     Option NaN     NaN  Put 
 
Index Type  Price
7     TBill 99   
 

Enter data for the option in Index 6: Price 2.9 for a Strike of 95.

ISet = instsetfield(ISet, 'Index',6,... 
'FieldName',{'Strike','Price'}, 'Data',{ 95 , 2.9 }); 
instdisp(ISet) 

Index Type   Strike Price Opt 
1     Option  95    12.2  Call
2     Option 100     9.2  Call
3     Option 105     6.8  Call
 
Index Type    Delivery       F    
4     Futures 01-Jul-1999    104.4
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Index Type   Strike Price Opt 
5     Option 105     7.4  Put 
6     Option  95     2.9  Put 
 
Index Type  Price
7     TBill 99   
 

Create a field Maturity for the cash instrument.

MDate = datenum('7/1/99');
ISet = instsetfield(ISet, 'Type', 'TBill', 'FieldName',... 
'Maturity','FieldClass', 'date', 'Data', MDate); 
instdisp(ISet) 

Index Type   Strike Price Opt 
1     Option  95    12.2  Call
2     Option 100     9.2  Call
3     Option 105     6.8  Call
 
Index Type    Delivery       F    
4     Futures 01-Jul-1999    104.4
 
Index Type   Strike Price Opt 
5     Option 105     7.4  Put 
6     Option  95     2.9  Put 
 
Index Type  Price Maturity      
7     TBill 99    01-Jul-1999   
 

Create a field Contracts for all instruments.

ISet = instsetfield(ISet, 'FieldName', 'Contracts', 'Data', 0); 
instdisp(ISet)

Index Type   Strike Price Opt  Contracts
1     Option  95    12.2  Call 0        
2     Option 100     9.2  Call 0        
3     Option 105     6.8  Call 0        
 
Index Type    Delivery       F     Contracts
4     Futures 01-Jul-1999    104.4 0        
 
Index Type   Strike Price Opt  Contracts
5     Option 105     7.4  Put  0        
6     Option  95     2.9  Put  0        
 
Index Type  Price Maturity       Contracts
7     TBill 99    01-Jul-1999    0        
 

Set the Contracts fields for some instruments.

ISet = instsetfield(ISet,'Index',[3; 5; 4; 7],... 
'FieldName','Contracts',  'Data', [1000; -1000; -1000; 6]); 
instdisp(ISet)
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Index Type   Strike Price Opt  Contracts
1     Option  95    12.2  Call     0    
2     Option 100     9.2  Call     0    
3     Option 105     6.8  Call  1000    
 
Index Type    Delivery       F     Contracts
4     Futures 01-Jul-1999    104.4 -1000    
 
Index Type   Strike Price Opt  Contracts
5     Option 105     7.4  Put  -1000    
6     Option  95     2.9  Put      0    
 
Index Type  Price Maturity       Contracts
7     TBill 99    01-Jul-1999    6        
 

Input Arguments
InstSet — Instrument variable
structure

Instrument variable containing a collection of instruments, specified as InstSet structure.
Instruments are classified by type; each type can have different data fields. The stored data field is a
row vector or character vector for each instrument. For more information on the InstSet variable,
see instget.
Data Types: struct

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: ISet = instsetfield(ISet,'Index',6,'FieldName',
{'Strike','Price'},'Data',{ 95 , 2.9 })

FieldName — Name of each data field for instrument
cell array of character vectors

Name of each data field for an instrument, specified as the comma-separated pair consisting of
'FieldName' and an NFIELDS-by-1 cell array of character vectors.
Data Types: char | cell

Data — Data values for field
cell array of character vectors

Data values for field, specified as the comma-separated pair consisting of 'Data' and an NVALUES-
by-M array or NFIELDS-by-1 cell array of acceptable data values for each field. Each row in a data
array corresponds to a separate instrument. Single rows are copied to apply to all instruments to be
worked on. The number of columns is arbitrary and data is padded along columns.
Data Types: double | cell
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Index — Number of instruments
all types in the instrument variable (default) | vector

Number of instruments, specified as the comma-separated pair consisting of 'Index' and an NINST-
by-1 vector of positions of instruments to work on. If Type is also entered, instruments referenced
must be one of Type types contained in Index.
Data Types: double

Type — Number of types
all types in the instrument variable (default) | character vector

Number of types, specified as the comma-separated pair consisting of 'Type' and a NTYPES-by-1 cell
array of character vectors restricting instruments worked on to match one of Type types.
Data Types: char | cell

Output Arguments
InstSet — Instrument set variable containing the input data
structure

Instrument set variable containing the input data, returned as a structure.

See Also
instaddfield | instdisp | instget | instgetcell

Topics
“Portfolio Creation Using Functions” on page 1-6
“Instrument Constructors” on page 1-15

Introduced before R2006a
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instswap
Construct swap instrument

Syntax
InstSet = instswap(LegRate,Settle,Maturity)
InstSet = instswap(InstSet,LegRate,Settle,Maturity)
InstSet = instswap( ___ ,LegReset,Basis,Principal,LegType,EndMonthRule,
StartDate)
[FieldList,ClassList,TypeString] = instswap

Description
InstSet = instswap(LegRate,Settle,Maturity) creates a new instrument set containing
Swap instruments.

InstSet = instswap(InstSet,LegRate,Settle,Maturity) adds Swap instruments to an
existing instrument set.

InstSet = instswap( ___ ,LegReset,Basis,Principal,LegType,EndMonthRule,
StartDate) adds optional arguments for LegReset, Basis, Principal, LegType, EndMonthRule,
and StartDate.

[FieldList,ClassList,TypeString] = instswap lists field meta-data for the Swap
instrument.

Examples

Create a Vanilla Swap Instrument

Create a vanilla swap using market data.

Use the following market data to create a swap instrument.

LegRate = [0.065, 0]

LegRate = 1×2

    0.0650         0

Settle = 'jan-1-2007';    
Maturity = 'jan-1-2012';
LegReset = [1, 1];
Basis = 0

Basis = 0

Principal = 100    

Principal = 100
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LegType = [1, 0]   

LegType = 1×2

     1     0

InstSet = instswap(LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType)

InstSet = struct with fields:
        FinObj: 'Instruments'
    IndexTable: [1x1 struct]
          Type: {'Swap'}
     FieldName: {{9x1 cell}}
    FieldClass: {{9x1 cell}}
     FieldData: {{9x1 cell}}

View the swap instrument using instdisp.

instdisp(InstSet)

Index Type LegRate    Settle         Maturity       LegReset Basis Principal LegType EndMonthRule StartDate
1     Swap [0.065  0] 01-Jan-2007    01-Jan-2012    [1  1]   0     100       [1  0]  1            NaN      
 

Create a Float-Float Swap and Price with intenvprice

Use instswap to create a float-float swap and price the swap with intenvprice.

RateSpec = intenvset('Rates',.05,'StartDate',today,'EndDate',datemnth(today,60));
IS = instswap([40 20],today,datemnth(today,60),[], [], [], [0 0]);
intenvprice(RateSpec,IS)

ans = 0.8644

Create Float-Float, Fixed-Fixed, and Float-Fixed Swaps and Price with intenvprice

Use instswap to create swaps and price the swaps with intenvprice.

RateSpec = intenvset('Rates',.05,'StartDate',today,'EndDate',datemnth(today,60));
IS = instswap([.03 .02],today,datemnth(today,60),[], [], [], [1 1]);
IS = instswap(IS,[200 300],today,datemnth(today,60),[], [], [], [0 0]);
IS = instswap(IS,[300 .07],today,datemnth(today,60),[], [], [], [0 1]);
intenvprice(RateSpec,IS)

ans = 3×1

    4.3220
   -4.3220
    4.5921
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Input Arguments
InstSet — Instrument variable
structure

Instrument variable, specified only when adding Swap instruments to an existing instrument set. For
more information on the InstSet variable, see instget.
Data Types: struct

LegRate — Leg rate
matrix

Leg rate, specified as a scalar or an NINST-by-2 matrix, with each row defined as one of the following:

• [CouponRate Spread] (fixed-float)
• [Spread CouponRate] (float-fixed)
• [CouponRate CouponRate] (fixed-fixed)
• [Spread Spread] (float-float)

CouponRate is the decimal annual rate. Spread is the number of basis points over the reference
rate. The first column represents the receiving leg, while the second column represents the paying
leg.
Data Types: double

Settle — Settlement date
serial date number | character vector

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers or date
character vectors.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector

Maturity date, specified as a scalar or an NINST-by-1 vector of serial date numbers or date character
vectors representing the maturity date for each swap.
Data Types: char | double

LegReset — Reset frequency per year for each swap
[1 1] (default) | vector

(Optional) Reset frequency per year for each swap, specified as an NINST-by-2 vector.
Data Types: double

Basis — Day-count basis representing the basis for each leg
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis representing the basis for each leg, specified as an NINST-by-1 array (or
NINST-by-2 if Basis is different for each leg).

• 0 = actual/actual
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• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amounts or principal value schedules
100 (default) | vector or cell array

(Optional) Notional principal amounts or principal value schedules, specified as a vector or cell array.

Principal accepts an NINST-by-1 vector or an NINST-by-1 cell array (or NINST-by-2 if Principal
is different for each leg) of the notional principal amounts or principal value schedules. For
schedules, each element of the cell array is a NumDates-by-2 array where the first column is dates
and the second column is its associated notional principal value. The date indicates the last day that
the principal value is valid.
Data Types: cell | double

LegType — Leg type
[1 0] for each instrument (default) | matrix with values [1 1] (fixed-fixed), [1 0] (fixed-float), [0
1] (float-fixed), or [0 0] (float-float)

(Optional) Leg type, specified as an NINST-by-2 matrix with values [1 1] (fixed-fixed), [1 0] (fixed-
float), [0 1] (float-fixed), or [0 0] (float-float). Each row represents an instrument. Each column
indicates if the corresponding leg is fixed (1) or floating (0). This matrix defines the interpretation of
the values entered in LegRate. LegType allows [1 1] (fixed-fixed), [1 0] (fixed-float), [0 1]
(float-fixed), or [0 0] (float-float) swaps
Data Types: double

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

(Optional) End-of-month rule flag for generating dates when Maturity is an end-of-month date for a
month having 30 or fewer days, specified as a nonnegative integer 0 or 1using an NINST-by-1 (or
NINST-by-2 if EndMonthRule is different for each leg).
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• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

StartDate — Date swap actually starts
Settle date (default) | serial date number | character vector

(Optional) Date swap actually starts, specified as an NINST-by-1 vector of dates using a serial date
number or a character vector.

Use this argument to price forward swaps, that is, swaps that start in a future date
Data Types: char | double

Output Arguments
InstSet — Variable containing a collection of instruments
structure

Variable containing a collection of instruments, returned as a structure. Instruments are broken down
by type and each type can have different data fields. Each stored data field has a row vector or string
for each instrument. For more information on the InstSet variable, see instget.

FieldList — Name of each data field for Swap instrument
cell array of character vectors

Name of each data field for a Swap instrument, returned as an NFIELDS-by-1 cell array of character
vectors.

ClassList — Data class for each field
cell array of character vectors

Data class for each field, returned as an NFIELDS-by-1 cell array of character vectors. The class
determines how arguments are parsed. Valid character vectors are 'dble', 'date', and 'char'.

TypeString — Type of instrument
character vector

Type of instrument, returned as a character vector. For a Swap instrument, TypeString = 'Swap'.

More About
Amortizing Swap

In an amortizing swap, the notional principal decreases periodically because it is tied to an
underlying financial instrument with a declining (amortizing) principal balance, such as a mortgage.

Forward Swap

Agreement to enter into an interest-rate swap arrangement on a fixed date in future.

See Also
hjmprice | instaddfield | instbond | instcap | instdisp | instfloor | intenvprice
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Topics
“Creating Instruments or Properties” on page 1-16
“Supported Interest-Rate Instrument Functions” on page 2-3
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced before R2006a
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instswaption
Construct swaption instrument

Syntax
InstSet = instswaption(OptSpec,Strike,ExerciseDates,Spread,Settle,Maturity)
InstSet = instswaption( ___ ,AmericanOpt,SwapReset,Basis,Principal)
InstSet = instswaption(InstSetOld, ___ )
[FieldList,ClassList,TypeString] = instswaption

Description
InstSet = instswaption(OptSpec,Strike,ExerciseDates,Spread,Settle,Maturity) to
specify a European swaption.

Fill in unspecified entries vectors with the value NaN. Only one data argument is required to create
the instruments; the others may be omitted or passed as empty matrices [].

InstSet = instswaption( ___ ,AmericanOpt,SwapReset,Basis,Principal) to specify an
American swaption.

InstSet = instswaption(InstSetOld, ___ ) to add swaption instruments to an instrument
variable.

[FieldList,ClassList,TypeString] = instswaption to list field metadata for the swaption
instrument.

Examples

Create Two Swaption Instruments

This example shows how to create two European swaption instruments using the following data.

OptSpec = {'Call'; 'Put'};
Strike = .05;
ExerciseDates = 'jan-1-2011';
Spread=0;
Settle = 'jan-1-2007';
Maturity = 'jan-1-2012';
AmericanOpt = 0;

InstSet = instswaption(OptSpec, Strike, ExerciseDates, Spread, Settle, Maturity, ...
 AmericanOpt);

% view the European swaption instruments using instdisp
instdisp(InstSet)

Index Type     OptSpec Strike ExerciseDates  Spread Settle         Maturity       AmericanOpt SwapReset Basis Principal FloatBasis FixedBasis FloatReset FixedReset
1     Swaption Call    0.05   01-Jan-2011    0      01-Jan-2007    01-Jan-2012    0           1         0     100       NaN        NaN        NaN        NaN       
2     Swaption Put     0.05   01-Jan-2011    0      01-Jan-2007    01-Jan-2012    0           1         0     100       NaN        NaN        NaN        NaN       
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Create Two European Swaption Instruments with Receiving and Paying Legs

This example shows how to create two European swaption instruments with receiving and paying
legs using the following data.

OptSpec = {'Call'; 'Put'};
Strike = .05;
ExerciseDates = 'jan-1-2011';
Spread=0;
Settle = 'jan-1-2007';
Maturity = 'jan-1-2012';
AmericanOpt = 0;
SwapReset = [2 4]; % 1st column represents receiving leg, 2nd column represents paying leg
Basis = [1 3];     % 1st column represents receiving leg, 2nd column represents paying leg

InstSet = instswaption(OptSpec,Strike,ExerciseDates,AmericanOpt,Spread,Settle,Maturity, ...
SwapReset,Basis);

View the European swaption instruments using instdisp.

instdisp(InstSet)

Index Type     OptSpec Strike ExerciseDates  Spread Settle Maturity       AmericanOpt SwapReset Basis Principal FloatBasis FixedBasis FloatReset FixedReset
1     Swaption Call    0.05   01-Jan-2011    0      0      01-Jan-2007    NaN         2  4      1  3  100       NaN        NaN        NaN        NaN       
2     Swaption Put     0.05   01-Jan-2011    0      0      01-Jan-2007    NaN         2  4      1  3  100       NaN        NaN        NaN        NaN       
 

Input Arguments
OptSpec — Definition of option
cell array of character vectors with values 'call' or 'put'

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of character vectors
with values 'call' or 'put'. A 'call' swaption entitles the buyer to pay the fixed rate. A 'put'
swaption entitles the buyer to receive the fixed rate.
Data Types: char | cell

Strike — Strike swap rate values
vector

Strike swap rate values, specified as a NINST-by-1 vector.
Data Types: double

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a vector of date character vectors or serial date numbers, where
each row is the schedule for one option and the last element of each row must be the same as the
maturity of the tree.

• For a European option, use a NINST-by-1 vector of exercise dates. Each row is the schedule for
one option. For a European option, there is only one ExerciseDate on the option expiry date.
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• For an American option, use a NINST-by-2 vector of exercise dates. For each instrument, the
option can be exercised on any coupon date between or including the pair of dates on that row. If
only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the option can be exercised
between the underlying swap Settle and the single listed ExerciseDate.

Data Types: double | char

Spread — Number of basis points over the reference rate
nonnegative integer | vector of nonnegative integers

Number of basis points over the reference rate, specified as a vector of nonnegative integers for the
number of instruments (NINST)-by-1).
Data Types: single | double

Settle — Settle date for each swap
serial date number | date character vector

Settle date for each swap, specified as a NINST-by-1 vector of date character vectors or serial date
numbers.
Data Types: char | double

Maturity — Maturity date for each swap
serial date number | date character vector

Maturity date for each swap, specified as a NINST-by-1 vector of date character vectors or serial date
numbers.
Data Types: char | double

AmericanOpt — Option type
0 European (default) | integer with values 0 or 1

(Optional) Option type, specified as NINST-by-1 integer flags with values:

• 0 — European
• 1 — American

The AmericanOpt argument is required to invoke American exercise rules.
Data Types: double

SwapReset — Reset frequency per year for each leg
1 (default) | numeric

(Optional) Reset frequency per year for each leg, specified as a NINST-by-1 vector or NINST-by-2
matrix. If SwapReset is NINST-by-2, the first column represents the receiving leg, while the second
column represents the paying leg.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis of the instrument, specified as a NINST-by-1 vector or NINST-by-2 matrix
representing the basis for each leg. If Basis is NINST-by-2, the first column represents the receiving
leg, while the second column represents the paying leg.
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• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

(Optional) Notional principal amount, specified as a NINST-by-1 vector.
Data Types: double

InstSetOld — Variable containing an existing collection of instruments
struct

Variable containing an existing collection of instruments, specified as a struct. Instruments are
classified by type; each type can have different data fields. The stored data field is a row vector or
character vector for each instrument. The InstSetOld argument is specified only when adding
swaption instruments to an existing instrument set. For more information on the InstSet variable,
see instget.
Data Types: struct

Output Arguments
InstSet — Variable containing collection of instruments
vector

(Optional) Variable containing a collection of instruments. Instruments are broken down by type and
each type can have different data fields. Each stored data field has a row vector or character vector
for each instrument. For more information on the InstSet variable, see instget.
Data Types: double

FieldList — Name of each data field for this instrument type
cell array of character vectors
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Name of each data field for this instrument type, returned as a NFIELDS-by-1 cell array of character
vectors.
Data Types: char | cell

ClassList — Data class of each field
character vector with value: 'dble', 'date', or 'char'.

Data class of each field, returned as a NFIELDS-by-1 cell array of character vectors. Valid character
vectors are 'dble', 'date', and 'char'.
Data Types: char | cell

TypeString — Type of instrument added
character vector

Type of instrument added, returned as a character vector (for a swaption, TypeString =
'Swaption').
Data Types: char

See Also
instadd | instget | instdisp

Topics
“Creating Instruments or Properties” on page 1-16
“Supported Interest-Rate Instrument Functions” on page 2-3
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced before R2006a

11 Functions

11-862



insttypes
List types

Syntax
TypeList = insttypes(InstSet)

Description
TypeList = insttypes(InstSet) retrieves a list of types stored in an instrument variable.

Examples

List Instrument Types

Retrieve the instrument set variable ExampleInst from the data file InstSetExamples.mat.
ExampleInst contains three types of instruments: Option, Futures, and TBill.

load InstSetExamples; 
instdisp(ExampleInst)

Index Type   Strike Price Opt  Contracts
1     Option  95    12.2  Call     0    
2     Option 100     9.2  Call     0    
3     Option 105     6.8  Call  1000    
 
Index Type    Delivery       F     Contracts
4     Futures 01-Jul-1999    104.4 -1000    
 
Index Type   Strike Price Opt  Contracts
5     Option 105     7.4  Put  -1000    
6     Option  95     2.9  Put      0    
 
Index Type  Price Maturity       Contracts
7     TBill 99    01-Jul-1999    6        
 

List all of the types included in ExampleInst.

TypeList = insttypes(ExampleInst)

TypeList = 3x1 cell
    {'Futures'}
    {'Option' }
    {'TBill'  }
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Input Arguments
InstSet — Instrument variable
structure

Instrument variable containing a collection of instruments, specified as InstSet structure.
Instruments are classified by type; each type can have different data fields. The stored data field is a
row vector or character vector for each instrument. For more information on the InstSet variable,
see instget.
Data Types: struct

Output Arguments
TypeList — Types of instrument
cell array of character vectors

Types of instruments, returned as an NTYPES-by-1 cell array of character vectors listing the Type of
instruments contained in the InstSet variable.

See Also
instdisp | instfields | instlength

Topics
“Portfolio Creation Using Functions” on page 1-6
“Instrument Constructors” on page 1-15

Introduced before R2006a
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intenvget
Properties of interest-rate structure

Syntax
ParameterValue = intenvget(RateSpec,ParameterName)

Description
ParameterValue = intenvget(RateSpec,ParameterName) obtains the value of the named
parameter ParameterName extracted from the RateSpec.

Examples

Extract Values from a RateSpec

Use intenvset to set the interest-rate structure.

RateSpec = intenvset('Rates',0.05,'StartDates',... 
'20-Jan-2000','EndDates','20-Jan-2001')

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 2
             Disc: 0.9518
            Rates: 0.0500
         EndTimes: 2
       StartTimes: 0
         EndDates: 730871
       StartDates: 730505
    ValuationDate: 730505
            Basis: 0
     EndMonthRule: 1

Use intenvget to extract values from the RateSpec.

[R, RateSpec] = intenvget(RateSpec,'Rates')

R = 0.0500

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 2
             Disc: 0.9518
            Rates: 0.0500
         EndTimes: 2
       StartTimes: 0
         EndDates: 730871
       StartDates: 730505
    ValuationDate: 730505
            Basis: 0
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     EndMonthRule: 1

Input Arguments
RateSpec — Interest-rate specification
structure

Interest-rate specification, specified by the RateSpec obtained previously from intenvset or
toRateSpec for an IRDataCurve or toRateSpec for an IRFunctionCurve.
Data Types: struct

ParameterName — Parameter name to be accessed
character vector

Parameter name to be accessed, specified as a character vector. The value of the named parameter is
extracted from the structure RateSpec. It is sufficient to type only the leading characters that
uniquely identify the parameter. Case is ignored for parameter names.
Data Types: char

Output Arguments
ParameterValue — Value of the named parameter ParameterName extracted from RateSpec
scalar

Value of the named parameter 'ParameterName' extracted from RateSpec, returned as a scalar
value.

See Also
intenvset

Topics
“Modeling the Interest-Rate Term Structure” on page 2-57
“Understanding the Interest-Rate Term Structure” on page 2-48

Introduced before R2006a

11 Functions

11-866



intenvprice
Price instruments from set of zero curves

Syntax
Price = intenvprice(RateSpecInstSet)

Description
Price = intenvprice(RateSpecInstSet) computes arbitrage-free prices for instruments
against a set of zero coupon bond rate curves.

intenvprice handles the following instrument types: 'Bond', 'CashFlow', 'Fixed', 'Float',
'Swap'. See instadd for information about constructing defined types.

Examples

Load Zero Curves and Instruments from Data File

Load the zero curves and instruments.

load deriv.mat
instdisp(ZeroInstSet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face Name    Quantity
1     Bond 0.04       01-Jan-2000    01-Jan-2003    1      NaN   NaN          NaN       NaN             NaN            NaN       NaN  4% bond 100     
2     Bond 0.04       01-Jan-2000    01-Jan-2004    2      NaN   NaN          NaN       NaN             NaN            NaN       NaN  4% bond  50     
 
Index Type  CouponRate Settle         Maturity       FixedReset Basis Principal Name     Quantity
3     Fixed 0.04       01-Jan-2000    01-Jan-2003    1          NaN   NaN       4% Fixed 80      
 
Index Type  Spread Settle         Maturity       FloatReset Basis Principal Name       Quantity
4     Float 20     01-Jan-2000    01-Jan-2003    1          NaN   NaN       20BP Float 8       
 
Index Type LegRate    Settle         Maturity       LegReset Basis Principal LegType Name         Quantity
5     Swap [0.06  20] 01-Jan-2000    01-Jan-2003    [1  1]   NaN   NaN       [NaN]   6%/20BP Swap 10      
 

Price the instruments.

Price = intenvprice(ZeroRateSpec, ZeroInstSet)

Price = 5×1

   98.7159
   97.5334
   98.7159
  100.5529
    3.6923
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Create a Float-Float Swap and Price with intenvprice

Use instswap to create a float-float swap and price the swap with intenvprice.

RateSpec = intenvset('Rates',.05,'StartDate',today,'EndDate',datemnth(today,60));
IS = instswap([400 200],today,datemnth(today,60),[], [], [], [0 0]);
intenvprice(RateSpec,IS)

ans = 8.6440

Create Float-Float, Fixed-Fixed, and Float-Fixed Swaps and Price with intenvprice

Use instswap to create swaps and price the swaps with intenvprice.

RateSpec = intenvset('Rates',.05,'StartDate',today,'EndDate',datemnth(today,60));
IS = instswap([.03 .02],today,datemnth(today,60),[], [], [], [1 1]);
IS = instswap(IS,[200 300],today,datemnth(today,60),[], [], [], [0 0]);
IS = instswap(IS,[300 .07],today,datemnth(today,60),[], [], [], [0 1]);
intenvprice(RateSpec,IS)

ans = 3×1

    4.3220
   -4.3220
    4.5921

Input Arguments
RateSpec — Interest-rate specification
structure

(Optional) Interest-rate specification, specified by the RateSpec obtained previously from
intenvset or toRateSpec for an IRDataCurve or toRateSpec for an IRFunctionCurve.
Data Types: struct

InstSet — Instrument variable containing a collection of instruments
structure

Instrument variable containing a collection of instruments, specified using instadd. Instruments are
categorized by type; each type can have different data fields. The stored data field is a row vector or
character vector for each instrument.
Data Types: struct

Output Arguments
Price — Prices of each instrument
matrix
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Prices of each instrument, returned as a number of instruments (NINST) by number of curves
(NUMCURVES) matrix. If an instrument cannot be priced, a NaN is returned in that entry.

For single-type pricing functions to retrieve pricing information, see the following:

bondbyzero Price bonds from a set of zero curves.
cfbyzero Price arbitrary cash flow instrument from a set of zero curves.
fixedbyzero Fixed-rate note prices from a set of zero curves.
floatbyzero Floating-rate note prices from a set of zero curves.
swapbyzero Swap prices from a set of zero curves.

See Also
hjmprice | hjmsens | instswap | instadd | intenvsens | intenvset | bondbyzero | cfbyzero
| floatbyzero | swapbyzero | fixedbyzero

Topics
“Pricing Using Interest-Rate Term Structure” on page 2-61
“Understanding the Interest-Rate Term Structure” on page 2-48

Introduced before R2006a
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intenvsens
Instrument price and sensitivities from set of zero curves

Syntax
[Delta,Gamma,Price] = intenvprice(RateSpecInstSet)

Description
[Delta,Gamma,Price] = intenvprice(RateSpecInstSet) computes dollar prices and price
sensitivities for instruments that use a zero coupon bond rate structure.

intenvsens handles the following instrument types: 'Bond', 'CashFlow', 'Fixed', 'Float',
'Swap'. See instadd for information about constructing defined types.

Examples

Compute Prices Sensitivities for Instruments Using a Zero Coupon Bond Rate Structure

Load the tree and instruments from the deriv.mat data file and use intenvprice to compute
dollar prices and sensitivities for instruments that use a zero coupon bond rate structure.

load deriv.mat
instdisp(ZeroInstSet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face Name    Quantity
1     Bond 0.04       01-Jan-2000    01-Jan-2003    1      NaN   NaN          NaN       NaN             NaN            NaN       NaN  4% bond 100     
2     Bond 0.04       01-Jan-2000    01-Jan-2004    2      NaN   NaN          NaN       NaN             NaN            NaN       NaN  4% bond  50     
 
Index Type  CouponRate Settle         Maturity       FixedReset Basis Principal Name     Quantity
3     Fixed 0.04       01-Jan-2000    01-Jan-2003    1          NaN   NaN       4% Fixed 80      
 
Index Type  Spread Settle         Maturity       FloatReset Basis Principal Name       Quantity
4     Float 20     01-Jan-2000    01-Jan-2003    1          NaN   NaN       20BP Float 8       
 
Index Type LegRate    Settle         Maturity       LegReset Basis Principal LegType Name         Quantity
5     Swap [0.06  20] 01-Jan-2000    01-Jan-2003    [1  1]   NaN   NaN       [NaN]   6%/20BP Swap 10      
 

[Delta,Gamma] = intenvsens(ZeroRateSpec,ZeroInstSet)

Delta = 5×1

 -272.6403
 -347.4386
 -272.6403
   -1.0445
 -282.0405

Gamma = 5×1
103 ×
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    1.0298
    1.6227
    1.0298
    0.0033
    1.0596

Input Arguments
RateSpec — Interest-rate specification
structure

(Optional) Interest-rate specification, specified by the RateSpec obtained previously from
intenvset or toRateSpec for an IRDataCurve or toRateSpec for an IRFunctionCurve.
Data Types: struct

InstSet — Instrument variable containing a collection of instruments
structure

Instrument variable containing a collection of instruments, specified using instadd. Instruments are
categorized by type; each type can have different data fields. The stored data field is a row vector or
character vector for each instrument.
Data Types: struct

Output Arguments
Delta — Rate of change of instrument prices with respect to shifts in the observed zero
curve
vector

Rate of change of instrument prices with respect to shifts in the observed zero curve, returned as a
number of instruments (NINST) by number of curves (NUMCURVES) matrix. Delta is computed by
finite differences.

Note Delta sensitivities are returned as dollar sensitivities. To find the per-dollar sensitivities,
divide by the respective instrument price.

Gamma — Rate of change of instrument deltas with respect to shifts in the observed zero
curve
vector

Rate of change of instrument deltas with respect to shifts in the observed zero curve, returned as a
number of instruments (NINST) by number of curves (NUMCURVES) matrix. Gamma is computed by
finite differences.

Note Gamma sensitivities are returned as dollar sensitivities. To find the per-dollar sensitivities,
divide by the respective instrument price.
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Price — Prices of each instrument
vector

Prices of each instrument, returned as a number of instruments (NINST) by number of curves
(NUMCURVES) matrix. If an instrument cannot be priced, a NaN is returned in that entry.

See Also
hjmprice | hjmsens | instadd | intenvprice | intenvset

Topics
“Pricing Using Interest-Rate Term Structure” on page 2-61
“Understanding the Interest-Rate Term Structure” on page 2-48

Introduced before R2006a
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intenvset
Set properties of interest-rate structure

Syntax
RateSpec = intenvset(Name,Value)
[RateSpec,RateSpecOld] = intenvset(RateSpec,Name,Value)
[RateSpec,RateSpecOld] = intenvset

Description
RateSpec = intenvset(Name,Value) creates an interest-rate term structure (RateSpec) where
the input argument list is specified as name-value pairs.

Note When creating a new RateSpec, the set of arguments passed to intenvset must include
StartDates, EndDates, and either Rates or Disc.

Alternatively, you can create a RateSpec using the Financial Instruments Toolbox object framework
to construct a ratecurve object. For more information on converting a RateSpec object to a
ratecurve object, see “Convert RateSpec to a ratecurve Object” on page 1-49.

[RateSpec,RateSpecOld] = intenvset(RateSpec,Name,Value) creates an interest-rate term
structure (RateSpec) where the input argument list is specified as name-value pairs along with the
optional argument RateSpec. If the optional argument RateSpec is specified, intenvset modifies
the existing interest-rate term structure RateSpec by changing the named argument to the specified
values and recalculating the arguments dependent on the new values.

[RateSpec,RateSpecOld] = intenvset creates an interest-rate term structure RateSpec with
all fields set to [ ].

Examples

Create a RateSpec for a Zero Curve

Use intenvset to create a RateSpec for a zero curve.

RateSpec = intenvset('Rates', 0.05, 'StartDates',... 
'20-Jan-2000', 'EndDates', '20-Jan-2001')

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 2
             Disc: 0.9518
            Rates: 0.0500
         EndTimes: 2
       StartTimes: 0
         EndDates: 730871
       StartDates: 730505
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    ValuationDate: 730505
            Basis: 0
     EndMonthRule: 1

Now change the Compounding argument to 1 (annual).

RateSpec = intenvset(RateSpec, 'Compounding', 1)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: 0.9518
            Rates: 0.0506
         EndTimes: 1
       StartTimes: 0
         EndDates: 730871
       StartDates: 730505
    ValuationDate: 730505
            Basis: 0
     EndMonthRule: 1

Calling intenvset with no input or output arguments displays a list of argument names and possible
values.

intenvset

            Compounding: [ 0 | 1 | {2} | 3 | 4 | 6 | 12 | 365 | -1 ]
                   Disc: [ scalar | vector (NPOINTS x 1) ]
                  Rates: [ scalar | vector (NPOINTS x 1) ]
               EndDates: [ scalar | vector (NPOINTS x 1) ]
             StartDates: [ scalar | vector (NPOINTS x 1) ]
          ValuationDate: [ scalar ]
                  Basis: [ {0} | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 ]
           EndMonthRule: [ 0 | {1} ]

Create a RateSpec for a Forward Curve

Use intenvset to create a RateSpec for a forward curve.

RateSpec = intenvset('Rates', 0.05, 'StartDates',... 
'20-Jan-2001', 'EndDates', '20-Jan-2002', 'ValuationDate','20-Jan-2000')

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 2
             Disc: 0.9518
            Rates: 0.0500
         EndTimes: 4
       StartTimes: 2
         EndDates: 731236
       StartDates: 730871
    ValuationDate: 730505
            Basis: 0
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     EndMonthRule: 1

Now change the Compounding argument to 1 (annual).

RateSpec = intenvset(RateSpec, 'Compounding', 1)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: 0.9518
            Rates: 0.0506
         EndTimes: 2
       StartTimes: 1
         EndDates: 731236
       StartDates: 730871
    ValuationDate: 730505
            Basis: 0
     EndMonthRule: 1

Create a RateSpec Using Two Curves

Define data for the interest-rate term structure and use intenvset to create a RateSpec.

StartDates = '01-Oct-2011'; 
EndDates = ['01-Oct-2012'; '01-Oct-2013';'01-Oct-2014';'01-Oct-2015'];
Rates = [[0.0356;0.041185;0.04489;0.047741],[0.0325;0.0423;0.0437;0.0465]];
RateSpec = intenvset('Rates', Rates, 'StartDates',StartDates,...
'EndDates', EndDates, 'Compounding', 1)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x2 double]
            Rates: [4x2 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: 734777
    ValuationDate: 734777
            Basis: 0
     EndMonthRule: 1

To look at the Rates for the two interest-rate curves:

RateSpec.Rates

ans = 4×2

    0.0356    0.0325
    0.0412    0.0423
    0.0449    0.0437
    0.0477    0.0465
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Create a RateSpec to Price Multi-Stepped Coupon Bonds

Price the following multi-stepped coupon bonds using the following data:

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

% Create RateSpec using intenvset
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

% Create a portfolio of stepped coupon bonds with different maturities
Settle = '01-Jan-2010';
Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2011' .042;'01-Jan-2012' .05; '01-Jan-2013' .06; '01-Jan-2014' .07}};

% Display the instrument portfolio 
ISet = instbond(CouponRate, Settle, Maturity, 1);
instdisp(ISet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face
1     Bond [Cell]     01-Jan-2010    01-Jan-2011    1      0     1            NaN       NaN             NaN            NaN       100 
2     Bond [Cell]     01-Jan-2010    01-Jan-2012    1      0     1            NaN       NaN             NaN            NaN       100 
3     Bond [Cell]     01-Jan-2010    01-Jan-2013    1      0     1            NaN       NaN             NaN            NaN       100 
4     Bond [Cell]     01-Jan-2010    01-Jan-2014    1      0     1            NaN       NaN             NaN            NaN       100 
 

Build a BDTTree to price the stepped coupon bonds. Assume the volatility to be 10%

Sigma = 0.1; 
BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');
BDTT = bdttree(BDTVolSpec, RS, BDTTimeSpec);

% Compute the price of the stepped coupon bonds
PBDT = bdtprice(BDTT, ISet)

PBDT = 4×1

  100.6763
  100.7368
  100.9266
  101.0115

Input Arguments
RateSpec — Interest-rate specification for initial risk-free rate curve
structure
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(Optional) Interest-rate specification for initial rate curve, specified by the RateSpec obtained
previously from intenvset or toRateSpec for an IRDataCurve or toRateSpec for an
IRFunctionCurve.
Data Types: struct

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: RateSpec = intenvset('Rates',0.05,'StartDates','20-
Jan-2001','EndDates','20-Jan-2002','ValuationDate','20-Jan-2000')

Compounding — Rate at which the input zero rates were compounded when annualized
2 (default) | integer with value of 0,1, 2, 3, 4, 6, 12, 365, or -1

Rate at which the input zero rates were compounded when annualized, specified as the comma-
separated pair consisting of 'Compounding' and a scalar integer value. The Compounding
argument determines the formula for the discount factors (Disc):

• Compounding = 0 for simple interest

• Disc = 1/(1 + Z * T), where T is time in years and simple interest assumes annual times
F = 1.

• Compounding = 1, 2, 3, 4, 6, 12

• Disc = (1 + Z/F)^(-T), where F is the compounding frequency, Z is the zero rate, and T is
the time in periodic units, for example, T = F is one year.

• Compounding = 365

• Disc = (1 + Z/F)^(-T), where F is the number of days in the basis year and T is a number
of days elapsed computed by basis.

• Compounding = -1

• Disc = exp(-T*Z), where T is time in years.

Data Types: double

Disc — Unit bond prices over investment intervals
[ ] (default) | matrix

Unit bond prices over investment intervals from StartDates (when the cash flow is valued) to
EndDates (when the cash flow is received), specified as the comma-separated pair consisting of
'Disc' and a number of points (NPOINTS) by number of curves (NCURVES) matrix.
Data Types: double

Rates — Interest rates
matrix of decimal values

Interest rates, specified as the comma-separated pair consisting of 'Rates' and a number of points
(NPOINTS) by number of curves (NCURVES) matrix of decimal values. Rates can only contain
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negative decimal values if the resulting RateSpec is used with a Normal (Bachelier) model, shifted
Black model, or a shifted SABR model.
Data Types: double

EndDates — Maturity dates ending the interval to discount over
serial date number | date character vector

Maturity dates ending the interval to discount over, specified as the comma-separated pair consisting
of 'EndDates' and a scalar or a NPOINTS-by-1 vector of serial date numbers or date character
vectors.
Data Types: double | char | cell

StartDates — Dates starting the interval to discount over
serial date number | date character vector

Dates starting the interval to discount over, specified as the comma-separated pair consisting of
'StartDates' and a scalar or a NPOINTS-by-1 vector of serial date numbers or date character
vectors. StartDates must be earlier than EndDates.
Data Types: double | char | cell

ValuationDate — Observation date of the investment horizons entered in StartDates and
EndDates
min(StartDates) (default) | serial date number | character vector date

observation date of the investment horizons entered in StartDates and EndDates, specified as the
comma-separated pair consisting of 'ValuationDate' and a specified as a scalar serial date
number or date character vector.
Data Types: double | char

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis, specified as the comma-separated pair consisting of 'Basis' and a scalar integer
value.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
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• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer with values 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
scalar integer with a value of 0 or 1. This rule applies only when EndDates is an end-of-month date
for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: double

Output Arguments
RateSpec — Interest-rate specification for initial rate curve
structure

Interest-rate specification for initial rate curve, returned as a structure.

RateSpecOld — Properties of an interest-rate structure before the changes introduced by
the call to intenvset
structure

Properties of an interest-rate structure before the changes introduced by the call to intenvset,
returned as a structure.

See Also
intenvget | intenvprice | ratecurve

Topics
“Pricing Using Interest-Rate Term Structure” on page 2-61
“Understanding the Interest-Rate Term Structure” on page 2-48
“Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework” on page 1-93
“Interest-Rate Curve Objects and Workflow” on page 9-2
“Convert RateSpec to a ratecurve Object” on page 1-49

Introduced before R2006a
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isafin
True if input argument is financial structure type or financial object class

Syntax
IsFinObj = isafin(Obj,ClassName)

Description
IsFinObj = isafin(Obj,ClassName) returns true (1) if input argument is a financial structure
type or financial object class, otherwise false (0) is returned.

Examples

Determine if Input is Financial Structure Type or Financial Object Class

isafin returns true (1) if input argument is a financial structure type or financial object class,
otherwise false (0) is returned.

load deriv.mat
IsFinObj = isafin(HJMTree, 'HJMFwdTree')

IsFinObj = logical
   1

Input Arguments
Obj — Name of a financial structure
object

Name of a financial structure, specified as an object.
Data Types: object

ClassName — Name of financial structure class
character vector

Name of a financial structure class, specified as a character vector.
Data Types: char

Output Arguments
IsFinObj — Is input argument is financial structure type or financial object class
logical
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Is input argument is financial structure type or financial object class, returned as a logical. isafin
returns true (1) if input argument is a financial structure type or financial object class, otherwise
false (0).

See Also
classfin

Topics
“Portfolio Creation Using Functions” on page 1-6
“Instrument Constructors” on page 1-15

Introduced before R2006a
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ittprice
Price instruments using implied trinomial tree (ITT)

Syntax
[Price,PriceTree] = ittprice(ITTTree,InstSet)
[Price,PriceTree] = ittprice( ___ ,Options)

Description
[Price,PriceTree] = ittprice(ITTTree,InstSet) price instruments using an implied
trinomial tree (ITT) created with itttree. All instruments contained in a financial instrument
variable, InstSet, are priced.

ittprice handles the following instrument types: optstock, barrier, Asian, lookback, and compound.
Use instadd to construct the defined types.

[Price,PriceTree] = ittprice( ___ ,Options) adds an optional input argument for Options.

Examples

Price Instruments Using Implied Trinomial Tree (ITT)

Load the ITT tree and instruments from the data file deriv.mat.

load deriv.mat

Display the barrier and Asian options contained in the instrument set.

ITTSubSet = instselect(ITTInstSet,'Type', {'Barrier', 'Asian'}); 

instdisp(ITTSubSet)

Index Type    OptSpec Strike Settle         ExerciseDates  AmericanOpt BarrierSpec Barrier Rebate Name     Quantity
1     Barrier call    85     01-Jan-2006    31-Dec-2008    1           ui          115     0      Barrier1 1       
 
Index Type  OptSpec Strike Settle         ExerciseDates  AmericanOpt AvgType    AvgPrice AvgDate Name   Quantity
2     Asian call    55     01-Jan-2006    01-Jan-2008    0           arithmetic NaN      NaN     Asian1 5       
3     Asian call    55     01-Jan-2006    01-Jan-2010    0           arithmetic NaN      NaN     Asian2 7       
 

Price the barrier and Asian options contained in the instrument set.

[Price, PriceTree] = ittprice(ITTTree, ITTSubSet)

Price = 3×1

    2.4074
    3.2052
    6.6074
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PriceTree = struct with fields:
    FinObj: 'TrinPriceTree'
     PTree: {1x5 cell}
      tObs: [0 1 2 3 4]
      dObs: [732678 733043 733408 733773 734139]

Input Arguments
ITTTree — Implied trinomial stock tree structure
structure

Implied trinomial stock tree structure, specified by using itttree.
Data Types: struct

InstSet — Instrument variable
structure

Instrument variable containing a collection of NINST instruments, specified using instadd.
Instruments are categorized by type; each type can have different data fields. The stored data field is
a row vector or character vector for each instrument.
Data Types: struct

Options — Derivatives pricing options structure
structure

(Optional) Derivatives pricing options structure, created using derivset.
Data Types: struct

Output Arguments
Price — Price for each instrument
vector

Price for each instrument, returned as a NINST-by-1 vector. The prices are computed by backward
dynamic programming on the stock tree. If an instrument cannot be priced, a NaN is returned in that
entry.

For information on single-type pricing functions to retrieve state-by-state pricing tree information,
see the following:

• barrierbyitt for pricing barrier options using an ITT tree
• optstockbyitt for pricing American, European, or Bermuda options using an ITT tree
• asianbyitt for pricing Asian options using an ITT tree
• lookbackbyitt for pricing lookback options using an ITT tree
• compoundbyitt for price compound options using an ITT tree
• cbondbyitt for pricing convertible bonds using an ITT tree

PriceTree — Tree structure of instrument prices
structure
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Tree structure of instrument prices, returned as a MATLAB structure of trees containing vectors of
instrument prices and accrued interest, and a vector of observation times for each node. Within
PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.
• PriceTree.dObs contains the observation dates.

See Also
ittsens | itttree

Topics
“Computing Prices Using ITT” on page 3-68
“Examining Output from the Pricing Functions” on page 3-70
“Computing Equity Instrument Sensitivities” on page 3-75
“Graphical Representation of Equity Derivative Trees” on page 3-73
“Pricing Options Structure” on page A-2
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2007a
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ittsens
Instrument sensitivities and prices using implied trinomial tree (ITT)

Syntax
[Delta,Gamma,Vega,Price] = ittsens(ITTTree,InstSet)
[Delta,Gamma,Vega,Price] = ittsens( ___ ,Options)

Description
[Delta,Gamma,Vega,Price] = ittsens(ITTTree,InstSet) calculates instrument sensitivities
and prices using an implied trinomial tree (ITT) that is created with the itttree function. All
sensitivities are returned as dollar sensitivities. To find the per-dollar sensitivities, divide by the
respective instrument price.

ittsens handles the following instrument types: optstock, barrier, Asian, lookback, and compound.
Use instadd to construct the defined types.

[Delta,Gamma,Vega,Price] = ittsens( ___ ,Options) adds an optional input argument for
Options.

Examples

Compute Instrument Sensitivities Using an Implied Trinomial Tree (ITT)

Load the ITT tree and instruments from the data file deriv.mat and display the vanilla options and
barrier option instruments.

load deriv.mat 
ITTSubSet = instselect(ITTInstSet,'Type', {'OptStock', 'Barrier'});

instdisp(ITTSubSet)

Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name  Quantity
1     OptStock call    95     01-Jan-2006    31-Dec-2008    1           Call1 10      
2     OptStock put     80     01-Jan-2006    01-Jan-2010    0           Put1   4      
 
Index Type    OptSpec Strike Settle         ExerciseDates  AmericanOpt BarrierSpec Barrier Rebate Name     Quantity
3     Barrier call    85     01-Jan-2006    31-Dec-2008    1           ui          115     0      Barrier1 1       
 

Compute the Delta and Gamma sensitivities of vanilla options and barrier option contained in the
instrument set.

[Delta, Gamma] = ittsens(ITTTree, ITTSubSet)

Warning: The option set specified in StockOptSpec was too narrow for the generated tree.
This made extrapolation necessary. Below is a list of the options that were outside of the
range of those specified in StockOptSpec.

Option Type: 'call'   Maturity: 01-Jan-2007  Strike=67.2897
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Option Type: 'put'   Maturity: 01-Jan-2007  Strike=37.1528
Option Type: 'put'   Maturity: 01-Jan-2008  Strike=27.6066
Option Type: 'put'   Maturity: 31-Dec-2008  Strike=20.5132
Option Type: 'call'   Maturity: 01-Jan-2010  Strike=164.0157
Option Type: 'put'   Maturity: 01-Jan-2010  Strike=15.2424

Delta = 3×1

    0.2387
   -0.4283
    0.3482

Gamma = 3×1

    0.0260
    0.0188
    0.0380

Input Arguments
ITTTree — Stock tree structure
structure

Stock tree structure, specified by using itttree.
Data Types: struct

InstSet — Instrument variable
structure

Instrument variable containing a collection of NINST instruments, specified using instadd.
Instruments are categorized by type; each type can have different data fields. The stored data field is
a row vector or character vector for each instrument.
Data Types: struct

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, created using derivset.
Data Types: struct

Output Arguments
Delta — Rate of change of instruments prices with respect to changes in the stock price
vector

Rate of change of instruments prices with respect to changes in the stock price, returned as a NINST-
by-1 vector of deltas.

For path-dependent options ('Lookback' and 'Asian'), Delta and Gamma are computed by finite
differences in calls to ittprice. For the rest of the options ('OptStock', 'Barrier', 'CBond',
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and 'Compound'), Delta and Gamma are computed from the ITTTree and the corresponding option
price tree.

Gamma — Rate of change of instruments deltas with respect to changes in stock price
vector

Rate of change of instruments deltas with respect to changes in the stock price, returned as a NINST-
by-1 vector of gammas.

For path-dependent options ('Lookback' and 'Asian'), Delta and Gamma are computed by finite
differences in calls to ittprice. For the rest of the options ('OptStock', 'Barrier', 'CBond',
and 'Compound'), Delta and Gamma are computed from the ITTTree and the corresponding option
price tree.

Vega — Rate of change of instruments prices with respect to changes in volatility of the
stock
vector

Rate of change of instruments prices with respect to changes in the volatility of the stock, returned as
a NINST-by-1 vector of vegas. Vega is computed by finite differences in calls to itttree.

Price — Price of each instrument
vector

Price of each instrument, returned as a NINST-by-1 vector. The prices are computed by backward
dynamic programming on the stock tree. If an instrument cannot be priced, a NaN is returned in that
entry.

References
[1] Chriss, Neil. Black-Scholes and Beyond: Option Pricing Models. McGraw-Hill, 1996, pp 308-312.

See Also
ittprice | itttree

Topics
“Computing Prices Using ITT” on page 3-68
“Examining Output from the Pricing Functions” on page 3-70
“Computing Equity Instrument Sensitivities” on page 3-75
“Graphical Representation of Equity Derivative Trees” on page 3-73
“Pricing Options Structure” on page A-2
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2007a
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itttimespec
Specify time structure using implied trinomial tree (ITT)

Syntax
TimeSpec = itttimespec(ValuationDate,Maturity,NumPeriods)

Description
TimeSpec = itttimespec(ValuationDate,Maturity,NumPeriods) creates the structure
specifying the time layout for an ITT tree (itttree).

Examples

Creates the Structure Specifying the Time Layout for an ITT Tree

This example shows how to specify a four-period tree with time steps of 1 year.

ValuationDate = '1-July-2006';
Maturity = '1-July-2010';
TimeSpec = itttimespec(ValuationDate, Maturity, 4)

TimeSpec = struct with fields:
           FinObj: 'ITTTimeSpec'
    ValuationDate: 732859
         Maturity: 734320
       NumPeriods: 4
            Basis: 0
     EndMonthRule: 1
             tObs: [0 1 2 3 4]
             dObs: [732859 733224 733589 733954 734320]

Input Arguments
ValuationDate — Pricing date and first observation in the tree
serial date number | character vector date

Pricing date and first observation in the itttree, specified as a scalar date using a serial date
number or date character vector.
Data Types: double | char

Maturity — Date marking the depth of the EQP stock tree
serial date number | date character vector

Date marking the depth of the itttree trinomial tree, specified as scalar serial date number or date
character vector.
Data Types: double | char
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NumPeriods — Number of time steps in the ITT tree
integer

Number of time steps in the itttree trinomial tree, specified as scalar integer value.
Data Types: double

Output Arguments
TimeSpec — Specification for the time layout for itttree
structure

Specification for the time layout for itttree, returned as a structure.

See Also
ittprice | itttree | stockspec

Topics
“Building Implied Trinomial Trees” on page 3-6
“Examining Equity Trees” on page 3-14
“Graphical Representation of Equity Derivative Trees” on page 3-73
“Understanding Equity Trees” on page 3-2
“Pricing Options Structure” on page A-2
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2007a
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itttree
Build implied trinomial stock tree

Syntax
ITTTree = itttree(StockSpec,RateSpec,TimeSpec,StockOptSpec)

Description
ITTTree = itttree(StockSpec,RateSpec,TimeSpec,StockOptSpec) builds an implied
trinomial (ITT) stock tree.

Examples

Create an ITT Tree

Assume that the interest rate is fixed at 8% annually between the valuation date of the tree (January
1, 2006) until its maturity.

Rate = 0.08;
ValuationDate = '01-01-2006';
EndDate = '01-01-2008';

RateSpec = intenvset('StartDates', ValuationDate, 'EndDates', EndDate, ...
    'ValuationDate', ValuationDate, 'Rates', Rate, 'Compounding', -1);

To build an ITTTree, create the StockSpec, TimeSpec, and StockOptSpec structures.

Sigma = 0.20;
AssetPrice = 50;
DividendType = 'cash';
DividendAmounts = [0.50; 0.50; 0.50; 0.50];
ExDividendDates = {'03-Jan-2007'; '01-Apr-2007'; '05-July-2007';'01-Oct-2007'}

StockSpec = stockspec(Sigma, AssetPrice, DividendType, ... 
DividendAmounts, ExDividendDates);

ValuationDate = '01-01-2006';
EndDate = '01-01-2008';
NumPeriods = 4;
 
TimeSpec = itttimespec(ValuationDate, EndDate, NumPeriods);

Build a StockOptSpec structure.

Settle =   '01/01/06';

Maturity =    ['07/01/06';
    '07/01/06';
    '07/01/06';
    '07/01/06';
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    '01/01/07';
    '01/01/07';
    '01/01/07';
    '01/01/07';
    '07/01/07';
    '07/01/07';
    '07/01/07';
    '07/01/07';
    '01/01/08';
    '01/01/08';
    '01/01/08';
    '01/01/08'];

Strike = [113;
   101;
   100;
    88;
   128;
   112;
   100;
    78;
   144;
   112;
   100;
    69;
   162;
   112;
   100;
    61];

OptPrice =[                 0;
   4.807905472659144;
   1.306321897011867;
   0.048039195057173;
                   0;
   2.310953054191461;
   1.421950392866235;
   0.020414826276740;
                   0;
   5.091986935627730;
   1.346534812295291;
   0.005101325584140;
                   0;
   8.047628153217246;
   1.219653432150932;
   0.001041436654748];

OptSpec = { 'call';
    'call';
    'put';
    'put';
    'call';
    'call';
    'put';
    'put';
    'call';
    'call';
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    'put';
    'put';
    'call';
    'call';
    'put';
    'put'};
    
StockOptSpec = stockoptspec(OptPrice, Strike, Settle, Maturity, OptSpec);

Use itttree to build the ITTTree structure. Note, in this example, the extrapolation warnings are
turned on. These warnings are a consequence of having to extrapolate to find the option price of the
tree nodes. In this example, the set of inputs options was too narrow for the shift in the tree nodes
introduced by the disturbance used to calculate the sensitivities. As a consequence extrapolation for
some of the nodes was needed.

warning('on', 'fininst:itttree:Extrapolation');
ITTTree = itttree(StockSpec, RateSpec, TimeSpec, StockOptSpec)

Warning: The option set specified in StockOptSpec was too narrow for the generated tree.
This made extrapolation necessary. Below is a list of the options that were outside of
the range of those specified in StockOptSpec.

Option Type: 'call'   Maturity: 02-Jul-2006  Strike=60.7466
Option Type: 'put'   Maturity: 02-Jul-2006  Strike=50.0731
Option Type: 'put'   Maturity: 02-Jul-2006  Strike=41.3344
Option Type: 'call'   Maturity: 01-Jan-2007  Strike=73.8592
Option Type: 'call'   Maturity: 01-Jan-2007  Strike=60.8227
Option Type: 'put'   Maturity: 01-Jan-2007  Strike=50.1492
Option Type: 'put'   Maturity: 01-Jan-2007  Strike=41.4105
Option Type: 'put'   Maturity: 01-Jan-2007  Strike=34.2559
Option Type: 'call'   Maturity: 02-Jul-2007  Strike=88.8310
Option Type: 'call'   Maturity: 02-Jul-2007  Strike=72.9081
Option Type: 'call'   Maturity: 02-Jul-2007  Strike=59.8715
Option Type: 'put'   Maturity: 02-Jul-2007  Strike=49.1980
Option Type: 'put'   Maturity: 02-Jul-2007  Strike=40.4594
Option Type: 'put'   Maturity: 02-Jul-2007  Strike=33.3047
Option Type: 'put'   Maturity: 02-Jul-2007  Strike=27.4470
Option Type: 'call'   Maturity: 01-Jan-2008  Strike=107.2895
Option Type: 'call'   Maturity: 01-Jan-2008  Strike=87.8412
Option Type: 'call'   Maturity: 01-Jan-2008  Strike=71.9183
Option Type: 'call'   Maturity: 01-Jan-2008  Strike=58.8817
Option Type: 'put'   Maturity: 01-Jan-2008  Strike=48.2083
Option Type: 'put'   Maturity: 01-Jan-2008  Strike=39.4696
Option Type: 'put'   Maturity: 01-Jan-2008  Strike=32.3150
Option Type: 'put'   Maturity: 01-Jan-2008  Strike=26.4573
Option Type: 'put'   Maturity: 01-Jan-2008  Strike=21.6614

> In itttree>InterpOptPrices at 675
  In itttree at 277

ITTTree = 

          FinObj: 'ITStockTree'
       StockSpec: [1x1 struct]
    StockOptSpec: [1x1 struct]
        TimeSpec: [1x1 struct]
        RateSpec: [1x1 struct]
            tObs: [0 0.500000000000000 1 1.500000000000000 2]
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            dObs: [732678 732860 733043 733225 733408]
           STree: {1x5 cell}
           Probs: {[3x1 double]  [3x3 double]  [3x5 double]  [3x7 double]}

Input Arguments
StockSpec — Stock specification
structure

Stock specification, specified by the StockSpec obtained from stockspec. See stockspec for
information on creating a stock specification.
Data Types: struct

RateSpec — Interest-rate specification for initial risk-free rate curve
structure

Interest-rate specification for initial risk-free rate curve, specified by the RateSpec obtained from
intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

TimeSpec — Tree time layout specification
structure

Tree time layout specification, specified by the TimeSpec obtained from itttimespec. The
TimeSpec defines the observation dates of the ITT tree. See itttimespec for information on the
tree structure.
Data Types: struct

StockOptSpec — Option stock specification
structure

Option stock specification, specified by the StockOptSpec obtained from stockoptspec. See
stockoptspec for information on creating a stock specification.
Data Types: struct

Output Arguments
ITTTree — ITT trinomial tree
structure

ITT trinomial tree, returned as a structure specifying the time layout for the tree.

See Also
intenvset | ittprice | itttree | stockspec | itttimespec | stockoptspec

Topics
“Building Implied Trinomial Trees” on page 3-6
“Examining Equity Trees” on page 3-14
“Graphical Representation of Equity Derivative Trees” on page 3-73
“Use treeviewer to Examine HWTree and PriceTree When Pricing European Callable Bond” on page
2-195
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“Understanding Equity Trees” on page 3-2
“Pricing Options Structure” on page A-2
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2007a
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LiborMarketModel
Create LIBOR Market Model

Description
The LIBOR Market Model (LMM) is an interest-rate model that differs from short rate models in that
it evolves a set of discrete forward rates.

Specifically, the lognormal LMM specifies the following diffusion equation for each forward rate

dFi(t)
Fi

= − μidt + σi(t)dWi

where:

W is an N-dimensional geometric Brownian motion with

dWi(t)dW j(t) = ρi j

The LMM relates drifts of the forward rates based on no-arbitrage arguments. Specifically, under the
Spot LIBOR measure, drifts are expressed as

μi(t) = − σi(t) ∑
j = q(t)

i τ jρi, jσ j(t)F j(t)
1 + τ jF j(t)

where:

ρi, j represents the input argument Correlation.

σ j(t) represents the input argument VolFunc.

F j(t) represents the computation of the input argument for ZeroCurve.

τi is the time fraction associated with the i th forward rate

q(t) is an index defined by the relation

Tq(t)− 1 < t < Tq(t)

and the Spot LIBOR numeraire is defined as

B(t) = P(t, Tq(t)) ∏
n = 0

q(t)− 1
(1 + τnFn(Tn))
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Creation
Syntax
LMM = LiborMarketModel(ZeroCurve,VolFunc,Correlation)
LMM = LiborMarketModel( ___ ,Name,Value)

Description

LMM = LiborMarketModel(ZeroCurve,VolFunc,Correlation) creates a LiborMarketModel
(LMM) object using the required arguments for ZeroCurve, VolFunc, Correlation.

LMM = LiborMarketModel( ___ ,Name,Value) sets Properties on page 11-897 using name-value
pairs. For example, LMM = LiborMarketModel(irdc,VolFunc,Correlation,'Period',1).
You can specify multiple name-value pairs. Enclose each property name in single quotes.

Input Arguments

ZeroCurve — Zero curve used to evolve path of future interest rates
IRDataCurve object | RateSpec

Zero curve used to evolve the path of future interest rates, specified as an output from IRDataCurve
or a RateSpec that is obtained from intenvset. The ZeroCurve input sets the ZeroCurve on page
11-0  property.
Data Types: object | struct

VolFunc — Volatility function
cell array of function handles

Volatility function, specified using a NumRates-by-1 cell array of function handles and sets the
VolFunc on page 11-0  property. Each function handle must take time as an input and, return a
scalar volatility.

Note The number of rates to simulate using the simTermStructs function is determined by the size
of the VolFunc and Correlation inputs which must be consistent. These can be any value and,
together with the Period property, determines the kinds and number of rates being simulated. For
example, if the Period is set to 4 (quarterly) and VolFunc has length of 120 and Correlation has
size 120-by-120, then 120 quarterly rates are simulated. In other words, 30 years of the yield curve
are simulated (0-3mos, 3mos-6mos, 6mos-9mos, and so on, all the way up to 30 years). Therefore, if
VolFunc and Correlation have size 120, the output of a call to simTermStructs is (nPeriods
+1) -by-121-by-nTrials.

Data Types: cell

Correlation — Correlation matrix
matrix

Correlation matrix, specified using a NumRates-by-NumRates correlation matrix and sets the
Correlation on page 11-0  property.

Note The number of rates to simulate using the simTermStructs function is determined by the size
of the VolFunc and Correlation inputs which must be consistent. These can be any value and,
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together with the Period property, determines the kinds and number of rates being simulated. For
example, if the Period is set to 4 (quarterly) and VolFunc has length of 120 and Correlation has
size 120-by-120, then 120 quarterly rates are simulated. In other words, 30 years of the yield curve
are simulated (0-3mos, 3mos-6mos, 6mos-9mos, and so on, all the way up to 30 years). Therefore, if
VolFunc and Correlation have size 120, the output of a call to simTermStructs is (nPeriods
+1) -by-121-by-nTrials.

Data Types: double

Properties
ZeroCurve — Zero curve
IRDataCurve object | RateSpec

Zero curve, specified as an output from IRDataCurve or a RateSpec that is obtained from
intenvset.
Data Types: object | struct

VolFunc — Volatility function
cell array of function handles

Volatility function, specified using a NumRates-by-1 cell array of function handles. Each function
handle must take time as an input and, return a scalar volatility.
Data Types: cell

Correlation — Correlation matrix
matrix

Correlation matrix, specified using a NumRates-by-NumRates correlation matrix.
Data Types: double

NumFactors — Number of Brownian factors
NaN (default) | numeric

Number of Brownian factors, specified as a numeric value. The default is NaN, where the number of
factors is equal to the number of rates.
Data Types: double

Period — Period of forward rates, specifically number of rates per year
2 (default) | numeric with value 1, 2, 4, or 12

Period of the forward rates, specifically the number of rates per year, specified as a numeric value of
1, 2, 4, or 12. The default value is 2, meaning forward rates are spaced at 0, .5, 1, 1.5, and so on.
Data Types: double

Object Functions
simTermStructs Simulate term structures for LIBOR Market Model
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Examples

Create a LIBOR Market Model Using an IRDataCurve

Create a LMM object using an IRDataCurve.

Settle = datenum('15-Dec-2007');
CurveTimes = [1:5 7 10 20]';
ZeroRates = [.01 .018 .024 .029 .033 .034 .035 .034]';
CurveDates = daysadd(Settle,360*CurveTimes,1);

irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);

LMMVolFunc = @(a,t) (a(1)*t + a(2)).*exp(-a(3)*t) + a(4);
LMMVolParams = [.3 -.02 .7 .14];
  
numRates = 20;
VolFunc(1:numRates,1) = {@(t) LMMVolFunc(LMMVolParams,t)};
  
Beta = .08;
CorrFunc = @(i,j,Beta) exp(-Beta*abs(i-j));
Correlation = CorrFunc(meshgrid(1:numRates)',meshgrid(1:numRates),Beta);
  
LMM = LiborMarketModel(irdc,VolFunc,Correlation,'Period',1)

LMM = 
  LiborMarketModel with properties:

       ZeroCurve: [1x1 IRDataCurve]
    VolFunctions: {20x1 cell}
     Correlation: [20x20 double]
      NumFactors: NaN
          Period: 1

Simulate the term structures for the specified LMM object.

[ZeroRates, ForwardRates] = simTermStructs(LMM, 10,'nTrials',100);

Create a LIBOR Market Model Using a RateSpec

Create a LMM object using a RateSpec.

Settle = datenum('15-Dec-2007');
CurveTimes = [1:5 7 10 20]';
ZeroRates = [.01 .018 .024 .029 .033 .034 .035 .034]';
CurveDates = daysadd(Settle,360*CurveTimes,1);

RateSpec = intenvset('Rates',ZeroRates,'EndDates',CurveDates,'StartDate',Settle);

LMMVolFunc = @(a,t) (a(1)*t + a(2)).*exp(-a(3)*t) + a(4);
LMMVolParams = [.3 -.02 .7 .14];
  
numRates = 20;
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VolFunc(1:numRates,1) = {@(t) LMMVolFunc(LMMVolParams,t)};
  
Beta = .08;
CorrFunc = @(i,j,Beta) exp(-Beta*abs(i-j));
Correlation = CorrFunc(meshgrid(1:numRates)',meshgrid(1:numRates),Beta);
  
LMM = LiborMarketModel(RateSpec,VolFunc,Correlation,'Period',1)

LMM = 
  LiborMarketModel with properties:

       ZeroCurve: [1x1 IRDataCurve]
    VolFunctions: {20x1 cell}
     Correlation: [20x20 double]
      NumFactors: NaN
          Period: 1

Simulate the term structures for the specified LMM object.

[ZeroRates, ForwardRates] = simTermStructs(LMM, 10,'nTrials',100);

More About
LIBOR Market Model

The LIBOR Market Model, also called the BGM Model (Brace, Gatarek, Musiela Model) is a financial
model of interest rates.

The quantities that are modeled are a set of forward rates (also called forward LIBORs) which have
the advantage of being directly observable in the market, and whose volatilities are naturally linked
to traded contracts.

References
[1] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer Finance, 2006.

See Also
HullWhite1F | intenvset | IRDataCurve | LinearGaussian2F | simTermStructs |
SABRBraceGatarekMusiela | BraceGatarekMusiela

Topics
“Price Swaptions with Interest-Rate Models Using Simulation” on page 2-101
“Pricing Bermudan Swaptions with Monte Carlo Simulation” on page 2-115
“Supported Interest-Rate Instrument Functions” on page 2-3
“Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on page 1-
73

Introduced in R2013a
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simTermStructs
Simulate term structures for LIBOR Market Model

Syntax
[ZeroRates,ForwardRates] = simTermStructs(LMM,nPeriods)
[ZeroRates,ForwardRates] = simTermStructs( ___ ,Name,Value)

Description
[ZeroRates,ForwardRates] = simTermStructs(LMM,nPeriods) simulates future zero curve
paths using a specified LiborMarketModel object.

[ZeroRates,ForwardRates] = simTermStructs( ___ ,Name,Value) adds optional name-value
pair arguments.

Examples

Simulate Term Structures for a LIBOR Market Model

Create a LMM object.

Settle = datenum('15-Dec-2007');
CurveTimes = [1:5 7 10 20]';
ZeroRates = [.01 .018 .024 .029 .033 .034 .035 .034]';
CurveDates = daysadd(Settle,360*CurveTimes,1);
 
irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);
 
LMMVolFunc = @(a,t) (a(1)*t + a(2)).*exp(-a(3)*t) + a(4);
LMMVolParams = [.3 -.02 .7 .14];
  
numRates = 20;
VolFunc(1:numRates-1) = {@(t) LMMVolFunc(LMMVolParams,t)};
  
Beta = .08;
CorrFunc = @(i,j,Beta) exp(-Beta*abs(i-j));
Correlation = CorrFunc(meshgrid(1:numRates-1)',meshgrid(1:numRates-1),Beta);
  
LMM = LiborMarketModel(irdc,VolFunc,Correlation,'Period',1)

LMM = 
  LiborMarketModel with properties:

       ZeroCurve: [1x1 IRDataCurve]
    VolFunctions: {1x19 cell}
     Correlation: [19x19 double]
      NumFactors: NaN
          Period: 1
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Simulate the term structures for the specified LMM object.

[ZeroRates, ForwardRates] = simTermStructs(LMM, 20,'nTrials',100);

Input Arguments
LMM — LiborMarketModel object
object

LiborMarketModel object, specified using the LMM object created using LiborMarketModel.
Data Types: object

nPeriods — Number of simulation periods
numeric

Number of simulation periods, specified as a numeric value. The nPeriods value is determined by
the swaption expiry and the periodicity of the rates of the model. For example, if you were to price a
swaption expiring in 5 years with a semiannual LIBOR Market Model (LMM), then nPeriods would
be 10.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [ZeroRates, ForwardRates] = simTermStructs(LMM, 20,'nTrials',100)

nTrials — Number of simulated trials
1 (default) | positive integer

Number of simulated trials (sample paths), specified as the comma-separated pair consisting of
'nTrials' and a positive scalar integer value of nPeriods observations each. If you do not specify
a value for this argument, the default is 1, indicating a single path of correlated state variables.
Data Types: double

antithetic — Flag indicating whether antithetic sampling is used to generate Gaussian
random variates
false (default) | positive integer

Flag indicating whether antithetic sampling is used to generate the Gaussian random variates that
drive the zero-drift, unit-variance rate Brownian vector dW(t), specified as the comma-separated pair
consisting of 'antithetic' and a Boolean scalar flag. For details on the Brownian vector, see
simBySolution.
Data Types: logical

Z — Direct specification of dependent random noise process
generated by simBySolution function (default) | numeric
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Direct specification of the dependent random noise process, specified as the comma-separated pair
consisting of 'Z' and a numeric value. The Z value is used to generate the zero-drift, unit-variance
rate Brownian vector dW(t) that drives the simulation. For details, see simBySolution for the GBM
model.
Data Types: double

Tenor — Maturities to compute at each time step
number of rates in LiborMarketModel object (default) | numeric vector

Maturities to compute at each time step, specified as the comma-separated pair consisting of
'Tenor' and a numeric vector.

Tenor enables you to choose a different set of rates to output than the underlying rates. For example,
you may want to simulate quarterly data but only report annual rates; this can be done by specifying
the optional input Tenor.

The default for tenor is the number of rates in the LiborMarketModel object as specified by the
Correlation and VolFunc input arguments for the LiborMarketModel object.
Data Types: double

Output Arguments
ZeroRates — Simulated zero-rate term structures
matrix

Simulated zero-rate term structures, returned as a nPeriods+1-by-nTenors-by-nTrials matrix.

ForwardRates — Simulated forward-rate term structures
matrix

Simulated zero-rate term structures, returned as a nPeriods+1-by-nTenors-by-nTrials matrix.

See Also
LiborMarketModel | blackvolbyrebonato

Topics
“Price Swaptions with Interest-Rate Models Using Simulation” on page 2-101
“Pricing Bermudan Swaptions with Monte Carlo Simulation” on page 2-115
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced in R2013a
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LinearGaussian2F
Create two-factor additive Gaussian interest-rate model

Description
The two-factor additive Gaussian interest rate-model is specified using the zero curve, a, b, sigma,
eta, and rho parameters.

Specifically, the LinearGaussian2F model is defined using the following equations:

r(t) = x(t) + y(t) + ϕ(t)

dx(t) = − a(t)x(t)dt + σ(t)dW1(t), x(0) = 0

dy(t) = − b(t)y(t)dt + η(t)dW2(t), y(0) = 0

where dW1(t)dW2(t) = ρdt is a two-dimensional Brownian motion with correlation ρ, and ϕ is a
function chosen to match the initial zero curve.

Creation

Syntax
G2PP = LinearGaussian2F(ZeroCurve,a,b,sigma,eta,rho)

Description

G2PP = LinearGaussian2F(ZeroCurve,a,b,sigma,eta,rho) creates a LinearGaussian2F
(G2PP) object using the required arguments to set the Properties on page 11-903.

Properties
ZeroCurve — Zero curve
IRDataCurve object | RateSpec

Zero curve, specified as an output from IRDataCurve or a RateSpec that is obtained from
intenvset. This is the zero curve used to evolve the path of future interest rates.
Data Types: object | struct

a — Mean reversion for first factor
numeric

Mean reversion for the first factor, specified either as a scalar or function handle which takes time as
input and returns a scalar mean reversion value.
Data Types: double
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b — Mean reversion for second factor
numeric

Mean reversion for the second factor, specified either as a scalar or as a function handle which takes
time as input and returns a scalar mean reversion value.
Data Types: double

sigma — Volatility for first factor
numeric

Volatility for the first factor, specified either as a scalar or function handle which takes time as input
and returns a scalar mean volatility.
Data Types: double

eta — Volatility for second factor
numeric

Volatility for the second factor, specified either as a scalar or function handle which takes time as
input and returns a scalar mean volatility.
Data Types: double

rho — Scalar correlation of factors
numeric

Scalar correlation of the factors, specified as a numeric value.
Data Types: double

Object Functions
simTermStructs Simulate term structures for two-factor additive Gaussian interest-rate model

Examples

Create a Two-Factor Additive Gaussian Interest-Rate Model Using an IRDataCurve

Create a two-factor additive Gaussian interest-rate model using an IRdataCurve.

Settle = datenum('15-Dec-2007');
CurveTimes = [1:5 7 10 20]';
ZeroRates = [.01 .018 .024 .029 .033 .034 .035 .034]';
CurveDates = daysadd(Settle,360*CurveTimes,1);
 
irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);
    
a = .07;
b = .5;
sigma = .01;
eta = .006;
rho = -.7;
 
G2PP = LinearGaussian2F(irdc,a,b,sigma,eta,rho)
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G2PP = 
  LinearGaussian2F with properties:

    ZeroCurve: [1x1 IRDataCurve]
            a: @(t,V)ina
            b: @(t,V)inb
        sigma: @(t,V)insigma
          eta: @(t,V)ineta
          rho: -0.7000

Use the simTermStructs method to simulate term structures based on the LinearGaussian2F
model.

 SimPaths = simTermStructs(G2PP, 10,'nTrials',100);

Create a Two-Factor Additive Gaussian Interest-Rate Model Using a RateSpec

Create a two-factor additive Gaussian interest-rate model using a RateSpec.

Settle = datenum('15-Dec-2007');
CurveTimes = [1:5 7 10 20]';
ZeroRates = [.01 .018 .024 .029 .033 .034 .035 .034]';
CurveDates = daysadd(Settle,360*CurveTimes,1);
 
RateSpec = intenvset('Rates',ZeroRates,'EndDates',CurveDates,'StartDate',Settle);
    
a = .07;
b = .5;
sigma = .01;
eta = .006;
rho = -.7;
 
G2PP = LinearGaussian2F(RateSpec,a,b,sigma,eta,rho)

G2PP = 
  LinearGaussian2F with properties:

    ZeroCurve: [1x1 IRDataCurve]
            a: @(t,V)ina
            b: @(t,V)inb
        sigma: @(t,V)insigma
          eta: @(t,V)ineta
          rho: -0.7000

Use the simTermStructs method to simulate term structures based on the LinearGaussian2F
model.

 SimPaths = simTermStructs(G2PP, 10,'nTrials',100);
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More About
Two-Factor Additive Gaussian Interest-Rate Model

Short-rate model based on two factors where the short rate is the sum of the two factors and a
deterministic function.

In this case ϕ(t), which is chosen to match the initial term structure.

References
[1] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer Finance, 2006.

See Also
HullWhite1F | LiborMarketModel | simTermStructs | capbylg2f | floorbylg2f |
swaptionbylg2f | LinearGaussian2F

Topics
“Price Swaptions with Interest-Rate Models Using Simulation” on page 2-101
“Pricing Bermudan Swaptions with Monte Carlo Simulation” on page 2-115
“Supported Interest-Rate Instrument Functions” on page 2-3
“Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on page 1-
73

Introduced in R2013a
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simTermStructs
Simulate term structures for two-factor additive Gaussian interest-rate model

Syntax
[ZeroRates,ForwardRates] = simTermStructs(G2PP,nPeriods)
[ZeroRates,ForwardRates] = simTermStructs( ___ ,Name,Value)

Description
[ZeroRates,ForwardRates] = simTermStructs(G2PP,nPeriods) simulates future zero curve
paths using a specified LinearGaussian2F object.

[ZeroRates,ForwardRates] = simTermStructs( ___ ,Name,Value) adds optional name-value
pair arguments.

Examples

Simulate Term Structures for the LinearGaussian2F Model

Create a two-factor additive Gaussian interest-rate model.

Settle = datenum('15-Dec-2007');
CurveTimes = [1:5 7 10 20]';
ZeroRates = [.01 .018 .024 .029 .033 .034 .035 .034]';
CurveDates = daysadd(Settle,360*CurveTimes,1);
 
irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);
    
a = .07;
b = .5;
sigma = .01;
eta = .006;
rho = -.7;
 
G2PP = LinearGaussian2F(irdc,a,b,sigma,eta,rho)

G2PP = 
  LinearGaussian2F with properties:

    ZeroCurve: [1x1 IRDataCurve]
            a: @(t,V)ina
            b: @(t,V)inb
        sigma: @(t,V)insigma
          eta: @(t,V)ineta
          rho: -0.7000

Use the simTermStructs method to simulate term structures based on the LinearGaussian2F
model.
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 SimPaths = simTermStructs(G2PP, 10,'nTrials',100);

Simulate Term Structures for the LinearGaussian2F Model Using a Vector for deltaTime

Create a two-factor additive Gaussian interest-rate model.

Settle = datenum('15-Dec-2007');
CurveTimes = [1:5 7 10 20]';
ZeroRates = [.01 .018 .024 .029 .033 .034 .035 .034]';
CurveDates = daysadd(Settle,360*CurveTimes,1);

irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);
a = .07;
b = .5;
sigma = .01;
eta = .006;
rho = -.7;
G2PP = LinearGaussian2F(irdc,a,b,sigma,eta,rho)

G2PP = 
  LinearGaussian2F with properties:

    ZeroCurve: [1x1 IRDataCurve]
            a: @(t,V)ina
            b: @(t,V)inb
        sigma: @(t,V)insigma
          eta: @(t,V)ineta
          rho: -0.7000

Use the simTermStructs method to simulate term structures based on the LinearGaussian2F
object, where uneven simulation tenors are specified using the optional name-value argument
deltaTime as a vector of length NPeriods.

NPeriods = 10;               
dt = rand(NPeriods,1);
SimPaths = G2PP.simTermStructs(NPeriods,'nTrials',100,'DeltaTime',dt);

Input Arguments
G2PP — LinearGaussian2F object
object

LinearGaussian2F object, specified using the G2PP object created using LinearGaussian2F.
Data Types: object

nPeriods — Number of simulation periods
numeric

Number of simulation periods, specified as a numeric value. For example, to simulate 12 years with
an annual spacing, specify 12 as the nPeriods input and 1 as the optional deltaTime input (note
that the default value for deltaTime is 1).
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Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [ZeroRates,ForwardRates] =
simTermStructs(G2PP,NPeriods,'nTrials',100,'deltaTime',dt)

deltaTime — Time step between nPeriods
1 (default) | numeric

Time step between nPeriods, specified as the comma-separated pair consisting of 'deltaTime'
and a numeric scalar or vector. For example, to simulate 12 years with an annual spacing, specify 12
as the nPeriods input and 1 as the optional deltaTime input (note that the default value for
deltaTime is 1).
Data Types: double

nTrials — Number of simulated trials
1 (default) | positive integer

Number of simulated trials (sample paths), specified as the comma-separated pair consisting of
'nTrials' and a positive scalar integer value of nPeriods observations each. If you do not specify
a value for this argument, the default is 1, indicating a single path of correlated state variables.
Data Types: double

antithetic — Flag indicating whether antithetic sampling is used to generate Gaussian
random variates
false (default) | positive integer

Flag indicating whether antithetic sampling is used to generate the Gaussian random variates that
drive the zero-drift, unit-variance rate Brownian vector dW(t), specified as the comma-separated pair
consisting of 'antithetic' and a Boolean scalar flag. For details, see simBySolution for the HWV
model.
Data Types: logical

Z — Direct specification of dependent random noise process
Gaussian variates generated by simBySolution function (default) | numeric

Direct specification of the dependent random noise process, specified as the comma-separated pair
consisting of 'Z' and a numeric value. The Z value is used to generate the zero-drift, unit-variance
rate Brownian vector dW(t) that drives the simulation. For details, see simBySolution for the HWV
model. If you do not specify a value for Z, simBySolution generates Gaussian variates.
Data Types: double

Tenor — Maturities to compute at each time step
tenor of LinearGaussian2F object zero curve (default) | numeric vector
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Maturities to compute at each time step, specified as the comma-separated pair consisting of
'Tenor' and a numeric vector.

Tenor enables you to choose a different set of rates to output than the underlying rates. For example,
you may want to simulate quarterly data but only report annual rates; this can be done by specifying
the optional input Tenor.
Data Types: double

Output Arguments
ZeroRates — Simulated zero-rate term structures
matrix

Simulated zero-rate term structures, returned as a nPeriods+1-by-nTenors-by-nTrials matrix.

ForwardRates — Simulated forward-rate term structures
matrix

Simulated zero-rate term structures, returned as a nPeriods+1-by-nTenors-by-nTrials matrix.
The ForwardRates output is computed using the simulated short rates and by using the model
definition to recover the entire yield curve at each simulation date.

See Also
LinearGaussian2F

Topics
“Price Swaptions with Interest-Rate Models Using Simulation” on page 2-101
“Pricing Bermudan Swaptions with Monte Carlo Simulation” on page 2-115
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced in R2013a
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lookbackbycrr
Price lookback option from Cox-Ross-Rubinstein binomial tree

Syntax
Price = lookbackbycrr(CRRTree,OptSpec,Strike,Settle,ExerciseDates)
Price = lookbackbycrr( ___ ,AmericanOpt)

Description
Price = lookbackbycrr(CRRTree,OptSpec,Strike,Settle,ExerciseDates) prices
lookback options using a Cox-Ross-Rubinstein binomial tree.

Price = lookbackbycrr( ___ ,AmericanOpt) adds an optional argument for AmericanOpt.

Examples

Price a Lookback Option Using a CRR Binomial Tree

This example shows how to price a lookback option using a CRR binomial tree by loading the file
deriv.mat, which provides CRRTree. The CRRTree structure contains the stock specification and
time information needed to price the option.

load deriv.mat;

OptSpec = 'Call';
Strike = 115;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2006';

Price = lookbackbycrr(CRRTree, OptSpec, Strike, Settle, ... 
ExerciseDates)

Price = 7.6015

Input Arguments
CRRTree — Stock tree structure
structure

Stock tree structure for a Cox-Ross-Rubinstein binomial tree, specified by using crrtree.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'
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Definition of option, specified as 'call' or 'put' using a character vector or an NINST-by-1 cell
array of character vectors for 'call' or 'put'.
Data Types: char | cell

Strike — Option strike price value
matrix of nonnegative integers

Option strike price value, specified with a nonnegative integer using an NINST-by-1 matrix of strike
price values. Each row is the schedule for one option.

To compute the value of a floating-strike lookback option, Strike must be specified as NaN. Floating-
strike lookback options are also known as average strike options.
Data Types: double

Settle — Settlement date or trade date
serial date number | date character vector

Settlement date or trade date for the lookback option, specified as an NINST-by-1 matrix of
settlement or trade dates using serial date numbers or date character vectors.

Note The Settle date for every lookback option is set to the ValuationDate of the stock tree. The
lookback argument, Settle, is ignored.

Data Types: double | char

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a serial date number or date character vector:

• For a European option, use an NINST-by-1 matrix of exercise dates. Each row is the schedule for
one option. For a European option, there is only one ExerciseDates on the option expiry date.

• For an American option, use an NINST-by-2 vector of exercise date boundaries. The option can be
exercised on any tree date between or including the pair of dates on that row. If only one non-NaN
date is listed, or if ExerciseDates is an NINST-by-1 vector of serial date numbers or cell array of
character vectors, the option can be exercised between ValuationDate of the stock tree and the
single listed ExerciseDates.

Data Types: double | char

AmericanOpt — Option type
0 European (default) | integer with values 0 or 1

(Optional) Option type, specified as an NINST-by-1 integer flags with values:

• 0 — European
• 1 — American

Data Types: single | double
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Output Arguments
Price — Expected prices for lookback options at time 0
vector

Expected prices for lookback options at time 0, returned as an NINST-by-1 vector. Pricing of lookback
options is done using Hull-White (1993). Therefore, for these options there are no unique prices on
the tree nodes except for the root node.

More About
Lookback Option

A lookback option is a path-dependent option based on the maximum or minimum value the
underlying asset achieves during the entire life of the option.

Financial Instruments Toolbox software supports two types of lookback options: fixed and floating.
Fixed lookback options have a specified strike price, while floating lookback options have a strike
price determined by the asset path. For more information, see “Lookback Option” on page 3-39.

References
[1] Hull J. and A. White. "Efficient Procedures for Valuing European and American Path-Dependent

Options." Journal of Derivatives. Fall 1993, pp. 21–31.

See Also
crrtree | instlookback

Topics
“Computing Prices Using CRR” on page 3-65
“Examining Output from the Pricing Functions” on page 3-70
“Computing Equity Instrument Sensitivities” on page 3-75
“Graphical Representation of Equity Derivative Trees” on page 3-73
“Pricing European Call Options Using Different Equity Models” on page 3-88
“Lookback Option” on page 3-39
“Pricing Options Structure” on page A-2
“Supported Equity Derivative Functions” on page 3-19
“Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument Objects” on
page 1-82

Introduced before R2006a
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lookbackbycvgsg
Calculate prices of European lookback options using Conze-Viswanathan and Goldman-Sosin-Gatto
models

Syntax
Price = lookbackbycvgsg(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates)
Price = lookbackbycvgsg( ___ ,Name,Value)

Description
Price = lookbackbycvgsg(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates) returns prices of European lookback options using Conze-Viswanathan and
Goldman-Sosin-Gatto models. lookbackbycvgsg calculates prices of European fixed- and floating-
strike lookback options. To compute the value of a floating-strike lookback option, Strike must be
specified as NaN. The Goldman-Sosin-Gatto model is used for floating-strike lookback options. The
Conze-Viswanathan model is used for fixed-strike lookback options.

Price = lookbackbycvgsg( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Compute the Price of a Floating Lookback Option Using the Goldman-Sosin-Gatto Model

Define the RateSpec.

StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2014';
Rates = 0.042;
Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9589
            Rates: 0.0420
         EndTimes: 1
       StartTimes: 0
         EndDates: 735600
       StartDates: 735235
    ValuationDate: 735235
            Basis: 0
     EndMonthRule: 1

Define the StockSpec.
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AssetPrice = 50;
Sigma = 0.36;
StockSpec = stockspec(Sigma, AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3600
         AssetPrice: 50
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Define the floating lookback options.

Settle   = 'Jan-1-2013';
Maturity = 'April-1-2013'; 
OptSpec = {'put';'call'};
Strike = NaN;

Compute the price of the European floating lookback options.

Price = lookbackbycvgsg(RateSpec, StockSpec, OptSpec, Strike, Settle, Maturity)

Price = 2×1

    7.2581
    6.9777

Compute the Price of a Fixed Lookback Option Using the Conze-Viswanathan Model

Define the RateSpec.

StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2014';
Rates = 0.045;
Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates,'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9560
            Rates: 0.0450
         EndTimes: 1
       StartTimes: 0
         EndDates: 735600
       StartDates: 735235
    ValuationDate: 735235
            Basis: 0
     EndMonthRule: 1

Define the StockSpec.
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AssetPrice = 102;
Sigma = 0.45;
StockSpec = stockspec(Sigma, AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.4500
         AssetPrice: 102
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Define the fixed lookback options.

Settle   = 'Jan-1-2013';
Maturity = 'July-1-2013'; 
OptSpec = {'put';'call'};
Strike = [98;101];

Price the European fixed lookback options.

Price = lookbackbycvgsg(RateSpec, StockSpec, OptSpec, Strike, Settle, Maturity)

Price = 2×1

   18.3130
   30.4021

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification, see
stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities the
price is represented by StockSpec.Asset, the volatility is represented by StockSpec.Sigma, and
the convenience yield is represented by StockSpec.DividendAmounts.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors

Definition of option as 'call' or 'put', specified as a NINST-by-1 cell array of character vectors.

11 Functions

11-916



Data Types: char | cell

Strike — Option strike price values
integer | vector of integers

Option strike price values, specified as an integer using a NINST-by-1 vector of strike price values.
Data Types: single | double

Settle — Settlement or trade date
serial date number | vector of serial date numbers | date character vector | cell array of character
vectors

Settlement or trade date for the lookback option, specified as date character vectors or as serial date
numbers using a NINST-by-1 vector or cell array of character vector dates.
Data Types: double | char | cell

ExerciseDates — European option expiry date
serial date number | vector of serial date numbers | date character vector | cell array of character
vectors

European option expiry date, specified as date character vectors or as serial date numbers using a
NINST-by-1 vector or cell array of character vector dates.
Data Types: double | char | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Price =
lookbackbycvgsg(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates,'Asset
MinMax',AssetMinMax)

AssetMinMax — Maximum or minimum underlying asset price
if unspecified, the lookback option is newly issued, and AssetMinMax = StockSpec.AssetPrice
(default) | nonnegative integer

Maximum or minimum underlying asset price, specified as the comma-separated pair consisting of
'AssetMinMax' and a NINST-by-1 vector.
Data Types: single | double

Output Arguments
Price — Expected prices of lookback option
vector

Expected prices of the lookback option, returned as a NINST-by-1 vector.
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More About
Lookback Option

A lookback option is a path-dependent option based on the maximum or minimum value the
underlying asset achieves during the entire life of the option.

Financial Instruments Toolbox software supports two types of lookback options: fixed and floating.
Fixed lookback options have a specified strike price, while floating lookback options have a strike
price determined by the asset path. For more information, see “Lookback Option” on page 3-39.

References
[1] Hull, J. C. Options, Futures, and Other Derivatives 5th Edition. Englewood Cliffs, NJ: Prentice Hall,

2002.

See Also
lookbacksensbycvgsg | lookbackbyls | lookbacksensbyls | stockspec | intenvset

Topics
“Lookback Option” on page 3-39
“Supported Equity Derivative Functions” on page 3-19
“Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument Objects” on
page 1-82

Introduced in R2014a
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lookbacksensbycvgsg
Calculate prices or sensitivities of European lookback options using Conze-Viswanathan and
Goldman-Sosin-Gatto models

Syntax
PriceSens = lookbacksensbycvgsg(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates)
PriceSens = lookbacksensbycvgsg( ___ ,Name,Value)

Description
PriceSens = lookbacksensbycvgsg(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates) returns prices or sensitivities of European lookback options using Conze-
Viswanathan and Goldman-Sosin-Gatto models. lookbacksensbycvgsg calculates prices of
European fixed- and floating-strike lookback options. To compute the value of a floating-strike
lookback option, Strike must be specified as NaN. The Goldman-Sosin-Gatto model is used for
floating-strike lookback options. The Conze-Viswanathan model is used for fixed-strike lookback
options.

PriceSens = lookbacksensbycvgsg( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Compute the Price and Delta of a Floating Lookback Option Using the Goldman-Sosin-Gatto
Model

Define the RateSpec.

StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2014';
Rates = 0.41;
Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
 'EndDates', EndDates, 'Rates', Rates,'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.6637
            Rates: 0.4100
         EndTimes: 1
       StartTimes: 0
         EndDates: 735600
       StartDates: 735235
    ValuationDate: 735235
            Basis: 0
     EndMonthRule: 1
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Define the StockSpec with continuous dividend yield.

AssetPrice = 120;
Sigma = 0.3;
Yield = 0.045;
StockSpec = stockspec(Sigma, AssetPrice, 'Continuous', Yield)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3000
         AssetPrice: 120
       DividendType: {'continuous'}
    DividendAmounts: 0.0450
    ExDividendDates: []

Define the floating lookback option.

Settle   = 'Jan-1-2013';
Maturity = 'July-1-2013'; 
OptSpec = 'call';
Strike = NaN;
SMinMax = 100;

Compute the price and delta of the European floating lookback option.

OutSpec = {'price', 'delta'};
[Price, Delta] = lookbacksensbycvgsg(RateSpec, StockSpec, OptSpec, Strike,...
Settle, Maturity,'AssetMinMax', SMinMax, 'OutSpec', OutSpec)

Price = 36.9926

Delta = 0.8659

Compute the Price and Delta of a Fixed Lookback Option Using the Conze-Viswanathan
Model

Define the RateSpec.

StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2015';
Rates = 0.1;
Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates,'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.8187
            Rates: 0.1000
         EndTimes: 2
       StartTimes: 0
         EndDates: 735965
       StartDates: 735235
    ValuationDate: 735235
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            Basis: 0
     EndMonthRule: 1

Define the StockSpec.

AssetPrice = 103;
Sigma = 0.30;
StockSpec = stockspec(Sigma, AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3000
         AssetPrice: 103
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Define the fixed lookback option.

Settle   = 'Jan-1-2013';
Maturity = 'July-1-2013'; 
OptSpec = 'call';
Strike = 99;

Price and delta for the European fixed lookback option.

OutSpec = {'price', 'delta'};                                 
[Price, Delta] = lookbacksensbyls(RateSpec, StockSpec, OptSpec,...
Strike, Settle, Maturity,'OutSpec', OutSpec)

Price = 22.7227

Delta = 1.1349

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification, see
stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities the
price is represented by StockSpec.Asset, the volatility is represented by StockSpec.Sigma, and
the convenience yield is represented by StockSpec.DividendAmounts.
Data Types: struct
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OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors

Definition of option as 'call' or 'put', specified as a NINST-by-1 cell array of character vectors.
Data Types: char | cell

Strike — Option strike price values
integer | vector of integers

Option strike price values, specified as an integer using a NINST-by-1 vector of strike price values.
Data Types: single | double

Settle — Settlement or trade date
serial date number | vector of serial date numbers | date character vector | cell array of character
vectors

Settlement or trade date for the lookback option, specified as date character vectors or as serial date
numbers using a NINST-by-1 vector or cell array of character vector dates.
Data Types: double | char | cell

ExerciseDates — European option expiry date
serial date number | vector of serial date numbers | date character vector | cell array of character
vectors

European option expiry date, specified as date character vectors or as serial date numbers using a
NINST-by-1 vector or cell array of dates.
Data Types: double | char | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: PriceSens =
lookbacksensbycvgsg(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates,'A
ssetMinMax',AssetMinMax,'OutSpec',{'All'})

AssetMinMax — Maximum or minimum underlying asset price
if unspecified, the lookback option is newly issued, and AssetMinMax = StockSpec.AssetPrice
(default) | nonnegative integer

Maximum or minimum underlying asset price, specified as a NINST-by-1 vector.
Data Types: single | double

OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma', 'Vega',
'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with values 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'
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Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a NOUT- by-1 or
a 1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta,
and Price, in that order. This is the same as specifying OutSpec to include each sensitivity.
Example: OutSpec = {'delta','gamma','vega','lambda','rho','theta','price'}
Data Types: char | cell

Output Arguments
PriceSens — Expected prices or sensitivities of lookback option
vector

Expected prices or sensitivities (defined by OutSpec) of the lookback option, returned as a NINST-
by-1 vector.

More About
Lookback Option

A lookback option is a path-dependent option based on the maximum or minimum value the
underlying asset achieves during the entire life of the option.

Financial Instruments Toolbox software supports two types of lookback options: fixed and floating.
Fixed lookback options have a specified strike price, while floating lookback options have a strike
price determined by the asset path. For more information, see “Lookback Option” on page 3-39.

References
[1] Hull, J. C. Options, Futures, and Other Derivatives 5th Edition. Englewood Cliffs, NJ, Prentice Hall,

2002.

See Also
lookbackbycvgsg | lookbackbyls | lookbacksensbyls | stockspec | intenvset

Topics
“Lookback Option” on page 3-39
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2014a
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lookbackbyeqp
Price lookback option from Equal Probabilities binomial tree

Syntax
Price = lookbackbyeqp(EQPTree,OptSpec,Strike,Settle,ExerciseDates)
Price = lookbackbyeqp( ___ ,AmericanOpt)

Description
Price = lookbackbyeqp(EQPTree,OptSpec,Strike,Settle,ExerciseDates) prices
lookback options using an Equal Probabilities binomial tree.

Price = lookbackbyeqp( ___ ,AmericanOpt) adds an optional argument for AmericanOpt.

Examples

Price a Lookback Option Using an EQP Equity Tree

This example shows how to price a lookback option using an EQP equity tree by loading the file
deriv.mat, which provides EQPTree. The EQPTree structure contains the stock specification and
time information needed to price the option.

load deriv.mat

OptSpec = 'Call';
Strike = 115;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2006';

Price = lookbackbyeqp(EQPTree, OptSpec, Strike, Settle, ... 
ExerciseDates)

Price = 8.7941

Input Arguments
EQPTree — Stock tree structure
structure

Stock tree structure for an Equal Probabilities binomial tree, specified by using eqptree.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'
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Definition of option, specified as 'call' or 'put' using a character vector or a NINST-by-1 cell
array of character vectors for 'call' or 'put'.
Data Types: char | cell

Strike — Option strike price value
matrix of nonnegative integers

Option strike price value, specified with a nonnegative integer using a NINST-by-1 matrix of strike
price values. Each row is the schedule for one option.

To compute the value of a floating-strike lookback option, Strike must be specified as NaN. Floating-
strike lookback options are also known as average strike options.
Data Types: double

Settle — Settlement date or trade date
serial date number | date character vector

Settlement date or trade date for the lookback option, specified as a NINST-by-1 matrix of settlement
or trade dates using serial date numbers or date character vectors.

Note The Settle date for every lookback option is set to the ValuationDate of the stock tree. The
lookback argument, Settle, is ignored.

Data Types: double | char

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a serial date number or date character vector:

• For a European option, use aNINST-by-1 matrix of exercise dates. Each row is the schedule for
one option. For a European option, there is only one ExerciseDates on the option expiry date.

• For an American option, use a NINST-by-2 vector of exercise date boundaries. The option can be
exercised on any tree date between or including the pair of dates on that row. If only one non-NaN
date is listed, or if ExerciseDates is a NINST-by-1 vector of serial date numbers or cell array of
character vectors, the option can be exercised between ValuationDate of the stock tree and the
single listed ExerciseDates.

Data Types: double | char

AmericanOpt — Option type
0 European (default) | integer with values 0 or 1

(Optional) Option type, specified as NINST-by-1 integer flags with values:

• 0 — European
• 1 — American

Data Types: single | double
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Output Arguments
Price — Expected prices for lookback options at time 0
vector

Expected prices for lookback options at time 0, returned as a NINST-by-1 vector. Pricing of lookback
options is done using Hull-White (1993). Therefore, for these options there are no unique prices on
the tree nodes except for the root node.

More About
Lookback Option

A lookback option is a path-dependent option based on the maximum or minimum value the
underlying asset achieves during the entire life of the option.

Financial Instruments Toolbox software supports two types of lookback options: fixed and floating.
Fixed lookback options have a specified strike price, while floating lookback options have a strike
price determined by the asset path. For more information, see “Lookback Option” on page 3-39.

References
[1] Hull J. and A. White. "Efficient Procedures for Valuing European and American Path-Dependent

Options." Journal of Derivatives. Fall 1993, pp. 21–31.

See Also
eqptree | instlookback

Topics
“Computing Prices Using EQP” on page 3-66
“Examining Output from the Pricing Functions” on page 3-70
“Computing Equity Instrument Sensitivities” on page 3-75
“Graphical Representation of Equity Derivative Trees” on page 3-73
“Pricing European Call Options Using Different Equity Models” on page 3-88
“Lookback Option” on page 3-39
“Computing Instrument Prices” on page 3-64
“Supported Equity Derivative Functions” on page 3-19
“Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument Objects” on
page 1-82

Introduced before R2006a
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lookbackbyitt
Price lookback option using implied trinomial tree (ITT)

Syntax
Price = lookbackbyitt(ITTTree,OptSpec,Strike,Settle,ExerciseDates)
Price = lookbackbyitt( ___ ,AmericanOpt)

Description
Price = lookbackbyitt(ITTTree,OptSpec,Strike,Settle,ExerciseDates) prices
lookback options using an implied trinomial tree (ITT).

Price = lookbackbyitt( ___ ,AmericanOpt) adds an optional argument for AmericanOpt.

Examples

Price a Lookback Option Using an ITT Equity Tree

This example shows how to price a lookback option using an ITT equity tree by loading the file
deriv.mat, which provides the ITTTree. The ITTTree structure contains the stock specification
and time information needed to price the option.

load deriv.mat

OptSpec = 'Call';
Strike = 85;
Settle = '01-Jan-2006';
ExerciseDates = '01-Jan-2008';

Price = lookbackbyitt(ITTTree, OptSpec, Strike, Settle, ExerciseDates)

Price = 0.5426

Input Arguments
ITTTree — Stock tree structure
structure

Stock tree structure for an implied trinomial tree (ITT), specified by using itttree.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'

Definition of option, specified as 'call' or 'put' using a character vector or a NINST-by-1 cell
array of character vectors for 'call' or 'put'.
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Data Types: char | cell

Strike — Option strike price value
matrix of nonnegative integers

Option strike price value, specified with a nonnegative integer using a NINST-by-1 matrix of strike
price values. Each row is the schedule for one option.

To compute the value of a floating-strike lookback option, Strike must be specified as NaN. Floating-
strike lookback options are also known as average strike options.
Data Types: double

Settle — Settlement date or trade date
serial date number | date character vector

Settlement date or trade date for the lookback option, specified as a NINST-by-1 matrix of settlement
or trade dates using serial date numbers or date character vectors.

Note The Settle date for every lookback option is set to the ValuationDate of the stock tree. The
lookback argument, Settle, is ignored.

Data Types: double | char

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a serial date number or date character vector:

• For a European option, use aNINST-by-1 matrix of exercise dates. Each row is the schedule for
one option. For a European option, there is only one ExerciseDates on the option expiry date.

• For an American option, use a NINST-by-2 vector of exercise date boundaries. The option can be
exercised on any tree date between or including the pair of dates on that row. If only one non-NaN
date is listed, or if ExerciseDates is a NINST-by-1 vector of serial date numbers or cell array of
character vectors, the option can be exercised between ValuationDate of the stock tree and the
single listed ExerciseDates.

Data Types: double | char

AmericanOpt — Option type
0 European (default) | integer with values 0 or 1

(Optional) Option type, specified as NINST-by-1 integer flags with values:

• 0 — European
• 1 — American

Data Types: single | double

Output Arguments
Price — Expected prices for lookback options at time 0
vector
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Expected prices for lookback options at time 0, returned as a NINST-by-1 vector. Pricing of lookback
options is done using Hull-White (1993). Therefore, for these options there are no unique prices on
the tree nodes except for the root node.

More About
Lookback Option

A lookback option is a path-dependent option based on the maximum or minimum value the
underlying asset achieves during the entire life of the option.

Financial Instruments Toolbox software supports two types of lookback options: fixed and floating.
Fixed lookback options have a specified strike price, while floating lookback options have a strike
price determined by the asset path. For more information, see “Lookback Option” on page 3-39.

References
[1] Hull J. and A. White. "Efficient Procedures for Valuing European and American Path-Dependent

Options." Journal of Derivatives. Fall 1993, pp. 21–31.

See Also
itttree | instlookback

Topics
“Computing Prices Using ITT” on page 3-68
“Examining Output from the Pricing Functions” on page 3-70
“Computing Equity Instrument Sensitivities” on page 3-75
“Graphical Representation of Equity Derivative Trees” on page 3-73
“Pricing European Call Options Using Different Equity Models” on page 3-88
“Lookback Option” on page 3-39
“Computing Instrument Prices” on page 3-64
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2007a
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lookbackbyls
Price European or American lookback options using Monte Carlo simulations

Syntax
[Price,Paths,Times,Z] = lookbackbyls(RateSpec,StockSpec,OptSpec,Strike,
Settle,ExerciseDates)
[Price,Paths,Times,Z] = lookbackbyls( ___ ,Name,Value)

Description
[Price,Paths,Times,Z] = lookbackbyls(RateSpec,StockSpec,OptSpec,Strike,
Settle,ExerciseDates) returns prices of lookback options using the Longstaff-Schwartz model
for Monte Carlo simulations. lookbackbyls computes prices of European and American lookback
options.

For American options, the Longstaff-Schwartz least squares method calculates the early exercise
premium.

lookbackbyls calculates values of fixed- and floating-strike lookback options. To compute the value
of a floating-strike lookback option, Strike must be specified as NaN.

[Price,Paths,Times,Z] = lookbackbyls( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Compute the Price for a Floating Lookback Option Using Monte Carlo Simulation

Define the RateSpec.

StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2014';
Rates = 0.042;
Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9589
            Rates: 0.0420
         EndTimes: 1
       StartTimes: 0
         EndDates: 735600
       StartDates: 735235
    ValuationDate: 735235
            Basis: 0
     EndMonthRule: 1
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Define the StockSpec.

AssetPrice = 50;
Sigma = 0.36;
StockSpec = stockspec(Sigma, AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3600
         AssetPrice: 50
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Define the floating lookback option.

Settle   = 'Jan-1-2013';
Maturity = 'April-1-2013'; 
OptSpec = 'put';
Strike = NaN;

Compute the price of the European floating lookback option.

Price = lookbackbyls(RateSpec, StockSpec, OptSpec, Strike, Settle, Maturity)

Price = 6.6471

Compute the Price of a Fixed Lookback Option Using Monte Carlo Simulation

Define the RateSpec.

StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2014';
Rates = 0.045;
Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates,'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9560
            Rates: 0.0450
         EndTimes: 1
       StartTimes: 0
         EndDates: 735600
       StartDates: 735235
    ValuationDate: 735235
            Basis: 0
     EndMonthRule: 1

Define the StockSpec.
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AssetPrice = 102;
Sigma = 0.45;
StockSpec = stockspec(Sigma, AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.4500
         AssetPrice: 102
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Define the fixed lookback option.

Settle   = 'Jan-1-2013';
Maturity = 'July-1-2013'; 
OptSpec = 'call';
Strike = 98;

Compute the price of the European fixed lookback option.

Price = lookbackbyls(RateSpec, StockSpec, OptSpec, Strike, Settle, Maturity)

Price = 30.2368

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification, see
stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities the
price is represented by StockSpec.Asset, the volatility is represented by StockSpec.Sigma, and
the convenience yield is represented by StockSpec.DividendAmounts.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors

Definition of option as 'call' or 'put', specified as a NINST-by-1 cell array of character vectors.
Data Types: char | cell

Strike — Option strike price values
integer | vector of integers
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Option strike price values, specified as an integer using a NINST-by-1 vector of strike price values.
Data Types: single | double

Settle — Settlement or trade date
serial date number | vector of serial date numbers | date character vector | cell array of character
vectors

Settlement or trade date for the lookback option, specified as date character vectors or as serial date
numbers using a NINST-by-1 vector or cell array of character vector dates.
Data Types: double | char | cell

ExerciseDates — Matrix of exercise callable or puttable dates for European or American
options
serial date number | vector of serial date numbers | date character vector | cell array of character
vectors

Matrix of exercise callable or puttable dates for European or American options, specified as date
character vectors or as serial date numbers as follows:

• European option — NINST-by-1 vector of exercise dates. For a European option, there is only one
exercise date which is the option expiry date.

• American option — NINST-by-2 vector of exercise date boundaries. For each instrument, the
option is exercised on any coupon date between or including the pair of dates on that row. If only
one non-NaN date is listed, or if ExerciseDates is a NINST-by-1 vector of serial date numbers or
cell array of character vectors, the option is exercised between Settle and the single listed
exercise date.

Data Types: double | char | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Price =
lookbackbyls(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,OptSpec,Strike,Co
rr,'AmericanOpt',1)

AmericanOpt — Option type
0 European (default) | scalar with value [0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and an integer
scalar flag with these values:

• 0 — European
• 1 — American

Note For American options, the Longstaff-Schwartz least squares method is used to calculate the
early exercise premium. For more information on the least squares method, see https://
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people.math.ethz.ch/%7Ehjfurrer/teaching/
LongstaffSchwartzAmericanOptionsLeastSquareMonteCarlo.pdf.

Data Types: single | double

NumTrials — Scalar number of independent sample paths
1000 (default) | nonnegative scalar integer

Scalar number of independent sample paths (simulation trials), specified as the comma-separated
pair consisting of 'NumTrials' and a nonnegative integer.
Data Types: single | double

NumPeriods — Scalar number of simulation periods per trial
100 (default) | nonnegative scalar integer

Scalar number of simulation periods per trial, specified as the comma-separated pair consisting of
'NumPeriods' and a nonnegative integer. NumPeriods is considered only when pricing European
lookback options. For American lookback options, NumPeriods is equal to the number of exercise
days during the life of the option.
Data Types: single | double

Z — Time series array of dependent random variates
vector

Time series array of dependent random variates, specified as the comma-separated pair consisting of
'Z' and a NumPeriods-by-1-by-NumTrials 3-D array. The Z value generates the Brownian motion
vector (that is, Wiener processes) that drives the simulation.
Data Types: single | double

Antithetic — Indicator for antithetic sampling
false (default) | scalar logical flag with value of true or false

Indicator for antithetic sampling, specified as the comma-separated pair consisting of 'Antithetic'
and a value of true or false.
Data Types: logical

Output Arguments
Price — Expected price of lookback option
scalar

Expected price of the lookback option, returned as a 1-by-1 scalar.

Paths — Simulated paths of correlated state variables
vector

Simulated paths of correlated state variables, returned as a NumPeriods + 1-by-1-by-NumTrials 3-
D time series array. Each row of Paths is the transpose of the state vector X(t) at time t for a given
trial.

Times — Observation times associated with simulated paths
vector
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Observation times associated with simulated paths, returned as a NumPeriods + 1-by-1 column
vector of observation times associated with the simulated paths. Each element of Times is associated
with the corresponding row of Paths.

Z — Time series array of dependent random variates
vector

Time series array of dependent random variates, returned as a NumPeriods-by-1-by-NumTrials 3-D
array when Z is specified as an input argument. If the Z input argument is not specified, then the Z
output argument contains the random variates generated internally.

More About
Lookback Option

A lookback option is a path-dependent option based on the maximum or minimum value the
underlying asset achieves during the entire life of the option.

Financial Instruments Toolbox software supports two types of lookback options: fixed and floating.
Fixed lookback options have a specified strike price, while floating lookback options have a strike
price determined by the asset path. For more information, see “Lookback Option” on page 3-39.

References
[1] Hull, J. C. Options, Futures, and Other Derivatives 5th Edition. Englewood Cliffs, NJ: Prentice Hall,

2002.

See Also
lookbackbycvgsg | lookbacksensbycvgsg | lookbacksensbyls | stockspec | intenvset

Topics
“Lookback Option” on page 3-39
“Supported Equity Derivative Functions” on page 3-19
“Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument Objects” on
page 1-82

Introduced in R2014a
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lookbacksensbyls
Calculate price and sensitivities for European or American lookback options using Monte Carlo
simulations

Syntax
[PriceSens,Paths,Times,Z] = lookbacksensbyls(RateSpec,StockSpec,OptSpec,
Strike,Settle,ExerciseDates)
[PriceSens,Paths,Times,Z] = lookbacksensbyls( ___ ,Name,Value)

Description
[PriceSens,Paths,Times,Z] = lookbacksensbyls(RateSpec,StockSpec,OptSpec,
Strike,Settle,ExerciseDates) returns prices or sensitivities of lookback options using the
Longstaff-Schwartz model for Monte Carlo simulations. lookbacksensbyls computes prices of
European and American lookback options.

For American options, the Longstaff-Schwartz least squares method calculates the early exercise
premium.

lookbacksensbyls calculates values of fixed- and floating-strike lookback options. To compute the
value of a floating-strike lookback option, Strike must be specified as NaN.

[PriceSens,Paths,Times,Z] = lookbacksensbyls( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Compute the Price and Delta of a European Floating Lookback Option Using Monte Carlo
Simulation

Define the RateSpec.

StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2014';
Rates = 0.41;
Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates,'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.6637
            Rates: 0.4100
         EndTimes: 1
       StartTimes: 0
         EndDates: 735600
       StartDates: 735235
    ValuationDate: 735235
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            Basis: 0
     EndMonthRule: 1

Define the StockSpec with continuous dividend yield.

AssetPrice = 120;
Sigma = 0.3;
Yield = 0.045;
StockSpec = stockspec(Sigma, AssetPrice, 'Continuous', Yield)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3000
         AssetPrice: 120
       DividendType: {'continuous'}
    DividendAmounts: 0.0450
    ExDividendDates: []

Define the floating lookback option.

Settle   = 'Jan-1-2013';
Maturity = 'July-1-2013'; 
OptSpec = 'call';
Strike = NaN;

Compute the price and delta of the European floating lookback option.

OutSpec = {'price', 'delta'};
[Price, Delta] = lookbacksensbyls(RateSpec, StockSpec, OptSpec, Strike, Settle, Maturity,...
'OutSpec', OutSpec)

Price = 27.0768

Delta = 0.2256

Compute the Price and Delta of a European Fixed Lookback Option Using Monte Carlo
Simulation

Define the RateSpec.

StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2015';
Rates = 0.1;
Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates,'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.8187
            Rates: 0.1000
         EndTimes: 2
       StartTimes: 0

 lookbacksensbyls

11-937



         EndDates: 735965
       StartDates: 735235
    ValuationDate: 735235
            Basis: 0
     EndMonthRule: 1

Define the StockSpec.

AssetPrice = 103;
Sigma = 0.30;
StockSpec = stockspec(Sigma, AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3000
         AssetPrice: 103
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Define the fixed lookback option.

Settle   = 'Jan-1-2013';
Maturity = 'July-1-2013'; 
OptSpec = 'call';
Strike = 99;

Compute the price and delta of the European fixed lookback option.

OutSpec = {'price', 'delta'};                                 
[Price, Delta] = lookbacksensbyls(RateSpec, StockSpec, OptSpec, Strike, Settle, Maturity,...
'OutSpec', OutSpec)

Price = 22.7227

Delta = 1.1349

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification, see
stockspec.
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stockspec can handle several types of underlying assets. For example, for physical commodities the
price is represented by StockSpec.Asset, the volatility is represented by StockSpec.Sigma, and
the convenience yield is represented by StockSpec.DividendAmounts.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors

Definition of option as 'call' or 'put', specified as a NINST-by-1 cell array of character vectors.
Data Types: char | cell

Strike — Option strike price values
integer | vector of integers

Option strike price values, specified as an integer using a NINST-by-1 vector of strike price values.
Data Types: single | double

Settle — Settlement or trade date
serial date number | vector of serial date numbers | date character vector | cell array of character
vectors

Settlement or trade date for the lookback option, specified as date character vectors or as serial date
numbers using a NINST-by-1 vector or cell array of character vector dates.
Data Types: double | char | cell

ExerciseDates — Matrix of exercise callable or puttable dates for European or American
options
serial date number | vector of serial date numbers | date character vector | cell array of character
vectors

Matrix of exercise callable or puttable dates for European or American options, specified as date
character vectors or as serial date numbers as follows:

• European option — NINST-by-1 vector of exercise dates. For a European option, there is only one
exercise date which is the option expiry date.

• American option — NINST-by-2 vector of exercise date boundaries. For each instrument, the
option is exercised on any coupon date between or including the pair of dates on that row. If only
one non-NaN date is listed, or if ExerciseDates is a NINST-by-1 vector of serial date numbers or
cell array of character vectors, the option is exercised between Settle and the single listed
exercise date.

Data Types: double | char | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
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Example: PriceSens =
lookbacksensbyls(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,OptSpec,Strik
e,Corr,'AmericanOpt',1,'OutSpec',{'All'})

AmericanOpt — Option type
0 European (default) | scalar with value [0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and an integer
scalar flag with these values:

• 0 — European
• 1 — American

Note For American options, the Longstaff-Schwartz least squares method is used to calculate the
early exercise premium. For more information on the least squares method, see https://
people.math.ethz.ch/%7Ehjfurrer/teaching/
LongstaffSchwartzAmericanOptionsLeastSquareMonteCarlo.pdf.

Data Types: single | double

NumTrials — Scalar number of independent sample paths
1000 (default) | nonnegative scalar integer

Scalar number of independent sample paths (simulation trials), specified as the comma-separated
pair consisting of 'NumTrials' and a nonnegative integer.
Data Types: single | double

NumPeriods — Scalar number of simulation periods per trial
100 (default) | nonnegative scalar integer

Scalar number of simulation periods per trial, specified as the comma-separated pair consisting of
'NumPeriods' and a nonnegative integer. NumPeriods is considered only when pricing European
lookback options. For American lookback options, NumPeriod is equal to the number of exercise days
during the life of the option.
Data Types: single | double

Z — Time series array of dependent random variates
vector

Time series array of dependent random variates, specified as the comma-separated pair consisting of
'Z' and a NumPeriods-by-1-by-NumTrials 3-D array. The Z value generates the Brownian motion
vector (that is, Wiener processes) that drives the simulation.
Data Types: single | double

Antithetic — Indicator for antithetic sampling
false (default) | scalar logical flag with value true or false

Indicator for antithetic sampling, specified as the comma-separated pair consisting of 'Antithetic'
and a value of true or false.
Data Types: logical
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OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma', 'Vega',
'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with values 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a NOUT- by-1 or
a 1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta,
and Price, in that order. This is the same as specifying OutSpec to include each sensitivity.
Example: OutSpec = {'delta','gamma','vega','lambda','rho','theta','price'}
Data Types: char | cell

Output Arguments
PriceSens — Expected price or sensitivities of lookback option
scalar

Expected price or sensitivities (defined by OutSpec) of the lookback option, returned as a 1-by-1
array.

Paths — Simulated paths of correlated state variables
vector

Simulated paths of correlated state variables, returned as a NumPeriods + 1-by-1-by-NumTrials 3-
D time series array. Each row of Paths is the transpose of the state vector X(t) at time t for a given
trial.

Times — Observation times associated with simulated paths
vector

Observation times associated with simulated paths, returned as a NumPeriods + 1-by-1 column
vector of observation times associated with the simulated paths. Each element of Times is associated
with the corresponding row of Paths.

Z — Time series array of dependent random variates
vector

Time series array of dependent random variates, returned as a NumPeriods-by-1-by-NumTrials 3-D
array when Z is specified as an input argument. If the Z input argument is not specified, then the Z
output argument contains the random variates generated internally.

More About
Lookback Option

A lookback option is a path-dependent option based on the maximum or minimum value the
underlying asset achieves during the entire life of the option.

Financial Instruments Toolbox software supports two types of lookback options: fixed and floating.
Fixed lookback options have a specified strike price, while floating lookback options have a strike
price determined by the asset path. For more information, see “Lookback Option” on page 3-39.
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References
[1] Hull, J. C. Options, Futures, and Other Derivatives 5th Edition. Englewood Cliffs, NJ: Prentice Hall,

2002.

See Also
lookbackbycvgsg | lookbacksensbycvgsg | lookbackbyls | intenvset | stockspec

Topics
“Lookback Option” on page 3-39
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2014a
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lookbackbystt
Price lookback options using standard trinomial tree

Syntax
Price = lookbackbystt(STTTree,OptSpec,Strike,Settle,ExerciseDates)
Price = lookbackbystt( ___ ,AmericanOpt)

Description
Price = lookbackbystt(STTTree,OptSpec,Strike,Settle,ExerciseDates) prices
lookback options using a standard trinomial (STT) tree.

Price = lookbackbystt( ___ ,AmericanOpt) prices lookback options using a standard trinomial
(STT) tree with an optional argument for AmericanOpt.

Examples

Price a Lookback Option Using the Standard Trinomial Tree Model

Create a RateSpec.

StartDates = 'Jan-1-2009'; 
EndDates = 'Jan-1-2013'; 
Rates = 0.035; 
Basis = 1; 
Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates,'Compounding', Compounding, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.8694
            Rates: 0.0350
         EndTimes: 4
       StartTimes: 0
         EndDates: 735235
       StartDates: 733774
    ValuationDate: 733774
            Basis: 1
     EndMonthRule: 1

Create a StockSpec.

AssetPrice = 85; 
Sigma = 0.15; 
StockSpec = stockspec(Sigma, AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
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              Sigma: 0.1500
         AssetPrice: 85
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Create an STTTree.

NumPeriods = 4;
TimeSpec = stttimespec(StartDates, EndDates, 4);
STTTree = stttree(StockSpec, RateSpec, TimeSpec)

STTTree = struct with fields:
       FinObj: 'STStockTree'
    StockSpec: [1x1 struct]
     TimeSpec: [1x1 struct]
     RateSpec: [1x1 struct]
         tObs: [0 1 2 3 4]
         dObs: [733774 734139 734504 734869 735235]
        STree: {1x5 cell}
        Probs: {[3x1 double]  [3x3 double]  [3x5 double]  [3x7 double]}

Define the lookback option and compute the price.

Settle = '1/1/09';
ExerciseDates = [datenum('1/1/12');datenum('1/1/13')];
OptSpec = 'call';
Strike = [90;95];

Price= lookbackbystt(STTTree, OptSpec, Strike, Settle, ExerciseDates)

Price = 2×1

   11.7296
   12.9120

Input Arguments
STTTree — Stock tree structure for standard trinomial tree
structure

Stock tree structure for a standard trinomial tree, specified by using stttree.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'

Definition of option, specified as 'call' or 'put' using a character vector or a NINST-by-1 cell
array of character vectors for 'call' or 'put'.
Data Types: char | cell
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Strike — Option strike price value
matrix of nonnegative integers

Option strike price value, specified with a nonnegative integer using a NINST-by-1 matrix of strike
price values. Each row is the schedule for one option. To compute the value of a floating-strike
lookback option, Strike should be specified as NaN. Floating-strike lookback options are also known
as average strike options.
Data Types: double

Settle — Settlement date or trade date
serial date number | date character vector

Settlement date or trade date for the lookback option, specified as a NINST-by-1 matrix of settlement
or trade dates using serial date numbers or date character vectors.

Note The Settle date for every lookback option is set to the ValuationDate of the stock tree. The
lookback argument, Settle, is ignored.

Data Types: double | char

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a serial date number or date character vector:

• For a European option, use aNINST-by-1 matrix of exercise dates. Each row is the schedule for
one option. For a European option, there is only one ExerciseDates on the option expiry date.

• For an American option, use a NINST-by-2 vector of exercise date boundaries. The option can be
exercised on any tree date between or including the pair of dates on that row. If only one non-NaN
date is listed, or if ExerciseDates is a NINST-by-1 vector of serial date numbers or cell array of
character vectors, the option can be exercised between ValuationDate of the stock tree and the
single listed ExerciseDates.

Data Types: double | char

AmericanOpt — Option type
0 European (default) | scalar with values [0,1]

Option type, specified as NINST-by-1 positive integer scalar flags with values:

• 0 — European
• 1 — American

Data Types: single | double

Output Arguments
Price — Expected prices for lookback options at time 0
matrix
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Expected prices for lookback options at time 0, returned as a NINST-by-1 matrix. Pricing of lookback
options is done using Hull-White (1993). Consequently, for these options there are no unique prices
on the tree nodes with the exception of the root node.

More About
Lookback Option

A lookback option is a path-dependent option based on the maximum or minimum value the
underlying asset achieves during the entire life of the option.

Financial Instruments Toolbox software supports two types of lookback options: fixed and floating.
Fixed lookback options have a specified strike price, while floating lookback options have a strike
price determined by the asset path. For more information, see “Lookback Option” on page 3-39.

References
[1] Hull J. and A. White. "Efficient Procedures for Valuing European and American Path-Dependent

Options." Journal of Derivatives. Fall 1993, pp. 21–31.

See Also
stttimespec | stttree | sttprice | sttsens

Topics
“Lookback Option” on page 3-39
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2015b
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lrtimespec
Specify time structure for Leisen-Reimer binomial tree

Syntax
TimeSpec = lrtimespec(ValuationDate,Maturity,NumPeriods)

Description
TimeSpec = lrtimespec(ValuationDate,Maturity,NumPeriods) specifies a time structure
for a Leisen-Reimer stock tree (lrtree).

Examples

Specify the Time Structure for Leisen-Reimer Binomial Tree

This example shows how to specify a 5-period tree with time steps of 1 year.

ValuationDate = '1-July-2010';
Maturity = '1-July-2015';
TimeSpec = lrtimespec(ValuationDate, Maturity, 5)

TimeSpec = struct with fields:
           FinObj: 'BinTimeSpec'
    ValuationDate: 734320
         Maturity: 736146
       NumPeriods: 5
            Basis: 0
     EndMonthRule: 1
             tObs: [0 1 2 3 4 5]
             dObs: [734320 734685 735050 735415 735780 736146]

Input Arguments
ValuationDate — Pricing date and first observation in Leisen-Reimer stock tree
serial date number | character vector date

Pricing date and first observation in the lrtree, specified as a scalar date using a serial date number
or date character vector.
Data Types: double | char

Maturity — Date marking the depth of the Leisen-Reimer stock tree
serial date number | date character vector

Date marking the depth of the Leisen-Reimer stock tree, specified as scalar serial date number or
date character vector.
Data Types: double | char
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NumPeriods — Number of time steps in the Leisen-Reimer stock tree
odd integer value

Number of time steps in the Leisen-Reimer stock tree, specified as scalar odd integer value.

Note Leisen-Reimer requires the number of steps to be an odd number.

Data Types: double

Output Arguments
TimeSpec — Specification for the time layout for lrtree
structure

Specification for the time layout for lrtree, returned as a structure.

References
[1] Leisen D.P., M. Reimer. “Binomial Models for Option Valuation – Examining and Improving

Convergence.” Applied Mathematical Finance. Number 3, 1996, pp. 319–346.

See Also
stockspec | lrtree

Topics
“Building Equity Binary Trees” on page 3-3
“Understanding Equity Trees” on page 3-2
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2010b
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lrtree
Build Leisen-Reimer stock tree

Syntax
LRTree = lrtree(StockSpec,RateSpec,TimeSpec,Strike)
LRTree = lrtree( ___ ,Name,Value)

Description
LRTree = lrtree(StockSpec,RateSpec,TimeSpec,Strike) builds a Leisen-Reimer stock tree.

LRTree = lrtree( ___ ,Name,Value) adds a name-value pair argument.

Examples

Build a Leisen-Reimer Stock Tree

This example shows how to build Leisen-Reimer stock tree. Consider a European put option with an
exercise price of $30 that expires on June 1, 2010. The underlying stock is trading at $30 on January
1, 2010 and has a volatility of 30% per annum. The annualized continuously compounded risk-free
rate is 5% per annum. Using this data, create a Leisen-Reimer tree with 101 steps using the PP1
method.

AssetPrice = 30;
Strike = 30;

ValuationDate = 'Jan-1-2010';
Maturity = 'June-1-2010'; 

% define StockSpec
Sigma = 0.3;
StockSpec = stockspec(Sigma, AssetPrice);

% define RateSpec
Rates = 0.05;
Settle = ValuationDate;
Basis = 1;
Compounding = -1;

RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis);

% build the Leisen-Reimer (LR) tree with 101 steps
LRTimeSpec = lrtimespec(ValuationDate, Maturity, 101); 

% use the PP1 method
LRMethod  = 'PP1';

LRTree = lrtree(StockSpec, RateSpec, LRTimeSpec, Strike, ...
'method', LRMethod)
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LRTree = struct with fields:
       FinObj: 'BinStockTree'
       Method: 'LR'
    Submethod: 'PP1'
       Strike: 30
    StockSpec: [1x1 struct]
     TimeSpec: [1x1 struct]
     RateSpec: [1x1 struct]
         tObs: [0 0.0041 0.0082 0.0123 0.0164 0.0205 0.0246 0.0288 ... ]
         dObs: [734139 734140 734141 734143 734144 734146 734147 734149 ... ]
        STree: {1x102 cell}
      UpProbs: [101x1 double]

Input Arguments
StockSpec — Stock specification for underlying asset
structure

Stock specification for underlying asset, specified using StockSpec obtained from stockspec. For
information on the stock specification, see stockspec.

stockspec can handle other types of underlying assets. For example, stocks, stock indices, and
commodities. If dividends are not specified in StockSpec, dividends are assumed to be 0.
Data Types: struct

RateSpec — Interest-rate specification for initial risk-free rate curve
structure

Interest-rate specification for initial rate curve, specified by the RateSpec obtained from
intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

TimeSpec — Time tree layout specification
structure

Time tree layout specification, specified using the TimeSpec output obtained from lrtimespec.
Data Types: struct

Strike — Option strike price value
nonnegative integer

Option strike price value, specified as a scalar nonnegative integer.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
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Example: LRTree = lrtree(StockSpec,RateSpec,LRTimeSpec,Strike,'Method','PP2')

Method — Computation method
'PP1' (default) | character vector with value 'PP1' or 'PP2'

Computation method, specified as the comma-separated pair consisting of 'Method' and a character
vector with a value of 'PP1' or 'PP2'. 'PP1' is for Peizer-Pratt method 1 inversion and 'PP2' is for
Peizer-Pratt method 2 inversion. For more information on 'PP1' and 'PP2' methods, see “Leisen-
Reimer Tree (LR) Modeling” on page B-3.
Data Types: char

Output Arguments
LRTree — Stock and time information for a Leisen-Reimer tree
structure

Stock and time information for a Leisen-Reimer tree, returned as a structure.

References
[1] Leisen D.P., M. Reimer. “Binomial Models for Option Valuation – Examining and Improving

Convergence.” Applied Mathematical Finance. Number 3, 1996, pp. 319–346.

See Also
stockspec | lrtimespec | intenvset | optstockbylr | optstocksensbylr

Topics
“Building Equity Binary Trees” on page 3-3
“Use treeviewer to Examine HWTree and PriceTree When Pricing European Callable Bond” on page
2-195
“Understanding Equity Trees” on page 3-2
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2010b
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maxassetbystulz
Determine European rainbow option price on maximum of two risky assets using Stulz option pricing
model

Syntax
Price = maxassetbystulz(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,
OptSpec,Strike,Corr)

Description
Price = maxassetbystulz(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,
OptSpec,Strike,Corr) computes option prices using the Stulz option pricing model.

Examples

Compute Rainbow Option Prices Using the Stulz Option Pricing Model

Consider a European rainbow option that gives the holder the right to buy either $100,000 worth of
an equity index at a strike price of 1000 (asset 1) or $100,000 of a government bond (asset 2) with a
strike price of 100% of face value, whichever is worth more at the end of 12 months. On January 15,
2008, the equity index is trading at 950, pays a dividend of 2% annually and has a return volatility of
22%. Also on January 15, 2008, the government bond is trading at 98, pays a coupon yield of 6%, and
has a return volatility of 15%. The risk-free rate is 5%. Using this data, if the correlation between the
rates of return is -0.5, 0, and 0.5, calculate the price of the European rainbow option.

Since the asset prices in this example are in different units, it is necessary to work in either index
points (asset 1) or in dollars (asset 2). The European rainbow option allows the holder to buy the
following: 100 units of the equity index at $1000 each (for a total of $100,000) or 1000 units of the
government bonds at $100 each (for a total of $100,000). To convert the bond price (asset 2) to index
units (asset 1), you must make the following adjustments:

• Multiply the strike price and current price of the government bond by 10 (1000/100).
• Multiply the option price by 100, considering that there are 100 equity index units in the option.

Once these adjustments are introduced, the strike price is the same for both assets ($1000). First,
create the RateSpec:

Settle = 'Jan-15-2008';
Maturity = 'Jan-15-2009';
Rates = 0.05;
Basis = 1;

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
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             Disc: 0.9512
            Rates: 0.0500
         EndTimes: 1
       StartTimes: 0
         EndDates: 733788
       StartDates: 733422
    ValuationDate: 733422
            Basis: 1
     EndMonthRule: 1

Create the two StockSpec definitions.

AssetPrice1 = 950;   % Asset 1 => Equity index
AssetPrice2 = 980;   % Asset 2 => Government bond
Sigma1 = 0.22;
Sigma2 = 0.15;
Div1 = 0.02; 
Div2 = 0.06; 

StockSpec1 = stockspec(Sigma1, AssetPrice1, 'continuous', Div1)

StockSpec1 = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2200
         AssetPrice: 950
       DividendType: {'continuous'}
    DividendAmounts: 0.0200
    ExDividendDates: []

StockSpec2 = stockspec(Sigma2, AssetPrice2, 'continuous', Div2)

StockSpec2 = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1500
         AssetPrice: 980
       DividendType: {'continuous'}
    DividendAmounts: 0.0600
    ExDividendDates: []

Calculate the price of the options for different correlation levels.

Strike = 1000 ; 
Corr = [-0.5; 0; 0.5];
OptSpec = 'call';

Price = maxassetbystulz(RateSpec, StockSpec1, StockSpec2,...
Settle, Maturity, OptSpec, Strike, Corr)

Price = 3×1

  111.6683
  103.7715
   92.4412
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These are the prices of one unit. This means that the premium is 11166.83, 10377.15, and 9244.12
(for 100 units).

Input Arguments
RateSpec — Annualized, continuously compounded rate term structure
structure

Annualized, continuously compounded rate term structure, specified using intenvset.
Data Types: structure

StockSpec1 — Stock specification for asset 1
structure

Stock specification for asset 1, specified using stockspec.
Data Types: structure

StockSpec2 — Stock specification for asset 2
structure

Stock specification for asset 2, specified using stockspec.
Data Types: structure

Settle — Settlement or trade dates
vector

Settlement or trade dates, specified as an NINST-by-1 vector of numeric dates.
Data Types: double

Maturity — Maturity dates
vector

Maturity dates, specified as an NINST-by-1 vector.
Data Types: double

OptSpec — Option type
cell array of character vectors with a value of 'call' or 'put'

Option type, specified as an NINST-by-1 cell array of character vectors with a value of 'call' or
'put'.
Data Types: cell

Strike — Strike prices
vector

Strike prices, specified as an NINST-by-1 vector.
Data Types: double

Corr — Correlation between the underlying asset prices
vector
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Correlation between the underlying asset prices, specified as an NINST-by-1 vector.
Data Types: double

Output Arguments
Price — Expected option prices
vector

Expected option prices, returned as an NINST-by-1 vector.

More About
Rainbow Option

A rainbow option payoff depends on the relative price performance of two or more assets.

A rainbow option gives the holder the right to buy or sell the best or worst of two securities, or
options that pay the best or worst of two assets. Rainbow options are popular because of the lower
premium cost of the structure relative to the purchase of two separate options. The lower cost
reflects the fact that the payoff is generally lower than the payoff of the two separate options.

Financial Instruments Toolbox supports two types of rainbow options:

• Minimum of two assets — The option holder has the right to buy(sell) one of two risky assets,
whichever one is worth less.

• Maximum of two assets — The option holder has the right to buy(sell) one of two risky assets,
whichever one is worth more.

For more information, see “Rainbow Option” on page 3-27.

See Also
intenvset | maxassetsensbystulz | minassetbystulz | stockspec

Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-79
“Rainbow Option” on page 3-27
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2009a
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maxassetsensbystulz
Determine European rainbow option prices or sensitivities on maximum of two risky assets using
Stulz pricing model

Syntax
PriceSens = maxassetsensbystulz(RateSpec,StockSpec1,StockSpec2,Settle,
Maturity,OptSpec,Strike,Corr)
PriceSens = maxassetsensbystulz( ___ ,Name,Value)

Description
PriceSens = maxassetsensbystulz(RateSpec,StockSpec1,StockSpec2,Settle,
Maturity,OptSpec,Strike,Corr) computes option prices using the Stulz option pricing model.

PriceSens = maxassetsensbystulz( ___ ,Name,Value) specifies options using one or more
optional name-value pair arguments in addition to the input arguments in the previous syntax.

Examples

Compute Rainbow Option Prices and Sensitivities Using the Stulz Option Pricing Model

Consider a European rainbow option that gives the holder the right to buy either $100,000 of an
equity index at a strike price of 1000 (asset 1) or $100,000 of a government bond (asset 2) with a
strike price of 100% of face value, whichever is worth more at the end of 12 months. On January 15,
2008, the equity index is trading at 950, pays a dividend of 2% annually, and has a return volatility of
22%. Also on January 15, 2008, the government bond is trading at 98, pays a coupon yield of 6%, and
has a return volatility of 15%. The risk-free rate is 5%. Using this data, calculate the price and
sensitivity of the European rainbow option if the correlation between the rates of return is -0.5, 0, and
0.5.

Since the asset prices in this example are in different units, it is necessary to work in either index
points (for asset 1) or in dollars (for asset 2). The European rainbow option allows the holder to buy
the following: 100 units of the equity index at $1000 each (for a total of $100,000) or 1000 units of
the government bonds at $100 each (for a total of $100,000). To convert the bond price (asset 2) to
index units (asset 1), you must make the following adjustments:

• Multiply the strike price and current price of the government bond by 10 (1000/100).
• Multiply the option price by 100, considering that there are 100 equity index units in the option.

Once these adjustments are introduced, the strike price is the same for both assets ($1000). First,
create the RateSpec:

Settle = 'Jan-15-2008';
Maturity = 'Jan-15-2009';
Rates = 0.05;
Basis = 1;
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RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9512
            Rates: 0.0500
         EndTimes: 1
       StartTimes: 0
         EndDates: 733788
       StartDates: 733422
    ValuationDate: 733422
            Basis: 1
     EndMonthRule: 1

Create the two StockSpec definitions.

AssetPrice1 = 950;   % Asset 1 => Equity index
AssetPrice2 = 980;   % Asset 2 => Government bond
Sigma1 = 0.22;
Sigma2 = 0.15;
Div1 = 0.02; 
Div2 = 0.06; 

StockSpec1 = stockspec(Sigma1, AssetPrice1, 'continuous', Div1)

StockSpec1 = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2200
         AssetPrice: 950
       DividendType: {'continuous'}
    DividendAmounts: 0.0200
    ExDividendDates: []

StockSpec2 = stockspec(Sigma2, AssetPrice2, 'continuous', Div2)

StockSpec2 = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1500
         AssetPrice: 980
       DividendType: {'continuous'}
    DividendAmounts: 0.0600
    ExDividendDates: []

Calculate the price and delta for different correlation levels.

Strike = 1000 ; 
Corr = [-0.5; 0; 0.5];
OutSpec = {'price'; 'delta'};
OptSpec = 'call';
[Price, Delta] = maxassetsensbystulz(RateSpec, StockSpec1, StockSpec2,...
Settle, Maturity, OptSpec, Strike, Corr,'OutSpec', OutSpec)

Price = 3×1
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  111.6683
  103.7715
   92.4412

Delta = 3×2

    0.4594    0.3698
    0.4292    0.3166
    0.4053    0.2512

The output Delta has two columns: the first column represents the Delta with respect to the equity
index (asset 1), and the second column represents the Delta with respect to the government bond
(asset 2). The value 0.4595 represents Delta with respect to one unit of the equity index. Since there
are 100 units of the equity index, the overall Delta would be 45.94 (100 * 0.4594 ) for a correlation
level of -0.5. To calculate the Delta with respect to the government bond, remember that an adjusted
price of 980 was used instead of 98. Therefore, for example, the Delta with respect to government
bond, for a correlation of 0.5 would be 251.2 (0.2512 * 100 * 10 ).

Input Arguments
RateSpec — Annualized, continuously compounded rate term structure
structure

Annualized, continuously compounded rate term structure, specified using intenvset.
Data Types: structure

StockSpec1 — Stock specification for asset 1
structure

Stock specification for asset 1, specified using stockspec.
Data Types: structure

StockSpec2 — Stock specification for asset 2
structure

Stock specification for asset 2, specified using stockspec.
Data Types: structure

Settle — Settlement or trade dates
vector

Settlement or trade dates, specified as an NINST-by-1 vector of numeric dates.
Data Types: double

Maturity — Maturity dates
vector

Maturity dates, specified as an NINST-by-1 vector.
Data Types: double
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OptSpec — Option type
cell array of character vectors with a value of 'call' or 'put'

Option type, specified as an NINST-by-1 cell array of character vectors with a value of 'call' or
'put'.
Data Types: cell

Strike — Strike prices
vector

Strike prices, specified as an NINST-by-1 vector.
Data Types: double

Corr — Correlation between the underlying asset prices
vector

Correlation between the underlying asset prices, specified as an NINST-by-1 vector.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [PriceSens] = maxassetsensbystulz(RateSpec,
StockSpecA,StockSpecB,Settle,Maturity,OptSpec,Strike,Corr,'OutSpec',OutSpec)

OutSpec — Define outputs
{'Price'} (default) | cell array of character vectors with values 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a NOUT- by-1 or
1-by-NOUT cell array of character vectors or string array with possible values of 'Price', 'Delta',
'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output is Delta, Gamma, Vega, Lambda, Rho, Theta, and
Price, in that order. This is the same as specifying OutSpec to include each sensitivity:
Example: OutSpec = {'delta','gamma','vega','lambda','rho','theta','price'}
Data Types: cell

Output Arguments
PriceSens — Expected prices or sensitivities
vector

Expected prices or sensitivities, returned as an NINST-by-1 or NINST-by-2 vector.
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More About
Rainbow Option

A rainbow option payoff depends on the relative price performance of two or more assets.

A rainbow option gives the holder the right to buy or sell the best or worst of two securities, or
options that pay the best or worst of two assets. Rainbow options are popular because of the lower
premium cost of the structure relative to the purchase of two separate options. The lower cost
reflects the fact that the payoff is generally lower than the payoff of the two separate options.

Financial Instruments Toolbox supports two types of rainbow options:

• Minimum of two assets — The option holder has the right to buy(sell) one of two risky assets,
whichever one is worth less.

• Maximum of two assets — The option holder has the right to buy(sell) one of two risky assets,
whichever one is worth more.

For more information, see “Rainbow Option” on page 3-27.

See Also
intenvset | maxassetsensbystulz | stockspec

Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-79
“Rainbow Option” on page 3-27
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2009a
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minassetbystulz
Determine European rainbow option prices on minimum of two risky assets using Stulz option pricing
model

Syntax
Price = minassetbystulz(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,
OptSpec,Strike,Corr)

Description
Price = minassetbystulz(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,
OptSpec,Strike,Corr) computes option prices using the Stulz option pricing model.

Examples

Compute Rainbow Option Prices Using the Stulz Option Pricing Model

Consider a European rainbow put option that gives the holder the right to sell either stock A or stock
B at a strike of 50.25, whichever has the lower value on the expiration date May 15, 2009. On
November 15, 2008, stock A is trading at 49.75 with a continuous annual dividend yield of 4.5% and
has a return volatility of 11%. Stock B is trading at 51 with a continuous dividend yield of 5% and has
a return volatility of 16%. The risk-free rate is 4.5%. Using this data, if the correlation between the
rates of return is -0.5, 0, and 0.5, calculate the price of the minimum of two assets that are European
rainbow put options. First, create the RateSpec:

Settle = 'Nov-15-2008';
Maturity = 'May-15-2009';
Rates = 0.045;
Basis = 1;

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9778
            Rates: 0.0450
         EndTimes: 0.5000
       StartTimes: 0
         EndDates: 733908
       StartDates: 733727
    ValuationDate: 733727
            Basis: 1
     EndMonthRule: 1

Create the two StockSpec definitions.
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AssetPriceA = 49.75;
AssetPriceB = 51;
SigmaA = 0.11;
SigmaB = 0.16;
DivA = 0.045; 
DivB = 0.05; 

StockSpecA = stockspec(SigmaA, AssetPriceA, 'continuous', DivA)

StockSpecA = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1100
         AssetPrice: 49.7500
       DividendType: {'continuous'}
    DividendAmounts: 0.0450
    ExDividendDates: []

StockSpecB = stockspec(SigmaB, AssetPriceB, 'continuous', DivB)

StockSpecB = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1600
         AssetPrice: 51
       DividendType: {'continuous'}
    DividendAmounts: 0.0500
    ExDividendDates: []

Compute the price of the options for different correlation levels.

Strike = 50.25;
Corr = [-0.5;0;0.5];
OptSpec = 'put';
Price = minassetbystulz(RateSpec, StockSpecA, StockSpecB, Settle,...
Maturity, OptSpec, Strike, Corr)

Price = 3×1

    3.4320
    3.1384
    2.7694

The values 3.43, 3.14, and 2.77 are the price of the European rainbow put options with a correlation
level of -0.5, 0, and 0.5 respectively.

Input Arguments
RateSpec — Annualized, continuously compounded rate term structure
structure

Annualized, continuously compounded rate term structure, specified using intenvset.
Data Types: structure

StockSpec1 — Stock specification for asset 1
structure
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Stock specification for asset 1, specified using stockspec.
Data Types: structure

StockSpec2 — Stock specification for asset 2
structure

Stock specification for asset 2, specified using stockspec.
Data Types: structure

Settle — Settlement or trade dates
vector

Settlement or trade dates, specified as an NINST-by-1 vector of numeric dates.
Data Types: double

Maturity — Maturity dates
vector

Maturity dates, specified as an NINST-by-1 vector.
Data Types: double

OptSpec — Option type
cell array of character vectors with a value of 'call' or 'put'

Option type, specified as an NINST-by-1 cell array of character vectors with a value of 'call' or
'put'.
Data Types: cell

Strike — Strike prices
vector

Strike prices, specified as an NINST-by-1 vector.
Data Types: double

Corr — Correlation between the underlying asset prices
vector

Correlation between the underlying asset prices, specified as an NINST-by-1 vector.
Data Types: double

Output Arguments
Price — Expected option prices
vector

Expected option prices, returned as an NINST-by-1 vector.
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More About
Rainbow Option

A rainbow option payoff depends on the relative price performance of two or more assets.

A rainbow option gives the holder the right to buy or sell the best or worst of two securities, or
options that pay the best or worst of two assets. Rainbow options are popular because of the lower
premium cost of the structure relative to the purchase of two separate options. The lower cost
reflects the fact that the payoff is generally lower than the payoff of the two separate options.

Financial Instruments Toolbox supports two types of rainbow options:

• Minimum of two assets — The option holder has the right to buy(sell) one of two risky assets,
whichever one is worth less.

• Maximum of two assets — The option holder has the right to buy(sell) one of two risky assets,
whichever one is worth more.

For more information, see “Rainbow Option” on page 3-27.

See Also
intenvset | maxassetsensbystulz | stockspec | minassetsensbystulz

Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-79
“Rainbow Option” on page 3-27
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2009a
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minassetsensbystulz
Determine European rainbow option prices or sensitivities on minimum of two risky assets using
Stulz option pricing model

Syntax
PriceSens = minassetsensbystulz(RateSpec,StockSpec1,StockSpec2,Settle,
Maturity,OptSpec,Strike,Corr)
PriceSens = minassetsensbystulz( ___ ,Name,Value)

Description
PriceSens = minassetsensbystulz(RateSpec,StockSpec1,StockSpec2,Settle,
Maturity,OptSpec,Strike,Corr) computes option prices using the Stulz option pricing model.

PriceSens = minassetsensbystulz( ___ ,Name,Value) specifies options using one or more
optional name-value pair arguments in addition to the input arguments in the previous syntax.

Examples

Compute Rainbow Option Prices and Sensitivities Using the Stulz Option Pricing Model

Consider a European rainbow put option that gives the holder the right to sell either stock A or stock
B at a strike of 50.25, whichever has the lower value on the expiration date May 15, 2009. On
November 15, 2008, stock A is trading at 49.75 with a continuous annual dividend yield of 4.5% and
has a return volatility of 11%. Stock B is trading at 51 with a continuous dividend yield of 5% and has
a return volatility of 16%. The risk-free rate is 4.5%. Using this data, if the correlation between the
rates of return is -0.5, 0, and 0.5, calculate the price and sensitivity of the minimum of two assets that
are European rainbow put options. First, create the RateSpec:

Settle = 'Nov-15-2008';
Maturity = 'May-15-2009';
Rates = 0.045;
Basis = 1;

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9778
            Rates: 0.0450
         EndTimes: 0.5000
       StartTimes: 0
         EndDates: 733908
       StartDates: 733727
    ValuationDate: 733727
            Basis: 1
     EndMonthRule: 1
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Create the two StockSpec definitions.

AssetPriceA = 49.75;
AssetPriceB = 51;
SigmaA = 0.11;
SigmaB = 0.16;
DivA = 0.045; 
DivB = 0.05; 

StockSpecA = stockspec(SigmaA, AssetPriceA, 'continuous', DivA)

StockSpecA = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1100
         AssetPrice: 49.7500
       DividendType: {'continuous'}
    DividendAmounts: 0.0450
    ExDividendDates: []

StockSpecB = stockspec(SigmaB, AssetPriceB, 'continuous', DivB)

StockSpecB = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1600
         AssetPrice: 51
       DividendType: {'continuous'}
    DividendAmounts: 0.0500
    ExDividendDates: []

Calculate price and delta for different correlation levels.

Strike = 50.25;
Corr = [-0.5;0;0.5];
OptSpec = 'put';
OutSpec = {'Price'; 'delta'};
[P, D] = minassetsensbystulz(RateSpec, StockSpecA, StockSpecB,...
Settle, Maturity, OptSpec, Strike, Corr, 'OutSpec', OutSpec)

P = 3×1

    3.4320
    3.1384
    2.7694

D = 3×2

   -0.4183   -0.3496
   -0.3746   -0.3189
   -0.3304   -0.2905

The output Delta has two columns: the first column represents the Delta with respect to the stock
A (asset 1), and the second column represents the Delta with respect to the stock B (asset 2). The
value 0.4183 represents Delta with respect to the stock A for a correlation level of -0.5. The Delta
with respect to stock B, for a correlation of zero is -0.3189.
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Input Arguments
RateSpec — Annualized, continuously compounded rate term structure
structure

Annualized, continuously compounded rate term structure, specified using intenvset.
Data Types: structure

StockSpec1 — Stock specification for asset 1
structure

Stock specification for asset 1, specified using stockspec.
Data Types: structure

StockSpec2 — Stock specification for asset 2
structure

Stock specification for asset 2, specified using stockspec.
Data Types: structure

Settle — Settlement or trade dates
vector

Settlement or trade dates, specified as an NINST-by-1 vector of numeric dates.
Data Types: double

Maturity — Maturity dates
vector

Maturity dates, specified as an NINST-by-1 vector.
Data Types: double

OptSpec — Option type
cell array of character vectors with a value of 'call' or 'put'

Option type, specified as an NINST-by-1 cell array of character vectors with a value of 'call' or
'put'.
Data Types: cell

Strike — Strike prices
vector

Strike prices, specified as an NINST-by-1 vector.
Data Types: double

Corr — Correlation between the underlying asset prices
vector

Correlation between the underlying asset prices, specified as an NINST-by-1 vector.
Data Types: double
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [PriceSens] = minassetsensbystulz(RateSpec,
StockSpecA,StockSpecB,Settle,Maturity,OptSpec,Strike,Corr,'OutSpec',OutSpec)

OutSpec — Define outputs
{'Price'} (default) | cell array of character vectors with values 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a NOUT- by-1 or
1-by-NOUT cell array of character vectors or string array with possible values of 'Price', 'Delta',
'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output is Delta, Gamma, Vega, Lambda, Rho, Theta, and
Price, in that order. This is the same as specifying OutSpec to include each sensitivity:
Example: OutSpec = {'delta','gamma','vega','lambda','rho','theta','price'}
Data Types: cell

Output Arguments
PriceSens — Expected prices or sensitivities
vector

Expected prices or sensitivities, returned as an NINST-by-1 or NINST-by-2 vector.

More About
Rainbow Option

A rainbow option payoff depends on the relative price performance of two or more assets.

A rainbow option gives the holder the right to buy or sell the best or worst of two securities, or
options that pay the best or worst of two assets. Rainbow options are popular because of the lower
premium cost of the structure relative to the purchase of two separate options. The lower cost
reflects the fact that the payoff is generally lower than the payoff of the two separate options.

Financial Instruments Toolbox supports two types of rainbow options:

• Minimum of two assets — The option holder has the right to buy(sell) one of two risky assets,
whichever one is worth less.

• Maximum of two assets — The option holder has the right to buy(sell) one of two risky assets,
whichever one is worth more.

For more information, see “Rainbow Option” on page 3-27.
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See Also
intenvset | stockspec | minassetsensbystulz

Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-79
“Rainbow Option” on page 3-27
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2009a
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mkbush
Create bushy tree

Syntax
[Tree,NumStates = mkbush(NumLevels,NumChild,NumPos)
[Tree,NumStates = mkbush( ___ ,Trim,NodeVal)

Description
[Tree,NumStates = mkbush(NumLevels,NumChild,NumPos) creates a bushy tree Tree with
initial values NodeVal at each node.

[Tree,NumStates = mkbush( ___ ,Trim,NodeVal) adds optional arguments for Trim and
NodeVal.

Examples

Create Bushy Tree

This example shows how to create a tree with four time levels, two branches per node, and a vector of
three elements in each node with each element initialized to NaN.

Tree = mkbush(4, 2, 3);
treeviewer(Tree) 
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Input Arguments
NumLevels — Number of time levels of the tree
numeric

Number of time levels of the tree, specified as a scalar numeric.
Data Types: double

NumChild — Number of branches (children) of the nodes in each level
vector

Number of branches (children) of the nodes in each level, specified as a 1-by- number of levels
(NUMLEVELS) vector.
Data Types: double

NumPos — Length of the state vectors in each time level
vector

Length of the state vectors in each time level, specified as a 1-by-NUMLEVELS vector.
Data Types: double

Trim — Indicates movement between nodes
0 (default) | logical
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(Optional) Indicates movement between nodes, specified as a scalar 0 or 1. If Trim = 1, NumPos
decreases by 1 when moving from one time level to the next. Otherwise, if Trim = 0, NumPos does
not decrease.
Data Types: logical

NodeVal — Initial value at each node of the tree
NaN (default) | numeric

(Optional) Initial value at each node of the tree, specified as a scalar numeric.
Data Types: double

Output Arguments
Tree — Bushy tree
struct

Bushy tree, returned as a tree struct with initial values NodeVal at each node.

NumStates — Number of state vectors in each level
vector

Number of state vectors in each level, returned as a 1-by-NUMLEVELS vector.

See Also
bushpath | bushshape

Topics
“Graphical Representation of Trees” on page 2-220
“Overview of Interest-Rate Tree Models” on page 2-44

Introduced before R2006a
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mktree
Create recombining binomial tree

Syntax
Tree = mktree(NumLevels,NumPos)
Tree = mktree( ___ ,NodeVal,IsPriceTree)

Description
Tree = mktree(NumLevels,NumPos) creates a recombining tree Tree with initial values
NodeVal at each node.

Tree = mktree( ___ ,NodeVal,IsPriceTree) adds optional arguments for NodeVal and
IsPriceTree.

Examples

Create Recombining Binomial Tree

Create a recombining tree of four time levels with a vector of two elements in each node and each
element initialized to NaN.

Tree = mktree(4, 2)

Tree=1×4 cell array
    {2x1 double}    {2x2 double}    {2x3 double}    {2x4 double}

Input Arguments
NumLevels — Number of time levels of the tree
numeric

Number of time levels of the tree, specified as a scalar numeric.
Data Types: double

NumPos — Length of the state vectors in each time level
vector

Length of the state vectors in each time level, specified as a 1-by-NUMLEVELS vector.
Data Types: double

NodeVal — Initial value at each node of the tree
NaN (default) | numeric

(Optional) Initial value at each node of the tree, specified as a scalar numeric.
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Data Types: double

IsPriceTree — Indicator if final horizontal branch is added to tree
0 (default) | logical

(Optional) Indicator if final horizontal branch is added to tree, specified as a scalar logical value.
Data Types: logical

Output Arguments
Tree — Bushy tree
struct

Bushy tree, returned as a tree struct with initial values NodeVal at each node.

See Also
treepath | treeshape

Topics
“Graphical Representation of Trees” on page 2-220
“Overview of Interest-Rate Tree Models” on page 2-44

Introduced before R2006a
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mktrintree
Create recombining trinomial tree

Syntax
TrinTree = mktrintree(NumLevels,NumPos,NumStates)
TrinTree = mktrintree( ___ ,NodeVal)

Description
TrinTree = mktrintree(NumLevels,NumPos,NumStates) creates a recombining tree
TrinTree with initial values NodeVal at each node.

TrinTree = mktrintree( ___ ,NodeVal) adds an optional argument for NodeVal.

Examples

Create Recombining Trinomial Tree

Create a recombining trinomial tree of four time levels with a vector of two elements in each node
and each element initialized to NaN.

TrinTree = mktrintree(4, [2 2 2 2], [1 3 5 7])

TrinTree=1×4 cell array
    {2x1 double}    {2x3 double}    {2x5 double}    {2x7 double}

Input Arguments
NumLevels — Number of time levels of the tree
numeric

Number of time levels of the tree, specified as a scalar numeric.
Data Types: double

NumPos — Length of the state vectors in each time level
vector

Length of the state vectors in each time level, specified as a 1-by-NUMLEVELS vector.
Data Types: double

NumStates — Number of state vectors in each level
vector

Number of state vectors in each level, specified as a 1-by-NUMLEVELS vector.
Data Types: double
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NodeVal — Initial value at each node of the tree
NaN (default) | numeric

(Optional) Initial value at each node of the tree, specified as a scalar numeric.
Data Types: double

Output Arguments
TrinTree — Recombining trinomial tree
struct

Recombining trinomial tree, returned as a tree struct with initial values NodeVal at each node.

See Also
trintreepath | trintreeshape

Topics
“Graphical Representation of Trees” on page 2-220
“Overview of Interest-Rate Tree Models” on page 2-44

Introduced before R2006a
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mmktbybdt
Create money-market tree from Black-Derman-Toy interest-rate tree

Syntax
MMktTree = mmktbybdt(BDTTree)
MMktTree = mmktbybdt(BDTTree)

Description
MMktTree = mmktbybdt(BDTTree) MMktTree = mmktbybdt(BDTTree) creates a money-market
tree from an interest-rate tree structure created by bdttree.

Examples

Create Money-Market Tree from Black-Derman-Toy Interest-Rate Tree

Use a bdttree from the deriv.mat and create a money-market tree from the BDT interest-rate
tree.

load deriv.mat;
MMktTree = mmktbybdt(BDTTree)

MMktTree = struct with fields:
      FinObj: 'BDTMmktTree'
        tObs: [0 1 2 3 4]
    MMktTree: {[1]  [1.1000 1.1000]  [1.2077 1.2324 1.2575]  [1.3256 1.3633 ... ]}

treeviewer(MMktTree)
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Input Arguments
BDTTree — BDT interest-rate tree structure
struct

BDT interest-rate tree structure, specified by bdttree.
Data Types: struct

Output Arguments
MMktTree — Money-market tree
struct

Money-market tree, returned as a tree structure.

See Also
bdttree

Topics
“Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-10
“Use treeviewer to Examine HWTree and PriceTree When Pricing European Callable Bond” on page
2-195
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“Understanding Interest-Rate Tree Models” on page 2-66
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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mmktbyhjm
Create money-market tree from Heath-Jarrow-Morton interest-rate tree

Syntax
MMktTree = mmktbyhjm(HJMTree)

Description
MMktTree = mmktbyhjm(HJMTree) creates a money-market tree from an interest-rate tree
structure created by hjmtree.

Examples

Create Money-Market Tree from Heath-Jarrow-Morton Interest-Rate Tree

Use a hjmtree from the deriv.mat and create a money-market tree from the HJM interest-rate
tree.

load deriv.mat;
MMktTree = mmktbyhjm(HJMTree)

MMktTree = struct with fields:
      FinObj: 'HJMMmktTree'
        tObs: [0 1 2 3 4]
    MMktTree: {[1]  [1x1x2 double]  [1x2x2 double]  [1x4x2 double]}

treeviewer(MMktTree)
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Input Arguments
HJMTree — HJM interest-rate tree structure
struct

HJM interest-rate tree structure, specified by hjmtree.
Data Types: struct

Output Arguments
MMktTree — Money-market tree
struct

Money-market tree, returned as a tree structure.

See Also
hjmtree

Topics
“Computing Instrument Prices” on page 2-81
“Use treeviewer to Examine HWTree and PriceTree When Pricing European Callable Bond” on page
2-195
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“Understanding Interest-Rate Tree Models” on page 2-66
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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normalvolbysabr
Implied Normal (Bachelier) volatility by SABR model

Syntax
outVol = normalvolbysabr(Alpha,Beta,Rho,Nu,Settle,ExerciseDate,ForwardValue,
Strike)
outVol = normalvolbysabr( ___ ,Name,Value)

Description
outVol = normalvolbysabr(Alpha,Beta,Rho,Nu,Settle,ExerciseDate,ForwardValue,
Strike) calculates the implied Normal (Bachelier) volatility by using the SABR stochastic volatility
model.

outVol = normalvolbysabr( ___ ,Name,Value) specifies options using one or more name-value
pair arguments in addition to the input arguments in the previous syntax.

Examples

Compute the Implied Normal (Bachelier) Volatility Using the SABR Model

Define the model parameters and option data.

ForwardValue = 0.0209;
Strike = 0.02;
Alpha = 0.041;
Beta = 0.5;
Rho = -0.2;
Nu = 0.33;

Settle = datenum('15-Feb-2018');
ExerciseDate = datenum('15-Feb-2020');

Compute the Normal (Bachelier) volatility using the SABR model.

ComputedVols = normalvolbysabr(Alpha,Beta,Rho,Nu,Settle,ExerciseDate,ForwardValue,Strike)

ComputedVols = 0.0059

Compute the Implied Normal (Bachelier) Volatility Using the Normal SABR Model

To use the Normal SABR model, set the Beta parameter to zero. Negative interest rates are allowed
when the Normal SABR model is used in combination with Normal (Bachelier) implied volatility.

Define the model parameters and option data.

ForwardValue = -0.00383;
Strike = -0.003;
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Alpha = 0.007;
Beta = 0;  % Set the Beta parameter to zero to use the Normal SABR model
Rho = -0.18;
Nu = 0.29;

Settle = datenum('17-Jan-2018');
ExerciseDate = datenum('17-Apr-2018');

Compute the Normal (Bachelier) volatility using the Normal SABR model.

ComputedVols = normalvolbysabr(Alpha,Beta,Rho,Nu,Settle,ExerciseDate,ForwardValue,Strike)

ComputedVols = 0.0070

Input Arguments
Alpha — Current SABR volatility
scalar numeric

Current SABR volatility, specified as a scalar numeric.
Data Types: double

Beta — SABR constant elasticity of variance (CEV) exponent
scalar numeric

SABR CEV exponent, specified as a scalar numeric.

Note Set the Beta parameter to 0 to allow a negative ForwardValue and Strike.

Data Types: double

Rho — Correlation between forward value and volatility
scalar numeric

Correlation between forward value and volatility, specified as a scalar numeric.
Data Types: double

Nu — Volatility of volatility
scalar numeric

Volatility of volatility, specified as a scalar numeric.
Data Types: double

Settle — Settlement date
scalar for serial nonnegative date number | scalar for date character vector

Settlement date, specified as a scalar using a serial nonnegative date number or date character
vector.
Data Types: double | char
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ExerciseDate — Option exercise date
scalar for serial nonnegative date number | scalar for date character vector

Option exercise date, specified as a scalar using a serial nonnegative date number or date character
vector.
Data Types: double | char

ForwardValue — Current forward value of underlying asset
scalar numeric | vector

Current forward value of the underlying asset, specified as a scalar numeric or vector of size
NumVols-by-1.
Data Types: double

Strike — Option strike price value
scalar numeric | vector

Option strike price value, specified as a scalar numeric or a vector of size NumVols-by-1.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: outVol =
normalvolbysabr(Alpha,Beta,Rho,Nu,Settle,ExerciseDate,ForwardValue,Strike,'Ba
sis',2)

Basis — Day-count basis of instrument
0 (actual/actual) (default) | positive integers of the set [1...13]

Day-count basis of the instrument, specified as the comma-separated pair consisting of 'Basis' and
a positive integer from the set [1...13].

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
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• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Output Arguments
outVol — Normal (Bachelier) volatility computed by SABR model
scalar numeric | vector

Normal (Bachelier) volatility computed by the SABR model, returned as a scalar numeric or vector of
size NumVols-by-1.

Algorithms
The two general case algorithms for normalvolbysabr are not At-The-Money (ATM) and ATM.

For not ATM (F ≠ K):

σN(α, β, ρ, υ, F, K, T) = α (F − K)(1− β)
F(1− β)− K(1− β)

z
x(z) 1 + β(β− 2)α2

24Fmid
2− 2β + ρβυα

4Fmid
1− β + 2− 3ρ2

24 υ2 T

= υ (F − K)
x(z) 1 + β(β− 2)α2

24Fmid
2− 2β + ρβυα

4Fmid
1− β + 2− 3ρ2

24 υ2 T

Fmid = F + K
2

z = υ
α

F1− β− K1− β

1− β           x(z) = ln 1− 2ρz + z2 + z − ρ
1− ρ

For ATM (F = K):

σN, ATM(α, β, ρ, υ, F, T) = αFβ 1 + β(β− 2)α2

24F2− 2β + ρβυα
4F1− β + 2− 3ρ2

24 υ2 T

The special case for normalvolbysabr where β = 0 for not ATM (F ≠ K) is:

σN(α, ρ, υ, F, K, T) = υ (F − K)
x∧(ζ)

1 + 2− 3ρ2

24 υ2T

ζ = υ
α (F − K)

x∧(ζ) = ln 1− 2ρζ + ζ2 + ζ − ρ
1− ρ

For ATM (F = K):

σN, ATM(α, ρ, υ, T) = α 1 + 2− 3ρ2

24 υ2T
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The special case for normalvolbysabr where β = 1 for not ATM (F ≠ K) is:

σN(α, ρ, υ, F, K, T) = υ (F − K)
x∧(ζ)

1 + −α2

24 + ρυα
4 + 2− 3ρ2

24 υ2 T

ζ = υ
α ln F

K

x∧(ζ) = ln 1− 2ρζ + ζ2 + ζ − ρ
1− ρ

For ATM (F = K):

σN, ATM(α, ρ, υ, F, T) = αF 1 + −α2

24 + ρυα
4 + 2− 3ρ2

24 υ2 T

References
[1] Hagan, P. S., D. Kumar, A.S. Lesniewski, and D.E. Woodward. "Managing Smile Risk." Wilmott

Magazine. September 2002, pp. 84–108.

See Also
swaptionbyblk | swaptionbynormal | optsensbysabr

Topics
“Calibrate the SABR Model Using Normal (Bachelier) Volatilities with Negative Strikes” on page 2-
164
“Price Swaptions with Negative Strikes Using the Shifted SABR Model” on page 2-26
“Calibrate the SABR Model” on page 2-33
“Price a Swaption Using the SABR Model” on page 2-38
“Work with Negative Interest Rates Using Functions” on page 2-18
“Supported Interest-Rate Instrument Functions” on page 2-3

External Websites
How to Price Interest Rate Options with Negative Interest Rates (3 min 05 sec)

Introduced in R2018b
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numerix class

Create numerix object to set up Numerix CAIL environment

Description
The numerix object makes the Numerix engine directly accessible from MATLAB. To use the
capabilities of Numerix CAIL, you must have CAIL client software installed on your local desktop.

In addition, you must add the Numerix library file to MATLAB path to use the documentation
examples:

• Add <Numerix software package installation root>/lib to <matlabroot>/toolbox/local/
librarypath.txt

or
• Place <Numerix software package installation root>/lib/NxProjava.dll in the folder

<matlabroot>/bin/win64

Construction
N = numerix(DATADIRECTORYPATH) constructs the numerix object and sets up the Numerix
CrossAsset Integration Layer (CAIL) environment given the path, DATADIRECTORYPATH.

Properties
The following properties are from the numerix class.

Path

Defines the path for DATADIRECTORYPATH. This path is the location of the templates and is created
by the client installation of CAIL. A template defines the interface; it encapsulates the instructions for
performing calculations, the calculation's required and optional input parameters, and the
calculation's outputs.

Attributes:

SetAccess public
GetAccess public

RepositoryPath

RepositoryPath defines the path location for the repository folder in a file system.

Attributes:

SetAccess public
GetAccess public
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Repository

Repositories are collections of templates and are defined as a folder in a file system.

Attributes:

SetAccess public
GetAccess public

Context

The calculation context manages all the CAIL information.Context contains the location of the
template repository and is responsible for creating a CAIL application context in which to perform the
calculations.

Attributes:

SetAccess public
GetAccess public

LookupsPath

Defines the path for the numeric instruments data types.

Attributes:

SetAccess public
GetAccess public

MarketsPath

Defines a path for the logical schema for naming all the market data. MarketsPath enables you to
provide a data dictionary to map business market data to CAIL to reduce the task of inputting market
data into CAIL objects directly.

Attributes:

SetAccess public
GetAccess public

FixingsPath

Defines the path for the schema for naming historical fixing data for rates and prices.

Attributes:

SetAccess public
GetAccess public

TradesPath

Defines the path to the trade instrument definitions.
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Attributes:

SetAccess public
GetAccess public

Parameters

Defines the calculation parameters and market data, if available.

Attributes:

SetAccess public
GetAccess public

Methods
parseResults Converts Numerix CAIL data to MATLAB data types

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Construct a Numerix Object

Initialize Numerix CAIL environment.

import com.numerix.integration.*;
import com.numerix.integration.implementation.*;

Construct a numerix object.

n = numerix('i:\NumeriX_java_10_3_0\data')

n = 

              Path: 'i:\NumeriX_java_10_3_0\data'
    RepositoryPath: 'i:\NumeriX_java_10_3_0\data\Repository'
        Repository: [1x1 com.numerix.integration.implementation.FileSystemRepository]
           Context: [1x1 com.numerix.integration.implementation.LocalCalculationContext]
       LookupsPath: 'i:\NumeriX_java_10_3_0\data\Data\LookupRules'
       MarketsPath: 'i:\NumeriX_java_10_3_0\data\Data\Markets'
       FixingsPath: 'i:\NumeriX_java_10_3_0\data\Data\Fixings'
        TradesPath: 'i:\NumeriX_java_10_3_0\data\Data\Trades'
        Parameters: [1x1 com.numerix.integration.implementation.CalculationParameters]

More About
CrossAsset Integration Layer (CAIL)

The CrossAsset Integration Layer (CAIL) is an application programming interface (API), which
extends the data-driven approach of Numerix.

The calculation workflow of CAIL is:
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1 Select a trade template for a specified deal or trade from the repository. The trade template
specifies a set of inputs, a set of outputs, and the dependencies on other information (model,
market data, calendar, and so on).

2 Provide the input parameters to the trade template and call the calculation context. The
calculation context follows the dependency path to collect the needed information and produces
the output specified by the template.

See Also
parseResults | numerixCrossAsset

Topics
“Working with Simple Numerix Trades” on page 10-2
“Working with Advanced Numerix Trades” on page 10-4
“Use Numerix to Price Cash Deposits” on page 10-8
“Use Numerix for Interest-Rate Risk Assessment” on page 10-10
Class Attributes
Property Attributes

External Websites
https://www.numerix.com/cail

Introduced in R2013b
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numerixCrossAsset class
Create numerixCrossAsset object to set up Numerix CROSSASSET environment for Java or C++

Description
Creating a numerixCrossAsset object initializes a Numerix CrossAsset object based on the
Numerix data-driven CROSSASSET API. To use the Numerix engine directly from MATLAB, you must
have the CROSSASSET client installed on your local desktop.

You must add the Numerix library file to MATLAB path to use the documentation examples:

• Add <Numerix software package installation root>/lib to <matlabroot>/toolbox/local/
librarypath.txt

or
• Place <Numerix software package installation root>/lib/NxProjava.dll in the folder

<matlabroot>/bin/win64

In addition, when using the Java SDK API, you must add \NumeriX_Java_12_3_0_2\lib
\NxProJava.jar to the MATLAB file classpath.txt.

Construction
c = numerixCrossAsset constructs the numerixCrossAsset object and sets up the Numerix
CROSSASSET environment using the Java SDK API.

c = numerixCrossAsset(true) constructs the numerixCrossAsset object and sets up the
Numerix CROSSASSET environment using the C++ SDK API on Windows.

Properties
Application — Application object
object

Application object, created when numerixCrossAsset object is initialized.
Example: app = Application;

Attributes:

SetAccess private
GetAccess public

ApplicationWarning — ApplicationWarning object
object

ApplicationWarning object, created when numerixCrossAsset object is initialized.

Note The ApplicationWarning object is [] when using the C++ interface.
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Example: appWarnings = ApplicationWarning;

Attributes:

SetAccess private
GetAccess public

Methods
applicationCall Create and register Numerix CROSSASSET Call object
applicationData Create and register data with Numerix CROSSASSET Application Data object
applicationMatrix Create and register Numerix CROSSASSET Application Matrix object
close Close numerixCrossAsset object
getdata Convert Numerix CROSSASSET Application object to MATLAB structure

Examples

Construct a numerixCrossAsset Object for Java

Construct a numerixCrossAsset object for the Java SDK API.

c = numerixCrossAsset 

 c = 

numerixCrossAsset with properties:

Application: [1x1 com.numerix.pro.Application]
ApplicationWarning: [1x1 com.numerix.pro.ApplicationWarning]

Construct a numerixCrossAsset Object for C++

Construct a numerixCrossAsset object for the C++ SDK API on Windows.

c = numerixCrossAsset(true) 

 c = 

numerixCrossAsset with properties:

Application: [1×1 fininst.internal.NumerixCAIL]
ApplicationWarning: []

More About
CROSSASSET

The CROSSASSET API is an application programming interface (API) for Java or C++, which extends
the data-driven approach of Numerix.

See Also
applicationCall | applicationData | applicationMatrix | getdata | close
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Topics
“Numerix CROSSASSET Interface Workflow Example Using Matrix, Data, and Call Objects” on page
10-12
Class Attributes
Property Attributes

External Websites
https://www.numerix.com/CrossAsset

Introduced in R2016b
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applicationCall
Class: numerixCrossAsset

Create and register Numerix CROSSASSET Call object

Syntax
applicationCall(C,Headers,Name,Value)

Description
applicationCall(C,Headers,Name,Value) creates and registers the Numerix CROSSASSET
Call object with additional options specified by one or more Name,Value pair arguments. The name-
value parameters conform to the Numerix Cross Asset Integration Layer interface and are defined by
N1, N2, ..., NN to the values given in V1, V2, ..., VN.

Creating and registering the Call object calculates values in the Numerix Cross Asset Integration
Layer and returns the data in MATLAB.

Input Arguments
C — Connection object to Numerix CROSSASSET
object

Connection object to Numerix CROSSASSET, specified using the numerixCrossAsset constructor.

Headers — Output names of the returned values from numerixCrossAsset connection
object
cell array of character vectors

Output names of the returned values from numerixCrossAsset connection object, specified as a
cell array of character vectors.
Data Types: cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

N1 — Numerix name-value parameter
name-value parameter defined by Numerix

Numerix parameters, specified as a Name,Value argument pair.
Example: applicationCall(c,Headers,'ID','RATESPEC','OBJECT','MARKET
DATA','TYPE','YIELD','COMMENT','Comments
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here','SKIP',false,'INTERPMETHOD','LogLinear','INTERPVARIABLE','DF','CURRENCY
','USD','DATA','USD_3MLIBOR_CURVE','BASIS','ACT/360');

Data Types: char | double | logical

N2 — Numerix name-value parameters
name-value parameter defined by Numerix

Numerix parameter, specified as a Name,Value argument pair.
Example: applicationCall(c,Headers,'ID','RATESPEC','OBJECT','MARKET
DATA','TYPE','YIELD','COMMENT','Comments
here','SKIP',false,'INTERPMETHOD','LogLinear','INTERPVARIABLE','DF','CURRENCY
','USD','DATA','USD_3MLIBOR_CURVE','BASIS','ACT/360');

Data Types: char | double | logical

Attributes
Access public
Static false
Hidden false

To learn about attributes of methods, see Method Attributes.

Examples

Create and Register a Numerix CROSSASSET Call Object

Create a datetime object.
dates = datetime({'18-Feb-2014';'20-May-2014';'18-Jun-2014';'16-Jul-2014';
                   '20-Aug-2014';'17-Sep-2014';'15-Oct-2014';'19-Nov-2014';
                  '17-Dec-2014';'18-Mar-2015';'17-Jun-2015';'16-Sep-2015';
                  '16-Dec-2015';'16-Mar-2016';'15-Jun-2016';'21-Sep-2016';
                  '21-Dec-2016';'15-Mar-2017';'20-Feb-2018';'20-Feb-2019';
                  '20-Feb-2020';'22-Feb-2021';'22-Feb-2022';'21-Feb-2023';
                  '20-Feb-2024';'20-Feb-2025';'20-Feb-2026';'20-Feb-2029';
                  '21-Feb-2034';'22-Feb-2039';'22-Feb-2044';'20-Feb-2054';
                  '20-Feb-2064'});

Create the corresponding vector of discount factors for a 3-month LIBOR curve.
 discountFactors = [1;0.99942;0.999231;0.999037;0.998797;0.998616;0.998385;...
                       0.998122;0.997941;0.997159;0.996157;0.994825;0.993065;...
                       0.99078;0.987889;0.984092;0.979913;0.975459;0.952707;...
                       0.922223;0.888128;0.852291;0.816462;0.781228;0.746677;...
                       0.712892;0.680462;0.592285;0.474003;0.383493;0.312617;...
                       0.213809;0.152345];

Create a Numerix CROSSASSET object.

c = numerixCrossAsset;

Add data to the Numerix Cross Asset Application Data object.
applicationData(c,'USD_3MLIBOR_CURVE','DATE',dates,'DISCOUNTFACTOR',discountFactors)
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Define the Headers input and add the RateSpec Call object to the Numerix CROSSASSET
Application object using name-value pairs, where USD_3MLIBOR_CURVE denotes the yield curve data
object created previously.
headers = {'ID','LOCAL ID','TIMER','TIMER CPU','UPDATED'};
applicationCall(c,headers,'ID','RATESPEC','OBJECT','MARKET DATA','TYPE','YIELD','COMMENT','Comments here',...
                 'SKIP',false,'INTERPMETHOD','LogLinear','INTERPVARIABLE','DF',...
                 'CURRENCY','USD','DATA','USD_3MLIBOR_CURVE','BASIS','ACT/360');

See Also
numerixCrossAsset | applicationData | applicationMatrix | getdata | close

Topics
“Numerix CROSSASSET Interface Workflow Example Using Matrix, Data, and Call Objects” on page
10-12

External Websites
https://www.numerix.com/CrossAsset

Introduced in R2016b
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applicationData
Class: numerixCrossAsset

Create and register data with Numerix CROSSASSET Application Data object

Syntax
applicationData(C,Desc,Name,Value)
applicationData(C,Desc,T)
applicationData(C,Desc,S)

Description
applicationData(C,Desc,Name,Value) applicationData creates and registers the data for
Numerix CROSSASSET Application Data object with additional options specified by one or more
Name,Value pair arguments. The name-value parameters conform to the Numerix Cross Asset
Integration Layer interface and are defined by N1, N2, ..., NN to the values given in V1, V2, ..., VN.

applicationData(C,Desc,T) creates and registers the data for Numerix CROSSASSET
Application Data object in table T.

applicationData(C,Desc,S) creates and registers the data in the structure, S. The structure
fieldnames represents the property names for the values in each field.

Input Arguments
C — Connection object to Numerix CROSSASSET
object

Connection object to Numerix CROSSASSET, specified using the numerixCrossAsset constructor.

Desc — Description of data
character vector or cell array of character vectors

Description of data, specified as a character vector or cell array of character vectors.
Data Types: char | cell

T — Table input
table VariableNames represents the property names for values in the corresponding column

Table input for data to register for the Numerix CROSSASSET Application Data object, specified
using VariableNames.
Data Types: table

S — Structure input
structure fieldnames represents the property names for the values in each field

Structure input for data to register for the Numerix CROSSASSET Application Data object, specified
using the fieldnames.
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Data Types: struct

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

N1 — Numerix name-value parameter
name-value parameter defined by Numerix

Numerix parameter, specified as Name,Value argument pair.
Example:
applicationData(c,'USD_3MLIBOR_CURVE','DATE',dates,'DISCOUNTFACTOR',discountF
actors)

Data Types: char | double | logical

N2 — Numerix name-value parameters
name-value parameter defined by Numerix

Numerix parameter, specified as Name,Value argument pair.
Example:
applicationData(c,'USD_3MLIBOR_CURVE','DATE',dates,'DISCOUNTFACTOR',discountF
actors)

Data Types: char | double | logical

Attributes
Access public
Static false
Hidden false

To learn about attributes of methods, see Method Attributes.

Examples

Create a Numerix CROSSASSET Application Data Object

Create a datetime object.
dates = datetime({'18-Feb-2014';'20-May-2014';'18-Jun-2014';'16-Jul-2014';
                   '20-Aug-2014';'17-Sep-2014';'15-Oct-2014';'19-Nov-2014';
                  '17-Dec-2014';'18-Mar-2015';'17-Jun-2015';'16-Sep-2015';
                  '16-Dec-2015';'16-Mar-2016';'15-Jun-2016';'21-Sep-2016';
                  '21-Dec-2016';'15-Mar-2017';'20-Feb-2018';'20-Feb-2019';
                  '20-Feb-2020';'22-Feb-2021';'22-Feb-2022';'21-Feb-2023';
                  '20-Feb-2024';'20-Feb-2025';'20-Feb-2026';'20-Feb-2029';
                  '21-Feb-2034';'22-Feb-2039';'22-Feb-2044';'20-Feb-2054';
                  '20-Feb-2064'});

Create the corresponding vector of discount factors for a 3-month LIBOR curve.
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 discountFactors = [1;0.99942;0.999231;0.999037;0.998797;0.998616;0.998385;...
                       0.998122;0.997941;0.997159;0.996157;0.994825;0.993065;...
                       0.99078;0.987889;0.984092;0.979913;0.975459;0.952707;...
                       0.922223;0.888128;0.852291;0.816462;0.781228;0.746677;...
                       0.712892;0.680462;0.592285;0.474003;0.383493;0.312617;...
                       0.213809;0.152345];

Create a Numerix CROSSASSET object.

c = numerixCrossAsset;

Create and register the data with the Numerix CROSSASSET Application Data object.
applicationData(c,'USD_3MLIBOR_CURVE','DATE',dates,'DISCOUNTFACTOR',discountFactors)

See Also
numerixCrossAsset | applicationCall | applicationMatrix | getdata | close

Topics
“Numerix CROSSASSET Interface Workflow Example Using Matrix, Data, and Call Objects” on page
10-12

External Websites
https://www.numerix.com/CrossAsset

Introduced in R2016b

11 Functions

11-1000

https://www.numerix.com/crossasset


applicationMatrix
Class: numerixCrossAsset

Create and register Numerix CROSSASSET Application Matrix object

Syntax
applicationMatrix(C,Desc,Rdata,Cdata,Mdata)

Description
applicationMatrix(C,Desc,Rdata,Cdata,Mdata) creates the CROSSASSET Application
Matrix object from the row information (Rdata), column information (Cdata), and matrix (Mdata).

Input Arguments
C — Connection object to Numerix CROSSASSET
object

Connection object to Numerix CROSSASSET, specified using the numerixCrossAsset constructor.

Desc — Description of data
character vector or cell array of character vectors

Description of data, specified as a character vector or cell array of character vectors.
Data Types: char | cell

Rdata — Row information for Application Matrix object
numeric values

Row information for Application Matrix object, specified using numeric values.
Example: Rdata = [41992,42020,42449,42905,43115];
Data Types: double

Cdata — Column information for Application Matrix object
numeric values

Column information for Application Matrix object, specified as numeric values.
Example: Cdata = [390,395,400,405];
Data Types: double

Mdata — Volatility information for Application Matrix object
numeric values

Volatility information for Application Matrix object, specified as numeric values.
Example: Mdata = [0.35778, 0.35132, 0.34394, 0.33582;...
0.33405, 0.32819, 0.32669, 0.31904;...
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0.31576, 0.31235, 0.30371, 0.30261;...
0.29391, 0.29366, 0.28962, 0.28932;...
0.28787, NaN, 0.28347, NaN ];

Data Types: double

Attributes
Access public
Static false
Hidden false

To learn about attributes of methods, see Method Attributes.

Examples

Create a Numerix CROSSASSET Application Matrix Object

Create a volatility matrix with dates describing the rows and strike prices describing the columns
with the description BYSTRIKEVOLDATA. Missing values in the matrix input are denoted as NaN.

Create a Numerix CROSSASSET object.

c = numerixCrossAsset;

Define the matrix data.

rowData = [41992, 42020, 42449, 42905, 43115];
colData = [390, 395, 400, 405];
volData = [0.35778, 0.35132, 0.34394, 0.33582;...
           0.33405, 0.32819, 0.32669, 0.31904;...
           0.31576, 0.31235, 0.30371, 0.30261;...
           0.29391, 0.29366, 0.28962, 0.28932;...
           0.28787, NaN,     0.28347, NaN    ];

Create and register a Numerix CROSSASSET Application Matrix object.

applicationMatrix(c,'BYSTRIKEVOLDATA',rowData,colData,volData);

See Also
numerixCrossAsset | applicationCall | applicationData | getdata | close

Topics
“Numerix CROSSASSET Interface Workflow Example Using Matrix, Data, and Call Objects” on page
10-12

External Websites
https://www.numerix.com/CrossAsset

Introduced in R2016b
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close
Class: numerixCrossAsset

Close numerixCrossAsset object

Syntax
AppData = close(C)

Description
AppData = close(C) closes the numerixCrossAsset object (C).

Input Arguments
C — Connection object to Numerix CROSSASSET
object

Connection object to Numerix CROSSASSET, specified using the numerixCrossAsset constructor.

Attributes
Access public
Static false
Hidden false

To learn about attributes of methods, see Method Attributes.

Examples

Close the Numerix CROSSASSET Object

Construct a numerixCrossAsset object.

c = numerixCrossAsset 

 c = 

numerixCrossAsset with properties:

Application: [1x1 com.numerix.pro.Application]
ApplicationWarning: [1x1 com.numerix.pro.ApplicationWarning]

Close the numerixCrossAsset object.
close(c)

See Also
numerixCrossAsset | applicationCall | applicationData | applicationMatrix | getdata
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Topics
“Numerix CROSSASSET Interface Workflow Example Using Matrix, Data, and Call Objects” on page
10-12

External Websites
https://www.numerix.com/CrossAsset

Introduced in R2016b
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getdata
Class: numerixCrossAsset

Convert Numerix CROSSASSET Application object to MATLAB structure

Syntax
AppData = getdata(C)

Description
AppData = getdata(C) converts a Numerix CROSSASSET Application object to a MATLAB
structure.

Input Arguments
C — Connection object to Numerix CROSSASSET
object

Connection object to Numerix CROSSASSET, specified using the numerixCrossAsset constructor.

Output Arguments
AppData — Converted Numerix CROSSASSET Application object
structure

Converted Numerix CROSSASSET Application object, returned as a MATLAB structure

Attributes
Access public
Static false
Hidden false

To learn about attributes of methods, see Method Attributes.

Examples

Convert Numerix CROSSASSET Application Object to a MATLAB Structure

Create a datetime object.
dates = datetime({'18-Feb-2014';'20-May-2014';'18-Jun-2014';'16-Jul-2014';
                   '20-Aug-2014';'17-Sep-2014';'15-Oct-2014';'19-Nov-2014';
                  '17-Dec-2014';'18-Mar-2015';'17-Jun-2015';'16-Sep-2015';
                  '16-Dec-2015';'16-Mar-2016';'15-Jun-2016';'21-Sep-2016';
                  '21-Dec-2016';'15-Mar-2017';'20-Feb-2018';'20-Feb-2019';
                  '20-Feb-2020';'22-Feb-2021';'22-Feb-2022';'21-Feb-2023';
                  '20-Feb-2024';'20-Feb-2025';'20-Feb-2026';'20-Feb-2029';
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                  '21-Feb-2034';'22-Feb-2039';'22-Feb-2044';'20-Feb-2054';
                  '20-Feb-2064'});

Create the corresponding vector of discount factors for a 3-month LIBOR curve.
 discountFactors = [1;0.99942;0.999231;0.999037;0.998797;0.998616;0.998385;...
                       0.998122;0.997941;0.997159;0.996157;0.994825;0.993065;...
                       0.99078;0.987889;0.984092;0.979913;0.975459;0.952707;...
                       0.922223;0.888128;0.852291;0.816462;0.781228;0.746677;...
                       0.712892;0.680462;0.592285;0.474003;0.383493;0.312617;...
                       0.213809;0.152345];

Create a Numerix CROSSASSET object.

c = numerixCrossAsset;

Add data to the Numerix CROSSASSET Application Data object.
applicationData(c,'USD_3MLIBOR_CURVE','DATE',dates,'DISCOUNTFACTOR',discountFactors)

Add the RATESPEC Call object to the Numerix CROSSASSET Application object using name-value
pairs, where USD_3MLIBOR_CURVE denotes yield curve data object created previously.
headers = {'ID','LOCAL ID','TIMER','TIMER CPU','UPDATED'};
 applicationCall(c,headers,'ID','RATESPEC','OBJECT','MARKET DATA','TYPE','YIELD','COMMENT','Comments here',...
                 'SKIP',false,'INTERPMETHOD','LogLinear','INTERPVARIABLE','DF',...
                 'CURRENCY','USD','DATA','USD_3MLIBOR_CURVE','BASIS','ACT/360');

Use getdata to convert the Numerix CROSSASSET Application object to a MATLAB structure.

APPDATA = getdata(C)

See Also
numerixCrossAsset | applicationCall | applicationData | applicationMatrix | close

Topics
“Numerix CROSSASSET Interface Workflow Example Using Matrix, Data, and Call Objects” on page
10-12

External Websites
https://www.numerix.com/CrossAsset

Introduced in R2016b
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parseResults
Class: numerix

Converts Numerix CAIL data to MATLAB data types

Syntax
R = parseResults(N,Results)

Description
R = parseResults(N,Results) returns Numerix CAIL data in native MATLAB data types.

Input Arguments
N

Numerix object constructed using numerix.

Results

Result instances for each trade instance.

Output Arguments
R

Results from Numerix table output represented as MATLAB data types.

Attributes
Access public
Static false
Hidden false

To learn about attributes of methods, see Method Attributes.

Examples

Return Results for Numerix CAIL API to Price a Callable Reverse Floater

Initialize Numerix environment.

import com.numerix.integration.*;
import com.numerix.integration.implementation.*;

n = numerix('i:\NumeriX_java_10_3_0\data')
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n = 

              Path: 'i:\NumeriX_java_10_3_0\data'
    RepositoryPath: 'i:\NumeriX_java_10_3_0\data\Repository'
        Repository: [1x1 com.numerix.integration.implementation.FileSystemRepository]
           Context: [1x1 com.numerix.integration.implementation.LocalCalculationContext]
       LookupsPath: 'i:\NumeriX_java_10_3_0\data\Data\LookupRules'
       MarketsPath: 'i:\NumeriX_java_10_3_0\data\Data\Markets'
       FixingsPath: 'i:\NumeriX_java_10_3_0\data\Data\Fixings'
        TradesPath: 'i:\NumeriX_java_10_3_0\data\Data\Trades'
        Parameters: [1x1 com.numerix.integration.implementation.CalculationParameters]

Create a market.
quotes = java.util.HashMap;
quotes.put('IR.USD-LIBOR-3M.SWAP-1Y.MID', 0.0066056);
quotes.put('IR.USD-LIBOR-3M.SWAP-10Y.MID', 0.022465005);
quotes.put('IR.USD-LIBOR-3M.SWAP-20Y.MID', 0.027544995);
market = Market('EOD_14-NOV-2011', DateExtensions.date('14-Nov-2011'), quotes.entrySet);

Define a trade instance based on instrument template found in the Repository.
tradeDescriptor = 'TRADE.IR.CALLABLEREVERSEFLOATER';
tradeParameters = java.util.HashMap;
tradeParameters.put('Trade ID','1001');
tradeParameters.put('Quote Type', 'MID');
tradeParameters.put('Currency', 'USD');
tradeParameters.put('Notional', 1000000.0);
tradeParameters.put('Effective Date', DateExtensions.date('1-Dec-2011'));
tradeParameters.put('Termination Date', DateExtensions.date('1-Dec-2021'));
tradeParameters.put('IR Index', 'LIBOR');
tradeParameters.put('IR Index Tenor', '3M');
tradeParameters.put('Structured Freq', '3M');
tradeParameters.put('Structured Side', 'Receive');
tradeParameters.put('Structured Coupon Floor', 0.0);
tradeParameters.put('Structured Coupon UpBd', 0.08);
tradeParameters.put('StructuredCoupon Multiplier', 1.4);
tradeParameters.put('Structured Coupon Cap', 0.05);
tradeParameters.put('Structured Basis', 'ACT/360');
tradeParameters.put('Funding Freq', '3M');
tradeParameters.put('Funding Side', 'Pay');
tradeParameters.put('Funding Spread', 0.003);
tradeParameters.put('Funding Basis', 'ACT/360');
tradeParameters.put('Call Start Date', DateExtensions.date('1-Dec-2013'));
tradeParameters.put('Call End Date', DateExtensions.date('1-Dec-2020'));
tradeParameters.put('Option Side', 'Short');
tradeParameters.put('Option Type', 'Right to Terminate');
tradeParameters.put('Call Frequency', '3M');
tradeParameters.put('Model', 'IR.USD-LIBOR-3M.MID.DET');
tradeParameters.put('Method', 'BackwardAnalytic');

Create a trade instance.
trade = RepositoryExtensions.createTradeInstance(n.Repository, tradeDescriptor, tradeParameters);

Price the trades.
results = CalculationContextExtensions.calculate(n.Context, trade, market, Request.getAll);

Parse the results for MATLAB and display.

r = n.parseResults(results)
disp([r.Name r.Category r.Currency r.Data])

r = 

    Category: {13x1 cell}
    Currency: {13x1 cell}
        Name: {13x1 cell}
        Data: {13x1 cell}

    'Reporting Currency'           'Price'       ''       'USD'        
    'Structured Cashflow Log'      'Cashflow'    ''        {41x20 cell}
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    'Structured Leg PV Accrued'    'Price'       'USD'    [          0]
    'PV'                           'Price'       'USD'    [ 6.4133e+04]
    'Structured Leg PV Clean'      'Price'       'USD'    [ 4.2637e+05]
    'Option PV'                    'Price'       'USD'    [-1.3220e+05]
    'Funding Cashflow Log'         'Cashflow'    ''        {41x20 cell}
    'Structured Leg PV'            'Price'       'USD'    [ 4.2637e+05]
    'Funding Leg PV'               'Price'       'USD'    [-2.3004e+05]
    'Funding Leg PV Accrued'       'Price'       'USD'    [          0]
    'Funding Leg PV Clean'         'Price'       'USD'    [-2.3004e+05]
    'Yield Risk Report'            ''            ''        { 4x30 cell}
    'Messages'                     ''            ''        { 4x1  cell}

See Also
numerix

Topics
“Working with Simple Numerix Trades” on page 10-2
“Working with Advanced Numerix Trades” on page 10-4
“Use Numerix to Price Cash Deposits” on page 10-8
“Use Numerix for Interest-Rate Risk Assessment” on page 10-10

External Websites
https://www.numerix.com/cail

Introduced in R2013b
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oasbybdt
Determine option adjusted spread using Black-Derman-Toy model

Syntax
[OAS,OAD,OAC] = oasbybdt(BDTTree,Price,CouponRate,Settle,Maturity,OptSpec,
Strike,ExerciseDates)
[OAS,OAD,OAC] = oasbybdt( ___ ,Name,Value)

Description
[OAS,OAD,OAC] = oasbybdt(BDTTree,Price,CouponRate,Settle,Maturity,OptSpec,
Strike,ExerciseDates) calculates option adjusted spread using a Black-Derman-Toy model.

oasbybdt computes prices of vanilla bonds with embedded options, stepped coupon bonds with
embedded options, amortizing bonds with embedded options, and sinking fund bonds with call
embedded option. For more information, see “More About” on page 11-1356.

[OAS,OAD,OAC] = oasbybdt( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Compute OAS Using the Black-Derman-Toy (BDT) Model

This example shows how to compute OAS using the Black-Derman-Toy (BDT) model with the following
data.

ValuationDate = 'Oct-1-2010';
Rates = [0.035; 0.042; 0.047; 0.052];
StartDates = ValuationDate;
EndDates = datemnth(ValuationDate, 12:12:48)';
Compounding = 1;
% define RateSpec
RateSpec = intenvset('ValuationDate', ValuationDate,...
'StartDates', StartDates, 'EndDates', EndDates, ...
'Rates', Rates, 'Compounding', Compounding); 

% specify VolSpec and TimeSpec
Sigma = 0.20;
VS = bdtvolspec(ValuationDate, EndDates, Sigma*ones(size(EndDates)));
TS = bdttimespec(ValuationDate, EndDates, Compounding);

% build the BDT tree
BDTTree = bdttree(VS, RateSpec, TS);
BDTTreenew = cvtree(BDTTree);

% instrument information
CouponRate = 0.065;
Settle = ValuationDate;
Maturity = '01-Oct-2014';
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OptSpec = 'call';
Strike = 100;
ExerciseDates ='01-Oct-2011';
Period = 1;
Price = 101.58;

% compute the OAS
OAS = oasbybdt(BDTTree, Price, CouponRate, Settle, Maturity,...
OptSpec, Strike, ExerciseDates, 'Period', Period)

OAS = 32.7688

Compute OAS for an Amortizing Callable Bond Using a BDT Interest-Rate Tree Model

This example shows how to compte the OAS for an amortizing callable bond using a BDT lattice
model.

Create a RateSpec.

Rates = [0.025;0.028;0.030;0.031];
ValuationDate = 'Jan-1-2018';
StartDates = ValuationDate;
EndDates = {'Jan-1-2019'; 'Jan-1-2020'; 'Jan-1-2021'; 'Jan-1-2022'};
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates',...
StartDates, 'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding);

Build a BDT tree and assume a volatility of 5%.

Sigma = 0.05;  
BDTTimeSpec = bdttimespec(ValuationDate, EndDates);
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');
BDTT = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);

Define the callable bond.

CouponRate = 0.05;
Settle = 'Jan-1-2018';
Maturity =  'Jan-1-2021';
Period = 1;
    
    Face = { 
                 {'Jan-1-2019'  100; 
                  'Jan-1-2020'   70; ...
                   'Jan-1-2021'   50};
                 };
 
OptSpec = 'call'; 
Strike = [97 95 93];
ExerciseDates ={'Jan-1-2019' 'Jan-1-2020' 'Jan-1-2021'};

Compute the OAS for a callable amortizing bond using the BDT tree.

Price = 99;
BondType = 'amortizing';
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OAS = oasbybdt(BDTT, Price, CouponRate, Settle, Maturity,...
OptSpec, Strike, ExerciseDates, 'Period', Period, 'Face', Face,'BondType', BondType)

OAS = 53.0303

Input Arguments
BDTTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bdttree.
Data Types: struct

Price — Market prices of bonds with embedded options
numeric

Market prices of bonds with embedded options, specified as an NINST-by-1 vector.
Data Types: double

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate.
Data Types: double

Settle — Settlement date
serial date number | date character vector

Settlement date for the bond option, specified as a NINST-by-1 vector of serial date numbers or date
character vectors.

Note The Settle date for every bond with an embedded option is set to the ValuationDate of the
BDT tree. The bond argument Settle is ignored.

Data Types: double | char

Maturity — Maturity date
serial date number | date character vector

Maturity date, specified as an NINST-by-1 vector of serial date numbers or date character vectors.
Data Types: double | char

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'

Definition of option, specified as a NINST-by-1 cell array of character vectors.
Data Types: char | cell
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Strike — Option strike price values
nonnegative integer

Option strike price value, specified as a NINST-by-1 or NINST-by-NSTRIKES depending on the type of
option:

• European option — NINST-by-1 vector of strike price values.
• Bermuda option — NINST by number of strikes (NSTRIKES) matrix of strike price values. Each

row is the schedule for one option. If an option has fewer than NSTRIKES exercise opportunities,
the end of the row is padded with NaNs.

• American option — NINST-by-1 vector of strike price values for each option.

Data Types: double

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a NINST-by-1, NINST-by-2, or NINST-by-NSTRIKES of serial date
numbers or character vectors depending on the type of option:

• For a European option, use a NINST-by-1 vector of dates. For a European option, there is only one
ExerciseDates on the option expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKES vector of dates. Each row is the schedule for
one option.

• For an American option, use a NINST-by-2 vector of exercise date boundaries. The option can be
exercised on any date between or including the pair of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is a NINST-by-1 vector, the option is exercised between the
underlying bond Settle date and the single listed exercise date.

Data Types: double | char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: OAS =
oasbybdt(BDTTree,Price,CouponRate,Settle,Maturity,OptSpec,Strike,ExerciseDate
s,'Period',4)

AmericanOpt — Option type
0 European/Bermuda (default) | integer with values 0 or 1

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and NINST-by-1
positive integer flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double
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Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a NINST-by-1
vector.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis, specified as the comma-separated pair consisting of 'Basis' and a NINST-by-1
vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer with values 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
nonnegative integer using a NINST-by-1 vector. This rule applies only when Maturity is an end-of-
month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: double

IssueDate — Bond issue date
serial date number | date character vector
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Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a NINST-
by-1 vector using serial date numbers or date character vectors.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial date number | date character vector

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using serial date numbers or date character vectors.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes
precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate,
the cash flow payment dates are determined from other inputs.
Data Types: double | char

LastCouponDate — Irregular last coupon date
serial date number | date character vector

Irregular last coupon date, specified as the comma-separated pair consisting of 'LastCouponDate'
and a NINST-by-1 vector using serial date numbers or date character vectors.

In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the
coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate,
regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not
specify a LastCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: char | double

StartDate — Forward starting date of payments
serial date number | date character vector

Forward starting date of payments (the date from which a bond cash flow is considered), specified as
the comma-separated pair consisting of 'StartDate' and a NINST-by-1 vector using serial date
numbers or date character vectors.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double

Face — Face value
100 (default) | NINST-by-1 vector | NINST-by-1 cell array

Face or par value, specified as the comma-separated pair consisting of 'Face' and a NINST-by-1
vector or a NINST-by-1 cell array where each element is a NumDates-by-2 cell array where the first
column is dates and the second column is associated face value. The date indicates the last day that
the face value is valid.
Data Types: double

BondType — Type of underlying bond
'vanilla' for scalar Face values, 'callablesinking' for scheduled Face values (default) | cell
array of character vectors with values 'vanilla','amortizing', or 'callablesinking' | string
array with values "vanilla", "amortizing", or "callablesinking"
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Type of underlying bond, specified as the comma-separated pair consisting of 'BondType' and a
NINST-by-1 cell array of character vectors or string array specifying if the underlying is a vanilla
bond, an amortizing bond, or a callable sinking fund bond. The supported types are:

• 'vanilla' is a standard callable or puttable bond with a scalar Face value and a single coupon or
stepped coupons.

• 'callablesinking' is a bond with a schedule of Face values and a sinking fund call provision
with a single or stepped coupons.

• 'amortizing' is an amortizing callable or puttable bond with a schedule of Face values with
single or stepped coupons.

Data Types: char | string

Options — Derivatives pricing options
structure

Derivatives pricing options, specified as the comma-separated pair consisting of 'Options' and a
structure that is created with derivset.
Data Types: struct

Output Arguments
OAS — Option adjusted spread
vector

Option adjusted spread, returned as a NINST-by-1 vector.

OAD — Option adjusted duration
vector

Option adjusted duration, returned as a NINST-by-1 vector.

OAC — Option adjusted convexity
vector

Option adjusted convexity, returned as a NINST-by-1 vector.

More About
Vanilla Bond with Embedded Option

A vanilla coupon bond is a security representing an obligation to repay a borrowed amount at a
designated time and to make periodic interest payments until that time.

The issuer of a bond makes the periodic interest payments until the bond matures. At maturity, the
issuer pays to the holder of the bond the principal amount owed (face value) and the last interest
payment. A vanilla bond with an embedded option is where an option contract has an underlying
asset of a vanilla bond.

Stepped Coupon Bond with Callable and Puttable Features

A step-up and step-down bond is a debt security with a predetermined coupon structure over time.
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With these instruments, coupons increase (step up) or decrease (step down) at specific times during
the life of the bond. Stepped coupon bonds can have options features (call and puts).

Sinking Fund Bond with Call Embedded Option

A sinking fund bond is a coupon bond with a sinking fund provision.

This provision obligates the issuer to amortize portions of the principal prior to maturity, affecting
bond prices since the time of the principal repayment changes. This means that investors receive the
coupon and a portion of the principal paid back over time. These types of bonds reduce credit risk,
since it lowers the probability of investors not receiving their principal payment at maturity.

The bond may have a sinking fund call option provision allowing the issuer to retire the sinking fund
obligation either by purchasing the bonds to be redeemed from the market or by calling the bond via
a sinking fund call, whichever is cheaper. If interest rates are high, then the issuer buys back the
requirement amount of bonds from the market since bonds are cheap, but if interest rates are low
(bond prices are high), then most likely the issuer is buying the bonds at the call price. Unlike a call
feature, however, if a bond has a sinking fund call option provision, it is an obligation, not an option,
for the issuer to buy back the increments of the issue as stated. Because of this, a sinking fund bond
trades at a lower price than a non-sinking fund bond.

Amortizing Callable or Puttable Bond

Amortizing callable or puttable bonds work under a scheduled Face.

An amortizing callable bond gives the issuer the right to call back the bond, but instead of paying the
Face amount at maturity, it repays part of the principal along with the coupon payments. An
amortizing puttable bond, repays part of the principal along with the coupon payments and gives the
bondholder the right to sell the bond back to the issuer.

References
[1] Fabozzi, F. Handbook of Fixed Income Securities. 7th Edition. McGraw-Hill, 2005.

[2] Windas, T. Introduction to Option-Adjusted Spread Analysis. 3rd Edition. Bloomberg Press, 2007.

See Also
bdttree | bdtprice | instoptembnd | oasbybk | oasbyhjm | oasbyhw | optembndbybdt

Topics
“Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-10
“Bond with Embedded Options” on page 2-7
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced in R2011a
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oasbybk
Determine option adjusted spread using Black-Karasinski model

Syntax
[OAS,OAD,OAC] = oasbybk(BKTree,Price,CouponRate,Settle,Maturity,OptSpec,
Strike,ExerciseDates)
[OAS,OAD,OAC] = oasbybk( ___ ,Name,Value)

Description
[OAS,OAD,OAC] = oasbybk(BKTree,Price,CouponRate,Settle,Maturity,OptSpec,
Strike,ExerciseDates) calculates option adjusted spread using a Black-Karasinski model.

oasbybk computes prices of vanilla bonds with embedded options, stepped coupon bonds with
embedded options, amortizing bonds with embedded options, and sinking fund bonds with call
embedded option. For more information, see “More About” on page 11-1356.

[OAS,OAD,OAC] = oasbybk( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Compute OAS and OAD Using the Black-Karasinski (BK) Model

This example shows how to compute OAS and OAD using the Black-Karasinski (BK) model using the
following data.

ValuationDate = 'Aug-2-2010';
Rates = [0.0355; 0.0382; 0.0427; 0.0489];
StartDates = ValuationDate;
EndDates = datemnth(ValuationDate, 12:12:48)';
Compounding = 1;

% define RateSpec
RateSpec = intenvset('ValuationDate', ValuationDate,...
'StartDates', StartDates,'EndDates', EndDates, ...
'Rates', Rates,'Compounding', Compounding); 

% specify VolSpec and TimeSpec
Sigma = 0.10;
Alpha = 0.01;
VS = bkvolspec(ValuationDate, EndDates, Sigma*ones(size(EndDates)),...
EndDates, Alpha*ones(size(EndDates)));
TS = bktimespec(ValuationDate, EndDates, Compounding);

% build the BK tree
BKTree = bktree(VS, RateSpec, TS);

% instrument information
CouponRate = 0.045;
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Settle = ValuationDate;
Maturity = '02-Aug-2014';
OptSpec = 'put';
Strike = 100;
ExerciseDates ='02-Aug-2013';
Period = 1;
AmericanOpt = 1;
Price = 101;

% compute OAS and OAD
[OAS, OAD] = oasbybk(BKTree, Price, CouponRate, Settle, Maturity,...
OptSpec, Strike, ExerciseDates, 'Period', Period, 'AmericanOpt', AmericanOpt)

OAS = 9.9999e+04

OAD = 0

Compute OAS for an Amortizing Callable Bond Using a BK Interest-Rate Tree Model

This example shows how to compute the OAS for an amortizing callable bond using a BK lattice
model.

Create a RateSpec.

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2012';
StartDates = ValuationDate;
EndDates = {'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'; 'Jan-1-2016'};
Compounding = 1;
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

Build a BK tree.

VolDates = ['1-Jan-2013'; '1-Jan-2014'; '1-Jan-2015'; '1-Jan-2016'];
VolCurve = 0.01;
AlphaDates = '01-01-2016';
AlphaCurve = 0.1;

BKVolSpec = bkvolspec(RS.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
BKTimeSpec = bktimespec(RS.ValuationDate, VolDates, Compounding);
BKT = bktree(BKVolSpec, RS, BKTimeSpec);

Define the callable bond.

CouponRate = 0.05;
Settle = 'Jan-1-2012';
Maturity =  'Jan-1-2016';
Period = 1;
    
    Face = { 
                 {'Jan-1-2014'  100; 
                  'Jan-1-2015'   70;
                  'Jan-1-2016'   50};
                 };
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OptSpec = 'call'; 
Strike = [97 95 93];
ExerciseDates ={'Jan-1-2014' 'Jan-1-2015' 'Jan-1-2016'};

Compute OAS for a callable amortizing bond using the BK tree.

Price = 99;
BondType = 'amortizing';
OAS = oasbybk(BKT, Price, CouponRate, Settle, Maturity,...
OptSpec, Strike, ExerciseDates, 'Period', Period, 'Face', Face,'BondType', BondType)

OAS = -13.7366

Input Arguments
BKTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bktree.
Data Types: struct

Price — Market prices of bonds with embedded options
numeric

Market prices of bonds with embedded options, specified as an NINST-by-1 vector.
Data Types: double

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate.
Data Types: double

Settle — Settlement date
serial date number | date character vector

Settlement date for the bond option, specified as a NINST-by-1 vector of serial date numbers or date
character vectors.

Note The Settle date for every bond with an embedded option is set to the ValuationDate of the
BK tree. The bond argument Settle is ignored.

Data Types: double | char

Maturity — Maturity date
serial date number | date character vector

Maturity date, specified as an NINST-by-1 vector of serial date numbers or date character vectors.
Data Types: double | char
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OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'

Definition of option, specified as a NINST-by-1 cell array of character vectors.
Data Types: char | cell

Strike — Option strike price values
nonnegative integer

Option strike price value, specified as a NINST-by-1 or NINST-by-NSTRIKES depending on the type of
option:

• European option — NINST-by-1 vector of strike price values.
• Bermuda option — NINST by number of strikes (NSTRIKES) matrix of strike price values. Each

row is the schedule for one option. If an option has fewer than NSTRIKES exercise opportunities,
the end of the row is padded with NaNs.

• American option — NINST-by-1 vector of strike price values for each option.

Data Types: double

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a NINST-by-1, NINST-by-2, or NINST-by-NSTRIKES using serial
date numbers or date character vectors, depending on the type of option:

• For a European option, use a NINST-by-1 vector of dates. For a European option, there is only one
ExerciseDates on the option expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKES vector of dates. Each row is the schedule for
one option.

• For an American option, use a NINST-by-2 vector of exercise date boundaries. The option can be
exercised on any date between or including the pair of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is a NINST-by-1 vector, the option is exercised between the
underlying bond Settle date and the single listed exercise date.

Data Types: double | char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: OAS =
oasbybk(BDTTree,Price,CouponRate,Settle,Maturity,OptSpec,Strike,ExerciseDates
,'Period',4)

AmericanOpt — Option type
0 European/Bermuda (default) | integer with values 0 or 1
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Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and NINST-by-1
positive integer flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a NINST-by-1
vector.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis, specified as the comma-separated pair consisting of 'Basis' and a NINST-by-1
vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer with values 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
nonnegative integer using a NINST-by-1 vector. This rule applies only when Maturity is an end-of-
month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.
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• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: double

IssueDate — Bond issue date
serial date number | date character vector

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a NINST-
by-1 vector using serial date numbers or date character vectors.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial date number | date character vector

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using serial date numbers date or date character
vectors.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes
precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate,
the cash flow payment dates are determined from other inputs.
Data Types: double | char

LastCouponDate — Irregular last coupon date
serial date number | date character vector

Irregular last coupon date, specified as the comma-separated pair consisting of 'LastCouponDate'
and a NINST-by-1 vector using serial date numbers or date character vectors.

In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the
coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate,
regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not
specify a LastCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: char | double

StartDate — Forward starting date of payments
serial date number | date character vector

Forward starting date of payments (the date from which a bond cash flow is considered), specified as
the comma-separated pair consisting of 'StartDate' and a NINST-by-1 vector using serial date
numbers or date character vectors.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double

Face — Face value
100 (default) | NINST-by-1 vector | NINST-by-1 cell array

Face or par value, specified as the comma-separated pair consisting of 'Face' and a NINST-by-1
vector or a NINST-by-1 cell array where each element is a NumDates-by-2 cell array where the first
column is dates and the second column is associated face value. The date indicates the last day that
the face value is valid.
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Data Types: double

BondType — Type of underlying bond
'vanilla' for scalar Face values, 'callablesinking' for scheduled Face values (default) | cell
array of character vectors with values 'vanilla','amortizing', or 'callablesinking' | string
array with values "vanilla", "amortizing", or "callablesinking"

Type of underlying bond, specified as the comma-separated pair consisting of 'BondType' and a
NINST-by-1 cell array of character vectors or string array specifying if the underlying is a vanilla
bond, an amortizing bond, or a callable sinking fund bond. The supported types are:

• 'vanilla' is a standard callable or puttable bond with a scalar Face value and a single coupon or
stepped coupons.

• 'callablesinking' is a bond with a schedule of Face values and a sinking fund call provision
with a single or stepped coupons.

• 'amortizing' is an amortizing callable or puttable bond with a schedule of Face values with
single or stepped coupons.

Data Types: char | string

Options — Derivatives pricing options
structure

Derivatives pricing options, specified as the comma-separated pair consisting of 'Options' and a
structure that is created with derivset.
Data Types: struct

Output Arguments
OAS — Option adjusted spread
vector

Option adjusted spread, returned as a NINST-by-1 vector.

OAD — Option adjusted duration
vector

Option adjusted duration, returned as a NINST-by-1 vector.

OAC — Option adjusted convexity
vector

Option adjusted convexity, returned as a NINST-by-1 vector.

More About
Vanilla Bond with Embedded Option

A vanilla coupon bond is a security representing an obligation to repay a borrowed amount at a
designated time and to make periodic interest payments until that time.

The issuer of a bond makes the periodic interest payments until the bond matures. At maturity, the
issuer pays to the holder of the bond the principal amount owed (face value) and the last interest
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payment. A vanilla bond with an embedded option is where an option contract has an underlying
asset of a vanilla bond.

Stepped Coupon Bond with Callable and Puttable Features

A step-up and step-down bond is a debt security with a predetermined coupon structure over time.

With these instruments, coupons increase (step up) or decrease (step down) at specific times during
the life of the bond. Stepped coupon bonds can have options features (call and puts).

Sinking Fund Bond with Call Embedded Option

A sinking fund bond is a coupon bond with a sinking fund provision.

This provision obligates the issuer to amortize portions of the principal prior to maturity, affecting
bond prices since the time of the principal repayment changes. This means that investors receive the
coupon and a portion of the principal paid back over time. These types of bonds reduce credit risk,
since it lowers the probability of investors not receiving their principal payment at maturity.

The bond may have a sinking fund call option provision allowing the issuer to retire the sinking fund
obligation either by purchasing the bonds to be redeemed from the market or by calling the bond via
a sinking fund call, whichever is cheaper. If interest rates are high, then the issuer buys back the
requirement amount of bonds from the market since bonds are cheap, but if interest rates are low
(bond prices are high), then most likely the issuer is buying the bonds at the call price. Unlike a call
feature, however, if a bond has a sinking fund call option provision, it is an obligation, not an option,
for the issuer to buy back the increments of the issue as stated. Because of this, a sinking fund bond
trades at a lower price than a non-sinking fund bond.

Amortizing Callable or Puttable Bond

Amortizing callable or puttable bonds work under a scheduled Face.

An amortizing callable bond gives the issuer the right to call back the bond, but instead of paying the
Face amount at maturity, it repays part of the principal along with the coupon payments. An
amortizing puttable bond, repays part of the principal along with the coupon payments and gives the
bondholder the right to sell the bond back to the issuer.

References
[1] Fabozzi, F. Handbook of Fixed Income Securities. 7th Edition. McGraw-Hill, 2005.

[2] Windas, T. Introduction to Option-Adjusted Spread Analysis. 3rd Edition. Bloomberg Press, 2007.

See Also
bktree | bkprice | instoptembnd | optembndbybk | oasbyhjm | oasbyhw | oasbybdt

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Bond with Embedded Options” on page 2-7
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3
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oasbycir
Determine option adjusted spread using Cox-Ingersoll-Ross model

Syntax
[OAS,OAD,OAC] = oasbycir(CIRTree,Price,CouponRate,Settle,Maturity,OptSpec,
Strike,ExerciseDates)
[OAS,OAD,OAC] = oasbycir( ___ ,Name,Value)

Description
[OAS,OAD,OAC] = oasbycir(CIRTree,Price,CouponRate,Settle,Maturity,OptSpec,
Strike,ExerciseDates) calculates the option adjusted spread from a Cox-Ingersoll-Ross (CIR)
interest-rate tree using a CIR++ model with the Nawalka-Beliaeva (NB) approach.

oasbycir computes prices of vanilla bonds with embedded options, stepped coupon bonds with
embedded options, amortizing bonds with embedded options, and sinking fund bonds with embedded
option. For more information, see “More About” on page 11-1356.

[OAS,OAD,OAC] = oasbycir( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Compute OAS Using a CIR Interest-Rate Tree

Create a RateSpec using the intenvset function.

ValuationDate = 'October-25-2018';
Rates = [0.0355; 0.0382; 0.0427; 0.0489];
StartDates = ValuationDate;
EndDates = datemnth(ValuationDate, 12:12:48)';
Compounding = 1;

RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, 'EndDates',EndDates,'Rates', Rates, 'Compounding', Compounding); 

Create a CIR tree.

NumPeriods = length(EndDates); 
Alpha = 0.03; 
Theta = 0.02;  
Sigma = 0.1;    
Maturity = '01-Jan-2023'; 
CIRTimeSpec = cirtimespec(ValuationDate, Maturity, NumPeriods); 
CIRVolSpec = cirvolspec(Sigma, Alpha, Theta); 

CIRT = cirtree(CIRVolSpec, RateSpec, CIRTimeSpec)

CIRT = struct with fields:
      FinObj: 'CIRFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
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    RateSpec: [1x1 struct]
        tObs: [0 1.0462 2.0924 3.1386]
        dObs: [737358 737740 738122 738504]
     FwdTree: {1x4 cell}
     Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

Define the OAS instrument.

CouponRate = 0.045;
Settle = ValuationDate;
Maturity = '25-October-2019';
OptSpec = 'call';
Strike = 100;
ExerciseDates = {'25-October-2018','25-October-2019'};
Period = 1;
AmericanOpt = 0;
Price = 97;

Compute the OAS.

[OAS,OAD] = oasbycir(CIRT,Price,CouponRate,Settle,Maturity,OptSpec,Strike,ExerciseDates,'Period',Period,'AmericanOpt',AmericanOpt)

OAS = 416.9457

OAD = 0.9282

Compute OAS for an Amortizing Callable Bond Using a CIR Interest-Rate Tree

his example shows how to compute the OAS for an amortizing callable bond using a CIR lattice
model.

Create a RateSpec using the intenvset function.

Rates = [0.025; 0.032; 0.037; 0.042]; 
Dates = {'Jan-1-2017'; 'Jan-1-2018'; 'Jan-1-2019'; 'Jan-1-2020'; 'Jan-1-2021'}; 
ValuationDate = 'Jan-1-2016'; 
EndDates = Dates(2:end)'; 
Compounding = 1; 
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, 'EndDates',EndDates,'Rates', Rates, 'Compounding', Compounding); 

Create a CIR tree.

NumPeriods = length(EndDates); 
Alpha = 0.03; 
Theta = 0.02;  
Sigma = 0.1;
Maturity = '01-Jan-2019'; 
CIRTimeSpec = cirtimespec(ValuationDate, Maturity, NumPeriods); 
CIRVolSpec = cirvolspec(Sigma, Alpha, Theta); 
CIRT = cirtree(CIRVolSpec, RateSpec, CIRTimeSpec)

CIRT = struct with fields:
      FinObj: 'CIRFwdTree'
     VolSpec: [1x1 struct]
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    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 0.7500 1.5000 2.2500]
        dObs: [736330 736604 736878 737152]
     FwdTree: {1x4 cell}
     Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

Define the callable bond.

BondSettlement = 'Jan-1-2016';
BondMaturity   = 'Jan-1-2020'; 
CouponRate = 0.035;
Period = 1;
OptSpec = 'call'; 
Strike = 100;  

 Face = { 
                 {'Jan-1-2018'  100; 
                  'Jan-1-2019'   70; 
                  'Jan-1-2020'   50};
                 };

ExerciseDates = {'Jan-1-2018' '01-Jan-2019'}; 

Compute OAS for a callable amortizing bond using the CIR tree.

Price = 99;
BondType = 'amortizing';
OAS = oasbycir(CIRT, Price, CouponRate, BondSettlement, Maturity,...
OptSpec, Strike, ExerciseDates, 'Period', Period, 'Face', Face,'BondType', BondType)

OAS = 80.4801

Input Arguments
CIRTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using cirtree.
Data Types: struct

Price — Market prices of bonds with embedded options
numeric

Market prices of bonds with embedded options, specified as an NINST-by-1 vector.
Data Types: double

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate.
Data Types: double

 oasbycir

11-1029



Settle — Settlement date
serial date number | date character vector | string array | datetime

Settlement date for the bond option, specified as a NINST-by-1 vector of serial date numbers, date
character vectors, string arrays, or datetime arrays.

Note The Settle date for every bond with an embedded option is set to the ValuationDate of the
CIR tree. The bond argument Settle is ignored.

Data Types: double | char | string | datetime

Maturity — Maturity date
serial date number | date character vector | string array | datetime

Maturity date, specified as an NINST-by-1 vector of serial date numbers, date character vectors,
string arrays, or datetime arrays.
Data Types: double | char | string | datetime

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put' | string array with values "call" or "put"

Definition of option, specified as a NINST-by-1 cell array of character vectors or string arrays with
values 'call' or 'put'.
Data Types: char | cell | string

Strike — Option strike price values
nonnegative integer

Option strike price value, specified as a NINST-by-1 or NINST-by-NSTRIKES depending on the type of
option:

• European option — NINST-by-1 vector of strike price values.
• Bermuda option — NINST by number of strikes (NSTRIKES) matrix of strike price values. Each

row is the schedule for one option. If an option has fewer than NSTRIKES exercise opportunities,
the end of the row is padded with NaNs.

• American option — NINST-by-1 vector of strike price values for each option.

Data Types: double

ExerciseDates — Option exercise dates
serial date number | date character vector | string array | datetime

Option exercise dates, specified as a NINST-by-1, NINST-by-2, or NINST-by-NSTRIKES using serial
date numbers, date character vectors, string arrays, or datetime arrays depending on the type of
option:

• For a European option, use a NINST-by-1 vector of dates. For a European option, there is only one
ExerciseDates on the option expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKES vector of dates.
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• For an American option, use a NINST-by-2 vector of exercise date boundaries. The option can be
exercised on any date between or including the pair of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is a NINST-by-1 vector, the option can be exercised between
ValuationDate of the stock tree and the single listed ExerciseDates.

.
Data Types: double | char | string | datetime

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: OAS =
oasbycir(CIRTree,Price,CouponRate,Settle,Maturity,OptSpec,Strike,ExerciseDate
s,'Period',4)

AmericanOpt — Option type
0 European/Bermuda (default) | integer with values 0 or 1

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and a NINST-by-1
positive integer flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a NINST-by-1
vector.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis, specified as the comma-separated pair consisting of 'Basis' and a NINST-by-1
vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
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• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer with values 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
nonnegative integer using a NINST-by-1 vector. This rule applies only when Maturity is an end-of-
month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: double

IssueDate — Bond issue date
serial date number | date character vector | string array | datetime

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a NINST-
by-1 vector using serial date numbers, date character vectors, string arrays, or datetime arrays.
Data Types: double | char | string | datetime

FirstCouponDate — Irregular first coupon date
serial date number | date character vector | string array | datetime

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using serial date numbers date, date character
vectors, string arrays, or datetime arrays.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes
precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate,
the cash flow payment dates are determined from other inputs.
Data Types: double | char | string | datetime

LastCouponDate — Irregular last coupon date
serial date number | date character vector | string array | datetime

Irregular last coupon date, specified as the comma-separated pair consisting of 'LastCouponDate'
and a NINST-by-1 vector using serial date numbers, date character vectors, string arrays, or datetime
arrays.
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In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the
coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate,
regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not
specify a LastCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: char | double | string | datetime

StartDate — Forward starting date of payments
serial date number | date character vector | string array | datetime

Forward starting date of payments (the date from which a bond cash flow is considered), specified as
the comma-separated pair consisting of 'StartDate' and a NINST-by-1 vector using serial date
numbers, date character vectors, string arrays, or datetime array.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double | string | datetime

Face — Face value
100 (default) | NINST-by-1 vector | NINST-by-1 cell array

Face or par value, specified as the comma-separated pair consisting of 'Face' and a NINST-by-1
vector or a NINST-by-1 cell array where each element is a NumDates-by-2 cell array where the first
column is dates and the second column is associated face value. The date indicates the last day that
the face value is valid.
Data Types: double

BondType — Type of underlying bond
'vanilla' for scalar Face values, 'callablesinking' for scheduled Face values (default) | cell
array of character vectors with values 'vanilla','amortizing', or 'callablesinking' | string
array with values "vanilla", "amortizing", or "callablesinking"

Type of underlying bond, specified as the comma-separated pair consisting of 'BondType' and a
NINST-by-1 cell array of character vectors or string array specifying if the underlying is a vanilla
bond, an amortizing bond, or a callable sinking fund bond. The supported types are:

• 'vanilla' is a standard callable or puttable bond with a scalar Face value and a single coupon or
stepped coupons.

• 'callablesinking' is a bond with a schedule of Face values and a sinking fund call provision
with a single or stepped coupons.

• 'amortizing' is an amortizing callable or puttable bond with a schedule of Face values with
single or stepped coupons.

Data Types: char | string

Output Arguments
OAS — Option adjusted spread
vector

Option adjusted spread, returned as a NINST-by-1 vector.

OAD — Option adjusted duration
vector
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Option adjusted duration, returned as a NINST-by-1 vector.

OAC — Option adjusted convexity
vector

Option adjusted convexity, returned as a NINST-by-1 vector.

More About
Vanilla Bond with Embedded Option

A vanilla coupon bond is a security representing an obligation to repay a borrowed amount at a
designated time and to make periodic interest payments until that time.

The issuer of a bond makes the periodic interest payments until the bond matures. At maturity, the
issuer pays to the holder of the bond the principal amount owed (face value) and the last interest
payment. A vanilla bond with an embedded option is where an option contract has an underlying
asset of a vanilla bond.

Stepped Coupon Bond with Callable and Puttable Features

A step-up and step-down bond is a debt security with a predetermined coupon structure over time.

With these instruments, coupons increase (step up) or decrease (step down) at specific times during
the life of the bond. Stepped coupon bonds can have options features (call and puts).

Sinking Fund Bond with Call Embedded Option

A sinking fund bond is a coupon bond with a sinking fund provision.

This provision obligates the issuer to amortize portions of the principal prior to maturity, affecting
bond prices since the time of the principal repayment changes. This means that investors receive the
coupon and a portion of the principal paid back over time. These types of bonds reduce credit risk,
since it lowers the probability of investors not receiving their principal payment at maturity.

The bond may have a sinking fund call option provision allowing the issuer to retire the sinking fund
obligation either by purchasing the bonds to be redeemed from the market or by calling the bond via
a sinking fund call, whichever is cheaper. If interest rates are high, then the issuer buys back the
requirement amount of bonds from the market since bonds are cheap, but if interest rates are low
(bond prices are high), then most likely the issuer is buying the bonds at the call price. Unlike a call
feature, however, if a bond has a sinking fund call option provision, it is an obligation, not an option,
for the issuer to buy back the increments of the issue as stated. Because of this, a sinking fund bond
trades at a lower price than a non-sinking fund bond.

Amortizing Callable or Puttable Bond

Amortizing callable or puttable bonds work under a scheduled Face.

An amortizing callable bond gives the issuer the right to call back the bond, but instead of paying the
Face amount at maturity, it repays part of the principal along with the coupon payments. An
amortizing puttable bond, repays part of the principal along with the coupon payments and gives the
bondholder the right to sell the bond back to the issuer.
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oasbyhjm
Determine option adjusted spread using Heath-Jarrow-Morton model

Syntax
[OAS,OAD,OAC] = oasbyhjm(HJMTree,Price,CouponRate,Settle,Maturity,OptSpec,
Strike,ExerciseDates)
[OAS,OAD,OAC] = oasbyhjm( ___ ,Name,Value)

Description
[OAS,OAD,OAC] = oasbyhjm(HJMTree,Price,CouponRate,Settle,Maturity,OptSpec,
Strike,ExerciseDates) calculates option adjusted spread using a Heath-Jarrow-Morton model.

oasbyhjm computes prices of vanilla bonds with embedded options, stepped coupon bonds with
embedded options, amortizing bonds with embedded options, and sinking fund bonds with call
embedded option. For more information, see “More About” on page 11-1356.

[OAS,OAD,OAC] = oasbyhjm( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Compute OAS Using the Heath-Jarrow-Morton (HJM) Model

This example shows how to compute OAS using the Heath-Jarrow-Morton (HJM) model using the
following data.

ValuationDate = 'Nov-1-2010';
Rates = [0.0356; 0.0427; 0.0478; 0.0529];
StartDates = ValuationDate;
EndDates = datemnth(ValuationDate, 12:12:48)';
Compounding = 1;
 
% define RateSpec
RateSpec = intenvset('ValuationDate', ValuationDate,...
'StartDates', StartDates,'EndDates', EndDates, ...
'Rates', Rates,'Compounding', Compounding); 
 
% specify VolSpec and TimeSpec
Sigma = 0.02;
VS = hjmvolspec('Constant', Sigma);
TS = hjmtimespec(ValuationDate, EndDates, Compounding);
 
% build the HJM tree
HJMTree = hjmtree(VS, RateSpec, TS);
HJMTreenew = cvtree(HJMTree);
 
% instrument information
CouponRate = 0.05;
Settle = ValuationDate;
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Maturity = '01-Nov-2014';
OptSpec = 'call';
Strike = 100;
ExerciseDates ='01-Nov-2011';
Period = 1;
Price = 97.5;

% compute the OAS
OAS = oasbyhjm(HJMTree, Price, CouponRate, Settle, Maturity, OptSpec, Strike,...
ExerciseDates, 'Period', Period)

OAS = 5.0057

Compute OAS for an Amortizing Callable Bond Using an HJM Interest-Rate Tree Model

This example shows how to compute the OAS for amortizing callable bond using an HJM lattice
model.

Create a RateSpec.

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2012';
StartDates = ValuationDate;
EndDates = {'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'; 'Jan-1-2016'};
Compounding = 1;
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

Build a HJM tree.

VolSpec = hjmvolspec('Constant', 0.01)

VolSpec = struct with fields:
          FinObj: 'HJMVolSpec'
    FactorModels: {'Constant'}
      FactorArgs: {{1x1 cell}}
      SigmaShift: 0
      NumFactors: 1
       NumBranch: 2
         PBranch: [0.5000 0.5000]
     Fact2Branch: [-1 1]

TimeSpec = hjmtimespec(ValuationDate, EndDates, Compounding)

TimeSpec = struct with fields:
           FinObj: 'HJMTimeSpec'
    ValuationDate: 734869
         Maturity: [4x1 double]
      Compounding: 1
            Basis: 0
     EndMonthRule: 1

HJMTree = hjmtree(VolSpec, RS, TimeSpec)
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HJMTree = struct with fields:
      FinObj: 'HJMFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [734869 735235 735600 735965]
        TFwd: {[4x1 double]  [3x1 double]  [2x1 double]  [3]}
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
     FwdTree: {[4x1 double]  [3x1x2 double]  [2x2x2 double]  [1x4x2 double]}

Define the callable bond.

CouponRate = 0.05;
Settle = 'Jan-1-2012';
Maturity =  'Jan-1-2016';
Period = 1;
    
    Face = { 
                 {'Jan-1-2014'  100; 
                  'Jan-1-2015'   70;
                  'Jan-1-2016'   50};
                 };
 
OptSpec = 'call'; 
Strike = [97 95 93];
ExerciseDates ={'Jan-1-2014' 'Jan-1-2015' 'Jan-1-2016'};

Compute the OAS for a callable amortizing bond using the HJM tree.

Price = 99;
BondType = 'amortizing';
OAS = oasbyhjm(HJMTree, Price, CouponRate, Settle, Maturity,...
OptSpec, Strike, ExerciseDates, 'Period', Period, 'Face', Face,'BondType', BondType)

OAS = -19.1325

Input Arguments
HJMTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using hjmtree.
Data Types: struct

Price — Market prices of bonds with embedded options
numeric

Market prices of bonds with embedded options, specified as an NINST-by-1 vector.
Data Types: double

CouponRate — Bond coupon rate
positive decimal value

11 Functions

11-1038



Bond coupon rate, specified as an NINST-by-1 decimal annual rate.
Data Types: double

Settle — Settlement date
serial date number | date character vector

Settlement date for the bond option, specified as a NINST-by-1 vector of serial date numbers or date
character vectors.

Note The Settle date for every bond with an embedded option is set to the ValuationDate of the
HJM tree. The bond argument Settle is ignored.

Data Types: double | char

Maturity — Maturity date
serial date number | date character vector

Maturity date, specified as an NINST-by-1 vector of serial date numbers or date character vectors.
Data Types: double | char

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'

Definition of option, specified as a NINST-by-1 cell array of character vectors.
Data Types: char | cell

Strike — Option strike price values
nonnegative integer

Option strike price value, specified as a NINST-by-1 or NINST-by-NSTRIKES depending on the type of
option:

• European option — NINST-by-1 vector of strike price values.
• Bermuda option — NINST by number of strikes (NSTRIKES) matrix of strike price values. Each

row is the schedule for one option. If an option has fewer than NSTRIKES exercise opportunities,
the end of the row is padded with NaNs.

• American option — NINST-by-1 vector of strike price values for each option.

Data Types: double

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a NINST-by-1, NINST-by-2, or NINST-by-NSTRIKES using serial
date numbers or date character vectors, depending on the type of option:

• For a European option, use a NINST-by-1 vector of dates. For a European option, there is only one
ExerciseDates on the option expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKES vector of dates. Each row is the schedule for
one option.
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• For an American option, use a NINST-by-2 vector of exercise date boundaries. The option can be
exercised on any date between or including the pair of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is a NINST-by-1 vector, the option is exercised between the
underlying bond Settle date and the single listed exercise date.

Data Types: double | char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: OAS =
oasbybk(BDTTree,Price,CouponRate,Settle,Maturity,OptSpec,Strike,ExerciseDates
,'Period',4)

AmericanOpt — Option type
0 European/Bermuda (default) | integer with values 0 or 1

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and NINST-by-1
positive integer flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a NINST-by-1
vector.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis, specified as the comma-separated pair consisting of 'Basis' and a NINST-by-1
vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
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• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer with values 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
nonnegative integer using a NINST-by-1 vector. This rule applies only when Maturity is an end-of-
month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: double

IssueDate — Bond issue date
serial date number | date character vector

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a NINST-
by-1 vector using serial date numbers or date character vectors.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial date number | date character vector

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using serial date numbers date or date character
vectors.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes
precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate,
the cash flow payment dates are determined from other inputs.
Data Types: double | char

LastCouponDate — Irregular last coupon date
serial date number | date character vector

Irregular last coupon date, specified as the comma-separated pair consisting of 'LastCouponDate'
and a NINST-by-1 vector using serial date numbers or date character vectors.

In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the
coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate,
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regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not
specify a LastCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: char | double

StartDate — Forward starting date of payments
serial date number | date character vector

Forward starting date of payments (the date from which a bond cash flow is considered), specified as
the comma-separated pair consisting of 'StartDate' and a NINST-by-1 vector using serial date
numbers or date character vectors.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double

Face — Face value
100 (default) | NINST-by-1 vector | NINST-by-1 cell array

Face or par value, specified as the comma-separated pair consisting of 'Face' and a NINST-by-1
vector or a NINST-by-1 cell array where each element is a NumDates-by-2 cell array where the first
column is dates and the second column is associated face value. The date indicates the last day that
the face value is valid.
Data Types: double

BondType — Type of underlying bond
'vanilla' for scalar Face values, 'callablesinking' for scheduled Face values (default) | cell
array of character vectors with values 'vanilla','amortizing', or 'callablesinking' | string
array with values "vanilla", "amortizing", or "callablesinking"

Type of underlying bond, specified as the comma-separated pair consisting of 'BondType' and a
NINST-by-1 cell array of character vectors or string array specifying if the underlying is a vanilla
bond, an amortizing bond, or a callable sinking fund bond. The supported types are:

• 'vanilla' is a standard callable or puttable bond with a scalar Face value and a single coupon or
stepped coupons.

• 'callablesinking' is a bond with a schedule of Face values and a sinking fund call provision
with a single or stepped coupons.

• 'amortizing' is an amortizing callable or puttable bond with a schedule of Face values with
single or stepped coupons.

Data Types: char | string

Options — Derivatives pricing options
structure

Derivatives pricing options, specified as the comma-separated pair consisting of 'Options' and a
structure that is created with derivset.
Data Types: struct

Output Arguments
OAS — Option adjusted spread
vector
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Option adjusted spread, returned as a NINST-by-1 vector.

OAD — Option adjusted duration
vector

Option adjusted duration, returned as a NINST-by-1 vector.

OAC — Option adjusted convexity
vector

Option adjusted convexity, returned as a NINST-by-1 vector.

More About
Vanilla Bond with Embedded Option

A vanilla coupon bond is a security representing an obligation to repay a borrowed amount at a
designated time and to make periodic interest payments until that time.

The issuer of a bond makes the periodic interest payments until the bond matures. At maturity, the
issuer pays to the holder of the bond the principal amount owed (face value) and the last interest
payment. A vanilla bond with an embedded option is where an option contract has an underlying
asset of a vanilla bond.

Stepped Coupon Bond with Callable and Puttable Features

A step-up and step-down bond is a debt security with a predetermined coupon structure over time.

With these instruments, coupons increase (step up) or decrease (step down) at specific times during
the life of the bond. Stepped coupon bonds can have options features (call and puts).

Sinking Fund Bond with Call Embedded Option

A sinking fund bond is a coupon bond with a sinking fund provision.

This provision obligates the issuer to amortize portions of the principal prior to maturity, affecting
bond prices since the time of the principal repayment changes. This means that investors receive the
coupon and a portion of the principal paid back over time. These types of bonds reduce credit risk,
since it lowers the probability of investors not receiving their principal payment at maturity.

The bond may have a sinking fund call option provision allowing the issuer to retire the sinking fund
obligation either by purchasing the bonds to be redeemed from the market or by calling the bond via
a sinking fund call, whichever is cheaper. If interest rates are high, then the issuer buys back the
requirement amount of bonds from the market since bonds are cheap, but if interest rates are low
(bond prices are high), then most likely the issuer is buying the bonds at the call price. Unlike a call
feature, however, if a bond has a sinking fund call option provision, it is an obligation, not an option,
for the issuer to buy back the increments of the issue as stated. Because of this, a sinking fund bond
trades at a lower price than a non-sinking fund bond.

Amortizing Callable or Puttable Bond

Amortizing callable or puttable bonds work under a scheduled Face.

An amortizing callable bond gives the issuer the right to call back the bond, but instead of paying the
Face amount at maturity, it repays part of the principal along with the coupon payments. An
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amortizing puttable bond, repays part of the principal along with the coupon payments and gives the
bondholder the right to sell the bond back to the issuer.

References
[1] Fabozzi, F. Handbook of Fixed Income Securities. 7th Edition. McGraw-Hill, 2005.

[2] Windas, T. Introduction to Option-Adjusted Spread Analysis. 3rd Edition. Bloomberg Press, 2007.

See Also
hjmtree | hjmprice | instoptembnd | optembndbyhjm | oasbybdt | oasbyhw | oasbybk

Topics
“Computing Instrument Prices” on page 2-81
“Bond with Embedded Options” on page 2-7
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced in R2011a
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oasbyhw
Determine option adjusted spread using Hull-White model

Syntax
[OAS,OAD,OAC] = oasbyhw(HWTree,Price,CouponRate,Settle,Maturity,OptSpec,
Strike,ExerciseDates)
[OAS,OAD,OAC] = oasbyhw( ___ ,Name,Value)

Description
[OAS,OAD,OAC] = oasbyhw(HWTree,Price,CouponRate,Settle,Maturity,OptSpec,
Strike,ExerciseDates) calculates option adjusted spread using a Hull-White model.

oasbyhw computes prices of vanilla bonds with embedded options, stepped coupon bonds with
embedded options, amortizing bonds with embedded options, and sinking fund bonds with call
embedded option. For more information, see “More About” on page 11-1356.

[OAS,OAD,OAC] = oasbyhw( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Compute OAS and OAD Using the Hull-White (HW) Model

This example shows how to compute OAS and OAD using the Hull-White (HW) model using the
following data.

ValuationDate = 'October-25-2010';
Rates = [0.0355; 0.0382; 0.0427; 0.0489];
StartDates = ValuationDate;
EndDates = datemnth(ValuationDate, 12:12:48)';
Compounding = 1;

% define RateSpec
RateSpec = intenvset('ValuationDate', ValuationDate,...
'StartDates', StartDates, 'EndDates', EndDates, ...
'Rates', Rates,'Compounding', Compounding); 

% specify VolsSpec and TimeSpec
Sigma = 0.05;
Alpha = 0.01;
VS = hwvolspec(ValuationDate, EndDates, Sigma*ones(size(EndDates)),...
EndDates, Alpha*ones(size(EndDates)));
TS = hwtimespec(ValuationDate, EndDates, Compounding);

% build the HW tree
HWTree = hwtree(VS, RateSpec, TS);

% instrument information
CouponRate = 0.045;
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Settle = ValuationDate;
Maturity = '25-October-2014';
OptSpec = 'call';
Strike = 100;
ExerciseDates = {'25-October-2010','25-October-2013'};
Period = 1;
AmericanOpt = 0;
Price = 97;

% compute the OAS
[OAS, OAD] = oasbyhw(HWTree, Price, CouponRate, Settle, Maturity,...
OptSpec, Strike, ExerciseDates, 'Period', Period, 'AmericanOpt', AmericanOpt)

OAS = -12.8538

OAD = 3.2910

Compute the OAS to Measure Cost of an Embedded Option Relative to a Risk-Free Curve

This example shows how to compute the price of a callable bond using a Hull-White tree.

Use the following bond data:

Settle = datenum('20-Aug-2014');

% Bond Properties
Maturity = datenum('01-Apr-2034');
CouponRate = .0625;
CallDates = datemnth('01-Oct-2014',6*(0:19));
CallStrikes = [102.85 102.7 102.55 102.4 102.25 102.1 101.95 101.8 ...
    101.65 101.5 101.35 101.2 101.05 100.9 100.75 100.6 100.45 100.3 ...
    100.15 100];

Use the following zero-curve data:

CurveDates = datemnth(Settle,12*[1 2 3 5 7 10 20 30]');
ZeroRates = [.11 0.30 0.64 1.44 2.07 2.61 3.29 3.55]'/100;

Define the RateSpec and build the HW tree.

RateSpec = intenvset('StartDate',Settle,'EndDates',CurveDates,'Rates',ZeroRates);

% HW Model Properties
alpha = .1;
sigma = .01;

TimeSpec = hwtimespec(Settle,cfdates(Settle,Maturity,12),2);
VolSpec = hwvolspec(Settle,Maturity,sigma,Maturity,alpha);

HWTree = hwtree(VolSpec,RateSpec,TimeSpec,'method','HW2000')

HWTree = struct with fields:
      FinObj: 'HWFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
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        tObs: [0 0.0652 0.2295 0.3967 0.5628 0.7283 0.8967 1.0652 1.2295 ... ]
        dObs: [735831 735843 735873 735904 735934 735965 735996 736024 ... ]
      CFlowT: {1x236 cell}
       Probs: {1x235 cell}
     Connect: {1x235 cell}
     FwdTree: {1x236 cell}

Compute the OAS for the bond.

Price = 103.25;
OAS = oasbyhw(HWTree, Price, CouponRate, Settle, Maturity, 'call', CallStrikes, CallDates)

OAS = 234.8209

If you want to compute an OAS that only measures the option cost, you can pass in an issuer-specific
curve instead of a risk-free curve (this would be done in the RateSpec argument).

Compute OAS for an Amortizing Callable Bond Using an HW Interest-Rate Tree Model

This example shows how to compute the OAS for an amortizing callable bond using an HW lattice
model.

Create a RateSpec.

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2012';
StartDates = ValuationDate;
EndDates = {'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'; 'Jan-1-2016'};
Compounding = 1;
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

Build a HW tree.

VolDates = ['1-Jan-2013'; '1-Jan-2014'; '1-Jan-2015'; '1-Jan-2016'];
VolCurve = 0.01;
AlphaDates = '01-01-2016';
AlphaCurve = 0.1;

HWVolSpec = hwvolspec(RS.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RS.ValuationDate, EndDates, Compounding);
HWT = hwtree(HWVolSpec, RS, HWTimeSpec);

Define the callable bond.

CouponRate = 0.05;
Settle = 'Jan-1-2012';
Maturity =  'Jan-1-2016';
Period = 1;
    
    Face = { 
                 {'Jan-1-2014'  100; 
                  'Jan-1-2015'   70;
                  'Jan-1-2016'   50};
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                 };
 
OptSpec = 'call'; 
Strike = [97 95 93];
ExerciseDates ={'Jan-1-2014' 'Jan-1-2015' 'Jan-1-2016'};

Compute the OAS for a callable amortizing bond using the HW tree.

Price = 55;
BondType = 'amortizing';
OAS = oasbyhw(HWT,Price, CouponRate, Settle, Maturity,...
OptSpec, Strike, ExerciseDates, 'Period', Period, 'Face', Face,'BondType', BondType)

OAS = 2.4023e+03

Input Arguments
HWTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using hwtree.
Data Types: struct

Price — Market prices of bonds with embedded options
numeric

Market prices of bonds with embedded options, specified as an NINST-by-1 vector.
Data Types: double

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate.
Data Types: double

Settle — Settlement date
serial date number | date character vector

Settlement date for the bond option, specified as a NINST-by-1 vector of serial date numbers or date
character vectors.

Note The Settle date for every bond with an embedded option is set to the ValuationDate of the
HW tree. The bond argument Settle is ignored.

Data Types: double | char

Maturity — Maturity date
serial date number | date character vector

Maturity date, specified as an NINST-by-1 vector of serial date numbers or date character vectors.
Data Types: double | char
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OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'

Definition of option, specified as a NINST-by-1 cell array of character vectors.
Data Types: char | cell

Strike — Option strike price values
nonnegative integer

Option strike price value, specified as a NINST-by-1 or NINST-by-NSTRIKES depending on the type of
option:

• European option — NINST-by-1 vector of strike price values.
• Bermuda option — NINST by number of strikes (NSTRIKES) matrix of strike price values. Each

row is the schedule for one option. If an option has fewer than NSTRIKES exercise opportunities,
the end of the row is padded with NaNs.

• American option — NINST-by-1 vector of strike price values for each option.

Data Types: double

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a NINST-by-1, NINST-by-2, or NINST-by-NSTRIKES using serial
date numbers or date character vectors, depending on the type of option:

• For a European option, use a NINST-by-1 vector of dates. For a European option, there is only one
ExerciseDates on the option expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKES vector of dates. Each row is the schedule for
one option.

• For an American option, use a NINST-by-2 vector of exercise date boundaries. The option can be
exercised on any date between or including the pair of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is a NINST-by-1 vector, the option is exercised between the
underlying bond Settle date and the single listed exercise date.

Data Types: double | char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: OAS =
oasbybk(BDTTree,Price,CouponRate,Settle,Maturity,OptSpec,Strike,ExerciseDates
,'Period',4)

AmericanOpt — Option type
0 European/Bermuda (default) | integer with values 0 or 1
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Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and NINST-by-1
positive integer flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a NINST-by-1
vector.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis, specified as the comma-separated pair consisting of 'Basis' and a NINST-by-1
vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer with values 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
nonnegative integer using a NINST-by-1 vector. This rule applies only when Maturity is an end-of-
month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.
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• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: double

IssueDate — Bond issue date
serial date number | date character vector

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a NINST-
by-1 vector using serial date numbers or date character vectors.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial date number | date character vector

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using serial date numbers date or date character
vectors.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes
precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate,
the cash flow payment dates are determined from other inputs.
Data Types: double | char

LastCouponDate — Irregular last coupon date
serial date number | date character vector

Irregular last coupon date, specified as the comma-separated pair consisting of 'LastCouponDate'
and a NINST-by-1 vector using serial date numbers or date character vectors.

In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the
coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate,
regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not
specify a LastCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: char | double

StartDate — Forward starting date of payments
serial date number | date character vector

Forward starting date of payments (the date from which a bond cash flow is considered), specified as
the comma-separated pair consisting of 'StartDate' and a NINST-by-1 vector using serial date
numbers or date character vectors.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double

Face — Face value
100 (default) | NINST-by-1 vector | NINST-by-1 cell array

Face or par value, specified as the comma-separated pair consisting of 'Face' and a NINST-by-1
vector or a NINST-by-1 cell array where each element is a NumDates-by-2 cell array where the first
column is dates and the second column is associated face value. The date indicates the last day that
the face value is valid.
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Data Types: double

BondType — Type of underlying bond
'vanilla' for scalar Face values, 'callablesinking' for scheduled Face values (default) | cell
array of character vectors with values 'vanilla','amortizing', or 'callablesinking' | string
array with values "vanilla", "amortizing", or "callablesinking"

Type of underlying bond, specified as the comma-separated pair consisting of 'BondType' and a
NINST-by-1 cell array of character vectors or string array specifying if the underlying is a vanilla
bond, an amortizing bond, or a callable sinking fund bond. The supported types are:

• 'vanilla' is a standard callable or puttable bond with a scalar Face value and a single coupon or
stepped coupons.

• 'callablesinking' is a bond with a schedule of Face values and a sinking fund call provision
with a single or stepped coupons.

• 'amortizing' is an amortizing callable or puttable bond with a schedule of Face values with
single or stepped coupons.

Data Types: char | string

Options — Derivatives pricing options
structure

Derivatives pricing options, specified as the comma-separated pair consisting of 'Options' and a
structure that is created with derivset.
Data Types: struct

Output Arguments
OAS — Option adjusted spread
vector

Option adjusted spread, returned as a NINST-by-1 vector.

OAD — Option adjusted duration
vector

Option adjusted duration, returned as a NINST-by-1 vector.

OAC — Option adjusted convexity
vector

Option adjusted convexity, returned as a NINST-by-1 vector.

More About
Vanilla Bond with Embedded Option

A vanilla coupon bond is a security representing an obligation to repay a borrowed amount at a
designated time and to make periodic interest payments until that time.

The issuer of a bond makes the periodic interest payments until the bond matures. At maturity, the
issuer pays to the holder of the bond the principal amount owed (face value) and the last interest
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payment. A vanilla bond with an embedded option is where an option contract has an underlying
asset of a vanilla bond.

Stepped Coupon Bond with Callable and Puttable Features

A step-up and step-down bond is a debt security with a predetermined coupon structure over time.

With these instruments, coupons increase (step up) or decrease (step down) at specific times during
the life of the bond. Stepped coupon bonds can have options features (call and puts).

Sinking Fund Bond with Call Embedded Option

A sinking fund bond is a coupon bond with a sinking fund provision.

This provision obligates the issuer to amortize portions of the principal prior to maturity, affecting
bond prices since the time of the principal repayment changes. This means that investors receive the
coupon and a portion of the principal paid back over time. These types of bonds reduce credit risk,
since it lowers the probability of investors not receiving their principal payment at maturity.

The bond may have a sinking fund call option provision allowing the issuer to retire the sinking fund
obligation either by purchasing the bonds to be redeemed from the market or by calling the bond via
a sinking fund call, whichever is cheaper. If interest rates are high, then the issuer buys back the
requirement amount of bonds from the market since bonds are cheap, but if interest rates are low
(bond prices are high), then most likely the issuer is buying the bonds at the call price. Unlike a call
feature, however, if a bond has a sinking fund call option provision, it is an obligation, not an option,
for the issuer to buy back the increments of the issue as stated. Because of this, a sinking fund bond
trades at a lower price than a non-sinking fund bond.

Amortizing Callable or Puttable Bond

Amortizing callable or puttable bonds work under a scheduled Face.

An amortizing callable bond gives the issuer the right to call back the bond, but instead of paying the
Face amount at maturity, it repays part of the principal along with the coupon payments. An
amortizing puttable bond, repays part of the principal along with the coupon payments and gives the
bondholder the right to sell the bond back to the issuer.

References
[1] Fabozzi, F. Handbook of Fixed Income Securities. 7th Edition. McGraw-Hill, 2005.

[2] Windas, T. Introduction to Option-Adjusted Spread Analysis. 3rd Edition. Bloomberg Press, 2007.

See Also
hwtree | hwprice | instoptembnd | optembndbyhw | oasbybdt | oasbyhjm | oasbybk

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Calibrating Hull-White Model Using Market Data” on page 2-92
“Bond with Embedded Options” on page 2-7
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3
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optbndbybdt
Price bond option from Black-Derman-Toy interest-rate tree

Syntax
[Price,PriceTree] = optbndbybdt(BDTTree,OptSpec,Strike,ExerciseDates,
AmericanOpt,CouponRate,Settle,Maturity)
[Price,PriceTree] = optbndbybdt( ___ ,Period,Basis,EndMonthRule,IssueDate,
FirstCouponDate,LastCouponDate,StartDate,Face,Options)

Description
[Price,PriceTree] = optbndbybdt(BDTTree,OptSpec,Strike,ExerciseDates,
AmericanOpt,CouponRate,Settle,Maturity) calculates the price for a bond option from a
Black-Derman-Toy interest-rate tree.

[Price,PriceTree] = optbndbybdt( ___ ,Period,Basis,EndMonthRule,IssueDate,
FirstCouponDate,LastCouponDate,StartDate,Face,Options) adds optional arguments.

Examples

Price a European Call and Put Option on a Bond

Using the BDT interest-rate tree in the deriv.mat file, price a European call and put option on a
10% bond with a strike of 95. The exercise date for the option is Jan. 01, 2002. The settle date for the
bond is Jan. 01, 2000, and the maturity date is Jan. 01, 2003.

Load the file deriv.mat, which provides BDTTree. The BDTTree structure contains the time and
forward-rate information needed to price the bond.

load deriv.mat;

Use optbondbybdt to compute the price of the 'Call' option.

[Price,PriceTree] = optbndbybdt(BDTTree,'Call',95,'01-Jan-2002',... 
0,0.10,'01-Jan-2000','01-Jan-2003',1)

Price = 1.7657

PriceTree = struct with fields:
    FinObj: 'BDTPriceTree'
      tObs: [0 1 2 3 4]
     PTree: {[1.7657]  [3.1458 0.7387]  [5.2187 1.6890 0]  [0 0 0 0]  [0 0 0 0]}
    ExTree: {[0]  [0 0]  [1 1 0]  [0 0 0 0]  [0 0 0 0]}

Now use optbndbybdt to compute the price of a 'Put' option on the same bond.

[Price,PriceTree] = optbndbybdt(BDTTree,'Put',95,'01-Jan-2002',... 
0,0.10,'01-Jan-2000','01-Jan-2003',1)
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Price = 0.5740

PriceTree = struct with fields:
    FinObj: 'BDTPriceTree'
      tObs: [0 1 2 3 4]
     PTree: {[0.5740]  [0 1.2628]  [0 0 2.8871]  [0 0 0 0]  [0 0 0 0]}
    ExTree: {[0]  [0 0]  [0 0 1]  [0 0 0 0]  [0 0 0 0]}

The PriceTree.ExTree output for the 'Call' and 'Put' option contains the exercise indicator
arrays. Each element of the cell array is an array containing 1's where an option is exercised and 0's
where it is not.

Input Arguments
BDTTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bdttree.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'

Definition of option, specified as a NINST-by-1 cell array of character vectors.
Data Types: char

Strike — Option strike price values
nonnegative integer

Option strike price value, specified as a NINST-by-1 or NINST-by-NSTRIKES depending on the type of
option:

• European option — NINST-by-1 vector of strike price values.
• Bermuda option — NINST by number of strikes (NSTRIKES) matrix of strike price values. Each

row is the schedule for one option. If an option has fewer than NSTRIKES exercise opportunities,
the end of the row is padded with NaNs.

• American option — NINST-by-1 vector of strike price values for each option.

Data Types: double

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a NINST-by-1, NINST-by-2, or NINST-by-NSTRIKES using serial
date numbers or date character vectors, depending on the type of option:

• For a European option, use a NINST-by-1 vector of dates. For a European option, there is only one
ExerciseDates on the option expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKES vector of dates.
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• For an American option, use a NINST-by-2 vector of exercise date boundaries. The option can be
exercised on any date between or including the pair of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is a NINST-by-1 vector, the option can be exercised between
ValuationDate of the stock tree and the single listed ExerciseDates.

Data Types: double | char

AmericanOpt — Option type
0 European/Bermuda (default) | integer with values 0 or 1

(Optional) Option type, specified as NINST-by-1 positive integer flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell array, where
each element is a NumDates-by-2 cell array. The first column of the NumDates-by-2 cell array is dates
and the second column is associated rates. The date indicates the last day that the coupon rate is
valid.
Data Types: double | cell

Settle — Settlement date
serial date number | date character vector

Settlement date for the bond option, specified as a NINST-by-1 vector of serial date numbers or date
character vectors.

Note The Settle date for every bond is set to the ValuationDate of the BDT tree. The bond
argument Settle is ignored.

Data Types: double | char

Maturity — Maturity date
serial date number | date character vector

Maturity date, specified as an NINST-by-1 vector of serial date numbers or date character vectors.
Data Types: double | char

Period — Coupons per year
2 per year (default) | vector

(Optional) Coupons per year, specified as an NINST-by-1 vector.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13
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(Optional) Day-count basis, specified as a NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer with values 0 or 1

(Optional) End-of-month rule flag is specified as a nonnegative integer using a NINST-by-1 vector.
This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: double

IssueDate — Bond issue date
serial date number | date character vector

(Optional) Bond issue date, specified as an NINST-by-1 vector using serial date numbers or date
character vectors.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial date number | date character vector

(Optional) Irregular first coupon date, specified as an NINST-by-1 vector using serial date numbers
date or date character vectors.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes
precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate,
the cash flow payment dates are determined from other inputs.
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Data Types: double | char

LastCouponDate — Irregular last coupon date
serial date number | date character vector

(Optional) Irregular last coupon date, specified as a NINST-by-1 vector using serial date numbers or
date character vectors.

In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the
coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate,
regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not
specify a LastCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: char | double

StartDate — Forward starting date of payments
serial date number | date character vector

(Optional) Forward starting date of payments (the date from which a bond cash flow is considered),
specified as a NINST-by-1 vector using serial date numbers or date character vectors.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double

Face — Face value
100 (default) | nonnegative value | cell array of nonnegative values

(Optional) Face or par value, specified as anNINST-by-1 vector.
Data Types: double

Options — Derivatives pricing options
structure

(Optional) Derivatives pricing options, specified as structure that is created with derivset.
Data Types: struct

Output Arguments
Price — Expected prices of bond option at time 0
matrix

Expected price of the bond option at time 0, returned as a NINST-by-1 matrix.

PriceTree — Structure containing trees of vectors of instrument prices and accrued
interest for each node
structure

Structure containing trees of vectors of instrument prices and accrued interest, and a vector of
observation times for each node. Values are:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.
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• PriceTree.ExTree contains the exercise indicator arrays. Each element of the cell array is an
array containing 1's where an option is exercised and 0's where it isn't.

More About
Bond Option

A bond option gives the holder the right to sell a bond back to the issuer (put) or to redeem a bond
from its current owner (call) at a specific price and on a specific date.

Financial Instruments Toolbox supports three types of put and call options on bonds:

• American option: An option that you exercise any time until its expiration date.
• European option: An option that you exercise only on its expiration date.
• Bermuda option: A Bermuda option resembles a hybrid of American and European options. You

can exercise it on predetermined dates only, usually monthly.

For more information, see “Bond Options” on page 2-6.

See Also
bdtprice | bdttree | instoptbnd

Topics
“Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-10
“Bond Options” on page 2-6
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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optbndbybk
Price bond option from Black-Karasinski interest-rate tree

Syntax
[Price,PriceTree] = optbndbybk(BKTree,OptSpec,Strike,ExerciseDates,
AmericanOpt,CouponRate,Settle,Maturity)
[Price,PriceTree] = optbndbybk( ___ ,Period,Basis,EndMonthRule,IssueDate,
FirstCouponDate,LastCouponDate,StartDate,Face,Options)

Description
[Price,PriceTree] = optbndbybk(BKTree,OptSpec,Strike,ExerciseDates,
AmericanOpt,CouponRate,Settle,Maturity) calculates the price for a bond option from a
Black-Karasinski interest-rate tree.

[Price,PriceTree] = optbndbybk( ___ ,Period,Basis,EndMonthRule,IssueDate,
FirstCouponDate,LastCouponDate,StartDate,Face,Options) adds optional arguments.

Examples

Price a European Call and Put Option on a Bond

Using the BK interest rate tree in the deriv.mat file, price a European call and put option on a 4%
bond with a strike of 96. The exercise date for the option is Jan. 01, 2006. The settle date for the bond
is Jan. 01, 2005, and the maturity date is Jan. 01, 2009.

Load the file deriv.mat, which provides BKTree. The BKTree structure contains the time and
forward-rate information needed to price the bond.

load deriv.mat; 

Use optbondbybk to compute the price of the 'Call' option.

[Price,PriceTree] = optbndbybk(BKTree,'Call',96,'01-Jan-2006',... 
0,0.04,'01-Jan-2005','01-Jan-2009')

Warning: OptBonds are valued at Tree ValuationDate rather than Settle. 
> In optbndbytrintree (line 40)
  In optbndbybk (line 92) 
Warning: Not all cash flows are aligned with the tree. Result will be approximated. 
> In optbndbytrintree (line 151)
  In optbndbybk (line 92) 

Price =

    0.1512

PriceTree = 
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  struct with fields:

     FinObj: 'BKPriceTree'
      PTree: {[0.1512]  [0.0281 0.1481 0.3119]  [0 0 0.1329 0.3886 0.3086]  [0 0 0 0 0]  [0 0 0 0 0]}
       tObs: [0 1 2 3 4]
    Connect: {[2]  [2 3 4]  [2 2 3 4 4]}
      Probs: {[3×1 double]  [3×3 double]  [3×5 double]}
     ExTree: {[0]  [0 0 0]  [0 0 1 1 1]  [0 0 0 0 0]  [0 0 0 0 0]}

Now use optbndbybdt to compute the price of a 'Put' option on the same bond.

[Price,PriceTree] = optbndbybk(BKTree,'Put',96,'01-Jan-2006',... 
0,0.04,'01-Jan-2005','01-Jan-2009')

Warning: OptBonds are valued at Tree ValuationDate rather than Settle. 
> In optbndbytrintree (line 40)
  In optbndbybk (line 92) 
Warning: Not all cash flows are aligned with the tree. Result will be approximated. 
> In optbndbytrintree (line 151)
  In optbndbybk (line 92) 

Price =

    0.0272

PriceTree = 

  struct with fields:

     FinObj: 'BKPriceTree'
      PTree: {[0.0272]  [0.0860 0.0204 0]  [0.0474 0.1266 0 0 0]  [0 0 0 0 0]  [0 0 0 0 0]}
       tObs: [0 1 2 3 4]
    Connect: {[2]  [2 3 4]  [2 2 3 4 4]}
      Probs: {[3×1 double]  [3×3 double]  [3×5 double]}
     ExTree: {[0]  [0 0 0]  [1 1 0 0 0]  [0 0 0 0 0]  [0 0 0 0 0]}

The PriceTree.ExTree output for the 'Call' and 'Put' option contains the exercise indicator
arrays. Each element of the cell array is an array containing 1's where an option is exercised and 0's
where it is not.

Input Arguments
BKTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bktree.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'

Definition of option, specified as a NINST-by-1 cell array of character vectors.
Data Types: char
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Strike — Option strike price values
nonnegative integer

Option strike price value, specified as a NINST-by-1 or NINST-by-NSTRIKES depending on the type of
option:

• European option — NINST-by-1 vector of strike price values.
• Bermuda option — NINST by number of strikes (NSTRIKES) matrix of strike price values. Each

row is the schedule for one option. If an option has fewer than NSTRIKES exercise opportunities,
the end of the row is padded with NaNs.

• American option — NINST-by-1 vector of strike price values for each option.

Data Types: double

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a NINST-by-1, NINST-by-2, or NINST-by-NSTRIKES using serial
date numbers or date character vectors, depending on the type of option:

• For a European option, use a NINST-by-1 vector of dates. For a European option, there is only one
ExerciseDates on the option expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKES vector of dates.
• For an American option, use a NINST-by-2 vector of exercise date boundaries. The option can be

exercised on any date between or including the pair of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is a NINST-by-1 vector, the option can be exercised between
ValuationDate of the stock tree and the single listed ExerciseDates.

Data Types: double | char

AmericanOpt — Option type
0 European/Bermuda (default) | integer with values 0 or 1

(Optional) Option type, specified as NINST-by-1 positive integer flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell array, where
each element is a NumDates-by-2 cell array. The first column of the NumDates-by-2 cell array is dates
and the second column is associated rates. The date indicates the last day that the coupon rate is
valid.
Data Types: double | cell

Settle — Settlement date
serial date number | date character vector

Settlement date for the bond option, specified as a NINST-by-1 vector of serial date numbers or date
character vectors.
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Note The Settle date for every bond is set to the ValuationDate of the BK tree. The bond
argument Settle is ignored.

Data Types: double | char

Maturity — Maturity date
serial date number | date character vector

Maturity date, specified as an NINST-by-1 vector of serial date numbers or date character vectors.
Data Types: double | char

Period — Coupons per year
2 per year (default) | vector

(Optional) Coupons per year, specified as an NINST-by-1 vector.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis, specified as a NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer with values 0 or 1

(Optional) End-of-month rule flag is specified as a nonnegative integer using a NINST-by-1 vector.
This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.
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• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: double

IssueDate — Bond issue date
serial date number | date character vector

(Optional) Bond issue date, specified as an NINST-by-1 vector using serial date numbers or date
character vectors.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial date number | date character vector

(Optional) Irregular first coupon date, specified as an NINST-by-1 vector using serial date numbers
date or date character vectors.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes
precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate,
the cash flow payment dates are determined from other inputs.
Data Types: double | char

LastCouponDate — Irregular last coupon date
serial date number | date character vector

(Optional) Irregular last coupon date, specified as a NINST-by-1 vector using serial date numbers or
date character vectors.

In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the
coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate,
regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not
specify a LastCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: char | double

StartDate — Forward starting date of payments
serial date number | date character vector

(Optional) Forward starting date of payments (the date from which a bond cash flow is considered),
specified as a NINST-by-1 vector using serial date numbers or date character vectors.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double

Face — Face value
100 (default) | nonnegative value | cell array of nonnegative values

(Optional) Face or par value, specified as anNINST-by-1 vector.
Data Types: double

Options — Derivatives pricing options
structure
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(Optional) Derivatives pricing options, specified as structure that is created with derivset.
Data Types: struct

Output Arguments
Price — Expected prices of bond option at time 0
matrix

Expected price of the bond option at time 0, returned as a NINST-by-1 matrix.

PriceTree — Structure containing trees of vectors of instrument prices and accrued
interest for each node
structure

Structure containing trees of vectors of instrument prices and accrued interest, and a vector of
observation times for each node. Values are:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell array describes

how nodes in that level connect to the next. For a given tree level, there are NumNodes elements
in the vector, and they contain the index of the node at the next level that the middle branch
connects to. Subtracting 1 from that value indicates where the up-branch connects to, and adding
1 indicated where the down branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array contains the
up, middle, and down transition probabilities for each node of the level.

• PriceTree.ExTree contains the exercise indicator arrays. Each element of the cell array is an
array containing 1's where an option is exercised and 0's where it isn't.

More About
Bond Option

A bond option gives the holder the right to sell a bond back to the issuer (put) or to redeem a bond
from its current owner (call) at a specific price and on a specific date.

Financial Instruments Toolbox supports three types of put and call options on bonds:

• American option: An option that you exercise any time until its expiration date.
• European option: An option that you exercise only on its expiration date.
• Bermuda option: A Bermuda option resembles a hybrid of American and European options. You

can exercise it on predetermined dates only, usually monthly.

For more information, see “Bond Options” on page 2-6.

See Also
bkprice | bktree | instoptbnd

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
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“Bond Options” on page 2-6
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3
“Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on page 1-
73

Introduced before R2006a
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optbndbycir
Price bond option from Cox-Ingersoll-Ross interest-rate tree

Syntax
[Price,PriceTree] = optbndbycir(CIRTree,OptSpec,Strike,ExerciseDates,
AmericanOpt,CouponRate,Settle,Maturity)
[Price,PriceTree] = optbndbycir( ___ ,Name,Value)

Description
[Price,PriceTree] = optbndbycir(CIRTree,OptSpec,Strike,ExerciseDates,
AmericanOpt,CouponRate,Settle,Maturity) calculates the price for a bond option from a Cox-
Ingersoll-Ross (CIR) interest-rate tree using a CIR++ model with the Nawalka-Beliaeva (NB)
approach.

[Price,PriceTree] = optbndbycir( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Price a European Call and Put Option on a Bond Using a CIR Interest-Rate Tree

Compute the price for a European call option on a 4% bond with a strike of 96. The exercise date for
the option is Jan. 01, 2018. The settle date for the bond is Jan. 01, 2017, and the maturity date is Jan.
01, 2020.

Create a RateSpec using the intenvset function.

Rates = [0.035; 0.042147; 0.047345; 0.052707]; 
Dates = {'Jan-1-2017'; 'Jan-1-2018'; 'Jan-1-2019'; 'Jan-1-2020'; 'Jan-1-2021'}; 
ValuationDate = 'Jan-1-2017'; 
EndDates = Dates(2:end)'; 
Compounding = 1; 
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, 'EndDates',EndDates,'Rates', Rates, 'Compounding', Compounding); 

Create a CIR tree.

NumPeriods = length(EndDates); 
Alpha = 0.03; 
Theta = 0.02;  
Sigma = 0.1;   
Settle = '01-Jan-2017'; 
Maturity = '01-Jan-2019'; 
CIRTimeSpec = cirtimespec(ValuationDate, Maturity, NumPeriods); 
CIRVolSpec = cirvolspec(Sigma, Alpha, Theta); 

CIRT = cirtree(CIRVolSpec, RateSpec, CIRTimeSpec)

CIRT = struct with fields:
      FinObj: 'CIRFwdTree'

11 Functions

11-1068



     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 0.5000 1 1.5000]
        dObs: [736696 736878 737061 737243]
     FwdTree: {1x4 cell}
     Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

Price the 'Call' option.

[Price,PriceTree] = optbndbycir(CIRT,'Call',96,'01-Jan-2018',... 
0,0.04,'01-Jan-2017','01-Jan-2020')

Price = 2.6827

PriceTree = struct with fields:
     FinObj: 'CIRPriceTree'
       tObs: [0 0.5000 1 1.5000 2]
      PTree: {1x5 cell}
    Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
     ExTree: {[0]  [0 0 0]  [0 0 1 1 1]  [0 0 0 0 0 0 0]  [0 0 0 0 0 0 0]}

Price the 'Put' option.

[Price,PriceTree] = optbndbycir(CIRT,'Put',96,'01-Jan-2018',... 
0,0.04,'01-Jan-2017','01-Jan-2020')

Price = 0.6835

PriceTree = struct with fields:
     FinObj: 'CIRPriceTree'
       tObs: [0 0.5000 1 1.5000 2]
      PTree: {1x5 cell}
    Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
     ExTree: {[0]  [0 0 0]  [1 1 0 0 0]  [0 0 0 0 0 0 0]  [0 0 0 0 0 0 0]}

The PriceTree.ExTree output for the 'Call' and 'Put' option contains the exercise indicator
arrays. Each element of the cell array is an array containing 1's where an option is exercised and 0's
where it is not.

Input Arguments
CIRTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using cirtree.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors with values 'call'
or 'put' | string arrays with values "call" or "put"
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Definition of option, specified as a NINST-by-1 cell array of character vectors or string arrays.
Data Types: char | cell | string

Strike — Option strike price values
nonnegative integer

Option strike price value, specified as a NINST-by-1 or NINST-by-NSTRIKES depending on the type of
option:

• European option — NINST-by-1 vector of strike price values.
• Bermuda option — NINST by number of strikes (NSTRIKES) matrix of strike price values. Each

row is the schedule for one option. If an option has fewer than NSTRIKES exercise opportunities,
the end of the row is padded with NaNs.

• American option — NINST-by-1 vector of strike price values for each option.

Data Types: double

ExerciseDates — Option exercise dates
serial date number | date character vector | string array | datetime

Option exercise dates, specified as a NINST-by-1, NINST-by-2, or NINST-by-NSTRIKES using serial
date numbers, data character vectors, string arrays, or datetime arrays depending on the type of
option:

• For a European option, use a NINST-by-1 vector of dates. For a European option, there is only one
ExerciseDates on the option expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKES vector of dates.
• For an American option, use a NINST-by-2 vector of exercise date boundaries. The option can be

exercised on any date between or including the pair of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is a NINST-by-1 vector, the option can be exercised between
ValuationDate of the stock tree and the single listed ExerciseDates.

Data Types: double | char | string | datetime

AmericanOpt — Option type
0 European/Bermuda (default) | integer with values 0 or 1

Option type, specified as NINST-by-1 positive integer flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell array, where
each element is a NumDates-by-2 cell array. The first column of the NumDates-by-2 cell array is dates
and the second column is associated rates. The date indicates the last day that the coupon rate is
valid.
Data Types: double | cell
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Settle — Settlement date
serial date number | date character vector | string array | datetime

Settlement date for the bond option, specified as a NINST-by-1 vector of serial date numbers, date
character vectors, string arrays, or datetime arrays.

Note The Settle date for every bond is set to the ValuationDate of the CIR tree. The bond
argument Settle is ignored.

Data Types: double | char | string

Maturity — Maturity date
serial date number | date character vector | string array | datetime

Maturity date, specified as an NINST-by-1 vector of serial date numbers, date character vectors,
string arrays, or datetime arrays.
Data Types: double | char | string | datetime

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree] = optbndbycir(CIRTree,OptSpec,
Strike,ExerciseDates,AmericanOpt,CouponRate,Settle,Maturity,'Period'6,'Basis'
,7,'Face',1000)

Period — Coupons per year
2 per year (default) | possible values include: 0, 1, 2, 3, 4, 6, 12.

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a NINST-by-1
vector.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis, specified as the comma-separated pair consisting of 'Basis' and a NINST-by-1
vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
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• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer with values 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
nonnegative integer using a NINST-by-1 vector. This rule applies only when Maturity is an end-of-
month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: double

IssueDate — Bond issue date
serial date number | date character vector | string array | datetime

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a NINST-
by-1 vector using serial date numbers, date character vectors, string arrays, or datetime arrays.
Data Types: double | char | string | datetime

FirstCouponDate — Irregular first coupon date
serial date number | date character vector | string array | datetime

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using serial date numbers date, date character
vectors, string arrays, or datetime arrays.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes
precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate,
the cash flow payment dates are determined from other inputs.
Data Types: double | char | string | datetime

LastCouponDate — Irregular last coupon date
serial date number | date character vector | string array | datetime

Irregular last coupon date, specified as the comma-separated pair consisting of 'LastCouponDate'
and a NINST-by-1 vector using serial date numbers, date character vectors, string arrays, or datetime
arrays.
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In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the
coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate,
regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not
specify a LastCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: char | double | string | datetime

StartDate — Forward starting date of payments
serial date number | date character vector | string array | datetime

Forward starting date of payments (the date from which a bond cash flow is considered), specified as
the comma-separated pair consisting of 'StartDate' and a NINST-by-1 vector using serial date
numbers, date character vectors, string arrays, or datetime arrays.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double | string | datetime

Face — Face value
100 (default) | nonnegative value | cell array of nonnegative values

Face or par value, specified as the comma-separated pair consisting of 'Face' and a NINST-by-1
vector.
Data Types: double

Output Arguments
Price — Expected prices of bond option at time 0
matrix

Expected price of the bond option at time 0, returned as a NINST-by-1 matrix.

PriceTree — Structure containing trees of vectors of instrument prices and accrued
interest for each node
structure

Structure containing trees of vectors of instrument prices and accrued interest, and a vector of
observation times for each node. Values are:

• PriceTree.tObs contains the observation times.
• PriceTree.PTree contains the clean prices.
• PriceTree.ExTree contains the exercise indicator arrays. Each element of the cell array is an

array containing 1's where an option is exercised and 0's where it isn't.

More About
Bond Option

A bond option gives the holder the right to sell a bond back to the issuer (put) or to redeem a bond
from its current owner (call) at a specific price and on a specific date.

Financial Instruments Toolbox supports three types of put and call options on bonds:
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• American option: An option that you exercise any time until its expiration date.
• European option: An option that you exercise only on its expiration date.
• Bermuda option: A Bermuda option resembles a hybrid of American and European options. You

can exercise it on predetermined dates only, usually monthly.

For more information, see “Bond Options” on page 2-6.
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See Also
bondbycir | capbycir | cfbycir | fixedbycir | floatbycir | floorbycir | oasbycir |
optfloatbycir | optembndbycir | optemfloatbycir | rangefloatbycir | swapbycir |
swaptionbycir | instoptbnd

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Calibrating Hull-White Model Using Market Data” on page 2-92
“Bond Options” on page 2-6
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced in R2018a
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optbndbyhjm
Price bond option from Heath-Jarrow-Morton interest-rate tree

Syntax
[Price,PriceTree] = optbndbyhjm(HJMTree,OptSpec,Strike,ExerciseDates,
AmericanOpt,CouponRate,Settle,Maturity)
[Price,PriceTree] = optbndbyhjm( ___ ,Period,Basis,EndMonthRule,IssueDate,
FirstCouponDate,LastCouponDate,StartDate,Face,Options)

Description
[Price,PriceTree] = optbndbyhjm(HJMTree,OptSpec,Strike,ExerciseDates,
AmericanOpt,CouponRate,Settle,Maturity) calculates the price for a bond option from a
Black-Karasinski interest-rate tree.

[Price,PriceTree] = optbndbyhjm( ___ ,Period,Basis,EndMonthRule,IssueDate,
FirstCouponDate,LastCouponDate,StartDate,Face,Options) adds optional arguments.

Examples

Price a European Call and Put Option on a Bond

Using the HJM forward-rate tree in the deriv.mat file, price a European call and put option on a 4%
bond with a strike of 96. The exercise date for the option is Jan. 01, 2003. The settle date for the bond
is Jan. 01, 2000, and the maturity date is Jan. 01, 2004.

Load the file deriv.mat, which provides HJMTree. The HJMTree structure contains the time and
forward-rate information needed to price the bond.

load deriv.mat; 

Use optbndbyhjm to compute the price of the 'Call' option.

[Price,PriceTree] = optbndbyhjm(HJMTree,'Call',96,'01-Jan-2003',...
0,0.04,'01-Jan-2000','01-Jan-2004')

Warning: Not all cash flows are aligned with the tree. Result will be approximated. 
> In optbndbyhjm (line 223) 

Price =

    2.2410

PriceTree = 

  struct with fields:

    FinObj: 'HJMPriceTree'
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      tObs: [0 1 2 3 4]
     PBush: {[2.2410]  [1×1×2 double]  [1×2×2 double]  [1×4×2 double]  [0 0 0 0 0 0 0 0]}
    ExBush: {[0]  [1×1×2 double]  [1×2×2 double]  [1×4×2 double]  [0 0 0 0 0 0 0 0]}

Now use optbndbyhjm to compute the price of a 'Put' option on the same bond.

[Price,PriceTree] = optbndbyhjm(HJMTree,'Put',96,'01-Jan-2003',...
0,0.04,'01-Jan-2000','01-Jan-2004')

Warning: Not all cash flows are aligned with the tree. Result will be approximated. 
> In optbndbyhjm (line 223) 

Price =

    0.0446

PriceTree = 

  struct with fields:

    FinObj: 'HJMPriceTree'
      tObs: [0 1 2 3 4]
     PBush: {[0.0446]  [1×1×2 double]  [1×2×2 double]  [1×4×2 double]  [0 0 0 0 0 0 0 0]}
    ExBush: {[0]  [1×1×2 double]  [1×2×2 double]  [1×4×2 double]  [0 0 0 0 0 0 0 0]}

The PriceTree.ExBush output for the 'Call' and 'Put' option contains the exercise indicator
arrays. Each element of the cell array is an array containing 1's where an option is exercised and 0's
where it is not.

Input Arguments
HJMTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using hjmtree.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'

Definition of option, specified as a NINST-by-1 cell array of character vectors.
Data Types: char

Strike — Option strike price values
nonnegative integer

Option strike price value, specified as a NINST-by-1 or NINST-by-NSTRIKES depending on the type of
option:

• European option — NINST-by-1 vector of strike price values.
• Bermuda option — NINST by number of strikes (NSTRIKES) matrix of strike price values. Each

row is the schedule for one option. If an option has fewer than NSTRIKES exercise opportunities,
the end of the row is padded with NaNs.
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• American option — NINST-by-1 vector of strike price values for each option.

Data Types: double

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a NINST-by-1, NINST-by-2, or NINST-by-NSTRIKES using serial
date numbers or date character vectors, depending on the type of option:

• For a European option, use a NINST-by-1 vector of dates. For a European option, there is only one
ExerciseDates on the option expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKES vector of dates.
• For an American option, use a NINST-by-2 vector of exercise date boundaries. The option can be

exercised on any date between or including the pair of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is a NINST-by-1 vector, the option can be exercised between
ValuationDate of the stock tree and the single listed ExerciseDates.

Data Types: double | char

AmericanOpt — Option type
0 European/Bermuda (default) | integer with values 0 or 1

(Optional) Option type, specified as NINST-by-1 positive integer flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell array, where
each element is a NumDates-by-2 cell array. The first column of the NumDates-by-2 cell array is dates
and the second column is associated rates. The date indicates the last day that the coupon rate is
valid.
Data Types: double | cell

Settle — Settlement date
serial date number | date character vector

Settlement date for the bond option, specified as a NINST-by-1 vector of serial date numbers or date
character vectors.

Note The Settle date for every bond is set to the ValuationDate of the HJM tree. The bond
argument Settle is ignored.

Data Types: double | char

Maturity — Maturity date
serial date number | date character vector
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Maturity date, specified as an NINST-by-1 vector of serial date numbers or date character vectors.
Data Types: double | char

Period — Coupons per year
2 per year (default) | vector

(Optional) Coupons per year, specified as an NINST-by-1 vector.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis, specified as a NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer with values 0 or 1

(Optional) End-of-month rule flag is specified as a nonnegative integer using a NINST-by-1 vector.
This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: double

IssueDate — Bond issue date
serial date number | date character vector
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(Optional) Bond issue date, specified as an NINST-by-1 vector using serial date numbers or date
character vectors.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial date number | date character vector

(Optional) Irregular first coupon date, specified as an NINST-by-1 vector using serial date numbers
date or date character vectors.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes
precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate,
the cash flow payment dates are determined from other inputs.
Data Types: double | char

LastCouponDate — Irregular last coupon date
serial date number | date character vector

(Optional) Irregular last coupon date, specified as a NINST-by-1 vector using serial date numbers or
date character vectors.

In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the
coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate,
regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not
specify a LastCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: char | double

StartDate — Forward starting date of payments
serial date number | date character vector

(Optional) Forward starting date of payments (the date from which a bond cash flow is considered),
specified as a NINST-by-1 vector using serial date numbers or date character vectors.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double

Face — Face value
100 (default) | nonnegative value | cell array of nonnegative values

(Optional) Face or par value, specified as anNINST-by-1 vector.
Data Types: double

Options — Derivatives pricing options
structure

(Optional) Derivatives pricing options, specified as structure that is created with derivset.
Data Types: struct
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Output Arguments
Price — Expected prices of bond option at time 0
matrix

Expected price of the bond option at time 0, returned as a NINST-by-1 matrix.

PriceTree — Structure containing trees of vectors of instrument prices and accrued
interest for each node
structure

Structure containing trees of vectors of instrument prices and accrued interest, and a vector of
observation times for each node. Values are:

• PriceTree.PBush contains the clean prices.
• PriceTree.tObs contains the observation times.
• PriceTree.ExBush contains the exercise indicator arrays. Each element of the cell array is an

array containing 1's where an option is exercised and 0's where it isn't.

More About
Bond Option

A bond option gives the holder the right to sell a bond back to the issuer (put) or to redeem a bond
from its current owner (call) at a specific price and on a specific date.

Financial Instruments Toolbox supports three types of put and call options on bonds:

• American option: An option that you exercise any time until its expiration date.
• European option: An option that you exercise only on its expiration date.
• Bermuda option: A Bermuda option resembles a hybrid of American and European options. You

can exercise it on predetermined dates only, usually monthly.

For more information, see “Bond Options” on page 2-6.

See Also
hjmprice | hjmtree | instoptbnd

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Bond Options” on page 2-6
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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optbndbyhw
Price bond option from Hull-White interest-rate tree

Syntax
[Price,PriceTree] = optbndbyhw(HWTree,OptSpec,Strike,ExerciseDates,
AmericanOpt,CouponRate,Settle,Maturity)
[Price,PriceTree] = optbndbyhw( ___ ,Period,Basis,EndMonthRule,IssueDate,
FirstCouponDate,LastCouponDate,StartDate,Face,Options)

Description
[Price,PriceTree] = optbndbyhw(HWTree,OptSpec,Strike,ExerciseDates,
AmericanOpt,CouponRate,Settle,Maturity) calculates the price for a bond option from a Hull-
White interest-rate tree.

[Price,PriceTree] = optbndbyhw( ___ ,Period,Basis,EndMonthRule,IssueDate,
FirstCouponDate,LastCouponDate,StartDate,Face,Options) adds optional arguments.

Examples

Price a European Call and Put Option on a Bond

Using the HW interest rate tree in the deriv.mat file, price a European call option on a 4% bond
with a strike of 96. The exercise date for the option is Jan. 01, 2006. The settle date for the bond is
Jan. 01, 2005, and the maturity date is Jan. 01, 2009.

Load the file deriv.mat, which provides HWTree. The HWTree structure contains the time and
forward-rate information needed to price the bond.

load deriv.mat; 

Use optbndbyhw to compute the price of the 'Call' option.

[Price,PriceTree] = optbndbyhw(HWTree,'Call',96,'01-Jan-2006',... 
0,0.04,'01-Jan-2005','01-Jan-2009')

Warning: OptBonds are valued at Tree ValuationDate rather than Settle. 
> In optbndbytrintree (line 40)
  In optbndbyhw (line 92) 
Warning: Not all cash flows are aligned with the tree. Result will be approximated. 
> In optbndbytrintree (line 151)
  In optbndbyhw (line 92) 

Price =

    1.1556

PriceTree = 
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  struct with fields:

     FinObj: 'HWPriceTree'
      PTree: {[1.1556]  [0.0150 0.8509 3.7085]  [0 0 0.0722 4.9980 3.8429]  [0 0 0 0 0]  [0 0 0 0 0]}
       tObs: [0 1 2 3 4]
    Connect: {[2]  [2 3 4]  [2 2 3 4 4]}
      Probs: {[3×1 double]  [3×3 double]  [3×5 double]}
     ExTree: {[0]  [0 0 0]  [0 0 1 1 1]  [0 0 0 0 0]  [0 0 0 0 0]}

Now use optbndbyhw to compute the price of a 'Put' option on the same bond.

[Price,PriceTree] = optbndbyhw(HWTree,'Put',96,'01-Jan-2006',... 
0,0.04,'01-Jan-2005','01-Jan-2009')

Warning: OptBonds are valued at Tree ValuationDate rather than Settle. 
> In optbndbytrintree (line 40)
  In optbndbyhw (line 92) 
Warning: Not all cash flows are aligned with the tree. Result will be approximated. 
> In optbndbytrintree (line 151)
  In optbndbyhw (line 92) 

Price =

    1.0150

PriceTree = 

  struct with fields:

     FinObj: 'HWPriceTree'
      PTree: {[1.0150]  [3.2945 0.7413 0]  [3.5551 4.6060 0 0 0]  [0 0 0 0 0]  [0 0 0 0 0]}
       tObs: [0 1 2 3 4]
    Connect: {[2]  [2 3 4]  [2 2 3 4 4]}
      Probs: {[3×1 double]  [3×3 double]  [3×5 double]}
     ExTree: {[0]  [0 0 0]  [1 1 0 0 0]  [0 0 0 0 0]  [0 0 0 0 0]}

The PriceTree.ExTree output for the 'Call' and 'Put' option contains the exercise indicator
arrays. Each element of the cell array is an array containing 1's where an option is exercised and 0's
where it is not.

Input Arguments
HWTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using hwtree.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'

Definition of option, specified as a NINST-by-1 cell array of character vectors.
Data Types: char
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Strike — Option strike price values
nonnegative integer

Option strike price value, specified as a NINST-by-1 or NINST-by-NSTRIKES depending on the type of
option:

• European option — NINST-by-1 vector of strike price values.
• Bermuda option — NINST by number of strikes (NSTRIKES) matrix of strike price values. Each

row is the schedule for one option. If an option has fewer than NSTRIKES exercise opportunities,
the end of the row is padded with NaNs.

• American option — NINST-by-1 vector of strike price values for each option.

Data Types: double

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a NINST-by-1, NINST-by-2, or NINST-by-NSTRIKES using serial
date numbers or data character vectors, depending on the type of option:

• For a European option, use a NINST-by-1 vector of dates. For a European option, there is only one
ExerciseDates on the option expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKES vector of dates.
• For an American option, use a NINST-by-2 vector of exercise date boundaries. The option can be

exercised on any date between or including the pair of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is a NINST-by-1 vector, the option can be exercised between
ValuationDate of the stock tree and the single listed ExerciseDates.

Data Types: double | char

AmericanOpt — Option type
0 European/Bermuda (default) | integer with values 0 or 1

Option type, specified as NINST-by-1 positive integer flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell array, where
each element is a NumDates-by-2 cell array. The first column of the NumDates-by-2 cell array is dates
and the second column is associated rates. The date indicates the last day that the coupon rate is
valid.
Data Types: double | cell

Settle — Settlement date
serial date number | date character vector

Settlement date for the bond option, specified as a NINST-by-1 vector of serial date numbers or date
character vectors.
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Note The Settle date for every bond is set to the ValuationDate of the HW tree. The bond
argument Settle is ignored.

Data Types: double | char

Maturity — Maturity date
serial date number | date character vector

Maturity date, specified as an NINST-by-1 vector of serial date numbers or date character vectors.
Data Types: double | char

Period — Coupons per year
2 per year (default) | vector

(Optional) Coupons per year, specified as an NINST-by-1 vector.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis, specified as a NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer with values 0 or 1

(Optional) End-of-month rule flag is specified as a nonnegative integer using a NINST-by-1 vector.
This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.
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• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: double

IssueDate — Bond issue date
serial date number | date character vector

(Optional) Bond issue date, specified as an NINST-by-1 vector using serial date numbers or date
character vectors.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial date number | date character vector

(Optional) Irregular first coupon date, specified as an NINST-by-1 vector using serial date numbers
date or date character vectors.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes
precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate,
the cash flow payment dates are determined from other inputs.
Data Types: double | char

LastCouponDate — Irregular last coupon date
serial date number | date character vector

(Optional) Irregular last coupon date, specified as a NINST-by-1 vector using serial date numbers or
date character vectors.

In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the
coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate,
regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not
specify a LastCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: char | double

StartDate — Forward starting date of payments
serial date number | date character vector

(Optional) Forward starting date of payments (the date from which a bond cash flow is considered),
specified as a NINST-by-1 vector using serial date numbers or date character vectors.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double

Face — Face value
100 (default) | nonnegative value | cell array of nonnegative values

(Optional) Face or par value, specified as anNINST-by-1 vector.
Data Types: double

Options — Derivatives pricing options
structure
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(Optional) Derivatives pricing options, specified as structure that is created with derivset.
Data Types: struct

Output Arguments
Price — Expected prices of bond option at time 0
matrix

Expected price of the bond option at time 0, returned as a NINST-by-1 matrix.

PriceTree — Structure containing trees of vectors of instrument prices and accrued
interest for each node
structure

Structure containing trees of vectors of instrument prices and accrued interest, and a vector of
observation times for each node. Values are:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell array describes

how nodes in that level connect to the next. For a given tree level, there are NumNodes elements
in the vector, and they contain the index of the node at the next level that the middle branch
connects to. Subtracting 1 from that value indicates where the up-branch connects to, and adding
1 indicated where the down branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array contains the
up, middle, and down transition probabilities for each node of the level.

• PriceTree.ExTree contains the exercise indicator arrays. Each element of the cell array is an
array containing 1's where an option is exercised and 0's where it isn't.

More About
Bond Option

A bond option gives the holder the right to sell a bond back to the issuer (put) or to redeem a bond
from its current owner (call) at a specific price and on a specific date.

Financial Instruments Toolbox supports three types of put and call options on bonds:

• American option: An option that you exercise any time until its expiration date.
• European option: An option that you exercise only on its expiration date.
• Bermuda option: A Bermuda option resembles a hybrid of American and European options. You

can exercise it on predetermined dates only, usually monthly.

For more information, see “Bond Options” on page 2-6.

See Also
hwprice | hwtree | instoptbnd

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
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“Calibrating Hull-White Model Using Market Data” on page 2-92
“Bond Options” on page 2-6
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3
“Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on page 1-
73

Introduced before R2006a
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optByBatesFD
Option price by Bates model using finite differences

Syntax
[Price,PriceGrid,AssetPrices,Variances,Times] = optByBatesFD(Rate,AssetPrice,
Settle,ExerciseDates,OptSpec,Strike,V0,ThetaV,Kappa,SigmaV,RhoSV,MeanJ,
JumpVol,JumpFreq)
[Price,PriceGrid,AssetPrices,Variances,Times] = optByBatesFD( ___ ,Name,Value)

Description
[Price,PriceGrid,AssetPrices,Variances,Times] = optByBatesFD(Rate,AssetPrice,
Settle,ExerciseDates,OptSpec,Strike,V0,ThetaV,Kappa,SigmaV,RhoSV,MeanJ,
JumpVol,JumpFreq) computes a vanilla European or American option price by the Bates model,
using the alternating direction implicit (ADI) method.

[Price,PriceGrid,AssetPrices,Variances,Times] = optByBatesFD( ___ ,Name,Value)
specifies options using one or more name-value pair arguments in addition to the input arguments in
the previous syntax.

Examples

Price an American Option Using the Bates Model

Define the option variables and Bates model parameters.

AssetPrice = 90;
Strike = 100;
Rate = 0.03;
Settle = '01-Jan-2018';
ExerciseDates = '02-Jul-2018';

V0 = 0.04;
ThetaV = 0.04;
Kappa = 2;
SigmaV = 0.25;
RhoSV = -0.5;
JumpVol = 0.4;
MeanJ = exp(-0.5+JumpVol.^2/2)-1;
JumpFreq = 0.2;

Compute the American put option price using the finite differences method.

OptSpec = 'Put';
Price = optByBatesFD(Rate, AssetPrice, Settle, ExerciseDates, OptSpec, Strike, ...
V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, 'AmericanOpt', 1)

Price = 11.6116
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Input Arguments
Rate — Continuously compounded risk-free interest rate
scalar decimal

Continuously compounded risk-free interest rate, specified as a scalar decimal.
Data Types: double

AssetPrice — Current underlying asset price
scalar numeric

Current underlying asset price, specified as a scalar numeric.
Data Types: double

Settle — Option settlement date
serial date number | date character vector | datetime | string array

Option settlement date, specified as a scalar using a serial date number, date character vector,
datetime object, or string scalar.
Data Types: double | char | datetime | string

ExerciseDates — Option exercise dates
serial date number | date character vector | datetime array | string array

Option exercise dates, specified as a serial date number, date character vector, datetime array, or
string array:

• For a European option, use a scalar serial date number, date character vector, datetime object, or
string scalar. For a European option, ExerciseDates contains only one value: the option expiry
date.

• For an American option, use a 1-by-2 vector of serial date numbers, date character vectors,
datetime arrays, or string arrays to specify the exercise date boundaries. An American option can
be exercised on any date between or including the pair of dates. If only one non-NaN date is listed,
then the option can be exercised between Settle date and the single listed value in
ExerciseDates.

Data Types: double | char | datetime | string

OptSpec — Definition of option
character vector with value of 'call' or 'put' | string with value of "call" or "put"

Definition of the option, specified as a scalar using a character vector or string with a value of
'call' or 'put'.
Data Types: cell | string

Strike — Option strike price value
scalar numeric

Option strike price value, specified as a scalar numeric.
Data Types: double
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V0 — Initial variance of underlying asset
scalar numeric

Initial variance of the underling asset, specified as a scalar numeric.
Data Types: double

ThetaV — Long-term variance of underlying asset
scalar numeric

Long-term variance of the underling asset, specified as a scalar numeric.
Data Types: double

Kappa — Mean revision speed for the variance of underlying asset
scalar numeric

Mean revision speed for the underlying asset, specified as a scalar numeric.
Data Types: double

SigmaV — Volatility of the variance of underlying asset
scalar numeric

Volatility of the variance of the underling asset, specified as a scalar numeric.
Data Types: double

RhoSV — Correlation between Weiner processes for underlying asset and its variance
scalar numeric

Correlation between the Weiner processes for the underlying asset and its variance, specified as a
scalar numeric.
Data Types: double

MeanJ — Mean of random percentage jump size
scalar decimal

Mean of the random percentage jump size (J), specified as a scalar decimal where log(1+J) is
normally distributed with the mean (log(1+MeanJ)-0.5*JumpVol^2) and the standard deviation
JumpVol.
Data Types: double

JumpVol — Standard deviation of log(1+J)
scalar decimal

Standard deviation of log(1+J) where J is the random percentage jump size, specified as a scalar
decimal.
Data Types: double

JumpFreq — Annual frequency of Poisson jump process
scalar numeric

Annual frequency of the Poisson jump process, specified as a scalar numeric.
Data Types: double
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceGrid] =
optByBatesFD(Rate,AssetPrice,Settle,ExerciseDates,OptSpec,Strike,V0,ThetaV,Ka
ppa,SigmaV,RhoSV,MeanJ,JumpVol,JumpFreq,'Basis',7)

Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count basis of the instrument, specified as the comma-separated pair consisting of 'Basis' and
a scalar using a supported value:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

DividendYield — Continuously compounded underlying asset yield
0 (default) | scalar numeric

Continuously compounded underlying asset yield, specified as the comma-separated pair consisting of
'DividendYield' and a scalar numeric.

Note If you enter a value for DividendYield, then set DividendAmounts and ExDividendDates
= [ ] or do not enter them. If you enter values for DividendAmounts and ExDividendDates, then
set DividendYield = 0.

Data Types: double
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DividendAmounts — Cash dividend amounts
[ ] (default) | vector

Cash dividend amounts, specified as the comma-separated pair consisting of 'DividendAmounts'
and an NDIV-by-1 vector.

Note Each dividend amount must have a corresponding ex-dividend date. If you enter values for
DividendAmounts and ExDividendDates, then set DividendYield = 0.

Data Types: double

ExDividendDates — Ex-dividend dates
[ ] (default) | serial date number | date character vector | string array | datetime array

Ex-dividend dates, specified as the comma-separated pair consisting of 'ExDividendDates' and an
NDIV-by-1 vector of serial date numbers, date character vectors, string arrays, or datetime arrays.
Data Types: double | char | string | datetime

AssetPriceMax — Maximum price for price grid boundary
if unspecified, value is calculated based on asset price distribution at maturity (default) | positive
scalar numeric

Maximum price for the price grid boundary, specified as the comma-separated pair consisting of
'AssetPriceMax' and a positive scalar numeric.
Data Types: double

VarianceMax — Maximum variance for variance grid boundary
1.0 (default) | scalar numeric

Maximum variance for the variance grid boundary, specified as the comma-separated pair consisting
of 'VarianceMax' as a scalar numeric.
Data Types: double

AssetGridSize — Size of asset grid for finite difference grid
400 (default) | scalar numeric

Size of the asset grid for finite difference grid, specified as the comma-separated pair consisting of
'AssetGridSize' and a scalar numeric.
Data Types: double

VarianceGridSize — Number of nodes of variance grid for finite difference grid
200 (default) | scalar numeric

Number of nodes of the variance grid for the finite difference grid, specified as the comma-separated
pair consisting of 'VarianceGridSize' and a scalar numeric.
Data Types: double

TimeGridSize — Number of nodes of time grid for finite difference grid
100 (default) | positive numeric scalar
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Number of nodes of the time grid for the finite difference grid, specified as the comma-separated pair
consisting of 'TimeGridSize' and a positive numeric scalar.
Data Types: double

AmericanOpt — Option type
0 (European) (default) | scalar with value of [0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and a scalar flag
with one of these values:

• 0 — European
• 1 — American

Data Types: double

Output Arguments
Price — Option price
scalar numeric

Option price, returned as a scalar numeric.

PriceGrid — Grid containing prices calculated by the finite difference method
grid

Grid containing prices calculated by the finite difference method, returned as a two-dimensional grid
with size AssetGridSize ⨉ TimeGridSize. The number of columns is not necessarily equal to the
TimeGridSize because exercise the function adds exercise and ex-dividend dates to the time grid.
PriceGrid(:, :, end) contains the price for t = 0.

AssetPrices — Prices of the asset
vector

Prices of the asset corresponding to the first dimension of PriceGrid, returned as a vector.

Variances — Variances
vector

Variances corresponding to the second dimension of PriceGrid, returned as a vector.

Times — Times
vector

Times corresponding to the third dimension of PriceGrid, returned as a vector.

More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.
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The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.

Bates Stochastic Volatility Jump Diffusion Model

The Bates model [1] extends the Heston model by including stochastic volatility and (similar to
Merton) jump diffusion parameters in the modeling of sudden asset price movements.

The stochastic differential equation is:

dSt = (r − q− λpμJ)Stdt + vtStdWt + JStdPt

dvt = κ(θ− vt)dt + σv vtdWt

E dWtdWt
v = pdt

prob(dPt = 1) = λpdt

where:

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

vt is the asset price variance at time t.

J is the random percentage jump size conditional on the jump occurring, where ln(1+J) is normally

distributed with mean ln(1 + μJ)−
δ2

2  and the standard deviation δ, and (1+J) has a lognormal
distribution:

1
(1 + J)δ 2πexp

− ln(1 + J)− ln(1 + μJ −
δ2
2

2δ2

2

where:

v0 is the initial variance of the asset price at t = 0 (v0> 0).

θ is the long-term variance level for (θ > 0).

κ is the mean reversion speed for (κ > 0).
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σv is the volatility of variance for (σv > 0).

p is the correlation between the Weiner processes Wt and Wt
v for (-1 ≤ p ≤ 1).

μJ is the mean of J for (μJ > -1).

δ is the standard deviation of ln(1+J) for (δ ≥ 0).

λp is the annual frequency (intensity) of Poisson process Pt for (λp ≥ 0).

References
[1] Bates, D. S. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark

Options." The Review of Financial Studies. Vol. 9, Number 1, 1996.

See Also
optByLocalVolFD | optSensByLocalVolFD | optByHestonFD | optSensByHestonFD |
optSensByBatesFD | optByMertonFD | optSensByMertonFD

Topics
“Vanilla Option” on page 3-27
“Supported Equity Derivative Functions” on page 3-19
“Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument Objects” on
page 1-82

Introduced in R2019a
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optSensByBatesFD
Option price and sensitivities by Bates model using finite differences

Syntax
[PriceSens,PriceGrid,AssetPrices,Variances,Times] = optSensByBatesFD(Rate,
AssetPrice,Settle,ExerciseDates,OptSpec,Strike,V0,ThetaV,Kappa,SigmaV,RhoSV,
MeanJ,JumpVol,JumpFreq)
[PriceSens,PriceGrid,AssetPrices,Variances,Times] = optSensByBatesFD( ___ ,
Name,Value)

Description
[PriceSens,PriceGrid,AssetPrices,Variances,Times] = optSensByBatesFD(Rate,
AssetPrice,Settle,ExerciseDates,OptSpec,Strike,V0,ThetaV,Kappa,SigmaV,RhoSV,
MeanJ,JumpVol,JumpFreq) computes a vanilla European or American option price and sensitivities
by the Bates model, using the alternating direction implicit (ADI) method.

[PriceSens,PriceGrid,AssetPrices,Variances,Times] = optSensByBatesFD( ___ ,
Name,Value) specifies options using one or more name-value pair arguments in addition to the input
arguments in the previous syntax.

Examples

Compute Price and Sensitivities for an American Option Using the Bates Model

Define the option variables and Bates model parameters.

AssetPrice = 90;
Strike = 100;
Rate = 0.03;
Settle = '01-Jan-2018';
ExerciseDates = '02-Jul-2018';

V0 = 0.04;
ThetaV = 0.04;
Kappa = 2;
SigmaV = 0.25;
RhoSV = -0.5;
JumpVol = 0.4;
MeanJ = exp(-0.5+JumpVol.^2/2)-1;
JumpFreq = 0.2;

Compute the American put option price and sensitivities using the finite differences method.

OptSpec = 'Put';
[Price, Delta, Gamma, Rho, Theta, Vega, VegaLT] = optSensByBatesFD(Rate, AssetPrice, Settle, ExerciseDates,...
OptSpec, Strike, V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, 'AmericanOpt', 1,...
'OutSpec', ["Price" "Delta" "Gamma" "Rho" "Theta" "Vega" "VegaLT"])

Price = 11.6116
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Delta = -0.6578

Gamma = 0.0366

Rho = -20.1643

Theta = -4.8425

Vega = 14.3216

VegaLT = 8.1849

Input Arguments
Rate — Continuously compounded risk-free interest rate
scalar decimal

Continuously compounded risk-free interest rate, specified as a scalar decimal.
Data Types: double

AssetPrice — Current underlying asset price
scalar numeric

Current underlying asset price, specified as a scalar numeric.
Data Types: double

Settle — Option settlement date
serial date number | date character vector | datetime | string scalar

Option settlement date, specified as a scalar using a serial date number, date character vector,
datetime object, or string scalar.
Data Types: double | char | datetime | string

ExerciseDates — Option exercise dates
serial date number | date character vector | datetime array | string array

Option exercise dates, specified as a serial date number, date character vector, datetime object or
string scalar:

• For a European option, use a scalar serial date number, date character vector, datetime array, or
string array. For a European option, ExerciseDates contains only one value: the option expiry
date.

• For an American option, use a 1-by-2 vector of serial date numbers, date character vectors,
datetime arrays, or string arrays to specify the exercise date boundaries. An American option can
be exercised on any date between or including the pair of dates. If only one non-NaN date is listed,
then the option can be exercised between Settle date and the single listed value in
ExerciseDates.

Data Types: double | char | datetime | string

OptSpec — Definition of option
character vector with value of 'call' or 'put' | string with value of "call" or "put"
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Definition of the option, specified as a scalar using a character vector or string with a value of
'call' or 'put'.
Data Types: cell | string

Strike — Option strike price value
numeric

Option strike price value, specified as a scalar numeric.
Data Types: double

V0 — Initial variance of underlying asset
scalar numeric

Initial variance of the underling asset, specified as a scalar numeric.
Data Types: double

ThetaV — Long-term variance of underlying asset
scalar numeric

Long-term variance of the underling asset, specified as a scalar numeric.
Data Types: double

Kappa — Mean revision speed for the variance of underlying asset
scalar numeric

Mean revision speed for the underlying asset, specified as a scalar numeric.
Data Types: double

SigmaV — Volatility of the variance of underlying asset
scalar numeric

Volatility of the variance of the underling asset, specified as a scalar numeric.
Data Types: double

RhoSV — Correlation between Weiner processes for underlying asset and its variance
scalar numeric

Correlation between the Weiner processes for the underlying asset and its variance, specified as a
scalar numeric.
Data Types: double

MeanJ — Mean of random percentage jump size
scalar decimal

Mean of the random percentage jump size (J), specified as a scalar decimal where log(1+J) is
normally distributed with the mean (log(1+MeanJ)-0.5*JumpVol^2) and the standard deviation
JumpVol.
Data Types: double

JumpVol — Standard deviation of log(1+J)
scalar decimal
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Standard deviation of log(1+J) where J is the random percentage jump size, specified as a scalar
decimal.
Data Types: double

JumpFreq — Annual frequency of Poisson jump process
scalar numeric

Annual frequency of the Poisson jump process, specified as a scalar numeric.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [PriceSens,PriceGrid] =
optSensByBatesFD(Rate,AssetPrice,Settle,ExerciseDates,OptSpec,Strike,V0,Theta
V,Kappa,SigmaV,RhoSV,MeanJ,JumpVol,JumpFreq,'Basis',7,'OutSpec','delta')

Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count basis of the instrument, specified as the comma-separated pair consisting of 'Basis' and
a scalar using a supported value:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

DividendYield — Continuously compounded underlying asset yield
0 (default) | scalar numeric
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Continuously compounded underlying asset yield, specified as the comma-separated pair consisting of
'DividendYield' and a scalar numeric.

Note If you enter a value for DividendYield, then set DividendAmounts and ExDividendDates
= [ ] or do not enter them. If you enter values for DividendAmounts and ExDividendDates, then
set DividendYield = 0.

Data Types: double

DividendAmounts — Cash dividend amounts
[ ] (default) | vector

Cash dividend amounts, specified as the comma-separated pair consisting of 'DividendAmounts'
and an NDIV-by-1 vector.

Note Each dividend amount must have a corresponding ex-dividend date. If you enter values for
DividendAmounts and ExDividendDates, then set DividendYield = 0.

Data Types: double

ExDividendDates — Ex-dividend dates
[ ] (default) | serial date number | date character vector | string array | datetime array

Ex-dividend dates, specified as the comma-separated pair consisting of 'ExDividendDates' and an
NDIV-by-1 vector of serial date numbers, date character vectors, string arrays, or datetime arrays.
Data Types: double | char | string | datetime

AssetPriceMax — Maximum price for price grid boundary
if unspecified, value is calculated based on asset price distribution at maturity (default) | positive
scalar numeric

Maximum price for the price grid boundary, specified as the comma-separated pair consisting of
'AssetPriceMax' and a positive scalar numeric.
Data Types: double

VarianceMax — Maximum variance for variance grid boundary
1.0 (default) | scalar numeric

Maximum variance for the variance grid boundary, specified as the comma-separated pair consisting
of 'VarianceMax' as a scalar numeric.
Data Types: double

AssetGridSize — Size of asset grid for finite difference grid
400 (default) | scalar numeric

Size of the asset grid for finite difference grid, specified as the comma-separated pair consisting of
'AssetGridSize' and a scalar numeric.
Data Types: double
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VarianceGridSize — Number of nodes of variance grid for finite difference grid
200 (default) | scalar numeric

Number of nodes of the variance grid for the finite difference grid, specified as the comma-separated
pair consisting of 'VarianceGridSize' and a scalar numeric.
Data Types: double

TimeGridSize — Number of nodes of time grid for finite difference grid
100 (default) | positive numeric scalar

Number of nodes of the time grid for the finite difference grid, specified as the comma-separated pair
consisting of 'TimeGridSize' and a positive numeric scalar.
Data Types: double

AmericanOpt — Option type
0 (European) (default) | scalar with value of [0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and a scalar flag
with one of these values:

• 0 — European
• 1 — American

Data Types: double

OutSpec — Define outputs
['price'] (default) | cell array of character vectors with values 'price', 'delta', 'gamma',
'vega', 'rho', 'theta', and 'vegalt' | string array with values "price", "delta", "gamma",
"vega", "rho", "theta", and "vegalt"

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a NOUT- by-1 or
a 1-by-NOUT string array or cell array of character vectors with supported values.

Note 'vega' is the sensitivity with respect to the initial volatility sqrt(V0). In contrast, 'vegalt' is
the sensitivity with respect to the long-term volatility sqrt(ThetaV).

Example: OutSpec = ['price','delta','gamma','vega','rho','theta','vegalt']
Data Types: string | cell

Output Arguments
PriceSens — Option price or sensitivities
numeric

Option price or sensitivities, returned as a numeric. The name-value pair argument OutSpec
determines the types and order of the outputs.

PriceGrid — Grid containing prices calculated by the finite difference method
grid

Grid containing prices calculated by the finite difference method, returned as a two-dimensional grid
with size AssetGridSize ⨉ TimeGridSize. The number of columns is not necessarily equal to the
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TimeGridSize because the function adds exercise and ex-dividend dates to the time grid.
PriceGrid(:, :, end) contains the price for t = 0.

AssetPrices — Prices of the asset
vector

Prices of the asset corresponding to the first dimension of PriceGrid, returned as a vector.

Variances — Variances
vector

Variances corresponding to the second dimension of PriceGrid, returned as a vector.

Times — Times
vector

Times corresponding to the third dimension of PriceGrid, returned as a vector.

More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.

Bates Stochastic Volatility Jump Diffusion Model

The Bates model [1] extends the Heston model by including stochastic volatility and (similar to
Merton) jump diffusion parameters in the modeling of sudden asset price movements.

The stochastic differential equation is

dSt = (r − q− λpμJ)Stdt + vtStdWt + JStdPt

dvt = κ(θ− vt)dt + σv vtdWt

E dWtdWt
v = pdt

prob(dPt = 1) = λpdt

where:
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r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

vt is the asset price variance at time t.

J is the random percentage jump size conditional on the jump occurring, where ln(1+J) is normally

distributed with mean ln(1 + μJ)−
δ2

2  and the standard deviation δ, and (1+J) has a lognormal
distribution:

1
(1 + J)δ 2πexp

− ln(1 + J)− ln(1 + μJ −
δ2
2

2δ2

2

where:

v0 is the initial variance of the asset price at t = 0 (v0> 0).

θ is the long-term variance level for (θ > 0).

κ is the mean reversion speed for (κ > 0).

σv is the volatility of variance for (σv > 0).

p is the correlation between the Weiner processes Wt and Wt
v for (-1 ≤ p ≤ 1).

μJ is the mean of J for (μJ > -1).

δ is the standard deviation of ln(1+J) for (δ ≥ 0).

λp is the annual frequency (intensity) of Poisson process Pt for (λp ≥ 0).

References
[1] Bates, D. S. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark

Options." The Review of Financial Studies. Vol. 9, Number 1, 1996.

See Also
optByLocalVolFD | optSensByLocalVolFD | optByHestonFD | optSensByHestonFD |
optByBatesFD | optByMertonFD | optSensByMertonFD

Topics
“Vanilla Option” on page 3-27
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2019a
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optByBatesFFT
Option price by Bates model using FFT and FRFT

Syntax
[Price,StrikeOut] = optByBatesFFT(Rate,AssetPrice,Settle,Maturity,OptSpec,
Strike,V0,ThetaV,Kappa,SigmaV,RhoSV,MeanJ,JumpVol,JumpFreq)
[Price,StrikeOut] = optByBatesFFT( ___ ,Name,Value)

Description
[Price,StrikeOut] = optByBatesFFT(Rate,AssetPrice,Settle,Maturity,OptSpec,
Strike,V0,ThetaV,Kappa,SigmaV,RhoSV,MeanJ,JumpVol,JumpFreq) computes vanilla
European option price by Bates model, using Carr-Madan FFT and Chourdakis FRFT methods.

[Price,StrikeOut] = optByBatesFFT( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Workflow for Plotting an Option Price Surface Using the Bates Model

Use optByBatesFFT to calibrate the FFT strike grid, compute option prices, and plot an option price
surface.

Define Option Variables and Bates Model Parameters

AssetPrice = 80;
Rate = 0.03;
DividendYield = 0.02;
OptSpec = 'call';

V0 = 0.04;
ThetaV = 0.05;
Kappa = 1.0;
SigmaV = 0.2;
RhoSV = -0.7;
MeanJ = 0.02;
JumpVol = 0.08;
JumpFreq = 2;

Compute Option Prices for the Entire FFT (or FRFT) Strike Grid, Without Specifying Strike

Compute option prices and also output the corresponding strikes. If the Strike input is empty ([]),
option prices will be computed on the entire FFT (or FRFT) strike grid. The FFT (or FRFT) strike grid
is determined as exp(log-strike grid), where each column of the log-strike grid has NumFFT
points with LogStrikeStep spacing that are roughly centered around each element of
log(AssetPrice). The default value for NumFFT is 2^12. In addition to the prices in the first
output, the optional last output contains the corresponding strikes.

11 Functions

11-1104



Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = []; % Strike is not specified (will use the entire FFT strike grid)

% Compute option prices for the entire FFT strike grid
[Call, Kout] = optByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield);

% Show the lowest and highest strike values on the FFT strike grid
format
MinStrike = Kout(1) % Lowest possible strike in the current FFT strike grid

MinStrike = 2.9205e-135

MaxStrike = Kout(end) % Highest possible strike in the current FFT strike grid

MaxStrike = 1.8798e+138

% Show a subset of the strikes and corresponding option prices
Range = (2046:2052);
[Kout(Range) Call(Range)]

ans = 7×2

   50.4929   29.4990
   58.8640   21.4545
   68.6231   12.8544
   80.0000    5.3484
   93.2631    1.2404
  108.7251    0.1648
  126.7505    0.0152

Change the Number of FFT (or FRFT) Points and Compare with optByBatesNI

Try a different number of FFT (or FRFT) points, and compare the results with direct numerical
integration. Unlike optByBatesFFT, which uses FFT (or FRFT) techniques for fast computation
across the whole range of strikes, the optByBatesNI function uses direct numerical integration and
it is typically slower, especially for multiple strikes. However, the values computed by optByBatesNI
can serve as a benchmark for adjusting the settings for optByBatesFFT.

% Try a smaller number of FFT (or FRFT) points 
% (e.g. for faster performance or smaller memory footprint)
NumFFT = 2^10; % Smaller than the default value of 2^12
Strike = []; % Strike is not specified (will use the entire FFT strike grid)
[Call, Kout] = optByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'NumFFT', NumFFT);

% Compare with numerical integration method
Range = (510:516);
Strike = Kout(Range);
CallFFT = Call(Range);
CallNI = optByBatesNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield);
Error = abs(CallFFT-CallNI);
table(Strike, CallFFT, CallNI, Error)
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ans=7×4 table
    Strike     CallFFT       CallNI         Error  
    ______    _________    ___________    _________

    12.696       66.237         66.696      0.45912
    23.449        55.86         56.103      0.24239
    43.312       36.418         36.541      0.12246
        80       5.4029         5.3484     0.054469
    147.76     0.044921      0.0010864     0.043835
    272.93    0.0094655    -7.8249e-08    0.0094656
    504.11    0.0024986    -3.3873e-07    0.0024989

Make Further Adjustments to FFT (or FRFT)

If the values in the output CallFFT are significantly different from those in CallNI, try making
adjustments to optByBatesFFT settings, such as CharacteristicFcnStep, LogStrikeStep,
NumFFT, DampingFactor, and so on. Note that if (LogStrikeStep * CharacteristicFcnStep) is
2*pi / NumFFT, FFT is used. Otherwise, FRFT is used.

Strike = []; % Strike is not specified (will use the entire FFT or FRFT strike grid)
[Call, Kout] = optByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...    
    'DividendYield', DividendYield, 'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001);

% Compare with numerical integration method
Strike = Kout(Range);
CallFFT = Call(Range);
CallNI = optByBatesNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield);
Error = abs(CallFFT-CallNI);
table(Strike, CallFFT, CallNI, Error)

ans=7×4 table
    Strike    CallFFT    CallNI      Error   
    ______    _______    ______    __________

    79.76     5.4682     5.4682    1.5355e-08
    79.84     5.4281     5.4281    1.4833e-08
    79.92     5.3882     5.3882    1.4244e-08
       80     5.3484     5.3484     1.359e-08
    80.08     5.3088     5.3088    1.2875e-08
    80.16     5.2693     5.2693    1.2101e-08
    80.24       5.23       5.23    1.1272e-08

% Save the final FFT (or FRFT) strike grid for future reference. For
% example, it provides information about the range of |Strike| inputs for
% which the FFT (or FRFT) operation is valid.
FFTStrikeGrid = Kout;
MinStrike = FFTStrikeGrid(1) % Strike cannot be less than MinStrike

MinStrike = 47.9437

MaxStrike = FFTStrikeGrid(end) % Strike cannot be greater than MaxStrike

MaxStrike = 133.3566
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Compute the Option Price for a Single Strike

Once the desired FFT (or FRFT) settings are determined, use the Strike input to specify the strikes
(rather than providing an empty array). If the specified strikes do not match a value on the FFT (or
FRFT) strike grid, the outputs are interpolated on the specified strikes.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = 80; 

Call = optByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV,  MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001)

Call = 5.3484

Compute the Option Prices for a Vector of Strikes

Use the Strike input to specify the strikes.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = (76:2:84)';

Call = optByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV,  MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001)

Call = 5×1

    7.5765
    6.4020
    5.3484
    4.4173
    3.6073

Compute the Option Prices for a Vector of Strikes and a Vector of Dates of the Same
Lengths

Use the Strike input to specify the strikes. Also, the Maturity input can be a vector, but it must
match the length of the Strike vector if the ExpandOutput name-value pair argument is not set to
"true".

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, [12 18 24 30 36]); % Five maturities
Strike = [76 78 80 82 84]'; % Five strikes

Call = optByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV,  MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001) % Five values in vector output

Call = 5×1

    9.7516
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   10.3931
   10.8865
   11.2990
   11.6491

Expand the Outputs for a Surface

Set the ExpandOutput name-value pair argument to "true" to expand the outputs into NStrikes-
by-NMaturities matrices. In this case, they are square matrices.

[Call, Kout] = optByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV,  MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001, 'ExpandOutput', true) % (5 x 5) matrix output

Call = 5×5

    9.7516   11.4387   12.8395   14.0588   15.1361
    8.6554   10.3931   11.8344   13.0890   14.1980
    7.6432    9.4149   10.8865   12.1693   13.3046
    6.7153    8.5035    9.9952   11.2990   12.4553
    5.8705    7.6581    9.1594   10.4771   11.6491

Kout = 5×5

    76    76    76    76    76
    78    78    78    78    78
    80    80    80    80    80
    82    82    82    82    82
    84    84    84    84    84

Compute Option Prices for a Vector of Strikes and a Vector of Dates of Different Lengths

When ExpandOutput is "true", NStrikes do not have to match NMaturities (that is, the output
NStrikes-by-NMaturities matrix can be rectangular).

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*(0.5:0.5:3)'); % Six maturities
Strike = (76:2:84)'; % Five strikes

Call = optByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV,  MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001, 'ExpandOutput', true) % (5 x 6) matrix output

Call = 5×6

    7.5765    9.7516   11.4387   12.8395   14.0588   15.1361
    6.4020    8.6554   10.3931   11.8344   13.0890   14.1980
    5.3484    7.6432    9.4149   10.8865   12.1693   13.3046
    4.4173    6.7153    8.5035    9.9952   11.2990   12.4553
    3.6073    5.8705    7.6581    9.1594   10.4771   11.6491
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Compute the Option Prices for a Vector of Strikes and a Vector of Asset Prices

When ExpandOutput is "true", the output can also be a NStrikes-by-NAssetPrices rectangular
matrix by accepting a vector of asset prices.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12); % Single maturity
ManyAssetPrices = [70 75 80 85]; % Four asset prices
Strike = (76:2:84)'; % Five strikes

Call = optByBatesFFT(Rate, ManyAssetPrices, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV,  MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001, 'ExpandOutput', true) % (5 x 4) matrix output

Call = 5×4

    4.2033    6.6918    9.7516   13.2808
    3.5558    5.8112    8.6554   11.9993
    2.9906    5.0181    7.6432   10.7934
    2.5018    4.3096    6.7153    9.6652
    2.0825    3.6818    5.8705    8.6158

Plot an Option Price Surface

Use the Strike input to specify the strikes. Increase the value for NumFFT to support a wider range
of strikes. Also, the Maturity input can be a vector. Set ExpandOutput to "true" to output the
surface as a NStrikes-by-NMaturities matrix.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*[1/12 0.25 (0.5:0.5:3)]');
Times = yearfrac(Settle, Maturity);
Strike = (2:2:200)';

% Increase |NumFFT| to support a wider range of strikes
NumFFT = 2^13;

Call = optByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV,  MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001, 'ExpandOutput', true);

[X,Y] = meshgrid(Times,Strike);

figure;
surf(X,Y,Call);
title('Price');
xlabel('Years to Option Expiry');
ylabel('Strike');
view(-112,34);
xlim([0 Times(end)]);
zlim([0 80]);
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Input Arguments
Rate — Continuously compounded risk-free interest rate
decimal

Continuously compounded risk-free interest rate, specified as a scalar decimal value.
Data Types: double

AssetPrice — Current underlying asset price
numeric

Current underlying asset price, specified as numeric value using a scalar or a NINST-by-1 or
NColumns-by-1 vector.

For more information on the proper dimensions for AssetPrice, see the name-value pair argument
ExpandOutput.
Data Types: double

Settle — Option settlement date
serial date number | date character vector | datetime | string array

Option settlement date, specified as a NINST-by-1 or NColumns-by-1 vector using serial date
numbers, date character vectors, datetime arrays, or string arrays. The Settle date must be before
the Maturity date.
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For more information on the proper dimensions for Settle, see the name-value pair argument
ExpandOutput.
Data Types: double | char | datetime | string

Maturity — Option maturity date
serial date number | date character vector | datetime | string array

Option maturity date, specified as a NINST-by-1 or NColumns-by-1 vector using serial date numbers,
date character vectors, datetime arrays, or string arrays.

For more information on the proper dimensions for Maturity, see the name-value pair argument
ExpandOutput.
Data Types: double | char | datetime | string

OptSpec — Definition of option
cell array of character vector with values 'call' or 'put' | string array with values "call" or
"put"

Definition of the option, specified as a NINST-by-1 or NColumns-by-1 vector using a cell array of
character vectors or string arrays with values 'call' or 'put'.

For more information on the proper dimensions for OptSpec, see the name-value pair argument
ExpandOutput.
Data Types: cell | string

Strike — Option strike price value
numeric

Option strike price value, specified as a NINST-by-1, NRows-by-1, NRows-by-NColumns vector of
strike prices.

If this input is an empty array ([]), option prices are computed on the entire FFT (or FRFT) strike
grid, which is determined as exp(log-strike grid). Each column of the log-strike grid has
'NumFFT' points with 'LogStrikeStep' spacing that are roughly centered around each element of
log(AssetPrice).

For more information on the proper dimensions for Strike, see the name-value pair argument
ExpandOutput.
Data Types: double

V0 — Initial variance of underlying asset
numeric

Initial variance of the underling asset, specified as a scalar numeric value.
Data Types: double

ThetaV — Long-term variance of underlying asset
numeric

Long-term variance of the underling asset, specified as a scalar numeric value.
Data Types: double
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Kappa — Mean revision speed for the variance of underlying asset
numeric

Mean revision speed for the underling asset, specified as a scalar numeric value.
Data Types: double

SigmaV — Volatility of the variance of underlying asset
numeric

Volatility of the variance of the underling asset, specified as a scalar numeric value.
Data Types: double

RhoSV — Correlation between Weiner processes for underlying asset and its variance
numeric

Correlation between the Weiner processes for the underlying asset and its variance, specified as a
scalar numeric value.
Data Types: double

MeanJ — Mean of the random percentage jump size
decimal

Mean of the random percentage jump size (J), specified as a scalar decimal value where log(1+J) is
normally distributed with mean (log(1+MeanJ)-0.5*JumpVol^2) and the standard deviation
JumpVol.
Data Types: double

JumpVol — Standard deviation of log(1+J)
decimal

Standard deviation of log(1+J) where J is the random percentage jump size, specified as a scalar
decimal value.
Data Types: double

JumpFreq — Annual frequency of Poisson jump process
numeric

Annual frequency of Poisson jump process, specified as a scalar numeric value.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price, StrikeOut] =
optByBatesFFT(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,V0,ThetaV,Kappa,
SigmaV,RhoSV,MeanJ,JumpVol,JumpFreq,'Basis',7)
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Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count of the instrument, specified as the comma-separated pair consisting of 'Basis' and a
scalar using a supported value:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

DividendYield — Continuously compounded underlying asset yield
0 (default) | numeric

Continuously compounded underlying asset yield, specified as the comma-separated pair consisting of
'DividendYield' and a scalar numeric value.
Data Types: double

VolRiskPremium — Volatility risk premium
0 (default) | numeric

Volatility risk premium, specified as the comma-separated pair consisting of 'VolRiskPremium' and
a scalar numeric value.
Data Types: double

LittleTrap — Flag indicating Little Heston Trap formulation
true (default) | logical with values true or false

Flag indicating Little Heston Trap formulation by Albrecher et al, specified as the comma-separated
pair consisting of 'LittleTrap' and a logical:

• true — Use the Albrecher et al formulation.
• false — Use the original Heston formation.

Data Types: logical
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NumFFT — Number of grid points in the characteristic function variable
4096 (default) | numeric

Number of grid points in the characteristic function variable and in each column of the log-strike
grid, specified as the comma-separated pair consisting of 'NumFFT' and a scalar numeric value.
Data Types: double

CharacteristicFcnStep — Characteristic function variable grid spacing
0.01 (default) | numeric

Characteristic function variable grid spacing, specified as the comma-separated pair consisting of
'CharacteristicFcnStep' and a scalar numeric value.
Data Types: double

LogStrikeStep — Log-strike grid spacing
2*pi/NumFFT/CharacteristicFcnStep (default) | numeric

Log-strike grid spacing, specified as the comma-separated pair consisting of 'LogStrikeStep' and
a scalar numeric value.

Note If (LogStrikeStep*CharacteristicFcnStep) is 2*pi/NumFFT, FFT is used. Otherwise,
FRFT is used.

Data Types: double

DampingFactor — Damping factor for Carr-Madan formulation
1.5 (default) | numeric

Damping factor for Carr-Madan formulation, specified as the comma-separated pair consisting of
'DampingFactor' and a scalar numeric value.
Data Types: double

Quadrature — Type of quadrature
"simpson" (default) | character vector with values:'simpson' or 'trapezoidal' | string array
with values: "simpson" or "trapezoidal"

Type of quadrature, specified as the comma-separated pair consisting of 'Quadrature' and a single
character vector or string array with a value of 'simpson' or 'trapezoidal'.
Data Types: char | string

ExpandOutput — Flag to expand the outputs
false (outputs are NINST-by-1 vectors) (default) | logical with value of true or false

Flag to expand the outputs, specified as the comma-separated pair consisting of 'ExpandOutput'
and a logical:

• true — If true, the outputs are NRows-by- NColumns matrices. NRows is the number of strikes
for each column and it is determined by the Strike input. For example, Strike can be a NRows-
by-1 vector, or a NRows-by-NColumns matrix. If Strike is empty, NRows is equal to NumFFT.
NColumns is determined by the sizes of AssetPrice, Settle, Maturity, and OptSpec, which
must all be either scalar or NColumns-by-1 vectors.
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• false — If false, the outputs are NINST-by-1 vectors. Also, the inputs Strike, AssetPrice,
Settle, Maturity, and OptSpec must all be either scalar or NINST-by-1 vectors.

Data Types: logical

Output Arguments
Price — Option prices
numeric

Option prices, returned as a NINST-by-1, or NRows-by-NColumns, depending on ExpandOutput.

StrikeOut — Strikes corresponding to Price
numeric

Strikes corresponding to Price, returned as a NINST-by-1, or NRows-by-NColumns, depending on
ExpandOutput.

More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.

Bates Stochastic Volatility Jump Diffusion Model

The Bates model (Bates (1996)) is an extension of the Heston model, where, in addition to stochastic
volatility, the jump diffusion parameters similar to Merton (1976) were also added to model sudden
asset price movements.

The stochastic differential equation is:

dSt = (r − q− λpμJ)Stdt + vtStdWt + JStdPt

dvt = κ(θ− vt)dt + σv vtdWt

E dWtdWt
v = pdt

prob(dPt = 1) = λpdt
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where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

vt is the asset price variance at time t.

J is the random percentage jump size conditional on the jump occurring, where ln(1+J) is normally

distributed with mean ln(1 + μJ)−
δ2

2  and the standard deviation δ, and (1+J) has a lognormal
distribution:

1
(1 + J)δ 2πexp

− ln(1 + J)− ln(1 + μJ −
δ2
2

2δ2

2

v0 is the initial variance of the asset price at t = 0 (v0> 0).

θ is the long-term variance level for (θ > 0).

κ is the mean reversion speed for (κ > 0).

σv is the volatility of variance for (σv > 0).

p is the correlation between the Weiner processes Wt and Wt
v for (-1 ≤ p ≤ 1).

μJ is the mean of J for (μJ > -1).

δ is the standard deviation of ln(1+J) for (δ ≥ 0).

λp is the annual frequency (intensity) of Poisson process Pt for (λp ≥ 0).

The characteristic function fBates j(ϕ) for j = 1 (asset price mean measure) and j =2 (risk-neutral
measure) is:
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fBates(ϕ) = exp(C j + D jv0 + iϕlnSt)exp λpτ(1 + μJ
mj + 1

2 (1 + μ j)iϕeδ2(mjiϕ + (iϕ)2
2 )− 1 − λpτμJiϕ)

m j =
m1 = 1

2

m2 = − 1
2

C j = (r − q)iϕτ + κθ
σv2 b j− pσviϕ + d j τ − 2ln

1− g je
djτ

1− g j

D j =
b j− pσviϕ + d j

σv
2

1− edjτ

1− g je
djτ

g j =
b j− pσviϕ + d j
b j− pσviϕ− d j

d j = b j− pσviϕ
2− σv

2 2u jiϕ− ϕ2

where for  j = 1, 2:

u1 = 1
2, u2 = − 1

2, b1 = κ + λVolRisk− pσv, b2 = κ + λVolRisk

where

ϕ is the characteristic function variable.

ƛVolRisk is the volatility risk premium.

τ is the time to maturity for (τ = T - t).

i is the unit imaginary number for (i2= -1).

The definitions for Cj and Dj under “The Little Heston Trap” by Albrecher et al. (2007) are:

C j = (r − q)iϕτ + κθ
σv2 b j− pσviϕ− d j τ − 2ln

1− ε je
−djτ

1− ε j

D j =
b j− pσviϕ− d j

σv
2

1− e−djτ

1− ε je
−djτ

ε j =
b j− pσviϕ− d j
b j− pσviϕ + d j

Carr-Madan Formulation

The Carr and Madan (1999) formulation is a popular modified implementation of Heston (1993)
framework.

Rather than computing the probabilities P1 and P2 as intermediate steps, Carr and Madan developed
an alternative expression so that taking its inverse Fourier transform gives the option price itself
directly.
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Call(k) = e−αk

π ∫0 ∞Re e−iukψ(u) du

ψ(u) =
e−rτf2(ϕ = (u− (α + 1)i))
α2 + α− u2 + iu(2α + 1)

Put(K) = Call(K) + Ke−rτ − Ste−qτ

where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

τ is time to maturity (τ = T-t).

Call(K) is the call price at strike K.

Put(K) is the put price at strike K

i is a unit imaginary number (i2= -1)

ϕ is the characteristic function variable.

α is the damping factor.

u is the characteristic function variable for integration, where ϕ = (u - (α+1)i).

f2(ϕ) is the characteristic function for P2.

P2 is the probability of St > K under the risk-neutral measure for the model.

To apply FFT or FRFT to this formulation, the characteristic function variable for integration, u, is
discretized into NumFFT(N) points with the step size CharacteristicFcnStep (Δu), and the log-
strike k is discretized into N points with the step size LogStrikeStep(Δk).

The discretized characteristic function variable for integration, uj(for j = 1,2,3,…,N), has a minimum
value of 0 and a maximum value of (N-1) (Δu), and it approximates the continuous integration range
from 0 to infinity.

The discretized log-strike grid, kn(for n = 1, 2, 3, N) is approximately centered around ln(St), with a
minimum value of

ln(St)−
N
2 Δk

and a maximum value of

ln(St) + N
2 − 1 Δk

Where the minimum allowable strike is

Stexp −N
2 Δk
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and the maximum allowable strike is

Stexp N
2 − 1 Δk

As a result of the discretization, the expression for the call option becomes

Call(kn) = Δue−αkn

π ∑
j = 1

N
Re e−iΔkΔu( j− 1)(n− 1)eiu j NΔk

2 − ln(St) ψ(u j) w j

where

Δu is the step size of discretized characteristic function variable for integration.

Δk is the step size of discretized log-strike.

N is the number of FFT/FRFT points

wj is the weights for quadrature used for approximating the integral.

FFT is used to evaluate the above expression if Δk and Δu are subject to the following constraint:

ΔkΔu = 2π
N

otherwise, the functions use the FRFT method described in Chourdakis (2005).
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Introduced in R2018a
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optSensByBatesFFT
Option price and sensitivities by Bates model using FFT and FRFT

Syntax
[PriceSens,StrikeOut] = optSensByBatesFFT(Rate,AssetPrice,Settle,Maturity,
OptSpec,Strike,V0,ThetaV,Kappa,SigmaV,RhoSV,MeanJ,JumpVol,JumpFreq)
[PriceSens,StrikeOut] = optSensByBatesFFT( ___ ,Name,Value)

Description
[PriceSens,StrikeOut] = optSensByBatesFFT(Rate,AssetPrice,Settle,Maturity,
OptSpec,Strike,V0,ThetaV,Kappa,SigmaV,RhoSV,MeanJ,JumpVol,JumpFreq) computes
vanilla European option price and sensitivities by Bates model, using Carr-Madan FFT and
Chourdakis FRFT methods.

[PriceSens,StrikeOut] = optSensByBatesFFT( ___ ,Name,Value) adds optional name-value
pair arguments.

Examples

Workflow for Plotting an Option Sensitivity Surface Using the Bates Model

Use optSensByBatesFFT to calibrate the FFT strike grid for sensitivities, compute option
sensitivities, and plot option sensitivity surfaces.

Define Option Variables and Bates Model Parameters

AssetPrice = 80;
Rate = 0.03;
DividendYield = 0.02;
OptSpec = 'call';

V0 = 0.04;
ThetaV = 0.05;
Kappa = 1.0;
SigmaV = 0.2;
RhoSV = -0.7;
MeanJ = 0.02;
JumpVol = 0.08;
JumpFreq = 2;

Compute the Option Sensitivities for the Entire FFT (or FRFT) Strike Grid, Without
Specifying "Strike"

Compute option sensitivities and also output the corresponding strikes. If the Strike input is empty
( [] ), option sensitivities will be computed on the entire FFT (or FRFT) strike grid. The FFT (or
FRFT) strike grid is determined as exp(log-strike grid), where each column of the log-strike
grid has NumFFT points with LogStrikeStep spacing that are roughly centered around each
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element of log(AssetPrice). The default value for NumFFT is 2^12. In addition to the sensitivities
in the first output, the optional last output contains the corresponding strikes.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = []; % Strike is not specified (will use the entire FFT strike grid)

% Compute option sensitivities for the entire FFT strike grid
[Delta, Kout] = optSensByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'OutSpec', "delta");

% Show the lowest and highest strike values on the FFT strike grid
format
MinStrike = Kout(1) % Lowest possible strike in the current FFT strike grid

MinStrike = 2.9205e-135

MaxStrike = Kout(end) % Highest possible strike in the current FFT strike grid

MaxStrike = 1.8798e+138

% Show a subset of the strikes and corresponding option sensitivities
Range = (2046:2052);
[Kout(Range) Delta(Range)]

ans = 7×2

   50.4929    0.9846
   58.8640    0.9585
   68.6231    0.8498
   80.0000    0.5630
   93.2631    0.1955
  108.7251    0.0319
  126.7505    0.0033

Change the Number of FFT (or FRFT) Points and Compare with optSensByBatesNI

Try a different number of FFT (or FRFT) points, and compare the results with numerical integration.
Unlike optSensByBatesFFT, which uses FFT (or FRFT) techniques for fast computation across the
whole range of strikes, the optSensByBatesNI function uses direct numerical integration and it is
typically slower, especially for multiple strikes. However, the values computed by
optSensByBatesNI can serve as a benchmark for adjusting the settings for optSensByBatesFFT.

% Try a smaller number of FFT points 
% (e.g. for faster performance or smaller memory footprint)
NumFFT = 2^10; % Smaller than the default value of 2^12
Strike = []; % Strike is not specified (will use the entire FFT strike grid)
[Delta, Kout] = optSensByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'OutSpec', "delta", 'NumFFT', NumFFT);

% Compare with numerical integration method
Range = (510:516);
Strike = Kout(Range);
DeltaFFT = Delta(Range);
DeltaNI = optSensByBatesNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, V0, ...
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    ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'OutSpec', "delta");
Error = abs(DeltaFFT-DeltaNI);
table(Strike, DeltaFFT, DeltaNI, Error)

ans=7×4 table
    Strike     DeltaFFT      DeltaNI        Error   
    ______    __________    __________    __________

    12.696        0.9265       0.99002      0.063524
    23.449       0.95153       0.99002      0.038497
    43.312       0.95928       0.98928      0.029994
        80        0.5355       0.56303      0.027531
    147.76     0.0016267    0.00025691     0.0013698
    272.93    0.00058267    1.8942e-09    0.00058267
    504.11    0.00017752    8.7099e-10    0.00017752

Make Further Adjustments to FFT (or FRFT)

If the values in the output DeltaFFT are significantly different from those in DeltaNI, try making
adjustments to optSensByBatesFFT settings, such as CharacteristicFcnStep, LogStrikeStep,
NumFFT, DampingFactor, and so on. Note that if (LogStrikeStep * CharacteristicFcnStep) is
2*pi/ NumFFT, FFT is used. Otherwise, FRFT is used.

Strike = []; % Strike is not specified (will use the entire FFT or FRFT strike grid)
[Delta, Kout] = optSensByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...    
    'DividendYield', DividendYield, 'OutSpec', "delta", 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001);

% Compare with numerical integration method
Strike = Kout(Range);
DeltaFFT = Delta(Range);
DeltaNI = optSensByBatesNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, V0, ...
    ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'OutSpec', "delta");
Error = abs(DeltaFFT-DeltaNI);
table(Strike, DeltaFFT, DeltaNI, Error)

ans=7×4 table
    Strike    DeltaFFT    DeltaNI      Error   
    ______    ________    _______    __________

    79.76     0.57037     0.57037    6.3042e-09
    79.84     0.56793     0.56793     7.156e-09
    79.92     0.56548     0.56548     7.975e-09
       80     0.56303     0.56303    8.7573e-09
    80.08     0.56057     0.56057    9.4992e-09
    80.16     0.55811     0.55811    1.0197e-08
    80.24     0.55564     0.55564    1.0847e-08

% Save the final FFT (or FRFT) strike grid for future reference. For
% example, it provides information about the range of Strike inputs for
% which the FFT (or FRFT) operation is valid.
FFTStrikeGrid = Kout;
MinStrike = FFTStrikeGrid(1) % Strike cannot be less than MinStrike

 optSensByBatesFFT

11-1123



MinStrike = 47.9437

MaxStrike = FFTStrikeGrid(end) % Strike cannot be greater than MaxStrike

MaxStrike = 133.3566

Compute the Option Sensitivity for a Single Strike

Once the desired FFT (or FRFT) settings are determined, use the Strike input to specify the strikes
rather than providing an empty array. If the specified strikes do not match a value on the FFT (or
FRFT) strike grid, the outputs are interpolated on the specified strikes.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = 80; 

Delta = optSensByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'OutSpec', "delta", 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001)

Delta = 0.5630

Compute the Option Sensitivities for a Vector of Strikes

Use the Strike input to specify the strikes.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = (76:2:84)';

Delta = optSensByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'OutSpec', "delta", 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001)

Delta = 5×1

    0.6807
    0.6234
    0.5630
    0.5011
    0.4392

Compute the Option Sensitivities for a Vector of Strikes and a Vector of Dates of the Same
Lengths

Use the Strike input to specify the strikes. Also, the Maturity input can be a vector, but it must
match the length of the Strike vector if the ExpandOutput name-value pair argument is not set to
"true".

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, [12 18 24 30 36]); % Five maturities
Strike = [76 78 80 82 84]'; % Five strikes

Delta = optSensByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
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    'DividendYield', DividendYield, 'OutSpec', "delta", 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001) % Five values in vector output

Delta = 5×1

    0.6625
    0.6232
    0.5958
    0.5748
    0.5577

Expand the Outputs for a Surface

Set the ExpandOutput name-value pair argument to "true" to expand the outputs into NStrikes-
by-NMaturities matrices. In this case, they are square matrices.

[Delta, Kout] = optSensByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'OutSpec', "delta", 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001, ...
    'ExpandOutput', true) % (5 x 5) matrix output

Delta = 5×5

    0.6625    0.6556    0.6515    0.6483    0.6455
    0.6222    0.6232    0.6239    0.6241    0.6238
    0.5805    0.5900    0.5958    0.5996    0.6019
    0.5381    0.5564    0.5674    0.5748    0.5798
    0.4954    0.5225    0.5389    0.5499    0.5577

Kout = 5×5

    76    76    76    76    76
    78    78    78    78    78
    80    80    80    80    80
    82    82    82    82    82
    84    84    84    84    84

Compute the Option Sensitivities for a Vector of Strikes and a Vector of Dates of Different
Lengths

When ExpandOutput is "true", NStrikes do not have to match NMaturities. That is, the output
NStrikes-by-NMaturities matrix can be rectangular.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*(0.5:0.5:3)'); % Six maturities
Strike = (76:2:84)'; % Five strikes

Delta = optSensByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'OutSpec', "delta", 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001, ...
    'ExpandOutput', true) % (5 x 6) matrix output

Delta = 5×6
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    0.6807    0.6625    0.6556    0.6515    0.6483    0.6455
    0.6234    0.6222    0.6232    0.6239    0.6241    0.6238
    0.5630    0.5805    0.5900    0.5958    0.5996    0.6019
    0.5011    0.5381    0.5564    0.5674    0.5748    0.5798
    0.4392    0.4954    0.5225    0.5389    0.5499    0.5577

Compute the Option Sensitivities for a Vector of Strikes and a Vector of Asset Prices

When ExpandOutput is "true", the output can also be a NStrikes-by-NAssetPrices rectangular
matrix by accepting a vector of asset prices.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12); % Single maturity
ManyAssetPrices = [70 75 80 85]; % Four asset prices
Strike = (76:2:84)'; % Five strikes

Delta = optSensByBatesFFT(Rate, ManyAssetPrices, Settle, Maturity, OptSpec, ...
    Strike, V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'OutSpec', "delta", 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001, ...
    'ExpandOutput', true) % (5 x 4) matrix output

Delta = 5×4

    0.4350    0.5579    0.6625    0.7457
    0.3881    0.5124    0.6222    0.7120
    0.3432    0.4670    0.5805    0.6763
    0.3010    0.4223    0.5381    0.6390
    0.2619    0.3789    0.4954    0.6002

Plot Option Sensitivity Surfaces

Use the Strike input to specify the strikes. Increase the value for NumFFT to support a wider range
of strikes. Also, the Maturity input can be a vector. Set ExpandOutput to "true" to output the
surfaces as NStrikes-by-NMaturities matrices.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*[1/12 0.25 (0.5:0.5:3)]');
Times = yearfrac(Settle, Maturity);
Strike = (2:2:200)';

% Increase 'NumFFT' to support a wider range of strikes
NumFFT = 2^13;

[Delta, Gamma, Rho, Theta, Vega, VegaLT] = optSensByBatesFFT(...
    Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001, ...
    'OutSpec', ["delta", "gamma", "rho", "theta", "vega", "vegalt"], ...
    'ExpandOutput', true);

[X,Y] = meshgrid(Times,Strike);

figure;
surf(X,Y,Delta);
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title('Delta');
xlabel('Years to Option Expiry');
ylabel('Strike');
view(-112,34);
xlim([0 Times(end)]);

figure;
surf(X,Y,Gamma)
title('Gamma')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,Rho)
title('Rho')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,Theta)
title('Theta')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,Vega)
title('Vega')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,VegaLT)
title('VegaLT')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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Input Arguments
Rate — Continuously compounded risk-free interest rate
decimal

Continuously compounded risk-free interest rate, specified as a scalar decimal value.
Data Types: double

AssetPrice — Current underlying asset price
numeric

Current underlying asset price, specified as numeric value using a scalar or a NINST-by-1 or
NColumns-by-1 vector.

For more information on the proper dimensions for AssetPrice, see the name-value pair argument
ExpandOutput.
Data Types: double

Settle — Option settlement date
serial date number | date character vector | datetime | string array

Option settlement date, specified as a NINST-by-1 or NColumns-by-1 vector using serial date
numbers, date character vectors, datetime arrays, or string arrays. The Settle date must be before
the Maturity date.
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For more information on the proper dimensions for Settle, see the name-value pair argument
ExpandOutput.
Data Types: double | char | datetime | string

Maturity — Option maturity date
serial date number | date character vector | datetime | string array

Option maturity date, specified as a NINST-by-1 or NColumns-by-1 vector using serial date numbers,
date character vectors, datetime arrays, or string arrays.

For more information on the proper dimensions for Maturity, see the name-value pair argument
ExpandOutput.
Data Types: double | char | datetime | string

OptSpec — Definition of option
cell array of character vector with values 'call' or 'put' | string array with values "call" or
"put"

Definition of the option, specified as a NINST-by-1 or NColumns-by-1 vector using a cell array of
character vectors or string arrays with values 'call' or 'put'.

For more information on the proper dimensions for OptSpec, see the name-value pair argument
ExpandOutput.
Data Types: cell | string

Strike — Option strike price value
numeric

Option strike price value, specified as a NINST-by-1, NRows-by-1, NRows-by-NColumns vector of
strike prices.

If this input is an empty array ([]), option prices are computed on the entire FFT (or FRFT) strike
grid, which is determined as exp(log-strike grid). Each column of the log-strike grid has
'NumFFT' points with 'LogStrikeStep' spacing that are roughly centered around each element of
log(AssetPrice).

For more information on the proper dimensions for Strike, see the name-value pair argument
ExpandOutput.
Data Types: double

V0 — Initial variance of underlying asset
numeric

Initial variance of the underling asset, specified as a scalar numeric value.
Data Types: double

ThetaV — Long-term variance of underlying asset
numeric

Long-term variance of the underling asset, specified as a scalar numeric value.
Data Types: double

 optSensByBatesFFT

11-1133



Kappa — Mean revision speed for the variance of underlying asset
numeric

Mean revision speed for the underling asset, specified as a scalar numeric value.
Data Types: double

SigmaV — Volatility of the variance of underlying asset
numeric

Volatility of the variance of the underling asset, specified as a scalar numeric value.
Data Types: double

RhoSV — Correlation between Weiner processes for underlying asset and its variance
numeric

Correlation between the Weiner processes for the underlying asset and its variance, specified as a
scalar numeric value.
Data Types: double

MeanJ — Mean of the random percentage jump size
decimal

Mean of the random percentage jump size (J), specified as a scalar decimal value where log(1+J) is
normally distributed with mean (log(1+MeanJ)-0.5*JumpVol^2) and the standard deviation
JumpVol.
Data Types: double

JumpVol — Standard deviation of log(1+J)
decimal

Standard deviation of log(1+J) where J is the random percentage jump size, specified as a scalar
decimal value.
Data Types: double

JumpFreq — Annual frequency of Poisson jump process
numeric

Annual frequency of Poisson jump process, specified as a scalar numeric value.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [PriceSens,StrikeOut] =
optSensByBatesFFT(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,V0,ThetaV,Ka
ppa,SigmaV,RhoSV,MeanJ,JumpVol,JumpFreq,'Basis',7)
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Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count of the instrument, specified as the comma-separated pair consisting of 'Basis' and a
scalar using a supported value:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

DividendYield — Continuously compounded underlying asset yield
0 (default) | numeric

Continuously compounded underlying asset yield, specified as the comma-separated pair consisting of
'DividendYield' and a scalar numeric value.
Data Types: double

VolRiskPremium — Volatility risk premium
0 (default) | numeric

Volatility risk premium, specified as the comma-separated pair consisting of 'VolRiskPremium' and
a scalar numeric value.
Data Types: double

LittleTrap — Flag indicating Little Heston Trap formulation
true (default) | logical with values true or false

Flag indicating Little Heston Trap formulation by Albrecher et al, specified as the comma-separated
pair consisting of 'LittleTrap' and a logical:

• true — Use the Albrecher et al formulation.
• false — Use the original Heston formation.

Data Types: logical
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OutSpec — Define outputs
["price"] (default) | string array with values "price", "delta", "gamma", "vega", "rho",
"theta", and "vegalt" | cell array of character vectors with values 'price', 'delta', 'gamma',
'vega', 'rho', 'theta', and 'vegalt'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a NOUT- by-1 or
a 1-by-NOUT string array or cell array of character vectors with supported values.

Note "vega" is the sensitivity with respect the initial volatility sqrt(V0). In contrast, "vegalt" is
the sensitivity with respect to the long-term volatility sqrt(ThetaV).

Example: OutSpec = ["price","delta","gamma","vega","rho","theta","vegalt"]
Data Types: string | cell

NumFFT — Number of grid points in the characteristic function variable
4096 (default) | numeric

Number of grid points in the characteristic function variable and in each column of the log-strike
grid, specified as the comma-separated pair consisting of 'NumFFT' and a scalar numeric value.
Data Types: double

CharacteristicFcnStep — Characteristic function variable grid spacing
0.01 (default) | numeric

Characteristic function variable grid spacing, specified as the comma-separated pair consisting of
'CharacteristicFcnStep' and a scalar numeric value.
Data Types: double

LogStrikeStep — Log-strike grid spacing
2*pi/NumFFT/CharacteristicFcnStep (default) | numeric

Log-strike grid spacing, specified as the comma-separated pair consisting of 'LogStrikeStep' and
a scalar numeric value.

Note If (LogStrikeStep*CharacteristicFcnStep) is 2*pi/NumFFT, FFT is used. Otherwise,
FRFT is used.

Data Types: double

DampingFactor — Damping factor for Carr-Madan formulation
1.5 (default) | numeric

Damping factor for Carr-Madan formulation, specified as the comma-separated pair consisting of
'DampingFactor' and a scalar numeric value.
Data Types: double

Quadrature — Type of quadrature
"simpson" (default) | character vector with values:'simpson' or 'trapezoidal' | string array
with values: "simpson" or "trapezoidal"
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Type of quadrature, specified as the comma-separated pair consisting of 'Quadrature' and a single
character vector or string array with a value of 'simpson' or 'trapezoidal'.
Data Types: char | string

ExpandOutput — Flag to expand the outputs
false (outputs are NINST-by-1 vectors) (default) | logical with value of true or false

Flag to expand the outputs, specified as the comma-separated pair consisting of 'ExpandOutput'
and a logical:

• true — If true, the outputs are NRows-by- NColumns matrices. NRows is the number of strikes
for each column and it is determined by the Strike input. For example, Strike can be a NRows-
by-1 vector, or a NRows-by-NColumns matrix. If Strike is empty, NRows is equal to NumFFT.
NColumns is determined by the sizes of AssetPrice, Settle, Maturity, and OptSpec, which
must all be either scalar or NColumns-by-1 vectors.

• false — If false, the outputs are NINST-by-1 vectors. Also, the inputs Strike, AssetPrice,
Settle, Maturity, and OptSpec must all be either scalar or NINST-by-1 vectors.

Data Types: logical

Output Arguments
PriceSens — Option prices or sensitivities
numeric

Option prices or sensitivities, returned as a NINST-by-1, or NRows-by-NColumns, depending on
ExpandOutput. The name-value pair argument OutSpec determines the types and order of the
outputs.

StrikeOut — Strikes corresponding to Price
numeric

Strikes corresponding to Price, returned as a NINST-by-1, or NRows-by-NColumns, depending on
ExpandOutput.

More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.
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K is the strike price.

For more information, see “Vanilla Option” on page 3-27.

Bates Stochastic Volatility Jump Diffusion Model

The Bates model (Bates (1996)) is an extension of the Heston model, where, in addition to stochastic
volatility, the jump diffusion parameters similar to Merton (1976) were also added to model sudden
asset price movements.

The stochastic differential equation is:

dSt = (r − q− λpμJ)Stdt + vtStdWt + JStdPt

dvt = κ(θ− vt)dt + σv vtdWt

E dWtdWt
v = pdt

prob(dPt = 1) = λpdt

where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

vt is the asset price variance at time t.

J is the random percentage jump size conditional on the jump occurring, where ln(1+J) is normally

distributed with mean ln(1 + μJ)−
δ2

2  and the standard deviation δ, and (1+J) has a lognormal
distribution:

1
(1 + J)δ 2πexp

− ln(1 + J)− ln(1 + μJ −
δ2
2

2δ2

2

v0 is the initial variance of the asset price at t = 0 (v0> 0).

θ is the long-term variance level for (θ > 0).

κ is the mean reversion speed for (κ > 0).

σv is the volatility of variance for (σv > 0).

p is the correlation between the Weiner processes Wt and Wt
v for (-1 ≤ p ≤ 1).

μJ is the mean of J for (μJ > -1).

δ is the standard deviation of ln(1+J) for (δ ≥ 0).

λp is the annual frequency (intensity) of Poisson process Pt for (λp ≥ 0).
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The characteristic function fBates j(ϕ) for j = 1 (asset price mean measure) and j =2 (risk-neutral
measure) is:

fBates(ϕ) = exp(C j + D jv0 + iϕlnSt)exp λpτ(1 + μJ
mj + 1

2 (1 + μ j)iϕeδ2(mjiϕ + (iϕ)2
2 )− 1 − λpτμJiϕ)

m j =
m1 = 1

2

m2 = − 1
2

C j = (r − q)iϕτ + κθ
σv2 b j− pσviϕ + d j τ − 2ln

1− g je
djτ

1− g j

D j =
b j− pσviϕ + d j

σv
2

1− edjτ

1− g je
djτ

g j =
b j− pσviϕ + d j
b j− pσviϕ− d j

d j = b j− pσviϕ
2− σv

2 2u jiϕ− ϕ2

where for  j = 1, 2:

u1 = 1
2, u2 = − 1

2, b1 = κ + λVolRisk− pσv, b2 = κ + λVolRisk

where

ϕ is the characteristic function variable.

ƛVolRisk is the volatility risk premium.

τ is the time to maturity for (τ = T - t).

i is the unit imaginary number for (i2= -1).

The definitions for Cj and Dj under “The Little Heston Trap” by Albrecher et al. (2007) are:

C j = (r − q)iϕτ + κθ
σv2 b j− pσviϕ− d j τ − 2ln

1− ε je
−djτ

1− ε j

D j =
b j− pσviϕ− d j

σv
2

1− e−djτ

1− ε je
−djτ

ε j =
b j− pσviϕ− d j
b j− pσviϕ + d j

Carr-Madan Formulation

The Carr and Madan (1999) formulation is a popular modified implementation of Heston (1993)
framework.
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Rather than computing the probabilities P1 and P2 as intermediate steps, Carr and Madan developed
an alternative expression so that taking its inverse Fourier transform gives the option price itself
directly.

Call(k) = e−αk

π ∫0 ∞Re e−iukψ(u) du

ψ(u) =
e−rτf2(ϕ = (u− (α + 1)i))
α2 + α− u2 + iu(2α + 1)

Put(K) = Call(K) + Ke−rτ − Ste−qτ

where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

τ is time to maturity (τ = T-t).

Call(K) is the call price at strike K.

Put(K) is the put price at strike K.

i is a unit imaginary number (i2= -1).

ϕ is the characteristic function variable.

α is the damping factor.

u is the characteristic function variable for integration, where ϕ = (u - (α+1)i).

f2(ϕ) is the characteristic function for P2.

P2 is the probability of St > K under the risk-neutral measure for the model.

To apply FFT or FRFT to this formulation, the characteristic function variable for integration, u, is
discretized into NumFFT(N) points with the step size CharacteristicFcnStep (Δu), and the log-
strike k is discretized into N points with the step size LogStrikeStep(Δk).

The discretized characteristic function variable for integration, uj(for j = 1,2,3,…,N), has a minimum
value of 0 and a maximum value of (N-1) (Δu), and it approximates the continuous integration range
from 0 to infinity.

The discretized log-strike grid, kn(for n = 1, 2, 3, N) is approximately centered around ln(St), with a
minimum value of

ln(St)−
N
2 Δk

and a maximum value of

ln(St) + N
2 − 1 Δk
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Where the minimum allowable strike is

Stexp −N
2 Δk

and the maximum allowable strike is

Stexp N
2 − 1 Δk

As a result of the discretization, the expression for the call option becomes

Call(kn) = Δue−αkn

π ∑
j = 1

N
Re e−iΔkΔu( j− 1)(n− 1)eiu j NΔk

2 − ln(St) ψ(u j) w j

where

Δu is the step size of discretized characteristic function variable for integration.

Δk is the step size of discretized log-strike.

N is the number of FFT/FRFT points

wj is the weights for quadrature used for approximating the integral.

FFT is used to evaluate the above expression if Δk and Δu are subject to the following constraint:

ΔkΔu = 2π
N

otherwise, the functions use the FRFT method described in Chourdakis (2005).
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optByBatesNI
Option price by Bates model using numerical integration

Syntax
Price = optByBatesNI(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,V0,
ThetaV,Kappa,SigmaV,RhoSV,MeanJ,JumpVol,JumpFreq)
Price = optByBatesNI( ___ ,Name,Value)

Description
Price = optByBatesNI(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,V0,
ThetaV,Kappa,SigmaV,RhoSV,MeanJ,JumpVol,JumpFreq) computes vanilla European option
price by Bates model, using numerical integration methods.

Price = optByBatesNI( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Workflow for Plotting an Option Price Surface Using the Bates Model

optByBatesNI uses numerical integration to compute option prices and then plot an option price
surface.

Define Option Variables and Bates Model Parameters

AssetPrice = 80;
Rate = 0.03;
DividendYield = 0.02;
OptSpec = 'call';

V0 = 0.04;
ThetaV = 0.05;
Kappa = 1.0;
SigmaV = 0.2;
RhoSV = -0.7;
MeanJ = 0.02;
JumpVol = 0.08;
JumpFreq = 2;

Compute the Option Price for a Single Strike

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = 80; 

Call = optByBatesNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, V0, ...
    ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield)

Call = 5.3484
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Compute the Option Prices for a Vector of Strikes

The Strike input can be a vector.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = (76:2:84)';

Call = optByBatesNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, V0, ...
    ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield)

Call = 5×1

    7.5765
    6.4020
    5.3484
    4.4173
    3.6073

Compute the Option Prices for a Vector of Strikes and a Vector of Dates of the Same
Lengths

Use the Strike input to specify the strikes. Also, the Maturity input can be a vector, but it must
match the length of the Strike vector if the ExpandOutput name-value pair argument is not set to
"true".

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, [12 18 24 30 36]); % Five maturities
Strike = [76 78 80 82 84]'; % Five strikes

Call = optByBatesNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, V0, ...
    ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield) % Five values in vector output

Call = 5×1

    9.7516
   10.3931
   10.8865
   11.2990
   11.6491

Expand the Output for a Surface

Set the ExpandOutput name-value pair argument to "true" to expand the output into a NStrikes-
by-NMaturities matrix. In this case, it is a square matrix.

Call = optByBatesNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, V0, ...
    ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'ExpandOutput', true) % (5 x 5) matrix output

Call = 5×5

    9.7516   11.4387   12.8395   14.0588   15.1361
    8.6554   10.3931   11.8344   13.0890   14.1980
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    7.6432    9.4149   10.8865   12.1693   13.3046
    6.7153    8.5035    9.9951   11.2990   12.4553
    5.8705    7.6581    9.1594   10.4771   11.6491

Compute the Option Prices for a Vector of Strikes and a Vector of Dates of Different
Lengths

When ExpandOutput is "true", NStrikes do not have to match NMaturities (that is, the output
NStrikes-by-NMaturities matrix can be rectangular).

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*(0.5:0.5:3)'); % Six maturities
Strike = (76:2:84)'; % Five strikes

Call = optByBatesNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, V0, ...
    ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'ExpandOutput', true) % (5 x 6) matrix output

Call = 5×6

    7.5765    9.7516   11.4387   12.8395   14.0588   15.1361
    6.4020    8.6554   10.3931   11.8344   13.0890   14.1980
    5.3484    7.6432    9.4149   10.8865   12.1693   13.3046
    4.4173    6.7153    8.5035    9.9951   11.2990   12.4553
    3.6073    5.8705    7.6581    9.1594   10.4771   11.6491

Compute Option Prices for a Vector of Strikes and a Vector of Asset Prices

When ExpandOutput is "true", the output can also be a NStrikes-by-NAssetPrices rectangular
matrix by accepting a vector of asset prices.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12); % Single maturity
ManyAssetPrices = [70 75 80 85]; % Four asset prices
Strike = (76:2:84)'; % Five strikes

Call = optByBatesNI(Rate, ManyAssetPrices, Settle, Maturity, OptSpec, Strike, V0, ...
    ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'ExpandOutput', true) % (5 x 4) matrix output

Call = 5×4

    4.2033    6.6918    9.7516   13.2808
    3.5558    5.8111    8.6554   11.9993
    2.9906    5.0181    7.6432   10.7934
    2.5018    4.3096    6.7153    9.6651
    2.0825    3.6818    5.8705    8.6158

Plot an Option Price Surface

The Strike and Maturity inputs can be vectors. Set ExpandOutput to "true" to output the
surface as a NStrikes-by-NMaturities matrix.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*[1/12 0.25 (0.5:0.5:3)]');

 optByBatesNI

11-1145



Times = yearfrac(Settle, Maturity);
Strike = (2:2:200)';

Call = optByBatesNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, V0, ...
    ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'ExpandOutput', true);

[X,Y] = meshgrid(Times,Strike);

figure;
surf(X,Y,Call);
title('Price');
xlabel('Years to Option Expiry');
ylabel('Strike');
view(-112,34);
xlim([0 Times(end)]);
zlim([0 80]);

Input Arguments
Rate — Continuously compounded risk-free interest rate
decimal

Continuously compounded risk-free interest rate, specified as a scalar decimal value.
Data Types: double
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AssetPrice — Current underlying asset price
numeric

Current underlying asset price, specified as numeric value using a scalar or a NINST-by-1 or
NColumns-by-1 vector.

For more information on the proper dimensions for AssetPrice, see the name-value pair argument
ExpandOutput.
Data Types: double

Settle — Option settlement date
serial date number | date character vector | datetime | string array

Option settlement date, specified as a NINST-by-1 or NColumns-by-1 vector using serial date
numbers, date character vectors, datetime arrays, or string arrays. The Settle date must be before
the Maturity date.

For more information on the proper dimensions for Settle, see the name-value pair argument
ExpandOutput.
Data Types: double | char | datetime | string

Maturity — Option maturity date
serial date number | date character vector | datetime | string array

Option maturity date, specified as a NINST-by-1 or NColumns-by-1 vector using serial date numbers,
date character vectors, datetime arrays, or string arrays.

For more information on the proper dimensions for Maturity, see the name-value pair argument
ExpandOutput.
Data Types: double | char | datetime | string

OptSpec — Definition of option
cell array of character vector with values 'call' or 'put' | string array with values "call" or
"put"

Definition of the option, specified as a NINST-by-1 or NColumns-by-1 vector using a cell array of
character vectors or string arrays with values 'call' or 'put'.

For more information on the proper dimensions for OptSpec, see the name-value pair argument
ExpandOutput.
Data Types: cell | string

Strike — Option strike price value
numeric

Option strike price value, specified as a NINST-by-1, NRows-by-1, NRows-by-NColumns vector of
strike prices.

For more information on the proper dimensions for Strike, see the name-value pair argument
ExpandOutput.
Data Types: double
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V0 — Initial variance of underlying asset
numeric

Initial variance of the underling asset, specified as a scalar numeric value.
Data Types: double

ThetaV — Long-term variance of underlying asset
numeric

Long-term variance of the underling asset, specified as a scalar numeric value.
Data Types: double

Kappa — Mean revision speed for the variance of underlying asset
numeric

Mean revision speed for the underling asset, specified as a scalar numeric value.
Data Types: double

SigmaV — Volatility of the variance of underlying asset
numeric

Volatility of the variance of the underling asset, specified as a scalar numeric value.
Data Types: double

RhoSV — Correlation between Weiner processes for underlying asset and its variance
numeric

Correlation between the Weiner processes for the underlying asset and its variance, specified as a
scalar numeric value.
Data Types: double

MeanJ — Mean of the random percentage jump size
decimal

Mean of the random percentage jump size (J), specified as a scalar decimal value where log(1+J) is
normally distributed with mean (log(1+MeanJ)-0.5*JumpVol^2) and the standard deviation
JumpVol.
Data Types: double

JumpVol — Standard deviation of log(1+J)
decimal

Standard deviation of log(1+J) where J is the random percentage jump size, specified as a scalar
decimal value.
Data Types: double

JumpFreq — Annual frequency of Poisson jump process
numeric

Annual frequency of Poisson jump process, specified as a scalar numeric value.
Data Types: double
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Price =
optByBatesNI(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,V0,ThetaV,Kappa,S
igmaV,RhoSV,MeanJ,JumpVol,JumpFreq,'Basis',7)

Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count of the instrument, specified as the comma-separated pair consisting of 'Basis' and a
scalar using a supported value:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

DividendYield — Continuously compounded underlying asset yield
0 (default) | numeric

Continuously compounded underlying asset yield, specified as the comma-separated pair consisting of
'DividendYield' and a scalar numeric value.
Data Types: double

VolRiskPremium — Volatility risk premium
0 (default) | numeric

Volatility risk premium, specified as the comma-separated pair consisting of 'VolRiskPremium' and
a scalar numeric value.
Data Types: double
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LittleTrap — Flag indicating "Little Heston Trap" formulation
true (default) | logical with values true or false

Flag indicating "Little Heston Trap" formulation by Albrecher et al, specified as the comma-separated
pair consisting of 'LittleTrap' and a logical:

• true — Use the Albrecher et al formulation.
• false — Use the original Heston formation.

Data Types: logical

AbsTol — Absolute error tolerance for numerical integration
1e-10 (default) | numeric

Absolute error tolerance for numerical integration, specified as the comma-separated pair consisting
of 'AbsTol' and a scalar numeric value.
Data Types: double

RelTol — Relative error tolerance for numerical integration
1e-6 (default) | numeric

Relative error tolerance for numerical integration, specified as the comma-separated pair consisting
of 'RelTol' and a scalar numeric value.
Data Types: double

IntegrationRange — Numerical integration range used to approximate continuous integral
over [0 Inf]
[1e-9 Inf] (default) | vector

Numerical integration range used to approximate the continuous integral over [0 Inf], specified as
the comma-separated pair consisting of 'IntegrationRange' and a 1-by-2 vector representing
[LowerLimit UpperLimit].
Data Types: double

Framework — Framework for computing option prices and sensitivities using numerical
integration of models
"heston1993" (default) | string with values "heston1993" or "lewis2001" | character vector
with values 'heston1993' or 'lewis2001'

Framework for computing option prices and sensitivities using numerical integration of models,
specified as the comma-separated pair consisting of 'Framework' and a scalar string or character
vector with the following values:

• "heston1993" or 'heston1993' — Method used in Heston (1993)
• "lewis2001" or 'lewis2001' — Method used in Lewis (2001)

Data Types: char | string

ExpandOutput — Flag to expand the outputs
false (outputs are NINST-by-1 vectors) (default) | logical with value of true or false

Flag to expand the outputs, specified as the comma-separated pair consisting of 'ExpandOutput'
and a logical:

11 Functions

11-1150



• true — If true, the outputs are NRows-by- NColumns matrices. NRows is the number of strikes
for each column and it is determined by the Strike input. For example, Strike can be a NRows-
by-1 vector, or a NRows-by-NColumns matrix. NColumns is determined by the sizes of
AssetPrice, Settle, Maturity, and OptSpec, which must all be either scalar or NColumns-
by-1 vectors.

• false — If false, the outputs are NINST-by-1 vectors. Also, the inputs Strike, AssetPrice,
Settle, Maturity, and OptSpec must all be either scalar or NINST-by-1 vectors.

Data Types: logical

Output Arguments
Price — Option prices
numeric

Option prices, returned as a NINST-by-1, or NRows-by-NColumns, depending on ExpandOutput.

More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.

Bates Stochastic Volatility Jump Diffusion Model

The Bates model (Bates (1996)) is an extension of the Heston model, where, in addition to stochastic
volatility, the jump diffusion parameters similar to Merton (1976) were also added to model sudden
asset price movements.

The stochastic differential equation is:

dSt = (r − q− λpμJ)Stdt + vtStdWt + JStdPt

dvt = κ(θ− vt)dt + σv vtdWt

E dWtdWt
v = pdt

prob(dPt = 1) = λpdt
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where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

vt is the asset price variance at time t.

J is the random percentage jump size conditional on the jump occurring, where ln(1+J) is normally

distributed with mean ln(1 + μJ)−
δ2

2  and the standard deviation δ, and (1+J) has a lognormal
distribution:

1
(1 + J)δ 2πexp

− ln(1 + J)− ln(1 + μJ −
δ2
2

2δ2

2

v0 is the initial variance of the asset price at t = 0 (v0> 0).

θ is the long-term variance level for (θ > 0).

κ is the mean reversion speed for (κ > 0).

σv is the volatility of variance for (σv > 0).

p is the correlation between the Weiner processes Wt and Wt
v for (-1 ≤ p ≤ 1).

μJ is the mean of J for (μJ > -1).

δ is the standard deviation of ln(1+J) for (δ ≥ 0).

λp is the annual frequency (intensity) of Poisson process Pt for (λp ≥ 0).

The characteristic function fBates j(ϕ) for j = 1 (asset price mean measure) and j =2 (risk-neutral
measure) is:
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fBates(ϕ) = exp(C j + D jv0 + iϕlnSt)exp λpτ(1 + μJ
mj + 1

2 (1 + μ j)iϕeδ2(mjiϕ + (iϕ)2
2 )− 1 − λpτμJiϕ)

m j =
m1 = 1

2

m2 = − 1
2

C j = (r − q)iϕτ + κθ
σv2 b j− pσviϕ + d j τ − 2ln

1− g je
djτ

1− g j

D j =
b j− pσviϕ + d j

σv
2

1− edjτ

1− g je
djτ

g j =
b j− pσviϕ + d j
b j− pσviϕ− d j

d j = b j− pσviϕ
2− σv

2 2u jiϕ− ϕ2

where for  j = 1, 2:

u1 = 1
2, u2 = − 1

2, b1 = κ + λVolRisk− pσv, b2 = κ + λVolRisk

where

ϕ is the characteristic function variable.

ƛVolRisk is the volatility risk premium.

τ is the time to maturity for (τ = T - t).

i is the unit imaginary number for (i2= -1).

The definitions for Cj and Dj under “The Little Heston Trap” by Albrecher et al. (2007) are:

C j = (r − q)iϕτ + κθ
σv2 b j− pσviϕ− d j τ − 2ln

1− ε je
−djτ

1− ε j

D j =
b j− pσviϕ− d j

σv
2

1− e−djτ

1− ε je
−djτ

ε j =
b j− pσviϕ− d j
b j− pσviϕ + d j

Numerical Integration Method Under Heston (1993) Framework

Numerical integration is used to evaluate the continuous integral for the inverse Fourier transform.

The numerical integration method under the Heston (1993) framework is based on the following
expressions:
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Call(K) = Ste−qτP1− Ke−rτP2

Put(K) = Call(K) + Ke−rτ − Ste−qτ

P j = 1
2 + 1

π ∫
0

∞
Re

e−iϕln(K)f j(ϕ)
iϕ dϕ

where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

K is the strike.

τ is time to maturity (τ = T-t).

Call(K) is the call price at strike K.

Put(K) is the put price at strike K

i is a unit imaginary number (i2= -1)

ϕ is the characteristic function variable.

fj(ϕ) is the characteristic function for Pj(j = 1,2).

P1 is the probability of St > K under the asset price measure for the model.

P2 is the probability of St > K under the risk-neutral measure for the model.

Where j = 1,2 so that f1(ϕ) and f2(ϕ) are the characteristic functions for probabilities P1 and P2,
respectively.

This framework is chosen with the default value “Heston1993” for the Framework name-value pair
argument.

Numerical Integration Method Under Lewis (2001) Framework

Numerical integration is used to evaluate the continuous integral for the inverse Fourier transform.

The numerical integration method under the Lewis (2001) framework is based on the following
expressions:

Call(k) = Ste−qτ − Ke−τt

π ∫
0

∞
Re K−iuf2 ϕ = u− i

2
1

u2 + 1
4

du

Put(K) = Call(K) = Ke−τt − Ste−qτ

where

r is the continuous risk-free rate.
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q is the continuous dividend yield.

St is the asset price at time t.

K is the strike.

τ is time to maturity (τ = T-t).

Call(K) is the call price at strike K.

Put(K) is the put price at strike K

i is a unit imaginary number (i2= -1)

ϕ is the characteristic function variable.

u is the characteristic function variable for integration, where ϕ = u− i
2 .

f2(ϕ) is the characteristic function for P2.

P2 is the probability of St > K under the risk-neutral measure for the model.

This framework is chosen with the value “Lewis2001” for the Framework name-value pair
argument.
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optSensByBatesNI
Option price or sensitivities by Bates model using numerical integration

Syntax
PriceSens = optSensByBatesNI(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,
V0,ThetaV,Kappa,SigmaV,RhoSV,MeanJ,JumpVol,JumpFreq)
PriceSens = optSensByBatesNI( ___ ,Name,Value)

Description
PriceSens = optSensByBatesNI(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,
V0,ThetaV,Kappa,SigmaV,RhoSV,MeanJ,JumpVol,JumpFreq) computes vanilla European
option price and sensitivities by Bates model, using numerical integration methods.

PriceSens = optSensByBatesNI( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Workflow for Plotting an Option Sensitivity Surface Using the Bates Model

optSensByBatesNI uses numerical integration to compute option sensitivities and then to plot
option sensitivity surfaces.

Define Option Variables and Bates Model Parameters

AssetPrice = 80;
Rate = 0.03;
DividendYield = 0.02;
OptSpec = 'call';

V0 = 0.04;
ThetaV = 0.05;
Kappa = 1.0;
SigmaV = 0.2;
RhoSV = -0.7;
MeanJ = 0.02;
JumpVol = 0.08;
JumpFreq = 2;

Compute the Option Sensitivity for a Single Strike

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = 80; 

Delta = optSensByBatesNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'OutSpec', "delta")

Delta = 0.5630
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Compute the Option Sensitivities for a Vector of Strikes

The Strike input can be a vector.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = (76:2:84)';

Delta = optSensByBatesNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'OutSpec', "delta")

Delta = 5×1

    0.6807
    0.6234
    0.5630
    0.5011
    0.4392

Compute the Option Sensitivities for a Vector of Strikes and a Vector of Dates of the Same
Lengths

Use the Strike input to specify the strikes. Also, the Maturity input can be a vector, but it must
match the length of the Strike vector if the ExpandOutput name-value pair argument is not set to
"true".

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, [12 18 24 30 36]); % Five maturities
Strike = [76 78 80 82 84]'; % Five strikes

Delta  = optSensByBatesNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'OutSpec', "delta") % Five values in vector output

Delta = 5×1

    0.6625
    0.6232
    0.5958
    0.5748
    0.5577

Expand the Output for a Surface

Set the ExpandOutput name-value pair argument to "true" to expand the output into a NStrikes-
by-NMaturities matrix. In this case, it is a square matrix.

Delta  = optSensByBatesNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'OutSpec', "delta", ...
    'ExpandOutput', true) % (5 x 5) matrix output

Delta = 5×5

    0.6625    0.6556    0.6515    0.6483    0.6455
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    0.6222    0.6232    0.6239    0.6241    0.6238
    0.5805    0.5900    0.5958    0.5996    0.6019
    0.5381    0.5564    0.5674    0.5748    0.5798
    0.4954    0.5225    0.5389    0.5499    0.5577

Compute the Option Sensitivities for a Vector of Strikes and a Vector of Dates of Different
Lengths

When ExpandOutput is "true", NStrikes do not have to match NMaturities. That is, the output
NStrikes -by- NMaturities matrix can be rectangular.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*(0.5:0.5:3)'); % Six maturities
Strike = (76:2:84)'; % Five strikes

Delta  = optSensByBatesNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'OutSpec', "delta", ...
    'ExpandOutput', true)  % (5 x 6) matrix output

Delta = 5×6

    0.6807    0.6625    0.6556    0.6515    0.6483    0.6455
    0.6234    0.6222    0.6232    0.6239    0.6241    0.6238
    0.5630    0.5805    0.5900    0.5958    0.5996    0.6019
    0.5011    0.5381    0.5564    0.5674    0.5748    0.5798
    0.4392    0.4954    0.5225    0.5389    0.5499    0.5577

Compute the Option Sensitivities for a Vector of Strikes and a Vector of Asset Prices

When ExpandOutput is "true", the output can also be a NStrikes-by-NAssetPrices rectangular
matrix by accepting a vector of asset prices.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12); % Single maturity
ManyAssetPrices = [70 75 80 85]; % Four asset prices
Strike = (76:2:84)'; % Five strikes

Delta  = optSensByBatesNI(Rate, ManyAssetPrices, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'OutSpec', "delta", ...
    'ExpandOutput', true) % (5 x 4) matrix output

Delta = 5×4

    0.4350    0.5579    0.6625    0.7457
    0.3881    0.5124    0.6222    0.7120
    0.3432    0.4670    0.5805    0.6763
    0.3010    0.4223    0.5381    0.6390
    0.2619    0.3789    0.4954    0.6002

Plot Option Sensitivity Surfaces

The Strike and Maturity inputs can be vectors. Set ExpandOutput to "true" to output the
surfaces as NStrikes-by-NMaturities matrices.
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Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*[1/12 0.25 (0.5:0.5:3)]');
Times = yearfrac(Settle, Maturity);
Strike = (2:2:200)';

[Delta, Gamma, Rho, Theta, Vega, VegaLT] = optSensByBatesNI(...
    Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, V0, ThetaV, Kappa, ...
    SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ...
    'OutSpec', ["delta", "gamma", "rho", "theta", "vega", "vegalt"], ...
    'ExpandOutput', true);

[X,Y] = meshgrid(Times,Strike);

figure;
surf(X,Y,Delta);
title('Delta');
xlabel('Years to Option Expiry');
ylabel('Strike');
view(-112,34);
xlim([0 Times(end)]);

figure;
surf(X,Y,Gamma)
title('Gamma')
xlabel('Years to Option Expiry')
ylabel('Strike')
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view(-112,34);
xlim([0 Times(end)]);

figure;
surf(X,Y,Rho)
title('Rho')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,Theta)
title('Theta')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,Vega)
title('Vega')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,VegaLT)
title('VegaLT')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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Input Arguments
Rate — Continuously compounded risk-free interest rate
decimal

Continuously compounded risk-free interest rate, specified as a scalar decimal value.
Data Types: double

AssetPrice — Current underlying asset price
numeric

Current underlying asset price, specified as numeric value using a scalar or a NINST-by-1 or
NColumns-by-1 vector.

For more information on the proper dimensions for AssetPrice, see the name-value pair argument
ExpandOutput.
Data Types: double

Settle — Option settlement date
serial date number | date character vector | datetime | string array

Option settlement date, specified as a NINST-by-1 or NColumns-by-1 vector using serial date
numbers, date character vectors, datetime arrays, or string arrays. The Settle date must be before
the Maturity date.
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For more information on the proper dimensions for Settle, see the name-value pair argument
ExpandOutput.
Data Types: double | char | datetime | string

Maturity — Option maturity date
serial date number | date character vector | datetime | string array

Option maturity date, specified as a NINST-by-1 or NColumns-by-1 vector using serial date numbers,
date character vectors, datetime arrays, or string arrays.

For more information on the proper dimensions for Maturity, see the name-value pair argument
ExpandOutput.
Data Types: double | char | datetime | string

OptSpec — Definition of option
cell array of character vector with values 'call' or 'put' | string array with values "call" or
"put"

Definition of the option, specified as a NINST-by-1 or NColumns-by-1 vector using a cell array of
character vectors or string arrays with values 'call' or 'put'.

For more information on the proper dimensions for OptSpec, see the name-value pair argument
ExpandOutput.
Data Types: cell | string

Strike — Option strike price value
numeric

Option strike price value, specified as a NINST-by-1, NRows-by-1, NRows-by-NColumns vector of
strike prices.

For more information on the proper dimensions for Strike, see the name-value pair argument
ExpandOutput.
Data Types: double

V0 — Initial variance of underlying asset
numeric

Initial variance of the underling asset, specified as a scalar numeric value.
Data Types: double

ThetaV — Long-term variance of underlying asset
numeric

Long-term variance of the underling asset, specified as a scalar numeric value.
Data Types: double

Kappa — Mean revision speed for the variance of underlying asset
numeric

Mean revision speed for the underling asset, specified as a scalar numeric value.
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Data Types: double

SigmaV — Volatility of the variance of underlying asset
numeric

Volatility of the variance of the underling asset, specified as a scalar numeric value.
Data Types: double

RhoSV — Correlation between Weiner processes for underlying asset and its variance
numeric

Correlation between the Weiner processes for the underlying asset and its variance, specified as a
scalar numeric value.
Data Types: double

MeanJ — Mean of the random percentage jump size
decimal

Mean of the random percentage jump size (J), specified as a scalar decimal value where log(1+J) is
normally distributed with mean (log(1+MeanJ)-0.5*JumpVol^2) and the standard deviation
JumpVol.
Data Types: double

JumpVol — Standard deviation of log(1+J)
decimal

Standard deviation of log(1+J) where J is the random percentage jump size, specified as a scalar
decimal value.
Data Types: double

JumpFreq — Annual frequency of Poisson jump process
numeric

Annual frequency of Poisson jump process, specified as a scalar numeric value.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: PriceSens = optSensByBatesNI(Rate,AssetPrice,Settle,Maturity,
OptSpec,Strike,V0,ThetaV,Kappa,SigmaV,RhoSV,MeanJ,JumpVol,JumpFreq,'Basis',7)

Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count of the instrument, specified as the comma-separated pair consisting of 'Basis' and a
scalar using a supported value:
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• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

DividendYield — Continuously compounded underlying asset yield
0 (default) | numeric

Continuously compounded underlying asset yield, specified as the comma-separated pair consisting of
'DividendYield' and a scalar numeric value.
Data Types: double

VolRiskPremium — Volatility risk premium
0 (default) | numeric

Volatility risk premium, specified as the comma-separated pair consisting of 'VolRiskPremium' and
a scalar numeric value.
Data Types: double

LittleTrap — Flag indicating Little Heston Trap formulation
true (default) | logical with values true or false

Flag indicating Little Heston Trap formulation by Albrecher et al, specified as the comma-separated
pair consisting of 'LittleTrap' and a logical:

• true — Use the Albrecher et al formulation.
• false — Use the original Heston formation.

Data Types: logical

OutSpec — Define outputs
["price"] (default) | string array with values "price", "delta", "gamma", "vega", "rho",
"theta", and "vegalt" | cell array of character vectors with values 'price', 'delta', 'gamma',
'vega', 'rho', 'theta', and 'vegalt'
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Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a NOUT- by-1 or
a 1-by-NOUT string array or cell array of character vectors with supported values.

Note "vega" is the sensitivity with respect the initial volatility sqrt(V0). In contrast, "vegalt" is
the sensitivity with respect to the long-term volatility sqrt(ThetaV).

Example: OutSpec = ["price","delta","gamma","vega","rho","theta","vegalt"]
Data Types: string | cell

AbsTol — Absolute error tolerance for numerical integration
1e-10 (default) | numeric

Absolute error tolerance for numerical integration, specified as the comma-separated pair consisting
of 'AbsTol' and a scalar numeric value.
Data Types: double

RelTol — Relative error tolerance for numerical integration
1e-6 (default) | numeric

Relative error tolerance for numerical integration, specified as the comma-separated pair consisting
of 'RelTol' and a scalar numeric value.
Data Types: double

IntegrationRange — Numerical integration range used to approximate continuous integral
over [0 Inf]
[1e-9 Inf] (default) | vector

Numerical integration range used to approximate the continuous integral over [0 Inf], specified as
the comma-separated pair consisting of 'IntegrationRange' and a 1-by-2 vector representing
[LowerLimit UpperLimit].
Data Types: double

Framework — Framework for computing option prices and sensitivities using numerical
integration of models
"heston1993" (default) | string with values "heston1993" or "lewis2001" | character vector
with values 'heston1993' or 'lewis2001'

Framework for computing option prices and sensitivities using numerical integration of models,
specified as the comma-separated pair consisting of 'Framework' and a scalar string or character
vector with the following values:

• "heston1993" or 'heston1993' — Method used in Heston (1993)
• "lewis2001" or 'lewis2001' — Method used in Lewis (2001)

Data Types: char | string

ExpandOutput — Flag to expand the outputs
false (outputs are NINST-by-1 vectors) (default) | logical with value of true or false

Flag to expand the outputs, specified as the comma-separated pair consisting of 'ExpandOutput'
and a logical:
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• true — If true, the outputs are NRows-by- NColumns matrices. NRows is the number of strikes
for each column and it is determined by the Strike input. For example, Strike can be a NRows-
by-1 vector, or a NRows-by-NColumns matrix. NColumns is determined by the sizes of
AssetPrice, Settle, Maturity, and OptSpec, which must all be either scalar or NColumns-
by-1 vectors.

• false — If false, the outputs are NINST-by-1 vectors. Also, the inputs Strike, AssetPrice,
Settle, Maturity, and OptSpec must all be either scalar or NINST-by-1 vectors.

Data Types: logical

Output Arguments
PriceSens — Option prices
numeric

Option prices or sensitivities, returned as a NINST-by-1, or NRows-by-NColumns, depending on
ExpandOutput. The name-value pair argument OutSpec determines the types and order of the
outputs.

More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.

Bates Stochastic Volatility Jump Diffusion Model

The Bates model (Bates (1996)) is an extension of the Heston model, where, in addition to stochastic
volatility, the jump diffusion parameters similar to Merton (1976) were also added to model sudden
asset price movements.

The stochastic differential equation is:

dSt = (r − q− λpμJ)Stdt + vtStdWt + JStdPt

dvt = κ(θ− vt)dt + σv vtdWt

E dWtdWt
v = pdt

prob(dPt = 1) = λpdt
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where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

vt is the asset price variance at time t.

J is the random percentage jump size conditional on the jump occurring, where ln(1+J) is normally

distributed with mean ln(1 + μJ)−
δ2

2  and the standard deviation δ, and (1+J) has a lognormal
distribution:

1
(1 + J)δ 2πexp

− ln(1 + J)− ln(1 + μJ −
δ2
2

2δ2

2

v0 is the initial variance of the asset price at t = 0 (v0> 0).

θ is the long-term variance level for (θ > 0).

κ is the mean reversion speed for (κ > 0).

σv is the volatility of variance for (σv > 0).

p is the correlation between the Weiner processes Wt and Wt
v for (-1 ≤ p ≤ 1).

μJ is the mean of J for (μJ > -1).

δ is the standard deviation of ln(1+J) for (δ ≥ 0).

λp is the annual frequency (intensity) of Poisson process Pt for (λp ≥ 0).

The characteristic function fBates j(ϕ) for j = 1 (asset price mean measure) and j =2 (risk-neutral
measure) is:
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fBates(ϕ) = exp(C j + D jv0 + iϕlnSt)exp λpτ(1 + μJ
mj + 1

2 (1 + μ j)iϕeδ2(mjiϕ + (iϕ)2
2 )− 1 − λpτμJiϕ)

m j =
m1 = 1

2

m2 = − 1
2

C j = (r − q)iϕτ + κθ
σv2 b j− pσviϕ + d j τ − 2ln

1− g je
djτ

1− g j

D j =
b j− pσviϕ + d j

σv
2

1− edjτ

1− g je
djτ

g j =
b j− pσviϕ + d j
b j− pσviϕ− d j

d j = b j− pσviϕ
2− σv

2 2u jiϕ− ϕ2

where for  j = 1, 2:

u1 = 1
2, u2 = − 1

2, b1 = κ + λVolRisk− pσv, b2 = κ + λVolRisk

where

ϕ is the characteristic function variable.

ƛVolRisk is the volatility risk premium.

τ is the time to maturity for (τ = T - t).

i is the unit imaginary number for (i2= -1).

The definitions for Cj and Dj under “The Little Heston Trap” by Albrecher et al. (2007) are:

C j = (r − q)iϕτ + κθ
σv2 b j− pσviϕ− d j τ − 2ln

1− ε je
−djτ

1− ε j

D j =
b j− pσviϕ− d j

σv
2

1− e−djτ

1− ε je
−djτ

ε j =
b j− pσviϕ− d j
b j− pσviϕ + d j

Numerical Integration method Under Heston (1993) Framework

Numerical integration is used to evaluate the continuous integral for the inverse Fourier transform.

The numerical integration method under the Heston (1993) framework is based on the following
expressions:
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Call(K) = Ste−qτP1− Ke−rτP2

Put(K) = Call(K) + Ke−rτ − Ste−qτ

P j = 1
2 + 1

π ∫
0

∞
Re

e−iϕln(K)f j(ϕ)
iϕ dϕ

where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

K is the strike.

τ is time to maturity (τ = T-t).

Call(K) is the call price at strike K.

Put(K) is the put price at strike K.

i is a unit imaginary number (i2= -1).

ϕ is the characteristic function variable.

fj(ϕ) is the characteristic function for Pj(j = 1,2).

P1 is the probability of St > K under the asset price measure for the model.

P2 is the probability of St > K under the risk-neutral measure for the model.

Where j = 1,2 so that f1(ϕ) and f2(ϕ) are the characteristic functions for probabilities P1 and P2,
respectively.

This framework is chosen with the default value “Heston1993” for the Framework name-value pair
argument.

Numerical Integration Method Under Lewis (2001) Framework

Numerical integration is used to evaluate the continuous integral for the inverse Fourier transform.

The numerical integration method under the Lewis (2001) framework is based on the following
expressions:

Call(k) = Ste−qτ − Ke−τt

π ∫
0

∞
Re K−iuf2 ϕ = u− i

2
1

u2 + 1
4

du

Put(K) = Call(K) = Ke−τt − Ste−qτ

where

r is the continuous risk-free rate.
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q is the continuous dividend yield.

St is the asset price at time t.

K is the strike.

τ is time to maturity (τ = T-t).

Call(K) is the call price at strike K.

Put(K) is the put price at strike K.

i is a unit imaginary number (i2= -1).

ϕ is the characteristic function variable.

u is the characteristic function variable for integration, where ϕ = u− i
2 .

f2(ϕ) is the characteristic function for P2.

P2 is the probability of St > K under the risk-neutral measure for the model.

This framework is chosen with the value “Lewis2001” for the Framework name-value pair
argument.
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Topics
“Vanilla Option” on page 3-27
“Supported Equity Derivative Functions” on page 3-19
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optByHestonFD
Option price by Heston model using finite differences

Syntax
[Price,PriceGrid,AssetPrices,Variances,Times] = optByHestonFD(Rate,
AssetPrice,Settle,ExerciseDates,OptSpec,Strike,V0,ThetaV,Kappa,SigmaV,RhoSV)
[Price,PriceGrid,AssetPrices,Variances,Times] = optByHestonFD( ___ ,Name,Value)

Description
[Price,PriceGrid,AssetPrices,Variances,Times] = optByHestonFD(Rate,
AssetPrice,Settle,ExerciseDates,OptSpec,Strike,V0,ThetaV,Kappa,SigmaV,RhoSV)
computes a vanilla European or American option price by the Heston model, using the alternating
direction implicit (ADI) method.

[Price,PriceGrid,AssetPrices,Variances,Times] = optByHestonFD( ___ ,Name,Value)
specifies options using one or more name-value pair arguments in addition to the input arguments in
the previous syntax.

Examples

Price an American Option Using the Heston Model

Define the option variables and Heston model parameters.

AssetPrice = 10;
Strike = 10;
Rate = 0.1;
Settle = '01-Jan-2017';
ExerciseDates = '02-Apr-2017';

V0 = 0.0625;
ThetaV = 0.16;
Kappa = 5.0;
SigmaV = 0.9;
RhoSV = 0.1;

Compute the American put option price.

OptSpec = 'Put';
Price = optByHestonFD(Rate, AssetPrice, Settle, ...
ExerciseDates, OptSpec, Strike, V0, ThetaV, Kappa, SigmaV, RhoSV, 'AmericanOpt', 1)

Price = 0.5188
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Input Arguments
Rate — Continuously compounded risk-free interest rate
scalar decimal

Continuously compounded risk-free interest rate, specified as a scalar decimal.
Data Types: double

AssetPrice — Current underlying asset price
scalar numeric

Current underlying asset price, specified as numeric value using a scalar numeric.
Data Types: double

Settle — Option settlement date
serial date number | date character vector | datetime array | string array

Option settlement date, specified as a scalar using serial date numbers, date character vectors,
datetime arrays, or string arrays.
Data Types: double | char | datetime | string

ExerciseDates — Option exercise dates
serial date number | date character vector | string array | datetime array

Option exercise dates, specified as a serial date number, date character vector, string array, or
datetime array:

• For a European option, there is only one ExerciseDates value and this is the option expiry date.
• For an American option, use a 1-by-2 vector of exercise date boundaries. The option can be

exercised on any tree date between or including the pair of dates on that row. If only one non-NaN
date is listed, the option can be exercised between the Settle date and the single listed
ExerciseDate.

Data Types: double | char | string | datetime

OptSpec — Definition of option
cell array of character vectors with values 'call' or 'put' | string array with values "call" or
"put"

Definition of the option, specified as a scalar using a cell array of character vectors or string arrays
with values 'call' or 'put'.
Data Types: cell | string

Strike — Option strike price value
scalar numeric

Option strike price value, specified as a scalar numeric.
Data Types: double

V0 — Initial variance of underlying asset
scalar numeric
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Initial variance of the underlying asset, specified as a scalar numeric.
Data Types: double

ThetaV — Long-term variance of underlying asset
scalar numeric

Long-term variance of the underlying asset, specified as a scalar numeric.
Data Types: double

Kappa — Mean revision speed for variance of underlying asset
scalar numeric

Mean revision speed for the variance of the underlying asset, specified as a scalar numeric.
Data Types: double

SigmaV — Volatility of variance of underlying asset
scalar numeric

Volatility of the variance of the underlying asset, specified as a scalar numeric.
Data Types: double

RhoSV — Correlation between Weiner processes for underlying asset and its variance
scalar numeric

Correlation between the Weiner processes for the underlying asset and its variance, specified as a
scalar numeric.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceGrid,AssetPrices,Variances,Times] =
optByHestonD(Rate,AssetPrice,Settle,ExerciseDates,OptSpec,Strike,V0,ThetaV,Ka
ppa,SigmaV,RhoSV,'Basis',7)

Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count basis of the instrument, specified as the comma-separated pair consisting of 'Basis' and
a scalar using a supported value:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
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• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

DividendYield — Continuously compounded underlying asset yield
0 (default) | scalar numeric

Continuously compounded underlying asset yield, specified as the comma-separated pair consisting of
'DividendYield' and a scalar numeric.

Note If you enter a value for DividendYield, then set DividendAmounts and ExDividendDates
= [ ] or do not enter them. If you enter values for DividendAmounts and ExDividendDates, then
set DividendYield = 0.

Data Types: double

DividendAmounts — Cash dividend amounts
[ ] (default) | vector

Cash dividend amounts, specified as the comma-separated pair consisting of 'DividendAmounts'
and a NDIV-by-1 vector.

Note Each dividend amount must have a corresponding ex-dividend date. If you enter values for
DividendAmounts and ExDividendDates, then set DividendYield = 0.

Data Types: double

ExDividendDates — Ex-dividend dates
[ ] (default) | serial date number | date character vector | string array | datetime array

Ex-dividend dates, specified as the comma-separated pair consisting of 'ExDividendDates' and an
NDIV-by-1 vector of serial date numbers, date character vectors, string arrays, or datetime arrays.
Data Types: double | char | string | datetime

AssetPriceMax — Maximum price for price grid boundary
if unspecified, value is calculated based on asset price distribution at maturity (default) | positive
scalar
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Maximum price for the price grid boundary, specified as the comma-separated pair consisting of
'AssetPriceMax' and a positive scalar.
Data Types: single | double

VarianceMax — Maximum variance to use for variance grid boundary
1.0 (default) | scalar numeric

Maximum variance to use for the variance grid boundary, specified as the comma-separated pair
consisting of 'VarianceMax' as a scalar numeric.
Data Types: double

AssetGridSize — Size of asset grid for finite difference grid
400 (default) | scalar numeric

Size of the asset grid for finite difference grid, specified as the comma-separated pair consisting of
'AssetGridSize' and a scalar numeric.
Data Types: double

VarianceGridSize — Number of nodes for variance grid for finite difference grid
200 (default) | scalar numeric

Number of nodes for the variance grid for finite difference grid, specified as the comma-separated
pair consisting of 'VarianceGridSize' and a scalar numeric.
Data Types: double

TimeGridSize — Number of nodes of time grid for finite difference grid
100 (default) | positive numeric scalar

Number of nodes of the time grid for finite difference grid, specified as the comma-separated pair
consisting of 'TimeGridSize' and a positive numeric scalar.
Data Types: double

AmericanOpt — Option type
0 (European) (default) | scalar with value of [0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and a scalar flag
with one of these values:

• 0 — European
• 1 — American

Data Types: double

Output Arguments
Price — Option price
numeric

Option price, returned as a scalar numeric.

PriceGrid — Grid containing prices calculated by the finite difference method
numeric
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Grid containing prices calculated by the finite difference method, returned as a three-dimensional
grid with size AssetGridSize ⨉ VarianceGridSize ⨉ TimeGridSize. The depth is not necessarily
equal to the TimeGridSize, because exercise and ex-dividend dates are added to the time grid.
PriceGrid(:, :, end) contains the price for t = 0.

AssetPrices — Prices of the asset
vector

Prices of the asset corresponding to the first dimension of PriceGrid, returned as a vector.

Variances — Variances
vector

Variances corresponding to the second dimension of PriceGrid, returned as a vector.

Times — Times
vector

Times corresponding to the third dimension of PriceGrid, returned as a vector.

More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.

Heston Stochastic Volatility Model

The Heston model is an extension of the Black-Scholes model, where the volatility (square root of
variance) is no longer assumed to be constant, and the variance now follows a stochastic (CIR)
process. This allows modeling the implied volatility smiles observed in the market.

The stochastic differential equation is:

dSt = (r − q)Stdt + vtStdWt

dvt = κ(θ− vt)dt + σv vtdWt
v

E dWtdWt
v = pdt
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where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

vt is the asset price variance at time t

v0 is the initial variance of the asset price at t = 0 for (v0 > 0).

θ is the long-term variance level for (θ > 0).

κ is the mean reversion speed for the variance for (κ > 0).

σv is the volatility of the variance for (σv > 0).

p is the correlation between the Weiner processes Wt and Wv
t for (-1 ≤ p ≤ 1).

References
[1] Heston, S. L. “A Closed-Form Solution for Options with Stochastic Volatility with Applications to

Bond and Currency Options.” The Review of Financial Studies. Vol 6, Number 2, 1993.

See Also
optstockbyfd | optstocksensbyfd | optSensByHestonFD | optByLocalVolFD |
optSensByLocalVolFD | optByBatesFD | optSensByBatesFD | optByMertonFD |
optSensByMertonFD

Topics
“Vanilla Option” on page 3-27
“Supported Equity Derivative Functions” on page 3-19
“Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument Objects” on
page 1-82

Introduced in R2018b
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optSensByHestonFD
Option price and sensitivities by Heston model using finite differences

Syntax
[PriceSens,PriceGrid,AssetPrices,Variances,Times] = optByHestonFD(Rate,
AssetPrice,Settle,ExerciseDates,OptSpec,Strike,V0,ThetaV,Kappa,SigmaV,RhoSV)
[PriceSens,PriceGrid,AssetPrices,Variances,Times] = optByHestonFD( ___ ,
Name,Value)

Description
[PriceSens,PriceGrid,AssetPrices,Variances,Times] = optByHestonFD(Rate,
AssetPrice,Settle,ExerciseDates,OptSpec,Strike,V0,ThetaV,Kappa,SigmaV,RhoSV)
computes a vanilla European or American option price and sensitivities by the Heston model, using
the alternating direction implicit (ADI) method.

[PriceSens,PriceGrid,AssetPrices,Variances,Times] = optByHestonFD( ___ ,
Name,Value) specifies options using one or more name-value pair arguments in addition to the input
arguments in the previous syntax.

Examples

Compute an American Option Price and Sensitivities Using the Heston Model

Define the option variables and Heston model parameters.

AssetPrice = 10;
Strike = 10;
Rate = 0.1;
Settle = '01-Jan-2017';
ExerciseDates = '02-Apr-2017';

V0 = 0.0625;
ThetaV = 0.16;
Kappa = 5.0;
SigmaV = 0.9;
RhoSV = 0.1;

Compute the American put option price and sensitivities.

OptSpec = 'Put';
[Price,Delta,Gamma,Rho,Theta,Vega,VegaLT] = optSensByHestonFD(Rate, AssetPrice, Settle, ExerciseDates, ...
OptSpec, Strike, V0, ThetaV, Kappa, SigmaV, RhoSV, 'AmericanOpt', 1, ...
'OutSpec', ["Price" "Delta" "Gamma" "Rho" "Theta" "Vega" "VegaLT"])

Price = 0.5188

Delta = -0.4472

Gamma = 0.2822
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Rho = -0.9234

Theta = -1.1614

Vega = 0.8998

VegaLT = 1.0921

Input Arguments
Rate — Continuously compounded risk-free interest rate
scalar decimal

Continuously compounded risk-free interest rate, specified as a scalar decimal.
Data Types: double

AssetPrice — Current underlying asset price
scalar numeric

Current underlying asset price, specified as a scalar numeric.
Data Types: double

Settle — Option settlement date
serial date number | date character vector | datetime array | string array

Option settlement date, specified as a scalar using serial date numbers, date character vectors,
datetime arrays, or string arrays.
Data Types: double | char | datetime | string

ExerciseDates — Option exercise dates
serial date number | date character vector | string array | datetime array

Option exercise dates, specified as a serial date number, date character vector, string array, or
datetime array:

• For a European option, there is only one ExerciseDates value and this is the option expiry date.
• For an American option, use a 1-by-2 vector of exercise date boundaries. The option can be

exercised on any tree date between or including the pair of dates on that row. If only one non-NaN
date is listed, the option can be exercised between the Settle date and the single listed
ExerciseDate.

Data Types: double | char | string | datetime

OptSpec — Definition of option
cell array of character vector with values 'call' or 'put' | string array with values "call" or
"put"

Definition of the option, specified as a scalar using a cell array of character vectors or string arrays
with values 'call' or 'put'.
Data Types: cell | string

Strike — Option strike price value
scalar numeric
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Option strike price value, specified as a scalar numeric.
Data Types: double

V0 — Initial variance of underlying asset
scalar numeric

Initial variance of the underlying asset, specified as a scalar numeric.
Data Types: double

ThetaV — Long-term variance of underlying asset
scalar numeric

Long-term variance of the underlying asset, specified as a scalar numeric.
Data Types: double

Kappa — Mean revision speed for the variance of underlying asset
scalar numeric

Mean revision speed for the variance of the underlying asset, specified as a scalar numeric.
Data Types: double

SigmaV — Volatility of the variance of underlying asset
scalar numeric

Volatility of the variance of the underlying asset, specified as a scalar numeric.
Data Types: double

RhoSV — Correlation between Weiner processes for underlying asset and its variance
scalar numeric

Correlation between the Weiner processes for the underlying asset and its variance, specified as a
scalar numeric.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [PriceSens,PriceGrid,AssetPrices,Variances,Times] =
optSensByHestonFD(Rate,AssetPrice,Settle,ExerciseDates,OptSpec,Strike,V0,Thet
aV,Kappa,SigmaV,RhoSV,'Basis',7)

Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count basis of the instrument, specified as the comma-separated pair consisting of 'Basis' and
a scalar using a supported value:
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• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

DividendYield — Continuously compounded underlying asset yield
0 (default) | scalar numeric

Continuously compounded underlying asset yield, specified as the comma-separated pair consisting of
'DividendYield' and a scalar numeric.

Note If you enter a value for DividendYield, then set DividendAmounts and ExDividendDates
= [ ] or do not enter them. If you enter values for DividendAmounts and ExDividendDates, then
set DividendYield = 0.

Data Types: double

DividendAmounts — Cash dividend amounts
[ ] (default) | vector

Cash dividend amounts, specified as the comma-separated pair consisting of 'DividendAmounts'
and a NDIV-by-1 vector.

Note Each dividend amount must have a corresponding ex-dividend date. If you enter values for
DividendAmounts and ExDividendDates, then set DividendYield = 0.

Data Types: double

ExDividendDates — Ex-dividend dates
[ ] (default) | serial date number | date character vector | string array | datetime array

Ex-dividend dates, specified as the comma-separated pair consisting of 'ExDividendDates' and a
NDIV-by-1 vector of serial date numbers, character vectors, string arrays, or datetime arrays.
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Data Types: double | char | string | datetime

AssetPriceMax — Maximum price for price grid boundary
if unspecified, value is calculated based on asset price distribution at maturity (default) | positive
scalar

Maximum price for price grid boundary, specified as the comma-separated pair consisting of
'AssetPriceMax' and a positive scalar.
Data Types: single | double

VarianceMax — Maximum variance to use for variance grid boundary
1.0 (default) | scalar numeric

Maximum variance to use for variance grid boundary, specified as the comma-separated pair
consisting of 'VarianceMax' as a scalar numeric.
Data Types: double

AssetGridSize — Size of asset grid for finite difference grid
400 (default) | scalar numeric

Size of the asset grid for finite difference grid, specified as the comma-separated pair consisting of
'AssetGridSize' and a scalar numeric.
Data Types: double

VarianceGridSize — Number of nodes for variance grid for finite difference grid
200 (default) | scalar numeric

Number of nodes for the variance grid for finite difference grid, specified as the comma-separated
pair consisting of 'VarianceGridSize' and a scalar numeric.
Data Types: double

TimeGridSize — Number of nodes of time grid for finite difference grid
100 (default) | positive numeric scalar

Number of nodes of the time grid for finite difference grid, specified as the comma-separated pair
consisting of 'TimeGridSize' and a positive numeric scalar.
Data Types: double

AmericanOpt — Option type
0 (European) (default) | scalar with values [0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and a scalar flag
with one of these values:

• 0 — European
• 1 — American

Data Types: double

OutSpec — Define outputs
["price"] (default) | cell array of character vectors with values 'price', 'delta', 'gamma',
'vega', 'rho', 'theta', and 'vegalt' | string array with values "price", "delta", "gamma",
"vega", "rho", "theta", and "vegalt"
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Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and an NOUT- by-1 or
a 1-by-NOUT string array or cell array of character vectors with the supported values.

Note 'vega' is the sensitivity with respect to the initial volatility sqrt(V0). In contrast, 'vegalt' is
the sensitivity with respect to the long-term volatility sqrt(ThetaV).

Example: OutSpec = {'price','delta','gamma','vega','rho','theta','vegalt'}
Data Types: string | cell

Output Arguments
PriceSens — Option price and sensitivities
scalar numeric

Option price and sensitivities, returned as a scalar numeric. OutSpec determines the types and order
of the outputs.

PriceGrid — Grid containing prices calculated by the finite difference method
numeric

Grid containing prices calculated by the finite difference method, returned as a three-dimensional
grid with size AssetGridSize ⨉ VarianceGridSize ⨉ TimeGridSize. The depth is not necessarily
equal to the TimeGridSize, because exercise and ex-dividend dates are added to the time grid.
PriceGrid(:, :, end) contains the price for t = 0.

AssetPrices — Prices of the asset
vector

Prices of the asset corresponding to the first dimension of PriceGrid, returned as a vector.

Variances — Variances
vector

Variances corresponding to the second dimension of PriceGrid, returned as a vector.

Times — Times
vector

Times corresponding to the third dimension of PriceGrid, returned as a vector.

More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:
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• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.

Heston Stochastic Volatility Model

The Heston model is an extension of the Black-Scholes model, where the volatility (square root of
variance) is no longer assumed to be constant, and the variance now follows a stochastic (CIR)
process. This allows modeling the implied volatility smiles observed in the market.

The stochastic differential equation is:

dSt = (r − q)Stdt + vtStdWt

dvt = κ(θ− vt)dt + σv vtdWt
v

E dWtdWt
v = pdt

where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

vt is the asset price variance at time t

v0 is the initial variance of the asset price at t = 0 for (v0 > 0).

θ is the long-term variance level for (θ > 0).

κ is the mean reversion speed for the variance for (κ > 0).

σv is the volatility of the variance for (σv > 0).

p is the correlation between the Weiner processes Wt and Wv
t for (-1 ≤ p ≤ 1).

References
[1] Heston, S. L. “A Closed-Form Solution for Options with Stochastic Volatility with Applications to

Bond and Currency Options.” The Review of Financial Studies. Vol 6, Number 2, 1993.

See Also
optstockbyfd | optstocksensbyfd | optByHestonFD | optByLocalVolFD |
optSensByLocalVolFD | optByBatesFD | optSensByBatesFD | optByMertonFD |
optSensByMertonFD
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Topics
“Vanilla Option” on page 3-27
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2018b
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optByHestonFFT
Option price by Heston model using FFT and FRFT

Syntax
[Price,StrikeOut] = optByHestonFFT(Rate,AssetPrice,Settle,Maturity,OptSpec,
Strike,V0,ThetaV,Kappa,SigmaV,RhoSV)
[Price,StrikeOut] = optByHestonFFT( ___ ,Name,Value)

Description
[Price,StrikeOut] = optByHestonFFT(Rate,AssetPrice,Settle,Maturity,OptSpec,
Strike,V0,ThetaV,Kappa,SigmaV,RhoSV) computes vanilla European option price by Heston
model, using Carr-Madan FFT and Chourdakis FRFT methods.

[Price,StrikeOut] = optByHestonFFT( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Workflow for Plotting an Option Price Surface Using the Heston Model

Use optByHestonFFT to calibrate a FFT strike grid and then compute option prices and plot an
option price surface.

Define Option Variables and Heston Model Parameters

AssetPrice = 80;
Rate = 0.03;
DividendYield = 0.02;
OptSpec = 'call';

V0 = 0.04;
ThetaV = 0.05;
Kappa = 1.0;
SigmaV = 0.2;
RhoSV = -0.7;

Compute the Option Prices for the Entire FFT (or FRFT) Strike Grid, Without Specifying
"Strike"

Compute option prices and also output the corresponding strikes. If the Strike input is empty ( [] ),
option prices will be computed on the entire FFT (or FRFT) strike grid. The FFT (or FRFT) strike grid
is determined as exp(log-strike grid), where each column of the log-strike grid has NumFFT
points with LogStrikeStep spacing that are roughly centered around each element of
log(AssetPrice). The default value for NumFFT is 2^12. In addition to the prices in the first output,
the optional last output contains the corresponding strikes.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
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Strike = []; % Strike is not specified (will use the entire FFT strike grid)

% Compute option prices for the entire FFT strike grid
[Call, Kout] =  optByHestonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield);

% Show the lowest and highest strike values on the FFT strike grid
format
MinStrike = Kout(1) % Lowest possible strike in the current FFT strike grid

MinStrike = 2.9205e-135

MaxStrike = Kout(end) % Highest possible strike in the current FFT strike grid

MaxStrike = 1.8798e+138

% Show a subset of the strikes and corresponding option prices
Range = (2046:2052);
[Kout(Range) Call(Range)]

ans = 7×2

   50.4929   29.4843
   58.8640   21.3767
   68.6231   12.5614
   80.0000    4.7008
   93.2631    0.6496
  108.7251    0.0144
  126.7505    0.0001

Change the Number of FFT (or FRFT) Points, and Compare with optByHestonNI

Try a different number of FFT (or FRFT) points, and compare the results with direct numerical
integration. Unlike optByHestonFFT, which uses FFT (or FRFT) techniques for fast computation
across the whole range of strikes, the optByHestonNI function uses direct numerical integration
and it is typically slower, especially for multiple strikes. However, the values computed by
optByHestonNI can serve as a benchmark for adjusting the settings for optByHestonFFT.

% Try a smaller number of FFT (or FRFT) points 
% (e.g. for faster performance or smaller memory footprint)
NumFFT = 2^10; % Smaller than the default value of 2^12
Strike = []; % Strike is not specified (will use the entire FFT strike grid)
[Call, Kout] = optByHestonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, 'NumFFT', NumFFT);

% Compare with numerical integration method
Range = (510:516);
Strike = Kout(Range);
CallFFT = Call(Range);
CallNI = optByHestonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, V0, ...
    ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield);
Error = abs(CallFFT-CallNI);
table(Strike, CallFFT, CallNI, Error)

ans=7×4 table
    Strike     CallFFT       CallNI         Error  
    ______    _________    ___________    _________
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    12.696       66.066         66.696      0.62964
    23.449       55.766         56.103      0.33672
    43.312       36.359         36.539      0.17974
        80       4.7727         4.7007     0.071928
    147.76     0.066156     2.3472e-08     0.066156
    272.93     0.013271    -2.5036e-09     0.013271
    504.11    0.0034504    -3.0876e-07    0.0034508

Make Further Adjustments to FFT (or FRFT)

If the values in the output CallFFT are significantly different from those in CallNI, try making
adjustments to optByHestonFFT settings, such as CharacteristicFcnStep, LogStrikeStep,
NumFFT, DampingFactor, and so on. Note that if (LogStrikeStep * CharacteristicFcnStep) is
2*pi/ NumFFT, FFT is used. Otherwise, FRFT is used.

Strike = []; % Strike is not specified (will use the entire FFT or FRFT strike grid)
[Call, Kout] = optByHestonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, ...
    'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001);

% Compare with numerical integration method
Strike = Kout(Range);
CallFFT = Call(Range);
CallNI = optByHestonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, V0, ...
    ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield);
Error = abs(CallFFT-CallNI);
table(Strike, CallFFT, CallNI, Error)

ans=7×4 table
    Strike    CallFFT    CallNI      Error   
    ______    _______    ______    __________

    79.76      4.826      4.826    2.7708e-08
    79.84     4.7841     4.7841    3.0111e-08
    79.92     4.7423     4.7423    3.2376e-08
       80     4.7007     4.7007    3.4496e-08
    80.08     4.6593     4.6593    3.6457e-08
    80.16     4.6181     4.6181    3.8253e-08
    80.24      4.577      4.577    3.9872e-08

% Save the final FFT (or FRFT) strike grid for future reference. For
% example, it provides information about the range of Strike inputs for
% which the FFT (or FRFT) operation is valid.
FFTStrikeGrid = Kout;
MinStrike = FFTStrikeGrid(1) % Strike cannot be less than MinStrike

MinStrike = 47.9437

MaxStrike = FFTStrikeGrid(end) % Strike cannot be greater than MaxStrike

MaxStrike = 133.3566
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Compute the Option Price for a Single Strike

Once the desired FFT (or FRFT) settings are determined, use the Strike input to specify the strikes
rather than providing an empty array. If the specified strikes do not match a value on the FFT (or
FRFT) strike grid, the outputs are interpolated on the specified strikes.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = 80; 

Call =  optByHestonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001)

Call = 4.7007

Compute the Option Prices for a Vector of Strikes

Use the Strike input to specify the strikes.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = (76:2:84)';

Call =  optByHestonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001)

Call = 5×1

    7.0401
    5.8053
    4.7007
    3.7316
    2.8991

Compute the Option Prices for a Vector of Strikes and a Vector of Dates of the Same
Lengths

Use the Strike input to specify the strikes. Also, the Maturity input can be a vector, but it must
match the length of the Strike vector if the ExpandOutput name-value pair argument is not set to
"true".

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, [12 18 24 30 36]); % Five maturities
Strike = [76 78 80 82 84]'; % Five strikes

Call =  optByHestonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001) % Five values in vector output

Call = 5×1

    8.9560
    9.3419
    9.6240
    9.8560
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   10.0500

Expand the Outputs for a Surface

Set the ExpandOutput name-value pair argument to "true" to expand the outputs into NStrikes-
by NMaturities matrices. In this case, they are square matrices.

[Call, Kout] =  optByHestonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001, ...
    'ExpandOutput', true) % (5 x 5) matrix outputs

Call = 5×5

    8.9560   10.4543   11.7058   12.8009   13.7728
    7.7946    9.3419   10.6337   11.7644   12.7685
    6.7244    8.3028    9.6240   10.7828   11.8134
    5.7475    7.3379    8.6771    9.8560   10.9074
    4.8645    6.4474    7.7930    8.9840   10.0500

Kout = 5×5

    76    76    76    76    76
    78    78    78    78    78
    80    80    80    80    80
    82    82    82    82    82
    84    84    84    84    84

Compute the Option Prices for a Vector of Strikes and a Vector of Dates of Different
Lengths

When ExpandOutput is "true", NStrikes do not have to match NMaturities (that is, the output
NStrikes-by-NMaturities matrix can be rectangular).

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*(0.5:0.5:3)'); % Six maturities
Strike = (76:2:84)'; % Five strikes

Call =  optByHestonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001, ...
    'ExpandOutput', true) % (5 x 6) matrix output

Call = 5×6

    7.0401    8.9560   10.4543   11.7058   12.8009   13.7728
    5.8053    7.7946    9.3419   10.6337   11.7644   12.7685
    4.7007    6.7244    8.3028    9.6240   10.7828   11.8134
    3.7316    5.7475    7.3379    8.6771    9.8560   10.9074
    2.8991    4.8645    6.4474    7.7930    8.9840   10.0500

Compute the Option Prices for a Vector of Strikes and a Vector of Asset Prices

When ExpandOutput is "true", the output can also be a NStrikes-by-NAssetPrices rectangular
matrix by accepting a vector of asset prices.
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Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12); % Single maturity
ManyAssetPrices = [70 75 80 85]; % Four asset prices
Strike = (76:2:84)'; % Five strikes

Call =  optByHestonFFT(Rate, ManyAssetPrices, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001, ...
    'ExpandOutput', true) % (5 x 4) matrix output

Call = 5×4

    3.2944    5.8047    8.9560   12.6052
    2.6413    4.8810    7.7946   11.2507
    2.0864    4.0575    6.7244    9.9738
    1.6230    3.3325    5.7475    8.7783
    1.2429    2.7028    4.8645    7.6676

Plot an Option Price Surface

Use the Strike input to specify the strikes. Increase the value for NumFFT to support a wider range
of strikes. Also, the Maturity input can be a vector. Set ExpandOutput to "true" to output the
surface as a NStrikes-by-NMaturities matrix.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*[1/12 0.25 (0.5:0.5:3)]');
Times = yearfrac(Settle, Maturity);
Strike = (2:2:200)';

% Increase 'NumFFT' to support a wider range of strikes
NumFFT = 2^13;

Call =  optByHestonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001, 'ExpandOutput', true);

[X,Y] = meshgrid(Times,Strike);

figure;
surf(X,Y,Call);
title('Price');
xlabel('Years to Option Expiry');
ylabel('Strike');
view(-112,34);
xlim([0 Times(end)]);
zlim([0 80]);
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Input Arguments
Rate — Continuously compounded risk-free interest rate
decimal

Continuously compounded risk-free interest rate, specified as a scalar decimal value.
Data Types: double

AssetPrice — Current underlying asset price
numeric

Current underlying asset price, specified as numeric value using a scalar or a NINST-by-1 or
NColumns-by-1 vector.

For more information on the proper dimensions for AssetPrice, see the name-value pair argument
ExpandOutput.
Data Types: double

Settle — Option settlement date
serial date number | date character vector | datetime | string array

Option settlement date, specified as a NINST-by-1 or NColumns-by-1 vector using serial date
numbers, date character vectors, datetime arrays, or string arrays. The Settle date must be before
the Maturity date.
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For more information on the proper dimensions for Settle, see the name-value pair argument
ExpandOutput.
Data Types: double | char | datetime | string

Maturity — Option maturity date
serial date number | date character vector | datetime | string array

Option maturity date, specified as a NINST-by-1 or NColumns-by-1 vector using serial date numbers,
date character vectors, datetime arrays, or string arrays.

For more information on the proper dimensions for Maturity, see the name-value pair argument
ExpandOutput.
Data Types: double | char | datetime | string

OptSpec — Definition of option
cell array of character vector with values 'call' or 'put' | string array with values "call" or
"put"

Definition of the option as 'call' or 'put', specified as a NINST-by-1 or NColumns-by-1 vector
using a cell array of character vectors or string arrays with values "call" or "put".

For more information on the proper dimensions for OptSpec, see the name-value pair argument
ExpandOutput.
Data Types: cell | string

Strike — Option strike price value
numeric

Option strike price value, specified as a NINST-by-1, NRows-by-1, NRows-by-NColumns vector of
strike prices.

If this input is an empty array ([]), option prices are computed on the entire FFT (or FRFT) strike
grid, which is determined as exp(log-strike grid). Each column of the log-strike grid has
'NumFFT' points with 'LogStrikeStep' spacing that are roughly centered around each element of
log(AssetPrice).

For more information on the proper dimensions for Strike, see the name-value pair argument
ExpandOutput.
Data Types: double

V0 — Initial variance of underlying asset
numeric

Initial variance of the underling asset, specified as a scalar numeric value.
Data Types: double

ThetaV — Long-term variance of underlying asset
numeric

Long-term variance of the underling asset, specified as a scalar numeric value.
Data Types: double
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Kappa — Mean revision speed for the variance of underlying asset
numeric

Mean revision speed for the underling asset, specified as a scalar numeric value.
Data Types: double

SigmaV — Volatility of the variance of underlying asset
numeric

Volatility of the variance of the underling asset, specified as a scalar numeric value.
Data Types: double

RhoSV — Correlation between Weiner processes for underlying asset and its variance
numeric

Correlation between the Weiner processes for the underlying asset and its variance, specified as a
scalar numeric value.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,StrikeOut] =
optByHestonFFT(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,V0,ThetaV,Kappa
,SigmaV,RhoSV,'Basis',7)

Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count of the instrument, specified as the comma-separated pair consisting of 'Basis' and a
scalar using a supported value:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
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• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

DividendYield — Continuously compounded underlying asset yield
0 (default) | numeric

Continuously compounded underlying asset yield, specified as the comma-separated pair consisting of
'DividendYield' and a scalar numeric value.
Data Types: double

VolRiskPremium — Volatility risk premium
0 (default) | numeric

Volatility risk premium, specified as the comma-separated pair consisting of 'VolRiskPremium' and
a scalar numeric value.
Data Types: double

LittleTrap — Flag indicating Little Heston Trap formulation
true (default) | logical with values true or false

Flag indicating Little Heston Trap formulation by Albrecher et al, specified as the comma-separated
pair consisting of 'LittleTrap' and a logical:

• true — Use the Albrecher et al formulation.
• false — Use the original Heston formation.

Data Types: logical

NumFFT — Number of grid points in the characteristic function variable
4096 (default) | numeric

Number of grid points in the characteristic function variable and in each column of the log-strike
grid, specified as the comma-separated pair consisting of 'NumFFT' and a scalar numeric value.
Data Types: double

CharacteristicFcnStep — Characteristic function variable grid spacing
0.01 (default) | numeric

Characteristic function variable grid spacing, specified as the comma-separated pair consisting of
'CharacteristicFcnStep' and a scalar numeric value.
Data Types: double

LogStrikeStep — Log-strike grid spacing
2*pi/NumFFT/CharacteristicFcnStep (default) | numeric

Log-strike grid spacing, specified as the comma-separated pair consisting of 'LogStrikeStep' and
a scalar numeric value.
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Note If (LogStrikeStep*CharacteristicFcnStep) is 2*pi/NumFFT, FFT is used. Otherwise,
FRFT is used.

Data Types: double

DampingFactor — Damping factor for Carr-Madan formulation
1.5 (default) | numeric

Damping factor for Carr-Madan formulation, specified as the comma-separated pair consisting of
'DampingFactor' and a scalar numeric value.
Data Types: double

Quadrature — Type of quadrature
"simpson" (default) | character vector with values:'simpson' or 'trapezoidal' | string array
with values: "simpson" or "trapezoidal"

Type of quadrature, specified as the comma-separated pair consisting of 'Quadrature' and a single
character vector or string array with a value of 'simpson' or 'trapezoidal'.
Data Types: char | string

ExpandOutput — Flag to expand the outputs
false (outputs are NINST-by-1 vectors) (default) | logical with value of true or false

Flag to expand the outputs, specified as the comma-separated pair consisting of 'ExpandOutput'
and a logical:

• true — If true, the outputs are NRows-by- NColumns matrices. NRows is the number of strikes
for each column and it is determined by the Strike input. For example, Strike can be a NRows-
by-1 vector, or a NRows-by-NColumns matrix. If Strike is empty, NRows is equal to NumFFT.
NColumns is determined by the sizes of AssetPrice, Settle, Maturity, and OptSpec, which
must all be either scalar or NColumns-by-1 vectors.

• false — If false, the outputs are NINST-by-1 vectors. Also, the inputs Strike, AssetPrice,
Settle, Maturity, and OptSpec must all be either scalar or NINST-by-1 vectors.

Data Types: logical

Output Arguments
Price — Option prices
numeric

Option prices, returned as a NINST-by-1, or NRows-by-NColumns, depending on ExpandOutput.

StrikeOut — Strikes corresponding to Price
numeric

Strikes corresponding to Price, returned as a NINST-by-1, or NRows-by-NColumns, depending on
ExpandOutput.
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More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.

Heston Stochastic Volatility Model

The Heston model is an extension of the Black-Scholes model, where the volatility (square root of
variance) is no longer assumed to be constant, and the variance now follows a stochastic (CIR)
process. This process allows modeling the implied volatility smiles observed in the market.

The stochastic differential equation is:

dSt = (r − q)Stdt + vtStdWt

dvt = κ(θ− vt)dt + σv vtdWt
v

E dWtdWt
v = pdt

where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

vt is the asset price variance at time t

v0 is the initial variance of the asset price at t = 0 for (v0 > 0).

θ is the long-term variance level for (θ > 0).

κ is the mean reversion speed for the variance for (κ > 0).

σv is the volatility of the variance for (σv > 0).

p is the correlation between the Weiner processes Wt and Wv
t for (-1 ≤ p ≤ 1).
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The characteristic function fHeston j(ϕ) for j = 1 (asset price measure) and j = 2 (risk-neutral measure)
is:

fHeston j(ϕ) = exp(C j + D jv0 + iϕlnSt)

C j = (r − q)iϕτ + κθ
σv

2 b j− pσviϕ + d j τ − 2ln
1− g je

djτ

1− g j

D j =
b j− pσviϕ + d j

σv
2

1− edjτ

1− g je
djτ

g j =
b j− pσviϕ + d j
b j− pσviϕ− d j

d j = b j− pσviϕ
2− σv

2 2u jiϕ− ϕ2

where for  j = 1, 2:

u1 = 1
2, u2 = − 1

2, b1 = κ + λVolRisk− pσv, b2 = κ + λVolRisk

where

ϕ is the characteristic function variable.

ƛVolRisk is the volatility risk premium.

τ is the time to maturity (τ = T - t).

i is the unit imaginary number (i2 = -1).

The definitions for Cj and Dj under “The Little Heston Trap” by Albrecher et al. (2007) are:

C j = (r − q)iϕτ + κθ
σv2 b j− pσviϕ− d j τ − 2ln

1− ε je
−djτ

1− ε j

D j =
b j− pσviϕ− d j

σv
2

1− e−djτ

1− ε je
−djτ

ε j =
b j− pσviϕ− d j
b j− pσviϕ + d j

Carr-Madan Formulation

The Carr and Madan (1999) formulation is a popular modified implementation of Heston (1993)
framework.

Rather than computing the probabilities P1 and P2 as intermediate steps, Carr and Madan developed
an alternative expression so that taking its inverse Fourier transform gives the option price itself
directly.
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Call(k) = e−αk

π ∫0 ∞Re e−iukψ(u) du

ψ(u) =
e−rτf2(ϕ = (u− (α + 1)i))
α2 + α− u2 + iu(2α + 1)

Put(K) = Call(K) + Ke−rτ − Ste−qτ

where

τ is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

τ is time to maturity (τ = T-t).

Call(K) is the call price at strike K.

Put(K) is the put price at strike K

i is a unit imaginary number (i2= -1)

ϕ is the characteristic function variable.

α is the damping factor.

u is the characteristic function variable for integration, where ϕ = (u - (α+1)i).

f2(ϕ) is the characteristic function for P2.

P2 is the probability of St > K under the risk-neutral measure for the model.

To apply FFT or FRFT to this formulation, the characteristic function variable for integration, u, is
discretized into NumFFT(N) points with the step size CharacteristicFcnStep (Δu), and the log-
strike k is discretized into N points with the step size LogStrikeStep(Δk).

The discretized characteristic function variable for integration, uj(for j = 1,2,3,…,N), has a minimum
value of 0 and a maximum value of (N-1) (Δu), and it approximates the continuous integration range
from 0 to infinity.

The discretized log-strike grid, kn(for n = 1, 2, 3, N) is approximately centered around ln(St), with a
minimum value of

ln(St)−
N
2 Δk

and a maximum value of

ln(St) + N
2 − 1 Δk

Where the minimum allowable strike is

Stexp −N
2 Δk
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and the maximum allowable strike is

Stexp N
2 − 1 Δk

As a result of the discretization, the expression for the call option becomes

Call(kn) = Δue−αkn

π ∑
j = 1

N
Re e−iΔkΔu( j− 1)(n− 1)eiu j NΔk

2 − ln(St) ψ(u j) w j

where

Δu is the step size of discretized characteristic function variable for integration.

Δk is the step size of discretized log-strike.

N is the number of FFT or FRFT points.

wj is the weights for quadrature used for approximating the integral.

FFT is used to evaluate the above expression if Δk and Δu are subject to the following constraint:

ΔkΔu = 2π
N

otherwise, the functions use the FRFT method described in Chourdakis (2005).
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optSensByHestonFFT
Option price and sensitivities by Heston model using FFT and FRFT

Syntax
[PriceSens,StrikeOut] = optSensByHestonFFT(Rate,AssetPrice,Settle,Maturity,
OptSpec,Strike,V0,ThetaV,Kappa,SigmaV,RhoSV)
[PriceSens,StrikeOut] = optSensByHestonFFT( ___ ,Name,Value)

Description
[PriceSens,StrikeOut] = optSensByHestonFFT(Rate,AssetPrice,Settle,Maturity,
OptSpec,Strike,V0,ThetaV,Kappa,SigmaV,RhoSV) computes vanilla European option price
and sensitivities by Heston model, using Carr-Madan FFT and Chourdakis FRFT methods.

[PriceSens,StrikeOut] = optSensByHestonFFT( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Workflow for Plotting an Option Sensitivity Surface Using the Heston Model

Use optSensByHestonFFT to calibrate the FFT strike grid for sensitivities, compute option
sensitivities, and plot option sensitivity surfaces.

Define Option Variables and Heston Model Parameters

AssetPrice = 80;
Rate = 0.03;
DividendYield = 0.02;
OptSpec = 'call';

V0 = 0.04;
ThetaV = 0.05;
Kappa = 1.0;
SigmaV = 0.2;
RhoSV = -0.7;

Compute the Option Sensitivities for the Entire FFT (or FRFT) Strike Grid, Without
Specifying "Strike"

Compute option sensitivities and also output the corresponding strikes. If the Strike input is empty
( [] ), option sensitivities will be computed on the entire FFT (or FRFT) strike grid. The FFT (or
FRFT) strike grid is determined as exp(log-strike grid), where each column of the log-strike
grid has NumFFT points with LogStrikeStep spacing that are roughly centered around each
element of log(AssetPrice). The default value for NumFFT is 2^12. In addition to the sensitivities
in the first output, the optional last output contains the corresponding strikes.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
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Strike = []; % Strike is not specified (will use the entire FFT strike grid)

% Compute option sensitivities for the entire FFT strike grid
[Delta, Kout] = optSensByHestonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, 'OutSpec', "delta");

% Show the lowest and highest strike values on the FFT strike grid
format
MinStrike = Kout(1) % Lowest possible strike in the current FFT strike grid

MinStrike = 2.9205e-135

MaxStrike = Kout(end) % Highest possible strike in the current FFT strike grid

MaxStrike = 1.8798e+138

% Show a subset of the strikes and corresponding option sensitivities
Range = (2046:2052);
[Kout(Range) Delta(Range)]

ans = 7×2

   50.4929    0.9866
   58.8640    0.9671
   68.6231    0.8724
   80.0000    0.5775
   93.2631    0.1545
  108.7251    0.0059
  126.7505    0.0000

Change the Number of FFT (or FRFT) Points, and Compare With optSensByHestonNI

Try a different number of FFT (or FRFT) points, and compare the results with numerical integration.
Unlike optSensByHestonFFT, which uses FFT (or FRFT) techniques for fast computation across the
whole range of strikes, the optSensByHestonNI function uses direct numerical integration and it is
typically slower, especially for multiple strikes. However, the values computed by
optSensByHestonNI can serve as a benchmark for adjusting the settings for
optSensByHestonFFT.

% Try a smaller number of FFT points 
% (e.g. for faster performance or smaller memory footprint)
NumFFT = 2^10; % Smaller than the default value of 2^12 
Strike = []; % Strike is not specified (will use the entire FFT strike grid)
[Delta, Kout] = optSensByHestonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, ...
    'OutSpec', "delta", 'NumFFT', NumFFT);

% Compare with numerical integration method
Range = (510:516);
Strike = Kout(Range);
DeltaFFT = Delta(Range);
DeltaNI = optSensByHestonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, 'OutSpec', "delta");
Error = abs(DeltaFFT-DeltaNI);
table(Strike, DeltaFFT, DeltaNI, Error)

ans=7×4 table
    Strike     DeltaFFT      DeltaNI        Error   
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    ______    __________    __________    __________

    12.696       0.90066       0.99002       0.08936
    23.449       0.93635       0.99002      0.053677
    43.312       0.94796        0.9896      0.041645
        80       0.53274       0.57747      0.044733
    147.76     0.0032769      2.45e-08     0.0032769
    272.93    0.00098029    -1.399e-10    0.00098029
    504.11    0.00028151    5.2868e-10    0.00028151

Make Further Adjustments to FFT (or FRFT)

If the values in the output DeltaFFT are significantly different from those in DeltaNI, try making
adjustments to optSensByHestonFFT settings, such as CharacteristicFcnStep,
LogStrikeStep, NumFFT, DampingFactor, and so on. Note that if (LogStrikeStep *
CharacteristicFcnStep) is 2*pi/ NumFFT, FFT is used. Otherwise, FRFT is used.

Strike = []; % Strike is not specified (will use the entire FFT or FRFT strike grid)
[Delta, Kout] = optSensByHestonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, ...
    'OutSpec', "delta", 'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001);

% Compare with numerical integration method
Strike = Kout(Range);
DeltaFFT = Delta(Range);
DeltaNI = optSensByHestonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, 'OutSpec', "delta");
Error = abs(DeltaFFT-DeltaNI);
table(Strike, DeltaFFT, DeltaNI, Error)

ans=7×4 table
    Strike    DeltaFFT    DeltaNI      Error   
    ______    ________    _______    __________

    79.76     0.58558     0.58558    3.0538e-08
    79.84     0.58289     0.58289    2.8865e-08
    79.92     0.58018     0.58018    2.7053e-08
       80     0.57747     0.57747    2.5111e-08
    80.08     0.57476     0.57476    2.3049e-08
    80.16     0.57203     0.57203    2.0875e-08
    80.24      0.5693      0.5693    1.8601e-08

% Save the final FFT (or FRFT) strike grid for future reference. For
% example, it provides information about the range of Strike inputs for
% which the FFT (or FRFT) operation is valid.
FFTStrikeGrid = Kout;
MinStrike = FFTStrikeGrid(1) % Strike cannot be less than MinStrike

MinStrike = 47.9437

MaxStrike = FFTStrikeGrid(end) % Strike cannot be greater than MaxStrike

MaxStrike = 133.3566
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Compute the Option Sensitivity for a Single Strike

Once you determine FFT (or FRFT) settings, use the Strike input to specify the strikes rather than
providing an empty array. If the specified strikes do not match a value on the FFT (or FRFT) strike
grid, the outputs are interpolated on the specified strikes.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = 80; 

Delta = optSensByHestonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, ...
    'OutSpec', "delta", 'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001)

Delta = 0.5775

Compute the Option Sensitivities for a Vector of Strikes

Use the Strike input to specify the strikes.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = (76:2:84)';

Delta = optSensByHestonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, ...
    'OutSpec', "delta", 'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001)

Delta = 5×1

    0.7043
    0.6433
    0.5775
    0.5083
    0.4377

Compute the Option Sensitivities for a Vector of Strikes and a Vector of Dates of the Same
Lengths

Use the Strike input to specify the strikes. Also, the Maturity input can be a vector, but it must
match the length of the Strike vector if the ExpandOutput name-value pair argument is not set to
"true".

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, [12 18 24 30 36]); % Five maturities
Strike = [76 78 80 82 84]'; % Five strikes

Delta = optSensByHestonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, ...
    'OutSpec', "delta", 'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001) % Five values in vector output

Delta = 5×1

    0.6848
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    0.6413
    0.6095
    0.5841
    0.5631

Expand the Outputs for a Surface

Set the ExpandOutput name-value pair argument to "true" to expand the outputs into NStrikes-
by-NMaturities matrices. In this case, they are square matrices.

[Delta, Kout] = optSensByHestonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, ...
    'OutSpec', "delta", 'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001, 'ExpandOutput', true) % (5 x 5) matrix output

Delta = 5×5

    0.6848    0.6762    0.6703    0.6654    0.6609
    0.6416    0.6413    0.6404    0.6390    0.6372
    0.5960    0.6048    0.6095    0.6119    0.6129
    0.5485    0.5671    0.5776    0.5841    0.5882
    0.4997    0.5286    0.5452    0.5559    0.5631

Kout = 5×5

    76    76    76    76    76
    78    78    78    78    78
    80    80    80    80    80
    82    82    82    82    82
    84    84    84    84    84

Compute the Option Sensitivities for a Vector of Strikes and a Vector of Dates of Different
Lengths

When ExpandOutput is "true", NStrikes do not have to match NMaturities (that is, the output
NStrikes-by-NMaturities matrix can be rectangular).

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*(0.5:0.5:3)'); % Six maturities
Strike = (76:2:84)'; % Five strikes

Delta = optSensByHestonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, ...
    'OutSpec', "delta", 'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001, 'ExpandOutput', true) % (5 x 6) matrix output

Delta = 5×6

    0.7043    0.6848    0.6762    0.6703    0.6654    0.6609
    0.6433    0.6416    0.6413    0.6404    0.6390    0.6372
    0.5775    0.5960    0.6048    0.6095    0.6119    0.6129
    0.5083    0.5485    0.5671    0.5776    0.5841    0.5882
    0.4377    0.4997    0.5286    0.5452    0.5559    0.5631
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Compute the Option Sensitivities for a Vector of Strikes and a Vector of Asset Prices

When ExpandOutput is "true", the output can also be a NStrikes-by-NAssetPrices rectangular
matrix by accepting a vector of asset prices.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12); % Single maturity
ManyAssetPrices = [70 75 80 85]; % Four asset prices
Strike = (76:2:84)'; % Five strikes

Delta = optSensByHestonFFT(Rate, ManyAssetPrices, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, ...
    'OutSpec', "delta", 'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001, 'ExpandOutput', true) % (5 x 4) matrix output

Delta = 5×4

    0.4293    0.5708    0.6848    0.7705
    0.3737    0.5193    0.6416    0.7364
    0.3200    0.4668    0.5960    0.6994
    0.2693    0.4143    0.5485    0.6597
    0.2226    0.3628    0.4997    0.6177

Plot Option Sensitivity Surfaces

Use the Strike input to specify the strikes. Increase the value for NumFFT to support a wider range
of strikes. Also, the Maturity input can be a vector. Set ExpandOutput to "true" to output the
surfaces as NStrikes-by-NMaturities matrices.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*[1/12 0.25 (0.5:0.5:3)]');
Times = yearfrac(Settle, Maturity);
Strike = (2:2:200)';

% Increase 'NumFFT' to support a wider range of strikes
NumFFT = 2^13;

[Delta, Gamma, Rho, Theta, Vega, VegaLT] = ...
    optSensByHestonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001, 'ExpandOutput', true, ...
    'OutSpec', ["delta", "gamma", "rho", "theta", "vega", "vegalt"]);

[X,Y] = meshgrid(Times,Strike);

figure;
surf(X,Y,Delta);
title('Delta');
xlabel('Years to Option Expiry');
ylabel('Strike');
view(-112,34);
xlim([0 Times(end)]);

 optSensByHestonFFT

11-1209



figure;
surf(X,Y,Gamma)
title('Gamma')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,Rho)
title('Rho')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);

 optSensByHestonFFT

11-1211



figure;
surf(X,Y,Theta)
title('Theta')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);

11 Functions

11-1212



figure;
surf(X,Y,Vega)
title('Vega')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,VegaLT)
title('VegaLT')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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Input Arguments
Rate — Continuously compounded risk-free interest rate
decimal

Continuously compounded risk-free interest rate, specified as a scalar decimal value.
Data Types: double

AssetPrice — Current underlying asset price
numeric

Current underlying asset price, specified as numeric value using a scalar or a NINST-by-1 or
NColumns-by-1 vector.

For more information on the proper dimensions for AssetPrice, see the name-value pair argument
ExpandOutput.
Data Types: double

Settle — Option settlement date
serial date number | date character vector | datetime | string array

Option settlement date, specified as a NINST-by-1 or NColumns-by-1 vector using serial date
numbers, date character vectors, datetime arrays, or string arrays. The Settle date must be before
the Maturity date.
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For more information on the proper dimensions for Settle, see the name-value pair argument
ExpandOutput.
Data Types: double | char | datetime | string

Maturity — Option maturity date
serial date number | date character vector | datetime | string array

Option maturity date, specified as a NINST-by-1 or NColumns-by-1 vector using serial date numbers,
date character vectors, datetime arrays, or string arrays.

For more information on the proper dimensions for Maturity, see the name-value pair argument
ExpandOutput.
Data Types: double | char | datetime | string

OptSpec — Definition of option
cell array of character vector with values 'call' or 'put' | string array with values "call" or
"put"

Definition of the option, specified as a NINST-by-1 or NColumns-by-1 vector using a cell array of
character vectors or string arrays with values 'call' or 'put'.

For more information on the proper dimensions for OptSpec, see the name-value pair argument
ExpandOutput.
Data Types: cell | string

Strike — Option strike price value
numeric

Option strike price value, specified as a NINST-by-1, NRows-by-1, NRows-by-NColumns vector of
strike prices.

If this input is an empty array ([]), option prices are computed on the entire FFT (or FRFT) strike
grid, which is determined as exp(log-strike grid). Each column of the log-strike grid has
'NumFFT' points with 'LogStrikeStep' spacing that are roughly centered around each element of
log(AssetPrice).

For more information on the proper dimensions for Strike, see the name-value pair argument
ExpandOutput.
Data Types: double

V0 — Initial variance of underlying asset
numeric

Initial variance of the underling asset, specified as a scalar numeric value.
Data Types: double

ThetaV — Long-term variance of underlying asset
numeric

Long-term variance of the underling asset, specified as a scalar numeric value.
Data Types: double
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Kappa — Mean revision speed for the variance of underlying asset
numeric

Mean revision speed for the underling asset, specified as a scalar numeric value.
Data Types: double

SigmaV — Volatility of the variance of underlying asset
numeric

Volatility of the variance of the underling asset, specified as a scalar numeric value.
Data Types: double

RhoSV — Correlation between Weiner processes for underlying asset and its variance
numeric

Correlation between the Weiner processes for the underlying asset and its variance, specified as a
scalar numeric value.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [PriceSens,StrikeOut] = optSensByHestonFFT(Rate,
AssetPrice,Settle,Maturity,OptSpec,Strike,V0,ThetaV,Kappa,SigmaV,RhoSV,'Basis
',7,'OptSpec',"vega")

Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count of the instrument, specified as the comma-separated pair consisting of 'Basis' and a
scalar using a supported value:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
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• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

DividendYield — Continuously compounded underlying asset yield
0 (default) | numeric

Continuously compounded underlying asset yield, specified as the comma-separated pair consisting of
'DividendYield' and a scalar numeric value.
Data Types: double

VolRiskPremium — Volatility risk premium
0 (default) | numeric

Volatility risk premium, specified as the comma-separated pair consisting of 'VolRiskPremium' and
a scalar numeric value.
Data Types: double

LittleTrap — Flag indicating Little Heston Trap formulation
true (default) | logical with values true or false

Flag indicating Little Heston Trap formulation by Albrecher et al, specified as the comma-separated
pair consisting of 'LittleTrap' and a logical:

• true — Use the Albrecher et al formulation.
• false — Use the original Heston formation.

Data Types: logical

OutSpec — Define outputs
["price"] (default) | string array with values "price", "delta", "gamma", "vega", "rho",
"theta", and "vegalt" | cell array of character vectors with values 'price', 'delta', 'gamma',
'vega', 'rho', 'theta', and 'vegalt'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a NOUT- by-1 or
a 1-by-NOUT string array or cell array of character vectors with supported values.

Note "vega" is the sensitivity with respect the initial volatility sqrt(V0). In contrast, "vegalt" is
the sensitivity with respect to the long-term volatility sqrt(ThetaV).

Example: OutSpec = ["price","delta","gamma","vega","rho","theta","vegalt"]
Data Types: string | cell

NumFFT — Number of grid points in the characteristic function variable
4096 (default) | numeric

Number of grid points in the characteristic function variable and in each column of the log-strike
grid, specified as the comma-separated pair consisting of 'NumFFT' and a scalar numeric value.
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Data Types: double

CharacteristicFcnStep — Characteristic function variable grid spacing
0.01 (default) | numeric

Characteristic function variable grid spacing, specified as the comma-separated pair consisting of
'CharacteristicFcnStep' and a scalar numeric value.
Data Types: double

LogStrikeStep — Log-strike grid spacing
2*pi/NumFFT/CharacteristicFcnStep (default) | numeric

Log-strike grid spacing, specified as the comma-separated pair consisting of 'LogStrikeStep' and
a scalar numeric value.

Note If (LogStrikeStep*CharacteristicFcnStep) is 2*pi/NumFFT, FFT is used. Otherwise,
FRFT is used.

Data Types: double

DampingFactor — Damping factor for Carr-Madan formulation
1.5 (default) | numeric

Damping factor for Carr-Madan formulation, specified as the comma-separated pair consisting of
'DampingFactor' and a scalar numeric value.
Data Types: double

Quadrature — Type of quadrature
simpson (default) | character vector with values:simpson or trapezoidal | string array with
values: simpson or trapezoidal

Type of quadrature, specified as the comma-separated pair consisting of 'Quadrature' and a single
character vector or string array with a value of simpson or trapezoidal.
Data Types: char | string

ExpandOutput — Flag to expand the outputs
false (outputs are NINST-by-1 vectors) (default) | logical with value of true or false

Flag to expand the outputs, specified as the comma-separated pair consisting of 'ExpandOutput'
and a logical:

• true — If true, the outputs are NRows-by- NColumns matrices. NRows is the number of strikes
for each column and it is determined by the Strike input. For example, Strike can be a NRows-
by-1 vector, or a NRows-by-NColumns matrix. If Strike is empty, NRows is equal to NumFFT.
NColumns is determined by the sizes of AssetPrice, Settle, Maturity, and OptSpec, which
must all be either scalar or NColumns-by-1 vectors.

• false — If false, the outputs are NINST-by-1 vectors. Also, the inputs Strike, AssetPrice,
Settle, Maturity, and OptSpec must all be either scalar or NINST-by-1 vectors.

Data Types: logical
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Output Arguments
PriceSens — Option prices or sensitivities
numeric

Option prices or sensitivities, returned as a NINST-by-1, or NRows-by-NColumns, depending on
ExpandOutput. The name-value pair argument OutSpec determines the types and order of the
outputs.

StrikeOut — Strikes corresponding to Price
numeric

Strikes corresponding to Price, returned as a NINST-by-1, or NRows-by-NColumns, depending on
ExpandOutput.

More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.

Heston Stochastic Volatility Model

The Heston model is an extension of the Black-Scholes model, where the volatility (square root of
variance) is no longer assumed to be constant, and the variance now follows a stochastic (CIR)
process. This process allows modeling the implied volatility smiles observed in the market.

The stochastic differential equation is:

dSt = (r − q)Stdt + vtStdWt

dvt = κ(θ− vt)dt + σv vtdWt
v

E dWtdWt
v = pdt

where

r is the continuous risk-free rate.
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q is the continuous dividend yield.

St is the asset price at time t.

vt is the asset price variance at time t

v0 is the initial variance of the asset price at t = 0 for (v0 > 0).

θ is the long-term variance level for (θ > 0).

κ is the mean reversion speed for the variance for (κ > 0).

σv is the volatility of the variance for (σv > 0).

p is the correlation between the Weiner processes Wt and Wv
t for (-1 ≤ p ≤ 1).

The characteristic function fHeston j(ϕ) for j = 1 (asset price measure) and j = 2 (risk-neutral measure)
is:

fHeston j(ϕ) = exp(C j + D jv0 + iϕlnSt)

C j = (r − q)iϕτ + κθ
σv

2 b j− pσviϕ + d j τ − 2ln
1− g je

djτ

1− g j

D j =
b j− pσviϕ + d j

σv
2

1− edjτ

1− g je
djτ

g j =
b j− pσviϕ + d j
b j− pσviϕ− d j

d j = b j− pσviϕ
2− σv

2 2u jiϕ− ϕ2

where for  j = 1, 2:

u1 = 1
2, u2 = − 1

2, b1 = κ + λVolRisk− pσv, b2 = κ + λVolRisk

where

ϕ is the characteristic function variable.

ƛVolRisk is the volatility risk premium.

τ is the time to maturity (τ = T - t).

i is the unit imaginary number (i2 = -1).

The definitions for Cj and Dj under “The Little Heston Trap” by Albrecher et al. (2007) are:

C j = (r − q)iϕτ + κθ
σv2 b j− pσviϕ− d j τ − 2ln

1− ε je
−djτ

1− ε j

D j =
b j− pσviϕ− d j

σv
2

1− e−djτ

1− ε je
−djτ

ε j =
b j− pσviϕ− d j
b j− pσviϕ + d j
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Carr-Madan Formulation

The Carr and Madan (1999) formulation is a popular modified implementation of Heston (1993)
framework.

Rather than computing the probabilities P1 and P2 as intermediate steps, Carr and Madan developed
an alternative expression so that taking its inverse Fourier transform gives the option price itself
directly.

Call(k) = e−αk

π ∫0 ∞Re e−iukψ(u) du

ψ(u) =
e−rτf2(ϕ = (u− (α + 1)i))
α2 + α− u2 + iu(2α + 1)

Put(K) = Call(K) + Ke−rτ − Ste−qτ

where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

τ is time to maturity (τ = T-t).

Call(K) is the call price at strike K.

Put(K) is the put price at strike K.

i is a unit imaginary number (i2= -1).

ϕ is the characteristic function variable.

α is the damping factor.

u is the characteristic function variable for integration, where ϕ = (u - (α+1)i).

f2(ϕ) is the characteristic function for P2.

P2 is the probability of St > K under the risk-neutral measure for the model.

To apply FFT or FRFT to this formulation, the characteristic function variable for integration, u, is
discretized into NumFFT(N) points with the step size CharacteristicFcnStep (Δu), and the log-
strike k is discretized into N points with the step size LogStrikeStep(Δk).

The discretized characteristic function variable for integration, uj(for j = 1,2,3,…,N), has a minimum
value of 0 and a maximum value of (N-1) (Δu), and it approximates the continuous integration range
from 0 to infinity.

The discretized log-strike grid, kn(for n = 1, 2, 3, N) is approximately centered around ln(St), with a
minimum value of

ln(St)−
N
2 Δk
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and a maximum value of

ln(St) + N
2 − 1 Δk

Where the minimum allowable strike is

Stexp −N
2 Δk

and the maximum allowable strike is

Stexp N
2 − 1 Δk

As a result of the discretization, the expression for the call option becomes

Call(kn) = Δue−αkn

π ∑
j = 1

N
Re e−iΔkΔu( j− 1)(n− 1)eiu j NΔk

2 − ln(St) ψ(u j) w j

where

Δu is the step size of discretized characteristic function variable for integration.

Δk is the step size of discretized log-strike.

N is the number of FFT or FRFT points.

wj is the weights for quadrature used for approximating the integral.

FFT is used to evaluate the above expression if Δk and Δu are subject to the following constraint:

ΔkΔu = 2π
N

otherwise, the functions use the FRFT method described in Chourdakis (2005).
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Topics
“Vanilla Option” on page 3-27
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2018a
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optByHestonNI
Option price by Heston model using numerical integration

Syntax
Price = optByHestonNI(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,V0,
ThetaV,Kappa,SigmaV,RhoSV)
Price = optByHestonNI( ___ ,Name,Value)

Description
Price = optByHestonNI(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,V0,
ThetaV,Kappa,SigmaV,RhoSV) computes vanilla European option price by Heston model, using
numerical integration methods.

Price = optByHestonNI( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Workflow for Plotting an Option Price Surface Using the Heston Model

optByHestonNI uses numerical integration to compute option prices and then to plot an option price
surface.

Define Option Variables and Heston Model Parameters

AssetPrice = 80;
Rate = 0.03;
DividendYield = 0.02;
OptSpec = 'call';

V0 = 0.04;
ThetaV = 0.05;
Kappa = 1.0;
SigmaV = 0.2;
RhoSV = -0.7;

Compute the Option Price for a Single Strike

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = 80; 

Call = optByHestonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield)

Call = 4.7007

Compute the Option Prices for a Vector of Strikes

The Strike input can be a vector.
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Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = (76:2:84)';

Call = optByHestonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield)

Call = 5×1

    7.0401
    5.8053
    4.7007
    3.7316
    2.8991

Compute the Option Prices for a Vector of Strikes and a Vector of Dates of the Same
Lengths

Use the Strike input to specify the strikes. Also, the Maturity input can be a vector, but it must
match the length of the Strike vector if the ExpandOutput name-value pair argument is not set to
"true".

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, [12 18 24 30 36]); % Five maturities
Strike = [76 78 80 82 84]'; % Five strikes

Call = optByHestonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield)

Call = 5×1

    8.9560
    9.3419
    9.6240
    9.8560
   10.0500

    % Five values in vector output

Expand the Output for a Surface

Set the ExpandOutput name-value pair argument to "true" to expand the output into a NStrikes-
by-NMaturities matrix. In this case, it is a square matrix.

Call = optByHestonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, ...
    'ExpandOutput', true) % (5 x 5) matrix output

Call = 5×5

    8.9560   10.4543   11.7058   12.8009   13.7728
    7.7946    9.3419   10.6337   11.7644   12.7685
    6.7244    8.3028    9.6240   10.7828   11.8134
    5.7474    7.3378    8.6771    9.8560   10.9074
    4.8645    6.4474    7.7930    8.9840   10.0500
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Compute the Option Prices for a Vector of Strikes and a Vector of Dates of Different
Lengths

When ExpandOutput is "true", NStrikes do not have to match NMaturities (that is, the output
NStrikes-by-NMaturities matrix can be rectangular).

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*(0.5:0.5:3)'); % Six maturities
Strike = (76:2:84)'; % Five strikes

Call = optByHestonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, ...
    'ExpandOutput', true) % (5 x 6) matrix output

Call = 5×6

    7.0401    8.9560   10.4543   11.7058   12.8009   13.7728
    5.8053    7.7946    9.3419   10.6337   11.7644   12.7685
    4.7007    6.7244    8.3028    9.6240   10.7828   11.8134
    3.7316    5.7474    7.3378    8.6771    9.8560   10.9074
    2.8991    4.8645    6.4474    7.7930    8.9840   10.0500

Compute the Option Prices for a Vector of Strikes and a Vector of Asset Prices

When ExpandOutput is "true", the output can also be a NStrikes-by-NAssetPrices rectangular
matrix by accepting a vector of asset prices.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12); % Single maturity
ManyAssetPrices = [70 75 80 85]; % Four asset prices
Strike = (76:2:84)'; % Five strikes

Call = optByHestonNI(Rate, ManyAssetPrices, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, ...
    'ExpandOutput', true) % (5 x 4) matrix output

Call = 5×4

    3.2944    5.8047    8.9560   12.6052
    2.6413    4.8810    7.7946   11.2507
    2.0864    4.0575    6.7244    9.9738
    1.6230    3.3325    5.7474    8.7783
    1.2429    2.7028    4.8645    7.6676

Plot an Option Price Surface

The Strike and Maturity inputs can be vectors. Set ExpandOutput to "true" to output the
surface as a NStrikes-by-NMaturities matrix.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*[1/12 0.25 (0.5:0.5:3)]');
Times = yearfrac(Settle, Maturity);
Strike = (2:2:200)';

Call = optByHestonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, ...
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    'ExpandOutput', true);

[X,Y] = meshgrid(Times,Strike);

figure;
surf(X,Y,Call);
title('Price');
xlabel('Years to Option Expiry');
ylabel('Strike');
view(-112,34);
xlim([0 Times(end)]);
zlim([0 80]);

Input Arguments
Rate — Continuously compounded risk-free interest rate
decimal

Continuously compounded risk-free interest rate, specified as a scalar decimal value.
Data Types: double

AssetPrice — Current underlying asset price
numeric

Current underlying asset price, specified as numeric value using a scalar or a NINST-by-1 or
NColumns-by-1 vector.
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For more information on the proper dimensions for AssetPrice, see the name-value pair argument
ExpandOutput.
Data Types: double

Settle — Option settlement date
serial date number | date character vector | datetime | string array

Option settlement date, specified as a NINST-by-1 or NColumns-by-1 vector using serial date
numbers, date character vectors, datetime arrays, or string arrays. The Settle date must be before
the Maturity date.

For more information on the proper dimensions for Settle, see the name-value pair argument
ExpandOutput.
Data Types: double | char | datetime | string

Maturity — Option maturity date
serial date number | date character vector | datetime | string array

Option maturity date, specified as a NINST-by-1 or NColumns-by-1 vector using serial date numbers,
date character vectors, datetime arrays, or string arrays.

For more information on the proper dimensions for Maturity, see the name-value pair argument
ExpandOutput.
Data Types: double | char | datetime | string

OptSpec — Definition of option
cell array of character vector with values 'call' or 'put' | string array with values 'call' or
'put'

Definition of the option as 'call' or 'put', specified as a NINST-by-1 or NColumns-by-1 vector
using a cell array of character vectors or string arrays with values "call" or "put".

For more information on the proper dimensions for OptSpec, see the name-value pair argument
ExpandOutput.
Data Types: cell | string

Strike — Option strike price value
numeric

Option strike price value, specified as a NINST-by-1, NRows-by-1, NRows-by-NColumns vector of
strike prices.

For more information on the proper dimensions for Strike, see the name-value pair argument
ExpandOutput.
Data Types: double

V0 — Initial variance of underlying asset
numeric

Initial variance of the underling asset, specified as a scalar numeric value.
Data Types: double
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ThetaV — Long-term variance of underlying asset
numeric

Long-term variance of the underling asset, specified as a scalar numeric value.
Data Types: double

Kappa — Mean revision speed for the variance of underlying asset
numeric

Mean revision speed for the underling asset, specified as a scalar numeric value.
Data Types: double

SigmaV — Volatility of the variance of underlying asset
numeric

Volatility of the variance of the underling asset, specified as a scalar numeric value.
Data Types: double

RhoSV — Correlation between Weiner processes for underlying asset and its variance
numeric

Correlation between the Weiner processes for the underlying asset and its variance, specified as a
scalar numeric value.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Price =
optByHestonNI(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,V0,ThetaV,Kappa,
SigmaV,RhoSV,'Basis',7,'Framework',"lewis2001")

Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count of the instrument, specified as the comma-separated pair consisting of 'Basis' and a
scalar using a supported value:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
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• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

DividendYield — Continuously compounded underlying asset yield
0 (default) | numeric

Continuously compounded underlying asset yield, specified as the comma-separated pair consisting of
'DividendYield' and a scalar numeric value.
Data Types: double

VolRiskPremium — Volatility risk premium
0 (default) | numeric

Volatility risk premium, specified as the comma-separated pair consisting of 'VolRiskPremium' and
a scalar numeric value.
Data Types: double

LittleTrap — Flag indicating Little Heston Trap formulation
true (default) | logical with values true or false

Flag indicating Little Heston Trap formulation by Albrecher et al, specified as the comma-separated
pair consisting of 'LittleTrap'and a logical:

• true — Use the Albrecher et al formulation.
• false — Use the original Heston formation.

Data Types: logical

AbsTol — Absolute error tolerance for numerical integration
1e-10 (default) | numeric

Absolute error tolerance for numerical integration, specified as the comma-separated pair consisting
of 'AbsTol' and a scalar numeric value.
Data Types: double

RelTol — Relative error tolerance for numerical integration
1e-6 (default) | numeric

Relative error tolerance for numerical integration, specified as the comma-separated pair consisting
of 'RelTol' and a scalar numeric value.
Data Types: double
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IntegrationRange — Numerical integration range used to approximate continuous integral
over [0 Inf]
[1e-9 Inf] (default) | vector

Numerical integration range used to approximate the continuous integral over [0 Inf], specified as
the comma-separated pair consisting of 'IntegrationRange' and a 1-by-2 vector representing
[LowerLimit UpperLimit].
Data Types: double

Framework — Framework for computing option prices and sensitivities using numerical
integration of models
"heston1993" (default) | string with values "heston1993" or "lewis2001" | character vector
with values 'heston1993' or 'lewis2001'

Framework for computing option prices and sensitivities using numerical integration of models,
specified as the comma-separated pair consisting of 'Framework' and a scalar string or character
vector with the following values:

• "heston1993" or 'heston1993' — Method used in Heston (1993)
• "lewis2001" or 'lewis2001' — Method used in Lewis (2001)

Data Types: char | string

ExpandOutput — Flag to expand the outputs
false (outputs are NINST-by-1 vectors) (default) | logical with value of true or false

Flag to expand the outputs, specified as the comma-separated pair consisting of 'ExpandOutput'
and a logical:

• true — If true, the outputs are NRows-by- NColumns matrices. NRows is the number of strikes
for each column and it is determined by the Strike input. For example, Strike can be a NRows-
by-1 vector, or a NRows-by-NColumns matrix. NColumns is determined by the sizes of
AssetPrice, Settle, Maturity, and OptSpec, which must all be either scalar or NColumns-
by-1 vectors.

• false — If false, the outputs are NINST-by-1 vectors. Also, the inputs Strike, AssetPrice,
Settle, Maturity, and OptSpec must all be either scalar or NINST-by-1 vectors.

Data Types: logical

Output Arguments
Price — Option prices
numeric

Option prices, returned as a NINST-by-1, or NRows-by-NColumns, depending on ExpandOutput.

More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.
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A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.

Heston Stochastic Volatility Model

The Heston model is an extension of the Black-Scholes model, where the volatility (square root of
variance) is no longer assumed to be constant, and the variance now follows a stochastic (CIR)
process. This allows modeling the implied volatility smiles observed in the market.

The stochastic differential equation is:

dSt = (r − q)Stdt + vtStdWt

dvt = κ(θ− vt)dt + σv vtdWt
v

E dWtdWt
v = pdt

where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

vt is the asset price variance at time t

v0 is the initial variance of the asset price at t = 0 for (v0 > 0).

θ is the long-term variance level for (θ > 0).

κ is the mean reversion speed for the variance for (κ > 0).

σv is the volatility of the variance for (σv > 0).

p is the correlation between the Weiner processes Wt and Wv
t for (-1 ≤ p ≤ 1).

The characteristic function fHeston j(ϕ) for j = 1 (asset price measure) and j = 2 (risk-neutral measure)
is:
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fHeston j(ϕ) = exp(C j + D jv0 + iϕlnSt)

C j = (r − q)iϕτ + κθ
σv

2 b j− pσviϕ + d j τ − 2ln
1− g je

djτ

1− g j

D j =
b j− pσviϕ + d j

σv
2

1− edjτ

1− g je
djτ

g j =
b j− pσviϕ + d j
b j− pσviϕ− d j

d j = b j− pσviϕ
2− σv

2 2u jiϕ− ϕ2

where for  j = 1, 2:

u1 = 1
2, u2 = − 1

2, b1 = κ + λVolRisk− pσv, b2 = κ + λVolRisk

where

ϕ is the characteristic function variable.

ƛVolRisk is the volatility risk premium.

τ is the time to maturity (τ = T - t).

i is the unit imaginary number (i2 = -1).

The definitions for Cj and Dj under “The Little Heston Trap” by Albrecher et al. (2007) are:

C j = (r − q)iϕτ + κθ
σv2 b j− pσviϕ− d j τ − 2ln

1− ε je
−djτ

1− ε j

D j =
b j− pσviϕ− d j

σv
2

1− e−djτ

1− ε je
−djτ

ε j =
b j− pσviϕ− d j
b j− pσviϕ + d j

Numerical Integration Method Under Heston (1993) Framework

Numerical integration is used to evaluate the continuous integral for the inverse Fourier transform.

The numerical integration method under the Heston (1993) framework is based on the following
expressions:

Call(K) = Ste−qτP1− Ke−rτP2

Put(K) = Call(K) + Ke−rτ − Ste−qτ

P j = 1
2 + 1

π ∫
0

∞
Re

e−iϕln(K)f j(ϕ)
iϕ dϕ

where

r is the continuous risk-free rate.
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q is the continuous dividend yield.

St is the asset price at time t.

K is the strike.

τ is time to maturity (τ = T-t).

Call(K) is the call price at strike K.

Put(K) is the put price at strike K.

i is a unit imaginary number (i2= -1).

ϕ is the characteristic function variable.

fj(ϕ) is the characteristic function for Pj(j = 1,2).

P1 is the probability of St > K under the asset price measure for the model.

P2 is the probability of St > K under the risk-neutral measure for the model.

Where j = 1,2 so that f1(ϕ) and f2(ϕ) are the characteristic functions for probabilities P1 and P2,
respectively.

This framework is chosen with the default value “Heston1993” for the Framework name-value pair
argument.

Numerical Integration Method Under Lewis (2001) Framework

Numerical integration is used to evaluate the continuous integral for the inverse Fourier transform.

The numerical integration method under the Lewis (2001) framework is based on the following
expressions:

Call(k) = Ste−qτ − Ke−τt

π ∫
0

∞
Re K−iuf2 ϕ = u− i

2
1

u2 + 1
4

du

Put(K) = Call(K) = Ke−τt − Ste−qτ

where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

K is the strike.

τ is time to maturity (τ = T-t).

Call(K) is the call price at strike K.

Put(K) is the put price at strike K.
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i is a unit imaginary number (i2= -1).

ϕ is the characteristic function variable.

u is the characteristic function variable for integration, where ϕ = u− i
2 .

f2(ϕ) is the characteristic function for P2.

P2 is the probability of St > K under the risk-neutral measure for the model.

This framework is chosen with the value “Lewis2001” for the Framework name-value pair
argument.
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See Also
optByHestonFFT | optSensByHestonFFT | optSensByHestonNI | optByBatesFFT |
optSensByBatesFFT | optByBatesNI | optSensByBatesNI | optByMertonFFT |
optSensByMertonFFT | optByMertonNI | optSensByMertonNI

Topics
“Vanilla Option” on page 3-27
“Supported Equity Derivative Functions” on page 3-19
“Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument Objects” on
page 1-82

Introduced in R2018a

11 Functions

11-1236



optSensByHestonNI
Option price and sensitivities by Heston model using numerical integration

Syntax
PriceSens = optSensByHestonNI(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,
V0,ThetaV,Kappa,SigmaV,RhoSV)
PriceSens = optSensByHestonNI( ___ ,Name,Value)

Description
PriceSens = optSensByHestonNI(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,
V0,ThetaV,Kappa,SigmaV,RhoSV) computes vanilla European option price and sensitivities by
Heston model, using numerical integration methods.

PriceSens = optSensByHestonNI( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Workflow for Plotting an Option Sensitivity Surface Using the Heston Model

optSensByHestonNI uses numerical integration to compute option sensitivities and then to plot
option sensitivity surfaces.

Define Option Variables and Heston Model Parameters

AssetPrice = 80;
Rate = 0.03;
DividendYield = 0.02;
OptSpec = 'call';

V0 = 0.04;
ThetaV = 0.05;
Kappa = 1.0;
SigmaV = 0.2;
RhoSV = -0.7;

Compute the Option Sensitivity for a Single Strike

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = 80; 

Delta = optSensByHestonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, 'OutSpec', "delta")

Delta = 0.5775
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Compute the Option Sensitivities for a Vector of Strikes

The Strike input can be a vector.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = (76:2:84)';

Delta = optSensByHestonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, 'OutSpec', "delta")

Delta = 5×1

    0.7043
    0.6433
    0.5775
    0.5083
    0.4377

Compute the Option Sensitivities for a Vector of Strikes and a Vector of Dates of the Same
Lengths

Use the Strike input to specify the strikes. Also, the Maturity input can be a vector, but it must
match the length of the Strike vector if the ExpandOutput name-value pair argument is not set to
"true".

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, [12 18 24 30 36]); % Five maturities
Strike = [76 78 80 82 84]'; % Five strikes

Delta = optSensByHestonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, ...
    'OutSpec', "delta") % Five values in vector output

Delta = 5×1

    0.6848
    0.6413
    0.6095
    0.5841
    0.5631

Expand the Output for a Surface

Set the ExpandOutput name-value pair argument to "true" to expand the output into a NStrikes-
by-NMaturities matrix. In this case, it is a square matrix.

Delta = optSensByHestonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, ...
    'OutSpec', "delta", 'ExpandOutput', true) % (5 x 5) matrix output

Delta = 5×5

    0.6848    0.6762    0.6703    0.6654    0.6609
    0.6416    0.6413    0.6404    0.6390    0.6372
    0.5960    0.6048    0.6095    0.6119    0.6129

11 Functions

11-1238



    0.5485    0.5671    0.5776    0.5841    0.5882
    0.4997    0.5286    0.5452    0.5559    0.5631

Compute the Option Sensitivities for a Vector of Strikes and a Vector of Dates of Different
Lengths

When ExpandOutput is "true", NStrikes do not have to match NMaturities (that is, the output
NStrikes-by-NMaturities matrix can be rectangular).

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*(0.5:0.5:3)'); % Six maturities
Strike = (76:2:84)'; % Five strikes

Delta = optSensByHestonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, ...
    'OutSpec', "delta", 'ExpandOutput', true)  % (5 x 6) matrix output

Delta = 5×6

    0.7043    0.6848    0.6762    0.6703    0.6654    0.6609
    0.6433    0.6416    0.6413    0.6404    0.6390    0.6372
    0.5775    0.5960    0.6048    0.6095    0.6119    0.6129
    0.5083    0.5485    0.5671    0.5776    0.5841    0.5882
    0.4377    0.4997    0.5286    0.5452    0.5559    0.5631

Compute the Option Sensitivities for a Vector of Strikes and a Vector of Asset Prices

When ExpandOutput is "true", the output can also be a NStrikes-by-NAssetPrices rectangular
matrix by accepting a vector of asset prices.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12); % Single maturity
ManyAssetPrices = [70 75 80 85]; % Four asset prices
Strike = (76:2:84)'; % Five strikes

Delta = optSensByHestonNI(Rate, ManyAssetPrices, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, ...
    'OutSpec', "delta", 'ExpandOutput', true) % (5 x 4) matrix output

Delta = 5×4

    0.4293    0.5708    0.6848    0.7705
    0.3737    0.5193    0.6416    0.7364
    0.3200    0.4668    0.5960    0.6994
    0.2693    0.4143    0.5485    0.6597
    0.2226    0.3628    0.4997    0.6177

Plot Option Sensitivity Surfaces

The Strike and Maturity inputs can be vectors. Set ExpandOutput to "true" to output the
surfaces as NStrikes-by-NMaturities matrices.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*[1/12 0.25 (0.5:0.5:3)]');
Times = yearfrac(Settle, Maturity);
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Strike = (2:2:200)';

[Delta, Gamma, Rho, Theta, Vega, VegaLT] = ...
    optSensByHestonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, ...
    'OutSpec', ["delta", "gamma", "rho", "theta", "vega", "vegalt"], ...
    'ExpandOutput', true);

[X,Y] = meshgrid(Times,Strike);

figure;
surf(X,Y,Delta);
title('Delta');
xlabel('Years to Option Expiry');
ylabel('Strike');
view(-112,34);
xlim([0 Times(end)]);

figure;
surf(X,Y,Gamma)
title('Gamma')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,Rho)
title('Rho')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,Theta)
title('Theta')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,Vega)
title('Vega')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,VegaLT)
title('VegaLT')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);

11 Functions

11-1244



Input Arguments
Rate — Continuously compounded risk-free interest rate
decimal

Continuously compounded risk-free interest rate, specified as a scalar decimal value.
Data Types: double

AssetPrice — Current underlying asset price
numeric

Current underlying asset price, specified as numeric value using a scalar or a NINST-by-1 or
NColumns-by-1 vector.

For more information on the proper dimensions for AssetPrice, see the name-value pair argument
ExpandOutput.
Data Types: double

Settle — Option settlement date
serial date number | date character vector | datetime | string array

Option settlement date, specified as a NINST-by-1 or NColumns-by-1 vector using serial date
numbers, date character vectors, datetime arrays, or string arrays. The Settle date must be before
the Maturity date.
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For more information on the proper dimensions for Settle, see the name-value pair argument
ExpandOutput.
Data Types: double | char | datetime | string

Maturity — Option maturity date
serial date number | date character vector | datetime | string array

Option maturity date, specified as a NINST-by-1 or NColumns-by-1 vector using serial date numbers,
date character vectors, datetime arrays, or string arrays.

For more information on the proper dimensions for Maturity, see the name-value pair argument
ExpandOutput.
Data Types: double | char | datetime | string

OptSpec — Definition of option
cell array of character vector with values 'call' or 'put' | string array with values "call" or
"put"

Definition of the option, specified as a NINST-by-1 or NColumns-by-1 vector using a cell array of
character vectors or string arrays with values 'call' or 'put'.

For more information on the proper dimensions for OptSpec, see the name-value pair argument
ExpandOutput.
Data Types: cell | string

Strike — Option strike price value
numeric

Option strike price value, specified as a NINST-by-1, NRows-by-1, NRows-by-NColumns vector of
strike prices.

For more information on the proper dimensions for Strike, see the name-value pair argument
ExpandOutput.
Data Types: double

V0 — Initial variance of underlying asset
numeric

Initial variance of the underling asset, specified as a scalar numeric value.
Data Types: double

ThetaV — Long-term variance of underlying asset
numeric

Long-term variance of the underling asset, specified as a scalar numeric value.
Data Types: double

Kappa — Mean revision speed for the variance of underlying asset
numeric

Mean revision speed for the underling asset, specified as a scalar numeric value.
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Data Types: double

SigmaV — Volatility of the variance of underlying asset
numeric

Volatility of the variance of the underling asset, specified as a scalar numeric value.
Data Types: double

RhoSV — Correlation between Weiner processes for underlying asset and its variance
numeric

Correlation between the Weiner processes for the underlying asset and its variance, specified as a
scalar numeric value.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: PriceSens = optSensByHestonFFT(Rate, AssetPrice, Settle,Maturity,
OptSpec, Strike, V0, ThetaV, Kappa, SigmaV, RhoSV,'Basis',7)

Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count of the instrument, specified as the comma-separated pair consisting of 'Basis' and a
scalar using a supported value:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double
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DividendYield — Continuously compounded underlying asset yield
0 (default) | numeric

Continuously compounded underlying asset yield, specified as the comma-separated pair consisting of
'DividendYield' and a scalar numeric value.
Data Types: double

VolRiskPremium — Volatility risk premium
0 (default) | numeric

Volatility risk premium, specified as the comma-separated pair consisting of 'VolRiskPremium' and
a scalar numeric value.
Data Types: double

LittleTrap — Flag indicating Little Heston Trap formulation
true (default) | logical with values true or false

Flag indicating Little Heston Trap formulation by Albrecher et al, specified as the comma-separated
pair consisting of 'LittleTrap' and a logical:

• true — Use the Albrecher et al formulation.
• false — Use the original Heston formation.

Data Types: logical

OutSpec — Define outputs
["price"] (default) | string array with values "price", "delta", "gamma", "vega", "rho",
"theta", and "vegalt" | cell array of character vectors with values 'price', 'delta', 'gamma',
'vega', 'rho', 'theta', and 'vegalt'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a NOUT- by-1 or
a 1-by-NOUT string array or cell array of character vectors with supported values.

Note "vega" is the sensitivity with respect the initial volatility sqrt(V0). In contrast, "vegalt" is
the sensitivity with respect to the long-term volatility sqrt(ThetaV).

Example: OutSpec = ["price","delta","gamma","vega","rho","theta","vegalt"]
Data Types: string | cell

AbsTol — Absolute error tolerance for numerical integration
1e-10 (default) | numeric

Absolute error tolerance for numerical integration, specified as the comma-separated pair consisting
of 'AbsTol' and a scalar numeric value.
Data Types: double

RelTol — Relative error tolerance for numerical integration
1e-6 (default) | numeric

Relative error tolerance for numerical integration, specified as the comma-separated pair consisting
of 'RelTol' and a scalar numeric value.
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Data Types: double

IntegrationRange — Numerical integration range used to approximate continuous integral
over [0 Inf]
[1e-9 Inf] (default) | vector

Numerical integration range used to approximate the continuous integral over [0 Inf], specified as
the comma-separated pair consisting of 'IntegrationRange' and a 1-by-2 vector representing
[LowerLimit UpperLimit].
Data Types: double

Framework — Framework for computing option prices and sensitivities using numerical
integration of models
"heston1993" (default) | string with values "heston1993" or "lewis2001" | character vector
with values 'heston1993' or 'lewis2001'

Framework for computing option prices and sensitivities using numerical integration of models,
specified as the comma-separated pair consisting of 'Framework' and a scalar string or character
vector with the following values:

• "heston1993" or 'heston1993' — Method used in Heston (1993)
• "lewis2001" or 'lewis2001' — Method used in Lewis (2001)

Data Types: char | string

ExpandOutput — Flag to expand the outputs
false (outputs are NINST-by-1 vectors) (default) | logical with value of true or false

Flag to expand the outputs, specified as the comma-separated pair consisting of 'ExpandOutput'
and a logical:

• true — If true, the outputs are NRows-by- NColumns matrices. NRows is the number of strikes
for each column and it is determined by the Strike input. For example, Strike can be a NRows-
by-1 vector, or a NRows-by-NColumns matrix. NColumns is determined by the sizes of
AssetPrice, Settle, Maturity, and OptSpec, which must all be either scalar or NColumns-
by-1 vectors.

• false — If false, the outputs are NINST-by-1 vectors. Also, the inputs Strike, AssetPrice,
Settle, Maturity, and OptSpec must all be either scalar or NINST-by-1 vectors.

Data Types: logical

Output Arguments
PriceSens — Option prices or sensitivities
numeric

Option prices or sensitivities, returned as a NINST-by-1, or NRows-by-NColumns, depending on
ExpandOutput. The name-value pair argument OutSpec determines the types and order of the
outputs.
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More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.

Heston Stochastic Volatility Model

The Heston model is an extension of the Black-Scholes model, where the volatility (square root of
variance) is no longer assumed to be constant, and the variance now follows a stochastic (CIR)
process. This allows modeling the implied volatility smiles observed in the market.

The stochastic differential equation is:

dSt = (r − q)Stdt + vtStdWt

dvt = κ(θ− vt)dt + σv vtdWt
v

E dWtdWt
v = pdt

where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

vt is the asset price variance at time t.

v0 is the initial variance of the asset price at t = 0 for (v0 > 0).

θ is the long-term variance level for (θ > 0).

κ is the mean reversion speed for the variance for (κ > 0).

σv is the volatility of the variance for (σv > 0).

p is the correlation between the Weiner processes Wt and Wv
t for (-1 ≤ p ≤ 1).
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The characteristic function fHeston j(ϕ) for j = 1 (asset price measure) and j = 2 (risk-neutral measure)
is:

fHeston j(ϕ) = exp(C j + D jv0 + iϕlnSt)

C j = (r − q)iϕτ + κθ
σv

2 b j− pσviϕ + d j τ − 2ln
1− g je

djτ

1− g j

D j =
b j− pσviϕ + d j

σv
2

1− edjτ

1− g je
djτ

g j =
b j− pσviϕ + d j
b j− pσviϕ− d j

d j = b j− pσviϕ
2− σv

2 2u jiϕ− ϕ2

where for  j = 1, 2:

u1 = 1
2, u2 = − 1

2, b1 = κ + λVolRisk− pσv, b2 = κ + λVolRisk

where

ϕ is the characteristic function variable.

ƛVolRisk is the volatility risk premium.

τ is the time to maturity (τ = T - t).

i is the unit imaginary number (i2 = -1).

The definitions for Cj and Dj under “The Little Heston Trap” by Albrecher et al. (2007) are:

C j = (r − q)iϕτ + κθ
σv2 b j− pσviϕ− d j τ − 2ln

1− ε je
−djτ

1− ε j

D j =
b j− pσviϕ− d j

σv
2

1− e−djτ

1− ε je
−djτ

ε j =
b j− pσviϕ− d j
b j− pσviϕ + d j

Numerical Integration Method Under Heston (1993) Framework

Numerical integration is used to evaluate the continuous integral for the inverse Fourier transform.

The numerical integration method under the Heston (1993) framework is based on the following
expressions:

Call(K) = Ste−qτP1− Ke−rτP2

Put(K) = Call(K) + Ke−rτ − Ste−qτ

P j = 1
2 + 1

π ∫
0

∞
Re

e−iϕln(K)f j(ϕ)
iϕ dϕ
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where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

K is the strike.

τ is time to maturity (τ = T-t).

Call(K) is the call price at strike K.

Put(K) is the put price at strike K.

i is a unit imaginary number (i2= -1).

ϕ is the characteristic function variable.

fj(ϕ) is the characteristic function for Pj(j = 1,2).

P1 is the probability of St > K under the asset price measure for the model.

P2 is the probability of St > K under the risk-neutral measure for the model.

Where j = 1,2 so that f1(ϕ) and f2(ϕ) are the characteristic functions for probabilities P1 and P2,
respectively.

This framework is chosen with the default value “Heston1993” for the Framework name-value pair
argument.

Numerical Integration Method Under Lewis (2001) Framework

Numerical integration is used to evaluate the continuous integral for the inverse Fourier transform.

The numerical integration method under the Lewis (2001) framework is based on the following
expressions:

Call(k) = Ste−qτ − Ke−τt

π ∫
0

∞
Re K−iuf2 ϕ = u− i

2
1

u2 + 1
4

du

Put(K) = Call(K) = Ke−τt − Ste−qτ

where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

K is the strike.

τ is time to maturity (τ = T-t).
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Call(K) is the call price at strike K.

Put(K) is the put price at strike K.

i is a unit imaginary number (i2= -1).

ϕ is the characteristic function variable.

u is the characteristic function variable for integration, where ϕ = u− i
2 .

f2(ϕ) is the characteristic function for P2.

P2 is the probability of St > K under the risk-neutral measure for the model.

This framework is chosen with the value “Lewis2001” for the Framework name-value pair
argument.

References
[1] Heston, S. L. “A Closed-Form Solution for Options with Stochastic Volatility with Applications to

Bond and Currency Options.” The Review of Financial Studies. Vol 6. No. 2. 1993.

[2] Lewis, A. L. “A Simple Option Formula for General Jump-Diffusion and Other Exponential Levy
Processes.” Envision Financial Systems and OptionCity.net, 2001.
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optByLocalVolFD
Option price by local volatility model, using finite differences

Syntax
[Price,PriceGrid,AssetPrices,Times] = optByLocalVolFD(Rate,AssetPrice,Settle,
ExerciseDates,OptSpec,Strike,ImpliedVolData)
[Price,PriceGrid,AssetPrices,Times] = optByLocalVolFD( ___ ,Name,Value)

Description
[Price,PriceGrid,AssetPrices,Times] = optByLocalVolFD(Rate,AssetPrice,Settle,
ExerciseDates,OptSpec,Strike,ImpliedVolData) compute a Vanilla European or American
option price by the local volatility model, using the Crank-Nicolson method.

[Price,PriceGrid,AssetPrices,Times] = optByLocalVolFD( ___ ,Name,Value) specifies
options using one or more name-value pair arguments in addition to the input arguments in the
previous syntax.

Examples

Price a European Option Using the Local Volatility Model

Define the option variables.

AssetPrice = 590;
Strike = 590;
Rate = 0.06;
DividendYield = 0.0262;
Settle = '01-Jan-2018';
ExerciseDates = '01-Jan-2020';

Define the implied volatility surface data.

Maturity = ["06-Mar-2018" "05-Jun-2018" "12-Sep-2018" "10-Dec-2018" "01-Jan-2019" ...
"02-Jul-2019" "01-Jan-2020" "01-Jan-2021" "01-Jan-2022" "01-Jan-2023"];
Maturity = repmat(Maturity,10,1);
Maturity = Maturity(:);

ExercisePrice = AssetPrice.*[0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.30 1.40];
ExercisePrice = repmat(ExercisePrice,1,10)';

ImpliedVol = [...
    0.190; 0.168; 0.133; 0.113; 0.102; 0.097; 0.120; 0.142; 0.169; 0.200; ...
    0.177; 0.155; 0.138; 0.125; 0.109; 0.103; 0.100; 0.114; 0.130; 0.150; ...
    0.172; 0.157; 0.144; 0.133; 0.118; 0.104; 0.100; 0.101; 0.108; 0.124; ...
    0.171; 0.159; 0.149; 0.137; 0.127; 0.113; 0.106; 0.103; 0.100; 0.110; ...
    0.171; 0.159; 0.150; 0.138; 0.128; 0.115; 0.107; 0.103; 0.099; 0.108; ...
    0.169; 0.160; 0.151; 0.142; 0.133; 0.124; 0.119; 0.113; 0.107; 0.102; ...
    0.169; 0.161; 0.153; 0.145; 0.137; 0.130; 0.126; 0.119; 0.115; 0.111; ...
    0.168; 0.161; 0.155; 0.149; 0.143; 0.137; 0.133; 0.128; 0.124; 0.123; ...
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    0.168; 0.162; 0.157; 0.152; 0.148; 0.143; 0.139; 0.135; 0.130; 0.128; ...
    0.168; 0.164; 0.159; 0.154; 0.151; 0.147; 0.144; 0.140; 0.136; 0.132];

ImpliedVolData = table(Maturity, ExercisePrice, ImpliedVol);

Compute the European call option price.

OptSpec = 'Call';
Price = optByLocalVolFD(Rate, AssetPrice, ...
Settle, ExerciseDates, OptSpec, Strike, ImpliedVolData, 'DividendYield',DividendYield)

Price = 65.1319

Input Arguments
Rate — Continuously compounded risk-free interest rate
scalar numeric

Continuously compounded risk-free interest rate, specified by a scalar numeric.
Data Types: double

AssetPrice — Current underlying asset price
scalar numeric

Current underlying asset price, specified as a scalar numeric.
Data Types: double

Settle — Settlement date
serial date number | date character vector | datetime array | string array

Settlement date, specified as a scalar serial date number, date character vector, datetime array, or
string array.
Data Types: double | char | datetime | string

ExerciseDates — Option exercise dates
serial date number | date character vector | datetime array | string array

Option exercise dates, specified as a serial date number, a date character vector, a datetime array, or
a string array:

• For a European option, there is only one ExerciseDates value and this is the option expiry date.
• For an American option, use a 1-by-2 vector of serial date numbers, date character vectors,

datetime arrays, or string arrays. The American option can be exercised on any date between or
including the pair of dates. If only one non-NaN date is listed, the option can be exercised between
Settle and the single listed date in ExerciseDates.

Data Types: double | char | cell | datetime | string

OptSpec — Definition of option
character vector with values 'call' or 'put' | string array with values "call" or "put"

Definition of the option, specified as a character vector or string array with values 'call' or 'put'.
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Data Types: char | string

Strike — Option strike price value
nonnegative scalar

Option strike price value, specified as a nonnegative scalar.
Data Types: double

ImpliedVolData — Table of maturity dates, strike or exercise prices, and corresponding
implied volatilities
table

Table of maturity dates, strike or exercise prices, and their corresponding implied
volatilities,specified as a NVOL-by-3 table.
Data Types: table

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Price = optByLocalVolFD(Rate,AssetPrice,Settle,
ExerciseDates,OptSpec,Strike,ImpliedVolData,'AssetGridSize',1000)

Basis — Day-count basis
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count basis, specified as the comma-separated pair consisting of 'Basis' and a scalar using one
of the supported values:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
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Data Types: double

DividendYield — Continuously compounded underlying asset yield
0 (default) | numeric

Continuously compounded underlying asset yield, specified as the comma-separated pair consisting of
'DividendYield' and a scalar numeric.

Note If you enter a value for DividendYield, then set DividendAmounts and ExDividendDates
= [ ] or do not enter them. If you enter values for DividendAmounts and ExDividendDates, then
set DividendYield = 0.

Data Types: double

DividendAmounts — Cash dividend amounts
[ ] (default) | vector

Cash dividend amounts, specified as the comma-separated pair consisting of 'DividendAmounts'
and a NDIV-by-1 vector.

For each dividend amount, there must be a corresponding ExDividendDates date. If you enter
values for DividendAmounts and ExDividendDates, then set DividendYield = 0.

Note If you enter a value for DividendYield, then set DividendAmounts and ExDividendDates
= [ ] or do not enter them.

Data Types: double

ExDividendDates — Ex-dividend dates
[ ] (default) | serial date number | date character vector | datetime array | string array

Ex-dividend dates, specified as the comma-separated pair consisting of 'ExDividendDates' and a
NDIV-by-1 vector.
Data Types: double | char | string | datetime

AssetPriceMax — Maximum price for price grid boundary
if unspecified, AssetPriceMax values are calculated using asset distributions at maturity (default) |
positive scalar

Maximum price for price grid boundary, specified as the comma-separated pair consisting of
'AssetPriceMax' and a positive scalar.
Data Types: double

AssetGridSize — Size of asset grid for finite difference grid
400 (default) | positive scalar

Size of the asset grid for a finite difference grid, specified as the comma-separated pair consisting of
'AssetGridSize' and a positive scalar.
Data Types: double
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TimeGridSize — Size of time grid for finite difference grid
100 (default) | positive scalar

Size of the time grid for a finite difference grid, specified as the comma-separated pair consisting of
'TimeGridSize' and a positive scalar.
Data Types: double

AmericanOpt — Option type
0 (European) (default) | scalar with values [0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and a positive
integer scalar flag with one of these values:

• 0 — European
• 1 — American

Data Types: double

InterpMethod — Method of interpolation for estimating the implied volatility surface from
ImpliedVolData
'linear' (default) | character vector with values 'linear', 'makima', 'spline', or 'tpaps' |
string with values "linear", "makima", "spline", or "tpaps"

Method of interpolation for estimating the implied volatility surface from ImpliedVolData, specified
as the comma-separated pair consisting of 'InterpMethod' and a character vector or string array
with one of the following values:

• 'linear' — Linear interpolation
• 'makima' — Modified Akima cubic Hermite interpolation
• 'spline' — Cubic spline interpolation
• 'tpaps' — Thin-plate smoothing spline interpolation

Note The 'tpaps' method uses the thin-plate smoothing spline functionality from Curve Fitting
Toolbox.

The 'makima' and 'spline' methods work only for gridded data. For scattered data, use the
'linear' or 'tpaps' methods.

For more information on gridded or scattered data and details on interpolation methods, see
“Gridded and Scattered Sample Data” and “Interpolating Gridded Data”.
Data Types: char | string

Output Arguments
Price — Option price
scalar numeric

Option price, returned as a scalar numeric.

PriceGrid — Grid containing prices calculated by finite difference method
grid
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Grid containing prices calculated by the finite difference method, returned as a grid that is two-
dimensional with size AssetGridSize ⨉ TimeGridSize. The number of columns does not have to
be equal to the TimeGridSize, because ExerciseDates and ExDividendDates are added to the
time grid. PriceGrid(:, :, end) contains the price for t = 0.

AssetPrices — Prices of asset
vector

Prices of the asset corresponding to the first dimension of PriceGrid, returned as a vector.

Times — Times
vector

Times corresponding to second dimension of the PriceGrid, returned as a vector.

More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.

Local Volatility Model

A local volatility model treats volatility as a function both of the current asset level and of time.

The local volatility can be estimated by using the Dupire formula [2]:

σloc
2 (K, τ) =

σimp
2 + 2τσimp

∂σimp
∂τ + 2(τ − d)Kτσimp

∂σimp
∂K

1 + Kd1 τ
∂σimp
∂K

2
+ K2τσimp

∂2σimp
∂K2 − d1 τ

∂σimp
∂K

2

d1 =
ln(S0/K) + (τ − d) + σimp

2 /2 τ
σimp τ
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optSensByLocalVolFD
Option price and sensitivities by local volatility model, using finite differences

Syntax
[PriceSens,PriceGrid,AssetPrices,Times] = optSensByLocalVolFD(Rate,
AssetPrice,Settle,ExerciseDates,OptSpec,Strike,ImpliedVolData)
[PriceSens,PriceGrid,AssetPrices,Times] = optSensByLocalVolFD( ___ ,Name,Value)

Description
[PriceSens,PriceGrid,AssetPrices,Times] = optSensByLocalVolFD(Rate,
AssetPrice,Settle,ExerciseDates,OptSpec,Strike,ImpliedVolData) compute option
price and sensitivities by the local volatility model, using the Crank-Nicolson method.

[PriceSens,PriceGrid,AssetPrices,Times] = optSensByLocalVolFD( ___ ,Name,Value)
specifies options using one or more name-value pair arguments in addition to the input arguments in
the previous syntax.

Examples

Compute European Option Price and Sensitivities Using the Local Volatility Model

Define the option variables.

AssetPrice = 590;
Strike = 590;
Rate = 0.06;
DividendYield = 0.0262;
Settle = '01-Jan-2018';
ExerciseDates = '01-Jan-2020';

Define the implied volatility surface data.

Maturity = ["06-Mar-2018" "05-Jun-2018" "12-Sep-2018" "10-Dec-2018" "01-Jan-2019" ...
"02-Jul-2019" "01-Jan-2020" "01-Jan-2021" "01-Jan-2022" "01-Jan-2023"];
Maturity = repmat(Maturity,10,1);
Maturity = Maturity(:);

ExercisePrice = AssetPrice.*[0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.30 1.40];
ExercisePrice = repmat(ExercisePrice,1,10)';

ImpliedVol = [...
    0.190; 0.168; 0.133; 0.113; 0.102; 0.097; 0.120; 0.142; 0.169; 0.200; ...
    0.177; 0.155; 0.138; 0.125; 0.109; 0.103; 0.100; 0.114; 0.130; 0.150; ...
    0.172; 0.157; 0.144; 0.133; 0.118; 0.104; 0.100; 0.101; 0.108; 0.124; ...
    0.171; 0.159; 0.149; 0.137; 0.127; 0.113; 0.106; 0.103; 0.100; 0.110; ...
    0.171; 0.159; 0.150; 0.138; 0.128; 0.115; 0.107; 0.103; 0.099; 0.108; ...
    0.169; 0.160; 0.151; 0.142; 0.133; 0.124; 0.119; 0.113; 0.107; 0.102; ...
    0.169; 0.161; 0.153; 0.145; 0.137; 0.130; 0.126; 0.119; 0.115; 0.111; ...
    0.168; 0.161; 0.155; 0.149; 0.143; 0.137; 0.133; 0.128; 0.124; 0.123; ...

 optSensByLocalVolFD

11-1261



    0.168; 0.162; 0.157; 0.152; 0.148; 0.143; 0.139; 0.135; 0.130; 0.128; ...
    0.168; 0.164; 0.159; 0.154; 0.151; 0.147; 0.144; 0.140; 0.136; 0.132];

ImpliedVolData = table(Maturity, ExercisePrice, ImpliedVol);

Compute the European call option price and sensitivities.

OptSpec = 'Call';
[Delta,Gamma,Lambda,Theta,Price]  = optSensByLocalVolFD(Rate, AssetPrice, ...
Settle, ExerciseDates, OptSpec, Strike, ImpliedVolData, 'DividendYield',DividendYield, ...
'OutSpec',["Delta" "Gamma" "Lambda" "Theta" "Price"])

Delta = 0.5519

Gamma = 0.0091

Lambda = 4.9994

Theta = -20.9529

Price = 65.1319

Input Arguments
Rate — Continuously compounded risk-free interest rate
scalar numeric

Continuously compounded risk-free interest rate, specified by a scalar numeric.
Data Types: double

AssetPrice — Current underlying asset price
scalar numeric

Current underlying asset price, specified as a scalar numeric.
Data Types: double

Settle — Settlement date
serial date number | date character vector | datetime array | string

Settlement date, specified as a scalar serial date number, date character vector, datetime object, or
string array
Data Types: double | char | datetime | string

ExerciseDates — Option exercise dates
serial date number | date character vector | datetime array | string array

Option exercise dates, specified as a serial date number, a date character vector, a datetime array, or
a string array:

• For a European option, there is only one ExerciseDates value and this is the option expiry date.
• For an American option, use a 1-by-2 vector of serial date numbers, date character vectors,

datetimes, or strings. The American option can be exercised on any date between or including the
pair of dates. If only one non-NaN date is listed, the option can be exercised between Settle and
the single listed date in ExerciseDates.
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Data Types: double | char | cell | datetime | string

OptSpec — Definition of option
character vector with value of 'call' or 'put' | string array with value of "call" or "put"

Definition of the option, specified as a character vector or string array with a value of 'call' or
'put'.
Data Types: char | string

Strike — Option strike price value
nonnegative scalar

Option strike price value, specified as a nonnegative scalar.
Data Types: double

ImpliedVolData — Table of maturity dates, strike or exercise prices, and corresponding
implied volatilities
table

A table of maturity dates, strike or exercise prices, and their corresponding implied
volatilities,specified as a NVOL-by-3 table.
Data Types: table

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: PriceSens = Price = optByLocalVolFD(Rate,AssetPrice,Settle,
ExerciseDates,OptSpec,Strike,ImpliedVolData,'AssetGridSize',1000,'OutSpec',
{'delta','gamma','vega','lambda','rho','theta','price'})

Basis — Day-count basis
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count basis, specified as the comma-separated pair consisting of 'Basis' and a scalar using one
of these supported values:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
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• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

DividendYield — Continuously compounded underlying asset yield
0 (default) | scalar numeric

Continuously compounded underlying asset yield, specified as the comma-separated pair consisting of
'DividendYield' and a scalar numeric.

Note If you enter a value for DividendYield, then set DividendAmounts and ExDividendDates
= [ ] or do not enter them. If you enter values for DividendAmounts and ExDividendDates, then
set DividendYield = 0.

Data Types: double

DividendAmounts — Cash dividend amounts
[ ] (default) | vector

Cash dividend amounts, specified as the comma-separated pair consisting of 'DividendAmounts'
and a NDIV-by-1 vector.

For each dividend amount, there must be a corresponding ExDividendDates date. If you enter
values for DividendAmounts and ExDividendDates, then set DividendYield = 0.

Note If you enter a value for DividendYield, then set DividendAmounts and ExDividendDates
= [ ] or do not enter them.

Data Types: double

ExDividendDates — Ex-dividend dates
[ ] (default) | serial date number | date character vector | datetime array | string array

Ex-dividend dates, specified as the comma-separated pair consisting of 'ExDividendDates' and a
NDIV-by-1 vector.
Data Types: double | char | string | datetime

AssetPriceMax — Maximum price for price grid boundary
if unspecified, AssetPriceMax values are calculated using asset distributions at maturity (default) |
positive scalar

Maximum price for price grid boundary, specified as the comma-separated pair consisting of
'AssetPriceMax' and a positive scalar.
Data Types: double
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AssetGridSize — Size of asset grid for finite difference grid
400 (default) | positive scalar

Size of the asset grid for finite difference grid, specified as the comma-separated pair consisting of
'AssetGridSize' and a positive scalar.
Data Types: double

TimeGridSize — Size of time grid for finite difference grid
100 (default) | positive scalar

Size of the time grid for finite difference grid, specified as the comma-separated pair consisting of
'TimeGridSize' and a positive scalar.
Data Types: double

AmericanOpt — Option type
0 (European) (default) | scalar with values [0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and a positive
integer scalar flag with one of these values:

• 0 — European
• 1 — American

Data Types: double

InterpMethod — Method of interpolation for estimating the implied volatility surface from
ImpliedVolData
'linear' (default) | character vector with values 'linear', 'makima', 'spline', or 'tpaps' |
string with values "linear", "makima", "spline", or "tpaps"

Method of interpolation for estimating the implied volatility surface from ImpliedVolData, specified
as the comma-separated pair consisting of 'InterpMethod' and a character vector or string with
one of the following values:

• 'linear' — Linear interpolation
• 'makima' — Modified Akima cubic Hermite interpolation
• 'spline' — Cubic spline interpolation
• 'tpaps' — Thin-plate smoothing spline interpolation

Note The 'tpaps' method uses the thin-plate smoothing spline functionality from Curve Fitting
Toolbox.

The 'makima' and 'spline' methods work only for gridded data. For scattered data, use the
'linear' or 'tpaps' methods.

For more information on gridded or scattered data and details on interpolation methods, see
“Gridded and Scattered Sample Data” and “Interpolating Gridded Data”.
Data Types: char | string
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OutSpec — Define outputs
{'price'} (default) | cell array of character vectors with values 'price', 'delta', 'gamma',
'vega', 'lambda', 'rho', 'theta' | string array with values "price", "delta", "gamma",
"vega", "rho", "theta"

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and an NOUT- by-1 or
a 1-by-NOUT cell array of character vectors with possible values of 'price', 'delta', 'gamma',
'vega', 'lambda', 'rho', and 'theta'.
Example: OutSpec = {'delta','gamma','vega','lambda','rho','theta','price'}
Data Types: cell | string

Output Arguments
PriceSens — Option price and sensitivities
scalar numeric

Option price and sensitivities, returned as a scalar numeric. OutSpec determines the types and order
of the output.

PriceGrid — Grid containing prices calculated by finite difference method
grid

Grid containing prices calculated by the finite difference method, returned as a grid that is two-
dimensional with size AssetGridSize ⨉ TimeGridSize. The number of columns does not have to
be equal to the TimeGridSize, because ExerciseDates and ExDividendDates are added to the
time grid. PriceGrid(:, :, end) contains the price for t = 0.

AssetPrices — Prices of asset
vector

Prices of the asset corresponding to the first dimension of PriceGrid, returned as a vector.

Times — Times
vector

Times corresponding to second dimension of the PriceGrid, returned as a vector.

More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:
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St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.

Local Volatility Model

A local volatility model treats volatility as a function both of the current asset level and of time.

The local volatility can be estimated by using the Dupire formula [2]:
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References
[1] Andersen, L. B., and R. Brotherton-Ratcliffe. "The Equity Option Volatility Smile: An Implicit

Finite-Difference Approach." Journal of Computational Finance. Vol. 1, Number 2, 1997, pp.
5–37.

[2] Dupire, B. "Pricing with a Smile." Risk. Vol. 7, Number 1, 1994, pp. 18–20.

See Also
optstockbyfd | optstocksensbyfd | optByLocalVolFD | optByHestonFD |
optSensByHestonFD | optByBatesFD | optSensByBatesFD | optByMertonFD |
optSensByMertonFD

Topics
“Vanilla Option” on page 3-27
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2018b
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optByMertonFD
Option price by Merton76 model using finite differences

Syntax
[Price,PriceGrid,AssetPrices,Times] = optByMertonFD(Rate,AssetPrice,Settle,
ExerciseDates,OptSpec,Strike,Sigma,MeanJ,JumpVol,JumpFreq)
[Price,PriceGrid,AssetPrices,Times] = optByMertonFD( ___ ,Name,Value)

Description
[Price,PriceGrid,AssetPrices,Times] = optByMertonFD(Rate,AssetPrice,Settle,
ExerciseDates,OptSpec,Strike,Sigma,MeanJ,JumpVol,JumpFreq) computes a vanilla
European or American option price by the Merton76 model, using the Crank-Nicolson Adams-
Bashforth (CNAB) IMEX method.

[Price,PriceGrid,AssetPrices,Times] = optByMertonFD( ___ ,Name,Value) specifies
options using one or more name-value pair arguments in addition to the input arguments in the
previous syntax.

Examples

Compute Price for an American Option Using the Merton Model

Define the option variables and Merton model parameters.

AssetPrice = 90;
Strike = 100;
Rate = 0.06;
DividendYield = 0.1;
Settle = '01-Jan-2018';
ExerciseDates = '02-Apr-2018';

Sigma = 0.40;
MeanJ = -0.10;
JumpVol = 0.01;
JumpFreq = 1.00;

Compute the American call option price using the finite differences method.

OptSpec = 'Call';

Price = optSensByMertonFD(Rate, AssetPrice, Settle, ExerciseDates, OptSpec, Strike,...
Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'AmericanOpt', 1)

Price = 3.4551
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Input Arguments
Rate — Continuously compounded risk-free interest rate
scalar decimal

Continuously compounded risk-free interest rate, specified as a scalar decimal value.
Data Types: double

AssetPrice — Current underlying asset price
scalar numeric

Current underlying asset price, specified as a scalar numeric.
Data Types: double

Settle — Option settlement date
serial date number | date character vector | datetime | string scalar

Option settlement date, specified as a scalar using a serial date number, date character vector,
datetime object, or string scalar.
Data Types: double | char | datetime | string

ExerciseDates — Option exercise dates
serial date number | date character vector | datetime array | string array

Option exercise dates, specified as a serial date number, date character vector, datetime array, or
string array:

• For a European option, use a scalar serial date number, date character vector, datetime object, or
string scalar. For a European option, ExerciseDates contains only one value: the option expiry
date.

• For an American option, use a 1-by-2 vector of serial date numbers, date character vectors,
datetime arrays, or string arrays to specify the exercise date boundaries. An American option can
be exercised on any date between or including the pair of dates. If only one non-NaN date is listed,
then the option can be exercised between Settle date and the single listed value in
ExerciseDates.

Data Types: double | char | datetime | string

OptSpec — Definition of option
character vector with value of 'call' or 'put' | string array with value of "call" or "put"

Definition of the option, specified as a scalar using a character vector or string array with a value of
'call' or 'put'.
Data Types: cell | string

Strike — Option strike price value
scalar numeric

Option strike price value, specified as a scalar numeric.
Data Types: double
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Sigma — Volatility of underlying asset
scalar numeric

Volatility of the underling asset, specified as a scalar numeric.
Data Types: double

MeanJ — Mean of the random percentage jump size
scalar decimal

Mean of the random percentage jump size (J), specified as a scalar decimal value where log(1+J) is
normally distributed with the mean (log(1+MeanJ)-0.5*JumpVol^2) and the standard deviation
JumpVol.
Data Types: double

JumpVol — Standard deviation of log(1+J)
scalar decimal

Standard deviation of log(1+J) where J is the random percentage jump size, specified as a scalar
decimal.
Data Types: double

JumpFreq — Annual frequency of Poisson jump process
numeric

Annual frequency of the Poisson jump process, specified as a scalar numeric.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceGrid] =
optByMertonFD(Rate,AssetPrice,Settle,ExerciseDates,OptSpec,Strike,MeanJ,JumpV
ol,JumpFreq,'Basis',7)

Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count basis of the instrument, specified as the comma-separated pair consisting of 'Basis' and
a scalar using a supported value:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
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• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

DividendYield — Continuously compounded underlying asset yield
0 (default) | scalar numeric

Continuously compounded underlying asset yield, specified as the comma-separated pair consisting of
'DividendYield' and a scalar numeric.

Note If you enter a value for DividendYield, then set DividendAmounts and ExDividendDates
= [ ] or do not enter them. If you enter values for DividendAmounts and ExDividendDates, then
set DividendYield = 0.

Data Types: double

DividendAmounts — Cash dividend amounts
[ ] (default) | vector

Cash dividend amounts, specified as the comma-separated pair consisting of 'DividendAmounts'
and an NDIV-by-1 vector.

Note Each dividend amount must have a corresponding ex-dividend date. If you enter values for
DividendAmounts and ExDividendDates, then set DividendYield = 0.

Data Types: double

ExDividendDates — Ex-dividend dates
[ ] (default) | serial date number | date character vector | string array | datetime array

Ex-dividend dates, specified as the comma-separated pair consisting of 'ExDividendDates' and an
NDIV-by-1 vector of serial date numbers, date character vectors, string arrays, or datetime arrays.
Data Types: double | char | string | datetime

AssetPriceMax — Maximum price for price grid boundary
if unspecified, value is calculated based on asset price distribution at maturity (default) | positive
scalar numeric

Maximum price for the price grid boundary, specified as the comma-separated pair consisting of
'AssetPriceMax' and a positive scalar numeric.
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Data Types: double

AssetGridSize — Size of asset grid for finite difference grid
400 (default) | scalar numeric

Size of the asset grid for the finite difference grid, specified as the comma-separated pair consisting
of 'AssetGridSize' and a scalar numeric.
Data Types: double

TimeGridSize — Number of nodes of time grid for finite difference grid
100 (default) | positive numeric scalar

Number of nodes of the time grid for the finite difference grid, specified as the comma-separated pair
consisting of 'TimeGridSize' and a positive numeric scalar.
Data Types: double

AmericanOpt — Option type
0 (European) (default) | scalar with value of [0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and a scalar flag
with one of these values:

• 0 — European
• 1 — American

Data Types: double

Output Arguments
Price — Option price
scalar numeric

Option price, returned as a scalar numeric.

PriceGrid — Grid containing prices calculated by the finite difference method
grid

Grid containing prices calculated by the finite difference method, returned as a two-dimensional grid
with size AssetGridSize ⨉ TimeGridSize. The number of columns is not necessarily equal to the
TimeGridSize because exercise and ex-dividend dates are added to the time grid.
PriceGrid(:, :, end) contains the price for t = 0.

AssetPrices — Prices of the asset
vector

Prices of the asset corresponding to the first dimension of PriceGrid, returned as a vector.

Times — Times
vector

Times corresponding to the second dimension of PriceGrid, returned as a vector.
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More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.

Merton Jump Diffusion Model

The Merton jump diffusion model [2] extends the Black-Scholes model by using the Poisson process to
include jump diffusion parameters in the modeling of sudden asset price movements (both up and
down).

The stochastic differential equation is

dSt = (r − q− λpμ j)Stdt + σStdWt + JStdPt
prob(dPt = 1) = λpdt

where:

r is the continuous risk-free rate.

q is the continuous dividend yield.

Wt is the Weiner process.

J is the random percentage jump size conditional on the jump occurring, where ln(1+J) is normally

distributed with mean ln(1 + μJ)−
δ2

2  and the standard deviation δ, and (1+J) has a lognormal
distribution:

1
(1 + J)δ 2πexp

− ln(1 + J)− ln(1 + μJ −
δ2
2

2δ2

2

where:

μJ is the mean of J for (μJ > -1).

 optByMertonFD

11-1273



δ is the standard deviation of ln(1+J) for (δ≥ 0).

ƛp is the annual frequency (intensity) of Poisson process Ptfor (ƛp ≥ 0).

σ is the volatility of the asset price for (σ > 0).

References
[1] Cont, R., and E. Voltchkova. “A Finite Difference Scheme for Option Pricing in Jump Diffusion and

Exponential Lévy Models.” SIAM Journal on Numerical Analysis. Vol. 43, Number 4, 2005, pp.
1596-1626.

[2] Merton, R. "Option Pricing When Underlying Stock Returns Are Discontinuous." The Journal of
Financial Economics. Vol 3. 1976, pp. 125-144.

See Also
optByLocalVolFD | optSensByLocalVolFD | optByHestonFD | optSensByHestonFD |
optSensByMertonFD | optSensByBatesFD | optByBatesFD

Topics
“Vanilla Option” on page 3-27
“Supported Equity Derivative Functions” on page 3-19
“Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument Objects” on
page 1-82

Introduced in R2019a
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optSensByMertonFD
Option price and sensitivities by Merton76 model using finite differences

Syntax
[PriceSens,PriceGrid,AssetPrices,Times] = optSensByMertonFD(Rate,AssetPrice,
Settle,ExerciseDates,OptSpec,Strike,Sigma,MeanJ,JumpVol,JumpFreq)
[PriceSens,PriceGrid,AssetPrices,Times] = optSensByMertonFD( ___ ,Name,Value)

Description
[PriceSens,PriceGrid,AssetPrices,Times] = optSensByMertonFD(Rate,AssetPrice,
Settle,ExerciseDates,OptSpec,Strike,Sigma,MeanJ,JumpVol,JumpFreq) computes a
vanilla European or American option price and sensitivities by the Merton76 model, using the Crank-
Nicolson Adams-Bashforth (CNAB) IMEX method.

[PriceSens,PriceGrid,AssetPrices,Times] = optSensByMertonFD( ___ ,Name,Value)
specifies options using one or more name-value pair arguments in addition to the input arguments in
the previous syntax.

Examples

Compute Price and Sensitivities for an American Option Using the Merton Model

Define the option variables and Merton model parameters.

AssetPrice = 90;
Strike = 100;
Rate = 0.06;
DividendYield = 0.1;
Settle = '01-Jan-2018';
ExerciseDates = '02-Apr-2018';

Sigma = 0.40;
MeanJ = -0.10;
JumpVol = 0.01;
JumpFreq = 1.00;

Compute the American call option price and sensitivities using the finite differences method.

OptSpec = 'Call';

[Price, Delta, Gamma, Rho, Theta, Vega] = optSensByMertonFD(Rate, AssetPrice, Settle, ExerciseDates, OptSpec, Strike,...
Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'AmericanOpt', 1,...
'OutSpec', ["Price" "Delta" "Gamma" "Rho" "Theta" "Vega"])

Price = 3.4551

Delta = 0.3211

Gamma = 0.0195
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Rho = 5.6610

Theta = -11.9877

Vega = 15.5156

Input Arguments
Rate — Continuously compounded risk-free interest rate
decimal

Continuously compounded risk-free interest rate, specified as a scalar decimal value.
Data Types: double

AssetPrice — Current underlying asset price
numeric

Current underlying asset price, specified as a scalar numeric.
Data Types: double

Settle — Option settlement date
serial date number | date character vector | datetime | string array

Option settlement date, specified as a scalar using a serial date number, date character vector,
datetime array, or string array.
Data Types: double | char | datetime | string

ExerciseDates — Option exercise dates
serial date number | date character vector | datetime array | string array

Option exercise dates, specified as a serial date number, date character vector, datetime array, or
string array:

• For a European option, use a scalar serial date number, date character vector, datetime array, or
string array. For a European option, ExerciseDates contains only one value: the option expiry
date.

• For an American option, use a 1-by-2 vector of serial date numbers, date character vectors,
datetime arrays, or string arrays to specify the exercise date boundaries. An American option can
be exercised on any date between or including the pair of dates. If only one non-NaN date is listed,
then the option can be exercised between Settle date and the single listed value in
ExerciseDates.

Data Types: double | char | datetime | string

OptSpec — Definition of option
character vector with value of 'call' or 'put' | string array with value of "call" or "put"

Definition of the option, specified as a scalar using a character vector or string array with a value of
'call' or 'put'.
Data Types: cell | string
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Strike — Option strike price value
scalar numeric

Option strike price value, specified as a scalar numeric.
Data Types: double

Sigma — Volatility of underlying asset
scalar numeric

Volatility of the underling asset, specified as a scalar numeric.
Data Types: double

MeanJ — Mean of the random percentage jump size
scalar decimal

Mean of the random percentage jump size (J), specified as a scalar decimal value where log(1+J) is
normally distributed with the mean (log(1+MeanJ)-0.5*JumpVol^2) and the standard deviation
JumpVol.
Data Types: double

JumpVol — Standard deviation of log(1+J)
scalar decimal

Standard deviation of log(1+J) where J is the random percentage jump size, specified as a scalar
decimal.
Data Types: double

JumpFreq — Annual frequency of Poisson jump process
scalar numeric

Annual frequency of the Poisson jump process, specified as a scalar numeric.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceGrid] =
optByMertonFD(Rate,AssetPrice,Settle,ExerciseDates,OptSpec,Strike,MeanJ,JumpV
ol,JumpFreq,'Basis',7,'OutSpec','delta')

Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count basis of the instrument, specified as the comma-separated pair consisting of 'Basis' and
a scalar using a supported value:

• 0 = actual/actual
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• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

DividendYield — Continuously compounded underlying asset yield
0 (default) | scalar numeric

Continuously compounded underlying asset yield, specified as the comma-separated pair consisting of
'DividendYield' and a scalar numeric.

Note If you enter a value for DividendYield, then set DividendAmounts and ExDividendDates
= [ ] or do not enter them. If you enter values for DividendAmounts and ExDividendDates, then
set DividendYield = 0.

Data Types: double

DividendAmounts — Cash dividend amounts
[ ] (default) | vector

Cash dividend amounts, specified as the comma-separated pair consisting of 'DividendAmounts'
and an NDIV-by-1 vector.

Note Each dividend amount must have a corresponding ex-dividend date. If you enter values for
DividendAmounts and ExDividendDates, then set DividendYield = 0.

Data Types: double

ExDividendDates — Ex-dividend dates
[ ] (default) | serial date number | date character vector | string array | datetime array

Ex-dividend dates, specified as the comma-separated pair consisting of 'ExDividendDates' and an
NDIV-by-1 vector of serial date numbers, date character vectors, string arrays, or datetime arrays.
Data Types: double | char | string | datetime
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AssetPriceMax — Maximum price for price grid boundary
if unspecified, value is calculated based on asset price distribution at maturity (default) | positive
scalar numeric

Maximum price for the price grid boundary, specified as the comma-separated pair consisting of
'AssetPriceMax' and a positive scalar numeric.
Data Types: double

AssetGridSize — Size of asset grid for the finite difference grid
400 (default) | scalar numeric

Size of the asset grid for finite difference grid, specified as the comma-separated pair consisting of
'AssetGridSize' and a scalar numeric.
Data Types: double

TimeGridSize — Number of nodes of time grid for the finite difference grid
100 (default) | positive numeric scalar

Number of nodes of the time grid for finite difference grid, specified as the comma-separated pair
consisting of 'TimeGridSize' and a positive numeric scalar.
Data Types: double

AmericanOpt — Option type
0 (European) (default) | scalar with value of [0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and a scalar flag
with one of these values:

• 0 — European
• 1 — American

Data Types: double

OutSpec — Define outputs
['price'] (default) | cell array of character vectors with values 'price', 'delta', 'gamma',
'vega', 'rho', and 'theta' | string array with values "price", "delta", "gamma", "vega",
"rho", and "theta"

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a NOUT- by-1 or
a 1-by-NOUT string array or cell array of character vectors with supported values.
Example: OutSpec = ['price','delta','gamma','vega','rho','theta']
Data Types: string | cell

Output Arguments
PriceSens — Option price or sensitivities
numeric

Option price or sensitivities, returned as a numeric. The name-value pair argument OutSpec
determines the types and order of the outputs.
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PriceGrid — Grid containing prices calculated by the finite difference method
grid

Grid containing prices calculated by the finite difference method, returned as a two-dimensional grid
with size AssetGridSize ⨉ TimeGridSize. The number of columns is not necessarily equal to the
TimeGridSize because exercise and ex-dividend dates are added to the time grid.
PriceGrid(:, :, end) contains the price for t = 0.

AssetPrices — Prices of the asset
vector

Prices of the asset corresponding to the first dimension of PriceGrid, returned as a vector.

Times — Times
vector

Times corresponding to the second dimension of PriceGrid, returned as a vector.

More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.

Merton Jump Diffusion Model

The Merton jump diffusion model [2] extends the Black-Scholes model by using the Poisson process to
include jump diffusion parameters in the modeling of sudden asset price movements (both up and
down).

The stochastic differential equation is

dSt = (r − q− λpμ j)Stdt + σStdWt + JStdPt
prob(dPt = 1) = λpdt

where:

r is the continuous risk-free rate.
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q is the continuous dividend yield.

Wt is the Weiner process.

J is the random percentage jump size conditional on the jump occurring, where ln(1+J) is normally

distributed with mean ln(1 + μJ)−
δ2

2  and the standard deviation δ, and (1+J) has a lognormal
distribution:

1
(1 + J)δ 2πexp

− ln(1 + J)− ln(1 + μJ −
δ2
2

2δ2

2

where:

μJ is the mean of J for (μJ > -1).

δ is the standard deviation of ln(1+J) for (δ≥ 0).

ƛp is the annual frequency (intensity) of Poisson process Ptfor (ƛp ≥ 0).

σ is the volatility of the asset price for (σ > 0).

References
[1] Cont, R., and E. Voltchkova. “A Finite Difference Scheme for Option Pricing in Jump Diffusion and

Exponential Lévy Models.” SIAM Journal on Numerical Analysis. Vol. 43, Number 4, 2005, pp.
1596-1626.

[2] Merton, R. "Option Pricing When Underlying Stock Returns Are Discontinuous." The Journal of
Financial Economics. Vol 3. 1976, pp. 125-144.

See Also
optByLocalVolFD | optSensByLocalVolFD | optByHestonFD | optSensByHestonFD |
optByBatesFD | optSensByBatesFD | optByMertonFD

Topics
“Vanilla Option” on page 3-27
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2019a
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optByMertonFFT
Option price by Merton76 model using FFT and FRFT

Syntax
[Price,StrikeOut] = optByMertonFFT(Rate,AssetPrice,Settle,Maturity,OptSpec,
Strike,Sigma,MeanJ,JumpVol,JumpFreq)
[Price,StrikeOut] = optByMertonFFT( ___ ,Name,Value)

Description
[Price,StrikeOut] = optByMertonFFT(Rate,AssetPrice,Settle,Maturity,OptSpec,
Strike,Sigma,MeanJ,JumpVol,JumpFreq) computes vanilla European option price by Merton76
model, using Carr-Madan FFT and Chourdakis FRFT methods.

[Price,StrikeOut] = optByMertonFFT( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Workflow for Plotting an Option Price Surface Using the Merton76 Model

Use optByMertonFFT to calibrate the FFT strike grid, compute option prices, and plot an option
price surface.

Define Option Variables and Merton76 Model Parameters

AssetPrice = 80;
Rate = 0.03;
DividendYield = 0.02;
OptSpec = 'call';

Sigma = 0.16;
MeanJ = 0.02;
JumpVol = 0.08;
JumpFreq = 2;

Compute the Option Prices for the Entire FFT (or FRFT) Strike Grid, Without Specifying
"Strike"

Compute option prices and also output the corresponding strikes. If the Strike input is empty ( [] ),
option prices will be computed on the entire FFT (or FRFT) strike grid. The FFT (or FRFT) strike grid
is determined as exp(log-strike grid), where each column of the log-strike grid has NumFFT
points with LogStrikeStep spacing that are roughly centered around each element of
log(AssetPrice). The default value for NumFFT is 2^12. In addition to the prices in the first
output, the optional last output contains the corresponding strikes.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = []; % Strike is not specified (will use the entire FFT strike grid)

11 Functions

11-1282



% Compute option prices for the entire FFT strike grid
[Call, Kout] = optByMertonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield);

% Show the lowest and highest strike values on the FFT strike grid
format
MinStrike = Kout(1) % Lowest possible strike in the current FFT strike grid

MinStrike = 2.9205e-135

MaxStrike = Kout(end) % Highest possible strike in the current FFT strike grid

MaxStrike = 1.8798e+138

% Show a subset of the strikes and corresponding option prices
Range = (2046:2052);
[Kout(Range) Call(Range)]

ans = 7×2

   50.4929   29.4645
   58.8640   21.2601
   68.6231   12.2218
   80.0000    4.5600
   93.2631    0.9579
  108.7251    0.1236
  126.7505    0.0113

Change the Number of FFT (or FRFT) Points and Compare with optByMertonNI

Try a different number of FFT(or FRFT) points, and compare the results with direct numerical
integration. Unlike optByMertonFFT, which uses FFT (or FRFT) techniques for fast computation
across the whole range of strikes, the optByMertonNI function uses direct numerical integration
and it is typically slower, especially for multiple strikes. However, the values computed by
optByMertonNI can serve as a benchmark for adjusting the settings for optByMertonFFT.

% Try a smaller number of FFT (or FRFT) points 
% (e.g. for faster performance or smaller memory footprint)
NumFFT = 2^10; % Smaller than the default value of 2^12
Strike = []; % Strike is not specified (will use the entire FFT strike grid)
[Call, Kout] = optByMertonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'NumFFT', NumFFT);

% Compare with numerical integration method
Range = (510:516);
Strike = Kout(Range);
CallFFT = Call(Range);
CallNI = optByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield);
Error = abs(CallFFT-CallNI);
table(Strike, CallFFT, CallNI, Error)

ans=7×4 table
    Strike     CallFFT       CallNI         Error  
    ______    _________    ___________    _________
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    12.696       66.328         66.696      0.36786
    23.449       55.922         56.103      0.18071
    43.312       36.481         36.536     0.055233
        80       4.7387           4.56      0.17867
    147.76     0.046602      0.0008089     0.045793
    272.93    0.0092842    -7.0709e-08    0.0092842
    504.11    0.0024041    -2.4515e-07    0.0024044

Make Further Adjustments to FFT (or FRFT)

If the values in the output CallFFT are significantly different from those in CallNI, try making
adjustments to optByMertonFFT settings, such as CharacteristicFcnStep, LogStrikeStep,
NumFFT, DampingFactor, and so on. Note that if (LogStrikeStep * CharacteristicFcnStep) is
2*pi/ NumFFT, FFT is used. Otherwise, FRFT is used.

Strike = []; % Strike is not specified (will use the entire FFT or FRFT strike grid)
[Call, Kout] = optByMertonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001);

% Compare with numerical integration method
Strike = Kout(Range);
CallFFT = Call(Range);
CallNI = optByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield);
Error = abs(CallFFT-CallNI);
table(Strike, CallFFT, CallNI, Error)

ans=7×4 table
    Strike    CallFFT    CallNI      Error   
    ______    _______    ______    __________

    79.76      4.674      4.674    4.9664e-10
    79.84     4.6358     4.6358    4.9651e-10
    79.92     4.5978     4.5978    4.9642e-10
       80       4.56       4.56    4.9641e-10
    80.08     4.5224     4.5224    4.9642e-10
    80.16      4.485      4.485     4.965e-10
    80.24     4.4478     4.4478     4.966e-10

% Save the final FFT (or FRFT) strike grid for future reference. For
% example, it provides information about the range of Strike inputs for
% which the FFT (or FRFT) operation is valid.
FFTStrikeGrid = Kout;
MinStrike = FFTStrikeGrid(1) % Strike cannot be less than MinStrike

MinStrike = 47.9437

MaxStrike = FFTStrikeGrid(end) % Strike cannot be greater than MaxStrike

MaxStrike = 133.3566
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Compute Option Price for a Single Strike

Once the desired FFT (or FRFT) settings are determined, use the Strike input to specify the strikes
rather than providing an empty array. If the specified strikes do not match a value on the FFT (or
FRFT) strike grid, the outputs are interpolated on the specified strikes.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = 80; 

Call = optByMertonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001)

Call = 4.5600

Compute the Option Prices for a Vector of Strikes

Use the Strike input to specify the strikes.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = (76:2:84)';

Call = optByMertonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001)

Call = 5×1

    6.7411
    5.5762
    4.5600
    3.6891
    2.9551

Compute the Option Prices for a Vector of Strikes and a Vector of Dates of the Same
Lengths

Use the Strike input to specify the strikes. Also, the Maturity input can be a vector, but it must
match the length of the Strike vector if the ExpandOutput name-value pair argument is not set to
"true".

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, [12 18 24 30 36]); % Five maturities
Strike = [76 78 80 82 84]'; % Five strikes

Call = optByMertonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001) % Five values in vector output

Call = 5×1

    8.5589
    8.9439
    9.2316
    9.4653
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    9.6565

Expand the Outputs for a Surface

Set the ExpandOutput name-value pair argument to "true" to expand the outputs into NStrikes-
by-NMaturities matrices. In this case, they are square matrices.

[Call, Kout] = optByMertonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001, ...
    'ExpandOutput', true) % (5 x 5) matrix output

Call = 5×5

    8.5589    9.9675   11.1343   12.1492   13.0464
    7.4844    8.9439   10.1481   11.1939   12.1181
    6.5125    8.0023    9.2316   10.2999   11.2449
    5.6401    7.1402    8.3827    9.4653   10.4249
    4.8630    6.3545    7.5990    8.6881    9.6565

Kout = 5×5

    76    76    76    76    76
    78    78    78    78    78
    80    80    80    80    80
    82    82    82    82    82
    84    84    84    84    84

Compute the Option Prices for a Vector of Strikes and a Vector of Dates of Different
Lengths

When ExpandOutput is "true", NStrikes do not have to match NMaturities. That is, the output
NStrikes-by-NMaturities matrix can be rectangular.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*(0.5:0.5:3)'); % Six maturities
Strike = (76:2:84)'; % Five strikes

Call = optByMertonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001, ...
    'ExpandOutput', true) % (5 x 6) matrix output

Call = 5×6

    6.7411    8.5589    9.9675   11.1343   12.1492   13.0464
    5.5762    7.4844    8.9439   10.1481   11.1939   12.1181
    4.5600    6.5125    8.0023    9.2316   10.2999   11.2449
    3.6891    5.6401    7.1402    8.3827    9.4653   10.4249
    2.9551    4.8630    6.3545    7.5990    8.6881    9.6565

Compute the Option Prices for a Vector of Strikes and a Vector of Asset Prices

When ExpandOutput is "true", the output can also be a NStrikes-by-NAssetPrices rectangular
matrix by accepting a vector of asset prices.
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Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12); % Single maturity
ManyAssetPrices = [70 75 80 85]; % Four asset prices
Strike = (76:2:84)'; % Five strikes

Call = optByMertonFFT(Rate, ManyAssetPrices, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001, ...
    'ExpandOutput', true) % (5 x 4) matrix output

Call = 5×4

    3.4187    5.6579    8.5589   12.0417
    2.8538    4.8401    7.4844   10.7343
    2.3718    4.1205    6.5125    9.5230
    1.9635    3.4922    5.6401    8.4090
    1.6198    2.9476    4.8630    7.3921

Plot an Option Price Surface

Use the Strike input to specify the strikes. Increase the value for NumFFT to support a wider range
of strikes. Also, the Maturity input can be a vector. Set ExpandOutput to "true" to output the
surface as a NStrikes-by-NMaturities matrix.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*[1/12 0.25 (0.5:0.5:3)]');
Times = yearfrac(Settle, Maturity);
Strike = (2:2:200)';

% Increase 'NumFFT' to support a wider range of strikes
NumFFT = 2^13;

Call = optByMertonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001, 'ExpandOutput', true);

[X,Y] = meshgrid(Times,Strike);

figure;
surf(X,Y,Call);
title('Price');
xlabel('Years to Option Expiry');
ylabel('Strike');
view(-112,34);
xlim([0 Times(end)]);
zlim([0 80]);
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Input Arguments
Rate — Continuously compounded risk-free interest rate
decimal

Continuously compounded risk-free interest rate, specified as a scalar decimal value.
Data Types: double

AssetPrice — Current underlying asset price
numeric

Current underlying asset price, specified as numeric value using a scalar or a NINST-by-1 or
NColumns-by-1 vector.

For more information on the proper dimensions for AssetPrice, see the name-value pair argument
ExpandOutput.
Data Types: double

Settle — Option settlement date
serial date number | date character vector | datetime | string array

Option settlement date, specified as a NINST-by-1 or NColumns-by-1 vector using serial date
numbers, date character vectors, datetime arrays, or string arrays. The Settle date must be before
the Maturity date.
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For more information on the proper dimensions for Settle, see the name-value pair argument
ExpandOutput.
Data Types: double | char | datetime | string

Maturity — Option maturity date
serial date number | date character vector | datetime | string array

Option maturity date, specified as a NINST-by-1 or NColumns-by-1 vector using serial date numbers,
date character vectors, datetime arrays, or string arrays.

For more information on the proper dimensions for Maturity, see the name-value pair argument
ExpandOutput.
Data Types: double | char | datetime | string

OptSpec — Definition of option
cell array of character vector with values 'call' or 'put' | string array with values "call" or
"put"

Definition of the option, specified as a NINST-by-1 or NColumns-by-1 vector using a cell array of
character vectors or string arrays with values 'call' or 'put'.

For more information on the proper dimensions for OptSpec, see the name-value pair argument
ExpandOutput.
Data Types: cell | string

Strike — Option strike price value
numeric

Option strike price value, specified as a NINST-by-1, NRows-by-1, NRows-by-NColumns vector of
strike prices.

If this input is an empty array ([]), option prices are computed on the entire FFT (or FRFT) strike
grid, which is determined as exp(log-strike grid). Each column of the log-strike grid
has'NumFFT' points with 'LogStrikeStep' spacing that are roughly centered around each
element of log(AssetPrice).

For more information on the proper dimensions for Strike, see the name-value pair argument
ExpandOutput.
Data Types: double

Sigma — Volatility of underlying asset
numeric

Volatility of the underling asset, specified as a scalar numeric value.
Data Types: double

MeanJ — Mean of the random percentage jump size
decimal

Mean of the random percentage jump size (J), specified as a scalar decimal value where log(1+J) is
normally distributed with mean (log(1+MeanJ)-0.5*JumpVol^2) and the standard deviation
JumpVol.
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Data Types: double

JumpVol — Standard deviation of log(1+J)
decimal

Standard deviation of log(1+J) where J is the random percentage jump size, specified as a scalar
decimal value.
Data Types: double

JumpFreq — Annual frequency of Poisson jump process
numeric

Annual frequency of Poisson jump process, specified as a scalar numeric value.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,StrikeOut] =
optByMertonFFT(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,Sigma,MeanJ,Jum
pVol,JumpFreq,'Basis',7)

Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count of the instrument, specified as the comma-separated pair consisting of 'Basis' and a
scalar using a supported value:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
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Data Types: double

DividendYield — Continuously compounded underlying asset yield
0 (default) | numeric

Continuously compounded underlying asset yield, specified as the comma-separated pair consisting of
'DividendYield' and a scalar numeric value.
Data Types: double

NumFFT — Number of grid points in the characteristic function variable
4096 (default) | numeric

Number of grid points in the characteristic function variable and in each column of the log-strike
grid, specified as the comma-separated pair consisting of 'NumFFT' and a scalar numeric value.
Data Types: double

CharacteristicFcnStep — Characteristic function variable grid spacing
0.01 (default) | numeric

Characteristic function variable grid spacing, specified as the comma-separated pair consisting of
'CharacteristicFcnStep' and a scalar numeric value.
Data Types: double

LogStrikeStep — Log-strike grid spacing
2*pi/NumFFT/CharacteristicFcnStep (default) | numeric

Log-strike grid spacing, specified as the comma-separated pair consisting of 'LogStrikeStep' and
a scalar numeric value.

Note If (LogStrikeStep*CharacteristicFcnStep) is 2*pi/NumFFT, FFT is used. Otherwise,
FRFT is used.

Data Types: double

DampingFactor — Damping factor for Carr-Madan formulation
1.5 (default) | numeric

Damping factor for Carr-Madan formulation, specified as the comma-separated pair consisting of
'DampingFactor' and a scalar numeric value.
Data Types: double

Quadrature — Type of quadrature
"simpson" (default) | character vector with values:'simpson' or 'trapezoidal' | string array
with values: "simpson" or "trapezoidal"

Type of quadrature, specified as the comma-separated pair consisting of 'Quadrature' and a single
character vector or string array with a value of 'simpson' or 'trapezoidal'.
Data Types: char | string

ExpandOutput — Flag to expand the outputs
false (outputs are NINST-by-1 vectors) (default) | logical with value of true or false
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Flag to expand the outputs, specified as the comma-separated pair consisting of 'ExpandOutput'
and a logical:

• true — If true, the outputs are NRows-by- NColumns matrices. NRows is the number of strikes
for each column and it is determined by the Strike input. For example, Strike can be a NRows-
by-1 vector, or a NRows-by-NColumns matrix. If Strike is empty, NRows is equal to NumFFT.
NColumns is determined by the sizes of AssetPrice, Settle, Maturity, and OptSpec, which
must all be either scalar or NColumns-by-1 vectors.

• false — If false, the outputs are NINST-by-1 vectors. Also, the inputs Strike, AssetPrice,
Settle, Maturity, and OptSpec must all be either scalar or NINST-by-1 vectors.

Data Types: logical

Output Arguments
Price — Option prices
numeric

Option prices, returned as a NINST-by-1, or NRows-by-NColumns, depending on ExpandOutput.

StrikeOut — Strikes corresponding to Price
numeric

Strikes corresponding to Price, returned as a NINST-by-1, or NRows-by-NColumns, depending on
ExpandOutput.

More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.

Merton Jump Diffusion Model

The Merton jump diffusion model (Merton (1976)) is a different extension of the Black-Scholes model,
where sudden asset price movements (both up and down) are modeled by adding the jump diffusion
parameters with the Poisson process.
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The stochastic differential equation is:

dSt = (r − q− λpμ j)Stdt + σStdWt + JStdPt
prob(dPt = 1) = λpdt

where

r is the continuous risk-free rate.

q is the continuous dividend yield.

Wt is the Weiner process.

J is the random percentage jump size conditional on the jump occurring, where ln(1+J) is normally

distributed with mean ln(1 + μJ)−
δ2

2  and the standard deviation δ, and (1+J) has a lognormal
distribution:

1
(1 + J)δ 2πexp

− ln(1 + J)− ln(1 + μJ −
δ2
2

2δ2

2

μJ is the mean of J for (μJ > -1).

δ is the standard deviation of ln(1+J) for (δ≥ 0).

ƛp is the annual frequency (intensity) of Poisson process Ptfor (ƛp ≥ 0).

σ is the volatility of the asset price for (σ > 0).

The characteristic function fMerton76 j(ϕ) for j = 1 (asset prices measure) and j = 2 (risk-neutral
measure) is:

fMerton76 j = fBSjexp λpτ 1 + μ j
mj + 1

2 1 + μ j
iϕeδ2 mjiϕ + (iϕ)2

2 − 1 − λpτμ jiϕ

where for  j = 1, 2:

fBS1(ϕ) =
fBS2 ϕ− i
fBS2 −i

fBS2(ϕ) = exp iϕ lnSt + r − q− σ2

2 τ − ϕ2σ2

2 τ

m1 = 1
2, m2 = − 1

2

where

ϕ is the characteristic function variable.

τ is the time to maturity (τ = T- t).

i is the unit imaginary number ( i2 = -1).
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Carr-Madan Formulation

The Carr and Madan (1999) formulation is a popular modified implementation of Heston (1993)
framework.

Rather than computing the probabilities P1 and P2 as intermediate steps, Carr and Madan developed
an alternative expression so that taking its inverse Fourier transform gives the option price itself
directly.

Call(k) = e−αk

π ∫0 ∞Re e−iukψ(u) du

ψ(u) =
e−rτf2(ϕ = (u− (α + 1)i))
α2 + α− u2 + iu(2α + 1)

Put(K) = Call(K) + Ke−rτ − Ste−qτ

where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

τ is time to maturity (τ = T-t).

Call(K) is the call price at strike K.

Put(K) is the put price at strike K

i is a unit imaginary number (i2= -1)

ϕ is the characteristic function variable.

α is the damping factor.

u is the characteristic function variable for integration, where ϕ = (u - (α+1)i).

f2(ϕ) is the characteristic function for P2.

P2 is the probability of St > K under the risk-neutral measure for the model.

To apply FFT or FRFT to this formulation, the characteristic function variable for integration, u, is
discretized into NumFFT(N) points with the step size CharacteristicFcnStep (Δu), and the log-
strike k is discretized into N points with the step size LogStrikeStep(Δk).

The discretized characteristic function variable for integration, uj(for j = 1,2,3,…,N), has a minimum
value of 0 and a maximum value of (N-1) (Δu), and it approximates the continuous integration range
from 0 to infinity.

The discretized log-strike grid, kn(for n = 1, 2, 3, N) is approximately centered around ln(St), with a
minimum value of

ln(St)−
N
2 Δk
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and a maximum value of

ln(St) + N
2 − 1 Δk

Where the minimum allowable strike is

Stexp −N
2 Δk

and the maximum allowable strike is

Stexp N
2 − 1 Δk

As a result of the discretization, the expression for the call option becomes

Call(kn) = Δue−αkn

π ∑
j = 1

N
Re e−iΔkΔu( j− 1)(n− 1)eiu j NΔk

2 − ln(St) ψ(u j) w j

where

Δu is the step size of discretized characteristic function variable for integration.

Δk is the step size of discretized log-strike.

N is the number of FFT or FRFT points.

wj is the weights for quadrature used for approximating the integral.

FFT is used to evaluate the above expression if Δk and Δu are subject to the following constraint:

ΔkΔu = 2π
N

otherwise, the functions use the FRFT method described in Chourdakis (2005).
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See Also
optByHestonFFT | optSensByHestonFFT | optByHestonNI | optSensByHestonNI |
optByBatesFFT | optSensByBatesFFT | optByBatesNI | optSensByBatesNI |
optSensByMertonFFT | optByMertonNI | optSensByMertonNI

Topics
“Vanilla Option” on page 3-27
“Supported Equity Derivative Functions” on page 3-19
“Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument Objects” on
page 1-82

Introduced in R2018a
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optSensByMertonFFT
Option price and sensitivities by Merton76 model using FFT and FRFT

Syntax
[PriceSens,StrikeOut] = optSensByMertonFFT(Rate,AssetPrice,Settle,Maturity,
OptSpec,Strike,Sigma,MeanJ,JumpVol,JumpFreq)
[PriceSens,StrikeOut] = optSensByMertonFFT( ___ ,Name,Value)

Description
[PriceSens,StrikeOut] = optSensByMertonFFT(Rate,AssetPrice,Settle,Maturity,
OptSpec,Strike,Sigma,MeanJ,JumpVol,JumpFreq) computes vanilla European option price
and sensitivities by Merton76 model, using Carr-Madan FFT and Chourdakis FRFT methods.

[PriceSens,StrikeOut] = optSensByMertonFFT( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Workflow for Plotting an Option Sensitivity Surface Using the Merton76 Model

Use optSensByMertonFFT to calibrate the FFT strike grid for sensitivities, compute option
sensitivities, and plot option sensitivity surfaces.

Define Option Variables and Merton76 Model Parameters

AssetPrice = 80;
Rate = 0.03;
DividendYield = 0.02;
OptSpec = 'call';

Sigma = 0.16;
MeanJ = 0.02;
JumpVol = 0.08;
JumpFreq = 2;

Compute the Option Prices for the Entire FFT (or FRFT) Strike Grid, Without Specifying
"Strike"

Compute option sensitivities and also output the corresponding strikes. If the Strike input is empty
( [] ), option sensitivities will be computed on the entire FFT (or FRFT) strike grid. The FFT (or
FRFT) strike grid is determined as exp(log-strike grid), where each column of the log-strike
grid has NumFFT points with LogStrikeStep spacing that are roughly centered around each
element of log(AssetPrice). The default value for NumFFT is 2^12. In addition to the sensitivities
in the first output, the optional last output contains the corresponding strikes.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = []; % Strike is not specified
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[Delta, Kout] = optSensByMertonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'OutSpec', "delta");

% Show the lowest and highest strike values on the FFT strike grid
format
[Kout(1) Kout(end)]

ans = 1×2
10138 ×

    0.0000    1.8798

% Show a subset of the strikes and corresponding option sensitivities
Range = (2046:2052);
[Kout(Range) Delta(Range)]

ans = 7×2

   50.4929    0.9895
   58.8640    0.9801
   68.6231    0.8816
   80.0000    0.5283
   93.2631    0.1551
  108.7251    0.0241
  126.7505    0.0025

Change the Number of FFT (or FRFT) Points and Compare with optSensByMertonNI

Try a different number of FFT (or FRFT) points, and compare the results with numerical integration.
Unlike optSensByMertonFFT, which uses FFT (or FRFT) techniques for fast computation across the
whole range of strikes, the optSensByMertonNI function uses direct numerical integration and it is
typically slower, especially for multiple strikes. However, the values computed by
optSensByMertonNI can serve as a benchmark for adjusting the settings for
optSensByMertonFFT.

% Try a smaller number of FFT points 
% (e.g. for faster performance or smaller memory footprint)
NumFFT = 2^10; % Smaller than the default value of 2^12
Strike = []; % Strike is not specified (will use the entire FFT strike grid)
[Delta, Kout] = optSensByMertonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'OutSpec', "delta", ...
    'NumFFT', NumFFT);

% Compare with numerical integration method
Range = (510:516);
Strike = Kout(Range);
DeltaFFT = Delta(Range);
DeltaNI = optSensByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'OutSpec', "delta");
Error = abs(DeltaFFT-DeltaNI);
table(Strike, DeltaFFT, DeltaNI, Error)

ans=7×4 table
    Strike     DeltaFFT      DeltaNI        Error   
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    ______    __________    __________    __________

    12.696       0.89726       0.99002      0.092766
    23.449       0.93421       0.99002       0.05581
    43.312       0.94691       0.99001      0.043093
        80       0.50983       0.52827      0.018446
    147.76      0.004147    0.00019101      0.003956
    272.93      0.001071     1.547e-09      0.001071
    504.11    0.00030521    5.7578e-10    0.00030521

Make Further Adjustments to FFT (or FRFT)

If the values in the output DeltaFFT are significantly different from those in DeltaNI, try making
adjustments to optSensByMertonFFT settings, such as CharacteristicFcnStep,
LogStrikeStep, NumFFT, DampingFactor, and so on. Note that if (LogStrikeStep *
CharacteristicFcnStep) is 2*pi/ NumFFT, FFT is used. Otherwise, FRFT is used.

Strike = []; % Strike is not specified (will use the entire FFT or FRFT strike grid)
[Delta, Kout] = optSensByMertonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'OutSpec', "delta", ...
    'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001);

% Compare with numerical integration method
Strike = Kout(Range);
DeltaFFT = Delta(Range);
DeltaNI = optSensByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'OutSpec', "delta");
Error = abs(DeltaFFT-DeltaNI);
table(Strike, DeltaFFT, DeltaNI, Error)

ans=7×4 table
    Strike    DeltaFFT    DeltaNI      Error   
    ______    ________    _______    __________

    79.76     0.53701     0.53701    5.6407e-12
    79.84      0.5341      0.5341    5.3257e-12
    79.92     0.53119     0.53119    5.0099e-12
       80     0.52827     0.52827    4.6956e-12
    80.08     0.52536     0.52536    4.3811e-12
    80.16     0.52245     0.52245    4.0653e-12
    80.24     0.51953     0.51953    3.7503e-12

% Save the final FFT (or FRFT) strike grid for future reference. For
% example, it provides information about the range of Strike inputs for
% which the FFT (or FRFT) operation is valid.
FFTStrikeGrid = Kout;
MinStrike = FFTStrikeGrid(1) % Strike cannot be less than MinStrike

MinStrike = 47.9437

MaxStrike = FFTStrikeGrid(end) % Strike cannot be greater than MaxStrike

MaxStrike = 133.3566
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Compute the Option Sensitivity for a Single Strike

Once the desired FFT (or FRFT) settings are determined, use the Strike input to specify the strikes
rather than providing an empty array. If the specified strikes do not match a value on the FFT (or
FRFT) strike grid, the outputs are interpolated on the specified strikes.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = 80;

Delta = optSensByMertonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'OutSpec', "delta", ...
    'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001)

Delta = 0.5283

Compute the Option Sensitivities for a Vector of Strikes

Use the Strike input to specify the strikes.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = (76:2:84)';

Delta = optSensByMertonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'OutSpec', "delta", ...
    'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001)

Delta = 5×1

    0.6727
    0.6013
    0.5283
    0.4565
    0.3883

Compute the Option Sensitivities for a Vector of Strikes and a Vector of Dates of the Same
Lengths

Use the Strike input to specify the strikes. Also, the Maturity input can be a vector, but it must
match the length of the Strike vector if the ExpandOutput name-value pair argument is not set to
"true".

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, [12 18 24 30 36]); % Five maturities
Strike = [76 78 80 82 84]'; % Five strikes

Delta = optSensByMertonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'OutSpec', "delta", ...
    'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001) % Five values in vector output

Delta = 5×1

    0.6419
    0.5907
    0.5565
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    0.5311
    0.5110

Expand the Outputs for a Surface

Set the ExpandOutput name-value pair argument to "true" to expand the outputs into NStrikes-
by-NMaturities matrices. In this case, they are square matrices.

[Delta, Kout] = optSensByMertonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'OutSpec', "delta", ...
    'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001, 'ExpandOutput', true) % (5 x 5) matrix output

Delta = 5×5

    0.6419    0.6305    0.6245    0.6204    0.6173
    0.5922    0.5907    0.5905    0.5905    0.5905
    0.5422    0.5507    0.5565    0.5607    0.5637
    0.4927    0.5112    0.5229    0.5311    0.5372
    0.4447    0.4725    0.4898    0.5020    0.5110

Kout = 5×5

    76    76    76    76    76
    78    78    78    78    78
    80    80    80    80    80
    82    82    82    82    82
    84    84    84    84    84

Compute the Option Sensitivities for a Vector of Strikes and a Vector of Dates of Different
Lengths

When ExpandOutput is "true", NStrikes do not have to match NMaturities. That is, the output
NStrikes-by-NMaturities matrix can be rectangular.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*(0.5:0.5:3)'); % Six maturities
Strike = (76:2:84)'; % Five strikes

Delta = optSensByMertonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'OutSpec', "delta", ...
    'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001, 'ExpandOutput', true) % (5 x 6) matrix output

Delta = 5×6

    0.6727    0.6419    0.6305    0.6245    0.6204    0.6173
    0.6013    0.5922    0.5907    0.5905    0.5905    0.5905
    0.5283    0.5422    0.5507    0.5565    0.5607    0.5637
    0.4565    0.4927    0.5112    0.5229    0.5311    0.5372
    0.3883    0.4447    0.4725    0.4898    0.5020    0.5110
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Compute the Option Sensitivities for a Vector of Strikes and a Vector of Asset Prices

When ExpandOutput is "true", the output can also be a NStrikes-by-NAssetPrices rectangular
matrix by accepting a vector of asset prices.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12); % Single maturity
ManyAssetPrices = [70 75 80 85]; % Four asset prices
Strike = (76:2:84)'; % Five strikes

Delta = optSensByMertonFFT(Rate, ManyAssetPrices, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'OutSpec', "delta", ...
    'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001, 'ExpandOutput', true) % (5 x 4) matrix output

Delta = 5×4

    0.3796    0.5157    0.6419    0.7472
    0.3315    0.4637    0.5922    0.7043
    0.2874    0.4137    0.5422    0.6592
    0.2474    0.3664    0.4927    0.6128
    0.2117    0.3224    0.4447    0.5657

Plot Option Sensitivity Surfaces

Use the Strike input to specify the strikes. Increase the value for NumFFT to support a wider range
of strikes. Also, the Maturity input can be a vector. Set ExpandOutput to "true" to output the
surfaces as NStrikes-by-NMaturities matrices.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*[1/12 0.25 (0.5:0.5:3)]');
Times = yearfrac(Settle, Maturity);
Strike = (2:2:200)';

% Increase 'NumFFT' to support a wider range of strikes
NumFFT = 2^13;

[Delta, Gamma, Rho, Theta, Vega] = optSensByMertonFFT(...
    Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ...
    'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001, ...
    'OutSpec', ["delta", "gamma", "rho", "theta", "vega"], ...
    'ExpandOutput', true);

[X,Y] = meshgrid(Times,Strike);

figure;
surf(X,Y,Delta);
title('Delta');
xlabel('Years to Option Expiry');
ylabel('Strike');
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,Gamma)
title('Gamma')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,Rho)
title('Rho')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,Theta)
title('Theta')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,Vega)
title('Vega')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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Input Arguments
Rate — Continuously compounded risk-free interest rate
decimal

Continuously compounded risk-free interest rate, specified as a scalar decimal value.
Data Types: double

AssetPrice — Current underlying asset price
numeric

Current underlying asset price, specified as numeric value using a scalar or a NINST-by-1 or
NColumns-by-1 vector.

For more information on the proper dimensions for AssetPrice, see the name-value pair argument
ExpandOutput.
Data Types: double

Settle — Option settlement date
serial date number | date character vector | datetime | string array

Option settlement date, specified as a NINST-by-1 or NColumns-by-1 vector using serial date
numbers, date character vectors, datetime arrays, or string arrays. The Settle date must be before
the Maturity date.
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For more information on the proper dimensions for Settle, see the name-value pair argument
ExpandOutput.
Data Types: double | char | datetime | string

Maturity — Option maturity date
serial date number | date character vector | datetime | string array

Option maturity date, specified as a NINST-by-1 or NColumns-by-1 vector using serial date numbers,
date character vectors, datetime arrays, or string arrays.

For more information on the proper dimensions for Maturity, see the name-value pair argument
ExpandOutput.
Data Types: double | char | datetime | string

OptSpec — Definition of option
cell array of character vector with values 'call' or 'put' | string array with values "call" or
"put"

Definition of the option, specified as a NINST-by-1 or NColumns-by-1 vector using a cell array of
character vectors or string arrays with values 'call' or 'put'.

For more information on the proper dimensions for OptSpec, see the name-value pair argument
ExpandOutput.
Data Types: cell | string

Strike — Option strike price value
numeric

Option strike price value, specified as a NINST-by-1, NRows-by-1, NRows-by-NColumns vector of
strike prices.

If this input is an empty array ([]), option prices are computed on the entire FFT (or FRFT) strike
grid, which is determined as exp(log-strike grid). Each column of the log-strike grid
has'NumFFT' points with 'LogStrikeStep' spacing that are roughly centered around each
element of log(AssetPrice).

For more information on the proper dimensions for Strike, see the name-value pair argument
ExpandOutput.
Data Types: double

Sigma — Volatility of underlying asset
numeric

Volatility of the underling asset, specified as a scalar numeric value.
Data Types: double

MeanJ — Mean of the random percentage jump size
decimal

Mean of the random percentage jump size (J), specified as a scalar decimal value where log(1+J) is
normally distributed with mean (log(1+MeanJ)-0.5*JumpVol^2) and the standard deviation
JumpVol.
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Data Types: double

JumpVol — Standard deviation of log(1+J)
decimal

Standard deviation of log(1+J) where J is the random percentage jump size, specified as a scalar
decimal value.
Data Types: double

JumpFreq — Annual frequency of Poisson jump process
numeric

Annual frequency of Poisson jump process, specified as a scalar numeric value.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [PriceSens,StrikeOut] =
optSensByMertonFFT(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,Sigma,MeanJ
,JumpVol,JumpFreq,'Basis',7)

Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count of the instrument, specified as the comma-separated pair consisting of 'Basis' and a
scalar using a supported value:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
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Data Types: double

DividendYield — Continuously compounded underlying asset yield
0 (default) | numeric

Continuously compounded underlying asset yield, specified as the comma-separated pair consisting of
'DividendYield' and a scalar numeric value.
Data Types: double

OutSpec — Define outputs
["price"] (default) | string array with values "price", "delta", "gamma", "vega", "rho", and
"theta" | cell array of character vectors with values 'price', 'delta', 'gamma', 'vega', 'rho',
and 'theta'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a NOUT- by-1 or
a 1-by-NOUT string array or cell array of character vectors with supported values.

Note "vega" is the sensitivity with respect the initial volatility sqrt(V0).

Example: OutSpec = ["price","delta","gamma","vega","rho","theta"]
Data Types: string | cell

NumFFT — Number of grid points in the characteristic function variable
4096 (default) | numeric

Number of grid points in the characteristic function variable and in each column of the log-strike
grid, specified as the comma-separated pair consisting of 'NumFFT' and a scalar numeric value.
Data Types: double

CharacteristicFcnStep — Characteristic function variable grid spacing
0.01 (default) | numeric

Characteristic function variable grid spacing, specified as the comma-separated pair consisting of
'CharacteristicFcnStep' and a scalar numeric value.
Data Types: double

LogStrikeStep — Log-strike grid spacing
2*pi/NumFFT/CharacteristicFcnStep (default) | numeric

Log-strike grid spacing, specified as the comma-separated pair consisting of 'LogStrikeStep' and
a scalar numeric value.

Note If (LogStrikeStep*CharacteristicFcnStep) is 2*pi/NumFFT, FFT is used. Otherwise,
FRFT is used.

Data Types: double

DampingFactor — Damping factor for Carr-Madan formulation
1.5 (default) | numeric

11 Functions

11-1310



Damping factor for Carr-Madan formulation, specified as the comma-separated pair consisting of
'DampingFactor' and a scalar numeric value.
Data Types: double

Quadrature — Type of quadrature
"simpson" (default) | character vector with values:'simpson' or 'trapezoidal' | string array
with values: "simpson" or "trapezoidal"

Type of quadrature, specified as the comma-separated pair consisting of 'Quadrature' and a single
character vector or string array with a value of 'simpson' or 'trapezoidal'.
Data Types: char | string

ExpandOutput — Flag to expand the outputs
false (outputs are NINST-by-1 vectors) (default) | logical with value of true or false

Flag to expand the outputs, specified as the comma-separated pair consisting of 'ExpandOutput'
and a logical:

• true — If true, the outputs are NRows-by- NColumns matrices. NRows is the number of strikes
for each column and it is determined by the Strike input. For example, Strike can be a NRows-
by-1 vector, or a NRows-by-NColumns matrix. If Strike is empty, NRows is equal to NumFFT.
NColumns is determined by the sizes of AssetPrice, Settle, Maturity, and OptSpec, which
must all be either scalar or NColumns-by-1 vectors.

• false — If false, the outputs are NINST-by-1 vectors. Also, the inputs Strike, AssetPrice,
Settle, Maturity, and OptSpec must all be either scalar or NINST-by-1 vectors.

Data Types: logical

Output Arguments
PriceSens — Option prices or sensitivities
numeric

Option prices or sensitivities, returned as a NINST-by-1, or NRows-by-NColumns, depending on
ExpandOutput. The name-value pair argument OutSpec determines the types and order of the
outputs.

StrikeOut — Strikes corresponding to Price
numeric

Strikes corresponding to Price, returned as a NINST-by-1, or NRows-by-NColumns, depending on
ExpandOutput.

More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:
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• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.

Merton Jump Diffusion Model

The Merton jump diffusion model (Merton (1976)) is a different extension of the Black-Scholes model,
where sudden asset price movements (both up and down) are modeled by adding the jump diffusion
parameters with the Poisson process.

The stochastic differential equation is:

dSt = (r − q− λpμ j)Stdt + σStdWt + JStdPt
prob(dPt = 1) = λpdt

where

r is the continuous risk-free rate.

q is the continuous dividend yield.

Wt is the Weiner process.

J is the random percentage jump size conditional on the jump occurring, where ln(1+J) is normally

distributed with mean ln(1 + μJ)−
δ2

2  and the standard deviation δ, and (1+J) has a lognormal
distribution:

1
(1 + J)δ 2πexp

− ln(1 + J)− ln(1 + μJ −
δ2
2

2δ2

2

μJ is the mean of J for (μJ > -1).

δ is the standard deviation of ln(1+J) for (δ≥ 0).

ƛp is the annual frequency (intensity) of Poisson process Ptfor (ƛp ≥ 0).

σ is the volatility of the asset price for (σ > 0).

The characteristic function fMerton76 j(ϕ) for j = 1 (asset prices measure) and j = 2 (risk-neutral
measure) is:
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fMerton76 j = fBSjexp λpτ 1 + μ j
mj + 1

2 1 + μ j
iϕeδ2 mjiϕ + (iϕ)2

2 − 1 − λpτμ jiϕ

where for  j = 1, 2:

fBS1(ϕ) =
fBS2 ϕ− i
fBS2 −i

fBS2(ϕ) = exp iϕ lnSt + r − q− σ2

2 τ − ϕ2σ2

2 τ

m1 = 1
2, m2 = − 1

2

where

ϕ is the characteristic function variable.

τ is the time to maturity (τ = T- t).

i is the unit imaginary number ( i2 = -1).

Carr-Madan Formulation

The Carr and Madan (1999) formulation is a popular modified implementation of Heston (1993)
framework.

Rather than computing the probabilities P1 and P2 as intermediate steps, Carr and Madan developed
an alternative expression so that taking its inverse Fourier transform gives the option price itself
directly.

Call(k) = e−αk

π ∫0 ∞Re e−iukψ(u) du

ψ(u) =
e−rτf2(ϕ = (u− (α + 1)i))
α2 + α− u2 + iu(2α + 1)

Put(K) = Call(K) + Ke−rτ − Ste−qτ

where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

τ is time to maturity (τ = T-t).

Call(K) is the call price at strike K.

Put(K) is the put price at strike K.

i is a unit imaginary number (i2= -1).

ϕ is the characteristic function variable.
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α is the damping factor.

u is the characteristic function variable for integration, where ϕ = (u - (α+1)i).

f2(ϕ) is the characteristic function for P2.

P2 is the probability of St > K under the risk-neutral measure for the model.

To apply FFT or FRFT to this formulation, the characteristic function variable for integration, u, is
discretized into NumFFT(N) point with the step size CharacteristicFcnStep (Δu), and the log-
strike k is discretized into N points with the step size LogStrikeStep(Δk).

The discretized characteristic function variable for integration, uj(for j = 1,2,3,…,N), has a minimum
value of 0 and a maximum value of (N-1) (Δu), and it approximates the continuous integration range
from 0 to infinity.

The discretized log-strike grid, kn(for n = 1, 2, 3, N) is approximately centered around ln(St), with a
minimum value of

ln(St)−
N
2 Δk

and a maximum value of

ln(St) + N
2 − 1 Δk

Where the minimum allowable strike is

Stexp −N
2 Δk

and the maximum allowable strike is

Stexp N
2 − 1 Δk

As a result of the discretization, the expression for the call option becomes

Call(kn) = Δue−αkn

π ∑
j = 1

N
Re e−iΔkΔu( j− 1)(n− 1)eiu j NΔk

2 − ln(St) ψ(u j) w j

where

Δu is the step size of discretized characteristic function variable for integration.

Δk is the step size of discretized log-strike.

N is the number of FFT or FRFT points.

wj is the weights for quadrature used for approximating the integral.

FFT is used to evaluate the above expression if Δk and Δu are subject to the following constraint:

ΔkΔu = 2π
N
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otherwise, the functions use the FRFT method described in Chourdakis (2005).
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optByMertonNI
Option price by Merton76 model using numerical integration

Syntax
Price = optByMertonNI(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,Sigma,
MeanJ,JumpVol,JumpFreq)
Price = optByMertonNI( ___ ,Name,Value)

Description
Price = optByMertonNI(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,Sigma,
MeanJ,JumpVol,JumpFreq) computes vanilla European option price by the Merton76 model, using
numerical integration.

Price = optByMertonNI( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Workflow for Plotting an Option Price Surface Using the Merton76 Model

optByMertonNI uses numerical integration to compute option prices and then plot an option price
surface.

Define Option Variables and Merton76 Model Parameters

AssetPrice = 80;
Rate = 0.03;
DividendYield = 0.02;
OptSpec = 'call';

Sigma = 0.16;
MeanJ = 0.02;
JumpVol = 0.08;
JumpFreq = 2;

Compute the Option Price for a Single Strike

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = 80; 

Call = optByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield)

Call = 4.5600

Compute the Option Prices for a Vector of Strikes

The Strike input can be a vector.
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Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = (76:2:84)';

Call = optByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield)

Call = 5×1

    6.7410
    5.5762
    4.5600
    3.6891
    2.9551

Compute the Option Prices for a Vector of Strikes and a Vector of Dates of the Same
Lengths

Use the Strike input to specify the strikes. Also, the Maturity input can be a vector, but it must
match the length of the Strike vector if the ExpandOutput name-value pair argument is not set to
"true".

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, [12 18 24 30 36]); % Five maturities
Strike = [76 78 80 82 84]'; % Five strikes

Call = optByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield)

Call = 5×1

    8.5589
    8.9439
    9.2316
    9.4653
    9.6565

    % Five values in vector output

Expand the Output for a Surface

Set the ExpandOutput name-value pair argument to "true" to expand the output into a NStrikes-
by-NMaturities matrix. In this case, it is a square matrix.

Call = optByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ...
    'ExpandOutput', true) % (5 x 5) matrix output

Call = 5×5

    8.5589    9.9675   11.1343   12.1492   13.0464
    7.4844    8.9439   10.1481   11.1939   12.1181
    6.5125    8.0023    9.2316   10.2999   11.2449
    5.6401    7.1402    8.3827    9.4653   10.4249
    4.8630    6.3545    7.5990    8.6881    9.6565
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Compute the Option Prices for a Vector of Strikes and a Vector of Dates of Different
Lengths

When ExpandOutput is "true", NStrikes do not have to match NMaturities. That is, the output
NStrikes-by-NMaturities matrix can be rectangular.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*(0.5:0.5:3)'); % Six maturities
Strike = (76:2:84)'; % Five strikes

Call = optByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ...
    'ExpandOutput', true) % (5 x 6) matrix output

Call = 5×6

    6.7410    8.5589    9.9675   11.1343   12.1492   13.0464
    5.5762    7.4844    8.9439   10.1481   11.1939   12.1181
    4.5600    6.5125    8.0023    9.2316   10.2999   11.2449
    3.6891    5.6401    7.1402    8.3827    9.4653   10.4249
    2.9551    4.8630    6.3545    7.5990    8.6881    9.6565

Compute the Option Prices for a Vector of Strikes and a Vector of Asset Prices

When ExpandOutput is "true", the output can also be a NStrikes-by-NAssetPrices rectangular
matrix by accepting a vector of asset prices.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12); % Single maturity
ManyAssetPrices = [70 75 80 85]; % Four asset prices
Strike = (76:2:84)'; % Five strikes

Call = optByMertonNI(Rate, ManyAssetPrices, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ...
    'ExpandOutput', true) % (5 x 4) matrix output

Call = 5×4

    3.4186    5.6579    8.5589   12.0417
    2.8538    4.8401    7.4844   10.7343
    2.3718    4.1205    6.5125    9.5230
    1.9635    3.4922    5.6401    8.4090
    1.6198    2.9476    4.8630    7.3921

Plot an Option Price Surface

The Strike and Maturity inputs can be vectors. Set ExpandOutput to "true" to output the
surface as a NStrikes-by-NMaturities matrix.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*[1/12 0.25 (0.5:0.5:3)]');
Times = yearfrac(Settle, Maturity);
Strike = (2:2:200)';

Call = optByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ...
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    'ExpandOutput', true);

[X,Y] = meshgrid(Times,Strike);

figure;
surf(X,Y,Call);
title('Price');
xlabel('Years to Option Expiry');
ylabel('Strike');
view(-112,34);
xlim([0 Times(end)]);
zlim([0 80]);

Input Arguments
Rate — Continuously compounded risk-free interest rate
decimal

Continuously compounded risk-free interest rate, specified as a scalar decimal value.
Data Types: double

AssetPrice — Current underlying asset price
numeric

Current underlying asset price, specified as numeric value using a scalar or a NINST-by-1 or
NColumns-by-1 vector.
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For more information on the proper dimensions for AssetPrice, see the name-value pair argument
ExpandOutput.
Data Types: double

Settle — Option settlement date
serial date number | date character vector | datetime | string array

Option settlement date, specified as a NINST-by-1 or NColumns-by-1 vector using serial date
numbers, date character vectors, datetime arrays, or string arrays. The Settle date must be before
the Maturity date.

For more information on the proper dimensions for Settle, see the name-value pair argument
ExpandOutput.
Data Types: double | char | datetime | string

Maturity — Option maturity date
serial date number | date character vector | datetime | string array

Option maturity date, specified as a NINST-by-1 or NColumns-by-1 vector using serial date numbers,
date character vectors, datetime arrays, or string arrays.

For more information on the proper dimensions for Maturity, see the name-value pair argument
ExpandOutput.
Data Types: double | char | datetime | string

OptSpec — Definition of option
cell array of character vector with values 'call' or 'put' | string array with values "call" or
"put"

Definition of the option, specified as a NINST-by-1 or NColumns-by-1 vector using a cell array of
character vectors or string arrays with values 'call' or 'put'.

For more information on the proper dimensions for OptSpec, see the name-value pair argument
ExpandOutput.
Data Types: cell | string

Strike — Option strike price value
numeric

Option strike price value, specified as a NINST-by-1, NRows-by-1, NRows-by-NColumns vector of
strike prices.

For more information on the proper dimensions for Strike, see the name-value pair argument
ExpandOutput.
Data Types: double

Sigma — Volatility of underlying asset
numeric

Volatility of the underling asset, specified as a scalar numeric value.
Data Types: double
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MeanJ — Mean of the random percentage jump size
decimal

Mean of the random percentage jump size (J), specified as a scalar decimal value where log(1+J) is
normally distributed with mean (log(1+MeanJ)-0.5*JumpVol^2) and the standard deviation
JumpVol.
Data Types: double

JumpVol — Standard deviation of log(1+J)
decimal

Standard deviation of log(1+J) where J is the random percentage jump size, specified as a scalar
decimal value.
Data Types: double

JumpFreq — Annual frequency of Poisson jump process
numeric

Annual frequency of Poisson jump process, specified as a scalar numeric value.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Price =
optByMertonNI(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,Sigma,MeanJ,Jump
Vol,JumpFreq,'Basis',7)

Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count of the instrument, specified as the comma-separated pair consisting of 'Basis' and a
scalar using a supported value:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
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• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

DividendYield — Continuously compounded underlying asset yield
0 (default) | numeric

Continuously compounded underlying asset yield, specified as the comma-separated pair consisting of
'DividendYield' and a scalar numeric value.
Data Types: double

AbsTol — Absolute error tolerance for numerical integration
1e-10 (default) | numeric

Absolute error tolerance for numerical integration, specified as the comma-separated pair consisting
of 'AbsTol' and a scalar numeric value.
Data Types: double

RelTol — Relative error tolerance for numerical integration
1e-6 (default) | numeric

Relative error tolerance for numerical integration, specified as the comma-separated pair consisting
of 'RelTol' and a scalar numeric value.
Data Types: double

IntegrationRange — Numerical integration range used to approximate continuous integral
over [0 Inf]
[1e-9 Inf] (default) | vector

Numerical integration range used to approximate the continuous integral over [0 Inf], specified as
the comma-separated pair consisting of 'IntegrationRange' and a 1-by-2 vector representing
[LowerLimit UpperLimit].
Data Types: double

Framework — Framework for computing option prices and sensitivities using numerical
integration of models
"heston1993" (default) | string with values "heston1993" or "lewis2001" | character vector
with values 'heston1993' or 'lewis2001'

Framework for computing option prices and sensitivities using numerical integration of models,
specified as the comma-separated pair consisting of 'Framework' and a scalar string or character
vector with the following values:

• "heston1993" or 'heston1993' — Method used in Heston (1993)
• "lewis2001" or 'lewis2001' — Method used in Lewis (2001)

Data Types: char | string
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ExpandOutput — Flag to expand the outputs
false (outputs are NINST-by-1 vectors) (default) | logical with value of true or false

Flag to expand the outputs, specified as the comma-separated pair consisting of 'ExpandOutput'
and a logical:

• true — If true, the outputs are NRows-by- NColumns matrices. NRows is the number of strikes
for each column and it is determined by the Strike input. For example, Strike can be a NRows-
by-1 vector, or a NRows-by-NColumns matrix. NColumns is determined by the sizes of
AssetPrice, Settle, Maturity, and OptSpec, which must all be either scalar or NColumns-
by-1 vectors.

• false — If false, the outputs are NINST-by-1 vectors. Also, the inputs Strike, AssetPrice,
Settle, Maturity, and OptSpec must all be either scalar or NINST-by-1 vectors.

Data Types: logical

Output Arguments
Price — Option prices
numeric

Option prices, returned as a NINST-by-1, or NRows-by-NColumns, depending on ExpandOutput.

More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.

Merton Jump Diffusion Model

The Merton jump diffusion model (Merton (1976)) is a different extension of the Black-Scholes model,
where sudden asset price movements (both up and down) are modeled by adding the jump diffusion
parameters with the Poisson process.

The stochastic differential equation is:
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dSt = (r − q− λpμ j)Stdt + σStdWt + JStdPt
prob(dPt = 1) = λpdt

where

r is the continuous risk-free rate.

q is the continuous dividend yield.

Wt is the Weiner process.

J is the random percentage jump size conditional on the jump occurring, where ln(1+J) is normally

distributed with mean ln(1 + μJ)−
δ2

2  and the standard deviation δ, and (1+J) has a lognormal
distribution:

1
(1 + J)δ 2πexp

− ln(1 + J)− ln(1 + μJ −
δ2
2

2δ2

2

μJ is the mean of J for (μJ > -1).

δ is the standard deviation of ln(1+J) for (δ≥ 0).

ƛp is the annual frequency (intensity) of Poisson process Ptfor (ƛp ≥ 0).

σ is the volatility of the asset price for (σ > 0).

The characteristic function fMerton76 j(ϕ) for j = 1 (asset prices measure) and j = 2 (risk-neutral
measure) is:

fMerton76 j = fBSjexp λpτ 1 + μ j
mj + 1

2 1 + μ j
iϕeδ2 mjiϕ + (iϕ)2

2 − 1 − λpτμ jiϕ

where for  j = 1, 2:

fBS1(ϕ) =
fBS2 ϕ− i
fBS2 −i

fBS2(ϕ) = exp iϕ lnSt + r − q− σ2

2 τ − ϕ2σ2

2 τ

m1 = 1
2, m2 = − 1

2

where

ϕ is the characteristic function variable

τ is the time to maturity (τ = T- t).

i is the unit imaginary number ( i2 = -1).
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Numerical Integration Method Under Heston (1993) Framework

Numerical integration is used to evaluate the continuous integral for the inverse Fourier transform.

The numerical integration method under the Heston (1993) framework is based on the following
expressions:

Call(K) = Ste−qτP1− Ke−rτP2

Put(K) = Call(K) + Ke−rτ − Ste−qτ

P j = 1
2 + 1

π ∫
0

∞
Re

e−iϕln(K)f j(ϕ)
iϕ dϕ

where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

K is the strike.

τ is time to maturity (τ = T-t).

Call(K) is the call price at strike K.

Put(K) is the put price at strike K

i is a unit imaginary number (i2= -1)

ϕ is the characteristic function variable.

fj(ϕ) is the characteristic function for Pj(j = 1,2).

P1 is the probability of St > K under the asset price measure for the model.

P2 is the probability of St > K under the risk-neutral measure for the model.

Where j = 1,2 so that f1(ϕ) and f2(ϕ) are the characteristic functions for probabilities P1 and P2,
respectively.

This framework is chosen with the default value “Heston1993” for the Framework name-value pair
argument.

Numerical Integration Method Under Lewis (2001) Framework

Numerical integration is used to evaluate the continuous integral for the inverse Fourier transform.

The numerical integration method under the Lewis (2001) framework is based on the following
expressions:

Call(k) = Ste−qτ − Ke−τt

π ∫
0

∞
Re K−iuf2 ϕ = u− i

2
1

u2 + 1
4

du

Put(K) = Call(K) = Ke−τt − Ste−qτ
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where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

K is the strike.

τ is time to maturity (τ = T-t).

Call(K) is the call price at strike K.

Put(K) is the put price at strike K

i is a unit imaginary number (i2= -1)

ϕ is the characteristic function variable.

u is the characteristic function variable for integration, where ϕ = u− i
2 .

f2(ϕ) is the characteristic function for P2.

P2 is the probability of St > K under the risk-neutral measure for the model.

This framework is chosen with the value “Lewis2001” for the Framework name-value pair
argument.
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optSensByMertonNI
Option price and sensitivities by Merton76 model using numerical integration

Syntax
PriceSens = optSensByMertonNI(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,
Sigma,MeanJ,JumpVol,JumpFreq)
PriceSens = optSensByMertonNI( ___ ,Name,Value)

Description
PriceSens = optSensByMertonNI(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,
Sigma,MeanJ,JumpVol,JumpFreq) computes vanilla European option price and sensitivities by the
Merton76 model, using numerical integration.

PriceSens = optSensByMertonNI( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Workflow for Plotting an Option Sensitivity Surface Using the Merton76 Model

optSensByMertonNI uses numerical integration to compute option sensitivities and then plot option
sensitivity surfaces.

Define Option Variables and Merton76 Model Parameters

AssetPrice = 80;
Rate = 0.03;
DividendYield = 0.02;
OptSpec = 'call';

Sigma = 0.16;
MeanJ = 0.02;
JumpVol = 0.08;
JumpFreq = 2;

Compute the Option Sensitivity for a Single Strike

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = 80; 

Delta = optSensByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ...
    'OutSpec', "delta")

Delta = 0.5283
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Compute the Option Sensitivities for a Vector of Strikes

The Strike input can be a vector.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = (76:2:84)';

Delta = optSensByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ...
    'OutSpec', "delta")

Delta = 5×1

    0.6727
    0.6013
    0.5283
    0.4565
    0.3883

Compute the Option Sensitivities for a Vector of Strikes and a Vector of Dates of the Same
Lengths

Use the Strike input to specify the strikes. Also, the Maturity input can be a vector, but it must
match the length of the Strike vector if the ExpandOutput name-value pair argument is not set to
"true".

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, [12 18 24 30 36]); % Five maturities
Strike = [76 78 80 82 84]'; % Five strikes

Delta = optSensByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ...
    'OutSpec', "delta")

Delta = 5×1

    0.6419
    0.5907
    0.5565
    0.5311
    0.5110

    % Five values in vector output

Expand the Output for a Surface

Set the ExpandOutput name-value pair argument to "true" to expand the output into a NStrikes-
by-NMaturities matrix. In this case, it is a square matrix.

Delta = optSensByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ...
    'OutSpec', "delta", 'ExpandOutput', true) % (5 x 5) matrix output

Delta = 5×5

    0.6419    0.6305    0.6245    0.6204    0.6173
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    0.5922    0.5907    0.5905    0.5905    0.5905
    0.5422    0.5507    0.5565    0.5607    0.5637
    0.4927    0.5112    0.5229    0.5311    0.5372
    0.4447    0.4725    0.4898    0.5020    0.5110

Compute the Option Sensitivities for a Vector of Strikes and a Vector of Dates of Different
Lengths

When ExpandOutput is "true", NStrikes do not have to match NMaturities. That is, the output
NStrikes-by-NMaturities matrix can be rectangular.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*(0.5:0.5:3)'); % Six maturities
Strike = (76:2:84)'; % Five strikes

Delta = optSensByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ...
    'OutSpec', "delta", 'ExpandOutput', true)  % (5 x 6) matrix output

Delta = 5×6

    0.6727    0.6419    0.6305    0.6245    0.6204    0.6173
    0.6013    0.5922    0.5907    0.5905    0.5905    0.5905
    0.5283    0.5422    0.5507    0.5565    0.5607    0.5637
    0.4565    0.4927    0.5112    0.5229    0.5311    0.5372
    0.3883    0.4447    0.4725    0.4898    0.5020    0.5110

Compute the Option Sensitivities for a Vector of Strikes and a Vector of Asset Prices

When ExpandOutput is "true", the output can also be a NStrikes-by-NAssetPrices rectangular
matrix by accepting a vector of asset prices.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12); % Single maturity
ManyAssetPrices = [70 75 80 85]; % Four asset prices
Strike = (76:2:84)'; % Five strikes

Delta = optSensByMertonNI(Rate, ManyAssetPrices, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ...
    'OutSpec', "delta", 'ExpandOutput', true) % (5 x 4) matrix output

Delta = 5×4

    0.3796    0.5157    0.6419    0.7472
    0.3315    0.4637    0.5922    0.7043
    0.2874    0.4137    0.5422    0.6592
    0.2474    0.3664    0.4927    0.6128
    0.2117    0.3224    0.4447    0.5657

Plot Option Sensitivity Surfaces

The Strike and Maturity inputs can be vectors. Set ExpandOutput to "true" to output the
surfaces as NStrikes-by-NMaturities matrices.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*[1/12 0.25 (0.5:0.5:3)]');
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Times = yearfrac(Settle, Maturity);
Strike = (2:2:200)';

[Delta, Gamma, Rho, Theta, Vega] = optSensByMertonNI(...
    Rate, AssetPrice,Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ...
    'OutSpec', ["delta", "gamma", "rho", "theta", "vega"], ...
    'ExpandOutput', true);

[X,Y] = meshgrid(Times,Strike);

figure;
surf(X,Y,Delta);
title('Delta');
xlabel('Years to Option Expiry');
ylabel('Strike');
view(-112,34);
xlim([0 Times(end)]);

figure;
surf(X,Y,Gamma)
title('Gamma')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,Rho)
title('Rho')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,Theta)
title('Theta')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,Vega)
title('Vega')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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Input Arguments
Rate — Continuously compounded risk-free interest rate
decimal

Continuously compounded risk-free interest rate, specified as a scalar decimal value.
Data Types: double

AssetPrice — Current underlying asset price
numeric

Current underlying asset price, specified as numeric value using a scalar or a NINST-by-1 or
NColumns-by-1 vector.

For more information on the proper dimensions for AssetPrice, see the name-value pair argument
ExpandOutput.
Data Types: double

Settle — Option settlement date
serial date number | date character vector | datetime | string array

Option settlement date, specified as a NINST-by-1 or NColumns-by-1 vector using serial date
numbers, date character vectors, datetime arrays, or string arrays. The Settle date must be before
the Maturity date.
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For more information on the proper dimensions for Settle, see the name-value pair argument
ExpandOutput.
Data Types: double | char | datetime | string

Maturity — Option maturity date
serial date number | date character vector | datetime | string array

Option maturity date, specified as a NINST-by-1 or NColumns-by-1 vector using serial date numbers,
date character vectors, datetime arrays, or string arrays.

For more information on the proper dimensions for Maturity, see the name-value pair argument
ExpandOutput.
Data Types: double | char | datetime | string

OptSpec — Definition of option
cell array of character vector with values 'call' or 'put' | string array with values "call" or
"put"

Definition of the option, specified as a NINST-by-1 or NColumns-by-1 vector using a cell array of
character vectors or string arrays with values 'call' or 'put'.

For more information on the proper dimensions for OptSpec, see the name-value pair argument
ExpandOutput.
Data Types: cell | string

Strike — Option strike price value
numeric

Option strike price value, specified as a NINST-by-1, NRows-by-1, NRows-by-NColumns vector of
strike prices.

For more information on the proper dimensions for Strike, see the name-value pair argument
ExpandOutput.
Data Types: double

Sigma — Volatility of underlying asset
numeric

Volatility of the underling asset, specified as a scalar numeric value.
Data Types: double

MeanJ — Mean of the random percentage jump size
decimal

Mean of the random percentage jump size (J), specified as a scalar decimal value where log(1+J) is
normally distributed with mean (log(1+MeanJ)-0.5*JumpVol^2) and the standard deviation
JumpVol.
Data Types: double

JumpVol — Standard deviation of log(1+J)
decimal
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Standard deviation of log(1+J) where J is the random percentage jump size, specified as a scalar
decimal value.
Data Types: double

JumpFreq — Annual frequency of Poisson jump process
numeric

Annual frequency of Poisson jump process, specified as a scalar numeric value.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Price =
optSensByMertonNI(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,Sigma,MeanJ,
JumpVol,JumpFreq,'Basis',7)

Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count of the instrument, specified as the comma-separated pair consisting of 'Basis' and a
scalar using a supported value:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

DividendYield — Continuously compounded underlying asset yield
0 (default) | numeric
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Continuously compounded underlying asset yield, specified as the comma-separated pair consisting of
'DividendYield' and a scalar numeric value.
Data Types: double

OutSpec — Define outputs
["price"] (default) | string array with values "price", "delta", "gamma", "vega", "rho", and
"theta" | cell array of character vectors with values 'price', 'delta', 'gamma', 'vega', 'rho',
and 'theta'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a NOUT- by-1 or
a 1-by-NOUT string array or cell array of character vectors with supported values.

Note "vega" is the sensitivity with respect the initial volatility sqrt(V0).

Example: OutSpec = ["price","delta","gamma","vega","rho","theta"]
Data Types: string | cell

AbsTol — Absolute error tolerance for numerical integration
1e-10 (default) | numeric

Absolute error tolerance for numerical integration, specified as the comma-separated pair consisting
of 'AbsTol' and a scalar numeric value.
Data Types: double

RelTol — Relative error tolerance for numerical integration
1e-6 (default) | numeric

Relative error tolerance for numerical integration, specified as the comma-separated pair consisting
of 'RelTol' and a scalar numeric value.
Data Types: double

IntegrationRange — Numerical integration range used to approximate continuous integral
over [0 Inf]
[1e-9 Inf] (default) | vector

Numerical integration range used to approximate the continuous integral over [0 Inf], specified as
the comma-separated pair consisting of 'IntegrationRange' and a 1-by-2 vector representing
[LowerLimit UpperLimit].
Data Types: double

Framework — Framework for computing option prices and sensitivities using numerical
integration of models
"heston1993" (default) | string with values "heston1993" or "lewis2001" | character vector
with values 'heston1993' or 'lewis2001'

Framework for computing option prices and sensitivities using numerical integration of models,
specified as the comma-separated pair consisting of 'Framework' and a scalar string or character
vector with the following values:

• "heston1993" or 'heston1993' — Method used in Heston (1993)
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• "lewis2001" or 'lewis2001' — Method used in Lewis (2001)

Data Types: char | string

ExpandOutput — Flag to expand the outputs
false (outputs are NINST-by-1 vectors) (default) | logical with value of true or false

Flag to expand the outputs, specified as the comma-separated pair consisting of 'ExpandOutput'
and a logical:

• true — If true, the outputs are NRows-by- NColumns matrices. NRows is the number of strikes
for each column and it is determined by the Strike input. For example, Strike can be a NRows-
by-1 vector, or a NRows-by-NColumns matrix. NColumns is determined by the sizes of
AssetPrice, Settle, Maturity, and OptSpec, which must all be either scalar or NColumns-
by-1 vectors.

• false — If false, the outputs are NINST-by-1 vectors. Also, the inputs Strike, AssetPrice,
Settle, Maturity, and OptSpec must all be either scalar or NINST-by-1 vectors.

Data Types: logical

Output Arguments
PriceSens — Option prices or sensitivities
numeric

Option prices or sensitivities, returned as a NINST-by-1, or NRows-by-NColumns, depending on
ExpandOutput. The name-value pair argument OutSpec determines the types and order of the
outputs.

More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.
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Merton Jump Diffusion Model

The Merton jump diffusion model (Merton (1976)) is a different extension of the Black-Scholes model,
where sudden asset price movements (both up and down) are modeled by adding the jump diffusion
parameters with the Poisson process.

The stochastic differential equation is:

dSt = (r − q− λpμ j)Stdt + σStdWt + JStdPt
prob(dPt = 1) = λpdt

where

r is the continuous risk-free rate.

q is the continuous dividend yield.

Wt is the Weiner process.

J is the random percentage jump size conditional on the jump occurring, where ln(1+J) is normally

distributed with mean ln(1 + μJ)−
δ2

2  and the standard deviation δ, and (1+J) has a lognormal
distribution:

1
(1 + J)δ 2πexp

− ln(1 + J)− ln(1 + μJ −
δ2
2

2δ2

2

μJ is the mean of J for (μJ > -1).

δ is the standard deviation of ln(1+J) for (δ≥ 0).

ƛp is the annual frequency (intensity) of Poisson process Ptfor (ƛp ≥ 0).

σ is the volatility of the asset price for (σ > 0).

The characteristic function fMerton76 j(ϕ) for j = 1 (asset prices measure) and j = 2 (risk-neutral
measure) is:

fMerton76 j = fBSjexp λpτ 1 + μ j
mj + 1

2 1 + μ j
iϕeδ2 mjiϕ + (iϕ)2

2 − 1 − λpτμ jiϕ

where for  j = 1, 2:

fBS1(ϕ) =
fBS2 ϕ− i
fBS2 −i

fBS2(ϕ) = exp iϕ lnSt + r − q− σ2

2 τ − ϕ2σ2

2 τ

m1 = 1
2, m2 = − 1

2

where
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ϕ is the characteristic function variable.

τ is the time to maturity (τ = T- t).

i is the unit imaginary number ( i2 = -1).

Numerical Integration Method Under Heston (1993) Framework

Numerical integration is used to evaluate the continuous integral for the inverse Fourier transform.

The numerical integration method under the Heston (1993) framework is based on the following
expressions:

Call(K) = Ste−qτP1− Ke−rτP2

Put(K) = Call(K) + Ke−rτ − Ste−qτ

P j = 1
2 + 1

π ∫
0

∞
Re

e−iϕln(K)f j(ϕ)
iϕ dϕ

where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

K is the strike.

τ is time to maturity (τ = T-t).

Call(K) is the call price at strike K.

Put(K) is the put price at strike K.

i is a unit imaginary number (i2= -1).

ϕ is the characteristic function variable.

fj(ϕ) is the characteristic function for Pj(j = 1,2).

P1 is the probability of St > K under the asset price measure for the model.

P2 is the probability of St > K under the risk-neutral measure for the model.

Where j = 1,2 so that f1(ϕ) and f2(ϕ) are the characteristic functions for probabilities P1 and P2,
respectively.

This framework is chosen with the default value “Heston1993” for the Framework name-value pair
argument.

Numerical Integration Method Under Lewis (2001) Framework

Numerical integration is used to evaluate the continuous integral for the inverse Fourier transform.
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The numerical integration method under the Lewis (2001) framework is based on the following
expressions:

Call(k) = Ste−qτ − Ke−τt

π ∫
0

∞
Re K−iuf2 ϕ = u− i

2
1

u2 + 1
4

du

Put(K) = Call(K) = Ke−τt − Ste−qτ

where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

K is the strike.

τ is time to maturity (τ = T-t).

Call(K) is the call price at strike K.

Put(K) is the put price at strike K.

i is a unit imaginary number (i2= -1).

ϕ is the characteristic function variable.

u is the characteristic function variable for integration, where ϕ = u− i
2 .

f2(ϕ) is the characteristic function for P2.

P2 is the probability of St > K under the risk-neutral measure for the model.

This framework is chosen with the value “Lewis2001” for the Framework name-value pair
argument.
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optembndbybdt
Price bonds with embedded options by Black-Derman-Toy interest-rate tree

Syntax
[Price,PriceTree] = optembndbybdt(BDTTree,CouponRate,Settle,Maturity,OptSpec,
Strike,ExerciseDates)
[Price,PriceTree] = optembndbybdt( ___ ,Name,Value)

Description
[Price,PriceTree] = optembndbybdt(BDTTree,CouponRate,Settle,Maturity,OptSpec,
Strike,ExerciseDates) calculates price for bonds with embedded options from a Black-Derman-
Toy interest-rate tree and returns exercise probabilities in PriceTree.

optembndbybdt computes prices of vanilla bonds with embedded options, stepped coupon bonds
with embedded options, amortizing bonds with embedded options, and sinking fund bonds with call
embedded option. For more information, see “More About” on page 11-1356.

[Price,PriceTree] = optembndbybdt( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Price a Callable Bond Using a BDT Interest-Rate Tree Model

Create a BDTTree with the following data:

ZeroRates = [ 0.035;0.04;0.045];
Compounding = 1;
StartDates = ['jan-1-2007';'jan-1-2008';'jan-1-2009'];
EndDates   = ['jan-1-2008';'jan-1-2009';'jan-1-2010'];
ValuationDate = 'jan-1-2007';

Create a RateSpec.

RateSpec = intenvset('Rates', ZeroRates, 'StartDates', ValuationDate, 'EndDates', ...
EndDates, 'Compounding', Compounding, 'ValuationDate', ValuationDate)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [3x1 double]
            Rates: [3x1 double]
         EndTimes: [3x1 double]
       StartTimes: [3x1 double]
         EndDates: [3x1 double]
       StartDates: 733043
    ValuationDate: 733043
            Basis: 0
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     EndMonthRule: 1

Create a VolSpec.

Volatility = 0.10 * ones (3,1);
VolSpec = bdtvolspec(ValuationDate, EndDates, Volatility)

VolSpec = struct with fields:
             FinObj: 'BDTVolSpec'
      ValuationDate: 733043
           VolDates: [3x1 double]
           VolCurve: [3x1 double]
    VolInterpMethod: 'linear'

Create a TimeSpec.

TimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);

Build the BDTTree.

BDTTree = bdttree(VolSpec, RateSpec, TimeSpec)

BDTTree = struct with fields:
      FinObj: 'BDTFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2]
        dObs: [733043 733408 733774]
        TFwd: {[3x1 double]  [2x1 double]  [2]}
      CFlowT: {[3x1 double]  [2x1 double]  [3]}
     FwdTree: {[1.0350]  [1.0406 1.0495]  [1.0447 1.0546 1.0667]}

To compute the price of an American callable bond that pays a 5.25% annual coupon, matures in
Jan-1-2010, and is callable on Jan-1-2008 and 01-Jan-2010.

BondSettlement = 'jan-1-2007';
BondMaturity   = 'jan-1-2010'; 
CouponRate = 0.0525;
Period = 1;
OptSpec = 'call'; 
Strike = [100];  
ExerciseDates = {'jan-1-2008' '01-Jan-2010'}; 
AmericanOpt = 1;

PriceCallBond = optembndbybdt(BDTTree, CouponRate, BondSettlement, BondMaturity,...
OptSpec, Strike, ExerciseDates, 'Period', 1,'AmericanOp', 1)

PriceCallBond = 101.4750

Obtain Callable Bond Exercise Information Using a BDT Interest-Rate Tree Model

Create a BDTTree with the following data:
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ZeroRates = [ 0.025;0.03;0.045];
Compounding = 1;
StartDates = ['jan-1-2007';'jan-1-2008';'jan-1-2009'];
EndDates   = ['jan-1-2008';'jan-1-2009';'jan-1-2010'];
ValuationDate = 'jan-1-2007';

Create a RateSpec.

RateSpec = intenvset('Rates', ZeroRates, 'StartDates', ValuationDate, 'EndDates', ...
EndDates, 'Compounding', Compounding, 'ValuationDate', ValuationDate);

Build the BDT tree with the following data.

Volatility = 0.10 * ones (3,1);
VolSpec = bdtvolspec(ValuationDate, EndDates, Volatility)

VolSpec = struct with fields:
             FinObj: 'BDTVolSpec'
      ValuationDate: 733043
           VolDates: [3x1 double]
           VolCurve: [3x1 double]
    VolInterpMethod: 'linear'

TimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);
BDTTree = bdttree(VolSpec, RateSpec, TimeSpec)

BDTTree = struct with fields:
      FinObj: 'BDTFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2]
        dObs: [733043 733408 733774]
        TFwd: {[3x1 double]  [2x1 double]  [2]}
      CFlowT: {[3x1 double]  [2x1 double]  [3]}
     FwdTree: {[1.0250]  [1.0315 1.0385]  [1.0614 1.0750 1.0917]}

Define the callable bond instruments.

Settle = '01-Jan-2007';
Maturity = {'01-Jan-2008';'01-Jan-2010'};
CouponRate = {{'01-Jan-2008' .0425;'01-Jan-2010' .0450}};  
OptSpec='call';
Strike= [86;90];
ExerciseDates= {'01-Jan-2008';'01-Jan-2010'};

Price the instruments.

[Price, PriceTree]= optembndbybdt(BDTTree, CouponRate,  Settle, Maturity, OptSpec, Strike,...
ExerciseDates, 'Period', 1,'AmericanOp', 1)

Price = 2×1

    86
    90
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PriceTree = struct with fields:
                FinObj: 'BDTPriceTree'
                  tObs: [0 1 2 3]
                 PTree: {1x4 cell}
              ProbTree: {[1]  [0.5000 0.5000]  [0.2500 0.5000 0.2500]  [1x3 double]}
                ExTree: {1x4 cell}
            ExProbTree: {1x4 cell}
    ExProbsByTreeLevel: [2x4 double]

Examine the output PriceTree.ExTree. PriceTree.ExTree contains the exercise indicator
arrays. Each element of the cell array is an array containing 1's where an option is exercised and 0's
where it is not.

PriceTree.ExTree{4} 

ans = 2×3

     0     0     0
     1     1     1

There is no exercise for instrument 1 and instrument 2 is exercised at all nodes.

PriceTree.ExTree{3} 

ans = 2×3

     0     0     0
     0     0     0

There is no exercise for instrument 1 or instrument 2.

PriceTree.ExTree{2} 

ans = 2×2

     1     1
     1     0

There is exercise for instrument 1 at all nodes and instrument 2 is exercised at some nodes.

Next view the probability of reaching each node from the root node using PriceTree.ProbTree.

PriceTree.ProbTree{2}

ans = 1×2

    0.5000    0.5000

PriceTree.ProbTree{3}

ans = 1×3

    0.2500    0.5000    0.2500
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PriceTree.ProbTree{4}

ans = 1×3

    0.2500    0.5000    0.2500

Then view the exercise probabilities using PriceTree.ExProbTree. PriceTree.ExProbTree
contains the exercise probabilities. Each element in the cell array is an array containing 0's where
there is no exercise, or the probability of reaching that node where exercise happens.

PriceTree.ExProbTree{4}

ans = 2×3

         0         0         0
    0.2500    0.5000    0.2500

PriceTree.ExProbTree{3}

ans = 2×3

     0     0     0
     0     0     0

PriceTree.ExProbTree{2}

ans = 2×2

    0.5000    0.5000
    0.5000         0

View the exercise probabilities at each tree level using PriceTree.ExProbsByTreeLevel.
PriceTree.ExProbsByTreeLevel is an array with each row holding the exercise probability for a
given option at each tree observation time.

PriceTree.ExProbsByTreeLevel

ans = 2×4

    1.0000    1.0000         0         0
    1.0000    0.5000         0    1.0000

Price Single Stepped Callable Bonds Using a BDT Interest-Rate Tree Model

Price the following single stepped callable bonds using the following data: The data for the interest
rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
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Compounding = 1;

% Create RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

% Instrument
Settle = '01-Jan-2010';
Maturity = {'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2012' .0425;'01-Jan-2014' .0750}};  
OptSpec='call';
Strike=100;
ExerciseDates='01-Jan-2012';  %Callable in two years

% Build the tree
% Assume the volatility to be 10%
Sigma = 0.1;  
BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');
BDTT = bdttree(BDTVolSpec, RS, BDTTimeSpec);

% The first row corresponds to the price of the callable bond with maturity 
% of three years. The second row corresponds to the price of the callable bond
% with maturity of four years.
PBDT=  optembndbybdt(BDTT, CouponRate, Settle, Maturity ,OptSpec, Strike,...
ExerciseDates, 'Period', 1)

PBDT = 2×1

  100.0945
  100.0297

Price a Sinking Fund Bond Using a BDT Interest-Rate Tree Model

A corporation issues a three year bond with a sinking fund obligation requiring the company to sink
1/3 of face value after the first year and 1/3 after the second year. The company has the option to buy
the bonds in the market or call them at $98. The following data describes the details needed for
pricing the sinking fund bond:

Rates = [0.1;0.1;0.1;0.1];
ValuationDate = 'Jan-1-2011';
StartDates = ValuationDate;
EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
Compounding = 1;

% Create RateSpec
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates',...
StartDates, 'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding);

% Build the BDT tree
% Assume the volatility to be 10%
Sigma = 0.1;  
BDTTimeSpec = bdttimespec(ValuationDate, EndDates);
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');
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BDTT = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);

% Instrument
% The bond has a coupon rate of 9%, a period of one year and matures in
% 1-Jan-2014. Face decreases 1/3 after the first year and 1/3 after the 
% second year.
CouponRate = 0.09;
Settle = 'Jan-1-2011';
Maturity =  'Jan-1-2014';
Period = 1;
Face = { ...        
            {'Jan-1-2012'  100; ...
             'Jan-1-2013'   66.6666; ...
             'Jan-1-2014'   33.3333};
        };

% Option provision
OptSpec = 'call'; 
Strike = [98 98];
ExerciseDates ={'Jan-1-2012', 'Jan-1-2013'};

% Price of non-sinking fund bond. 
PNSF = bondbybdt(BDTT, CouponRate, Settle, Maturity, Period)

PNSF = 97.5131

Price of the bond with the option sinking provision.

PriceSF = optembndbybdt(BDTT, CouponRate, Settle, Maturity,...
OptSpec, Strike, ExerciseDates,'Period', Period, 'Face', Face)

PriceSF = 96.8364

Price an Amortizing Callable Bond Using a BDT Interest-Rate Tree Model

This example shows how to price an amortizing callable bond and a vanilla callable bond using a BDT
lattice model.

Create a RateSpec.

Rates = [0.025;0.028;0.030;0.031];
ValuationDate = 'Jan-1-2018';
StartDates = ValuationDate;
EndDates = {'Jan-1-2019'; 'Jan-1-2020'; 'Jan-1-2021'; 'Jan-1-2022'};
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates',...
StartDates, 'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding);

Build a BDT tree and assume a volatility of 5%.

Sigma = 0.05;  
BDTTimeSpec = bdttimespec(ValuationDate, EndDates);
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');
BDTT = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);

Define the callable bond.
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CouponRate = 0.05;
Settle = 'Jan-1-2018';
Maturity =  'Jan-1-2021';
Period = 1;
    
    Face = { 
                 {'Jan-1-2019'  100; 
                  'Jan-1-2020'   70; ...
                   'Jan-1-2021'   50};
                 };
 
OptSpec = 'call'; 
Strike = [97 95 93];
ExerciseDates ={'Jan-1-2019' 'Jan-1-2020' 'Jan-1-2021'};

Price a callable amortizing bond using the BDT tree.

BondType = 'amortizing';
Pcallbonds = optembndbybdt(BDTT, CouponRate, Settle, Maturity, OptSpec, Strike, ExerciseDates, 'Period', Period,'Face',Face,'BondType', BondType)

Pcallbonds = 99.5122

Input Arguments
BDTTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bdttree.
Data Types: struct

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell array, where
each element is a NumDates-by-2 cell array. The first column of the NumDates-by-2 cell array is dates
and the second column is associated rates. The date indicates the last day that the coupon rate is
valid.
Data Types: double | cell

Settle — Settlement date
serial date number | date character vector

Settlement date for the bond option, specified as a NINST-by-1 vector of serial date numbers or date
character vectors.

Note The Settle date for every bond is set to the ValuationDate of the BDT tree. The bond
argument Settle is ignored.

Data Types: double | char

Maturity — Maturity date
serial date number | date character vector
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Maturity date, specified as an NINST-by-1 vector of serial date numbers or date character vectors.
Data Types: double | char

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'

Definition of option, specified as a NINST-by-1 cell array of character vectors.
Data Types: char

Strike — Option strike price values
nonnegative integer

Option strike price value, specified as a NINST-by-1 or NINST-by-NSTRIKES depending on the type of
option:

• European option — NINST-by-1 vector of strike price values.
• Bermuda option — NINST by number of strikes (NSTRIKES) matrix of strike price values. Each

row is the schedule for one option. If an option has fewer than NSTRIKES exercise opportunities,
the end of the row is padded with NaNs.

• American option — NINST-by-1 vector of strike price values for each option.

Data Types: double

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a NINST-by-1, NINST-by-2, or NINST-by-NSTRIKES using serial
date numbers or date character vectors, depending on the type of option:

• For a European option, use a NINST-by-1 vector of dates. For a European option, there is only one
ExerciseDates on the option expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKES vector of dates.
• For an American option, use a NINST-by-2 vector of exercise date boundaries. The option can be

exercised on any date between or including the pair of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is a NINST-by-1 vector, the option can be exercised between
ValuationDate of the stock tree and the single listed ExerciseDates.

Data Types: double | char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Price =
optembndbybdt(BDTTree,CouponRate,Settle,Maturity,OptSpec,Strike,ExerciseDates
,'Period',1,'AmericanOp',1)

AmericanOpt — Option type
0 European/Bermuda (default) | integer with values 0 or 1
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Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and NINST-by-1
positive integer flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a NINST-by-1
vector.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis, specified as the comma-separated pair consisting of 'Basis' and a NINST-by-1
vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer with values 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
nonnegative integer using a NINST-by-1 vector. This rule applies only when Maturity is an end-of-
month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.
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• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: double

IssueDate — Bond issue date
serial date number | date character vector

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a NINST-
by-1 vector using serial date numbers or date character vectors.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial date number | date character vector

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using serial date numbers date or date character
vectors.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes
precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate,
the cash flow payment dates are determined from other inputs.
Data Types: double | char

LastCouponDate — Irregular last coupon date
serial date number | date character vector

Irregular last coupon date, specified as the comma-separated pair consisting of 'LastCouponDate'
and a NINST-by-1 vector using serial date numbers or date character vectors.

In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the
coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate,
regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not
specify a LastCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: char | double

StartDate — Forward starting date of payments
serial date number | date character vector

Forward starting date of payments (the date from which a bond cash flow is considered), specified as
the comma-separated pair consisting of 'StartDate' and a NINST-by-1 vector using serial date
numbers or date character vectors.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double

Face — Face value
100 (default) | NINST-by-1 vector | NINST-by-1 cell array

Face or par value, specified as the comma-separated pair consisting of 'Face' and a NINST-by-1
vector or a NINST-by-1 cell array where each element is a NumDates-by-2 cell array where the first
column is dates and the second column is associated face value. The date indicates the last day that
the face value is valid.

11 Functions

11-1354



Note Instruments without a Face schedule are treated as either vanilla bonds or stepped coupon
bonds with embedded options.

Data Types: double

BondType — Type of underlying bond
'vanilla' for scalar Face values, 'callablesinking' for scheduled Face values (default) | cell
array of character vectors with values 'vanilla','amortizing', or 'callablesinking' | string
array with values "vanilla", "amortizing", or "callablesinking"

Type of underlying bond, specified as the comma-separated pair consisting of 'BondType' and a
NINST-by-1 cell array of character vectors or string array specifying if the underlying is a vanilla
bond, an amortizing bond, or a callable sinking fund bond. The supported types are:

• 'vanilla' is a standard callable or puttable bond with a scalar Face value and a single coupon or
stepped coupons.

• 'callablesinking' is a bond with a schedule of Face values and a sinking fund call provision
with a single or stepped coupons.

• 'amortizing' is an amortizing callable or puttable bond with a schedule of Face values with
single or stepped coupons.

Data Types: char | string

Options — Derivatives pricing options
structure

Derivatives pricing options, specified as the comma-separated pair consisting of 'Options' and a
structure that is created with derivset.
Data Types: struct

Output Arguments
Price — Expected prices of embedded option at time 0
matrix

Expected price of the embedded option at time 0, returned as a NINST-by-1 matrix.

PriceTree — Structure containing trees of vectors of instrument prices and exercise
probabilities for each node
structure

Structure containing trees of vectors of instrument prices, a vector of observation times for each
node, and exercise probabilities. Values are:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.
• PriceTree.ExTree contains the exercise indicator arrays. Each element of the cell array is an

array containing 1's where an option is exercised and 0's where it isn't.
• PriceTree.ProbTree contains the probability of reaching each node from root node.
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• PriceTree.ExProbTree contains the exercise probabilities. Each element in the cell array is an
array containing 0's where there is no exercise, or the probability of reaching that node where
exercise happens.

• PriceTree.ExProbsByTreeLevel is an array with each row holding the exercise probability for
a given option at each tree observation time.

More About
Vanilla Bond with Embedded Option

A vanilla coupon bond is a security representing an obligation to repay a borrowed amount at a
designated time and to make periodic interest payments until that time.

The issuer of a bond makes the periodic interest payments until the bond matures. At maturity, the
issuer pays to the holder of the bond the principal amount owed (face value) and the last interest
payment. A vanilla bond with an embedded option is where an option contract has an underlying
asset of a vanilla bond.

Stepped Coupon Bond with Callable and Puttable Features

A step-up and step-down bond is a debt security with a predetermined coupon structure over time.

With these instruments, coupons increase (step up) or decrease (step down) at specific times during
the life of the bond. Stepped coupon bonds can have options features (call and puts).

Sinking Fund Bond with Call Embedded Option

A sinking fund bond is a coupon bond with a sinking fund provision.

This provision obligates the issuer to amortize portions of the principal prior to maturity, affecting
bond prices since the time of the principal repayment changes. This means that investors receive the
coupon and a portion of the principal paid back over time. These types of bonds reduce credit risk,
since it lowers the probability of investors not receiving their principal payment at maturity.

The bond may have a sinking fund call option provision allowing the issuer to retire the sinking fund
obligation either by purchasing the bonds to be redeemed from the market or by calling the bond via
a sinking fund call, whichever is cheaper. If interest rates are high, then the issuer buys back the
requirement amount of bonds from the market since bonds are cheap, but if interest rates are low
(bond prices are high), then most likely the issuer is buying the bonds at the call price. Unlike a call
feature, however, if a bond has a sinking fund call option provision, it is an obligation, not an option,
for the issuer to buy back the increments of the issue as stated. Because of this, a sinking fund bond
trades at a lower price than a non-sinking fund bond.

Amortizing Callable or Puttable Bond

Amortizing callable or puttable bonds work under a scheduled Face.

An amortizing callable bond gives the issuer the right to call back the bond, but instead of paying the
Face amount at maturity, it repays part of the principal along with the coupon payments. An
amortizing puttable bond, repays part of the principal along with the coupon payments and gives the
bondholder the right to sell the bond back to the issuer.
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See Also
bdtprice | bdttree | cfamounts | instoptembnd

Topics
“Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-10
“Bond with Embedded Options” on page 2-7
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced in R2008a
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optembndbybk
Price bonds with embedded options by Black-Karasinski interest-rate tree

Syntax
[Price,PriceTree] = optembndbybk(BKTree,CouponRate,Settle,Maturity,OptSpec,
Strike,ExerciseDates)
[Price,PriceTree] = optembndbybk( ___ ,Name,Value)

Description
[Price,PriceTree] = optembndbybk(BKTree,CouponRate,Settle,Maturity,OptSpec,
Strike,ExerciseDates) calculates price for bonds with embedded options from a Black-
Karasinski interest-rate tree and returns exercise probabilities in PriceTree.

optembndbybk computes prices of vanilla bonds with embedded options, stepped coupon bonds with
embedded options, amortizing bonds with embedded options, and sinking fund bonds with call
embedded option. For more information, see “More About” on page 11-1369.

[Price,PriceTree] = optembndbybk( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Price a Callable Bond Using a BK Interest-Rate Tree Model

Create a BKTree with the following data:

ZeroRates = [ 0.035;0.04;0.045];
Compounding = 1;
StartDates = ['jan-1-2007';'jan-1-2008';'jan-1-2009'];
EndDates   = ['jan-1-2008';'jan-1-2009';'jan-1-2010'];
ValuationDate = 'jan-1-2007';

Create a RateSpec.

RateSpec = intenvset('Rates', ZeroRates, 'StartDates', ValuationDate, 'EndDates', ...
EndDates, 'Compounding', Compounding, 'ValuationDate', ValuationDate)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [3x1 double]
            Rates: [3x1 double]
         EndTimes: [3x1 double]
       StartTimes: [3x1 double]
         EndDates: [3x1 double]
       StartDates: 733043
    ValuationDate: 733043
            Basis: 0
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     EndMonthRule: 1

Create a VolSpec.

VolDates = ['jan-1-2008';'jan-1-2009';'jan-1-2010'];
VolCurve = 0.01;
AlphaDates = 'jan-1-2010';
AlphaCurve = 0.1;
BKVolSpec = bkvolspec(ValuationDate, VolDates, VolCurve, AlphaDates, AlphaCurve)

BKVolSpec = struct with fields:
             FinObj: 'BKVolSpec'
      ValuationDate: 733043
           VolDates: [3x1 double]
           VolCurve: [3x1 double]
         AlphaCurve: 0.1000
         AlphaDates: 734139
    VolInterpMethod: 'linear'

Create a TimeSpec.

BKTimeSpec = bktimespec(ValuationDate, EndDates, Compounding);

Build the BKTree.

BKTree = bktree(BKVolSpec, RateSpec, BKTimeSpec)

BKTree = struct with fields:
      FinObj: 'BKFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2]
        dObs: [733043 733408 733774]
      CFlowT: {[3x1 double]  [2x1 double]  [3]}
       Probs: {[3x1 double]  [3x3 double]}
     Connect: {[2]  [2 3 4]}
     FwdTree: {[1.0350]  [1.0458 1.0450 1.0442]  [1.0571 1.0561 1.0551 ... ]}

To compute the price of an American puttable bond that pays an annual coupon of 5.25% , matures on
January 1, 2010, and is callable on January 1, 2008 and January 1, 2010.

BondSettlement = 'jan-1-2007';
BondMaturity   = 'jan-1-2010'; 
CouponRate = 0.0525;
Period = 1;
OptSpec = 'put'; 
Strike = [100];  
ExerciseDates = {'jan-1-2008' '01-Jan-2010'}; 
AmericanOpt = 1;

PricePutBondBK = optembndbybk(BKTree, CouponRate, BondSettlement, BondMaturity,...
OptSpec, Strike, ExerciseDates,'Period', 1, 'AmericanOpt', 1)

PricePutBondBK = 102.3820
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Obtain Callable Bond Exercise Information Using a BK Interest-Rate Tree Model

Create a BKTree with the following data:

ZeroRates = [ 0.025;0.03;0.045];
Compounding = 1;
StartDates = ['jan-1-2007';'jan-1-2008';'jan-1-2009'];
EndDates   = ['jan-1-2008';'jan-1-2009';'jan-1-2010'];
ValuationDate = 'jan-1-2007';

Create a RateSpec.

RateSpec = intenvset('Rates', ZeroRates, 'StartDates', ValuationDate, 'EndDates', ...
EndDates, 'Compounding', Compounding, 'ValuationDate', ValuationDate);

Build the BK tree with the following data.

VolDates = ['jan-1-2008';'jan-1-2009';'jan-1-2010'];
VolCurve = 0.01;
AlphaDates = 'jan-1-2010';
AlphaCurve = 0.1;
BKVolSpec = bkvolspec(ValuationDate, VolDates, VolCurve, AlphaDates, AlphaCurve);

BKTimeSpec = bktimespec(ValuationDate, EndDates, Compounding);
BKTree = bktree(BKVolSpec, RateSpec, BKTimeSpec);

Define the callable bond instruments.

Settle = '01-Jan-2007';
Maturity = {'01-Jan-2008';'01-Jan-2010'};
CouponRate = {{'01-Jan-2008' .0315;'01-Jan-2010' .0350}};  
OptSpec='call';
Strike= [86;90];
ExerciseDates= {'01-Jan-2008';'01-Jan-2010'};

Price the instruments.

[Price, PriceTree]= optembndbybk(BKTree, CouponRate,  Settle, Maturity, OptSpec, Strike,...
ExerciseDates, 'Period', 1,'AmericanOp', 1)

Price = 2×1

   86.0000
   88.3060

PriceTree = struct with fields:
                FinObj: 'BKPriceTree'
                  tObs: [0 1 2 3]
                 PTree: {1x4 cell}
              ProbTree: {1x4 cell}
                ExTree: {1x4 cell}
            ExProbTree: {1x4 cell}
    ExProbsByTreeLevel: [2x4 double]
               Connect: {[2]  [2 3 4]}
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Examine the output PriceTree.ExTree. PriceTree.ExTree contains the exercise indicator
arrays. Each element of the cell array is an array containing 1's where an option is exercised and 0's
where it is not.

PriceTree.ExTree{4} 

ans = 2×5

     0     0     0     0     0
     1     1     1     1     1

There is no exercise for instrument 1 and instrument 2 is exercised at all nodes.

PriceTree.ExTree{3} 

ans = 2×5

     0     0     0     0     0
     0     0     0     0     0

There is no exercise for instrument 1 or instrument 2.

PriceTree.ExTree{2} 

ans = 2×3

     1     1     1
     0     0     0

There is exercise for instrument 1 at all nodes and instrument 2 is not exercised.

Next view the probability of reaching each node from the root node using PriceTree.ProbTree.

PriceTree.ProbTree{2}

ans = 1×3

    0.1667    0.6667    0.1667

PriceTree.ProbTree{3}

ans = 1×5

    0.0203    0.2206    0.5183    0.2206    0.0203

PriceTree.ProbTree{4}

ans = 1×5

    0.0203    0.2206    0.5183    0.2206    0.0203

Then view the exercise probabilities using PriceTree.ExProbTree. PriceTree.ExProbTree
contains the exercise probabilities. Each element in the cell array is an array containing 0's where
there is no exercise, or the probability of reaching that node where exercise happens.
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PriceTree.ExProbTree{4}

ans = 2×5

         0         0         0         0         0
    0.0203    0.2206    0.5183    0.2206    0.0203

PriceTree.ExProbTree{3}

ans = 2×5

     0     0     0     0     0
     0     0     0     0     0

PriceTree.ExProbTree{2}

ans = 2×3

    0.1667    0.6667    0.1667
         0         0         0

View the exercise probabilities at each tree level using PriceTree.ExProbsByTreeLevel.
PriceTree.ExProbsByTreeLevel is an array with each row holding the exercise probability for a
given option at each tree observation time.

PriceTree.ExProbsByTreeLevel

ans = 2×4

    1.0000    1.0000         0         0
         0         0         0    1.0000

Price Single Stepped Callable Bonds Using a BK Interest-Rate Tree Model

Price the following single stepped callable bonds using the following data: The data for the interest
rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

% Create RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

% Instrument
Settle = '01-Jan-2010';
Maturity = {'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2012' .0425;'01-Jan-2014' .0750}};  
OptSpec='call';
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Strike=100;
ExerciseDates='01-Jan-2012';  %Callable in two years

% Build the tree with the following data
VolDates = ['1-Jan-2011'; '1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014'];
VolCurve = 0.01;
AlphaDates = '01-01-2014';
AlphaCurve = 0.1;

BKVolSpec = bkvolspec(RS.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
BKTimeSpec = bktimespec(RS.ValuationDate, VolDates, Compounding);
BKT = bktree(BKVolSpec, RS, BKTimeSpec);

% The first row corresponds to the price of the callable bond with maturity 
% of three years. The second row corresponds to the price of the callable bond
% with maturity of four years.
PBK= optembndbybk(BKT, CouponRate,  Settle, Maturity ,OptSpec, Strike,...
ExerciseDates, 'Period', 1)

PBK = 2×1

  100.0945
  100.0945

Price an Amortizing Callable Bond Using a BK Interest-Rate Tree Model

This example shows how to price an amortizing callable bond and a vanilla callable bond using a BK
lattice model.

Create a RateSpec.

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2012';
StartDates = ValuationDate;
EndDates = {'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'; 'Jan-1-2016'};
Compounding = 1;
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

Build a BK tree.

VolDates = ['1-Jan-2013'; '1-Jan-2014'; '1-Jan-2015'; '1-Jan-2016'];
VolCurve = 0.01;
AlphaDates = '01-01-2016';
AlphaCurve = 0.1;

BKVolSpec = bkvolspec(RS.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
BKTimeSpec = bktimespec(RS.ValuationDate, VolDates, Compounding);
BKT = bktree(BKVolSpec, RS, BKTimeSpec);

Define the callable bond.
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CouponRate = 0.05;
Settle = 'Jan-1-2012';
Maturity =  'Jan-1-2016';
Period = 1;
    
    Face = { 
                 {'Jan-1-2014'  100; 
                  'Jan-1-2015'   70;
                  'Jan-1-2016'   50};
                 };
 
OptSpec = 'call'; 
Strike = [97 95 93];
ExerciseDates ={'Jan-1-2014' 'Jan-1-2015' 'Jan-1-2016'};

Price a callable amortizing bond using the BDT tree.

BondType = 'amortizing';
Pcallbonds = optembndbybk(BKT, CouponRate,  Settle, Maturity ,OptSpec, Strike,...
ExerciseDates, 'Period', 1,'Face',Face,'BondType', BondType)

Pcallbonds = 98.7475

Input Arguments
BKTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bktree.
Data Types: struct

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell array, where
each element is a NumDates-by-2 cell array. The first column of the NumDates-by-2 cell array is dates
and the second column is associated rates. The date indicates the last day that the coupon rate is
valid.
Data Types: double | cell

Settle — Settlement date
serial date number | date character vector

Settlement date for the bond option, specified as a NINST-by-1 vector of serial date numbers or date
character vectors.

Note The Settle date for every bond is set to the ValuationDate of the BK tree. The bond
argument Settle is ignored.

Data Types: double | char

Maturity — Maturity date
serial date number | date character vector
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Maturity date, specified as an NINST-by-1 vector of serial date numbers or date character vectors.
Data Types: double | char

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'

Definition of option, specified as a NINST-by-1 cell array of character vectors.
Data Types: char

Strike — Option strike price values
nonnegative integer

Option strike price value, specified as a NINST-by-1 or NINST-by-NSTRIKES depending on the type of
option:

• European option — NINST-by-1 vector of strike price values.
• Bermuda option — NINST by number of strikes (NSTRIKES) matrix of strike price values. Each

row is the schedule for one option. If an option has fewer than NSTRIKES exercise opportunities,
the end of the row is padded with NaNs.

• American option — NINST-by-1 vector of strike price values for each option.

Data Types: double

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a NINST-by-1, NINST-by-2, or NINST-by-NSTRIKES using serial
date numbers or date character vectors, depending on the type of option:

• For a European option, use a NINST-by-1 vector of dates. For a European option, there is only one
ExerciseDates on the option expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKES vector of dates.
• For an American option, use a NINST-by-2 vector of exercise date boundaries. The option can be

exercised on any date between or including the pair of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is a NINST-by-1 vector, the option can be exercised between
ValuationDate of the stock tree and the single listed ExerciseDates.

Data Types: double | char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Price =
optembndbybk(BKTree,CouponRate,Settle,Maturity,OptSpec,Strike,ExerciseDates,'
Period',1,'AmericanOp',1)

AmericanOpt — Option type
0 European/Bermuda (default) | integer with values 0 or 1
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Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and NINST-by-1
positive integer flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a NINST-by-1
vector.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis, specified as the comma-separated pair consisting of 'Basis' and a NINST-by-1
vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer with values 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
nonnegative integer using a NINST-by-1 vector. This rule applies only when Maturity is an end-of-
month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.
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• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: double

IssueDate — Bond issue date
serial date number | date character vector

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a NINST-
by-1 vector using serial date numbers or date character vectors.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial date number | date character vector

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using serial date numbers or date character vectors.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes
precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate,
the cash flow payment dates are determined from other inputs.
Data Types: double | char

LastCouponDate — Irregular last coupon date
serial date number | date character vector

Irregular last coupon date, specified as the comma-separated pair consisting of 'LastCouponDate'
and a NINST-by-1 vector using serial date numbers or date character vectors.

In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the
coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate,
regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not
specify a LastCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: char | double

StartDate — Forward starting date of payments
serial date number | date character vector

Forward starting date of payments (the date from which a bond cash flow is considered), specified as
the comma-separated pair consisting of 'StartDate' and a NINST-by-1 vector using serial date
numbers or date character vectors.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double

Face — Face value
100 (default) | NINST-by-1 vector | NINST-by-1 cell array

Face or par value, specified as the comma-separated pair consisting of 'Face' and a NINST-by-1
vector or a NINST-by-1 cell array where each element is a NumDates-by-2 cell array where the first
column is dates and the second column is associated face value. The date indicates the last day that
the face value is valid.
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Note Instruments without a Face schedule are treated as either vanilla bonds or stepped coupon
bonds with embedded options.

Data Types: double

BondType — Type of underlying bond
'vanilla' for scalar Face values, 'callablesinking' for scheduled Face values (default) | cell
array of character vectors with values 'vanilla','amortizing', or 'callablesinking' | string
array with values "vanilla", "amortizing", or "callablesinking"

Type of underlying bond, specified as the comma-separated pair consisting of 'BondType' and a
NINST-by-1 cell array of character vectors or string array specifying if the underlying is a vanilla
bond, an amortizing bond, or a callable sinking fund bond. The supported types are:

• 'vanilla' is a standard callable or puttable bond with a scalar Face value and a single coupon or
stepped coupons.

• 'callablesinking' is a bond with a schedule of Face values and a sinking fund call provision
with a single or stepped coupons.

• 'amortizing' is an amortizing callable or puttable bond with a schedule of Face values with
single or stepped coupons.

Data Types: char | string

Options — Derivatives pricing options
structure

Derivatives pricing options, specified as the comma-separated pair consisting of 'Options' and a
structure that is created with derivset.
Data Types: struct

Output Arguments
Price — Expected prices of embedded option at time 0
matrix

Expected price of the embedded option at time 0, returned as a NINST-by-1 matrix.

PriceTree — Structure containing trees of vectors of instrument prices and exercise
probabilities for each node
structure

Structure containing trees of vectors of instrument prices, a vector of observation times for each
node, and exercise probabilities. Values are:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.
• PriceTree.ExTree contains the exercise indicator arrays. Each element of the cell array is an

array containing 1's where an option is exercised and 0's where it isn't.
• PriceTree.ProbTree contains the probability of reaching each node from root node.
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• PriceTree.ExProbTree contains the exercise probabilities. Each element in the cell array is an
array containing 0's where there is no exercise, or the probability of reaching that node where
exercise happens.

• PriceTree.ExProbsByTreeLevel is an array with each row holding the exercise probability for
a given option at each tree observation time.

More About
Vanilla Bond with Embedded Option

A vanilla coupon bond is a security representing an obligation to repay a borrowed amount at a
designated time and to make periodic interest payments until that time.

The issuer of a bond makes the periodic interest payments until the bond matures. At maturity, the
issuer pays to the holder of the bond the principal amount owed (face value) and the last interest
payment. A vanilla bond with an embedded option is where an option contract has an underlying
asset of a vanilla bond.

Stepped Coupon Bond with Callable and Puttable Features

A step-up and step-down bond is a debt security with a predetermined coupon structure over time.

With these instruments, coupons increase (step up) or decrease (step down) at specific times during
the life of the bond. Stepped coupon bonds can have options features (call and puts).

Sinking Fund Bond with Call Embedded Option

A sinking fund bond is a coupon bond with a sinking fund provision.

This provision obligates the issuer to amortize portions of the principal prior to maturity, affecting
bond prices since the time of the principal repayment changes. This means that investors receive the
coupon and a portion of the principal paid back over time. These types of bonds reduce credit risk,
since it lowers the probability of investors not receiving their principal payment at maturity.

The bond may have a sinking fund call option provision allowing the issuer to retire the sinking fund
obligation either by purchasing the bonds to be redeemed from the market or by calling the bond via
a sinking fund call, whichever is cheaper. If interest rates are high, then the issuer buys back the
requirement amount of bonds from the market since bonds are cheap, but if interest rates are low
(bond prices are high), then most likely the issuer is buying the bonds at the call price. Unlike a call
feature, however, if a bond has a sinking fund call option provision, it is an obligation, not an option,
for the issuer to buy back the increments of the issue as stated. Because of this, a sinking fund bond
trades at a lower price than a non-sinking fund bond.

Amortizing Callable or Puttable Bond

Amortizing callable or puttable bonds work under a scheduled Face.

An amortizing callable bond gives the issuer the right to call back the bond, but instead of paying the
Face amount at maturity, it repays part of the principal along with the coupon payments. An
amortizing puttable bond, repays part of the principal along with the coupon payments and gives the
bondholder the right to sell the bond back to the issuer.
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See Also
bkprice | cfamounts | bktree | instoptembnd

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Bond with Embedded Options” on page 2-7
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3
“Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on page 1-
73

Introduced in R2008a
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optembndbycir
Price bonds with embedded options by Cox-Ingersoll-Ross interest-rate tree

Syntax
[Price,PriceTree] = optembndbycir(CIRTree,CouponRate,Settle,Maturity,OptSpec,
Strike,ExerciseDates)
[Price,PriceTree] = optembndbycir( ___ ,Name,Value)

Description
[Price,PriceTree] = optembndbycir(CIRTree,CouponRate,Settle,Maturity,OptSpec,
Strike,ExerciseDates) calculates price for bonds with embedded options from a Cox-Ingersoll-
Ross (CIR) interest-rate tree and returns exercise probabilities in PriceTree.

optembndbycir computes prices of vanilla bonds with embedded options, stepped coupon bonds
with embedded options, amortizing bonds with embedded options, and sinking fund bonds with call
embedded option using a CIR++ model with the Nawalka-Beliaeva (NB) approach. For more
information, see “More About” on page 11-1381.

[Price,PriceTree] = optembndbycir( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Price a Callable Bond Using a CIR Interest-Rate Tree

Create a RateSpec using the intenvset function.

Rates = [0.025; 0.032; 0.037; 0.042]; 
Dates = {'Jan-1-2017'; 'Jan-1-2018'; 'Jan-1-2019'; 'Jan-1-2020'; 'Jan-1-2021'}; 
ValuationDate = 'Jan-1-2017'; 
EndDates = Dates(2:end)'; 
Compounding = 1; 
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, 'EndDates',EndDates,'Rates', Rates, 'Compounding', Compounding); 

Create a CIR tree.

NumPeriods = length(EndDates); 
Alpha = 0.03; 
Theta = 0.02;  
Sigma = 0.1;
Maturity = '01-Jan-2018'; 
CIRTimeSpec = cirtimespec(ValuationDate, Maturity, NumPeriods); 
CIRVolSpec = cirvolspec(Sigma, Alpha, Theta); 
CIRT = cirtree(CIRVolSpec, RateSpec, CIRTimeSpec)

CIRT = struct with fields:
      FinObj: 'CIRFwdTree'
     VolSpec: [1x1 struct]
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    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 0.2500 0.5000 0.7500]
        dObs: [736696 736787 736878 736969]
     FwdTree: {1x4 cell}
     Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

Define the bond with embedded option instrument.

BondSettlement = 'Jan-1-2017';
BondMaturity   = 'Jan-1-2020'; 
CouponRate = 0.035;
Period = 1;
OptSpec = 'put'; 
Strike = 100;  
ExerciseDates = {'Jan-1-2018' '01-Jan-2019'}; 

Price the bond.

[Price,PriceTree] = optembndbycir(CIRT,CouponRate,BondSettlement,BondMaturity,OptSpec,...
Strike,ExerciseDates,'AmericanOpt',1,'Period',1)

Price = 103.3099

PriceTree = struct with fields:
                FinObj: 'CIRPriceTree'
                  tObs: [0 0.2500 0.5000 0.7500 1]
                 PTree: {1x5 cell}
              ProbTree: {1x5 cell}
                ExTree: {[0]  [0 0 0]  [0 0 0 0 0]  [0 0 0 0 0 0 0]  [1 1 1 0 0 0 0]}
            ExProbTree: {[0]  [0 0 0]  [0 0 0 0 0]  [0 0 0 0 0 0 0]  [0.0222 ... ]}
    ExProbsByTreeLevel: [0 0 0 0 0.3089]
               Connect: {[3x1 double]  [3x3 double]  [3x5 double]}

Obtain Callable Bond Exercise Information Using a CIR Interest-Rate Tree Model

Create a CIRTree with the following data:

Rates = [0.025; 0.027; 0.028; 0.03]; 
Dates = {'Jan-1-2017'; 'Jan-1-2018'; 'Jan-1-2019'; 'Jan-1-2020'; 'Jan-1-2021'}; 
ValuationDate = 'Jan-1-2017'; 
EndDates = Dates(2:end)'; 
Compounding = 1; 

Create a RateSpec.

RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, 'EndDates',EndDates,...
'Rates', Rates, 'Compounding', Compounding);

Build the CIR tree with the following data.

NumPeriods = length(EndDates); 
Alpha = 0.03; 
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Theta = 0.02;  
Sigma = 0.1;
Maturity = '01-Jan-2018'; 
CIRTimeSpec = cirtimespec(ValuationDate, Maturity, NumPeriods); 
CIRVolSpec = cirvolspec(Sigma, Alpha, Theta); 
CIRT = cirtree(CIRVolSpec, RateSpec, CIRTimeSpec);

Define the callable bond instruments.

Settle = '01-Jan-2017';
Maturity = {'01-Jan-2018';'01-Jan-2020'};
CouponRate = {{'01-Jan-2019' .0325;'01-Jan-2020' .0375}};  
OptSpec='call';
Strike= [100;110];
ExerciseDates= {'01-Jan-2018';'01-Jan-2020'};

Price the instruments.

[Price, PriceTree]= optembndbycir(CIRT, CouponRate,  Settle, Maturity, OptSpec, Strike,...
ExerciseDates, 'Period', 1,'AmericanOpt',1)

Price = 2×1

   98.1718
  102.6458

PriceTree = struct with fields:
                FinObj: 'CIRPriceTree'
                  tObs: [0 0.2500 0.5000 0.7500 1]
                 PTree: {1x5 cell}
              ProbTree: {1x5 cell}
                ExTree: {1x5 cell}
            ExProbTree: {1x5 cell}
    ExProbsByTreeLevel: [2x5 double]
               Connect: {[3x1 double]  [3x3 double]  [3x5 double]}

Examine the output PriceTree.ExTree. PriceTree.ExTree contains the exercise indicator
arrays. Each element of the cell array is an array containing 1's where an option is exercised and 0's
where it is not.

PriceTree.ExTree{4} 

ans = 2×7

     0     0     0     0     0     0     0
     0     0     0     0     0     0     0

There is no exercise for instrument 1 or instrument 2.

PriceTree.ExTree{3} 

ans = 2×5

     0     0     0     0     0
     0     0     0     0     0
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There is no exercise for instrument 1 or instrument 2.

PriceTree.ExTree{2} 

ans = 2×3

     0     0     0
     0     0     0

There is exercise for instrument 1 or instrument 2.

Next view the probability of reaching each node from the root node using PriceTree.ProbTree.

PriceTree.ProbTree{2}

ans = 1×3

    0.2794    0.3750    0.3456

PriceTree.ProbTree{3}

ans = 1×5

    0.0786    0.2095    0.3318    0.2592    0.1209

PriceTree.ProbTree{4}

ans = 1×7

    0.0222    0.0885    0.1982    0.2678    0.2442    0.1360    0.0432

Then view the exercise probabilities using PriceTree.ExProbTree. PriceTree.ExProbTree
contains the exercise probabilities. Each element in the cell array is an array containing 0's where
there is no exercise, or the probability of reaching that node where exercise happens.

PriceTree.ExProbTree{4}

ans = 2×7

     0     0     0     0     0     0     0
     0     0     0     0     0     0     0

PriceTree.ExProbTree{3}

ans = 2×5

     0     0     0     0     0
     0     0     0     0     0

PriceTree.ExProbTree{2}

ans = 2×3

     0     0     0
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     0     0     0

View the exercise probabilities at each tree level using PriceTree.ExProbsByTreeLevel.
PriceTree.ExProbsByTreeLevel is an array with each row holding the exercise probability for a
given option at each tree observation time.

PriceTree.ExProbsByTreeLevel

ans = 2×5

     0     0     0     0     0
     0     0     0     0     0

Price a Callable Bond Using a CIR Interest-Rate Tree

Create a RateSpec using the intenvset function.

Rates = [0.025; 0.032; 0.037; 0.042]; 
Dates = {'Jan-1-2017'; 'Jan-1-2018'; 'Jan-1-2019'; 'Jan-1-2020'; 'Jan-1-2021'}; 
ValuationDate = 'Jan-1-2017'; 
EndDates = Dates(2:end)'; 
Compounding = 1; 
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, 'EndDates',EndDates,'Rates', Rates, 'Compounding', Compounding); 

Create a CIR tree.

NumPeriods = length(EndDates); 
Alpha = 0.03; 
Theta = 0.02;  
Sigma = 0.1;
Maturity = '01-Jan-2018'; 
CIRTimeSpec = cirtimespec(ValuationDate, Maturity, NumPeriods); 
CIRVolSpec = cirvolspec(Sigma, Alpha, Theta); 
CIRT = cirtree(CIRVolSpec, RateSpec, CIRTimeSpec)

CIRT = struct with fields:
      FinObj: 'CIRFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 0.2500 0.5000 0.7500]
        dObs: [736696 736787 736878 736969]
     FwdTree: {1x4 cell}
     Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

Define the bond with embedded option instrument.

BondSettlement = 'Jan-1-2017';
BondMaturity   = 'Jan-1-2020'; 
CouponRate = 0.035;
Period = 1;
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OptSpec = 'put'; 
Strike = 100;  
ExerciseDates = {'Jan-1-2018' '01-Jan-2019'}; 

Price the bond.

[Price,PriceTree] = optembndbycir(CIRT,CouponRate,BondSettlement,BondMaturity,OptSpec,...
Strike,ExerciseDates,'AmericanOpt',1,'Period',1)

Price = 103.3099

PriceTree = struct with fields:
                FinObj: 'CIRPriceTree'
                  tObs: [0 0.2500 0.5000 0.7500 1]
                 PTree: {1x5 cell}
              ProbTree: {1x5 cell}
                ExTree: {[0]  [0 0 0]  [0 0 0 0 0]  [0 0 0 0 0 0 0]  [1 1 1 0 0 0 0]}
            ExProbTree: {[0]  [0 0 0]  [0 0 0 0 0]  [0 0 0 0 0 0 0]  [0.0222 ... ]}
    ExProbsByTreeLevel: [0 0 0 0 0.3089]
               Connect: {[3x1 double]  [3x3 double]  [3x5 double]}

Input Arguments
CIRTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using cirtree.
Data Types: struct

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell array, where
each element is a NumDates-by-2 cell array. The first column of the NumDates-by-2 cell array is dates
and the second column is associated rates. The date indicates the last day that the coupon rate is
valid.
Data Types: double | cell

Settle — Settlement date
serial date number | date character vector | string array | datetime

Settlement date for the bond option, specified as a NINST-by-1 vector of serial date numbers, date
character vectors, string arrays, or datetime arrays.

Note The Settle date for every bond is set to the ValuationDate of the CIR tree. The bond
argument Settle is ignored.

Data Types: double | char | string | datetime

Maturity — Maturity date
serial date number | date character vector | string array | datetime
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Maturity date, specified as an NINST-by-1 vector of serial date numbers, date character vectors,
string arrays, or datetime arrays.
Data Types: double | char | string | datetime

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put' | string array with value "call" or "put"

Definition of option, specified as a NINST-by-1 cell array of character vectors or string arrays with a
value of 'call' or 'put'.
Data Types: char | cell | string

Strike — Option strike price values
nonnegative integer

Option strike price value, specified as a NINST-by-1 or NINST-by-NSTRIKES depending on the type of
option:

• European option — NINST-by-1 vector of strike price values.
• Bermuda option — NINST by number of strikes (NSTRIKES) matrix of strike price values. Each

row is the schedule for one option. If an option has fewer than NSTRIKES exercise opportunities,
the end of the row is padded with NaNs.

• American option — NINST-by-1 vector of strike price values for each option.

Data Types: double

ExerciseDates — Option exercise dates
serial date number | date character vector | string array | datetime

Option exercise dates, specified as a NINST-by-1, NINST-by-2, or NINST-by-NSTRIKES using serial
date numbers, date character vectors, string arrays, or datetime arrays depending on the type of
option:

• For a European option, use a NINST-by-1 vector of dates. For a European option, there is only one
ExerciseDates on the option expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKES vector of dates.
• For an American option, use a NINST-by-2 vector of exercise date boundaries. The option can be

exercised on any date between or including the pair of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is a NINST-by-1 vector, the option can be exercised between
ValuationDate of the stock tree and the single listed ExerciseDates.

Data Types: double | char | string | datetime

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
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Example: [Price,PriceTree] =
optembndbycir(BDTTree,CouponRate,Settle,Maturity,OptSpec,Strike,ExerciseDates
,'Period',1,'AmericanOpt',1)

AmericanOpt — Option type
0 European/Bermuda (default) | integer with values 0 or 1

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and an NINST-by-1
positive integer flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a NINST-by-1
vector.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis, specified as the comma-separated pair consisting of 'Basis' and a NINST-by-1
vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer with values 0 or 1
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End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
nonnegative integer using a NINST-by-1 vector. This rule applies only when Maturity is an end-of-
month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: double

IssueDate — Bond issue date
serial date number | date character vector | string array | datetime

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a NINST-
by-1 vector using serial date numbers, date character vectors, string arrays, or datetime arrays.
Data Types: double | char | string | datetime

FirstCouponDate — Irregular first coupon date
serial date number | date character vector | string array | datetime

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using serial date numbers, date character vectors,
string arrays, or datetime arrays.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes
precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate,
the cash flow payment dates are determined from other inputs.
Data Types: double | char | string | datetime

LastCouponDate — Irregular last coupon date
serial date number | date character vector | string array | datetime

Irregular last coupon date, specified as the comma-separated pair consisting of 'LastCouponDate'
and a NINST-by-1 vector using serial date numbers, date character vectors, string arrays, or datetime
arrays.

In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the
coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate,
regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not
specify a LastCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: char | double | string | datetime

StartDate — Forward starting date of payments
serial date number | date character vector | string array | datetime

Forward starting date of payments (the date from which a bond cash flow is considered), specified as
the comma-separated pair consisting of 'StartDate' and a NINST-by-1 vector using serial date
numbers, date character vectors, string arrays, or datetime arrays.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double | string | datetime
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Face — Face value
100 (default) | NINST-by-1 vector | NINST-by-1 cell array

Face or par value, specified as the comma-separated pair consisting of 'Face' and a NINST-by-1
vector or a NINST-by-1 cell array where each element is a NumDates-by-2 cell array where the first
column is dates and the second column is associated face value. The date indicates the last day that
the face value is valid.

Note Instruments without a Face schedule are treated as either vanilla bonds or stepped coupon
bonds with embedded options.

Data Types: double

BondType — Type of underlying bond
'vanilla' for scalar Face values, 'callablesinking' for scheduled Face values (default) | cell
array of character vectors with values 'vanilla','amortizing', or 'callablesinking' | string
array with values "vanilla", "amortizing", or "callablesinking"

Type of underlying bond, specified as the comma-separated pair consisting of 'BondType' and a
NINST-by-1 cell array of character vectors or string array specifying if the underlying is a vanilla
bond, an amortizing bond, or a callable sinking fund bond. The supported types are:

• 'vanilla' is a standard callable or puttable bond with a scalar Face value and a single coupon or
stepped coupons.

• 'callablesinking' is a bond with a schedule of Face values and a sinking fund call provision
with a single or stepped coupons.

• 'amortizing' is an amortizing callable or puttable bond with a schedule of Face values with
single or stepped coupons.

Data Types: char | string

Output Arguments
Price — Expected prices of embedded option at time 0
matrix

Expected price of the embedded option at time 0, returned as a NINST-by-1 matrix.

PriceTree — Structure containing trees of vectors of instrument prices and exercise
probabilities for each node
structure

Structure containing trees of vectors of instrument prices, a vector of observation times for each
node, and exercise probabilities. Values are:

• PriceTree.tObs contains the observation times.
• PriceTree.PTree contains the clean prices.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell array describes

how nodes in that level connect to the next. For a given tree level, there are NumNodes elements
in the vector, and they contain the index of the node at the next level that the middle branch
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connects to. Subtracting 1 from that value indicates where the up-branch connects to, and adding
1 indicated where the down branch connects to.

• PriceTree.ExTree contains the exercise indicator arrays. Each element of the cell array is an
array containing 1's where an option is exercised and 0's where it isn't.

• PriceTree.ProbTree contains the probability of reaching each node from root node.
• PriceTree.ExProbTree contains the exercise probabilities. Each element in the cell array is an

array containing 0's where there is no exercise, or the probability of reaching that node where
exercise happens.

• PriceTree.ExProbsByTreeLevel is an array with each row holding the exercise probability for
a given option at each tree observation time.

More About
Vanilla Bond with Embedded Option

A vanilla coupon bond is a security representing an obligation to repay a borrowed amount at a
designated time and to make periodic interest payments until that time.

The issuer of a bond makes the periodic interest payments until the bond matures. At maturity, the
issuer pays to the holder of the bond the principal amount owed (face value) and the last interest
payment. A vanilla bond with an embedded option is where an option contract has an underlying
asset of a vanilla bond.

Stepped Coupon Bond with Callable and Puttable Features

A step-up and step-down bond is a debt security with a predetermined coupon structure over time.

With these instruments, coupons increase (step up) or decrease (step down) at specific times during
the life of the bond. Stepped coupon bonds can have options features (calls and puts).

Sinking Fund Bond with Call Embedded Option

A sinking fund bond is a coupon bond with a sinking fund provision.

This provision obligates the issuer to amortize portions of the principal prior to maturity, affecting
bond prices since the time of the principal repayment changes. This means that investors receive the
coupon and a portion of the principal paid back over time. These types of bonds reduce credit risk,
since it lowers the probability of investors not receiving their principal payment at maturity.

The bond may have a sinking fund call option provision allowing the issuer to retire the sinking fund
obligation either by purchasing the bonds to be redeemed from the market or by calling the bond via
a sinking fund call, whichever is cheaper. If interest rates are high, then the issuer buys back the
requirement amount of bonds from the market since bonds are cheap, but if interest rates are low
(bond prices are high), then most likely the issuer is buying the bonds at the call price. Unlike a call
feature, however, if a bond has a sinking fund call option provision, it is an obligation, not an option,
for the issuer to buy back the increments of the issue as stated. Because of this, a sinking fund bond
trades at a lower price than a non-sinking fund bond.

Amortizing Callable or Puttable Bond

Amortizing callable or puttable bonds work under a scheduled Face.
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An amortizing callable bond gives the issuer the right to call back the bond, but instead of paying the
Face amount at maturity, it repays part of the principal along with the coupon payments. An
amortizing puttable bond, repays part of the principal along with the coupon payments and gives the
bondholder the right to sell the bond back to the issuer.

References
[1] Cox, J., Ingersoll, J., and S. Ross. "A Theory of the Term Structure of Interest Rates."

Econometrica. Vol. 53, 1985.

[2] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer Finance, 2006.

[3] Hirsa, A. Computational Methods in Finance. CRC Press, 2012.

[4] Nawalka, S., Soto, G., and N. Beliaeva. Dynamic Term Structure Modeling. Wiley, 2007.

[5] Nelson, D. and K. Ramaswamy. "Simple Binomial Processes as Diffusion Approximations in
Financial Models." The Review of Financial Studies. Vol 3. 1990, pp. 393–430.

See Also
bondbycir | capbycir | cfbycir | fixedbycir | floatbycir | floorbycir | oasbycir |
optbndbycir | optfloatbycir | optemfloatbycir | rangefloatbycir | swapbycir |
swaptionbycir | instoptembnd

Topics
“Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-10
“Bond with Embedded Options” on page 2-7
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced in R2018a

11 Functions

11-1382



optembndbyhjm
Price bonds with embedded options by Heath-Jarrow-Morton interest-rate tree

Syntax
[Price,PriceTree] = optembndbyhjm(HJMTree,CouponRate,Settle,Maturity,OptSpec,
Strike,ExerciseDates)
[Price,PriceTree] = optembndbyhjm( ___ ,Name,Value)

Description
[Price,PriceTree] = optembndbyhjm(HJMTree,CouponRate,Settle,Maturity,OptSpec,
Strike,ExerciseDates) calculates price for bonds with embedded options from a Heath-Jarrow-
Morton interest-rate tree and returns exercise probabilities in PriceTree.

optembndbyhjm computes prices of vanilla bonds with embedded options, stepped coupon bonds
with embedded options, amortizing bonds with embedded options, and sinking fund bonds with call
embedded option. For more information, see “More About” on page 11-1396.

[Price,PriceTree] = optembndbyhjm( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Price a Callable Bond Using an HJM Interest-Rate Tree Model

Create a HJMTree with the following data:

Rates = [0.05;0.06;0.07];
Compounding = 1;
StartDates = ['jan-1-2007';'jan-1-2008';'jan-1-2009'];
EndDates   = ['jan-1-2008';'jan-1-2009';'jan-1-2010'];
ValuationDate = 'jan-1-2007';

Create a RateSpec.

RateSpec = intenvset('Rates', Rates, 'StartDates', ValuationDate, 'EndDates', ...
EndDates, 'Compounding', Compounding, 'ValuationDate', ValuationDate)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [3x1 double]
            Rates: [3x1 double]
         EndTimes: [3x1 double]
       StartTimes: [3x1 double]
         EndDates: [3x1 double]
       StartDates: 733043
    ValuationDate: 733043
            Basis: 0
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     EndMonthRule: 1

Create a VolSpec.

VolSpec = hjmvolspec('Constant', 0.01)

VolSpec = struct with fields:
          FinObj: 'HJMVolSpec'
    FactorModels: {'Constant'}
      FactorArgs: {{1x1 cell}}
      SigmaShift: 0
      NumFactors: 1
       NumBranch: 2
         PBranch: [0.5000 0.5000]
     Fact2Branch: [-1 1]

Create a TimeSpec.

TimeSpec = hjmtimespec(ValuationDate, EndDates, Compounding)

TimeSpec = struct with fields:
           FinObj: 'HJMTimeSpec'
    ValuationDate: 733043
         Maturity: [3x1 double]
      Compounding: 1
            Basis: 0
     EndMonthRule: 1

Build the HJMTree.

HJMTree = hjmtree(VolSpec, RateSpec, TimeSpec)

HJMTree = struct with fields:
      FinObj: 'HJMFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2]
        dObs: [733043 733408 733774]
        TFwd: {[3x1 double]  [2x1 double]  [2]}
      CFlowT: {[3x1 double]  [2x1 double]  [3]}
     FwdTree: {[3x1 double]  [2x1x2 double]  [1x2x2 double]}

To compute the price of an American callable bond that pays a 6% annual coupon and matures and is
callable on January 1, 2010.

BondSettlement = 'jan-1-2007';
BondMaturity   = 'jan-1-2010'; 
CouponRate = 0.06;
Period = 1;
OptSpec = 'call'; 
Strike = [98];  
ExerciseDates = '01-Jan-2010'; 
AmericanOpt = 1;
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[PriceCallBond,PT] = optembndbyhjm(HJMTree, CouponRate, BondSettlement, BondMaturity,...
OptSpec, Strike, ExerciseDates, 'Period', 1,'AmericanOp',1)

PriceCallBond = 95.9492

PT = struct with fields:
                FinObj: 'HJMPriceTree'
                  tObs: [0 1 2 3]
                 PBush: {[95.9492]  [1x1x2 double]  [1x2x2 double]  [98 ... ]}
              ProbBush: {[1]  [1x1x2 double]  [1x2x2 double]  [0.2500 ... ]}
                ExBush: {[0]  [1x1x2 double]  [1x2x2 double]  [1 1 1 1]}
            ExProbBush: {[0]  [1x1x2 double]  [1x2x2 double]  [0.2500 ... ]}
    ExProbsByBushLevel: [0 0 0 1]

Obtain Callable Bond Exercise Information Using a HJM Interest-Rate Tree Model

Create a HJMTree with the following data:

Rates = [0.05;0.06;0.07];
Compounding = 1;
StartDates = ['jan-1-2007';'jan-1-2008';'jan-1-2009'];
EndDates   = ['jan-1-2008';'jan-1-2009';'jan-1-2010'];
ValuationDate = 'jan-1-2007';

Create a RateSpec.

RateSpec = intenvset('Rates', Rates, 'StartDates', ValuationDate, 'EndDates', ...
EndDates, 'Compounding', Compounding, 'ValuationDate', ValuationDate);

Build the HJM tree with the following data.

VolSpec = hjmvolspec('Constant', 0.01);
TimeSpec = hjmtimespec(ValuationDate, EndDates, Compounding);
HJMTree = hjmtree(VolSpec, RateSpec, TimeSpec);

Define the callable bond instruments.

Settle = '01-Jan-2007';
Maturity = {'01-Jan-2009';'01-Jan-2010'};
CouponRate = {{'01-Jan-2009' .0325;'01-Jan-2010' .0375}};  
OptSpec='call';
Strike= [90;92];
ExerciseDates= {'01-Jan-2009';'01-Jan-2010'};

Price the instruments.

[Price, PriceTree]= optembndbyhjm(HJMTree, CouponRate,  Settle, Maturity, OptSpec, Strike,...
ExerciseDates, 'Period', 1,'AmericanOpt',1)

Price = 2×1

   86.0874
   84.1482
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PriceTree = struct with fields:
                FinObj: 'HJMPriceTree'
                  tObs: [0 1 2 3]
                 PBush: {1x4 cell}
              ProbBush: {[1]  [1x1x2 double]  [1x2x2 double]  [0.2500 ... ]}
                ExBush: {1x4 cell}
            ExProbBush: {1x4 cell}
    ExProbsByBushLevel: [2x4 double]

Examine the output PriceTree.ExBush. PriceTree.ExBush contains the exercise indicator
arrays. Each element of the cell array is an array containing 1's where an option is exercised and 0's
where it is not.

PriceTree.ExBush{4} 

ans = 2×4

     0     0     0     0
     1     1     1     1

There is no exercise for instrument 1 and instrument 2 is exercised at all nodes.

PriceTree.ExBush{3} 

ans = 
ans(:,:,1) =

     1     1
     0     0

ans(:,:,2) =

     1     1
     0     0

There is exercise for instrument 1 at all nodes and no exercise for instrument 2.

PriceTree.ExBush{2} 

ans = 
ans(:,:,1) =

     0
     0

ans(:,:,2) =

     0
     0

There is no exercise for instrument 1 or instrument 2.

Next view the probability of reaching each node from the root node using PriceTree.ProbBush.
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PriceTree.ProbBush{2}

ans = 
ans(:,:,1) =

    0.5000

ans(:,:,2) =

    0.5000

PriceTree.ProbBush{3}

ans = 
ans(:,:,1) =

    0.2500    0.2500

ans(:,:,2) =

    0.2500    0.2500

PriceTree.ProbBush{4}

ans = 1×4

    0.2500    0.2500    0.2500    0.2500

View the exercise probabilities using PriceTree.ExProbBush. PriceTree.ExProbBush contains
the exercise probabilities. Each element in the cell array is an array containing 0's where there is no
exercise, or the probability of reaching that node where exercise happens.

PriceTree.ExProbBush{4}

ans = 2×4

         0         0         0         0
    0.2500    0.2500    0.2500    0.2500

PriceTree.ExProbBush{3}

ans = 
ans(:,:,1) =

    0.2500    0.2500
         0         0

ans(:,:,2) =

    0.2500    0.2500
         0         0
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PriceTree.ExProbBush{2}

ans = 
ans(:,:,1) =

     0
     0

ans(:,:,2) =

     0
     0

View the exercise probabilities at each tree level using PriceTree.ExProbsByBushLevel.
PriceTree.ExProbsByBushLevel is an array with each row holding the exercise probability for a
given option at each tree observation time.

PriceTree.ExProbsByBushLevel

ans = 2×4

     0     0     1     0
     0     0     0     1

Price Single Stepped Callable Bonds Using an HJM Interest-Rate Tree Model

Price the following single stepped callable bonds using the following data: The data for the interest
rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

% Create RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

% Instrument
Settle = '01-Jan-2010';
Maturity = {'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2012' .0425;'01-Jan-2014' .0750}};  
OptSpec='call';
Strike=100;
ExerciseDates='01-Jan-2012';  %Callable in two years

% Build the tree with the following data
Volatility = [.2; .19; .18; .17];
CurveTerm = [ 1;  2;   3;   4];
HJMTimeSpec = hjmtimespec(ValuationDate, EndDates);
HJMVolSpec = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);
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HJMT = hjmtree(HJMVolSpec, RS, HJMTimeSpec);

% The first row corresponds to the price of the callable bond with maturity 
% of three years. The second row corresponds to the price of the callable 
% bond with maturity of four years.
PHJM=  optembndbyhjm(HJMT, CouponRate, Settle, Maturity ,OptSpec, Strike,...
ExerciseDates, 'Period', 1)

PHJM = 2×1

  100.0484
   99.8009

Price a Sinking Fund Bond Using an HJM Interest-Rate Tree Model

A corporation issues a three year bond with a sinking fund obligation requiring the company to sink
1/3 of face value after the first year and 1/3 after the second year. The company has the option to buy
the bonds in the market or call them at $99. The following data describes the details needed for
pricing the sinking fund bond:

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2011';
StartDates = ValuationDate;
EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
Compounding = 1;

Create the RateSpec.

RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates',...
StartDates, 'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x1 double]
            Rates: [4x1 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: 734504
    ValuationDate: 734504
            Basis: 0
     EndMonthRule: 1

Build the HJM tree.

Sigma = 0.1;
HJMTimeSpec = hjmtimespec(ValuationDate, EndDates, Compounding);
HJMVolSpec = hjmvolspec('Constant', Sigma);
HJMT = hjmtree(HJMVolSpec, RateSpec, HJMTimeSpec)

HJMT = struct with fields:
      FinObj: 'HJMFwdTree'
     VolSpec: [1x1 struct]
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    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [734504 734869 735235 735600]
        TFwd: {[4x1 double]  [3x1 double]  [2x1 double]  [3]}
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
     FwdTree: {[4x1 double]  [3x1x2 double]  [2x2x2 double]  [1x4x2 double]}

Define the sinking fund instrument. The bond has a coupon rate of 4.5%, a period of one year and
matures in 1-Jan-2013. Face decreases 1/3 after the first year.

CouponRate = 0.045;
Settle = 'Jan-1-2011';
Maturity =  'Jan-1-2013';
Period = 1;
Face = { {'Jan-1-2012'  100; ...
          'Jan-1-2013'   66.6666}};

Define the option provision.

OptSpec = 'call';
Strike = 99;
ExerciseDates = 'Jan-1-2012';

Price of non-sinking fund bond.

PNSF = bondbyhjm(HJMT, CouponRate, Settle, Maturity, Period)

PNSF = 100.5663

Price of the bond with the option sinking provision.

PriceSF = optembndbyhjm(HJMT, CouponRate, Settle, Maturity,...
OptSpec, Strike, ExerciseDates, 'Period', Period, 'Face', Face)

PriceSF = 98.8736

Price an Amortizing Callable Bond Using an HJM Interest-Rate Tree Model

This example shows how to price an amortizing callable bond and a vanilla callable bond using an
HJM lattice model.

Create a RateSpec.

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2012';
StartDates = ValuationDate;
EndDates = {'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'; 'Jan-1-2016'};
Compounding = 1;
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

Build a HJM tree.

VolSpec = hjmvolspec('Constant', 0.01)

11 Functions

11-1390



VolSpec = struct with fields:
          FinObj: 'HJMVolSpec'
    FactorModels: {'Constant'}
      FactorArgs: {{1x1 cell}}
      SigmaShift: 0
      NumFactors: 1
       NumBranch: 2
         PBranch: [0.5000 0.5000]
     Fact2Branch: [-1 1]

TimeSpec = hjmtimespec(ValuationDate, EndDates, Compounding)

TimeSpec = struct with fields:
           FinObj: 'HJMTimeSpec'
    ValuationDate: 734869
         Maturity: [4x1 double]
      Compounding: 1
            Basis: 0
     EndMonthRule: 1

HJMTree = hjmtree(VolSpec, RS, TimeSpec)

HJMTree = struct with fields:
      FinObj: 'HJMFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [734869 735235 735600 735965]
        TFwd: {[4x1 double]  [3x1 double]  [2x1 double]  [3]}
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
     FwdTree: {[4x1 double]  [3x1x2 double]  [2x2x2 double]  [1x4x2 double]}

Define the callable bond.

CouponRate = 0.05;
Settle = 'Jan-1-2012';
Maturity =  'Jan-1-2016';
Period = 1;
    
    Face = { 
                 {'Jan-1-2014'  100; 
                  'Jan-1-2015'   70;
                  'Jan-1-2016'   50};
                 };
 
OptSpec = 'call'; 
Strike = [97 95 93];
ExerciseDates ={'Jan-1-2014' 'Jan-1-2015' 'Jan-1-2016'};

Price a callable amortizing bond using the HJM tree.

BondType = 'amortizing';
Pcallbonds = optembndbyhjm(HJMTree, CouponRate,  Settle, Maturity ,OptSpec, Strike,...
ExerciseDates, 'Period', 1,'Face',Face,'BondType', BondType)

Pcallbonds = 98.6000
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Input Arguments
HJMTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using hjmtree.
Data Types: struct

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell array, where
each element is a NumDates-by-2 cell array. The first column of the NumDates-by-2 cell array is dates
and the second column is associated rates. The date indicates the last day that the coupon rate is
valid.
Data Types: double | cell

Settle — Settlement date
serial date number | date character vector

Settlement date for the bond option, specified as a NINST-by-1 vector of serial date numbers or date
character vectors.

Note The Settle date for every bond is set to the ValuationDate of the HJM tree. The bond
argument Settle is ignored.

Data Types: double | char

Maturity — Maturity date
serial date number | date character vector

Maturity date, specified as an NINST-by-1 vector of serial date numbers or date character vectors.
Data Types: double | char

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'

Definition of option, specified as a NINST-by-1 cell array of character vectors.
Data Types: char

Strike — Option strike price values
nonnegative integer

Option strike price value, specified as a NINST-by-1 or NINST-by-NSTRIKES depending on the type of
option:

• European option — NINST-by-1 vector of strike price values.
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• Bermuda option — NINST by number of strikes (NSTRIKES) matrix of strike price values. Each
row is the schedule for one option. If an option has fewer than NSTRIKES exercise opportunities,
the end of the row is padded with NaNs.

• American option — NINST-by-1 vector of strike price values for each option.

Data Types: double

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a NINST-by-1, NINST-by-2, or NINST-by-NSTRIKES using serial
date numbers or date character vectors, depending on the type of option:

• For a European option, use a NINST-by-1 vector of dates. For a European option, there is only one
ExerciseDates on the option expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKES vector of dates.
• For an American option, use a NINST-by-2 vector of exercise date boundaries. The option can be

exercised on any date between or including the pair of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is a NINST-by-1 vector, the option can be exercised between
ValuationDate of the stock tree and the single listed ExerciseDates.

Data Types: double | char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Price =
optembndbyhjm(HJMTree,CouponRate,Settle,Maturity,OptSpec,Strike,ExerciseDates
,'Period',1,'AmericanOp',1)

AmericanOpt — Option type
0 European/Bermuda (default) | integer with values 0 or 1

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and NINST-by-1
positive integer flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a NINST-by-1
vector.
Data Types: double
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Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis, specified as the comma-separated pair consisting of 'Basis' and a NINST-by-1
vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer with values 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
nonnegative integer using a NINST-by-1 vector. This rule applies only when Maturity is an end-of-
month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: double

IssueDate — Bond issue date
serial date number | date character vector

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a NINST-
by-1 vector using serial date numbers or date character vectors.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial date number | date character vector
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Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using serial date numbers or date character vectors.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes
precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate,
the cash flow payment dates are determined from other inputs.
Data Types: double | char

LastCouponDate — Irregular last coupon date
serial date number | date character vector

Irregular last coupon date, specified as the comma-separated pair consisting of 'LastCouponDate'
and a NINST-by-1 vector using serial date numbers or date character vectors.

In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the
coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate,
regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not
specify a LastCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: char | double

StartDate — Forward starting date of payments
serial date number | date character vector

Forward starting date of payments (the date from which a bond cash flow is considered), specified as
the comma-separated pair consisting of 'StartDate' and a NINST-by-1 vector using serial date
numbers or date character vectors.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double

Face — Face value
100 (default) | NINST-by-1 vector | NINST-by-1 cell array

Face or par value, specified as the comma-separated pair consisting of 'Face' and a NINST-by-1
vector or a NINST-by-1 cell array where each element is a NumDates-by-2 cell array where the first
column is dates and the second column is associated face value. The date indicates the last day that
the face value is valid.

Note Instruments without a Face schedule are treated as either vanilla bonds or stepped coupon
bonds with embedded options.

Data Types: double

BondType — Type of underlying bond
'vanilla' for scalar Face values, 'callablesinking' for scheduled Face values (default) | cell
array of character vectors with values 'vanilla','amortizing', or 'callablesinking' | string
array with values "vanilla", "amortizing", or "callablesinking"

Type of underlying bond, specified as the comma-separated pair consisting of 'BondType' and a
NINST-by-1 cell array of character vectors or string array specifying if the underlying is a vanilla
bond, an amortizing bond, or a callable sinking fund bond. The supported types are:
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• 'vanilla' is a standard callable or puttable bond with a scalar Face value and a single coupon or
stepped coupons.

• 'callablesinking' is a bond with a schedule of Face values and a sinking fund call provision
with a single or stepped coupons.

• 'amortizing' is an amortizing callable or puttable bond with a schedule of Face values with
single or stepped coupons.

Data Types: char | string

Options — Derivatives pricing options
structure

Derivatives pricing options, specified as the comma-separated pair consisting of 'Options' and a
structure that is created with derivset.
Data Types: struct

Output Arguments
Price — Expected prices of embedded option at time 0
matrix

Expected price of the embedded option at time 0, returned as a NINST-by-1 matrix.

PriceTree — Structure containing trees of vectors of instrument prices and exercise
probabilities for each node
structure

Structure containing trees of vectors of instrument prices, a vector of observation times for each
node, and exercise probabilities. Values are:

• PriceTree.ExBush contains the exercise indicator arrays. Each element of the cell array is an
array containing 1's where an option is exercised and 0's where it isn't.

• PriceTree.tObs contains the observation times.
• PriceTree.ProbBush contains the probability of reaching each node from root node.
• PriceTree.ExProbBush contains the exercise probabilities. Each element in the cell array is an

array containing 0's where there is no exercise, or the probability of reaching that node where
exercise happens.

• PriceTree.ExProbsByBushLevel is an array with each row holding the exercise probability for
a given option at each tree observation time.

More About
Vanilla Bond with Embedded Option

A vanilla coupon bond is a security representing an obligation to repay a borrowed amount at a
designated time and to make periodic interest payments until that time.

The issuer of a bond makes the periodic interest payments until the bond matures. At maturity, the
issuer pays to the holder of the bond the principal amount owed (face value) and the last interest
payment. A vanilla bond with an embedded option is where an option contract has an underlying
asset of a vanilla bond.
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Stepped Coupon Bond with Callable and Puttable Features

A step-up and step-down bond is a debt security with a predetermined coupon structure over time.

With these instruments, coupons increase (step up) or decrease (step down) at specific times during
the life of the bond. Stepped coupon bonds can have options features (call and puts).

Sinking Fund Bond with Call Embedded Option

A sinking fund bond is a coupon bond with a sinking fund provision.

This provision obligates the issuer to amortize portions of the principal prior to maturity, affecting
bond prices since the time of the principal repayment changes. This means that investors receive the
coupon and a portion of the principal paid back over time. These types of bonds reduce credit risk,
since it lowers the probability of investors not receiving their principal payment at maturity.

The bond may have a sinking fund call option provision allowing the issuer to retire the sinking fund
obligation either by purchasing the bonds to be redeemed from the market or by calling the bond via
a sinking fund call, whichever is cheaper. If interest rates are high, then the issuer buys back the
requirement amount of bonds from the market since bonds are cheap, but if interest rates are low
(bond prices are high), then most likely the issuer is buying the bonds at the call price. Unlike a call
feature, however, if a bond has a sinking fund call option provision, it is an obligation, not an option,
for the issuer to buy back the increments of the issue as stated. Because of this, a sinking fund bond
trades at a lower price than a non-sinking fund bond.

Amortizing Callable or Puttable Bond

Amortizing callable or puttable bonds work under a scheduled Face.

An amortizing callable bond gives the issuer the right to call back the bond, but instead of paying the
Face amount at maturity, it repays part of the principal along with the coupon payments. An
amortizing puttable bond, repays part of the principal along with the coupon payments and gives the
bondholder the right to sell the bond back to the issuer.

See Also
hjmprice | cfamounts | hjmtree | instoptembnd

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Bond with Embedded Options” on page 2-7
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced in R2008a
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optembndbyhw
Price bonds with embedded options by Hull-White interest-rate tree

Syntax
[Price,PriceTree] = optembndbyhw(HWTree,CouponRate,Settle,Maturity,OptSpec,
Strike,ExerciseDates)
[Price,PriceTree] = optembndbyhjm( ___ ,Name,Value)

Description
[Price,PriceTree] = optembndbyhw(HWTree,CouponRate,Settle,Maturity,OptSpec,
Strike,ExerciseDates) calculates price for bonds with embedded options from a Hull-White
interest-rate tree and returns exercise probabilities in PriceTree.

optembndbyhw computes prices of vanilla bonds with embedded options, stepped coupon bonds with
embedded options, amortizing bonds with embedded options, and sinking fund bonds with call
embedded option. For more information, see “More About” on page 11-1410.

[Price,PriceTree] = optembndbyhjm( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Price a Callable Bond Using an HW Interest-Rate Tree Model

Create a HWTree with the following data:

ZeroRates = [ 0.035;0.04;0.045];
Compounding = 1;
StartDates = ['jan-1-2007';'jan-1-2008';'jan-1-2009'];
EndDates   = ['jan-1-2008';'jan-1-2009';'jan-1-2010'];
ValuationDate = 'jan-1-2007';

Create a RateSpec.

RateSpec = intenvset('Rates', ZeroRates, 'StartDates', ValuationDate, 'EndDates', ...
EndDates, 'Compounding', Compounding, 'ValuationDate', ValuationDate)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [3x1 double]
            Rates: [3x1 double]
         EndTimes: [3x1 double]
       StartTimes: [3x1 double]
         EndDates: [3x1 double]
       StartDates: 733043
    ValuationDate: 733043
            Basis: 0
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     EndMonthRule: 1

Create a VolSpec.

VolDates = ['jan-1-2008';'jan-1-2009';'jan-1-2010'];
VolCurve = 0.01;
AlphaDates = 'jan-1-2010';
AlphaCurve = 0.1;
HWVolSpec = hwvolspec(ValuationDate, VolDates, VolCurve, AlphaDates, AlphaCurve)

HWVolSpec = struct with fields:
             FinObj: 'HWVolSpec'
      ValuationDate: 733043
           VolDates: [3x1 double]
           VolCurve: [3x1 double]
         AlphaCurve: 0.1000
         AlphaDates: 734139
    VolInterpMethod: 'linear'

Create a TimeSpec.

HWTimeSpec = hwtimespec(ValuationDate, EndDates, Compounding)

HWTimeSpec = struct with fields:
           FinObj: 'HWTimeSpec'
    ValuationDate: 733043
         Maturity: [3x1 double]
      Compounding: 1
            Basis: 0
     EndMonthRule: 1

Build the HWTree.

HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec)

HWTree = struct with fields:
      FinObj: 'HWFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2]
        dObs: [733043 733408 733774]
      CFlowT: {[3x1 double]  [2x1 double]  [3]}
       Probs: {[3x1 double]  [3x3 double]}
     Connect: {[2]  [2 3 4]}
     FwdTree: {[1.0350]  [1.0633 1.0451 1.0271]  [1.0925 1.0737 1.0553 ... ]}

Compute the price of an American puttable bond that pays an annual coupon of 5.25%, matures on
January 1, 2010, and is puttable from January 1, 2008 to January 1, 2010.

BondSettlement = 'jan-1-2007';
BondMaturity   = 'jan-1-2010'; 
CouponRate = 0.0525;
Period = 1;
OptSpec = 'put'; 
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Strike = [100];  
ExerciseDates = {'jan-1-2008' '01-Jan-2010'}; 
AmericanOpt = 1;

PricePutBondHW = optembndbyhw(HWTree, CouponRate, BondSettlement, BondMaturity,...
OptSpec, Strike, ExerciseDates,'Period', 1, 'AmericanOpt', 1)

PricePutBondHW = 102.9127

Obtain Callable Bond Exercise Information Using an HW Interest-Rate Tree Model

Create a HWTree with the following data:

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2019';
StartDates = ValuationDate;
EndDates = {'Jan-1-2020'; 'Jan-1-2021'; 'Jan-1-2022'; 'Jan-1-2023'};
Compounding = 1;

Create a RateSpec.

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

Define the callable bond instruments.

Settle = '01-Jan-2019';
Maturity = {'01-Jan-2022';'01-Jan-2023'};
CouponRate = {{'01-Jan-2021' .0425;'01-Jan-2023' .0450}};  
OptSpec='call';
Strike= [98;95];
ExerciseDates= {'01-Jan-2021';'01-Jan-2022'};

Build the HW tree with the following data.

VolDates = ['1-Jan-2020'; '1-Jan-2021'; '1-Jan-2022'; '1-Jan-2023'];
VolCurve = 0.05;
AlphaDates = '01-01-2023';
AlphaCurve = 0.05;
 
 
HWVolSpec = hwvolspec(RS.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RS.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVolSpec, RS, HWTimeSpec);

Price the instruments.

[Price, PriceTree]= optembndbyhw(HWT, CouponRate,  Settle, Maturity,OptSpec, Strike,...
ExerciseDates, 'Period', 1)

Price = 2×1

   96.4131
   92.9341
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PriceTree = struct with fields:
                FinObj: 'HWPriceTree'
                  tObs: [0 1 2 3 4]
                 PTree: {1x5 cell}
              ProbTree: {1x5 cell}
                ExTree: {1x5 cell}
            ExProbTree: {1x5 cell}
    ExProbsByTreeLevel: [2x5 double]
               Connect: {[2]  [2 3 4]  [2 3 4 5 6]}

Examine the output PriceTree.ExTree. PriceTree.ExTree contains the exercise indicator
arrays. Each element of the cell array is an array containing 1's where an option is exercised and 0's
where it is not.

PriceTree.ExTree{5}   

ans = 2×7

     0     0     0     0     0     0     0
     0     0     0     0     0     0     0

There is no exercise for instrument 1 or 2.

PriceTree.ExTree{4} 

ans = 2×7

     0     0     0     0     0     0     0
     0     0     0     1     1     1     1

There is no exercise for instrument 1 and instrument 2 is exercised at some nodes.

PriceTree.ExTree{3} 

ans = 2×5

     0     0     1     1     1
     0     0     0     0     0

There is the exercise for instrument 1 at some node and no exercise for instrument 2.

PriceTree.ExTree{2} 

ans = 2×3

     0     0     0
     0     0     0

There is no exercise for instrument 1 or 2.

Next view the probability of reaching each node from the root node using PriceTree.ProbTree.

PriceTree.ProbTree{2}
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ans = 1×3

    0.1667    0.6667    0.1667

PriceTree.ProbTree{3}

ans = 1×5

    0.0238    0.2218    0.5087    0.2218    0.0238

PriceTree.ProbTree{4}

ans = 1×7

    0.0029    0.0473    0.2374    0.4247    0.2374    0.0473    0.0029

PriceTree.ProbTree{5}

ans = 1×7

    0.0029    0.0473    0.2374    0.4247    0.2374    0.0473    0.0029

Then view the exercise probabilities using PriceTree.ExProbTree. PriceTree.ExProbTree
contains the exercise probabilities. Each element in the cell array is an array containing 0's where
there is no exercise, or the probability of reaching that node where exercise happens.

PriceTree.ExProbTree{5}

ans = 2×7

     0     0     0     0     0     0     0
     0     0     0     0     0     0     0

PriceTree.ExProbTree{4}

ans = 2×7

         0         0         0         0         0         0         0
         0         0         0    0.4247    0.2374    0.0473    0.0029

PriceTree.ExProbTree{3}

ans = 2×5

         0         0    0.5087    0.2218    0.0238
         0         0         0         0         0

PriceTree.ExProbTree{2}

ans = 2×3

     0     0     0
     0     0     0
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View the exercise probabilities at each tree level using PriceTree.ExProbsByTreeLevel.
PriceTree.ExProbsByTreeLevel is an array with each row holding the exercise probability for a
given option at each tree observation time.

PriceTree.ExProbsByTreeLevel

ans = 2×5

         0         0    0.7544         0         0
         0         0         0    0.7124         0

Price Single Stepped Callable Bonds Using an HW Interest-Rate Tree Model

Price the following single stepped callable bonds using the following data: The data for the interest
rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

% Create RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

% Instrument
Settle = '01-Jan-2010';
Maturity = {'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2012' .0425;'01-Jan-2014' .0750}};  
OptSpec='call';
Strike=100;
ExerciseDates='01-Jan-2012';  %Callable in two years

% Build the tree with the following data
VolDates = ['1-Jan-2011'; '1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014'];
VolCurve = 0.01;
AlphaDates = '01-01-2014';
AlphaCurve = 0.1;

HWVolSpec = hwvolspec(RS.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RS.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVolSpec, RS, HWTimeSpec);

% The first row corresponds to the price of the callable bond with maturity
% of three years. The second row corresponds to the price of the callable 
% bond with maturity of four years.

PHW= optembndbyhw(HWT, CouponRate,  Settle, Maturity,OptSpec, Strike,...
ExerciseDates, 'Period', 1)

PHW = 2×1
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  100.0326
   99.7987

Price a Sinking Fund Bond Using an HW Interest-Rate Tree Model

A corporation issues a two year bond with a sinking fund obligation requiring the company to sink 1/3
of face value after the first year. The company has the option to buy the bonds in the market or call
them at $99. The following data describes the details needed for pricing the sinking fund bond:

Rates = [0.1;0.1;0.1;0.1];
ValuationDate = 'Jan-1-2011';
StartDates = ValuationDate;
EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
Compounding = 1;

% Create RateSpec
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates',...
StartDates, 'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

% Build the HW tree
% The data to build the tree is as follows:
VolDates = ['1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014';'1-Jan-2015'];
VolCurve = 0.01;
AlphaDates = '01-01-2015';
AlphaCurve = 0.1;

HWVolSpec = hwvolspec(RateSpec.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RateSpec.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVolSpec, RateSpec, HWTimeSpec);

% Instrument
% The bond has a coupon rate of 9%, a period of one year and matures in
% 1-Jan-2013. Face decreases 1/3 after the first year.
CouponRate = 0.09;
Settle = 'Jan-1-2011';
Maturity =  'Jan-1-2013';
Period = 1;
Face = { ...        
            {'Jan-1-2012'  100; ...
             'Jan-1-2013'   66.6666}; ...
        };

% Option provision
OptSpec = 'call'; 
Strike = 99;
ExerciseDates = 'Jan-1-2012';

% Price of non-sinking fund bond. 
PNSF = bondbyhw(HWT, CouponRate, Settle, Maturity, Period)

PNSF = 98.2645

Price of the bond with the option sinking provision.
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PriceSF = optembndbyhw(HWT, CouponRate, Settle, Maturity,...
OptSpec, Strike, ExerciseDates, 'Period', Period, 'Face', Face)

PriceSF = 98.1553

Price an Amortizing Callable Bond Using an HW Interest-Rate Tree Model

This example shows how to price an amortizing callable bond and a vanilla callable bond using an HW
lattice model.

Create a RateSpec.

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2012';
StartDates = ValuationDate;
EndDates = {'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'; 'Jan-1-2016'};
Compounding = 1;
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

Build a HW tree.

VolDates = ['1-Jan-2013'; '1-Jan-2014'; '1-Jan-2015'; '1-Jan-2016'];
VolCurve = 0.01;
AlphaDates = '01-01-2016';
AlphaCurve = 0.1;

HWVolSpec = hwvolspec(RS.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RS.ValuationDate, EndDates, Compounding);
HWT = hwtree(HWVolSpec, RS, HWTimeSpec);

Define the callable bond.

CouponRate = 0.05;
Settle = 'Jan-1-2012';
Maturity =  'Jan-1-2016';
Period = 1;
    
    Face = { 
                 {'Jan-1-2014'  100; 
                  'Jan-1-2015'   70;
                  'Jan-1-2016'   50};
                 };
 
OptSpec = 'call'; 
Strike = [97 95 93];
ExerciseDates ={'Jan-1-2014' 'Jan-1-2015' 'Jan-1-2016'};

Price a callable amortizing bond using the HW tree.

BondType = 'amortizing';
Pcallbonds = optembndbyhw(HWT, CouponRate,  Settle, Maturity ,OptSpec, Strike,...
ExerciseDates, 'Period', 1,'Face',Face,'BondType', BondType)

Pcallbonds = 98.6554
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Input Arguments
HWTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using hwtree.
Data Types: struct

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell array, where
each element is a NumDates-by-2 cell array. The first column of the NumDates-by-2 cell array is dates
and the second column is associated rates. The date indicates the last day that the coupon rate is
valid.
Data Types: double | cell

Settle — Settlement date
serial date number | date character vector

Settlement date for the bond option, specified as a NINST-by-1 vector of serial date numbers or date
character vectors.

Note The Settle date for every bond is set to the ValuationDate of the HW tree. The bond
argument Settle is ignored.

Data Types: double | char

Maturity — Maturity date
serial date number | date character vector

Maturity date, specified as an NINST-by-1 vector of serial date numbers or date character vectors.
Data Types: double | char

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'

Definition of option, specified as a NINST-by-1 cell array of character vectors.
Data Types: char

Strike — Option strike price values
nonnegative integer

Option strike price value, specified as a NINST-by-1 or NINST-by-NSTRIKES depending on the type of
option:

• European option — NINST-by-1 vector of strike price values.
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• Bermuda option — NINST by number of strikes (NSTRIKES) matrix of strike price values. Each
row is the schedule for one option. If an option has fewer than NSTRIKES exercise opportunities,
the end of the row is padded with NaNs.

• American option — NINST-by-1 vector of strike price values for each option.

Data Types: double

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a NINST-by-1, NINST-by-2, or NINST-by-NSTRIKES using serial
date numbers or date character vectors, depending on the type of option:

• For a European option, use a NINST-by-1 vector of dates. For a European option, there is only one
ExerciseDates on the option expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKES vector of dates.
• For an American option, use a NINST-by-2 vector of exercise date boundaries. The option can be

exercised on any date between or including the pair of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is a NINST-by-1 vector, the option can be exercised between
ValuationDate of the stock tree and the single listed ExerciseDates.

Data Types: double | char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Price =
optembndbyhw(HWTree,CouponRate,Settle,Maturity,OptSpec,Strike,ExerciseDates,'
Period',1,'AmericanOp',1)

AmericanOpt — Option type
0 European/Bermuda (default) | integer with values 0 or 1

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and NINST-by-1
positive integer flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a NINST-by-1
vector.
Data Types: double
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Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis, specified as the comma-separated pair consisting of 'Basis' and a NINST-by-1
vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer with values 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
nonnegative integer using a NINST-by-1 vector. This rule applies only when Maturity is an end-of-
month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: double

IssueDate — Bond issue date
serial date number | date character vector

Bond issue date,specified as the comma-separated pair consisting of 'IssueDate' and a NINST-by-1
vector using serial date numbers or date character vectors.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial date number | date character vector
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Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using serial date numbers date or date character
vectors.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes
precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate,
the cash flow payment dates are determined from other inputs.
Data Types: double | char

LastCouponDate — Irregular last coupon date
serial date number | date character vector

Irregular last coupon date, specified as the comma-separated pair consisting of 'LastCouponDate'
and a NINST-by-1 vector using serial date numbers or date character vectors.

In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the
coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate,
regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not
specify a LastCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: char | double

StartDate — Forward starting date of payments
serial date number | date character vector

Forward starting date of payments (the date from which a bond cash flow is considered), specified as
the comma-separated pair consisting of 'StartDate' and a NINST-by-1 vector using serial date
numbers or date character vectors.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double

Face — Face value
100 (default) | NINST-by-1 vector | NINST-by-1 cell array

Face or par value, specified as the comma-separated pair consisting of 'Face' and a NINST-by-1
vector or a NINST-by-1 cell array where each element is a NumDates-by-2 cell array where the first
column is dates and the second column is associated face value. The date indicates the last day that
the face value is valid.

Note Instruments without a Face schedule are treated as either vanilla bonds or stepped coupon
bonds with embedded options.

Data Types: double

BondType — Type of underlying bond
'vanilla' for scalar Face values, 'callablesinking' for scheduled Face values (default) | cell
array of character vectors with values 'vanilla','amortizing', or 'callablesinking' | string
array with values "vanilla", "amortizing", or "callablesinking"

Type of underlying bond, specified as the comma-separated pair consisting of 'BondType' and a
NINST-by-1 cell array of character vectors or string array specifying if the underlying is a vanilla
bond, an amortizing bond, or a callable sinking fund bond. The supported types are:
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• 'vanilla' is a standard callable or puttable bond with a scalar Face value and a single coupon or
stepped coupons.

• 'callablesinking' is a bond with a schedule of Face values and a sinking fund call provision
with a single or stepped coupons.

• 'amortizing' is an amortizing callable or puttable bond with a schedule of Face values with
single or stepped coupons.

Data Types: char | string

Options — Derivatives pricing options
structure

Derivatives pricing options, specified as the comma-separated pair consisting of 'Options' and a
structure that is created with derivset.
Data Types: struct

Output Arguments
Price — Expected prices of embedded option at time 0
matrix

Expected price of the embedded option at time 0, returned as a NINST-by-1 matrix.

PriceTree — Structure containing trees of vectors of instrument prices and exercise
probabilities for each node
structure

Structure containing trees of vectors of instrument prices, a vector of observation times for each
node, and exercise probabilities. Values are:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.
• PriceTree.ExTree contains the exercise indicator arrays. Each element of the cell array is an

array containing 1's where an option is exercised and 0's where it isn't.
• PriceTree.ProbTree contains the probability of reaching each node from root node.
• PriceTree.ExProbTree contains the exercise probabilities. Each element in the cell array is an

array containing 0's where there is no exercise, or the probability of reaching that node where
exercise happens.

• PriceTree.ExProbsByTreeLevel is an array with each row holding the exercise probability for
a given option at each tree observation time.

More About
Vanilla Bond with Embedded Option

A vanilla coupon bond is a security representing an obligation to repay a borrowed amount at a
designated time and to make periodic interest payments until that time.

The issuer of a bond makes the periodic interest payments until the bond matures. At maturity, the
issuer pays to the holder of the bond the principal amount owed (face value) and the last interest

11 Functions

11-1410



payment. A vanilla bond with an embedded option is where an option contract has an underlying
asset of a vanilla bond.

Stepped Coupon Bond with Callable and Puttable Features

A step-up and step-down bond is a debt security with a predetermined coupon structure over time.

With these instruments, coupons increase (step up) or decrease (step down) at specific times during
the life of the bond. Stepped coupon bonds can have options features (call and puts).

Sinking Fund Bond with Call Embedded Option

A sinking fund bond is a coupon bond with a sinking fund provision.

This provision obligates the issuer to amortize portions of the principal prior to maturity, affecting
bond prices since the time of the principal repayment changes. This means that investors receive the
coupon and a portion of the principal paid back over time. These types of bonds reduce credit risk,
since it lowers the probability of investors not receiving their principal payment at maturity.

The bond may have a sinking fund call option provision allowing the issuer to retire the sinking fund
obligation either by purchasing the bonds to be redeemed from the market or by calling the bond via
a sinking fund call, whichever is cheaper. If interest rates are high, then the issuer buys back the
requirement amount of bonds from the market since bonds are cheap, but if interest rates are low
(bond prices are high), then most likely the issuer is buying the bonds at the call price. Unlike a call
feature, however, if a bond has a sinking fund call option provision, it is an obligation, not an option,
for the issuer to buy back the increments of the issue as stated. Because of this, a sinking fund bond
trades at a lower price than a non-sinking fund bond.

Amortizing Callable or Puttable Bond

Amortizing callable or puttable bonds work under a scheduled Face.

An amortizing callable bond gives the issuer the right to call back the bond, but instead of paying the
Face amount at maturity, it repays part of the principal along with the coupon payments. An
amortizing puttable bond, repays part of the principal along with the coupon payments and gives the
bondholder the right to sell the bond back to the issuer.

See Also
hwprice | cfamounts | hwtree | instoptembnd

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Calibrating Hull-White Model Using Market Data” on page 2-92
“Bond with Embedded Options” on page 2-7
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3
“Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on page 1-
73

Introduced in R2008a
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optemfloatbybdt
Price embedded option on floating-rate note for Black-Derman-Toy interest-rate tree

Syntax
[Price,PriceTree] = optemfloatbybdt(BDTTree,Spread,Settle,Maturity,OptSpec,
Strike,ExerciseDates)
[Price,PriceTree] = optemfloatbybdt( ___ ,Name,Value)

Description
[Price,PriceTree] = optemfloatbybdt(BDTTree,Spread,Settle,Maturity,OptSpec,
Strike,ExerciseDates) prices embedded options on floating-rate notes from a Black-Derman-Toy
interest rate tree. optemfloatbybdt computes prices of vanilla floating-rate notes with embedded
options.

[Price,PriceTree] = optemfloatbybdt( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Price Callable Embedded Option for Floating-Rate Note

Define the interest-rate term structure.

Rates = [0.03;0.034;0.038;0.04];
ValuationDate = 'Jan-1-2012';
StartDates = ValuationDate;
EndDates = {'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'; 'Jan-1-2016'};
Compounding = 1;

Create the RateSpec.

RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates',...
StartDates, 'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x1 double]
            Rates: [4x1 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: 734869
    ValuationDate: 734869
            Basis: 0
     EndMonthRule: 1

Build the BDT tree and assume a volatility of 10%.
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Sigma = 0.1;
BDTTimeSpec = bdttimespec(ValuationDate, EndDates);
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');
BDTT = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);

Define the floater instruments with the embedded call option.

Spread = 10;
Settle = 'Jan-1-2012';
Maturity =  {'Jan-1-2015';'Jan-1-2016'};
Period = 1;
OptSpec = {'call'};
Strike = 101;
ExerciseDates = 'Jan-1-2015';

Compute the price of the floaters with the embedded call.

Price= optemfloatbybdt(BDTT, Spread, Settle, Maturity, OptSpec, Strike,...
ExerciseDates)

Price = 2×1

  100.2800
  100.3655

Input Arguments
BDTTree — Interest-rate tree structure
binomial tree structure

Interest-rate tree specified as a structure by using bdttree.
Data Types: struct

Spread — Number of basis points over the reference rate
nonnegative integer | vector of nonnegative integers

Number of basis points over the reference rate specified as a vector of nonnegative integers for the
number of instruments (NINST)-by-1).
Data Types: single | double

Settle — Settlement dates of floating-rate note
ValuationDate of BDT Tree (default) | serial date number | vector of serial date numbers | date
character vector | cell array of date character vectors

Settlement dates of floating-rate note specified as serial date numbers or date character vectors
using a NINST-by-1 vector of dates.

Note The Settle date for every floating-rate note with an embedded option is set to the
ValuationDate of the BDT tree. The floating-rate note argument Settle is ignored.

Data Types: double | cell | char
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Maturity — Floating-rate note maturity date
serial date number | vector of serial date numbers | date character vector | cell array of date
character vectors

Floating-rate note maturity date specified as serial date numbers or date character vectors using a
NINST-by-1 vector of dates.
Data Types: double | cell | char

OptSpec — Definition of option
character vector | cell array of character vectors

Definition of option as 'call' or 'put' specified as a NINST-by-1 cell array of character vectors for
'call' or 'put'.
Data Types: cell | char

Strike — Option strike price values
nonnegative integer | vector of nonnegative integers

Option strike price values specified nonnegative integers using as NINST-by-NSTRIKES vector of
strike price values.
Data Types: single | double

ExerciseDates — Exercise date for option (European, Bermuda, or American)
serial date number | vector of serial date numbers | date character vector | cell array of date
character vectors

Exercise date for option (European, Bermuda, or American) specified as serial date numbers or date
character vectors using a NINST-by-NSTRIKES or NINST-by-2 vector of for the option exercise dates.

• If a European or Bermuda option, the ExerciseDates is a 1-by-1 (European) or 1-by-NSTRIKES
(Bermuda) vector of exercise dates. For a European option, there is only one ExerciseDate on
the option expiry date.

• If an American option, then ExerciseDates is a 1-by-2 vector of exercise date boundaries. The
option exercises on any date between or including the pair of dates on that row. If there is only
one non-NaN date, or if ExerciseDates is 1-by-1, the option exercises between the Settle date
and the single listed ExerciseDate.

Data Types: double | char | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree] =
optemfloatbybdt(BDTTree,Spread,Settle,Maturity,OptSpec,Strike,ExerciseDates,'
AmericanOpt',1,'FloatReset',6,'Basis',8)

AmericanOpt — Option type
scalar | vector of positive integers[0,1]
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Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and NINST-by-1
positive integer scalar flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double

FloatReset — Frequency of payments per year
1 (default) | positive integer from the set[1,2,3,4,6,12] | vector of positive integers from the set
[1,2,3,4,6,12]

Frequency of payments per year, specified as the comma-separated pair consisting of 'FloatReset'
and positive integers for the values [1,2,3,4,6,12] in a NINST-by-1 vector.

Note Payments on floating-rate notes (FRNs) are determined by the effective interest-rate between
reset dates. If the reset period for an FRN spans more than one tree level, calculating the payment
becomes impossible due to the recombining nature of the tree. That is, the tree path connecting the
two consecutive reset dates cannot be uniquely determined because there will be more than one
possible path for connecting the two payment dates.

Data Types: double

Basis — Day-count basis of the instrument
0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive integers of the
set [1...13]

Day-count basis of the instrument, specified as the comma-separated pair consisting of 'Basis' and
a positive integer using a NINST-by-1 vector. The Basis value represents the basis used when
annualizing the input forward-rate tree.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
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Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
nonnegative integer [0, 1] using a NINST-by-1 vector. This rule applies only when Maturity is an
end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: double

Principal — Principal values
100 (default) | vector of nonnegative values | cell array of nonnegative values

Principal values, specified as the comma-separated pair consisting of 'Principal' and nonnegative
values using a NINST-by-1 vector or NINST-by-1 cell array of notional principal amounts. When using
a NINST-by-1 cell array, each element is a NumDates-by-2 cell array where the first column is dates
and the second column is associated principal amount. The date indicates the last day that the
principal value is valid.
Data Types: double | cell

Options — Structure containing derivatives pricing options
structure

Structure containing derivatives pricing options, specified as the comma-separated pair consisting of
'Options' and a structure obtained from using derivset.
Data Types: struct

Output Arguments
Price — Expected prices of the floating-rate note option at time 0
scalar | vector

Expected prices of the floating-rate note option at time 0 are returned as a scalar or an NINST-by-1
vector.

PriceTree — Structure of trees containing vectors of option prices at each node
tree structure

Structure of trees containing vectors of instrument prices and accrued interest and a vector of
observation times for each node returned as:

• PriceTree.PTree contains option prices.
• PriceTree.tObs contains the observation times.
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More About
Floating-Rate Note with Embedded Options

A floating-rate note with an embedded option enables floating-rate notes to have early redemption
features.

A FRN with an embedded option gives investors or issuers the option to retire the outstanding
principal prior to maturity. An embedded call option gives the right to retire the note prior to the
maturity date (callable floater), and an embedded put option gives the right to sell the note back at a
specific price (puttable floater).

For more information, see “Floating-Rate Note with Embedded Options” on page 2-11.

See Also
optembndbybdt | optemfloatbyhjm | optemfloatbybk | optemfloatbyhw | instoptemfloat

Topics
“Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-10
“Floating-Rate Note with Embedded Options” on page 2-11
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced in R2013a
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optemfloatbybk
Price embedded option on floating-rate note for Black-Karasinski interest-rate tree

Syntax
[Price,PriceTree] = optemfloatbybk(BKTree,Spread,Settle,Maturity,OptSpec,
Strike,ExerciseDates)
[Price,PriceTree] = optemfloatbybk( ___ ,Name,Value)

Description
[Price,PriceTree] = optemfloatbybk(BKTree,Spread,Settle,Maturity,OptSpec,
Strike,ExerciseDates) prices embedded options on floating-rate notes from a Black-Karasinski
interest rate tree. optemfloatbybk computes prices of vanilla floating-rate notes with embedded
options.

[Price,PriceTree] = optemfloatbybk( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Price European Callable Embedded Option for Floating-Rate Note

Define the interest-rate term structure.

Rates = [0.03;0.034;0.038;0.04];
ValuationDate = 'Jan-1-2012';
StartDates = ValuationDate;
EndDates = {'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'; 'Jan-1-2016'};
Compounding = 1;

Create the RateSpec.

RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates',...
StartDates, 'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x1 double]
            Rates: [4x1 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: 734869
    ValuationDate: 734869
            Basis: 0
     EndMonthRule: 1

Build the BK tree.
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VolDates = ['1-Jan-2013'; '1-Jan-2014'; '1-Jan-2015';'1-Jan-2016'];
VolCurve = 0.01;
AlphaDates = '01-01-2016';
AlphaCurve = 0.1;

BKVolSpec = bkvolspec(RateSpec.ValuationDate, VolDates, VolCurve,... 
            AlphaDates, AlphaCurve);
BKTimeSpec = bktimespec(RateSpec.ValuationDate, VolDates, Compounding);
BKT = bktree(BKVolSpec, RateSpec, BKTimeSpec)

BKT = struct with fields:
      FinObj: 'BKFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [734869 735235 735600 735965]
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}
     Connect: {[2]  [2 3 4]  [2 3 4 5 6]}
     FwdTree: {1x4 cell}

The floater instrument has a spread of 15, a period of one year, and matures and is callable on
Jan-1-2015.

Spread = 15;
Settle = 'Jan-1-2012';
Maturity =  'Jan-1-2015';
Period = 1;
OptSpec = {'call'};
Strike =101;
ExerciseDates = 'Jan-1-2015';

Compute the price of the floater with the embedded call.

Price= optemfloatbybk(BKT, Spread, Settle, Maturity,...
OptSpec, Strike, ExerciseDates)

Price = 100.4201

Input Arguments
BKTree — Interest-rate tree structure
binomial tree structure

Interest-rate tree specified as a structure by using bktree.
Data Types: struct

Spread — Number of basis points over the reference rate
nonnegative integer | vector of nonnegative integers

Number of basis points over the reference rate specified as a vector of nonnegative integers for the
number of instruments (NINST)-by-1).
Data Types: single | double
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Settle — Settlement dates of floating-rate note
ValuationDate of BDT Tree (default) | serial date number | vector of serial date numbers | date
character vector | cell array of date character vectors

Settlement dates of floating-rate note specified as serial date numbers or date character vectors
using a NINST-by-1 vector of dates.

Note The Settle date for every floating-rate note with an embedded option is set to the
ValuationDate of the BK tree. The floating-rate note argument Settle is ignored.

Data Types: double | cell | char

Maturity — Floating-rate note maturity date
serial date number | vector of serial date numbers | date character vector | cell array of date
character vectors

Floating-rate note maturity date specified as serial date numbers or date character vectors using a
NINST-by-1 vector of dates.
Data Types: double | cell | char

OptSpec — Definition of option
character vector | cell array of character vectors

Definition of option as 'call' or 'put' specified as a NINST-by-1 cell array of character vectors for
'call' or 'put'.
Data Types: cell | char

Strike — Option strike price values
nonnegative integer | vector of nonnegative integers

Option strike price values specified nonnegative integers using as NINST-by-NSTRIKES vector of
strike price values.
Data Types: single | double

ExerciseDates — Exercise date for option (European, Bermuda, or American)
serial date number | vector of serial date numbers | date character vector | cell array of date
character vectors

Exercise date for option (European, Bermuda, or American) specified as serial date numbers or date
character vectors using a NINST-by-NSTRIKES or NINST-by-2 vector of for the option exercise dates.

• If a European or Bermuda option, the ExerciseDates is a 1-by-1 (European) or 1-by-NSTRIKES
(Bermuda) vector of exercise dates. For a European option, there is only one ExerciseDate on
the option expiry date.

• If an American option, then ExerciseDates is a 1-by-2 vector of exercise date boundaries. The
option exercises on any date between or including the pair of dates on that row. If there is only
one non-NaN date, or if ExerciseDates is 1-by-1, the option exercises between the Settle date
and the single listed ExerciseDate.

Data Types: double | char | cell

11 Functions

11-1420



Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree] =
optemfloatbybk(BKTree,Spread,Settle,Maturity,OptSpec,Strike,ExerciseDates,'Am
ericanOpt',1,'FloatReset',6,'Basis',8)

AmericanOpt — Option type
scalar | vector of positive integers[0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and NINST-by-1
positive integer scalar flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double

FloatReset — Frequency of payments per year
1 (default) | positive integer from the set[1,2,3,4,6,12] | vector of positive integers from the set
[1,2,3,4,6,12]

Frequency of payments per year, specified as the comma-separated pair consisting of 'FloatReset'
and positive integers for the values [1,2,3,4,6,12] in a NINST-by-1 vector.

Note Payments on floating-rate notes (FRNs) are determined by the effective interest-rate between
reset dates. If the reset period for an FRN spans more than one tree level, calculating the payment
becomes impossible due to the recombining nature of the tree. That is, the tree path connecting the
two consecutive reset dates cannot be uniquely determined because there will be more than one
possible path for connecting the two payment dates.

Data Types: double

Basis — Day-count basis of the instrument
0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive integers of the
set [1...13]

Day-count basis of the instrument, specified as the comma-separated pair consisting of 'Basis' and
a positive integer using a NINST-by-1 vector. The Basis value represents the basis used when
annualizing the input forward-rate tree.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
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• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
nonnegative integer [0, 1] using a NINST-by-1 vector. This rule applies only when Maturity is an
end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: double

Principal — Principal values
100 (default) | vector of nonnegative values | cell array of nonnegative values

Principal values, specified as the comma-separated pair consisting of 'Principal' and nonnegative
values using a NINST-by-1 vector or NINST-by-1 cell array of notional principal amounts. When using
a NINST-by-1 cell array, each element is a NumDates-by-2 cell array where the first column is dates
and the second column is associated principal amount. The date indicates the last day that the
principal value is valid.
Data Types: double | cell

Options — Structure containing derivatives pricing options
structure

Structure containing derivatives pricing options, specified as the comma-separated pair consisting of
'Options' and a structure obtained from using derivset.
Data Types: struct

Output Arguments
Price — Expected prices of the floating-rate note option at time 0
scalar | vector
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Expected prices of the floating-rate note option at time 0 are returned as a scalar or an NINST-by-1
vector.

PriceTree — Structure of trees containing vectors of option prices at each node
tree structure

Structure of trees containing vectors of instrument prices and accrued interest and a vector of
observation times for each node returned as:

• PriceTree.PTree contains option prices.
• PriceTree.tObs contains the observation times.

More About
Floating-Rate Note with Embedded Options

A floating-rate note with an embedded option enables floating-rate notes to have early redemption
features.

A FRN with an embedded option gives investors or issuers the option to retire the outstanding
principal prior to maturity. An embedded call option gives the right to retire the note prior to the
maturity date (callable floater), and an embedded put option gives the right to sell the note back at a
specific price (puttable floater).

For more information, see “Floating-Rate Note with Embedded Options” on page 2-11.

See Also
optembndbybk | optemfloatbyhjm | optemfloatbybdt | optemfloatbyhw | instoptemfloat

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Floating-Rate Note with Embedded Options” on page 2-11
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3
“Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on page 1-
73

Introduced in R2013a
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optemfloatbycir
Price embedded option on floating-rate note for Cox-Ingersoll-Ross interest-rate tree

Syntax
[Price,PriceTree] = optemfloatbycir(CIRTree,Spread,Settle,Maturity,OptSpec,
Strike,ExerciseDates)
[Price,PriceTree] = optemfloatbycir( ___ ,Name,Value)

Description
[Price,PriceTree] = optemfloatbycir(CIRTree,Spread,Settle,Maturity,OptSpec,
Strike,ExerciseDates) prices embedded options on floating-rate notes from a Cox-Ingersoll-Ross
(CIR) interest rate tree. optemfloatbycir computes prices of vanilla floating-rate notes with
embedded options using a CIR++ model with the Nawalka-Beliaeva (NB) approach.

[Price,PriceTree] = optemfloatbycir( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Price European Callable Embedded Option for a Floating-Rate Note Using a CIR Interest-
Rate Tree

Create a RateSpec using the intenvset function.

Rates = [0.035; 0.042147; 0.047345; 0.052707]; 
Dates = {'Jan-1-2017'; 'Jan-1-2018'; 'Jan-1-2019'; 'Jan-1-2020'; 'Jan-1-2021'}; 
ValuationDate = 'Jan-1-2017'; 
EndDates = Dates(2:end)'; 
Compounding = 1; 
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, 'EndDates',EndDates,'Rates', Rates, 'Compounding', Compounding); 

Create a CIR tree.

NumPeriods = length(EndDates); 
Alpha = 0.03; 
Theta = 0.02;  
Sigma = 0.1;   
Settle = '01-Jan-2017'; 
Maturity = '01-Jan-2020'; 
CIRTimeSpec = cirtimespec(Settle, Maturity, 3); 
CIRVolSpec = cirvolspec(Sigma, Alpha, Theta); 

CIRT = cirtree(CIRVolSpec, RateSpec, CIRTimeSpec)

CIRT = struct with fields:
      FinObj: 'CIRFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
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        tObs: [0 1 2]
        dObs: [736696 737061 737426]
     FwdTree: {[1.0350]  [1.0790 1.0500 1.0298]  [1.1275 1.0887 1.0594 ... ]}
     Connect: {[3x1 double]  [3x3 double]}
       Probs: {[3x1 double]  [3x3 double]}

Define the floater instruments with the embedded call option.

Spread = 10;
Settle = 'Jan-1-2017';
Maturity =  {'Jan-1-2019';'Jan-1-2020'};
Period = 1;
OptSpec = {'call'};
Strike = 101;
ExerciseDates = 'Jan-1-2019';

Compute the price of the floaters with the embedded call.

[Price,PriceTree] = optemfloatbycir(CIRT,Spread,Settle,Maturity,OptSpec,Strike,ExerciseDates)

Price = 2×1

  100.1887
  100.2757

PriceTree = struct with fields:
    FinObj: 'CIRPriceTree'
      tObs: [0 1 2 3]
     PTree: {[2x1 double]  [2x3 double]  [2x5 double]  [2x5 double]}

Input Arguments
CIRTree — Interest-rate tree structure
structure

Interest-rate tree specified as a structure by using cirtree.
Data Types: struct

Spread — Number of basis points over the reference rate
nonnegative integer | vector of nonnegative integers

Number of basis points over the reference rate specified as a vector of nonnegative integers for the
number of instruments (NINST-by-1).
Data Types: single | double

Settle — Settlement dates of floating-rate note
ValuationDate of CIR tree (default) | serial date number | vector of serial date numbers | date
character vector | cell array of date character vectors | string array | datetime

Settlement dates of floating-rate note specified as serial date numbers, date character vectors, string
arrays, or datetime arrays using a NINST-by-1 vector of dates.
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Note The Settle date for every floating-rate note with an embedded option is set to the
ValuationDate of the CIR tree. The floating-rate note argument Settle is ignored.

Data Types: double | cell | char | string | datetime

Maturity — Floating-rate note maturity date
serial date number | vector of serial date numbers | date character vector | cell array of date
character vectors | string array | datetime

Floating-rate note maturity date specified as serial date numbers, date character vectors, string
arrays, or datetime arrays using a NINST-by-1 vector of dates.
Data Types: double | cell | char | string | datetime

OptSpec — Definition of option
character vector with value of 'call' or 'put' | cell array of character vectors with value of
'call' or 'put' | string array with value of "call" or "put"

Definition of option, specified as a NINST-by-1 cell array of character vectors or string arrays with a
value of 'call' or 'put'.
Data Types: cell | char | string

Strike — Option strike price values
nonnegative integer | vector of nonnegative integers

Option strike price values specified nonnegative integers using as NINST-by-NSTRIKES vector of
strike price values.
Data Types: single | double

ExerciseDates — Exercise date for option (European, Bermuda, or American)
serial date number | vector of serial date numbers | date character vector | cell array of date
character vectors | string array | datetime

Exercise date for option (European, Bermuda, or American) specified as serial date numbers, date
character vectors, string arrays, or datetime arrays using an NINST-by-NSTRIKES or an NINST-by-2
vector of for the option exercise dates.

• For a European or Bermuda option, the ExerciseDates is a 1-by-1 (European) or 1-by-NSTRIKES
(Bermuda) vector of exercise dates. For a European option, there is only one ExerciseDates on
the option expiry date.

• For an American option, the ExerciseDates is a 1-by-2 vector of exercise date boundaries. The
option exercises on any date between or including the pair of dates on that row. If there is only
one non-NaN date, or if ExerciseDates is 1-by-1, the option exercises between the Settle date
and the single listed ExerciseDates.

Data Types: double | char | cell | string | datetime

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
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Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree] =
optemfloatbycir(CIRTree,Spread,Settle,Maturity,OptSpec,Strike,ExerciseDates,'
AmericanOpt',1,'FloatReset',6,'Basis',8)

AmericanOpt — Option type
scalar | vector of positive integers[0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and a NINST-by-1
vector of flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double

FloatReset — Frequency of payments per year
1 (default) | positive integer from the set [1,2,3,4,6,12] | vector of positive integers from the set
[1,2,3,4,6,12]

Frequency of payments per year, specified as the comma-separated pair consisting of 'FloatReset'
and positive integers for the values [1,2,3,4,6,12] in a NINST-by-1 vector.

Note Payments on floating-rate notes (FRNs) are determined by the effective interest-rate between
reset dates. If the reset period for an FRN spans more than one tree level, calculating the payment
becomes impossible due to the recombining nature of the tree. That is, the tree path connecting the
two consecutive reset dates cannot be uniquely determined because there will be more than one
possible path for connecting the two payment dates.

Data Types: double

Basis — Day-count basis of the instrument
0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive integers of the
set [1...13]

Day-count basis of the instrument, specified as the comma-separated pair consisting of 'Basis' and
a positive integer using a NINST-by-1 vector. The Basis value represents the basis used when
annualizing the input forward-rate tree.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
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• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
nonnegative integer [0, 1] using a NINST-by-1 vector. This rule applies only when Maturity is an
end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: double

Principal — Principal values
100 (default) | vector of nonnegative values | cell array of nonnegative values

Principal values, specified as the comma-separated pair consisting of 'Principal' and nonnegative
values using a NINST-by-1 vector or NINST-by-1 cell array of notional principal amounts.

When using a NINST-by-1 cell array, each element is a NumDates-by-2 cell array where the first
column is dates, and the second column is associated principal amount. The date indicates the last
day that the principal value is valid.
Data Types: double | cell

Options — Structure containing derivatives pricing options
structure

Structure containing derivatives pricing options, specified as the comma-separated pair consisting of
'Options' and the output from derivset.
Data Types: struct

Output Arguments
Price — Expected prices of the floating-rate note option at time 0
scalar | vector

Expected prices of the floating-rate note option at time 0 are returned as a scalar or an NINST-by-1
vector.

PriceTree — Structure of trees containing vectors of option prices at each node
tree structure

11 Functions

11-1428



Structure of trees containing vectors of instrument prices and accrued interest and a vector of
observation times for each node returned as:

• PriceTree.tObs contains the observation times.
• PriceTree.PTree contains option prices.

More About
Floating-Rate Note with Embedded Options

A floating-rate note with an embedded option enables floating-rate notes to have early redemption
features.

A FRN with an embedded option gives investors or issuers the option to retire the outstanding
principal prior to maturity. An embedded call option gives the right to retire the note prior to the
maturity date (callable floater), and an embedded put option gives the right to sell the note back at a
specific price (puttable floater).

For more information, see “Floating-Rate Note with Embedded Options” on page 2-11.

References
[1] Cox, J., Ingersoll, J., and S. Ross. "A Theory of the Term Structure of Interest Rates."

Econometrica. Vol. 53, 1985.

[2] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer Finance, 2006.

[3] Hirsa, A. Computational Methods in Finance. CRC Press, 2012.

[4] Nawalka, S., Soto, G., and N. Beliaeva. Dynamic Term Structure Modeling. Wiley, 2007.

[5] Nelson, D. and K. Ramaswamy. "Simple Binomial Processes as Diffusion Approximations in
Financial Models." The Review of Financial Studies. Vol 3. 1990, pp. 393–430.

See Also
bondbycir | capbycir | cfbycir | fixedbycir | floatbycir | floorbycir | oasbycir |
optbndbycir | optfloatbycir | optembndbycir | rangefloatbycir | swapbycir |
swaptionbycir | instoptemfloat

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Floating-Rate Note with Embedded Options” on page 2-11
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced in R2018a
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optemfloatbyhjm
Price embedded option on floating-rate note for Heath-Jarrow-Morton interest-rate tree

Syntax
[Price,PriceTree] = optemfloatbyhjm(HJMTree,Spread,Settle,Maturity,OptSpec,
Strike,ExerciseDates)
[Price,PriceTree] = optemfloatbyhjm( ___ ,Name,Value)

Description
[Price,PriceTree] = optemfloatbyhjm(HJMTree,Spread,Settle,Maturity,OptSpec,
Strike,ExerciseDates) prices embedded options on floating-rate notes from a Heath-Jarrow-
Morton interest rate tree. optemfloatbybk computes prices of vanilla floating-rate notes with
embedded options.

[Price,PriceTree] = optemfloatbyhjm( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Price European Callable Embedded Option for a Floating-Rate Note

Define the interest-rate term structure.

Rates = [0.03;0.035;0.040;0.045];
ValuationDate = 'Jan-1-2012';
StartDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
EndDates = {'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'; 'Jan-1-2016'};
Compounding = 1;

Create the RateSpec.

RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates',...
StartDates, 'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x1 double]
            Rates: [4x1 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: [4x1 double]
    ValuationDate: 734869
            Basis: 0
     EndMonthRule: 1

Build the HJM tree.
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VolSpec = hjmvolspec('Constant', 0.01);
TimeSpec = hjmtimespec(RateSpec.ValuationDate, EndDates, Compounding);
HJMTree = hjmtree(VolSpec, RateSpec, TimeSpec)

HJMTree = struct with fields:
      FinObj: 'HJMFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [734869 735235 735600 735965]
        TFwd: {[4x1 double]  [3x1 double]  [2x1 double]  [3]}
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
     FwdTree: {[4x1 double]  [3x1x2 double]  [2x2x2 double]  [1x4x2 double]}

The floater instrument has a spread of 15, a period of one year, and matures and is callable on
Jan-1-2016.

Spread = 15;
Settle = 'Jan-1-2012';
Maturity =  'Jan-1-2016';
Period = 1;
OptSpec = {'call'};
Strike = 95;
ExerciseDates = 'Jan-1-2016';

Compute the price of the floater with the embedded call.

Price = optemfloatbyhjm(HJMTree, Spread, Settle, Maturity,...
OptSpec, Strike, ExerciseDates)

Price = 96.2355

Input Arguments
HJMTree — Interest-rate tree structure
binomial tree structure

Interest-rate tree specified as a structure by using hjmtree.
Data Types: struct

Spread — Number of basis points over the reference rate
nonnegative integer | vector of nonnegative integers

Number of basis points over the reference rate specified as a vector of nonnegative integers for the
number of instruments (NINST)-by-1).
Data Types: single | double

Settle — Settlement dates of floating-rate note
ValuationDate of BDT Tree (default) | serial date number | vector of serial date numbers | date
character vector | cell array of date character vectors

Settlement dates of floating-rate note specified as serial date numbers or date character vectors
using a NINST-by-1 vector of dates.
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Note The Settle date for every floating-rate note with an embedded option is set to the
ValuationDate of the HJM tree. The floating-rate note argument Settle is ignored.

Data Types: double | cell | char

Maturity — Floating-rate note maturity date
serial date number | vector of serial date numbers | date character vector | cell array of date
character vectors

Floating-rate note maturity date specified as serial date numbers or date character vectors using a
NINST-by-1 vector of dates.
Data Types: double | cell | char

OptSpec — Definition of option
character vector | cell array of character vectors

Definition of option as 'call' or 'put' specified as a NINST-by-1 cell array of character vectors for
'call' or 'put'.
Data Types: cell | char

Strike — Option strike price values
nonnegative integer | vector of nonnegative integers

Option strike price values specified nonnegative integers using as NINST-by-NSTRIKES vector of
strike price values.
Data Types: single | double

ExerciseDates — Exercise date for option (European, Bermuda, or American)
serial date number | vector of serial date numbers | date character vector | cell array of date
character vectors

Exercise date for option (European, Bermuda, or American) specified as serial date numbers or date
character vectors using a NINST-by-NSTRIKES or NINST-by-2 vector of for the option exercise dates.

• If a European or Bermuda option, the ExerciseDates is a 1-by-1 (European) or 1-by-NSTRIKES
(Bermuda) vector of exercise dates. For a European option, there is only one ExerciseDate on
the option expiry date.

• If an American option, then ExerciseDates is a 1-by-2 vector of exercise date boundaries. The
option exercises on any date between or including the pair of dates on that row. If there is only
one non-NaN date, or if ExerciseDates is 1-by-1, the option exercises between the Settle date
and the single listed ExerciseDate.

Data Types: double | cell | char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
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Example: [Price,PriceTree] =
optemfloatbyhjm(HJMTree,Spread,Settle,Maturity,OptSpec,Strike,ExerciseDates,'
AmericanOpt',1,'FloatReset',6,'Basis',8)

AmericanOpt — Option type
scalar | vector of positive integers[0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and NINST-by-1
positive integer scalar flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double

FloatReset — Frequency of payments per year
1 (default) | positive integer from the set[1,2,3,4,6,12] | vector of positive integers from the set
[1,2,3,4,6,12]

Frequency of payments per year, specified as the comma-separated pair consisting of 'FloatReset'
and positive integers for the values [1,2,3,4,6,12] in a NINST-by-1 vector.

Note Payments on floating-rate notes (FRNs) are determined by the effective interest-rate between
reset dates. If the reset period for an FRN spans more than one tree level, calculating the payment
becomes impossible due to the recombining nature of the tree. That is, the tree path connecting the
two consecutive reset dates cannot be uniquely determined because there will be more than one
possible path for connecting the two payment dates.

Data Types: double

Basis — Day-count basis of the instrument
0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive integers of the
set [1...13]

Day-count basis of the instrument, specified as the comma-separated pair consisting of 'Basis' and
a positive integer using a NINST-by-1 vector. The Basis value represents the basis used when
annualizing the input forward-rate tree.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
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• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
nonnegative integer [0, 1] using a NINST-by-1 vector. This rule applies only when Maturity is an
end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: double

Principal — Principal values
100 (default) | vector of nonnegative values | cell array of nonnegative values

Principal values, specified as the comma-separated pair consisting of 'Principal' and nonnegative
values using a NINST-by-1 vector or NINST-by-1 cell array of notional principal amounts. When using
a NINST-by-1 cell array, each element is a NumDates-by-2 cell array where the first column is dates
and the second column is associated principal amount. The date indicates the last day that the
principal value is valid.
Data Types: double | cell

Options — Structure containing derivatives pricing options
structure

Structure containing derivatives pricing options, specified as the comma-separated pair consisting of
'Options' and a structure obtained from using derivset.
Data Types: struct

Output Arguments
Price — Expected prices of the floating-rate note option at time 0
scalar | vector

Expected prices of the floating-rate note option at time 0 are returned as a scalar or an NINST-by-1
vector.

PriceTree — Structure of trees containing vectors of option prices at each node
tree structure

Structure of trees containing vectors of instrument prices and accrued interest and a vector of
observation times for each node returned as:
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• PriceTree.PBush contains the clean prices.
• PriceTree.tObs contains the observation times.

More About
Floating-Rate Note with Embedded Options

A floating-rate note with an embedded option enables floating-rate notes to have early redemption
features.

A FRN with an embedded option gives investors or issuers the option to retire the outstanding
principal prior to maturity. An embedded call option gives the right to retire the note prior to the
maturity date (callable floater), and an embedded put option gives the right to sell the note back at a
specific price (puttable floater).

For more information, see “Floating-Rate Note with Embedded Options” on page 2-11.

See Also
optembndbyhjm | optemfloatbyhw | optemfloatbybdt | optemfloatbybk | instoptemfloat

Topics
“Computing Instrument Prices” on page 2-81
“Floating-Rate Note with Embedded Options” on page 2-11
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced in R2013a
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optemfloatbyhw
Price embedded option on floating-rate note for Hull-White interest-rate tree

Syntax
[Price,PriceTree] = optemfloatbyhw(HWTree,Spread,Settle,Maturity,OptSpec,
Strike,ExerciseDates)
[Price,PriceTree] = optemfloatbyhw( ___ ,Name,Value)

Description
[Price,PriceTree] = optemfloatbyhw(HWTree,Spread,Settle,Maturity,OptSpec,
Strike,ExerciseDates) prices embedded options on floating-rate notes from a Hull-White interest
rate tree. optemfloatbybk computes prices of vanilla floating-rate notes with embedded options.

[Price,PriceTree] = optemfloatbyhw( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Price European Callable Embedded Option for Floating-Rate Note

Define the interest-rate term structure.

Rates = [0.03;0.034;0.038;0.04];
ValuationDate = 'Jan-1-2012';
StartDates = ValuationDate;
EndDates = {'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'; 'Jan-1-2016'};
Compounding = 1;

Create the RateSpec.

RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates',...
StartDates, 'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x1 double]
            Rates: [4x1 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: 734869
    ValuationDate: 734869
            Basis: 0
     EndMonthRule: 1

Build the HW tree using the following:
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VolDates = ['1-Jan-2013'; '1-Jan-2014'; '1-Jan-2015';'1-Jan-2016'];
VolCurve = 0.01;
AlphaDates = '01-01-2016';
AlphaCurve = 0.1;

HWVolSpec = hwvolspec(RateSpec.ValuationDate, VolDates, VolCurve,... 
            AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RateSpec.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVolSpec, RateSpec, HWTimeSpec)

HWT = struct with fields:
      FinObj: 'HWFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [734869 735235 735600 735965]
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}
     Connect: {[2]  [2 3 4]  [2 3 4 5 6]}
     FwdTree: {1x4 cell}

Define the floater instruments with the embedded call option.

Spread = 10;
Settle = 'Jan-1-2012';
Maturity =  {'Jan-1-2015';'Jan-1-2016'};
Period = 1;
OptSpec = {'call'};
Strike = 101;
ExerciseDates = 'Jan-1-2015';

Compute the price of the floaters with the embedded call.

Price= optemfloatbyhw(HWT, Spread, Settle, Maturity, OptSpec, Strike,...
ExerciseDates)

Price = 2×1

  100.2800
  100.3655

Input Arguments
HWTree — Interest-rate tree structure
binomial tree structure

Interest-rate tree specified as a structure by using hwtree.
Data Types: struct

Spread — Number of basis points over the reference rate
nonnegative integer | vector of nonnegative integers
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Number of basis points over the reference rate specified as a vector of nonnegative integers for the
number of instruments (NINST)-by-1).
Data Types: single | double

Settle — Settlement dates of floating-rate note
ValuationDate of BDT Tree (default) | serial date number | vector of serial date numbers | date
character vector | cell array of date character vectors

Settlement dates of floating-rate note specified as serial date numbers or date character vectors
using a NINST-by-1 vector of dates.

Note The Settle date for every floating-rate note with an embedded option is set to the
ValuationDate of the HW tree. The floating-rate note argument Settle is ignored.

Data Types: double | cell | char

Maturity — Floating-rate note maturity date
serial date number | vector of serial date numbers | date character vector | cell array of date
character vectors

Floating-rate note maturity date specified as serial date numbers or date character vectors using a
NINST-by-1 vector of dates.
Data Types: double | cell | char

OptSpec — Definition of option
character vector | cell array of character vectors

Definition of option as 'call' or 'put' specified as a NINST-by-1 cell array of character vectors for
'call' or 'put'.
Data Types: cell | char

Strike — Option strike price values
nonnegative integer | vector of nonnegative integers

Option strike price values specified nonnegative integers using as NINST-by-NSTRIKES vector of
strike price values.
Data Types: single | double

ExerciseDates — Exercise date for option (European, Bermuda, or American)
serial date number | vector of serial date numbers | date character vector | cell array of date
character vectors

Exercise date for option (European, Bermuda, or American) specified as serial date numbers or date
character vectors using a NINST-by-NSTRIKES or NINST-by-2 vector of for the option exercise dates.

• If a European or Bermuda option, the ExerciseDates is a 1-by-1 (European) or 1-by-NSTRIKES
(Bermuda) vector of exercise dates. For a European option, there is only one ExerciseDate on
the option expiry date.

• If an American option, then ExerciseDates is a 1-by-2 vector of exercise date boundaries. The
option exercises on any date between or including the pair of dates on that row. If there is only

11 Functions

11-1438



one non-NaN date, or if ExerciseDates is 1-by-1, the option exercises between the Settle date
and the single listed ExerciseDate.

Data Types: double | char | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree] =
optemfloatbyhw(HWTree,Spread,Settle,Maturity,OptSpec,Strike,ExerciseDates,'Am
ericanOpt',1,'FloatReset',6,'Basis',8)

AmericanOpt — Option type
scalar | vector of positive integers[0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and NINST-by-1
positive integer scalar flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double

FloatReset — Frequency of payments per year
1 (default) | positive integer from the set[1,2,3,4,6,12] | vector of positive integers from the set
[1,2,3,4,6,12]

Frequency of payments per year, specified as the comma-separated pair consisting of 'FloatReset'
and positive integers for the values [1,2,3,4,6,12] in a NINST-by-1 vector.

Note Payments on floating-rate notes (FRNs) are determined by the effective interest-rate between
reset dates. If the reset period for an FRN spans more than one tree level, calculating the payment
becomes impossible due to the recombining nature of the tree. That is, the tree path connecting the
two consecutive reset dates cannot be uniquely determined because there will be more than one
possible path for connecting the two payment dates.

Data Types: double

Basis — Day-count basis of the instrument
0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive integers of the
set [1...13]

Day-count basis of the instrument, specified as the comma-separated pair consisting of 'Basis' and
a positive integer using a NINST-by-1 vector. The Basis value represents the basis used when
annualizing the input forward-rate tree.

• 0 = actual/actual
• 1 = 30/360 (SIA)
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• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
nonnegative integer [0, 1] using a NINST-by-1 vector. This rule applies only when Maturity is an
end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: double

Principal — Principal values
100 (default) | vector of nonnegative values | cell array of nonnegative values

Principal values, specified as the comma-separated pair consisting of 'Principal' and nonnegative
values using a NINST-by-1 vector or NINST-by-1 cell array of notional principal amounts. When using
a NINST-by-1 cell array, each element is a NumDates-by-2 cell array where the first column is dates
and the second column is associated principal amount. The date indicates the last day that the
principal value is valid.
Data Types: double | cell

Options — Structure containing derivatives pricing options
structure

Structure containing derivatives pricing options, specified as the comma-separated pair consisting of
'Options' and a structure obtained from using derivset.
Data Types: struct
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Output Arguments
Price — Expected prices of the floating-rate note option at time 0
scalar | vector

Expected prices of the floating-rate note option at time 0 are returned as a scalar or an NINST-by-1
vector.

PriceTree — Structure of trees containing vectors of option prices at each node
tree structure

Structure of trees containing vectors of instrument prices and accrued interest and a vector of
observation times for each node returned as:

• PriceTree.PTree contains embedded option prices.
• PriceTree.tObs contains the observation times.

More About
Floating-Rate Note with Embedded Options

A floating-rate note with an embedded option enables floating-rate notes to have early redemption
features.

A FRN with an embedded option gives investors or issuers the option to retire the outstanding
principal prior to maturity. An embedded call option gives the right to retire the note prior to the
maturity date (callable floater), and an embedded put option gives the right to sell the note back at a
specific price (puttable floater).

For more information, see “Floating-Rate Note with Embedded Options” on page 2-11.

See Also
optembndbyhw | optemfloatbyhjm | optemfloatbybdt | optemfloatbybk | instoptemfloat

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Calibrating Hull-White Model Using Market Data” on page 2-92
“Floating-Rate Note with Embedded Options” on page 2-11
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3
“Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on page 1-
73

Introduced in R2013a
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optfloatbybdt
Price options on floating-rate notes for Black-Derman-Toy interest-rate tree

Syntax
[Price,PriceTree] = optfloatbybdt(BDTTree,OptSpec,Strike,ExerciseDates,
AmericanOpt,Spread,Settle,Maturity)
[Price,PriceTree] = optfloatbybdt( ___ ,Name,Value)

Description
[Price,PriceTree] = optfloatbybdt(BDTTree,OptSpec,Strike,ExerciseDates,
AmericanOpt,Spread,Settle,Maturity) prices options on floating-rate notes from a Black-
Derman-Toy interest rate tree. optfloatbybdt computes prices of options on vanilla floating-rate
notes.

[Price,PriceTree] = optfloatbybdt( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Compute the Price of American Call and Put Options on a Floating-Rate Note

Define the interest-rate term structure.

Rates = [0.03;0.034;0.038;0.04];
ValuationDate = 'Jan-1-2012';
StartDates = ValuationDate;
EndDates = {'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'; 'Jan-1-2016'};
Compounding = 1;

Create the RateSpec.

RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x1 double]
            Rates: [4x1 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: 734869
    ValuationDate: 734869
            Basis: 0
     EndMonthRule: 1

Build the BDT tree and assume a volatility of 10%.
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Sigma = 0.1;  
BDTTimeSpec = bdttimespec(ValuationDate, EndDates);
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');
BDTT = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec)

BDTT = struct with fields:
      FinObj: 'BDTFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [734869 735235 735600 735965]
        TFwd: {[4x1 double]  [3x1 double]  [2x1 double]  [3]}
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
     FwdTree: {[1.0300]  [1.0342 1.0418]  [1.0374 1.0456 1.0558]  [1.0337 ... ]}

The floater instrument has a spread of 10, a period of one year, and matures on Jan-1-2016.

Spread = 10;
Settle = 'Jan-1-2012';
Maturity =  'Jan-1-2016';
Period = 1;

Define the option for the floating-rate note.

OptSpec = {'call'; 'put'};
Strike = [100;101];
ExerciseDates = 'Jan-1-2015';
AmericanOpt = 1;

Compute the price of the call and put options.

Price= optfloatbybdt(BDTT,  OptSpec, Strike, ExerciseDates,AmericanOpt, Spread,...
Settle, Maturity)

Price = 2×1

    0.3655
    0.8087

Input Arguments
BDTTree — Interest-rate tree structure
binomial tree structure

Interest-rate tree specified as a structure by using bdttree.
Data Types: struct

OptSpec — Definition of option
character vector | cell array of character vectors

Definition of option as 'call' or 'put' specified as a NINST-by-1 cell array of character vectors for
'call' or 'put'.
Data Types: cell | char
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Strike — Option strike price values
nonnegative integer | vector of nonnegative integers

Option strike price values specified nonnegative integers using as NINST-by-NSTRIKES vector of
strike price values.
Data Types: single | double

ExerciseDates — Exercise date for option (European, Bermuda, or American)
serial date number | vector of serial date numbers | date character vector | cell array of date
character vectors

Exercise date for option (European, Bermuda, or American) specified as serial date numbers or date
character vectors using a NINST-by-NSTRIKES or NINST-by-2 vector of for the option exercise dates.

• If a European or Bermuda option, the ExerciseDates is a 1-by-1 (European) or 1-by-NSTRIKES
(Bermuda) vector of exercise dates. For a European option, there is only one ExerciseDate on
the option expiry date.

• If an American option, then ExerciseDates is a 1-by-2 vector of exercise date boundaries. The
option exercises on any date between or including the pair of dates on that row. If there is only
one non-NaN date, or if ExerciseDates is 1-by-1, the option exercises between the Settle date
and the single listed ExerciseDate.

Data Types: double | char | cell

AmericanOpt — Option type
scalar | vector of positive integers[0,1]

Option type specified as NINST-by-1 positive integer scalar flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: single | double

Spread — Number of basis points over the reference rate
nonnegative integer | vector of nonnegative integers

Number of basis points over the reference rate specified as a vector of nonnegative integers for the
number of instruments (NINST)-by-1).
Data Types: single | double

Settle — Settlement dates of floating-rate note
ValuationDate of BDT Tree (default) | serial date number | vector of serial date numbers | date
character vector | cell array of date character vectors

Settlement dates of floating-rate note specified as serial date numbers or date character vectors
using a NINST-by-1 vector of dates.

Note The Settle date for every floating-rate note is set to the ValuationDate of the BDT tree. The
floating-rate note argument Settle is ignored.

Data Types: double | cell | char
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Maturity — Floating-rate note maturity date
serial date number | vector of serial date numbers | date character vector | cell array of date
character vectors

Floating-rate note maturity date specified as serial date numbers or date character vectors using a
NINST-by-1 vector of dates.
Data Types: double | cell | char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
[Price,PriceTree]=optfloatbybdt(BDTTree,OptSpec,Strike,ExerciseDates,American
Opt,Spread,Settle,Maturity,'FloatReset',4,'Basis',7)

FloatReset — Frequency of payments per year
1 (default) | positive integer from the set[1,2,3,4,6,12] | vector of positive integers from the set
[1,2,3,4,6,12]

Frequency of payments per year, specified as the comma-separated pair consisting of 'FloatReset'
and positive integers for the values [1,2,3,4,6,12] in a NINST-by-1 vector.

Note Payments on floating-rate notes (FRNs) are determined by the effective interest-rate between
reset dates. If the reset period for an FRN spans more than one tree level, calculating the payment
becomes impossible due to the recombining nature of the tree. That is, the tree path connecting the
two consecutive reset dates cannot be uniquely determined because there will be more than one
possible path for connecting the two payment dates.

Data Types: double

Basis — Day-count basis of the instrument
0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive integers of the
set [1...13]

Day-count basis of the instrument, specified as the comma-separated pair consisting of 'Basis' and
a positive integer using a NINST-by-1 vector. The Basis value represents the basis used when
annualizing the input forward-rate tree.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
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• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Principal values
100 (default) | vector of nonnegative values | cell array of nonnegative values

Principal values, specified as the comma-separated pair consisting of 'Principal' and nonnegative
values using a NINST-by-1 vector or NINST-by-1 cell array of notional principal amounts. When using
a NINST-by-1 cell array, each element is a NumDates-by-2 cell array where the first column is dates
and the second column is associated principal amount. The date indicates the last day that the
principal value is valid.
Data Types: double | cell

Options — Structure containing derivatives pricing options
structure

Structure containing derivatives pricing options, specified as the comma-separated pair consisting of
'Options' and structure obtained from using derivset.
Data Types: struct

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
nonnegative integer [0, 1] using a NINST-by-1 vector. This rule applies only when Maturity is an
end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: double

Output Arguments
Price — Expected prices of the floating-rate note option at time 0
scalar | vector

Expected prices of the floating-rate note option at time 0 is returned as a scalar or an NINST-by-1
vector.
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PriceTree — Structure of trees containing vectors of option prices at each node
tree structure

Structure of trees containing vectors of instrument prices and accrued interest and a vector of
observation times for each node returned as:

• PriceTree.PTree contains option prices.
• PriceTree.tObs contains the observation times.

More About
Floating-Rate Note Options

A floating-rate note option is a put or call option on a floating-rate note.

Financial Instruments Toolbox supports three types of put and call options on floating-rate notes:

• American option — An option that you exercise any time until its expiration date.
• European option — An option that you exercise only on its expiration date.
• Bermuda option — A Bermuda option resembles a hybrid of American and European options; you

can only exercise it on predetermined dates, usually monthly.

For more information, see “Floating-Rate Note Options” on page 2-11.

See Also
bdttree | cfbybdt | capbybdt | swapbybdt | floorbybdt | floatbybdt | bondbybdt |
instoptfloat

Topics
“Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-10
“Floating-Rate Note Options” on page 2-11
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced in R2013a
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optfloatbybk
Price options on floating-rate notes for Black-Karasinski interest-rate tree

Syntax
[Price,PriceTree] = optfloatbybdt(BKTree,OptSpec,Strike,ExerciseDates,
AmericanOpt,Spread,Settle,Maturity)
[Price,PriceTree] = optfloatbybdt( ___ ,Name,Value)

Description
[Price,PriceTree] = optfloatbybdt(BKTree,OptSpec,Strike,ExerciseDates,
AmericanOpt,Spread,Settle,Maturity) prices options on floating-rate notes from a Black-
Karasinski interest rate tree. optfloatbybk computes prices of options on vanilla floating-rate
notes.

[Price,PriceTree] = optfloatbybdt( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Compute the Price of American and European Call Options on a Floating-Rate Note

Define the interest-rate term structure.

Rates = [0.03;0.034;0.038;0.04];
ValuationDate = 'Jan-1-2012';
StartDates = ValuationDate;
EndDates = {'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'; 'Jan-1-2016'};
Compounding = 1;

Create the RateSpec.

RateSpec = intenvset('ValuationDate',ValuationDate,'StartDates',StartDates,...
'EndDates',EndDates,'Rates',Rates,'Compounding',Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x1 double]
            Rates: [4x1 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: 734869
    ValuationDate: 734869
            Basis: 0
     EndMonthRule: 1

Build the BK tree.
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VolDates = ['1-Jan-2013'; '1-Jan-2014'; '1-Jan-2015';'1-Jan-2016'];
VolCurve = 0.01;
AlphaDates = '01-01-2016';
AlphaCurve = 0.1;

BKVolSpec = bkvolspec(RateSpec.ValuationDate,VolDates,VolCurve,...
AlphaDates,AlphaCurve);
BKTimeSpec = bktimespec(RateSpec.ValuationDate,VolDates,Compounding);
BKT = bktree(BKVolSpec,RateSpec,BKTimeSpec)

BKT = struct with fields:
      FinObj: 'BKFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [734869 735235 735600 735965]
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}
     Connect: {[2]  [2 3 4]  [2 3 4 5 6]}
     FwdTree: {1x4 cell}

The floater instrument has a spread of 10, a period of one year, and matures on Jan-1-2016.

Spread = 10;
Settle = 'Jan-1-2012';
Maturity =  'Jan-1-2016';
Period = 1;

Define the option for the floating-rate note.

OptSpec = {'call'};
Strike = 95;
ExerciseDates = 'Jan-1-2016';
AmericanOpt = [0;1];

Compute the price of the call options.

Price = optfloatbybk(BKT,OptSpec,Strike,ExerciseDates,AmericanOpt,...
Spread,Settle,Maturity)

Price = 2×1

    4.2740
    5.3655

Input Arguments
BKTree — Interest-rate tree structure
binomial tree structure

Interest-rate tree specified as a structure by using bktree.
Data Types: struct
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OptSpec — Definition of option
character vector | cell array of character vectors

Definition of option as 'call' or 'put' specified as a NINST-by-1 cell array of character vectors for
'call' or 'put'.
Data Types: cell | char

Strike — Option strike price values
nonnegative integer | vector of nonnegative integers

Option strike price values specified nonnegative integers using as NINST-by-NSTRIKES vector of
strike price values.
Data Types: single | double

ExerciseDates — Exercise date for option (European, Bermuda, or American)
serial date number | vector of serial date numbers | date character vector | cell array of date
character vectors

Exercise date for option (European, Bermuda, or American) specified as serial date numbers or date
character vectors using a NINST-by-NSTRIKES or NINST-by-2 vector of for the option exercise dates.

• If a European or Bermuda option, the ExerciseDates is a 1-by-1 (European) or 1-by-NSTRIKES
(Bermuda) vector of exercise dates. For a European option, there is only one ExerciseDate on
the option expiry date.

• If an American option, then ExerciseDates is a 1-by-2 vector of exercise date boundaries. The
option exercises on any date between or including the pair of dates on that row. If there is only
one non-NaN date, or if ExerciseDates is 1-by-1, the option exercises between the Settle date
and the single listed ExerciseDate.

Data Types: double | char | cell

AmericanOpt — Option type
scalar | vector of positive integers[0,1]

Option type specified as NINST-by-1 positive integer scalar flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: single | double

Spread — Number of basis points over the reference rate
nonnegative integer | vector of nonnegative integers

Number of basis points over the reference rate specified as a vector of nonnegative integers for the
number of instruments (NINST)-by-1).
Data Types: single | double

Settle — Settlement dates of floating-rate note
ValuationDate of BK tree (default) | serial date number | vector of serial date numbers | date
character vector | cell array of date character vectors
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Settlement dates of floating-rate note specified as serial date numbers or date character vectors
using a NINST-by-1 vector of dates.

Note The Settle date for every floating-rate note is set to the ValuationDate of the BK tree. The
floating-rate note argument Settle is ignored.

Data Types: double | cell | char

Maturity — Floating-rate note maturity date
serial date number | vector of serial date numbers | date character vector | cell array of date
character vectors

Floating-rate note maturity date specified as serial date numbers or date character vectors using a
NINST-by-1 vector of dates.
Data Types: double | cell | char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree] =
optfloatbybk(BKTree,OptSpec,Strike,ExerciseDates,AmericanOpt,Spread,Settle,Ma
turity,'FloatReset',4,'Basis',7)

FloatReset — Frequency of payments per year
1 (default) | positive integer from the set[1,2,3,4,6,12] | vector of positive integers from the set
[1,2,3,4,6,12]

Frequency of payments per year, specified as the comma-separated pair consisting of 'FloatReset'
and positive integers for the values [1,2,3,4,6,12] in a NINST-by-1 vector.

Note Payments on floating-rate notes (FRNs) are determined by the effective interest-rate between
reset dates. If the reset period for an FRN spans more than one tree level, calculating the payment
becomes impossible due to the recombining nature of the tree. That is, the tree path connecting the
two consecutive reset dates cannot be uniquely determined because there will be more than one
possible path for connecting the two payment dates.

Data Types: double

Basis — Day-count basis of the instrument
0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive integers of the
set [1...13]

Day-count basis of the instrument, specified as the comma-separated pair consisting of 'Basis' and
a positive integer using a NINST-by-1 vector. The Basis value represents the basis used when
annualizing the input forward-rate tree.
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• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Principal values
100 (default) | vector of nonnegative values | cell array of nonnegative values

Principal values, specified as the comma-separated pair consisting of 'Principal' and nonnegative
values using a NINST-by-1 vector or NINST-by-1 cell array of notional principal amounts. When using
a NINST-by-1 cell array, each element is a NumDates-by-2 cell array where the first column is dates
and the second column is associated principal amount. The date indicates the last day that the
principal value is valid.
Data Types: double | cell

Options — Structure containing derivatives pricing options
structure

Structure containing derivatives pricing options, specified as the comma-separated pair consisting of
'Options' and a structure obtained from using derivset.
Data Types: struct

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
nonnegative integer [0, 1] using a NINST-by-1 vector. This rule applies only when Maturity is an
end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: double
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Output Arguments
Price — Expected prices of the floating-rate note option at time 0
scalar | vector

Expected prices of the floating-rate note option at time 0 is returned as a scalar or an NINST-by-1
vector.

PriceTree — Structure of trees containing vectors of option prices at each node
tree structure

Structure of trees containing vectors of instrument prices and accrued interest and a vector of
observation times for each node returned as:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell array describes

how nodes in that level connect to the next. For a given tree level, there are NumNodes elements
in the vector, and they contain the index of the node at the next level that the middle branch
connects to. Subtracting 1 from that value indicates where the up-branch connects to, and adding
1 indicated where the down branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array contains the
up, middle, and down transition probabilities for each node of the level.

More About
Floating-Rate Note Options

A floating-rate note option is a put or call option on a floating-rate note.

Financial Instruments Toolbox supports three types of put and call options on floating-rate notes:

• American option — An option that you exercise any time until its expiration date.
• European option — An option that you exercise only on its expiration date.
• Bermuda option — A Bermuda option resembles a hybrid of American and European options; you

can only exercise it on predetermined dates, usually monthly.

For more information, see “Floating-Rate Note Options” on page 2-11.

See Also
bktree | cfbybk | capbybk | swapbybk | floorbybk | floatbybk | bondbybk | instoptfloat

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Floating-Rate Note Options” on page 2-11
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3
“Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on page 1-
73

 optfloatbybk

11-1453



Introduced in R2013a
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optfloatbycir
Price options on floating-rate notes for Cox-Ingersoll-Ross interest-rate tree

Syntax
[Price,PriceTree] = optfloatbycir(CIRTree,OptSpec,Strike,ExerciseDates,
AmericanOpt,Spread,Settle,Maturity)
[Price,PriceTree] = optfloatbycir( ___ ,Name,Value)

Description
[Price,PriceTree] = optfloatbycir(CIRTree,OptSpec,Strike,ExerciseDates,
AmericanOpt,Spread,Settle,Maturity) prices options on floating-rate notes from a Cox-
Ingersoll-Ross (CIR) interest-rate tree. optfloatbycir computes prices of options on vanilla
floating-rate notes using a CIR++ model with the Nawalka-Beliaeva (NB) approach.

[Price,PriceTree] = optfloatbycir( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Compute the Price of American and European Call Options on a Floating-Rate Note Using a
CIR Interest-Rate Tree

Create a RateSpec using the intenvset function.

Rates = [0.035; 0.042147; 0.047345; 0.052707]; 
Dates = {'Jan-1-2017'; 'Jan-1-2018'; 'Jan-1-2019'; 'Jan-1-2020'; 'Jan-1-2021'}; 
ValuationDate = 'Jan-1-2017'; 
EndDates = Dates(2:end)'; 
Compounding = 1; 
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, 'EndDates',EndDates,'Rates', Rates, 'Compounding', Compounding); 

Create a CIR tree.

NumPeriods = length(EndDates); 
Alpha = 0.03; 
Theta = 0.02;  
Sigma = 0.1;   
Settle = '01-Jan-2017'; 
Maturity = '01-Jan-2021'; 
CIRTimeSpec = cirtimespec(Settle, Maturity, NumPeriods); 
CIRVolSpec = cirvolspec(Sigma, Alpha, Theta); 

CIRT = cirtree(CIRVolSpec, RateSpec, CIRTimeSpec)

CIRT = struct with fields:
      FinObj: 'CIRFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
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        tObs: [0 1 2 3]
        dObs: [736696 737061 737426 737791]
     FwdTree: {1x4 cell}
     Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

The floater instrument has a spread of 10, a period of one year, and matures on Jan-1-2018.

Spread = 10;
Settle = 'Jan-1-2017';
Maturity = 'Jan-1-2019';
Period = 1;

Define the option for the floating-rate note.

OptSpec = {'call'};
Strike = 95;
ExerciseDates = 'Jan-1-2018';
AmericanOpt = [0;1];

Compute the price of the call options.

[Price,PriceTree] = optfloatbycir(CIRT, OptSpec,Strike,ExerciseDates,AmericanOpt,...
Spread, Settle, Maturity)

Price = 2×1

    4.9230
    5.1887

PriceTree = struct with fields:
     FinObj: 'CIRPriceTree'
      PTree: {1x5 cell}
     AITree: {1x5 cell}
       tObs: [0 1 2 3 4]
    Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
      Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

Input Arguments
CIRTree — Interest-rate tree structure
structure

Interest-rate tree specified as a structure by using cirtree.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors with values of 'call'
or 'put' | string array with values 'call' or 'put'

Definition of option, specified as a NINST-by-1 cell array of character vectors or string arrays with
values of 'call' or 'put'.
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Data Types: cell | char | string

Strike — Option strike price values
nonnegative integer | vector of nonnegative integers

Option strike price values, specified as nonnegative integers using an NINST-by-NSTRIKES vector of
strike price values.
Data Types: single | double

ExerciseDates — Exercise date for option (European, Bermuda, or American)
serial date number | vector of serial date numbers | date character vector | cell array of date
character vectors | string array | datetime

Exercise date for option (European, Bermuda, or American) specified as serial date numbers, date
character vectors, string arrays, or datetime arrays using a NINST-by-NSTRIKES or NINST-by-2
vector of for the option exercise dates.

• For a European or Bermuda option, the ExerciseDates is a 1-by-1 (European) or 1-by-NSTRIKES
(Bermuda) vector of exercise dates. For a European option, there is only one ExerciseDate on
the option expiry date.

• For an American option, the ExerciseDates is a 1-by-2 vector of exercise date boundaries. The
option exercises on any date between or including the pair of dates on that row. If there is only
one non-NaN date, or if ExerciseDates is 1-by-1, the option exercises between the Settle date
and the single listed ExerciseDate.

Data Types: double | char | cell | string | datetime

AmericanOpt — Option type
scalar | vector of positive integers[0,1]

Option type specified as NINST-by-1 positive integer scalar flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: single | double

Spread — Number of basis points over the reference rate
nonnegative integer | vector of nonnegative integers

Number of basis points over the reference rate specified as a vector of nonnegative integers for the
number of instruments (NINST)-by-1).
Data Types: single | double

Settle — Settlement dates of floating-rate note
ValuationDate of CIR tree (default) | serial date number | vector of serial date numbers | date
character vector | cell array of date character vectors | string array | datetime

Settlement dates of floating-rate note specified as serial date numbers, date character vectors, string
arrays, or datetime arrays using a NINST-by-1 vector of dates.

Note The Settle date for every floating-rate note is set to the ValuationDate of the CIR tree. The
floating-rate note argument Settle is ignored.
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Data Types: double | cell | char | string

Maturity — Floating-rate note maturity date
serial date number | vector of serial date numbers | date character vector | cell array of date
character vectors | string array | datetime

Floating-rate note maturity date specified as serial date numbers, date character vectors, string
arrays, or datetime arrays using a NINST-by-1 vector of dates.
Data Types: double | cell | char | string | datetime

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree] =
optfloatbybk(CIRTree,OptSpec,Strike,ExerciseDates,AmericanOpt,Spread,Settle,M
aturity,'FloatReset',4,'Basis',7)

FloatReset — Frequency of payments per year
1 (default) | positive integer from the set[1,2,3,4,6,12] | vector of positive integers from the set
[1,2,3,4,6,12]

Frequency of payments per year, specified as the comma-separated pair consisting of 'FloatReset'
and positive integers for the values [1,2,3,4,6,12] in a NINST-by-1 vector.

Note Payments on floating-rate notes (FRNs) are determined by the effective interest-rate between
reset dates. If the reset period for an FRN spans more than one tree level, calculating the payment
becomes impossible due to the recombining nature of the tree. That is, the tree path connecting the
two consecutive reset dates cannot be uniquely determined because there will be more than one
possible path for connecting the two payment dates.

Data Types: double

Basis — Day-count basis of the instrument
0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive integers of the
set [1...13]

Day-count basis of the instrument, specified as the comma-separated pair consisting of 'Basis' and
a positive integer using a NINST-by-1 vector. The Basis value represents the basis used when
annualizing the input forward-rate tree.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
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• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Principal values
100 (default) | vector of nonnegative values | cell array of nonnegative values

Principal values, specified as the comma-separated pair consisting of 'Principal' and nonnegative
values using a NINST-by-1 vector or NINST-by-1 cell array of notional principal amounts.

When using a NINST-by-1 cell array, each element is a NumDates-by-2 cell array where the first
column is dates, and the second column is associated principal amount. The date indicates the last
day that the principal value is valid.
Data Types: double | cell

Options — Structure containing derivatives pricing options
structure

Structure containing derivatives pricing options, specified as the comma-separated pair consisting of
'Options' and the output from derivset.
Data Types: struct

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
nonnegative integer [0, 1] using a NINST-by-1 vector. This rule applies only when Maturity is an
end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: double

Output Arguments
Price — Expected prices of the floating-rate note option at time 0
scalar | vector
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Expected prices of the floating-rate note option at time 0 is returned as a scalar or an NINST-by-1
vector.

PriceTree — Structure of trees containing vectors of option prices at each node
tree structure

Structure of trees containing vectors of instrument prices and accrued interest and a vector of
observation times for each node returned as:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell array describes

how nodes in that level connect to the next. For a given tree level, there are NumNodes elements
in the vector, and they contain the index of the node at the next level that the middle branch
connects to. Subtracting 1 from that value indicates where the up-branch connects to, and adding
1 indicated where the down branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array contains the
up, middle, and down transition probabilities for each node of the level.

More About
Floating-Rate Note Options

A floating-rate note option is a put or call option on a floating-rate note.

Financial Instruments Toolbox supports three types of put and call options on floating-rate notes:

• American option — An option that you exercise any time until its expiration date.
• European option — An option that you exercise only on its expiration date.
• Bermuda option — A Bermuda option resembles a hybrid of American and European options; you

can only exercise it on predetermined dates, usually monthly.

For more information, see “Floating-Rate Note Options” on page 2-11.

References
[1] Cox, J., Ingersoll, J., and S. Ross. "A Theory of the Term Structure of Interest Rates."

Econometrica. Vol. 53, 1985.

[2] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer Finance, 2006.

[3] Hirsa, A. Computational Methods in Finance. CRC Press, 2012.

[4] Nawalka, S., Soto, G., and N. Beliaeva. Dynamic Term Structure Modeling. Wiley, 2007.

[5] Nelson, D. and K. Ramaswamy. "Simple Binomial Processes as Diffusion Approximations in
Financial Models." The Review of Financial Studies. Vol 3. 1990, pp. 393–430.
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See Also
bondbycir | capbycir | cfbycir | fixedbycir | floatbycir | floorbycir | oasbycir |
optbndbycir | optembndbycir | optemfloatbycir | rangefloatbycir | swapbycir |
swaptionbycir | instoptfloat

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Floating-Rate Note Options” on page 2-11
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced in R2018a
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optfloatbyhjm
Price options on floating-rate notes for Heath-Jarrow-Morton interest-rate tree

Syntax
[Price,PriceTree] = optfloatbyhjm(HJMTree,OptSpec,Strike,ExerciseDates,
AmericanOpt,Spread,Settle,Maturity)
[Price,PriceTree] = optfloatbyhjm( ___ ,Name,Value)

Description
[Price,PriceTree] = optfloatbyhjm(HJMTree,OptSpec,Strike,ExerciseDates,
AmericanOpt,Spread,Settle,Maturity) prices options on floating-rate notes from a Heath-
Jarrow-Morton interest rate tree. optfloatbyhjm computes prices of options on vanilla floating-rate
notes.

[Price,PriceTree] = optfloatbyhjm( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Compute the Price of American and European Call Options on a Floating-Rate Note

Define the interest-rate term structure.

Rates = [0.03;0.035;0.040;0.045];
ValuationDate = 'Jan-1-2012';
StartDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
EndDates = {'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'; 'Jan-1-2016'};
Compounding = 1;

Create the RateSpec.

RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x1 double]
            Rates: [4x1 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: [4x1 double]
    ValuationDate: 734869
            Basis: 0
     EndMonthRule: 1

Build the HJM tree.

11 Functions

11-1462



VolSpec = hjmvolspec('Constant', 0.01);
TimeSpec = hjmtimespec(RateSpec.ValuationDate, EndDates, Compounding);
HJMTree = hjmtree(VolSpec, RateSpec, TimeSpec)

HJMTree = struct with fields:
      FinObj: 'HJMFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [734869 735235 735600 735965]
        TFwd: {[4x1 double]  [3x1 double]  [2x1 double]  [3]}
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
     FwdTree: {[4x1 double]  [3x1x2 double]  [2x2x2 double]  [1x4x2 double]}

The floater instrument has a spread of 10, a period of one year, and matures on Jan-1-2015.

Spread = 10;
Settle = 'Jan-1-2012';
Maturity =  'Jan-1-2015';
Period = 1;

Define the option for the floating-rate note.

OptSpec = {'call'};
Strike = 95;
ExerciseDates = 'Jan-1-2015';
AmericanOpt = [0;1];

Compute the price of the call options.

Price= optfloatbyhjm(HJMTree,  OptSpec, Strike, ExerciseDates,AmericanOpt,...
Spread, Settle, Maturity)

Price = 2×1

    4.5098
    5.2811

Input Arguments
HJMTree — Interest-rate tree structure
binomial tree structure

Interest-rate tree specified as a structure by using hjmtree.
Data Types: struct

OptSpec — Definition of option
character vector | cell array of character vectors

Definition of option as 'call' or 'put' specified as a NINST-by-1 cell array of character vectors for
'call' or 'put'.
Data Types: cell | char
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Strike — Option strike price values
nonnegative integer | vector of nonnegative integers

Option strike price values specified nonnegative integers using as NINST-by-NSTRIKES vector of
strike price values.
Data Types: single | double

ExerciseDates — Exercise date for option (European, Bermuda, or American)
serial date number | vector of serial date numbers | date character vector | cell array of date
character vectors

Exercise date for option (European, Bermuda, or American) specified as serial date numbers or date
character vectors using a NINST-by-NSTRIKES or NINST-by-2 vector of for the option exercise dates.

• If a European or Bermuda option, the ExerciseDates is a 1-by-1 (European) or 1-by-NSTRIKES
(Bermuda) vector of exercise dates. For a European option, there is only one ExerciseDate on
the option expiry date.

• If an American option, then ExerciseDates is a 1-by-2 vector of exercise date boundaries. The
option exercises on any date between or including the pair of dates on that row. If there is only
one non-NaN date, or if ExerciseDates is 1-by-1, the option exercises between the Settle date
and the single listed ExerciseDate.

Data Types: double | char | cell

AmericanOpt — Option type
scalar | vector of positive integers[0,1]

Option type specified as NINST-by-1 positive integer scalar flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: single | double

Spread — Number of basis points over the reference rate
nonnegative integer | vector of nonnegative integers

Number of basis points over the reference rate specified as a vector of nonnegative integers for the
number of instruments (NINST)-by-1).
Data Types: single | double

Settle — Settlement dates of floating-rate note
ValuationDate of HJM tree (default) | serial date number | vector of serial date numbers | date
character vector | cell array of date character vectors

Settlement dates of floating-rate note specified as serial date numbers or date character vectors
using a NINST-by-1 vector of dates.

Note The Settle date for every floating-rate note is set to the ValuationDate of the HJM tree.
The floating-rate note argument Settle is ignored.

Data Types: double | cell | char
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Maturity — Floating-rate note maturity date
serial date number | vector of serial date numbers | date character vector | cell array of date
character vectors

Floating-rate note maturity date specified as serial date numbers or date character vectors using a
NINST-by-1 vector of dates.
Data Types: double | cell | char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree] =
optfloatbyhjm(HJMTree,OptSpec,Strike,ExerciseDates,AmericanOpt,Spread,Settle,
Maturity,'FloatReset',4,'Basis',7)

FloatReset — Frequency of payments per year
1 (default) | positive integer from the set[1,2,3,4,6,12] | vector of positive integers from the set
[1,2,3,4,6,12]

Frequency of payments per year, specified as the comma-separated pair consisting of 'FloatReset'
and positive integers for the values [1,2,3,4,6,12] in a NINST-by-1 vector.

Note Payments on floating-rate notes (FRNs) are determined by the effective interest-rate between
reset dates. If the reset period for an FRN spans more than one tree level, calculating the payment
becomes impossible due to the recombining nature of the tree. That is, the tree path connecting the
two consecutive reset dates cannot be uniquely determined because there will be more than one
possible path for connecting the two payment dates.

Data Types: double

Basis — Day-count basis of the instrument
0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive integers of the
set [1...13]

Day-count basis of the instrument, specified as the comma-separated pair consisting of 'Basis' and
a positive integer using a NINST-by-1 vector. The Basis value represents the basis used when
annualizing the input forward-rate tree.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
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• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Principal values
100 (default) | vector of nonnegative values | cell array of nonnegative values

Principal values, specified as the comma-separated pair consisting of 'Principal' and nonnegative
values using a NINST-by-1 vector or NINST-by-1 cell array of notional principal amounts. When using
a NINST-by-1 cell array, each element is a NumDates-by-2 cell array where the first column is dates
and the second column is associated principal amount. The date indicates the last day that the
principal value is valid.
Data Types: double | cell

Options — Structure containing derivatives pricing options
structure

Structure containing derivatives pricing options, specified as the comma-separated pair consisting of
'Options' and a structure obtained from using derivset.
Data Types: struct

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
nonnegative integer [0, 1] using a NINST-by-1 vector. This rule applies only when Maturity is an
end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: double

Output Arguments
Price — Expected prices of the floating-rate note option at time 0
scalar | vector

Expected prices of the floating-rate note option at time 0 is returned as a scalar or an NINST-by-1
vector.
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PriceTree — Structure of trees containing vectors of option prices at each node
tree structure

Structure of trees containing vectors of instrument prices and accrued interest and a vector of
observation times for each node returned as:

• PriceTree.PBush contains the clean prices.
• PriceTree.AIBush contains the accrued interest.
• PriceTree.tObs contains the observation times.

More About
Floating-Rate Note Options

A floating-rate note option is a put or call option on a floating-rate note.

Financial Instruments Toolbox supports three types of put and call options on floating-rate notes:

• American option — An option that you exercise any time until its expiration date.
• European option — An option that you exercise only on its expiration date.
• Bermuda option — A Bermuda option resembles a hybrid of American and European options; you

can only exercise it on predetermined dates, usually monthly.

For more information, see “Floating-Rate Note Options” on page 2-11.

See Also
hjmtree | cfbyhjm | capbyhjm | swapbyhjm | floorbyhw | floatbyhjm | bondbyhjm |
instoptfloat

Topics
“Computing Instrument Prices” on page 2-81
“Floating-Rate Note Options” on page 2-11
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced in R2013a
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optfloatbyhw
Price options on floating-rate notes for Hull-White interest-rate tree

Syntax
[Price,PriceTree] = optfloatbyhw(HWTree,OptSpec,Strike,ExerciseDates,
AmericanOpt,Spread,Settle,Maturity)
[Price,PriceTree] = optfloatbyhw( ___ ,Name,Value)

Description
[Price,PriceTree] = optfloatbyhw(HWTree,OptSpec,Strike,ExerciseDates,
AmericanOpt,Spread,Settle,Maturity) prices options on floating-rate notes from a Hull-White
interest rate tree. optfloatbyhw computes prices of options on vanilla floating-rate notes.

[Price,PriceTree] = optfloatbyhw( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Compute the Price of American and European Call Options on a Floating-Rate Note

Define the interest-rate term structure.

Rates = [0.03;0.034;0.038;0.04];
ValuationDate = 'Jan-1-2012';
StartDates = ValuationDate;
EndDates = {'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'; 'Jan-1-2016'};
Compounding = 1;

Create the RateSpec.

RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x1 double]
            Rates: [4x1 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: 734869
    ValuationDate: 734869
            Basis: 0
     EndMonthRule: 1

Build the HW tree using the following:
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VolDates = ['1-Jan-2013'; '1-Jan-2014'; '1-Jan-2015';'1-Jan-2016'];
VolCurve = 0.01;
AlphaDates = '01-01-2016';
AlphaCurve = 0.1;

HWVolSpec = hwvolspec(RateSpec.ValuationDate, VolDates, VolCurve,... 
            AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RateSpec.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVolSpec, RateSpec, HWTimeSpec)

HWT = struct with fields:
      FinObj: 'HWFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [734869 735235 735600 735965]
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}
     Connect: {[2]  [2 3 4]  [2 3 4 5 6]}
     FwdTree: {1x4 cell}

The floater instrument has a spread of 10, a period of one year, and matures on Jan-1-2016.

Spread = 10;
Settle = 'Jan-1-2012';
Maturity =  'Jan-1-2016';
Period = 1;

Define the option for the floating-rate note.

OptSpec = {'call'};
Strike = 95;
ExerciseDates = 'Jan-1-2016';
AmericanOpt = [0;1];

Compute the price of the call options.

Price= optfloatbyhw(HWT,  OptSpec, Strike, ExerciseDates,AmericanOpt,...
Spread, Settle, Maturity)

Price = 2×1

    4.2740
    5.3655

Input Arguments
HWTree — Interest-rate tree structure
binomial tree structure

Interest-rate tree specified as a structure by using hwtree.
Data Types: struct
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OptSpec — Definition of option
character vector | cell array of character vectors

Definition of option as 'call' or 'put' specified as a NINST-by-1 cell array of character vectors for
'call' or 'put'.
Data Types: cell | char

Strike — Option strike price values
nonnegative integer | vector of nonnegative integers

Option strike price values specified nonnegative integers using as NINST-by-NSTRIKES vector of
strike price values.
Data Types: single | double

ExerciseDates — Exercise date for option (European, Bermuda, or American)
serial date number | vector of serial date numbers | date character vector | cell array of date
character vectors

Exercise date for option (European, Bermuda, or American) specified as serial date numbers or date
character vectors using a NINST-by-NSTRIKES or NINST-by-2 vector of for the option exercise dates.

• If a European or Bermuda option, the ExerciseDates is a 1-by-1 (European) or 1-by-NSTRIKES
(Bermuda) vector of exercise dates. For a European option, there is only one ExerciseDate on
the option expiry date.

• If an American option, then ExerciseDates is a 1-by-2 vector of exercise date boundaries. The
option exercises on any date between or including the pair of dates on that row. If there is only
one non-NaN date, or if ExerciseDates is 1-by-1, the option exercises between the Settle date
and the single listed ExerciseDate.

Data Types: double | char | cell

AmericanOpt — Option type
scalar | vector of positive integers[0,1]

Option type specified as NINST-by-1 positive integer scalar flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: single | double

Spread — Number of basis points over the reference rate
nonnegative integer | vector of nonnegative integers

Number of basis points over the reference rate specified as a vector of nonnegative integers for the
number of instruments (NINST)-by-1).
Data Types: single | double

Settle — Settlement dates of floating-rate note
ValuationDate of HW tree (default) | serial date number | vector of serial date numbers | date
character vector | cell array of date character vectors
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Settlement dates of floating-rate note specified as serial date numbers or date character vectors
using a NINST-by-1 vector of dates.

Note The Settle date for every floating-rate note is set to the ValuationDate of the HW tree. The
floating-rate note argument Settle is ignored.

Data Types: double | cell | char

Maturity — Floating-rate note maturity date
serial date number | vector of serial date numbers | date character vector | cell array of date
character vectors

Floating-rate note maturity date specified as serial date numbers or date character vectors using a
NINST-by-1 vector of dates.
Data Types: double | cell | char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
[Price,PriceTree]=optfloatbyhw(HWTree,OptSpec,Strike,ExerciseDates,AmericanOp
t,Spread,Settle,Maturity,'FloatReset',4,'Basis',7)

FloatReset — Frequency of payments per year
1 (default) | positive integer from the set[1,2,3,4,6,12] | vector of positive integers from the set
[1,2,3,4,6,12]

Frequency of payments per year, specified as the comma-separated pair consisting of 'FloatReset'
and positive integers for the values [1,2,3,4,6,12] in a NINST-by-1 vector.

Note Payments on floating-rate notes (FRNs) are determined by the effective interest-rate between
reset dates. If the reset period for an FRN spans more than one tree level, calculating the payment
becomes impossible due to the recombining nature of the tree. That is, the tree path connecting the
two consecutive reset dates cannot be uniquely determined because there will be more than one
possible path for connecting the two payment dates.

Data Types: double

Basis — Day-count basis of the instrument
0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive integers of the
set [1...13]

Day-count basis of the instrument, specified as the comma-separated pair consisting of 'Basis' and
a positive integer using a NINST-by-1 vector. The Basis value represents the basis used when
annualizing the input forward-rate tree.
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• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Principal values
100 (default) | vector of nonnegative values | cell array of nonnegative values

Principal values, specified as the comma-separated pair consisting of 'Principal' and nonnegative
values using a NINST-by-1 vector or NINST-by-1 cell array of notional principal amounts. When using
a NINST-by-1 cell array, each element is a NumDates-by-2 cell array where the first column is dates
and the second column is associated principal amount. The date indicates the last day that the
principal value is valid.
Data Types: double | cell

Options — Structure containing derivatives pricing options
structure

Structure containing derivatives pricing options, specified as the comma-separated pair consisting of
'Options' and a structure obtained from using derivset.
Data Types: struct

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
nonnegative integer [0, 1] using a NINST-by-1 vector. This rule applies only when Maturity is an
end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: double
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Output Arguments
Price — Expected prices of the floating-rate note option at time 0
scalar | vector

Expected prices of the floating-rate note option at time 0 is returned as a scalar or an NINST-by-1
vector.

PriceTree — Structure of trees containing vectors of option prices at each node
tree structure

Structure of trees containing vectors of instrument prices and accrued interest and a vector of
observation times for each node returned as:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell array describes

how nodes in that level connect to the next. For a given tree level, there are NumNodes elements
in the vector, and they contain the index of the node at the next level that the middle branch
connects to. Subtracting 1 from that value indicates where the up-branch connects to, and adding
1 indicated where the down branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array contains the
up, middle, and down transition probabilities for each node of the level.

More About
Floating-Rate Note Options

A floating-rate note option is a put or call option on a floating-rate note.

Financial Instruments Toolbox supports three types of put and call options on floating-rate notes:

• American option — An option that you exercise any time until its expiration date.
• European option — An option that you exercise only on its expiration date.
• Bermuda option — A Bermuda option resembles a hybrid of American and European options; you

can only exercise it on predetermined dates, usually monthly.

For more information, see “Floating-Rate Note Options” on page 2-11.

See Also
hwtree | cfbyhw | capbyhw | swapbyhw | floorbyhw | floatbyhw | bondbyhw | instoptfloat

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Calibrating Hull-White Model Using Market Data” on page 2-92
“Floating-Rate Note Options” on page 2-11
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3
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“Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on page 1-
73

Introduced in R2013a
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optsensbysabr
Calculate option sensitivities using SABR model

Syntax
Sens = optsensbysabr(ZeroCurve,Alpha,Beta,Rho,Nu,Settle,ExerciseDate,
ForwardValue,Strike,OptSpec)
Sens = optsensbysabr( ___ ,Name,Value)

Description
Sens = optsensbysabr(ZeroCurve,Alpha,Beta,Rho,Nu,Settle,ExerciseDate,
ForwardValue,Strike,OptSpec) returns the sensitivities of an option value by using the SABR
stochastic volatility model.

Sens = optsensbysabr( ___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to the input arguments in the previous syntax.

Examples

Calculate the Sensitivity Values for an Interest-Rate Swaption

Define the interest rate and the model parameters.

SwapRate = 0.0357; 
Strike = 0.03; 
Alpha = 0.036; 
Beta = 0.5; 
Rho = -0.25; 
Nu = 0.35; 
Rates = 0.05;

Define the Settle, ExerciseDate, and OptSpec for an interest-rate swaption.

Settle = datenum('15-Sep-2013'); 
ExerciseDate = datenum('15-Sep-2015'); 
OptSpec = 'call';

Define the RateSpec for the interest-rate curve.

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
'EndDates', ExerciseDate, 'Rates', Rates, 'Compounding', -1, 'Basis', 1)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9048
            Rates: 0.0500
         EndTimes: 2
       StartTimes: 0
         EndDates: 736222
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       StartDates: 735492
    ValuationDate: 735492
            Basis: 1
     EndMonthRule: 1

Calculate the Delta and Vega sensitivity values for the interest-rate swaption.

[SABRDelta, SABRVega] = optsensbysabr(RateSpec, Alpha, Beta, Rho, Nu, Settle, ...
ExerciseDate, SwapRate, Strike, OptSpec, 'OutSpec',  {'Delta', 'Vega'})

SABRDelta = 0.7025

SABRVega = 0.0772

Calculate the Sensitivity Values for a Swaption Using the Shifted SABR Model

Define the interest rate and the model parameters.

SwapRate = 0.0002;
Strike = -0.001;  % -0.1% strike.
Alpha = 0.01;
Beta = 0.5;
Rho = -0.1;
Nu = 0.15;
Shift = 0.005;  % 0.5 percent shift
Rates = 0.0002;

Define the Settle, ExerciseDate, and OptSpec for the swaption.

Settle = datenum('1-Mar-2016');
ExerciseDate = datenum('1-Mar-2017');
OptSpec = 'call';

Define the RateSpec for the interest-rate curve.

RateSpec = intenvset('ValuationDate',Settle,'StartDates',Settle, ...
'EndDates',ExerciseDate,'Rates',Rates,'Compounding',-1,'Basis', 1)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9998
            Rates: 2.0000e-04
         EndTimes: 1
       StartTimes: 0
         EndDates: 736755
       StartDates: 736390
    ValuationDate: 736390
            Basis: 1
     EndMonthRule: 1

Calculate the Delta and Vega sensitivity values for the swaption.
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[ShiftedSABRDelta,ShiftedSABRVega] = optsensbysabr(RateSpec, ...
Alpha,Beta,Rho,Nu,Settle,ExerciseDate,SwapRate,Strike,OptSpec, ...
'OutSpec',{'Delta','Vega'},'Shift',Shift)

ShiftedSABRDelta = 0.9628

ShiftedSABRVega = 0.0060

Calculate the Sensitivity Values for an Interest-Rate Swaption with Normal (Bachelier)
Implied Volatility

This example shows how to use optsensbysabr to calculate sensitivities for an interest-rate
swaption using the Normal model for the case where the Beta parameter is > 0 and where Beta = 0.

For the case where the Beta parameter is > 0, select the Normal (Bachelier) implied volatility model
in optsensbysabr, specify the 'Model' name-value pair to 'normal'.

% Define the interest rate and the model parameters.

SwapRate = 0.025;
Strike = 0.02;
Alpha = 0.044;
Beta = 0.5;
Rho = -0.21;
Nu = 0.31;
Rates = 0.028;

% Define the Settle, ExerciseDate, and OptSpec for the swaption.

Settle = datenum('7-Mar-2018');
ExerciseDate = datenum('7-Mar-2020');
OptSpec = 'call';

% Define the RateSpec for the interest-rate curve.

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
    'EndDates', ExerciseDate, 'Rates', Rates, 'Compounding', -1, 'Basis', 1);

% Calculate the Delta and Vega sensitivity values for the swaption. Set the
% 'Model' name-value pair to 'normal' in order to select the Normal
% (Bachelier) implied volatility model.

[SABRDelta, SABRVega] = optsensbysabr(RateSpec, Alpha, Beta, Rho, Nu, ...
    Settle, ExerciseDate, SwapRate, Strike, OptSpec, ...
    'OutSpec',  {'Delta', 'Vega'}, 'Model', 'normal')

SABRDelta = 0.7171

SABRVega = 0.0686

Calculate Sensitivities for a Swaption with Normal Implied Volatility Using the Normal SABR
Model

When the Beta parameter is set to zero, the SABR model becomes the Normal SABR model. Negative
interest rates are allowed when the Normal SABR model is used in combination with Normal
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(Bachelier) implied volatility. To select the Normal (Bachelier) implied volatility model in
optsensbysabr, specify the 'Model' name-value pair to 'normal'.

% Define the interest rate and the model parameters. 

SwapRate = -0.00254;
Strike = -0.002;
Alpha = 0.0047;
Beta = 0;  % Set the Beta parameter to zero to use the Normal SABR model
Rho = -0.20;
Nu = 0.28;
Rates = 0.0001;

% Define the Settle, ExerciseDate, and OptSpec for the swaption.

Settle = datenum('11-Apr-2018');
ExerciseDate = datenum('11-Apr-2019');
OptSpec = 'call';

% Define the RateSpec for the interest-rate curve.

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
    'EndDates', ExerciseDate, 'Rates', Rates, 'Compounding', -1, 'Basis', 1);

% Calculate the Delta and Vega sensitivity values for the swaption. Set the
% 'Model' name-value pair to 'normal' in order to select the Normal
% (Bachelier) implied volatility model.

[SABRDelta, SABRVega] = optsensbysabr(RateSpec, Alpha, Beta, Rho, Nu, ...
    Settle, ExerciseDate, SwapRate, Strike, OptSpec, ...
    'OutSpec',  {'Delta', 'Vega'}, 'Model', 'normal')

SABRDelta = 0.4644

SABRVega = 0.3987

Input Arguments
ZeroCurve — Annualized interest-rate term structure for zero-coupon bonds
structure

Annualized interest-rate term structure for zero-coupon bonds, specified by using the RateSpec
obtained from intenvset or an IRDataCurve with multiple rates using the IRDataCurve
constructor.
Data Types: struct

Alpha — Current SABR volatility
scalar numeric

Current SABR volatility, specified as a scalar numeric.
Data Types: double

Beta — SABR constant elasticity of variance (CEV) exponent
scalar numeric

SABR CEV exponent, specified as a scalar numeric.
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Data Types: double

Rho — Correlation between forward value and volatility
scalar numeric

Correlation between forward value and volatility, specified as a scalar numeric.
Data Types: double

Nu — Volatility of volatility
scalar numeric

Volatility of volatility, specified as a scalar numeric.
Data Types: double

Settle — Settlement date
scalar for serial nonnegative date number | scalar for date character vector

Settlement date, specified as a scalar using a serial nonnegative date number or date character
vector.
Data Types: double | char

ExerciseDate — Option exercise date
scalar for serial nonnegative date number | scalar for date character vector

Option exercise date, specified as a scalar using a serial nonnegative date number or date character
vector.
Data Types: double | char

ForwardValue — Current forward value of underlying asset
scalar numeric | vector

Current forward value of the underlying asset, specified as a scalar numeric or vector of size NINST-
by-1.
Data Types: double

Strike — Option strike price values
scalar numeric | vector

Option strike price values, specified as a scalar numeric or a vector of size NINST-by-1.
Data Types: double

OptSpec — Definition of option
character vector with value of 'call' or 'put'

Definition of the option, specified as 'call' or 'put' using a character vector.
Data Types: char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
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Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: ModifiedSABRDelta =
optsensbysabr(RateSpec,Alpha,Beta,Rho,Nu,Settle,ExerciseDate,ForwardValue,Str
ike,OptSpec,'OutSpec','ModifiedDelta')

OutSpec — Sensitivity outputs
'Delta' (default) | character vector with values 'Delta', 'Vega', 'ModifiedDelta',
'ModifiedVega', 'dSigmadF', 'dSigmadAlpha' | cell array of character vectors with values
'Delta', 'Vega', 'ModifiedDelta', 'ModifiedVega', 'dSigmadF', 'dSigmadAlpha'

Sensitivity outputs, specified as the comma-separated pair consisting of 'OutSpec' and an NOUT-
by-1 or 1-by-NOUT cell array of character vectors with possible values of 'Delta', 'Vega',
'ModifiedDelta', 'ModifiedVega', 'dSigmadF', and 'dSigmadAlpha' where:

• 'Delta' is SABR Delta by Hagan et al. (2002).
• 'Vega' is SABR Vega by Hagan et al. (2002).
• 'ModifiedDelta' is SABR Delta modified by Bartlett (2006).
• 'ModifiedVega' is SABR Vega modified by Bartlett (2006).
• 'dSigmadF' is the sensitivity of implied volatility with respect to the underlying current forward

value, F. The implied volatility type depends on Shift and Model.
• 'dSigmadAlpha' is the sensitivity of implied volatility with respect to the Alpha parameter. The

implied volatility type depends on Shift and Model.

Example: OutSpec =
{'Delta','Vega','ModifiedDelta','ModifiedVega','dSigmadF','dSigmadAlpha'}

Data Types: char | cell

Shift — Shift in decimals for shifted SABR model
0 (no shift) (default) | scalar positive decimal

Shift in decimals for the shifted SABR model (to be used with the Shifted Black model), specified as
the comma-separated pair consisting of 'Shift' and a scalar positive decimal value. Set this
parameter to a positive shift in decimals to add a positive shift to ForwardValue and Strike, which
effectively sets a negative lower bound for ForwardValue and Strike. For example, a Shift value
of 0.01 is equal to a 1% positive shift.

Note If the Model is set to 'normal', the Shift parameter must be 0.

Data Types: double

Model — Model used by the implied volatility sigma
'lognormal' (default) | character vector with value 'lognormal' or 'normal' | string with value
"lognormal" or "normal"

Model used by the implied volatility sigma, specified as the comma-separated pair consisting of
'Model' and a character vector with a value of 'lognormal' or 'normal', or a string with a value
of "lognormal" or "normal".
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Note The setting for Model affects the interpretation of the implied volatility “sigma”. Depending on
the setting for Model, the “sigma” has the following interpretations:

• If Model is 'lognormal' (default), “sigma” can be either Implied Black (no shift) or Implied
Shifted Black volatility.

• If Model is 'normal', “sigma” is the Implied Normal (Bachelier) volatility and Shift must be
zero.

Data Types: char | string

Output Arguments
Sens — Sensitivity values
array

Sensitivity values, returned as an NINST-by-1 array as defined by the OutSpec.

Algorithms
In the SABR model, an option with value V is defined by the modified Black formula B, where σB is
the SABR implied Black volatility.

V = B(F, K, T, σB(α, β, ρ, ν, F, K, T))

The Delta and Vega sensitivities under the SABR model are expressed in terms of partial derivatives
in the original paper by Hagan (2002).

SABR Delta = ∂V
∂F = ∂B

∂F + ∂B
∂σB

∂σB
∂F

SABR Vega = ∂V
∂α = ∂B

∂σB

∂σB
∂α

Later, Bartlett (2006) made better use of the model dynamics by incorporating the correlated changes
between F and α

Modified SABR Delta = ∂B
∂F + ∂B

∂σB

∂σB
∂F +

∂σB
∂α

ρυ
Fβ

Modified SABR Vega = ∂B
∂σB

∂σB
∂α +

∂σB
∂F

ρFβ

υ

where ∂B∂F  is the classic Black Delta and ∂B∂σB
 is the classic Black Vega. The Black implied volatility

σB is computed internally by calling blackvolbysabr, while its partial derivatives 
∂σB
∂F  and 

∂σB
∂α  are

computed using closed-form expressions by optsensbysabr.

Similar expressions apply to the implied Normal volatility σN. For more information, see
normalvolbysabr.
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optstockbybaw
Calculate American options prices using Barone-Adesi and Whaley option pricing model

Syntax
Price = optstockbybaw(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike)

Description
Price = optstockbybaw(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike)
calculates American options prices using the Barone-Adesi and Whaley option pricing model.

Examples

Compute American Option Prices Using the Barone-Adesi and Whaley Option Pricing Model

Consider an American call option with an exercise price of $120. The option expires on Jan 1, 2018.
The stock has a volatility of 14% per annum, and the annualized continuously compounded risk-free
rate is 4% per annum as of Jan 1, 2016. Using this data, calculate the price of the American call,
assuming the price of the stock is $125 and pays a dividend of 2%.

StartDate  = 'Jan-1-2016';
EndDate = 'jan-1-2018';
Basis = 1;
Compounding = -1;
Rates = 0.04;

Define the RateSpec.

RateSpec = intenvset('ValuationDate',StartDate,'StartDate',StartDate,'EndDate',EndDate, ...
'Rates',Rates,'Basis',Basis,'Compounding',Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9231
            Rates: 0.0400
         EndTimes: 2
       StartTimes: 0
         EndDates: 737061
       StartDates: 736330
    ValuationDate: 736330
            Basis: 1
     EndMonthRule: 1

Define the StockSpec.

Dividend = 0.02;
AssetPrice = 125;
Volatility = 0.14;
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StockSpec = stockspec(Volatility,AssetPrice,'Continuous',Dividend)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1400
         AssetPrice: 125
       DividendType: {'continuous'}
    DividendAmounts: 0.0200
    ExDividendDates: []

Define the American option.

OptSpec = 'call';
Strike = 120;
Settle = 'Jan-1-2016';
Maturity = 'jan-1-2018';

Compute the price for the American option.

Price = optstockbybaw(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike)

Price = 14.5180

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification, see
stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities the
price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is
StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement date
serial date number | date character vector | datetime object

Settlement date for the American option, specified as a NINST-by-1 matrix using a serial date number,
a date character vector, or a datetime object.
Data Types: double | char | datetime

Maturity — Maturity date
serial date number | date character vector | datetime object
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Maturity date for the American option, specified as a NINST-by-1 matrix using a serial date number, a
date character vector, or a datetime object.
Data Types: double | char | datetime

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors with values 'call'
or 'put' | string array with values 'call' or 'put'

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of character vectors
or string arrays with values 'call' or 'put'.
Data Types: char | cell | string

Strike — American option strike price value
nonnegative scalar | nonnegative vector

American Option strike price value, specified as a nonnegative scalar or NINST-by-1 matrix of strike
price values. Each row is the schedule for one option.
Data Types: single | double

Output Arguments
Price — Expected prices for American options
vector

Expected prices for American options, returned as a NINST-by-1 vector.

More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.

References
[1] Barone-Aclesi, G. and Robert E. Whaley. “Efficient Analytic Approximation of American Option

Values.” The Journal of Finance. Volume 42, Issue 2 (June 1987), 301–320.
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optstocksensbybaw
Calculate American options prices and sensitivities using Barone-Adesi and Whaley option pricing
model

Syntax
PriceSens = optstocksensbybaw(RateSpec,StockSpec,Settle,Maturity,OptSpec,
Strike)
PriceSens = optstocksensbybaw( ___ ,Name,Value)

Description
PriceSens = optstocksensbybaw(RateSpec,StockSpec,Settle,Maturity,OptSpec,
Strike) calculates American options prices using the Barone-Adesi and Whaley option pricing
model.

PriceSens = optstocksensbybaw( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Compute an American Option Price and Sensitivities Using the Barone-Adesi and Whaley
Option Pricing Model

Consider an American call option with an exercise price of $120. The option expires on Jan 1, 2018.
The stock has a volatility of 14% per annum, and the annualized continuously compounded risk-free
rate is 4% per annum as of Jan 1, 2016. Using this data, calculate the price of the American call,
assuming the price of the stock is $125 and pays a dividend of 2%.

StartDate  = 'Jan-1-2016';
EndDate = 'jan-1-2018';
Basis = 1;
Compounding = -1;
Rates = 0.04;

Define the RateSpec.

RateSpec = intenvset('ValuationDate',StartDate,'StartDate',StartDate,'EndDate',EndDate, ...
'Rates',Rates,'Basis',Basis,'Compounding',Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9231
            Rates: 0.0400
         EndTimes: 2
       StartTimes: 0
         EndDates: 737061
       StartDates: 736330
    ValuationDate: 736330
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            Basis: 1
     EndMonthRule: 1

Define the StockSpec.

Dividend = 0.02;
AssetPrice = 125;
Volatility = 0.14;

StockSpec = stockspec(Volatility,AssetPrice,'Continuous',Dividend)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1400
         AssetPrice: 125
       DividendType: {'continuous'}
    DividendAmounts: 0.0200
    ExDividendDates: []

Define the American option.

OptSpec = 'call';
Strike = 120;
Settle = 'Jan-1-2016';
Maturity = 'jan-1-2018';

Compute the price and sensitivities for the American option.

OutSpec = {'price';'delta';'theta'};

[Price,Delta,Theta] = optstocksensbybaw(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,'OutSpec',OutSpec)

Price = 14.5180

Delta = 0.6672

Theta = -3.1861

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification, see
stockspec.
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stockspec handles several types of underlying assets. For example, for physical commodities the
price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is
StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement date
serial date number | date character vector | datetime object

Settlement date for the American option, specified as a NINST-by-1 matrix using a serial date number,
a date character vector, or a datetime object.
Data Types: double | char | datetime

Maturity — Maturity date
serial date number | date character vector | datetime object

Maturity date for the American option, specified as a NINST-by-1 matrix using a serial date number, a
date character vector, or a datetime object.
Data Types: double | char | datetime

OptSpec — Definition of option
character vector with values 'call' or 'put' | string array with values 'call' or 'put'

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of character vectors
or string arrays with values 'call' or 'put'.
Data Types: char | string

Strike — American option strike price value
nonnegative scalar | nonnegative vector

American option strike price value, specified as a nonnegative scalar or NINST-by-1 matrix of strike
price values. Each row is the schedule for one option.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,Delta,Theta] =
optstocksensbybaw(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,'OutSpec'
,OutSpec)

OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma', 'Vega',
'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with values 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a NOUT- by-1 or
a 1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.
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OutSpec = {'All'} specifies that the output is Delta, Gamma, Vega, Lambda, Rho, Theta, and
Price, in that order. This is the same as specifying OutSpec to include each sensitivity.
Example: OutSpec = {'delta','gamma','vega','lambda','rho','theta','price'}
Data Types: char | cell

Output Arguments
PriceSens — Expected prices or sensitivities for American options
matrix

Expected prices or sensitivities for American options, returned as a NINST-by-1 matrix.

Note All sensitivities are evaluated by computing a discrete approximation of the partial derivative.
This means that the option is revalued with a fractional change for each relevant parameter. The
change in the option value divided by the increment is the approximated sensitivity value.

More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.

References
[1] Barone-Aclesi, G. and Robert E. Whaley. “Efficient Analytic Approximation of American Option

Values.” The Journal of Finance. Volume 42, Issue 2 (June 1987), 301–320.

[2] Haug, E. The Complete Guide to Option Pricing Formulas. Second Edition. McGraw-Hill
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“Vanilla Option” on page 3-27
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optstockbybjs
Price American options using Bjerksund-Stensland 2002 option pricing model

Syntax
Price = optstockbybjs(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike)

Description
Price = optstockbybjs(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike)
computes American option prices with continuous dividend yield using the Bjerksund-Stensland 2002
option pricing model.

Note optstockbybjs computes prices of American options with continuous dividend yield using the
Bjerksund-Stensland option pricing model.

Examples

Compute the American Option Prices With Continuous Dividend Yield Using the Bjerksund-
Stensland 2002 Option Pricing Model

This example shows how to compute the American option prices with continuous dividend yield using
the Bjerksund-Stensland 2002 option pricing model. Consider two American stock options (a call and
a put) with an exercise price of $100. The options expire on April 1, 2008. Assume the underlying
stock pays a continuous dividend yield of 4% as of January 1, 2008. The stock has a volatility of 20%
per annum and the annualized continuously compounded risk-free rate is 8% per annum. Using this
data, calculate the price of the American call and put, assuming the following current prices of the
stock: $90 (for the call) and $120 (for the put).

Settle = 'Jan-1-2008';
Maturity = 'April-1-2008';
Strike = 100;
AssetPrice = [90;120];
DivYield = 0.04;
Rate = 0.08;
Sigma = 0.20;

% define the RateSpec and StockSpec
StockSpec = stockspec(Sigma, AssetPrice, {'continuous'}, DivYield);

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rate, 'Compounding', -1);

% define the option type
OptSpec = {'call'; 'put'};

Price = optstockbybjs(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)

Price = 2×1
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    0.8420
    0.1108

The first element of the Price vector represents the price of the call ($0.84); the second element
represents the price of the put option ($0.11).

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification, see
stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities the
price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is
StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement or trade date
serial date number | date character vector

Settlement or trade date, specified as serial date number or date character vector using a NINST-by-1
vector.
Data Types: double | char

Maturity — Maturity date for option
serial date number | date character vector

Maturity date for option, specified as serial date number or date character vector using a NINST-by-1
vector.
Data Types: double | char

OptSpec — Definition of option
cell array of character vectors with values 'call' or 'put'

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of character vectors
with values 'call' or 'put'.
Data Types: char | cell

Strike — Option strike price value
nonnegative vector
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Option strike price value, specified as a nonnegative NINST-by-1 vector.
Data Types: double

Output Arguments
Price — Expected option prices
vector

Expected option prices, returned as a NINST-by-1 vector.
Data Types: double

More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.

References
[1] Bjerksund, P. and G. Stensland. “Closed-Form Approximation of American Options.” Scandinavian

Journal of Management. Vol. 9, 1993, Suppl., pp. S88–S99.

[2] Bjerksund, P. and G. Stensland. “Closed Form Valuation of American Options.” Discussion paper,
2002.

See Also
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Topics
“Calibrate the SABR Model” on page 2-33
“Price a Swaption Using the SABR Model” on page 2-38
“Vanilla Option” on page 3-27
“Supported Interest-Rate Instrument Functions” on page 2-3
“Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument Objects” on
page 1-82
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optstockbyblk
Price options on futures and forwards using Black option pricing model

Syntax
Price = optstockbyblk(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike)
Price = optstockbyblk( ___ ,Name,Value)

Description
Price = optstockbyblk(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike)
computes option prices on futures or forward using the Black option pricing model.

Note optstockbyblk calculates option prices on futures and forwards. If ForwardMaturity is not
passed, the function calculates prices of future options. If ForwardMaturity is passed, the function
computes prices of forward options. This function handles several types of underlying assets, for
example, stocks and commodities. For more information on the underlying asset specification, see
stockspec.

Price = optstockbyblk( ___ ,Name,Value) adds an optional name-value pair argument for
ForwardMaturity to compute option prices on forwards using the Black option pricing model.

Examples

Compute Option Prices on Futures Using the Black Option Pricing Model

This example shows how to compute option prices on futures using the Black option pricing model.
Consider two European call options on a futures contract with exercise prices of $20 and $25 that
expire on September 1, 2008. Assume that on May 1, 2008 the contract is trading at $20, and has a
volatility of 35% per annum. The risk-free rate is 4% per annum. Using this data, calculate the price
of the call futures options using the Black model.

Strike = [20; 25];
AssetPrice = 20;
Sigma = .35;
Rates = 0.04;
Settle = 'May-01-08';
Maturity = 'Sep-01-08';

% define the RateSpec and StockSpec
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
 'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1);

StockSpec = stockspec(Sigma, AssetPrice);

% define the call options
OptSpec = {'call'};
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Price = optstockbyblk(RateSpec, StockSpec, Settle, Maturity,...
OptSpec, Strike)

Price = 2×1

    1.5903
    0.3037

Compute Option Prices on a Forward

This example shows how to compute option prices on forwards using the Black pricing model.
Consider two European options, a call and put on the Brent Blend forward contract that expires on
January 1, 2015. The options expire on October 1, 2014 with an exercise price of $200 and $90
respectively. Assume that on January 1, 2014 the forward price is at $107, the annualized
continuously compounded risk-free rate is 3% per annum and volatility is 28% per annum. Using this
data, compute the price of the options.

Define the RateSpec.

ValuationDate = 'Jan-1-2014';
EndDates = 'Jan-1-2015';
Rates = 0.03;
Compounding = -1;
Basis = 1;
RateSpec  = intenvset('ValuationDate', ValuationDate, ...
'StartDates', ValuationDate, 'EndDates', EndDates, 'Rates', Rates,....
'Compounding', Compounding, 'Basis', Basis')

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9704
            Rates: 0.0300
         EndTimes: 1
       StartTimes: 0
         EndDates: 735965
       StartDates: 735600
    ValuationDate: 735600
            Basis: 1
     EndMonthRule: 1

Define the StockSpec.

AssetPrice = 107;
Sigma = 0.28;
StockSpec  = stockspec(Sigma, AssetPrice);

Define the options.

Settle = 'Jan-1-2014';
Maturity = 'Oct-1-2014';  %Options maturity
Strike = [200;90];
OptSpec = {'call'; 'put'};
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Price the forward call and put options.

ForwardMaturity = 'Jan-1-2015';  % Forward contract maturity
Price = optstockbyblk(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike,...
'ForwardMaturity', ForwardMaturity)

Price = 2×1

    0.0535
    3.2111

Compute the Option Price on a Future

Consider a call European option on the Crude Oil Brent futures. The option expires on December 1,
2014 with an exercise price of $120. Assume that on April 1, 2014 futures price is at $105, the
annualized continuously compounded risk-free rate is 3.5% per annum and volatility is 22% per
annum. Using this data, compute the price of the option.

Define the RateSpec.

ValuationDate = 'January-1-2014';
EndDates = 'January-1-2015';
Rates = 0.035;
Compounding = -1;
Basis = 1;
RateSpec  = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate,...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis')

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9656
            Rates: 0.0350
         EndTimes: 1
       StartTimes: 0
         EndDates: 735965
       StartDates: 735600
    ValuationDate: 735600
            Basis: 1
     EndMonthRule: 1

Define the StockSpec.

AssetPrice = 105;
Sigma = 0.22;
StockSpec  = stockspec(Sigma, AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2200
         AssetPrice: 105
       DividendType: []
    DividendAmounts: 0
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    ExDividendDates: []

Define the option.

Settle = 'April-1-2014';
Maturity = 'Dec-1-2014'; 
Strike = 120;
OptSpec = {'call'};

Price the futures call option.

Price = optstockbyblk(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)

Price = 2.5847

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification, see
stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities the
price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is
StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement or trade date
serial date number | date character vector

Settlement or trade date, specified as serial date number or date character vector using a NINST-by-1
vector.
Data Types: double | cell

Maturity — Maturity date for option
serial date number | date character vector

Maturity date for option, specified as serial date number or date character vector using a NINST-by-1
vector.
Data Types: double | cell

OptSpec — Definition of option
cell array of character vectors with values 'call' or 'put'
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Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of character vectors
with values 'call' or 'put'.
Data Types: cell

Strike — Option strike price value
nonnegative vector

Option strike price value, specified as a nonnegative NINST-by-1 vector.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Price =
optstockbyblk(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,'ForwardMatur
ity',ForwardMaturity)

ForwardMaturity — Maturity date or delivery date of forward contract
Maturity of option (default) | serial date number | date character vector

Maturity date or delivery date of forward contract, specified as the comma-separated pair consisting
of 'ForwardMaturity' and a NINST-by-1 vector using serial date numbers or date character
vectors.
Data Types: double | cell

Output Arguments
Price — Expected option prices
vector

Expected option prices, returned as a NINST-by-1 vector.

More About
Futures Option

A futures option is a standardized contract between two parties to buy or sell a specified asset of
standardized quantity and quality for a price agreed upon today (the futures price) with delivery and
payment occurring at a specified future date, the delivery date.

The futures contracts are negotiated at a futures exchange, which acts as an intermediary between
the two parties. The party agreeing to buy the underlying asset in the future, the "buyer" of the
contract, is said to be "long," and the party agreeing to sell the asset in the future, the "seller" of the
contract, is said to be "short."

A futures contract is the delivery of item J at time T and:
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• There exists in the market a quoted price F(t, T), which is known as the futures price at time t for
delivery of J at time T.

• The price of entering a futures contract is equal to zero.
• During any time interval [t,s], the holder receives the amount F(s, T)− F(t, T) (this reflects

instantaneous marking to market).
• At time T, the holder pays F(T, T) and is entitled to receive J. Note that F(T, T) should be the spot

price of J at time T.

For more information, see “Futures Option” on page 3-32.

Forwards Option

A forwards option is a non-standardized contract between two parties to buy or to sell an asset at a
specified future time at a price agreed upon today.

The buyer of a forwards option contract has the right to hold a particular forward position at a
specific price any time before the option expires. The forwards option seller holds the opposite
forward position when the buyer exercises the option. A call option is the right to enter into a long
forward position and a put option is the right to enter into a short forward position. A closely related
contract is a futures contract. A forward is like a futures in that it specifies the exchange of goods for
a specified price at a specified future date.

The payoff for a forwards option, where the value of a forward position at maturity depends on the
relationship between the delivery price (K) and the underlying price (ST) at that time, is:

• For a long position: fT = ST − K
• For a short position: fT = K − ST

For more information, see “Forwards Option” on page 3-31.

See Also
impvbyblk | intenvset | optstocksensbyblk | stockspec

Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-79
“Pricing Using the Black Model” on page 3-83
“Forwards Option” on page 3-31
“Futures Option” on page 3-32
“Black Model” on page 3-80
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2008b
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optstockbybls
Price options using Black-Scholes option pricing model

Syntax
Price = optstockbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike)

Description
Price = optstockbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike)
returns option prices using the Black-Scholes option pricing model.

Note When using StockSpec with optstockbybls, you can modify StockSpec to handle other
types of underliers when pricing instruments that use the Black-Scholes model.

When pricing Futures (Black model), enter the following in StockSpec:

DivType = 'Continuous'; 
DivAmount = RateSpec.Rates;

For example, see “Compute Option Prices Using the Black-Scholes Option Pricing Model” on page 11-
1502.

When pricing Foreign Currencies (Garman-Kohlhagen model), enter the following in StockSpec:

DivType = 'Continuous'; 
DivAmount = ForeignRate; 

where ForeignRate is the continuously compounded, annualized risk free interest rate in the
foreign country. For example, see “Compute Option Prices on Foreign Currencies Using the Garman-
Kohlhagen Option Pricing Model” on page 11-1503.

Examples

Compute Option Prices Using the Black-Scholes Option Pricing Model

This example shows how to compute option prices using the Black-Scholes option pricing model.
Consider two European options, a call and a put, with an exercise price of $29 on January 1, 2008.
The options expire on May 1, 2008. Assume that the underlying stock for the call option provides a
cash dividend of $0.50 on February 15, 2008. The underlying stock for the put option provides a
continuous dividend yield of 4.5% per annum. The stocks are trading at $30 and have a volatility of
25% per annum. The annualized continuously compounded risk-free rate is 5% per annum. Using this
data, compute the price of the options using the Black-Scholes model.

Strike = 29;
AssetPrice = 30;
Sigma = .25;
Rates = 0.05;
Settle = 'Jan-01-2008';
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Maturity = 'May-01-2008';

% define the RateSpec and StockSpec
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates',...
Maturity, 'Rates', Rates, 'Compounding', -1);

DividendType = {'cash';'continuous'};
DividendAmounts = [0.50; 0.045];
ExDividendDates = {'Feb-15-2008';NaN};

StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts,...
ExDividendDates);

OptSpec = {'call'; 'put'};

Price = optstockbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)

Price = 2×1

    2.2030
    1.2025

Compute Option Prices on Foreign Currencies Using the Garman-Kohlhagen Option Pricing
Model

This example shows how to compute option prices on foreign currencies using the Garman-Kohlhagen
option pricing model. Consider a European put option on a currency with an exercise price of $0.50
on October 1, 2015. The option expires on June 1, 2016. Assume that the current exchange rate is
$0.52 and has a volatility of 12% per annum. The annualized continuously compounded domestic risk-
free rate is 4% per annum and the foreign risk-free rate is 8% per annum. Using this data, compute
the price of the option using the Garman-Kohlhagen model.

Settle = 'October-01-2015';
Maturity = 'June-01-2016';
AssetPrice = 0.52;
Strike = 0.50;
Sigma = .12;
Rates = 0.04;
ForeignRate = 0.08;

Define the RateSpec.

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates',...
Maturity, 'Rates', Rates, 'Compounding', -1)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9737
            Rates: 0.0400
         EndTimes: 0.6667
       StartTimes: 0
         EndDates: 736482
       StartDates: 736238
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    ValuationDate: 736238
            Basis: 0
     EndMonthRule: 1

Define the StockSpec.

DividendType = 'Continuous';
DividendAmounts = ForeignRate;

StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1200
         AssetPrice: 0.5200
       DividendType: {'continuous'}
    DividendAmounts: 0.0800
    ExDividendDates: []

Price the European put option.

OptSpec = {'put'};
Price = optstockbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)

Price = 0.0162

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification, see
stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities the
price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is
StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement or trade date
serial date number | date character vector

Settlement or trade date, specified as serial date number or date character vector using a NINST-by-1
vector.
Data Types: double | char
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Maturity — Maturity date for option
serial date number | date character vector

Maturity date for option, specified as serial date number or date character vector using a NINST-by-1
vector.
Data Types: double | char

OptSpec — Definition of option
cell array of character vectors with values 'call' or 'put'

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of character vectors
with values 'call' or 'put'.
Data Types: char | cell

Strike — Option strike price value
nonnegative vector

Option strike price value, specified as a nonnegative NINST-by-1 vector.
Data Types: double

Output Arguments
Price — Expected option prices
vector

Expected option prices, returned as a NINST-by-1 vector.
Data Types: double

More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.
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See Also
impvbybls | intenvset | optstocksensbybls | stockspec

Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-79
“Pricing European Call Options Using Different Equity Models” on page 3-88
“Pricing Using the Black-Scholes Model” on page 3-82
“Vanilla Option” on page 3-27
“Supported Equity Derivative Functions” on page 3-19
“Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument Objects” on
page 1-82

Introduced in R2008b
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optstockbycrr
Price stock option from Cox-Ross-Rubinstein tree

Syntax
[Price,PriceTree] = optstockbycrr(CRRTree,OptSpec,Strike,Settle,
ExerciseDates)
[Price,PriceTree] = optstockbycrr( ___ ,AmericanOpt)

Description
[Price,PriceTree] = optstockbycrr(CRRTree,OptSpec,Strike,Settle,
ExerciseDates) returns the price of a European, Bermuda, or American stock option from a Cox-
Ross-Rubinstein tree.

[Price,PriceTree] = optstockbycrr( ___ ,AmericanOpt) adds an optional argument for
AmericanOpt.

Examples

Price an American Stock Option Using a CRR Binomial Tree

This example shows how to price an American stock option using a CRR binomial tree by loading the
file deriv.mat, which provides CRRTree. The CRRTree structure contains the stock specification
and time information needed to price the American option.

load deriv.mat;

OptSpec = 'Call';
Strike = 105;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2005';
AmericanOpt = 1;

Price = optstockbycrr(CRRTree, OptSpec, Strike, Settle, ... 
ExerciseDates, AmericanOpt)

Price = 8.2863

Price a Bermudan Stock Option Using a CRR Binomial Tree

Load the file deriv.mat, which provides CRRTree. The CRRTree structure contains the stock
specification and time information needed to price the Bermudan option.

load deriv.mat;

% Option
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OptSpec = 'Call';
Strike = [110,111,112,113]

Strike = 1×4

   110   111   112   113

Settle = '01-Jan-2003';
ExerciseDatesBerm={'01-Jan-2004', '01-Jan-2005','01-Jan-2006','01-Jan-2007'};

Price the Bermudan option.

Price = optstockbycrr(CRRTree, OptSpec, Strike, Settle, ExerciseDatesBerm)

Price = 11.6017

Input Arguments
CRRTree — Stock tree structure
structure

Stock tree structure, specified by using crrtree.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'

Definition of option, specified as 'call' or 'put' using a NINST-by-1 cell array of character vectors.
Data Types: char | cell

Strike — Option strike price values
nonnegative integer

Option strike price value, specified with a NINST-by-1 or NINST-by-NSTRIKES depending on the
option type:

• For a European option, use a NINST-by-1 vector of strike prices.
• For a Bermuda option, use aNINST-by-NSTRIKES matrix of strike prices. Each row is the schedule

for one option. If an option has fewer than NSTRIKES exercise opportunities, the end of the row is
padded with NaNs.

• For an American option, use a NINST-by-1 of strike prices.

Note The interpretation of the Strike and ExerciseDates arguments depends upon the setting of
the AmericanOpt argument. If AmericanOpt = 0, NaN, or is unspecified, the option is a European
or Bermuda option. If AmericanOpt = 1, the option is an American option.

Data Types: double

Settle — Settlement date or trade date
serial date number | date character vector
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Settlement date or trade date, specified as a NINST-by-1 vector of date character vectors or serial
date numbers.

Note The Settle date for every option is set to the ValuationDate of the stock tree. The option
argument Settle is ignored.

Data Types: char | double

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a NINST-by-1,NINST-by-2, or NINST-by-NSTRIKES using serial
date numbers or date character vectors, depending on the option type:

• For a European option, use a NINST-by-1 vector of dates. Each row is the schedule for one option.
For a European option, there is only one ExerciseDates on the option expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKES vector of dates. Each row is the schedule for
one option.

• For an American option, use a NINST-by-2 vector of exercise date boundaries. The option can be
exercised on any date between or including the pair of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is a NINST-by-1 vector, the option can be exercised between
ValuationDate of the stock tree and the single listed ExerciseDates.

Note The interpretation of the Strike and ExerciseDates arguments depends upon the setting of
the AmericanOpt argument. If AmericanOpt = 0, NaN, or is unspecified, the option is a European
or Bermuda option. If AmericanOpt = 1, the option is an American option.

Data Types: double | char

AmericanOpt — Option type
0 European or Bermuda (default) | integer with values of 0 or 1

(Optional) Option type, specified as NINST-by-1 vector of integer flags with values:

• 0 — European or Bermuda
• 1 — American

Data Types: single | double

Output Arguments
Price — Expected price of option at time 0
vector

Expected price of the vanilla option at time 0, returned as a NINST-by-1 vector.

PriceTree — Structure containing trees of vectors of instrument prices for each node
structure
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Structure containing trees of vectors of instrument prices and a vector of observation times for each
node. Values are:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.
• PriceTree.dObs contains the observation dates.

More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.

See Also
crrtree | instoptstock

Topics
“Computing Prices Using CRR” on page 3-65
“Examining Output from the Pricing Functions” on page 3-70
“Computing Equity Instrument Sensitivities” on page 3-75
“Graphical Representation of Equity Derivative Trees” on page 3-73
“Vanilla Option” on page 3-27
“Computing Instrument Prices” on page 3-64
“Supported Equity Derivative Functions” on page 3-19
“Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument Objects” on
page 1-82

Introduced before R2006a

11 Functions

11-1510



optstockbyeqp
Price stock option from Equal Probabilities binomial tree

Syntax
[Price,PriceTree] = optstockbyeqp(EQPTree,OptSpec,Strike,Settle,
ExerciseDates)
[Price,PriceTree] = optstockbyeqp( ___ ,AmericanOpt)

Description
[Price,PriceTree] = optstockbyeqp(EQPTree,OptSpec,Strike,Settle,
ExerciseDates) returns the price of a European, Bermuda, or American stock option from an Equal
Probabilities binomial tree.

[Price,PriceTree] = optstockbyeqp( ___ ,AmericanOpt) adds an optional argument for
AmericanOpt.

Examples

Price an American Stock Option Using an EQP Equity Tree

This example shows how to price an American stock option using an EQP equity tree by loading the
file deriv.mat, which provides EQPTree. The EQPTree structure contains the stock specification
and time information needed to price the American option.

load deriv.mat

OptSpec = 'Call';
Strike = 105;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2006';
AmericanOpt = 1;

Price = optstockbyeqp(EQPTree, OptSpec, Strike, Settle, ... 
ExerciseDates, AmericanOpt)

Price = 12.2632

Price a Bermudan Stock Option Using a EQP Equity Tree

Load the file deriv.mat, which provides EQPTree. The EQPTree structure contains the stock
specification and time information needed to price the Bermudan option.

load deriv.mat;

% Option
OptSpec = 'Call';
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Strike = 105;
Settle = '01-Jan-2003';
ExerciseDatesBerm={'15-Jan-2004','15-Jul-2004','15-Jan-2005','15-Jul-2005'};

Price the Bermudan option.

Price= optstockbyeqp(EQPTree, OptSpec, Strike, Settle, ExerciseDatesBerm)

Warning: Some ExerciseDates are not aligned with tree nodes. Result will be approximated.

Price = 12.0255

Input Arguments
EQPTree — Stock tree structure
structure

Stock tree structure, specified by using eqptree.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'

Definition of option, specified as 'call' or 'put' using a NINST-by-1 cell array of character vectors.
Data Types: char | cell

Strike — Option strike price values
nonnegative integer

Option strike price value, specified with a NINST-by-1 or NINST-by-NSTRIKES depending on the
option type:

• For a European option, use a NINST-by-1 vector of strike prices.
• For a Bermuda option, use aNINST-by-NSTRIKES matrix of strike prices. Each row is the schedule

for one option. If an option has fewer than NSTRIKES exercise opportunities, the end of the row is
padded with NaNs.

• For an American option, use a NINST-by-1 of strike prices.

Note The interpretation of the Strike and ExerciseDates arguments depends upon the setting of
the AmericanOpt argument. If AmericanOpt = 0, NaN, or is unspecified, the option is a European
or Bermuda option. If AmericanOpt = 1, the option is an American option.

Data Types: double

Settle — Settlement date or trade date
serial date number | date character vector

Settlement date or trade date, specified as a NINST-by-1 vector of date character vectors or serial
date numbers.

11 Functions

11-1512



Note The Settle date for every option is set to the ValuationDate of the stock tree. The option
argument Settle is ignored.

Data Types: char | double

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a NINST-by-1,NINST-by-2, or NINST-by-NSTRIKES using serial
date numbers or date character vectors, depending on the option type:

• For a European option, use a NINST-by-1 vector of dates. Each row is the schedule for one option.
For a European option, there is only one ExerciseDates on the option expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKES vector of dates. Each row is the schedule for
one option.

• For an American option, use a NINST-by-2 vector of exercise date boundaries. The option can be
exercised on any date between or including the pair of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is a NINST-by-1 vector, the option can be exercised between
ValuationDate of the stock tree and the single listed ExerciseDates.

Note The interpretation of the Strike and ExerciseDates arguments depends upon the setting of
the AmericanOpt argument. If AmericanOpt = 0, NaN, or is unspecified, the option is a European
or Bermuda option. If AmericanOpt = 1, the option is an American option.

Data Types: double | char

AmericanOpt — Option type
0 European or Bermuda (default) | integer with values of 0 or 1

(Optional) Option type, specified as NINST-by-1 vector of integer flags with values:

• 0 — European or Bermuda
• 1 — American

Data Types: single | double

Output Arguments
Price — Expected price of option at time 0
vector

Expected price of the vanilla option at time 0, returned as a NINST-by-1 vector.

PriceTree — Structure containing trees of vectors of instrument prices for each node
structure

Structure containing trees of vectors of instrument prices and a vector of observation times for each
node. Values are:

• PriceTree.PTree contains the clean prices.
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• PriceTree.tObs contains the observation times.
• PriceTree.dObs contains the observation dates.

More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.

See Also
eqptree | instoptstock

Topics
“Computing Prices Using EQP” on page 3-66
“Examining Output from the Pricing Functions” on page 3-70
“Computing Equity Instrument Sensitivities” on page 3-75
“Graphical Representation of Equity Derivative Trees” on page 3-73
“Vanilla Option” on page 3-27
“Computing Instrument Prices” on page 3-64
“Supported Equity Derivative Functions” on page 3-19
“Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument Objects” on
page 1-82

Introduced before R2006a
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optstockbyfd
Calculate vanilla option prices using finite difference method

Syntax
[Price,PriceGrid,AssetPrices,Times] = optstockbyfd(RateSpec,StockSpec,
OptSpec,Strike,Settle,ExerciseDates)
[Price,PriceGrid,AssetPrices,Times] = optstockbyfd( ___ ,Name,Value)

Description
[Price,PriceGrid,AssetPrices,Times] = optstockbyfd(RateSpec,StockSpec,
OptSpec,Strike,Settle,ExerciseDates) calculates vanilla option prices using the finite
difference method.

[Price,PriceGrid,AssetPrices,Times] = optstockbyfd( ___ ,Name,Value) adds optional
name-value pair arguments.

Examples

Price a Vanilla Call Option Using Finite Difference Method

Create a RateSpec.

AssetPrice = 50;
Strike = 45;
Rate = 0.035;
Volatility = 0.30;
Settle = '01-Jan-2015';
Maturity = '01-Jan-2016';
Basis = 1;
 
RateSpec = intenvset('ValuationDate',Settle,'StartDates',Settle,'EndDates',...
Maturity,'Rates',Rate,'Compounding',-1,'Basis',Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9656
            Rates: 0.0350
         EndTimes: 1
       StartTimes: 0
         EndDates: 736330
       StartDates: 735965
    ValuationDate: 735965
            Basis: 1
     EndMonthRule: 1

Create a StockSpec.
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StockSpec = stockspec(Volatility,AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3000
         AssetPrice: 50
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Calculate the price of a European vanilla call option using the finite difference method.

ExerciseDates = 'may-1-2015';
OptSpec = 'Call';
Price = optstockbyfd(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates)

Price = 6.7352

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification, see
stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities the
price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is
StockSpec.DividendAmounts.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | string array with values 'call' or 'put'

Definition of the option as 'call' or 'put', specified as a character vector or string array with
values 'call' or 'put'.
Data Types: char | string

Strike — Option strike price value
nonnegative scalar | nonnegative vector

Option strike price value, specified as a nonnegative scalar or vector.

• For a European option, use a scalar of strike price.
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• For a Bermuda option, use a 1-by-NSTRIKES vector of strike prices.
• For an American option, use a scalar of strike price.

Data Types: single | double

Settle — Settlement or trade date
serial date number | date character vector | datetime object

Settlement or trade date for the barrier option, specified as a serial date number, a date character
vector, or a datetime object.
Data Types: double | char | datetime

ExerciseDates — Option exercise dates
serial date number | date character vector | datetime object

Option exercise dates, specified as a serial date number, a date character vector, or a datetime object:

• For a European option, use a 1-by-1 vector of dates, specified as a nonnegative scalar integer, a
date character vector, or a datetime object. For a Bermuda option, use a 1-by-NSTRIKES vector of
dates, specified as a nonnegative scalar integer, date character vector, or datetime object.

• For an American option, use a 1-by-2 cell array of date character vectors. The option can be
exercised on any date between or including the pair of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is a 1-by-1 vector of serial date numbers or a cell array of date
character vectors, the option can be exercised between Settle and the single listed date in
ExerciseDates.

Data Types: double | char | cell | datetime

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Price =
optstockbyfd(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates,'AssetGri
dSize',1000)

AssetGridSize — Size of asset grid used for finite difference grid
400 (default) | positive scalar

Size of the asset grid used for a finite difference grid, specified as the comma-separated pair
consisting of 'AssetGridSize' and a positive scalar.
Data Types: double

AssetPriceMax — Maximum price for price grid boundary
if unspecified, StockSpec values are calculated using asset distributions at maturity (default) |
positive scalar

Maximum price for price grid boundary, specified as the comma-separated pair consisting of
'AssetPriceMax' as a positive scalar.
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Data Types: single | double

TimeGridSize — Size of time grid used for finite difference grid
100 (default) | positive scalar

Size of the time grid used for a finite difference grid, specified as the comma-separated pair
consisting of 'TimeGridSize' and a positive scalar.
Data Types: double

AmericanOpt — Option type
0 (European/Bermuda) (default) | scalar with values [0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and NINST-by-1
positive integer scalar flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double

Output Arguments
Price — Expected prices for vanilla options
scalar

Expected prices for vanilla options, returned as a 1-by-1 matrix.

PriceGrid — Grid containing prices calculated by finite difference method
grid

Grid containing prices calculated by the finite difference method, returned as a grid that is two-
dimensional with size PriceGridSize*length(Times). The number of columns does not have to
be equal to the TimeGridSize, because ex-dividend dates in the StockSpec are added to the time
grid. The price for t = 0 is contained in PriceGrid(:, end).

AssetPrices — Prices of asset defined by StockSpec
vector

Prices of the asset defined by the StockSpec corresponding to the first dimension of PriceGrid,
returned as a vector.

Times — Times corresponding to second dimension of PriceGrid
vector

Times corresponding to second dimension of the PriceGrid, returned as a vector.

More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.
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The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.

References
[1] Haug, E. G., J. Haug, and A. Lewis. "Back to basics: a new approach to the discrete dividend

problem." Vol. 9, Wilmott magazine, 2003, pp. 37–47.

[2] Wu, L. and Y. K. Kwok. "A front-fixing finite difference method for the valuation of American
options." Journal of Financial Engineering. Vol. 6.4, 1997, pp. 83–97.

See Also
optstocksensbyfd | optstockbyls | optstockbylr | optstockbyblk

Topics
“Vanilla Option” on page 3-27
“Supported Equity Derivative Functions” on page 3-19
“Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument Objects” on
page 1-82
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optstocksensbyfd
Calculate vanilla option prices or sensitivities using finite difference method

Syntax
[PriceSens,PriceGrid,AssetPrices,Times] = optstocksensbyfd(RateSpec,
StockSpec,OptSpec,Strike,Settle,ExerciseDates)
[PriceSens,PriceGrid,AssetPrices,Times] = optstocksensbyfd( ___ ,Name,Value)

Description
[PriceSens,PriceGrid,AssetPrices,Times] = optstocksensbyfd(RateSpec,
StockSpec,OptSpec,Strike,Settle,ExerciseDates) calculates vanilla option prices or
sensitivities using the finite difference method.

[PriceSens,PriceGrid,AssetPrices,Times] = optstocksensbyfd( ___ ,Name,Value)
adds optional name-value pair arguments.

Examples

Calculate the Price and Sensitivities for a Vanilla Call Option Using Finite Difference Method

Create a RateSpec.

AssetPrice = 50;
Strike = 45;
Rate = 0.035;
Volatility = 0.30;
Settle = '01-Jan-2015';
Maturity = '01-Jan-2016';
Basis = 1;
 
RateSpec = intenvset('ValuationDate',Settle,'StartDates',Settle,'EndDates',...
Maturity,'Rates',Rate,'Compounding',-1,'Basis',Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9656
            Rates: 0.0350
         EndTimes: 1
       StartTimes: 0
         EndDates: 736330
       StartDates: 735965
    ValuationDate: 735965
            Basis: 1
     EndMonthRule: 1

Create a StockSpec.
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StockSpec = stockspec(Volatility,AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3000
         AssetPrice: 50
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Calculate the price and sensitivities for of a European vanilla call option using the finite difference
method.

ExerciseDates = 'may-1-2015';
OptSpec = 'Call';
OutSpec = {'price'; 'delta'; 'theta'};
[PriceSens, Delta, Theta] = optstocksensbyfd(RateSpec,StockSpec,OptSpec,Strike,Settle,...
ExerciseDates,'OutSpec',OutSpec)

PriceSens = 6.7352

Delta = 0.7765

Theta = -4.9999

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification, see
stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities the
price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is
StockSpec.DividendAmounts.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | string array with values 'call' or 'put'

Definition of the option as 'call' or 'put', specified as a character vector or string array with
values 'call' or 'put'.
Data Types: char | string
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Strike — Option strike price value
nonnegative scalar | nonnegative vector

Option strike price value, specified as a nonnegative scalar or vector.

• For a European option, use a scalar of strike price.
• For a Bermuda option, use a 1-by-NSTRIKES vector of strike prices.
• For an American option, use a scalar of strike price.

Data Types: single | double

Settle — Settlement or trade date
serial date number | date character vector | datetime object

Settlement or trade date for the barrier option, specified as a serial date number, a date character
vector, or a datetime object.
Data Types: double | char | datetime

ExerciseDates — Option exercise dates
date character vector | nonnegative scalar integer | datetime object

Option exercise dates, specified as a nonnegative scalar integer, date character vector, or datetime
object:

• For a European option, use a 1-by-1 vector of dates, specified as a nonnegative scalar integer, a
date character vector, or a datetime object. For a Bermuda option, use a 1-by-NSTRIKES vector of
dates, specified as a nonnegative scalar integer, date character vector, or datetime object.

• For an American option, use a 1-by-2 cell array of date character vectors. The option can be
exercised on any date between or including the pair of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is a 1-by-1 vector of serial date numbers or a cell array of date
character vectors, the option can be exercised between Settle and the single listed date in
ExerciseDates.

Data Types: double | char | cell | datetime

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: PriceSens =
optstocksensbyfd(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates,'OutS
pec',{'All'},'AssetGridSize',1000)

OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma', 'Vega',
'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with values 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'
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Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a NOUT- by-1 or
a 1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output is Delta, Gamma, Vega, Lambda, Rho, Theta, and
Price, in that order. This is the same as specifying OutSpec to include each sensitivity.
Example: OutSpec = {'delta','gamma','vega','lambda','rho','theta','price'}
Data Types: char | cell

AssetGridSize — Size of asset grid used for finite difference grid
400 (default) | positive scalar

Size of asset grid used for finite difference grid, specified as the comma-separated pair consisting of
'AssetGridSize' and a positive scalar.
Data Types: double

AssetPriceMax — Maximum price for price grid boundary
if unspecified, StockSpec values are calculated using asset distributions at maturity (default) |
positive scalar

Maximum price for price grid boundary, specified as the comma-separated pair consisting of
'AssetPriceMax' and a positive scalar.
Data Types: single | double

TimeGridSize — Size of time grid used for finite difference grid
100 (default) | positive scalar

Size of the time grid used for a finite difference grid, specified as the comma-separated pair
consisting of 'TimeGridSize' and a positive scalar.
Data Types: double

AmericanOpt — Option type
0 (European/Bermuda) (default) | scalar with values [0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and NINST-by-1
positive integer scalar flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double

Output Arguments
PriceSens — Expected prices or sensitivities for vanilla options
scalar

Expected price or sensitivities (defined by OutSpec) of the vanilla option, returned as a 1-by-1 array.

PriceGrid — Grid containing prices calculated by finite difference method
grid
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Grid containing prices calculated by the finite difference method, returned as a two-dimensional grid
with size PriceGridSize*length(Times). The number of columns does not have to be equal to
the TimeGridSize, because ex-dividend dates in the StockSpec are added to the time grid. The
price for t = 0 is contained in PriceGrid(:, end).

AssetPrices — Prices of asset defined by StockSpec
vector

Prices of the asset defined by the StockSpec corresponding to the first dimension of PriceGrid,
returned as a vector.

Times — Times corresponding to second dimension of PriceGrid
vector

Times corresponding to second dimension of the PriceGrid, returned as a vector.

More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.

References
[1] Haug, E. G., J. Haug, and A. Lewis. "Back to basics: a new approach to the discrete dividend

problem." Vol. 9, Wilmott magazine, 2003, pp. 37–47.

[2] Wu, L. and Y. K. Kwok. "A front-fixing finite difference method for the valuation of American
options." Journal of Financial Engineering. Vol. 6.4, 1997, pp. 83–97.

See Also
optstockbyfd | optstockbyls | optstockbylr | optstockbyblk

Topics
“Vanilla Option” on page 3-27
“Supported Equity Derivative Functions” on page 3-19

11 Functions

11-1524



Introduced in R2016b

 optstocksensbyfd

11-1525



optstockbyitt
Price options on stocks using implied trinomial tree (ITT)

Syntax
[Price,PriceTree] = optstockbyitt(ITTTree,OptSpec,Strike,Settle,
ExerciseDates)
[Price,PriceTree] = optstockbyitt( ___ ,AmericanOpt)

Description
[Price,PriceTree] = optstockbyitt(ITTTree,OptSpec,Strike,Settle,
ExerciseDates) returns the price of a European, Bermuda, or American stock option from an
implied trinomial tree (ITT).

[Price,PriceTree] = optstockbyitt( ___ ,AmericanOpt) adds an optional argument for
AmericanOpt.

Examples

Price an American Stock Option Using an ITT Equity Tree

This example shows how to price an American stock option using an ITT equity tree by loading the
file deriv.mat, which provides the ITTTree. The ITTTree structure contains the stock
specification and time information needed to price the American option.

load deriv.mat

OptSpec = 'Put';
Strike = 30;
Settle = '01-Jan-2006';
ExerciseDates = ' 01-Jan-2010 ';
AmericanOpt = 1;

Price = optstockbyitt(ITTTree, OptSpec, Strike, Settle,ExerciseDates, AmericanOpt)

Price = 0.1271

Price a Bermudan Stock Option Using an ITT Equity Tree

Load the file deriv.mat, which provides an ITTTree. The ITTTree structure contains the stock
specification and time information needed to price the Bermudan option.
load deriv.mat;

% Option
OptSpec = 'Put';
Strike = 30;
Settle = '01-Jan-2006';
ExerciseDatesBerm={'1-Jan-2007','1-Jul-2007','1-Jan-2008','1-Jul-2008'};
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Price the Bermudan option.
Price = optstockbyitt(ITTTree, OptSpec, Strike, Settle, ExerciseDatesBerm)

Warning: Some ExerciseDates are not aligned with tree nodes. Result will be approximated. 
> In procoptions at 171
  In optstockbystocktree at 22
  In optstockbyitt at 68 

Price =

    0.0664

Input Arguments
ITTTree — Stock tree structure
structure

Stock tree structure, specified by using itttree.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'

Definition of option, specified as 'call' or 'put' using a NINST-by-1 cell array of character vectors.
Data Types: char | cell

Strike — Option strike price values
nonnegative integer

Option strike price value, specified with a NINST-by-1 or NINST-by-NSTRIKES depending on the
option type:

• For a European option, use a NINST-by-1 vector of strike prices.
• For a Bermuda option, use aNINST-by-NSTRIKES matrix of strike prices. Each row is the schedule

for one option. If an option has fewer than NSTRIKES exercise opportunities, the end of the row is
padded with NaNs.

• For an American option, use a NINST-by-1 of strike prices.

Note The interpretation of the Strike and ExerciseDates arguments depends upon the setting of
the AmericanOpt argument. If AmericanOpt = 0, NaN, or is unspecified, the option is a European
or Bermuda option. If AmericanOpt = 1, the option is an American option.

Data Types: double

Settle — Settlement date or trade date
serial date number | date character vector

Settlement date or trade date, specified as a NINST-by-1 vector of date character vectors or serial
date numbers.

Note The Settle date for every option is set to the ValuationDate of the stock tree. The option
argument Settle is ignored.
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Data Types: char | double

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a NINST-by-1,NINST-by-2, or NINST-by-NSTRIKES using serial
date numbers or date character vectors, depending on the option type:

• For a European option, use a NINST-by-1 vector of dates. Each row is the schedule for one option.
For a European option, there is only one ExerciseDates on the option expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKES vector of dates. Each row is the schedule for
one option.

• For an American option, use a NINST-by-2 vector of exercise date boundaries. The option can be
exercised on any date between or including the pair of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is a NINST-by-1 vector, the option can be exercised between
ValuationDate of the stock tree and the single listed ExerciseDates.

Note The interpretation of the Strike and ExerciseDates arguments depends upon the setting of
the AmericanOpt argument. If AmericanOpt = 0, NaN, or is unspecified, the option is a European
or Bermuda option. If AmericanOpt = 1, the option is an American option.

Data Types: double | char

AmericanOpt — Option type
0 European or Bermuda (default) | integer with values of 0 or 1

(Optional) Option type, specified as NINST-by-1 vector of integer flags with values:

• 0 — European or Bermuda
• 1 — American

Data Types: single | double

Output Arguments
Price — Expected price of option at time 0
vector

Expected price of the vanilla option at time 0, returned as a NINST-by-1 vector.

PriceTree — Structure containing trees of vectors of instrument prices for each node
structure

Structure containing trees of vectors of instrument prices and a vector of observation times for each
node. Values are:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.
• PriceTree.dObs contains the observation dates.
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More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.

References
[1] Chriss, Neil A., E. Derman, and I. Kani. “Implied trinomial trees of the volatility smile.” Journal of

Derivatives. 1996.

See Also
instoptstock | itttree

Topics
“Computing Prices Using ITT” on page 3-68
“Examining Output from the Pricing Functions” on page 3-70
“Computing Equity Instrument Sensitivities” on page 3-75
“Graphical Representation of Equity Derivative Trees” on page 3-73
“Vanilla Option” on page 3-27
“Computing Instrument Prices” on page 3-64
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2007a
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optstockbylr
Price options on stocks using Leisen-Reimer binomial tree model

Syntax
[Price,PriceTree] = optstockbylr(LRTree,OptSpec,Strike,Settle,ExerciseDates)
[Price,PriceTree] = optstockbylr( ___ ,Name,Value)

Description
[Price,PriceTree] = optstockbylr(LRTree,OptSpec,Strike,Settle,ExerciseDates)
computes option prices on stocks using the Leisen-Reimer binomial tree model.

[Price,PriceTree] = optstockbylr( ___ ,Name,Value) adds an optional name-value pair
argument for AmericanOpt.

Examples

Price Options on Stocks Using the Leisen-Reimer Binomial Tree Model

This example shows how to price options on stocks using the Leisen-Reimer binomial tree model.
Consider European call and put options with an exercise price of $95 that expire on July 1, 2010. The
underlying stock is trading at $100 on January 1, 2010, provides a continuous dividend yield of 3%
per annum and has a volatility of 20% per annum. The annualized continuously compounded risk-free
rate is 8% per annum. Using this data, compute the price of the options using the Leisen-Reimer
model with a tree of 15 and 55 time steps.

AssetPrice  = 100;
Strike = 95;

ValuationDate = 'Jan-1-2010';
Maturity = 'July-1-2010'; 

% define StockSpec
Sigma = 0.2;
DividendType = 'continuous'; 
DividendAmounts = 0.03;

StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts);

% define RateSpec
Rates = 0.08;
Settle = ValuationDate;
Basis = 1;
Compounding = -1;

RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis);

% build the Leisen-Reimer (LR) tree with 15 and 55 time steps
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LRTimeSpec15  = lrtimespec(ValuationDate, Maturity, 15); 
LRTimeSpec55  = lrtimespec(ValuationDate, Maturity, 55); 

% use the PP2 method
LRMethod  = 'PP2';

LRTree15 = lrtree(StockSpec, RateSpec, LRTimeSpec15, Strike, 'method', LRMethod);
LRTree55 = lrtree(StockSpec, RateSpec, LRTimeSpec55, Strike, 'method', LRMethod);

% price the call and the put options using the LR model:
OptSpec = {'call'; 'put'}; 

PriceLR15 = optstockbylr(LRTree15, OptSpec, Strike, Settle, Maturity);
PriceLR55 = optstockbylr(LRTree55, OptSpec, Strike, Settle, Maturity);

% calculate price using the Black-Scholes model (BLS) to compare values with
% the LR model:
PriceBLS = optstockbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike);

% compare values of BLS and LR
[PriceBLS PriceLR15 PriceLR55]

ans = 2×3

    9.7258    9.7252    9.7257
    2.4896    2.4890    2.4895

% use treeviewer to display LRTree of 15 time steps
treeviewer(LRTree15)
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Input Arguments
LRTree — Stock tree structure
structure

Stock tree structure, specified by lrtree.
Data Types: struct

OptSpec — Definition of option
cell array of character vectors with values 'call' or 'put'

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of character vectors
with values 'call' or 'put'.
Data Types: char | cell

Strike — Option strike price values
vector of nonnegative integers

Option strike price value, specified with nonnegative integer:

• For a European option, use a NINST-by-1 vector of strike prices.
• For a Bermuda option, use a NINST-by-NSTRIKES vector of strike prices. Each row is the schedule

for one option. If an option has fewer than NSTRIKES exercise opportunities, the end of the row is
padded with NaNs.
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• For an American option, use a NINST-by-1 vector of strike prices.

Data Types: double

Settle — Settlement or trade date
serial date number | date character vector

Settlement or trade date, specified as an NINST-by-1 matrix using serial date numbers or date
character vectors.
Data Types: double | char

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a vector of date character vectors or serial date numbers where
each row is the schedule for one option and the last element of each row must be the same as the
maturity of the tree.

• For a European option, use a NINST-by-1 vector of dates. For a European option, there is only one
ExerciseDate on the option expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKEDATES vector of dates.
• For an American option, use a NINST-by-1 vector of exercise dates. For the American type, the

option can be exercised on any tree data between the ValuationDate and tree maturity.

Data Types: double | char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree] =
optstockbylr(LRTree,OptSpec,Strike,Settle,ExerciseDates,'AmericanOpt','1')

AmericanOpt — Option type
0 European or Bermuda (default) | values: [0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and a NINST-by-1
vector of flags with values:

• 0 — European or Bermuda
• 1 — American

Data Types: double

Output Arguments
Price — Expected prices at time 0
vector

expected prices at time 0, returned as a NINST-by-1 vector.

 optstockbylr

11-1533



PriceTree — Tree structure
structure

Tree structure, returned as a vector of instrument prices at each node. Values are:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.
• PriceTree.dObs contains the observation dates.

More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.

References
[1] Leisen D.P., M. Reimer. “Binomial Models for Option Valuation – Examining and Improving

Convergence.” Applied Mathematical Finance. Number 3, 1996, pp. 319–346.

See Also
instoptstock | lrtree

Topics
“Pricing Equity Derivatives Using Trees” on page 3-64
“Pricing European Call Options Using Different Equity Models” on page 3-88
“Vanilla Option” on page 3-27
“Supported Equity Derivative Functions” on page 3-19
“Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument Objects” on
page 1-82

Introduced in R2010b
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optstockbyls
Price European, Bermudan, or American vanilla options using Monte Carlo simulations

Syntax
Price = optstockbyls(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates)
Price = optstockbyls( ___ ,Name,Value)

[Price,Path,Times,Z] = optstockbyls(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates)
[Price,Path,Times,Z] = optstockbyls( ___ ,Name,Value)

Description
Price = optstockbyls(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates)
returns vanilla option prices using the Longstaff-Schwartz model. optstockbyls computes prices of
European, Bermudan, and American vanilla options.

For American and Bermudan options, the Longstaff-Schwartz least squares method is used to
calculate the early exercise premium.

Price = optstockbyls( ___ ,Name,Value)adds optional name-value pair arguments.

[Price,Path,Times,Z] = optstockbyls(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates) returns vanilla option prices using the Longstaff-Schwartz model.

[Price,Path,Times,Z] = optstockbyls( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Compute the Price of a Vanilla Option

Define the RateSpec.

StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2015';
Rates = 0.05;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates, ...
'EndDates', EndDates, 'Rates', Rates)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 2
             Disc: 0.9060
            Rates: 0.0500
         EndTimes: 4
       StartTimes: 0
         EndDates: 735965
       StartDates: 735235
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    ValuationDate: 735235
            Basis: 0
     EndMonthRule: 1

Define the StockSpec for the asset.

AssetPrice = 100;
Sigma = 0.1;
StockSpec = stockspec(Sigma, AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1000
         AssetPrice: 100
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Define the vanilla option.

OptSpec = 'put';
Settle = 'Jan-1-2013';
ExerciseDates = 'Jan-1-2015';
Strike = 105;

Compute the vanilla option price using the Longstaff-Schwartz model.

Antithetic = true;
Price = optstockbyls(RateSpec, StockSpec, OptSpec, Strike, Settle, ...
ExerciseDates, 'Antithetic', Antithetic)

Price = 3.2292

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for underlying asset, specified using StockSpec obtained from stockspec. For
information on the stock specification, see stockspec.

stockspec can handle other types of underlying assets. For example, stocks, stock indices, and
commodities.
Data Types: struct
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OptSpec — Definition of option
character vector with value 'call' or 'put'

Definition of option, specified as 'call' or 'put' using a character vector.
Data Types: char

Strike — Option strike price values
nonnegative scalar integer

Option strike price value, specified with nonnegative scalar integer:

• For a European option, use a scalar of strike price.
• For a Bermuda option, use a 1-by-NSTRIKES vector of strike prices.
• For an American option, use a scalar of strike price.

Data Types: single | double

Settle — Settlement date or trade date
date character vector | nonnegative scalar integer

Settlement date or trade date for the vanilla option, specified as a date character vector or
nonnegative scalar integer.
Data Types: double | char

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a date character vector or serial date number:

• For a European option, use a 1-by-1 vector of dates. For a European option, there is only one
ExerciseDates on the option expiry date.

• For a Bermuda option, use a 1-by-NSTRIKES vector of dates.
• For an American option, use a 1-by-2 vector of exercise date boundaries. The option can be

exercised on any date between or including the pair of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is a 1-by-1 vector of serial date numbers or cell array of character
vectors, the option can be exercised between Settle and the single listed ExerciseDates.

Data Types: double | char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Price =
optstockbyls(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates,'American
Opt','1','NumTrials','2000')

AmericanOpt — Option type
0 European or Bermuda (default) | scalar with values [0,1]
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Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and positive
integer scalar flags with values:

• 0 — European or Bermuda
• 1 — American

Note For American and Bermudan options, the Longstaff-Schwartz least squares method is used to
calculate the early exercise premium. For more information on the least squares method, see https://
people.math.ethz.ch/%7Ehjfurrer/teaching/
LongstaffSchwartzAmericanOptionsLeastSquareMonteCarlo.pdf.

Data Types: single | double

NumTrials — Simulation trials
1000 (default) | scalar

Simulation trials, specified as a scalar number of independent sample paths.
Data Types: double

NumPeriods — Simulation periods per trial
100 (default) | scalar

Simulation periods per trial, specified as a scalar number. NumPeriods is considered only when
pricing European vanilla options. For American and Bermuda vanilla options, NumPeriod is equal to
the number of Exercise days during the life of the option.
Data Types: double

Z — Dependent random variates
scalar | nonnegative integer

Dependent random variates used to generate the Brownian motion vector (that is, Wiener processes)
that drive the simulation, specified as a be NumPeriods-by-1-by-NumTrials 3-D time series array.
Data Types: single | double

Antithetic — Indicator for antithetic sampling
false (default) | logical flag with value of true or false

Indicator for antithetic sampling, specified with a value of true or false.
Data Types: logical

Output Arguments
Price — Expected price of vanilla option
scalar

Expected price of the vanilla option, returned as a 1-by-1 scalar.

Path — Simulated paths of correlated state variables
vector
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Simulated paths of correlated state variables, returned as a (NumPeriods + 1) -by-1-by-NumTrials
3-D time series array. Each row of Paths is the transpose of the state vector X(t) at time t for a given
trial.

Times — Observation times associated with simulated paths
vector

Observation times associated with simulated paths, returned as a (NumPeriods + 1)-by-1 column
vector of observation times associated with the simulated paths. Each element of Times is associated
with the corresponding row of Paths.

Z — Dependent random variates
vector

Dependent random variates, if Z is specified as an optional input argument, the same value is
returned. Otherwise, Z contains the random variates generated internally.

More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.

See Also
optstocksensbyls

Topics
“Pricing Asian Options” on page 3-110
“Vanilla Option” on page 3-27
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2013b
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optstocksensbyls
Calculate price and sensitivities for European, Bermudan, or American vanilla options using Monte
Carlo simulations

Syntax
PriceSens = optstocksensbyls(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates)
PriceSens = optstocksensbyls( ___ ,Name,Value)

[PriceSens,Path,Times,Z] = optstocksensbyls(RateSpec,StockSpec,OptSpec,
Strike,Settle,ExerciseDates)
[PriceSens,Path,Times,Z] = optstocksensbyls( ___ ,Name,Value)

Description
PriceSens = optstocksensbyls(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates) returns vanilla option prices or sensitivities using the Longstaff-Schwartz model.
optstocksensbyls computes prices or sensitivities of European, Bermudan, and American vanilla
options.

For American and Bermudan options, the Longstaff-Schwartz least squares method is used to
calculate the early exercise premium.

PriceSens = optstocksensbyls( ___ ,Name,Value)adds optional name-value pair arguments.

[PriceSens,Path,Times,Z] = optstocksensbyls(RateSpec,StockSpec,OptSpec,
Strike,Settle,ExerciseDates) returns vanilla option prices or sensitivities using the Longstaff-
Schwartz model.

[PriceSens,Path,Times,Z] = optstocksensbyls( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Compute the Price and Sensitivities of a Vanilla Option

Define the RateSpec.

StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2015';
Rates = 0.05;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates, ...
'EndDates', EndDates, 'Rates', Rates)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 2
             Disc: 0.9060
            Rates: 0.0500
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         EndTimes: 4
       StartTimes: 0
         EndDates: 735965
       StartDates: 735235
    ValuationDate: 735235
            Basis: 0
     EndMonthRule: 1

Define the StockSpec for the asset.

AssetPrice = 100;
Sigma = 0.1;
DivType = 'continuous';
DivAmounts = 0.04;
StockSpec = stockspec(Sigma, AssetPrice, DivType, DivAmounts)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1000
         AssetPrice: 100
       DividendType: {'continuous'}
    DividendAmounts: 0.0400
    ExDividendDates: []

Define the vanilla option.

OptSpec = 'call';  
Settle = 'jan-1-2013';
ExerciseDates = 'jan-1-2015';
Strike = 105;

Compute the Delta sensitivity for the vanilla option using the Longstaff-Schwartz model.

Antithetic = true;
OutSpec = {'Delta'};
PriceSens = optstocksensbyls(RateSpec, StockSpec, OptSpec, Strike, ...
Settle, ExerciseDates,'Antithetic', Antithetic, 'OutSpec', OutSpec)

PriceSens = 0.3945

To display the output for Price, Delta, Path, and Times, use the following:

OutSpec = {'Price','Delta'};
[Price, Delta, Path, Times] = optstocksensbyls(RateSpec, StockSpec, OptSpec, Strike, ...
Settle, ExerciseDates,'Antithetic', Antithetic, 'OutSpec', OutSpec);

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct
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StockSpec — Stock specification for underlying asset
structure

Stock specification for underlying asset, specified using StockSpec obtained from stockspec. For
information on the stock specification, see stockspec.

stockspec can handle other types of underlying assets. For example, stocks, stock indices, and
commodities.
Data Types: struct

OptSpec — Definition of option
character vector values 'call' or 'put'

Definition of option, specified as 'call' or 'put' using a character vector.
Data Types: char

Strike — Option strike price value
nonnegative scalar integer

Option strike price value, specified with a nonnegative scalar integer:

• For a European option, use a scalar of strike price.
• For a Bermuda option, use a 1-by-NSTRIKES vector of strike price.
• For an American option, use a scalar of strike price.

Data Types: single | double

Settle — Settlement date or trade date
serial date number | date character vector

Settlement date or trade date for the vanilla option, specified as a date character vector or a serial
date number.
Data Types: double | char

ExerciseDates — Option exercise date
serial date number | date character vector

Option exercise date, specified as a date character vector or serial date number:

• For a European option, use a 1-by-1 vector of dates. For a European option, there is only one
ExerciseDates on the option expiry date.

• For a Bermuda option, use a 1-by-NSTRIKES vector of dates.
• For an American option, use a 1-by-2 vector of exercise date boundaries. The option can be

exercised on any date between or including the pair of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is a 1-by-1 vector of serial date numbers or cell array of character
vectors, the option can be exercised between Settle and the single listed ExerciseDates.

Data Types: double | char
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Price = optstocksensbyls(RateSpec,StockSpec,
OptSpec,Strike,Settle,ExerciseDates,'AmericanOpt','1','NumTrials','2000','Out
Spec',{'Price','Delta','Gamma'})

AmericanOpt — Option type
0 European or Bermuda (default) | scalar with values [0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and a positive
integer scalar flag with values:

• 0 — European or Bermuda
• 1 — American

Note For American and Bermudan options, the Longstaff-Schwartz least squares method is used to
calculate the early exercise premium. For more information on the least squares method, see https://
people.math.ethz.ch/%7Ehjfurrer/teaching/
LongstaffSchwartzAmericanOptionsLeastSquareMonteCarlo.pdf.

Data Types: single | double

NumTrials — Simulation trials
1000 (default) | scalar

Simulation trials, specified as the comma-separated pair consisting of 'NumTrials' and a scalar
number of independent sample paths.
Data Types: double

NumPeriods — Simulation periods per trial
100 (default) | scalar

Simulation periods per trial, specified as the comma-separated pair consisting of 'NumPeriods' and
a scalar number. NumPeriods is considered only when pricing European vanilla options. For
American and Bermuda vanilla options, NumPeriod is equal to the number of Exercise days during
the life of the option.
Data Types: double

Z — Dependent random variates
scalar | nonnegative integer

Dependent random variates used to generate the Brownian motion vector (that is, Wiener processes)
that drive the simulation, specified as the comma-separated pair consisting of 'Z' and a
NumPeriods-by-1-by-NumTrials 3-D time series array.
Data Types: single | double
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Antithetic — Indicator for antithetic sampling
false (default) | logical flag with value of true or false

Indicator for antithetic sampling, specified as the comma-separated pair consisting of 'Antithetic'
and a value of true or false.
Data Types: logical

OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma', 'Vega',
'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with values: 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a NOUT- by-1 or
1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta,
and Price, in that order. This is the same as specifying OutSpec to include each sensitivity:
Example: OutSpec = {'delta','gamma','vega','lambda','rho','theta','price'}
Data Types: char | cell

Output Arguments
PriceSens — Expected price or sensitivities of vanilla option
scalar

Expected price or sensitivities (defined by OutSpec) of the vanilla option, returned as a 1-by-1 array.

Path — Simulated paths of correlated state variables
vector

Simulated paths of correlated state variables, returned as a (NumPeriods + 1)-by-1-by-NumTrials 3-
D time series array. Each row of Paths is the transpose of the state vector X(t) at time t for a given
trial.

Times — Observation times associated with simulated paths
vector

Observation times associated with simulated paths, returned as a (NumPeriods + 1)-by-1 column
vector of observation times associated with the simulated paths. Each element of Times is associated
with the corresponding row of Paths.

Z — Dependent random variates
vector

Dependent random variates, if Z is specified as an optional input argument, the same value is
returned. Otherwise, Z contains the random variates generated internally.
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More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.

See Also
optstockbyls

Topics
“Pricing Asian Options” on page 3-110
“Vanilla Option” on page 3-27
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2013b
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optstockbyrgw
Determine American call option prices using Roll-Geske-Whaley option pricing model

Syntax
Price = optstockbyrgw(RateSpec,StockSpec,Settle,Maturity,Strike)

Description
Price = optstockbyrgw(RateSpec,StockSpec,Settle,Maturity,Strike) computes the
American call option prices using the Roll-Geske-Whaley option pricing model.

Note optstockbyrgw computes prices of American calls with a single cash dividend using the Roll-
Geske-Whaley option pricing model.

Examples

Determine American Call Option Prices Using Roll-Geske-Whaley Option Pricing Model

This example shows how to determine American call option prices using Roll-Geske-Whaley option
pricing model. Consider an American call option with an exercise price of $22 that expires on
February 1, 2009. The underlying stock is trading at $20 on June 1, 2008 and has a volatility of 20%
per annum. The annualized continuously compounded risk-free rate is 6.77% per annum. The stock
pays a single dividend of $2 on September 1, 2008. Using this data, compute price of the American
call option using the Roll-Geske-Whaley option pricing model.

Settle = 'Jun-01-2008';
Maturity = 'Feb-01-2009';
AssetPrice = 20;
Strike = 22;
Sigma  = 0.2;
Rate = 0.0677; 
DivAmount = 2;
DivDate = 'Sep-01-2008';

% define the RateSpec and StockSpec
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates',...
Maturity, 'Rates', Rate, 'Compounding', -1, 'Basis', 0);

StockSpec = stockspec(Sigma, AssetPrice, {'cash'}, DivAmount, DivDate);

Price  = optstockbyrgw(RateSpec, StockSpec, Settle, Maturity,Strike)

Price = 0.3359
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Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification, see
stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities the
price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is
StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement or trade date
serial date number | date character vector

Settlement or trade date, specified as serial date number or date character vector using a NINST-by-1
vector.
Data Types: double | char

Maturity — Maturity date for option
serial date number | date character vector

Maturity date for option, specified as serial date number or date character vector using a NINST-by-1
vector.
Data Types: double | char

Strike — Option strike price value
nonnegative vector

Option strike price value, specified as a nonnegative NINST-by-1 vector.
Data Types: double

Output Arguments
Price — Expected call option prices
vector

Expected call option prices, returned as a NINST-by-1 vector.
Data Types: double
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More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.

See Also
impvbyrgw | intenvset | optstocksensbyrgw | stockspec

Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-79
“Pricing Using the Roll-Geske-Whaley Model” on page 3-84
“Vanilla Option” on page 3-27
“Roll-Geske-Whaley Model” on page 3-80
“Supported Equity Derivative Functions” on page 3-19
“Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument Objects” on
page 1-82

Introduced in R2008b
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optstocksensbybjs
Determine American option prices or sensitivities using Bjerksund-Stensland 2002 option pricing
model

Syntax
PriceSens = optstocksensbybjs(RateSpec,StockSpec,Settle,Maturity,OptSpec,
Strike)
PriceSens = optstocksensbybjs( ___ ,Name,Value)

Description
PriceSens = optstocksensbybjs(RateSpec,StockSpec,Settle,Maturity,OptSpec,
Strike) computes American option prices or sensitivities using the Bjerksund-Stensland 2002
option pricing model.

Note optstocksensbybjs computes prices of American options with continuous dividend yield
using the Bjerksund-Stensland option pricing model. All sensitivities are evaluated by computing a
discrete approximation of the partial derivative. This means that the option is revalued with a
fractional change for each relevant parameter, and the change in the option value divided by the
increment, is the approximated sensitivity value.

PriceSens = optstocksensbybjs( ___ ,Name,Value) adds an optional name-value pair
argument for OutSpec.

Examples

Compute American Option Prices and Sensitivities Using the Bjerksund-Stensland 2002
Option Pricing Model

This example shows how to compute American option prices and sensitivities using the Bjerksund-
Stensland 2002 option pricing model. Consider four American put options with an exercise price of
$100. The options expire on October 1, 2008. Assume the underlying stock pays a continuous
dividend yield of 4% and has a volatility of 40% per annum. The annualized continuously compounded
risk-free rate is 8% per annum. Using this data, calculate the delta, gamma, and price of the
American put options, assuming the following current prices of the stock on July 1, 2008: $90, $100,
$110 and $120.

Settle = 'July-1-2008';
Maturity = 'October-1-2008';
Strike = 100;
AssetPrice = [90;100;110;120];
Rate = 0.08;
Sigma = 0.40;
DivYield = 0.04;

% define the RateSpec and StockSpec
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StockSpec = stockspec(Sigma, AssetPrice, {'continuous'}, DivYield);

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rate, 'Compounding', -1);

% define the option type
OptSpec = {'put'};

OutSpec = {'Delta', 'Gamma', 'Price'};

[Delta, Gamma, Price] = optstocksensbybjs(RateSpec, StockSpec, Settle, Maturity,...
OptSpec, Strike, 'OutSpec', OutSpec)

Delta = 4×1

   -0.6572
   -0.4434
   -0.2660
   -0.1442

Gamma = 4×1

    0.0217
    0.0202
    0.0150
    0.0095

Price = 4×1

   12.9467
    7.4571
    3.9539
    1.9495

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification, see
stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities the
price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is
StockSpec.DividendAmounts.
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Data Types: struct

Settle — Settlement or trade date
serial date number | date character vector

Settlement or trade date, specified as serial date number or date character vector using a NINST-by-1
vector.
Data Types: double | char

Maturity — Maturity date for option
serial date number | date character vector

Maturity date for option, specified as serial date number or date character vector using a NINST-by-1
vector.
Data Types: double | char

OptSpec — Definition of option
cell array of character vectors with values 'call' or 'put'

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of character vectors
with values 'call' or 'put'.
Data Types: char | cell

Strike — Option strike price value
nonnegative vector

Option strike price value, specified as a nonnegative NINST-by-1 vector.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Delta,Gamma,Price] =
optstocksensbybjs(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,'OutSpec'
,OutSpec)

OutSpec — Define outputs
{'Price'} (default) | cell array of character vectors with values: 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a NOUT- by-1 or
1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta,
and Price, in that order. This is the same as specifying OutSpec to include each sensitivity:
Example: OutSpec = {'delta','gamma','vega','lambda','rho','theta','price'}
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Data Types: char | cell

Output Arguments
PriceSens — Expected future prices or sensitivities values
vector

Expected future prices or sensitivities values, returned as a NINST-by-1 vector.
Data Types: double

More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.

References
[1] Bjerksund, P. and G. Stensland. “Closed-Form Approximation of American Options.” Scandinavian

Journal of Management. Vol. 9, 1993, Suppl., pp. S88–S99.

[2] Bjerksund, P. and G. Stensland. “Closed Form Valuation of American Options.” Discussion paper,
2002.

See Also
impvbybjs | intenvset | optstockbybjs | stockspec

Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-79
“Pricing Using the Bjerksund-Stensland Model” on page 3-84
“Vanilla Option” on page 3-27
“Bjerksund-Stensland 2002 Model” on page 3-81
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2008b
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optstocksensbyblk
Determine option prices or sensitivities on futures and forwards using Black option pricing model

Syntax
PriceSens = optstocksensbyblk(RateSpec,StockSpec,Settle,Maturity,OptSpec,
Strike)
PriceSens = optstocksensbyblk( ___ ,Name,Value)

Description
PriceSens = optstocksensbyblk(RateSpec,StockSpec,Settle,Maturity,OptSpec,
Strike) computes option prices on futures and forwards using the Black option pricing model.

Note optstocksensbyblk calculates option prices or sensitivities on futures and forwards. If
ForwardMaturity is not passed, the function calculates prices or sensitivities of future options. If
ForwardMaturity is passed, the function computes prices or sensitivities of forward options. This
function handles several types of underlying assets, for example, stocks and commodities. For more
information on the underlying asset specification, see stockspec.

PriceSens = optstocksensbyblk( ___ ,Name,Value) adds optional name-value pair arguments
for ForwardMaturity and OutSpec to compute option prices or sensitivities on forwards using the
Black option pricing model.

Examples

Compute Option Prices and Sensitivities on Futures Using the Black Pricing Model

This example shows how to compute option prices and sensitivities on futures using the Black pricing
model. Consider a European put option on a futures contract with an exercise price of $60 that
expires on June 30, 2008. On April 1, 2008 the underlying stock is trading at $58 and has a volatility
of 9.5% per annum. The annualized continuously compounded risk-free rate is 5% per annum. Using
this data, compute delta, gamma, and the price of the put option.

AssetPrice = 58;
Strike = 60;
Sigma = .095;
Rates = 0.05;
Settle = 'April-01-08';
Maturity = 'June-30-08';

% define the RateSpec and StockSpec
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates',...
Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', 1);

StockSpec = stockspec(Sigma, AssetPrice);

% define the options
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OptSpec = {'put'};

OutSpec = {'Delta','Gamma','Price'};
[Delta, Gamma, Price] = optstocksensbyblk(RateSpec, StockSpec, Settle,...
Maturity, OptSpec, Strike,'OutSpec', OutSpec)

Delta = -0.7469

Gamma = 0.1130

Price = 2.3569

Compute Forward Option Prices and Delta Sensitivities

This example shows how to compute option prices and sensitivities on forwards using the Black
pricing model. Consider two European call options on the Brent Blend forward contract that expires
on January 1, 2015. The options expire on October 1, 2014 and Dec 1, 2014 with an exercise price %
of $120 and $150 respectively. Assume that on January 1, 2014 the forward price is at $107, the
annualized continuously compounded risk-free rate is 3% per annum and volatility is 28% per annum.
Using this data, compute the price and delta of the options.

Define the RateSpec.

ValuationDate = 'Jan-1-2014';
EndDates = 'Jan-1-2015';
Rates = 0.03;
Compounding = -1;
Basis = 1;
RateSpec  = intenvset('ValuationDate', ValuationDate, 'StartDates', ...
ValuationDate, 'EndDates', EndDates, 'Rates', Rates, ...
'Compounding', Compounding, 'Basis', Basis');

Define the StockSpec.

AssetPrice = 107;
Sigma = 0.28;
StockSpec  = stockspec(Sigma, AssetPrice);

Define the options.

Settle = 'Jan-1-2014';
Maturity = {'Oct-1-2014'; 'Dec-1-2014'}; %Options maturity
Strike = [120;150];
OptSpec = {'call'; 'call'};

Price the forward call options and return the Delta sensitivities.

ForwardMaturity = 'Jan-1-2015';  % Forward contract maturity
OutSpec = {'Delta'; 'Price'};
[Delta, Price] = optstocksensbyblk(RateSpec, StockSpec, Settle, Maturity, OptSpec, ...
Strike, 'ForwardMaturity', ForwardMaturity, 'OutSpec', OutSpec)

Delta = 2×1

    0.3518
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    0.1262

Price = 2×1

    5.4808
    1.6224

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification, see
stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities the
price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is
StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement or trade date
serial date number | date character vector

Settlement or trade date, specified as serial date number or date character vector using a NINST-by-1
vector.
Data Types: double | char

Maturity — Maturity date for option
serial date number | date character vector

Maturity date for option, specified as serial date number or date character vector using a NINST-by-1
vector.
Data Types: double | char

OptSpec — Definition of option
cell array of character vectors with values 'call' or 'put'

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of character vectors
with values 'call' or 'put'.
Data Types: char | cell

Strike — Option strike price value
nonnegative vector
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Option strike price value, specified as a nonnegative NINST-by-1 vector.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Delta,Gamma,Price] =
optstocksensbyblk(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,'OutSpec'
,OutSpec)

ForwardMaturity — Maturity date or delivery date of forward contract
Maturity of option (default) | serial date number | date character vector

Maturity date or delivery date of forward contract, specified as the comma-separated pair consisting
of 'ForwardMaturity' and a NINST-by-1 vector using serial date numbers or date character
vectors.
Data Types: double | cell

OutSpec — Define outputs
{'Price'} (default) | cell array of character vectors with values: 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a NOUT- by-1 or
1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta,
and Price, in that order. This is the same as specifying OutSpec to include each sensitivity:
Example: OutSpec = {'delta','gamma','vega','lambda','rho','theta','price'}
Data Types: char | cell

Output Arguments
PriceSens — Expected future prices or sensitivities values
vector

Expected future prices or sensitivities values, returned as a NINST-by-1 vector.
Data Types: double

More About
Futures Option

A futures option is a standardized contract between two parties to buy or sell a specified asset of
standardized quantity and quality for a price agreed upon today (the futures price) with delivery and
payment occurring at a specified future date, the delivery date.
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The futures contracts are negotiated at a futures exchange, which acts as an intermediary between
the two parties. The party agreeing to buy the underlying asset in the future, the "buyer" of the
contract, is said to be "long," and the party agreeing to sell the asset in the future, the "seller" of the
contract, is said to be "short."

A futures contract is the delivery of item J at time T and:

• There exists in the market a quoted price F(t, T), which is known as the futures price at time t for
delivery of J at time T.

• The price of entering a futures contract is equal to zero.
• During any time interval [t,s], the holder receives the amount F(s, T)− F(t, T) (this reflects

instantaneous marking to market).
• At time T, the holder pays F(T, T) and is entitled to receive J. Note that F(T, T) should be the spot

price of J at time T.

For more information, see “Futures Option” on page 3-32.

Forwards Option

A forwards option is a non-standardized contract between two parties to buy or to sell an asset at a
specified future time at a price agreed upon today.

The buyer of a forwards option contract has the right to hold a particular forward position at a
specific price any time before the option expires. The forwards option seller holds the opposite
forward position when the buyer exercises the option. A call option is the right to enter into a long
forward position and a put option is the right to enter into a short forward position. A closely related
contract is a futures contract. A forward is like a futures in that it specifies the exchange of goods for
a specified price at a specified future date.

The payoff for a forwards option, where the value of a forward position at maturity depends on the
relationship between the delivery price (K) and the underlying price (ST) at that time, is:

• For a long position: fT = ST − K

• For a short position: fT = K − ST

For more information, see “Forwards Option” on page 3-31.

See Also
impvbyblk | intenvset | optstockbyblk | stockspec

Topics
“Pricing Asian Options” on page 3-110
“Forwards Option” on page 3-31
“Futures Option” on page 3-32
“Black Model” on page 3-80
“Supported Equity Derivative Functions” on page 3-19
“Supported Energy Derivative Functions” on page 3-34

Introduced in R2008b
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optstocksensbybls
Determine option prices or sensitivities using Black-Scholes option pricing model

Syntax
PriceSens = optstocksensbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,
Strike)
PriceSens = optstocksensbybls( ___ ,Name,Value)

Description
PriceSens = optstocksensbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,
Strike) computes option prices or sensitivities using the Black-Scholes option pricing model.

Note When using StockSpec with optstocksensbybls, you can modify StockSpec to handle
other types of underliers when pricing instruments that use the Black-Scholes model.

When pricing Futures (Black model), enter the following in StockSpec:

DivType = 'Continuous'; 
DivAmount = RateSpec.Rates;

When pricing Foreign Currencies (Garman-Kohlhagen model), enter the following in StockSpec:

DivType = 'Continuous'; 
DivAmount = ForeignRate; 

where ForeignRate is the continuously compounded, annualized risk free interest rate in the
foreign country.

PriceSens = optstocksensbybls( ___ ,Name,Value) adds an optional name-value pair
argument for OutSpec.

Examples

Compute Option Prices and Sensitivities Using the Black-Scholes Option Pricing Model

This example shows how to compute option prices and sensitivities using the Black-Scholes option
pricing model. Consider a European call and put options with an exercise price of $30 that expires on
June 1, 2008. The underlying stock is trading at $30 on January 1, 2008 and has a volatility of 30%
per annum. The annualized continuously compounded risk-free rate is 5% per annum. Using this data,
compute the delta, gamma, and price of the options using the Black-Scholes model.

AssetPrice = 30;
Strike = 30;
Sigma = .30;
Rates = 0.05;
Settle = 'January-01-2008';
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Maturity = 'June -01-2008';

% define the RateSpec and StockSpec
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates',...
Maturity, 'Rates', Rates, 'Compounding',-1, 'Basis', 1);

StockSpec = stockspec(Sigma, AssetPrice);

% define the options
OptSpec = {'call', 'put'};

OutSpec = {'Delta','Gamma','Price'};
[Delta, Gamma, Price] = optstocksensbybls(RateSpec, StockSpec, Settle,...
Maturity, OptSpec, Strike,'OutSpec', OutSpec)

Delta = 2×1

    0.5810
   -0.4190

Gamma = 2×1

    0.0673
    0.0673

Price = 2×1

    2.6126
    1.9941

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification, see
stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities the
price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is
StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement or trade date
serial date number | date character vector

 optstocksensbybls

11-1559



Settlement or trade date, specified as serial date number or date character vector using a NINST-by-1
vector.
Data Types: double | char

Maturity — Maturity date for option
serial date number | date character vector

Maturity date for option, specified as serial date number or date character vector using a NINST-by-1
vector.
Data Types: double | char

OptSpec — Definition of option
cell array of character vectors with values 'call' or 'put'

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of character vectors
with values 'call' or 'put'.
Data Types: char | cell

Strike — Option strike price value
nonnegative vector

Option strike price value, specified as a nonnegative NINST-by-1 vector.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Delta,Gamma,Price] =
optstocksensbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,'OutSpec'
,OutSpec)

OutSpec — Define outputs
{'Price'} (default) | cell array of character vectors with values: 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a NOUT- by-1 or
1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta,
and Price, in that order. This is the same as specifying OutSpec to include each sensitivity:
Example: OutSpec = {'delta','gamma','vega','lambda','rho','theta','price'}
Data Types: char | cell
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Output Arguments
PriceSens — Expected future prices or sensitivities values
vector

Expected future prices or sensitivities values, returned as a NINST-by-1 vector.
Data Types: double

More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.

See Also
impvbybls | intenvset | optstockbybls | stockspec

Topics
“Pricing Asian Options” on page 3-110
“Vanilla Option” on page 3-27
“Supported Equity Derivative Functions” on page 3-19
“Supported Energy Derivative Functions” on page 3-34

Introduced in R2008b
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optstocksensbylr
Determine option prices or sensitivities using Leisen-Reimer binomial tree model

Syntax
PriceSens = optstockbylr(LRTree,OptSpec,Strike,Settle,ExerciseDates)
PriceSens = optstockbylr( ___ ,Name,Value)

Description
PriceSens = optstockbylr(LRTree,OptSpec,Strike,Settle,ExerciseDates) calculates
option prices or sensitivities using a Leisen-Reimer binomial tree model.

PriceSens = optstockbylr( ___ ,Name,Value) adds optional name-value pair arguments for
AmericanOpt and OutSpec.

Examples

Compute Option Prices and Sensitivities Using a Leisen-Reimer Binomial Tree Model

This example shows how to compute option prices and sensitivities using a Leisen-Reimer binomial
tree model. Consider European call and put options with an exercise price of $100 that expire on
December 1, 2010. The underlying stock is trading at $100 on June 1, 2010 and has a volatility of
30% per annum. The annualized continuously compounded risk-free rate is 7% per annum. Using this
data, compute the price, delta and gamma of the options using the Leisen-Reimer model with a tree
of 25 time steps and the PP2 method.

AssetPrice  = 100;
Strike = 100;

ValuationDate = 'June-1-2010';
Maturity = 'December-1-2010'; 

% define StockSpec
Sigma = 0.3;

StockSpec = stockspec(Sigma, AssetPrice);

% define RateSpec
Rates = 0.07;
Settle = ValuationDate;
Basis = 1;
Compounding = -1;

RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis);

% build the Leisen-Reimer (LR) tree with 25 time steps
LRTimeSpec  = lrtimespec(ValuationDate, Maturity, 25); 
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% use the PP2 method
LRMethod  = 'PP2';  

TreeLR = lrtree(StockSpec, RateSpec, LRTimeSpec, Strike, 'method', LRMethod);

% compute prices and sensitivities using the LR model:
OptSpec = {'call'; 'put'}; 
OutSpec = {'Price', 'Delta', 'Gamma'};

[Price, Delta, Gamma] = optstocksensbylr(TreeLR, OptSpec, Strike, Settle, ... 
Maturity, 'OutSpec', OutSpec)

Price = 2×1

   10.1332
    6.6937

Delta = 2×1

    0.6056
   -0.3944

Gamma = 2×1

    0.0185
    0.0185

Input Arguments
LRTree — Stock tree structure
structure

Stock tree structure, specified by lrtree.
Data Types: struct

OptSpec — Definition of option
cell array of character vectors with values 'call' or 'put'

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of character vectors
with values 'call' or 'put'.
Data Types: char | cell

Strike — Option strike price values
vector of nonnegative integers

Option strike price value, specified with nonnegative integer:

• For a European option, use a NINST-by-1 vector of strike prices.
• For a Bermuda option, use a NINST-by-NSTRIKES vector of strike prices. Each row is the schedule

for one option. If an option has fewer than NSTRIKES exercise opportunities, the end of the row is
padded with NaNs.
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• For an American option, use a NINST-by-1 vector of strike prices.

Data Types: double

Settle — Settlement or trade date
serial date number | date character vector

Settlement or trade date, specified as an NINST-by-1 matrix using serial date numbers or date
character vectors.
Data Types: double | char

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a vector of date character vectors or serial date numbers where
each row is the schedule for one option and the last element of each row must be the same as the
maturity of the tree.

• For a European option, use a NINST-by-1 vector of dates. For a European option, there is only one
ExerciseDate on the option expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKEDATES vector of dates.
• For an American option, use a NINST-by-1 vector of exercise dates. For the American type, the

option can be exercised on any tree data between the ValuationDate and tree maturity.

Data Types: double | char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,Delta,Gamma] =
optstocksensbylr(LRTree,OptSpec,Strike,Settle,ExerciseDates,'OutSpec',OutSpec
)

AmericanOpt — Option type
0 European or Bermuda (default) | values: [0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and a NINST-by-1
vector of flags with values:

• 0 — European or Bermuda
• 1 — American

Data Types: double

OutSpec — Define outputs
{'Price'} (default) | cell array of character vectors with values: 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All'
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Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a NOUT- by-1 or
1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta,
and Price, in that order. This is the same as specifying OutSpec to include each sensitivity:
Example: OutSpec = {'delta','gamma','vega','lambda','rho','theta','price'}
Data Types: char | cell

Output Arguments
PriceSens — Expected future prices or sensitivities values
vector

Expected future prices or sensitivities values, returned as a NINST-by-1 vector.
Data Types: double

More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.

References
[1] Leisen D.P., M. Reimer. “Binomial Models for Option Valuation – Examining and Improving

Convergence.” Applied Mathematical Finance. Number 3, 1996, pp. 319–346.

See Also
optstockbylr | lrtree

Topics
“Pricing Equity Derivatives Using Trees” on page 3-64
“Pricing European Call Options Using Different Equity Models” on page 3-88
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“Vanilla Option” on page 3-27
“Supported Equity Derivative Functions” on page 3-19
“Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument Objects” on
page 1-82

Introduced in R2010b
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optstocksensbyrgw
Determine American call option prices or sensitivities using Roll-Geske-Whaley option pricing model

Syntax
PriceSens = optstocksensbyrgw(RateSpec,StockSpec,Settle,Maturity,OptSpec,
Strike)
PriceSens = optstocksensbyrgw( ___ ,Name,Value)

Description
PriceSens = optstocksensbyrgw(RateSpec,StockSpec,Settle,Maturity,OptSpec,
Strike) computes American call option prices or sensitivities using the Roll-Geske-Whaley option
pricing model.

Note optstocksensbyrgw computes prices of American calls with a single cash dividend using the
Roll-Geske-Whaley option pricing model. All sensitivities are evaluated by computing a discrete
approximation of the partial derivative. This means that the option is revalued with a fractional
change for each relevant parameter, and the change in the option value divided by the increment, is
the approximated sensitivity value.

PriceSens = optstocksensbyrgw( ___ ,Name,Value) adds an optional name-value pair
argument for OutSpec.

Examples

Compute American Call Option Prices and Sensitivities Using the Roll-Geske-Whaley Option
Pricing Model

This example shows how to compute American call option prices and sensitivities using the Roll-
Geske-Whaley option pricing model. Consider an American stock option with an exercise price of $82
on January 1, 2008 that expires on May 1, 2008. Assume the underlying stock pays dividends of $4 on
April 1, 2008. The stock is trading at $80 and has a volatility of 30% per annum. The risk-free rate is
6% per annum. Using this data, calculate the price and the value of delta and gamma of the
American call using the Roll-Geske-Whaley option pricing model.

AssetPrice = 80;
Settle = 'Jan-01-2008';
Maturity = 'May-01-2008';
Strike = 82;
Rate = 0.06;
Sigma  = 0.3;
DivAmount = 4;
DivDate = 'Apr-01-2008';

% define the RateSpec and StockSpec
StockSpec = stockspec(Sigma, AssetPrice, {'cash'}, DivAmount, DivDate);
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RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rate, 'Compounding', -1, 'Basis', 1);

% define the OutSpec
OutSpec = {'Price', 'Delta', 'Gamma'};

[Price, Delta, Gamma]  = optstocksensbyrgw(RateSpec, StockSpec, Settle,...
Maturity, Strike,'OutSpec', OutSpec)

Price = 4.3860

Delta = 0.5022

Gamma = 0.0336

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification, see
stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities the
price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is
StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement or trade date
serial date number | date character vector

Settlement or trade date, specified as serial date number or date character vector using a NINST-by-1
vector.
Data Types: double | char

Maturity — Maturity date for option
serial date number | date character vector

Maturity date for option, specified as serial date number or date character vector using a NINST-by-1
vector.
Data Types: double | char

OptSpec — Definition of option
cell array of character vectors with values 'call' or 'put'
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Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of character vectors
with values 'call' or 'put'.
Data Types: char | cell

Strike — Option strike price value
nonnegative vector

Option strike price value, specified as a nonnegative NINST-by-1 vector.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Delta,Gamma,Price] =
optstocksensbyrgw(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,'OutSpec'
,OutSpec)

OutSpec — Define outputs
{'Price'} (default) | cell array of character vectors with values: 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a NOUT- by-1 or
1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta,
and Price, in that order. This is the same as specifying OutSpec to include each sensitivity:
Example: OutSpec = {'delta','gamma','vega','lambda','rho','theta','price'}
Data Types: char | cell

Output Arguments
PriceSens — Expected future prices or sensitivities values
vector

Expected future prices or sensitivities values, returned as a NINST-by-1 vector.
Data Types: double

More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.
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The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.

See Also
impvbyrgw | intenvset | optstockbyrgw | stockspec

Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-79
“Pricing Using the Roll-Geske-Whaley Model” on page 3-84
“Vanilla Option” on page 3-27
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2008b
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optstockbystt
Price vanilla options on stocks using standard trinomial tree

Syntax
[Price,PriceTree] = optstockbystt(STTTree,OptSpec,Strike,Settle,
ExerciseDates)
[Price,PriceTree] = optstockbystt( ___ ,Name,Value)

Description
[Price,PriceTree] = optstockbystt(STTTree,OptSpec,Strike,Settle,
ExerciseDates) returns vanilla option (American, European, or Bermudan) prices on stocks using a
standard trinomial (STT) tree.

[Price,PriceTree] = optstockbystt( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Price Call and Put Stock Options Using the Standard Trinomial Tree Model

Create a RateSpec.

StartDates = 'Jan-1-2009'; 
EndDates = 'Jan-1-2013'; 
Rates = 0.035; 
Basis = 1; 
Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates,'Compounding', Compounding, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.8694
            Rates: 0.0350
         EndTimes: 4
       StartTimes: 0
         EndDates: 735235
       StartDates: 733774
    ValuationDate: 733774
            Basis: 1
     EndMonthRule: 1

Create a StockSpec.

AssetPrice = 85; 
Sigma = 0.15; 
StockSpec = stockspec(Sigma, AssetPrice)
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StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1500
         AssetPrice: 85
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Create an STTTree.

NumPeriods = 4;
TimeSpec = stttimespec(StartDates, EndDates, 4);
STTTree = stttree(StockSpec, RateSpec, TimeSpec)

STTTree = struct with fields:
       FinObj: 'STStockTree'
    StockSpec: [1x1 struct]
     TimeSpec: [1x1 struct]
     RateSpec: [1x1 struct]
         tObs: [0 1 2 3 4]
         dObs: [733774 734139 734504 734869 735235]
        STree: {1x5 cell}
        Probs: {[3x1 double]  [3x3 double]  [3x5 double]  [3x7 double]}

Define the call and put options and compute the price.

Settle = '1/1/09';
ExerciseDates = [datenum('1/1/11');datenum('1/1/12')];
OptSpec =  {'call';'put'};
Strike =[100;80];

Price = optstockbystt(STTTree, OptSpec, Strike, Settle, ExerciseDates)

Price = 2×1

    4.5025
    3.0603

Input Arguments
STTTree — Stock tree structure for standard trinomial tree
structure

Stock tree structure for a standard trinomial tree, specified by using stttree.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'

Definition of option, specified as 'call' or 'put' using a character vector.
Data Types: char | cell
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Strike — Option strike price values
nonnegative integer

Option strike price value, specified with a NINST-by-1 or NINST-by-NSTRIKES depending on the
option type:

• For a European option, use a NINST-by-1 vector of strike prices.
• For a Bermuda option, use aNINST-by-NSTRIKES matrix of strike prices. Each row is the schedule

for one option. If an option has fewer than NSTRIKES exercise opportunities, the end of the row is
padded with NaNs.

• For an American option, use a NINST-by-1 of strike prices.

Data Types: double

Settle — Settlement date or trade date
serial date number | date character vector

Settlement date or trade date for the vanilla option, specified as a NINST-by-1 vector of date
character vectors or serial date numbers.

Note The Settle date for every vanilla option is set to the ValuationDate of the stock tree. The
vanilla option argument Settle is ignored.

Data Types: char | double

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a NINST-by-1,NINST-by-2, or NINST-by-NSTRIKES using serial
date numbers or date character vectors, depending on the option type:

• For a European option, use a NINST-by-1 vector of dates. Each row is the schedule for one option.
For a European option, there is only one ExerciseDates on the option expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKES vector of dates. Each row is the schedule for
one option.

• For an American option, use a NINST-by-2 vector of exercise date boundaries. The option can be
exercised on any date between or including the pair of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is a NINST-by-1 vector, the option can be exercised between
ValuationDate of the stock tree and the single listed ExerciseDates.

Data Types: double | char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Price =
optstockbystt(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates,'America
nOpt','1')
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AmericanOpt — Option type
0 European or Bermuda (default) | integer with values of 0 or 1

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and a NINST-by-1
vector of integer flags with values:

• 0 — European or Bermuda
• 1 — American

Data Types: single | double

Output Arguments
Price — Expected price of vanilla option at time 0
vector

Expected price of the vanilla option at time 0, returned as a NINST-by-1 vector.

PriceTree — Structure containing trees of vectors of instrument prices and accrued
interest for each node
structure

Structure containing trees of vectors of instrument prices and accrued interest, and a vector of
observation times for each node. Values are:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.
• PriceTree.dObs contains the observation dates.

More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.

See Also
stttree | stttimespec | sttprice | sttsens | instoptstock
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Topics
“Vanilla Option” on page 3-27
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2015b
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optpricebysim
Price option given simulated underlying values

Syntax
Price = optpricebysim(RateSpec,SimulatedPrices,Times,OptSpec,Strike,
ExerciseTimes)
Price = optpricebysim( ___ ,Name,Value)

Description
Price = optpricebysim(RateSpec,SimulatedPrices,Times,OptSpec,Strike,
ExerciseTimes) calculates the price of European, American, and Berumdan call/put options based
on risk-neutral simulation of the underlying asset. For American and Bermudan options, the
Longstaff-Schwartz least squares method calculates the early exercise premium.

Price = optpricebysim( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Compute the Price of an American Option Using Monte Carlo Simulation Based on
Geometric Brownian Motion

Define the option.

S0 = 100; % Initial price of underlying asset
Sigma = .2; % Volatility of underlying asset
Strike = 110; % Strike
OptSpec = 'call'; % Call option
Settle = '1-Jan-2013'; % Settlement date of option
Maturity = '1-Jan-2014'; % Maturity date of option
r = .05; % Risk-free rate (annual, continuous compounding)
Compounding = -1; % Continuous compounding
Basis = 0; % Act/Act day count convention
T = yearfrac(Settle, Maturity, Basis); % Time to expiration in years

Set up the gbm object and run the Monte Carlo simulation based on Geometric Brownian Motion
(GBM) using the simBySolution method from Financial Toolbox™.

NTRIALS = 1000;
NPERIODS = daysact(Settle, Maturity);
dt = T/NPERIODS;
OptionGBM = gbm(r, Sigma, 'StartState', S0);
[Paths, Times, Z] = simBySolution(OptionGBM, NPERIODS, ...
'NTRIALS',NTRIALS, 'DeltaTime',dt,'Antithetic',true);

Create the interest-rate term structure to define RateSpec.

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
           'EndDates', Maturity, 'Rate', r, 'Compounding', Compounding, ...
           'Basis', Basis)
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RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9512
            Rates: 0.0500
         EndTimes: 1
       StartTimes: 0
         EndDates: 735600
       StartDates: 735235
    ValuationDate: 735235
            Basis: 0
     EndMonthRule: 1

Price an American option.

SimulatedPrices = squeeze(Paths);
OptPrice = optpricebysim(RateSpec, SimulatedPrices, Times, OptSpec, ...
           Strike, T, 'AmericanOpt', 1)

OptPrice = 5.8172

Compute the Price of an American Asian Option Using Monte Carlo Simulation Based on
Geometric Brownian Motion

Define the option.

S0 = 100; % Initial price of underlying asset
Sigma = .2; % Volatility of underlying asset
Strike = 110; % Strike
OptSpec = 'call'; % Call option
Settle = '1-Jan-2013'; % Settlement date of option
Maturity = '1-Jan-2014'; % Maturity date of option
r = .05; % Risk-free rate (annual, continuous compounding)
Compounding = -1; % Continuous compounding
Basis = 0; % Act/Act day count convention
T = yearfrac(Settle, Maturity, Basis); % Time to expiration in years

Set up the gbm object and run the Monte Carlo simulation based on Geometric Brownian Motion
(GBM) using the simBySolution method from Financial Toolbox™.

NTRIALS = 1000;
NPERIODS = daysact(Settle, Maturity);
dt = T/NPERIODS;
OptionGBM = gbm(r, Sigma, 'StartState', S0);
[Paths, Times, Z] = simBySolution(OptionGBM, NPERIODS, ...
'NTRIALS',NTRIALS, 'DeltaTime',dt,'Antithetic',true);

Create the interest-rate term structure to define RateSpec.

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
           'EndDates', Maturity, 'Rate', r, 'Compounding', Compounding, ...
           'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
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      Compounding: -1
             Disc: 0.9512
            Rates: 0.0500
         EndTimes: 1
       StartTimes: 0
         EndDates: 735600
       StartDates: 735235
    ValuationDate: 735235
            Basis: 0
     EndMonthRule: 1

Price an American Asian option (arithmetic mean) by finding the average price over periods.

AvgPrices = zeros(NPERIODS+1, NTRIALS);
    for i = 1:NPERIODS+1
        AvgPrices(i,:) = mean(squeeze(Paths(1:i,:,:)));
    end
    AsianPrice = optpricebysim(RateSpec, AvgPrices, Times, OptSpec, ...
        Strike, T, 'AmericanOpt', 1)

AsianPrice = 1.8221

Compute the Price of an American Lookback Option Using Monte Carlo Simulation Based on
Geometric Brownian Motion

Define the option.

S0 = 100; % Initial price of underlying asset
Sigma = .2; % Volatility of underlying asset
Strike = 110; % Strike
OptSpec = 'call'; % Call option
Settle = '1-Jan-2013'; % Settlement date of option
Maturity = '1-Jan-2014'; % Maturity date of option
r = .05; % Risk-free rate (annual, continuous compounding)
Compounding = -1; % Continuous compounding
Basis = 0; % Act/Act day count convention
T = yearfrac(Settle, Maturity, Basis); % Time to expiration in years

Set up the gbm object and run the Monte Carlo simulation based on Geometric Brownian Motion
(GBM) using the simBySolution method from Financial Toolbox™.

NTRIALS = 1000;
NPERIODS = daysact(Settle, Maturity);
dt = T/NPERIODS;
OptionGBM = gbm(r, Sigma, 'StartState', S0);
[Paths, Times, Z] = simBySolution(OptionGBM, NPERIODS, ...
'NTRIALS',NTRIALS, 'DeltaTime',dt,'Antithetic',true);

Create the interest-rate term structure to define RateSpec.

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
           'EndDates', Maturity, 'Rate', r, 'Compounding', Compounding, ...
           'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
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      Compounding: -1
             Disc: 0.9512
            Rates: 0.0500
         EndTimes: 1
       StartTimes: 0
         EndDates: 735600
       StartDates: 735235
    ValuationDate: 735235
            Basis: 0
     EndMonthRule: 1

Price an American lookback option by finding the maximum price over periods.

MaxPrices = zeros(NPERIODS+1, NTRIALS);
    LastPrice = squeeze(Paths(1,:,:))';
    for i = 1:NPERIODS+1;
        MaxPrices(i,:) = max([LastPrice; Paths(i,:)]);
        LastPrice = MaxPrices(i,:);
    end
    LookbackPrice = optpricebysim(RateSpec, MaxPrices, Times, OptSpec, ...
        Strike, T, 'AmericanOpt', 1)

LookbackPrice = 10.4410

Compute the Price of a Bermudan Option Using Monte Carlo Simulation Based on Geometric
Brownian Motion

Define the option.

S0 = 80; % Initial price of underlying asset
Sigma = .3; % Volatility of underlying asset
Strike = 75; % Strike
OptSpec = 'put'; % Put option
Settle = '1-Jan-2013'; % Settlement date of option
Maturity = '1-Jan-2014'; % Maturity date of option
ExerciseDates = {'1-Jun-2013', '1-Jan-2014'}; % Exercise dates of option
r = .05; % Risk-free rate (annual, continuous compounding)
Compounding = -1; % Continuous compounding
Basis = 0; % Act/Act day count convention
T = yearfrac(Settle, Maturity, Basis); % Time to expiration in years
ExerciseTimes = yearfrac(Settle, ExerciseDates, Basis); % Exercise times

Set up the gbm object and run the Monte Carlo simulation based on Geometric Brownian Motion
(GBM) using the simBySolution method from Financial Toolbox™.

NTRIALS = 1000;
NPERIODS = daysact(Settle, Maturity);
dt = T/NPERIODS;
OptionGBM = gbm(r, Sigma, 'StartState', S0);
[Paths, Times, Z] = simBySolution(OptionGBM, NPERIODS, ...
'NTRIALS',NTRIALS, 'DeltaTime',dt,'Antithetic',true);

Create the interest-rate term structure to define RateSpec.
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RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
           'EndDates', Maturity, 'Rate', r, 'Compounding', Compounding, ...
           'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9512
            Rates: 0.0500
         EndTimes: 1
       StartTimes: 0
         EndDates: 735600
       StartDates: 735235
    ValuationDate: 735235
            Basis: 0
     EndMonthRule: 1

Price the Bermudan option.

SimulatedPrices = squeeze(Paths);
BermudanPrice = optpricebysim(RateSpec, SimulatedPrices, Times, ...
OptSpec, Strike, ExerciseTimes)

BermudanPrice = 5.2014

Compute the Price of an American Spread Option Using Monte Carlo Simulation Based on
Geometric Brownian Motion

Define the option.

S1 = 110; % Price of first underlying asset
S2 = 100; % Price of second underlying asset
Sigma1 = .1;  % Volatility of first underlying asset
Sigma2 = .15; % Volatility of second underlying asset
Strike = 15; % Strike
Rho = .3; % Correlation between underlyings
OptSpec = 'put'; % Put option
Settle = '1-Jan-2013'; % Settlement date of option
Maturity = '1-Jan-2014'; % Maturity date of option
r = .05; % Risk-free rate (annual, continuous compounding)
Compounding = -1; % Continuous compounding
Basis = 0; % Act/Act day count convention
T = yearfrac(Settle, Maturity, Basis); % Time to expiration in years

Set up the gbm object and run the Monte Carlo simulation based on Geometric Brownian Motion
(GBM) using the simBySolution method from Financial Toolbox™.

NTRIALS = 1000;
NPERIODS = daysact(Settle, Maturity);
dt = T/NPERIODS;
SpreadGBM = gbm(r*eye(2), diag([Sigma1;Sigma2]),'Correlation',...
[1 Rho;Rho 1],'StartState',[S1;S2]);
[Paths, Times, Z] = simBySolution(SpreadGBM, NPERIODS,'NTRIALS',NTRIALS,...
'DeltaTime',dt,'Antithetic',true);
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Create the interest-rate term structure to define RateSpec.

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
           'EndDates', Maturity, 'Rate', r, 'Compounding', Compounding, ...
           'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9512
            Rates: 0.0500
         EndTimes: 1
       StartTimes: 0
         EndDates: 735600
       StartDates: 735235
    ValuationDate: 735235
            Basis: 0
     EndMonthRule: 1

Price the American spread option.

Spread = squeeze(Paths(:,1,:) - Paths(:,2,:));
SpreadPrice = optpricebysim(RateSpec, Spread, Times, OptSpec, Strike, ...
T, 'AmericanOpt', 1)

SpreadPrice = 9.0007

Input Arguments
RateSpec — Interest-rate term structure of risk-free rates
structure

Interest-rate term structure of risk-free rates (annualized and continuously compounded), specified
by the RateSpec obtained from intenvset. The valuation date must be at the settlement date of the
option, and the day-count basis and end-of-month rule must be the same as those used to calculate
the Times input. For information on the interest-rate specification, see intenvset.
Data Types: struct

SimulatedPrices — Simulated prices
matrix

Simulated prices, specified using a (NumPeriods + 1)-by-NumTrials matrix of risk-neutral simulated
prices. The first element of SimulatedPrices is the initial value at time 0.
Data Types: single | double

Times — Annual time factors associated with simulated prices
vector

Annual time factors associated with simulated prices, specified using a (NumPeriods + 1)-by-1
column vector. Each element of Times is associated with the corresponding row of
SimulatedPrices. The first element of Times must be 0 (current time).
Data Types: single | double
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OptSpec — Definition of option
character vector with values 'call' or 'put'

Definition of option as 'call' or 'put', specified as a character vector.
Data Types: char

Strike — Option strike price values
scalar | function handle

Option strike price values, specified as a scalar value Strike price. Strike for Bermudan options
can be specified as a 1-by-NSTRIKES vector or a function handle that returns the value of the strike
given the time of the strike.
Data Types: single | double | function_handle

ExerciseTimes — Exercise time for option
vector of exercise times

Exercise time for the option, specified as a vector of exercise times as follows:

• For a European or Bermudan option, ExerciseTimes is a 1-by-1 (European) or 1-by-NSTRIKES
(Bermudan) vector of exercise times. For a European option, there is only one ExerciseTimes on
the option expiry date.

• For an American option, ExerciseTimes is a 1-by-2 vector of exercise time boundaries. The
option exercises on any date between, or including, the pair of times on that row. If
ExerciseTimes is 1-by-1, the option exercises between time 0 and the single listed
ExerciseTimes.

Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Price =
optpricebysim(RateSpec,Prices,Times,OptSpec,Settle,Strike,ExerciseTimes,'Amer
icanOpt',1)

AmericanOpt — Option type
0 European or Bermudan (default) | scalar flag with value [0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and an integer
scalar flag with values:

• 0 — European or Bermudan
• 1 — American

For American options, the Longstaff-Schwartz least squares method calculates the early exercise
premium.
Data Types: single | double
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Output Arguments
Price — Price of option
scalar

Price of the option, returned as a scalar value.

See Also
intenvset | gbm | simBySolution

Topics
“Pricing Asian Options” on page 3-110
“Creating Geometric Brownian Motion (GBM) Models”
Supported Equity Derivatives on page 3-19

Introduced in R2014a
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rangefloatbybdt
Price range floating note using Black-Derman-Toy tree

Syntax
[Price,PriceTree] = rangefloatbybdt(BDTTree,Spread,Settle,Maturity,RateSched)
[Price,PriceTree] = rangefloatbybdt( ___ ,Name,Value)

Description
[Price,PriceTree] = rangefloatbybdt(BDTTree,Spread,Settle,Maturity,RateSched)
prices range floating note using a Black-Derman-Toy tree.

Payments on range floating notes are determined by the effective interest-rate between reset dates. If
the reset period for a range spans more than one tree level, calculating the payment becomes
impossible due to the recombining nature of the tree. That is, the tree path connecting the two
consecutive reset dates cannot be uniquely determined because there is more than one possible path
for connecting the two payment dates.

[Price,PriceTree] = rangefloatbybdt( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Compute the Price of a Range Note Using a Black-Derman-Toy Tree

This example shows how to compute the price of a range note using a Black-Derman-Toy tree with the
following interest-rate term structure data.

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2011';
StartDates = ValuationDate;
EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
Compounding = 1;

% define RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding);
                       
% range note instrument matures in Jan-1-2014 and has the following RateSchedule:
Spread = 100;
Settle = 'Jan-1-2011';
Maturity = 'Jan-1-2014';
RateSched(1).Dates = {'Jan-1-2012'; 'Jan-1-2013'  ; 'Jan-1-2014'};
RateSched(1).Rates = [0.045 0.055 ; 0.0525  0.0675; 0.06 0.08];

% data to build the tree is as follows:
% assume the volatility is 10%.
Sigma = 0.1;  
BDTTS = bdttimespec(ValuationDate, EndDates, Compounding);

11 Functions

11-1584



BDTVS = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');
BDTT = bdttree(BDTVS, RS, BDTTS);

% price the instrument 
Price = rangefloatbybdt(BDTT, Spread, Settle, Maturity, RateSched)

Price = 97.5267

Input Arguments
BDTTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bdttree.
Data Types: struct

Spread — Number of basis points over reference rate
numeric

Number of basis points over the reference rate, specified as a NINST-by-1 vector.
Data Types: double

Settle — Settlement date for floating range note
serial date number | date character vector | cell array of date character vectors

Settlement date for the floating range note, specified as a NINST-by-1 vector of serial date numbers
or date character vectors. The Settle date for every range floating instrument is set to the
ValuationDate of the BDT tree. The floating range note argument Settle is ignored.
Data Types: double | char | cell

Maturity — Maturity date for floating range note
serial date number | date character vector | cell array of date character vectors

Maturity date for the floating-rate note, specified as a NINST-by-1 vector of serial date numbers or
date character vectors.
Data Types: double | char | cell

RateSched — Range of rates within which cash flows are nonzero
structure

Range of rates within which cash flows are nonzero, specified as a NINST-by-1 vector of structures.
Each element of the structure array contains two fields:

• RateSched.Dates — NDates-by-1 cell array of dates corresponding to the range schedule.
• RateSched.Rates — NDates-by-2 array with the first column containing the lower bound of the

range and the second column containing the upper bound of the range. Cash flow for date
RateSched.Dates(n) is nonzero for rates in the range RateSched.Rates(n,1) < Rate <
RateSched.Rate (n,2).

Data Types: struct
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree] =
rangefloatbybdt(BDTTree,Spread,Settle,Maturity,RateSched,'Reset',4,'Basis',5,
'Principal',10000)

Reset — Frequency payment per year
1 (default) | numeric

Frequency of payments per year, specified as the comma-separated pair consisting of 'Reset' and a
NINST-by-1 vector.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis representing the basis used when annualizing the input forward rate tree, specified
as the comma-separated pair consisting of 'Basis' and a NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

Notional principal amount, specified as the comma-separated pair consisting of 'Principal' and a
NINST-by-1 vector.
Data Types: double
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Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure obtained from using derivset.
Data Types: struct

EndMonthRule — End-of-month rule flag for generating caplet dates
1 (in effect) (default) | nonnegative integer with value 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
nonnegative integer with a value of 0 or 1 using a NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

Output Arguments
Price — Expected prices of range floating notes at time 0
vector

Expected prices of the range floating notes at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a structure containing trees of vectors of instrument
prices and accrued interest, and a vector of observation times for each node. Values are:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.

More About
Range Note

A range note is a structured (market-linked) security whose coupon rate is equal to the reference rate
as long as the reference rate is within a certain range.

If the reference rate is outside of the range, the coupon rate is 0 for that period. This type of
instrument entitles the holder to cash flows that depend on the level of some reference interest rate
and are floored to be positive. The note holder gets direct exposure to the reference rate. In return
for the drawback that no interest is paid for the time the range is left, they offer higher coupon rates
than comparable standard products, like vanilla floating notes. For more information, see “Range
Note” on page 2-13.
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References
[1] Jarrow, Robert. “Modelling Fixed Income Securities and Interest Rate Options.” Stanford

Economics and Finance. 2nd Edition. 2002.

See Also
bdttree | cfbybdt | floatbybdt | swapbybdt | floorbybdt | fixedbybdt | bondbybdt |
rangefloatbyhjm | instrangefloat | rangefloatbyhw | rangefloatbybk

Topics
“Computing Instrument Prices” on page 2-81
“Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-10
“Range Note” on page 2-13
“Pricing Options Structure” on page A-2
“Understanding Interest-Rate Tree Models” on page 2-66
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced in R2012a

11 Functions

11-1588



rangefloatbybk
Price range floating note using Black-Karasinski tree

Syntax
[Price,PriceTree] = rangefloatbybk(BKTree,Spread,Settle,Maturity,RateSched)
[Price,PriceTree] = rangefloatbybk( ___ ,Name,Value)

Description
[Price,PriceTree] = rangefloatbybk(BKTree,Spread,Settle,Maturity,RateSched)
prices range floating note using a Black-Karasinski tree.

Payments on range floating notes are determined by the effective interest-rate between reset dates. If
the reset period for a range spans more than one tree level, calculating the payment becomes
impossible due to the recombining nature of the tree. That is, the tree path connecting the two
consecutive reset dates cannot be uniquely determined because there is more than one possible path
for connecting the two payment dates.

[Price,PriceTree] = rangefloatbybk( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Compute the Price of a Range Note Using a Black-Karasinski Tree

This example shows how to compute the price of a range note using a Black-Karasinski tree with the
following interest-rate term structure data.

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2011';
StartDates = ValuationDate;
EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
Compounding = 1;

% define RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding);
                       
% range note instrument matures in Jan-1-2014 and has the following RateSchedule:
Spread = 100;
Settle = 'Jan-1-2011';
Maturity = 'Jan-1-2014';
RateSched(1).Dates = {'Jan-1-2012'; 'Jan-1-2013'  ; 'Jan-1-2014'};
RateSched(1).Rates = [0.045 0.055 ; 0.0525  0.0675; 0.06 0.08];

% data to build the tree is as follows:
VolDates = ['1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014';'1-Jan-2015'];
VolCurve = 0.01;
AlphaDates = '01-01-2015';
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AlphaCurve = 0.1;

BKVS = bkvolspec(RS.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
BKTS = bktimespec(RS.ValuationDate, VolDates, Compounding);
BKT = bktree(BKVS, RS, BKTS);

% price the instrument 
Price = rangefloatbybk(BKT, Spread, Settle, Maturity, RateSched)

Price = 102.7574

Input Arguments
BKTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bktree.
Data Types: struct

Spread — Number of basis points over reference rate
numeric

Number of basis points over the reference rate, specified as a NINST-by-1 vector.
Data Types: double

Settle — Settlement date for floating range note
serial date number | date character vector | cell array of date character vectors

Settlement date for the floating range note, specified as a NINST-by-1 vector of serial date numbers
or date character vectors. The Settle date for every range floating instrument is set to the
ValuationDate of the BK tree. The floating range note argument Settle is ignored.
Data Types: double | char | cell

Maturity — Maturity date for floating range note
serial date number | date character vector | cell array of date character vectors

Maturity date for the floating-rate note, specified as a NINST-by-1 vector of serial date numbers or
date character vectors.
Data Types: double | char | cell

RateSched — Range of rates within which cash flows are nonzero
structure

Range of rates within which cash flows are nonzero, specified as a NINST-by-1 vector of structures.
Each element of the structure array contains two fields:

• RateSched.Dates — NDates-by-1 cell array of dates corresponding to the range schedule.
• RateSched.Rates — NDates-by-2 array with the first column containing the lower bound of the

range and the second column containing the upper bound of the range. Cash flow for date
RateSched.Dates(n) is nonzero for rates in the range RateSched.Rates(n,1) < Rate <
RateSched.Rate (n,2).
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Data Types: struct

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree] =
rangefloatbybk(BKTree,Spread,Settle,Maturity,RateSched,'Reset',4,'Basis',5,'P
rincipal',10000)

Reset — Frequency payment per year
1 (default) | numeric

Frequency of payments per year, specified as the comma-separated pair consisting of 'Reset' and a
NINST-by-1 vector.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis representing the basis used when annualizing the input forward rate tree, specified
as the comma-separated pair consisting of 'Basis' and a NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

Notional principal amount, specified as the comma-separated pair consisting of 'Principal' and a
NINST-by-1 vector.
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Data Types: double

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure obtained from using derivset.
Data Types: struct

EndMonthRule — End-of-month rule flag for generating caplet dates
1 (in effect) (default) | nonnegative integer with value 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
nonnegative integer with a value of 0 or 1 using a NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

Output Arguments
Price — Expected prices of range floating notes at time 0
vector

Expected prices of the range floating notes at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a structure containing trees of vectors of instrument
prices and accrued interest, and a vector of observation times for each node. Values are:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.

More About
Range Note

A range note is a structured (market-linked) security whose coupon rate is equal to the reference rate
as long as the reference rate is within a certain range.

If the reference rate is outside of the range, the coupon rate is 0 for that period. This type of
instrument entitles the holder to cash flows that depend on the level of some reference interest rate
and are floored to be positive. The note holder gets direct exposure to the reference rate. In return
for the drawback that no interest is paid for the time the range is left, they offer higher coupon rates
than comparable standard products, like vanilla floating notes. For more information, see “Range
Note” on page 2-13.
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References
[1] Jarrow, Robert. “Modelling Fixed Income Securities and Interest Rate Options.” Stanford

Economics and Finance. 2nd Edition. 2002.

See Also
bktree | cfbybk | capbybk | swapbybk | floorbybk | fixedbybk | bondbybk |
rangefloatbyhjm | rangefloatbybdt | rangefloatbyhw | instrangefloat

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Range Note” on page 2-13
“Pricing Options Structure” on page A-2
“Understanding Interest-Rate Tree Models” on page 2-66
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced in R2012a
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rangefloatbycir
Price range floating note using Cox-Ingersoll-Ross tree

Syntax
[Price,PriceTree] = rangefloatbycir(CIRTree,Spread,Settle,Maturity,RateSched)
[Price,PriceTree] = rangefloatbycir( ___ ,Name,Value)

Description
[Price,PriceTree] = rangefloatbycir(CIRTree,Spread,Settle,Maturity,RateSched)
prices range floating note with a Cox-Ingersoll-Ross (CIR) interest-rate tree using a CIR++ model
with the Nawalka-Beliaeva (NB) approach.

[Price,PriceTree] = rangefloatbycir( ___ ,Name,Value) adds additional name-value pair
arguments.

Examples

Price a Range Floating-Rate Note Using a CIR Interest-Rate Tree

Create a RateSpec using the intenvset function.

Rates = [0.035; 0.042147; 0.047345; 0.052707]; 
Dates = {'Jan-1-2017'; 'Jan-1-2018'; 'Jan-1-2019'; 'Jan-1-2020'; 'Jan-1-2021'}; 
ValuationDate = 'Jan-1-2017'; 
EndDates = Dates(2:end)'; 
Compounding = 1; 
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, 'EndDates',EndDates,'Rates', Rates, 'Compounding', Compounding); 

Create a CIR tree.

NumPeriods = length(EndDates); 
Alpha = 0.03; 
Theta = 0.02;  
Sigma = 0.1;   
Settle = '01-Jan-2017'; 
Maturity = '01-Jan-2020'; 
CIRTimeSpec = cirtimespec(Settle, Maturity, 3); 
CIRVolSpec = cirvolspec(Sigma, Alpha, Theta); 

CIRT = cirtree(CIRVolSpec, RateSpec, CIRTimeSpec)

CIRT = struct with fields:
      FinObj: 'CIRFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2]
        dObs: [736696 737061 737426]
     FwdTree: {[1.0350]  [1.0790 1.0500 1.0298]  [1.1275 1.0887 1.0594 ... ]}
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     Connect: {[3x1 double]  [3x3 double]}
       Probs: {[3x1 double]  [3x3 double]}

Define the range note instrument that matures in Jan-1-2014 and has the following RateSchedule:

Spread = 100;
Settle = 'Jan-1-2017';
Maturity = 'Jan-1-2020';
RateSched(1).Dates = {'Jan-1-2018'; 'Jan-1-2019'  ; 'Jan-1-2020'};
RateSched(1).Rates = [0.045 0.055 ; 0.0525  0.0675; 0.06 0.08];

Compute the price of the range floating note.

[Price,PriceTree] = rangefloatbycir(CIRT,Spread,Settle,Maturity,RateSched)

Price = 91.6849

PriceTree = struct with fields:
     FinObj: 'CIRPriceTree'
      PTree: {1x4 cell}
     AITree: {[0]  [0 0 0]  [0 0 0 0 0]  [0 0 0 0 0]}
       tObs: [0 1 2 3]
    Connect: {[3x1 double]  [3x3 double]}
      Probs: {[3x1 double]  [3x3 double]}

Input Arguments
CIRTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using cirtree.
Data Types: struct

Spread — Number of basis points over reference rate
numeric

Number of basis points over the reference rate, specified as a NINST-by-1 vector.
Data Types: double

Settle — Settlement date for floating range note
serial date number | date character vector | cell array of date character vectors | string array |
datetime

Settlement date for the floating range note, specified as a NINST-by-1 vector of serial date numbers,
date character vectors, string arrays, or datetime arrays. The Settle date for every range floating
instrument is set to the ValuationDate of the CIR tree. The floating range note argument Settle is
ignored.
Data Types: double | char | cell | string | datetime

Maturity — Maturity date for floating range note
serial date number | date character vector | cell array of date character vectors | string array |
datetime
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Maturity date for the floating-rate note, specified as a NINST-by-1 vector of serial date numbers, date
character vectors, string arrays, or datetime arrays.
Data Types: double | char | cell | string | datetime

RateSched — Range of rates within which cash flows are nonzero
structure

Range of rates within which cash flows are nonzero, specified as a NINST-by-1 vector of structures.
Each element of the structure array contains two fields:

• RateSched.Dates — NDates-by-1 cell array of dates corresponding to the range schedule.
• RateSched.Rates — NDates-by-2 array with the first column containing the lower bound of the

range and the second column containing the upper bound of the range. Cash flow for date
RateSched.Dates(n) is nonzero for rates in the range RateSched.Rates(n,1) < Rate <
RateSched.Rate (n,2).

Data Types: struct

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree] =
rangefloatbycir(CIRTree,Spread,Settle,Maturity,RateSched,'Reset',4,'Basis',5,
'Principal',10000)

Reset — Frequency payment per year
1 (default) | numeric

Frequency of payments per year, specified as the comma-separated pair consisting of 'Reset' and a
NINST-by-1 vector.

Note Payments on range floating notes are determined by the effective interest-rate between reset
dates. If the reset period for a range spans more than one tree level, calculating the payment
becomes impossible due to the recombining nature of the tree. That is, the tree path connecting the
two consecutive reset dates cannot be uniquely determined because there is more than one possible
path for connecting the two payment dates.

Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis representing the basis used when annualizing the input forward rate tree, specified
as the comma-separated pair consisting of 'Basis' and a NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
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• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

Notional principal amount, specified as the comma-separated pair consisting of 'Principal' and a
NINST-by-1 vector.
Data Types: double

EndMonthRule — End-of-month rule flag for generating caplet dates
1 (in effect) (default) | nonnegative integer with value 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
nonnegative integer with a value of 0 or 1 using a NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

Output Arguments
Price — Expected prices of range floating notes at time 0
vector

Expected prices of the range floating notes at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a structure containing trees of vectors of instrument
prices and accrued interest, and a vector of observation times for each node. Values are:

• PriceTree.PTree contains the clean prices.
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• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell array describes

how nodes in that level connect to the next. For a given tree level, there are NumNodes elements
in the vector, and they contain the index of the node at the next level that the middle branch
connects to. Subtracting 1 from that value indicates where the up-branch connects to, and adding
1 indicated where the down branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array contains the
up, middle, and down transition probabilities for each node of the level.

More About
Range Note

A range note is a structured (market-linked) security whose coupon rate is equal to the reference rate
as long as the reference rate is within a certain range.

If the reference rate is outside of the range, the coupon rate is 0 for that period. This type of
instrument entitles the holder to cash flows that depend on the level of some reference interest rate
and are floored to be positive. The note holder gets direct exposure to the reference rate. In return
for the drawback that no interest is paid for the time the range is left, they offer higher coupon rates
than comparable standard products, vanilla floating notes. For more information, see “Range Note”
on page 2-13.

References
[1] Cox, J., Ingersoll, J., and S. Ross. "A Theory of the Term Structure of Interest Rates."

Econometrica. Vol. 53, 1985.

[2] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer Finance, 2006.

[3] Hirsa, A. Computational Methods in Finance. CRC Press, 2012.

[4] Nawalka, S., Soto, G., and N. Beliaeva. Dynamic Term Structure Modeling. Wiley, 2007.

[5] Nelson, D. and K. Ramaswamy. "Simple Binomial Processes as Diffusion Approximations in
Financial Models." The Review of Financial Studies. Vol 3. 1990, pp. 393–430.

See Also
bondbycir | capbycir | cfbycir | fixedbycir | floatbycir | floorbycir | oasbycir |
optbndbycir | optfloatbycir | optembndbycir | optemfloatbycir | swapbycir |
swaptionbycir | instrangefloat

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Range Note” on page 2-13
“Pricing Options Structure” on page A-2
“Understanding Interest-Rate Tree Models” on page 2-66
“Supported Interest-Rate Instrument Functions” on page 2-3
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rangefloatbyhjm
Price range floating note using Heath-Jarrow-Morton tree

Syntax
[Price,PriceTree] = rangefloatbyhjm(HJMTree,Spread,Settle,Maturity,RateSched)
[Price,PriceTree] = rangefloatbyhjm( ___ Name,Value)

Description
[Price,PriceTree] = rangefloatbyhjm(HJMTree,Spread,Settle,Maturity,RateSched)
prices range floating note using a Heath-Jarrow-Morton tree.

Payments on range floating notes are determined by the effective interest-rate between reset dates. If
the reset period for a range spans more than one tree level, calculating the payment becomes
impossible due to the recombining nature of the tree. That is, the tree path connecting the two
consecutive reset dates cannot be uniquely determined because there is more than one possible path
for connecting the two payment dates.

[Price,PriceTree] = rangefloatbyhjm( ___ Name,Value) adds optional name-value pair
arguments.

Examples

Compute the Price of a Range Note Using a Heath-Jarrow-Morton Tree

This example shows how to compute the price of a range note using a Heath-Jarrow-Morton tree with
the following interest-rate term structure data.

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2011';
StartDates = ValuationDate;
EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
Compounding = 1;

% define RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding);
                       
% range note instrument matures in Jan-1-2014 and has the following RateSchedule:
Spread = 100;
Settle = 'Jan-1-2011';
Maturity = 'Jan-1-2014';
RateSched(1).Dates = {'Jan-1-2012'; 'Jan-1-2013'  ; 'Jan-1-2014'};
RateSched(1).Rates = [0.045 0.055 ; 0.0525  0.0675; 0.06 0.08];

% data to build the tree is as follows:
Volatility = [.2; .19; .18; .17];
CurveTerm = [ 1;  2;   3;   4];
MaTree = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
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HJMTS = hjmtimespec(ValuationDate, MaTree);
HJMVS = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);
HJMT = hjmtree(HJMVS, RS, HJMTS);

% price the instrument  
Price = rangefloatbyhjm(HJMT, Spread, Settle, Maturity, RateSched)

Price = 90.2348

Input Arguments
HJMTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using hjmtree.
Data Types: struct

Spread — Number of basis points over reference rate
numeric

Number of basis points over the reference rate, specified as a NINST-by-1 vector.
Data Types: double

Settle — Settlement date for floating range note
serial date number | date character vector | cell array of date character vectors

Settlement date for the floating range note, specified as a NINST-by-1 vector of serial date numbers
or date character vectors. The Settle date for every range floating instrument is set to the
ValuationDate of the HJM tree. The floating range note argument Settle is ignored.
Data Types: double | char | cell

Maturity — Maturity date for floating range note
serial date number | date character vector | cell array of date character vectors

Maturity date for the floating-rate note, specified as a NINST-by-1 vector of serial date numbers or
date character vectors.
Data Types: double | char | cell

RateSched — Range of rates within which cash flows are nonzero
structure

Range of rates within which cash flows are nonzero, specified as a NINST-by-1 vector of structures.
Each element of the structure array contains two fields:

• RateSched.Dates — NDates-by-1 cell array of dates corresponding to the range schedule.
• RateSched.Rates — NDates-by-2 array with the first column containing the lower bound of the

range and the second column containing the upper bound of the range. Cash flow for date
RateSched.Dates(n) is nonzero for rates in the range RateSched.Rates(n,1) < Rate <
RateSched.Rate (n,2).

Data Types: struct
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree] =
rangefloatbyhjm(HJMTree,Spread,Settle,Maturity,RateSched,'Reset',4,'Basis',5,
'Principal',10000)

Reset — Frequency payment per year
1 (default) | numeric

Frequency of payments per year, specified as the comma-separated pair consisting of 'Reset' and a
NINST-by-1 vector.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis representing the basis used when annualizing the input forward rate tree, specified
as the comma-separated pair consisting of 'Basis' and a NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

Notional principal amount, specified as the comma-separated pair consisting of 'Principal' and a
NINST-by-1 vector.
Data Types: double
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Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure obtained from using derivset.
Data Types: struct

EndMonthRule — End-of-month rule flag for generating caplet dates
1 (in effect) (default) | nonnegative integer with value 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
nonnegative integer with a value of 0 or 1 using a NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

Output Arguments
Price — Expected prices of range floating notes at time 0
vector

Expected prices of the range floating notes at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a structure containing trees of vectors of instrument
prices and accrued interest, and a vector of observation times for each node. Values are:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.

More About
Range Note

A range note is a structured (market-linked) security whose coupon rate is equal to the reference rate
as long as the reference rate is within a certain range.

If the reference rate is outside of the range, the coupon rate is 0 for that period. This type of
instrument entitles the holder to cash flows that depend on the level of some reference interest rate
and are floored to be positive. The note holder gets direct exposure to the reference rate. In return
for the drawback that no interest is paid for the time the range is left, they offer higher coupon rates
than comparable standard products, like vanilla floating notes. For more information, see “Range
Note” on page 2-13.
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References
[1] Jarrow, Robert. “Modelling Fixed Income Securities and Interest Rate Options.” Stanford

Economics and Finance. 2nd Edition. 2002.

See Also
hjmtree | cfbyhjm | floatbyhjm | swapbyhjm | floorbyhjm | fixedbyhjm | bondbyhjm |
rangefloatbybk | rangefloatbyhw | instrangefloat | rangefloatbybdt

Topics
“Computing Instrument Prices” on page 2-81
“Range Note” on page 2-13
“Pricing Options Structure” on page A-2
“Understanding Interest-Rate Tree Models” on page 2-66
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced in R2012a
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rangefloatbyhw
Price range floating note using Hull-White tree

Syntax
[Price,PriceTree] = rangefloatbyhw(HWTree,Spread,Settle,Maturity,RateSched)
[Price,PriceTree] = rangefloatbyhw( ___ ,Name,Value)

Description
[Price,PriceTree] = rangefloatbyhw(HWTree,Spread,Settle,Maturity,RateSched)
prices range floating note using a Hull-White tree.

Payments on range floating notes are determined by the effective interest-rate between reset dates. If
the reset period for a range spans more than one tree level, calculating the payment becomes
impossible due to the recombining nature of the tree. That is, the tree path connecting the two
consecutive reset dates cannot be uniquely determined because there is more than one possible path
for connecting the two payment dates.

[Price,PriceTree] = rangefloatbyhw( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Compute the Price of a Range Note Using a Hull-White Tree

This example shows how to compute the price of a range note using a Hull-White tree with the
following interest-rate term structure data.

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2011';
StartDates = ValuationDate;
EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
Compounding = 1;

% define RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding);
                       
% range note instrument matures in Jan-1-2014 and has the following RateSchedule:
Spread = 100;
Settle = 'Jan-1-2011';
Maturity = 'Jan-1-2014';
RateSched(1).Dates = {'Jan-1-2012'; 'Jan-1-2013'  ; 'Jan-1-2014'};
RateSched(1).Rates = [0.045 0.055 ; 0.0525  0.0675; 0.06 0.08];

% data to build the tree is as follows:
VolDates = ['1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014';'1-Jan-2015'];
VolCurve = 0.01;
AlphaDates = '01-01-2015';
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AlphaCurve = 0.1;

HWVS = hwvolspec(RS.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
HWTS = hwtimespec(RS.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVS, RS, HWTS);

% price the instrument  
Price = rangefloatbyhw(HWT, Spread, Settle, Maturity, RateSched)

Price = 96.6107

Input Arguments
HWTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using hwtree.
Data Types: struct

Spread — Number of basis points over reference rate
numeric

Number of basis points over the reference rate, specified as a NINST-by-1 vector.
Data Types: double

Settle — Settlement date for floating range note
serial date number | date character vector | cell array of date character vectors

Settlement date for the floating range note, specified as a NINST-by-1 vector of serial date numbers
or date character vectors. The Settle date for every range floating instrument is set to the
ValuationDate of the HW tree. The floating range note argument Settle is ignored.
Data Types: double | char | cell

Maturity — Maturity date for floating range note
serial date number | date character vector | cell array of date character vectors

Maturity date for the floating-rate note, specified as a NINST-by-1 vector of serial date numbers or
date character vectors.
Data Types: double | char | cell

RateSched — Range of rates within which cash flows are nonzero
structure

Range of rates within which cash flows are nonzero, specified as a NINST-by-1 vector of structures.
Each element of the structure array contains two fields:

• RateSched.Dates — NDates-by-1 cell array of dates corresponding to the range schedule.
• RateSched.Rates — NDates-by-2 array with the first column containing the lower bound of the

range and the second column containing the upper bound of the range. Cash flow for date
RateSched.Dates(n) is nonzero for rates in the range RateSched.Rates(n,1) < Rate <
RateSched.Rate (n,2).
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Data Types: struct

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree] =
rangefloatbyhw(HWTree,Spread,Settle,Maturity,RateSched,'Reset',4,'Basis',5,'P
rincipal',10000)

Reset — Frequency payment per year
1 (default) | numeric

Frequency of payments per year, specified as the comma-separated pair consisting of 'Reset' and a
NINST-by-1 vector.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis representing the basis used when annualizing the input forward rate tree, specified
as the comma-separated pair consisting of 'Basis' and a NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

Notional principal amount, specified as the comma-separated pair consisting of 'Principal' and a
NINST-by-1 vector.
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Data Types: double

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure obtained from using derivset.
Data Types: struct

EndMonthRule — End-of-month rule flag for generating caplet dates
1 (in effect) (default) | nonnegative integer with value 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
nonnegative integer with a value of 0 or 1 using a NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

Output Arguments
Price — Expected prices of range floating notes at time 0
vector

Expected prices of the range floating notes at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a structure containing trees of vectors of instrument
prices and accrued interest, and a vector of observation times for each node. Values are:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.

More About
Range Note

A range note is a structured (market-linked) security whose coupon rate is equal to the reference rate
as long as the reference rate is within a certain range.

If the reference rate is outside of the range, the coupon rate is 0 for that period. This type of
instrument entitles the holder to cash flows that depend on the level of some reference interest rate
and are floored to be positive. The note holder gets direct exposure to the reference rate. In return
for the drawback that no interest is paid for the time the range is left, they offer higher coupon rates
than comparable standard products, like vanilla floating notes. For more information, see “Range
Note” on page 2-13.
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References
[1] Jarrow, Robert. “Modelling Fixed Income Securities and Interest Rate Options.” Stanford

Economics and Finance. 2nd Edition. 2002.

See Also
hwtree | cfbyhw | capbyhw | swapbyhw | floorbyhw | fixedbyhw | bondbyhw | rangefloatbybk
| rangefloatbybdt | rangefloatbyhjm | instrangefloat

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Calibrating Hull-White Model Using Market Data” on page 2-92
“Range Note” on page 2-13
“Pricing Options Structure” on page A-2
“Understanding Interest-Rate Tree Models” on page 2-66
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced in R2012a
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rate2disc
Discount factors from interest rates

Syntax
Disc = rate2disc(Compounding,Rates,EndTimes,StartTimes)
[Disc,EndTimes,StartTimes] = rate2disc(Compounding,Rates,EndTimes,StartTimes,
ValuationDate,Basis,EndMonthRule)

Description
Disc = rate2disc(Compounding,Rates,EndTimes,StartTimes) computes discount factors
from interest rates where interval points are input as times in periodic units.

The rate2disc function computes the discounts over a series of NPOINTS time intervals given the
annualized yield over those intervals. NCURVES different rate curves can be translated at once if they
have the same time structure. The time intervals can represent a zero curve or a forward curve.

The output Disc is an NPOINTS-by-NCURVES column vector of discount factors in decimal form
representing the value at time StartTimes of a unit cash flow received at time EndTimes.

[Disc,EndTimes,StartTimes] = rate2disc(Compounding,Rates,EndTimes,StartTimes,
ValuationDate,Basis,EndMonthRule) computes discount factors from interest rates where
ValuationDate is passed and interval points are input as dates.

You can specify the investment intervals either with input times or with input dates. Entering
ValuationDate invokes the date interpretation; omitting ValuationDate invokes the default time
interpretations.

Examples

Compute Discount Factors From Interest Rates

This example shows the two uses of rate2disc.

Interval Points Are Input as Times in Periodic Units

Compute discounts from a zero curve at 6 months, 12 months, and 24 months. The times to the cash
flows are 1, 2, and 4. Use rate2disc to compute the present value (at time 0) of the cash flows.

Compounding = 2;
Rates = [0.05; 0.06; 0.065];
EndTimes   = [1; 2; 4];
Disc = rate2disc(Compounding, Rates, EndTimes)

Disc = 3×1

    0.9756
    0.9426
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    0.8799

Interval Points Are Input as Dates

Compute discounts from a zero curve at 6 months, 12 months, and 24 months. Use dates to specify
the ending time horizon.

Compounding = 2;
Rates = [0.05; 0.06; 0.065];
EndDates = ['10/15/97'; '04/15/98'; '04/15/99'];
ValuationDate = '4/15/97'; 
Disc = rate2disc(Compounding, Rates, EndDates, [], ValuationDate)

Disc = 3×1

    0.9756
    0.9426
    0.8799

Input Arguments
Compounding — Compounding rate
integer with value of 0, 1, 2, 3, 4, 6, 12, 365, -1

Compounding rate for which the input zero rates are compounded when annualized, specified as one
of the following scalar integers. Compounding determines the formula for the discount factors
(Disc):

• If Compounding = 0 for simple interest:

• Disc = 1/(1 + Z * T), where T is time in years and simple interest assumes annual times
F = 1.

• If Compounding = 1, 2, 3, 4, 6, 12:

• Disc = (1 + Z/F)^(-T), where F is the compounding frequency, Z is the zero rate, and T is
the time in periodic units, for example, T = F is one year.

• If Compounding = 365:

• Disc = (1 + Z/F)^(-T), where F is the number of days in the basis year and T is a number
of days elapsed computed by basis.

• If Compounding = -1:

• Disc = exp(-T*Z), where T is time in years.

Data Types: double

Rates — Rates
decimal

Rates, specified as a number of points (NPOINTS) by number of curves (NCURVES) matrix of rates in
decimal form. Rates are the yields over investment intervals from StartTimes, when the cash flow
is valued, to EndTimes, when the cash flow is received. For example, 5% is 0.05 in Rates.
Data Types: double
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EndTimes — End times
numeric | date character vector | serial date number

End times, specified as a scalar or an NPOINTS-by-1 column vector of times in periodic units ending
the interval to discount over. When EndTimes is not a date, the value for EndTimes is T computed
from SIA semi-annual time factors, Tsemi, by the formula T = Tsemi/2 * F, where F is the
compounding frequency. F is set to 1 for continuous compounding.

Note When ValuationDate is not passed, EndTimes is interpreted as times. If Compounding =
365 (daily), EndTimes is measured in days.

Data Types: double | char

StartTimes — Start times
numeric | date character vector | serial date number

Start times, specified a scalar or an NPOINTS-by-1 column vector of times in periodic units starting
the interval to discount over. StartDates must be earlier than EndDates. When StarTimes is not a
date, the value for StartTimes is T computed from SIA semi-annual time factors, Tsemi, by the
formula T = Tsemi/2 * F, where F is the compounding frequency. F is set to 1 for continuous
compounding.

Note When ValuationDate is not passed, StartTimes is interpreted as times. If Compounding =
365 (daily), StartTimes is measured in days.

Data Types: double | char

ValuationDate — Observation date of the investment horizons entered in StartTimes and
EndTimes
date character vector | serial date number

Observation date of the investment horizons entered in StartTimes and EndTimes, specified as
scalar date.

Note You can specify the investment intervals either with input times or with input dates. Entering
ValuationDate invokes the date interpretation; omitting ValuationDate invokes the default time
interpretations.

Data Types: double | char

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis of the instrument when using dates for StartTimes and EndTimes, specified as a
scalar or an NINST-by-1 vector of integers..

• 0 = actual/actual
• 1 = 30/360 (SIA)
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• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer with values 0 or 1

End-of-month rule flag when using dates for StartTimes and EndTimes, specified as a scalar or an
NINST-by-1 vector of nonnegative integers. This rule applies only when Maturity is an end-of-month
date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: double

Output Arguments
Disc — Discount factors
vector

Discount factors, returned as an NPOINTS-by-NCURVES column vector of in decimal form representing
the value at time StartTimes of a unit cash flow received at time EndTimes.

EndTimes — Times ending the interval to discount over
vector

Times ending the interval to discount over, returned as an NPOINTS-by-1 column vector, measured in
periodic units.

StartTimes — Times starting the interval to discount over
vector

Times starting the interval to discount over, returned as an NPOINTS-by-1 column vector, measured in
periodic units.
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See Also
disc2rate | ratetimes

Topics
“Modeling the Interest-Rate Term Structure” on page 2-57
“Interest-Rate Term Conversions” on page 2-53
“Interest Rates Versus Discount Factors” on page 2-48
“Understanding the Interest-Rate Term Structure” on page 2-48

Introduced before R2006a
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ratetimes
Change time intervals defining interest-rate environment

Syntax
[Rates,EndTimes,StartTimes] = ratetimes(Compounding,RefRates,RefEndTimes,
RefStartTimes,EndTimes,StartTimes)
[Rates,EndTimes,StartTimes] = ratetimes(Compounding,RefRates,RefEndTimes,
RefStartTimes,EndTimes,StartTimes,ValuationDate)

Description
[Rates,EndTimes,StartTimes] = ratetimes(Compounding,RefRates,RefEndTimes,
RefStartTimes,EndTimes,StartTimes) change time intervals defining an interest-rate
environment where interval points are input as times in periodic units.

ratetimes takes an interest-rate environment defined by yields over one collection of time intervals
and computes the yields over another set of time intervals. The zero rate is assumed to be piecewise
linear in time.

[Rates,EndTimes,StartTimes] = ratetimes(Compounding,RefRates,RefEndTimes,
RefStartTimes,EndTimes,StartTimes,ValuationDate) change time intervals defining an
interest-rate environment where ValuationDate is passed and interval points are input as dates.

Entering ValuationDate invokes the date interpretation; omitting ValuationDate invokes the
default time interpretations.

Examples

Change Time Intervals Defining Interest-Rate Environment

ratetimes takes an interest-rate environment defined by yields over one collection of time intervals
and computes the yields over another set of time intervals. The zero rate is assumed to be piecewise
linear in time.

The reference environment is a collection of zero rates at 6, 12, and 24 months. Create a collection of
1-year forward rates beginning at 0, 6, and 12 months.

RefRates = [0.05; 0.06; 0.065];
RefEndTimes = [1; 2; 4];
StartTimes = [0; 1; 2];
EndTimes   = [2; 3; 4];
Rates = ratetimes(2, RefRates, RefEndTimes, 0, EndTimes,StartTimes)

Rates = 3×1

    0.0600
    0.0688
    0.0700
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Interpolate a zero yield curve to different dates. Zero curves start at the default date of
ValuationDate.

RefRates = [0.04; 0.05; 0.052];
RefDates = [729756; 729907; 730121];
Dates    = [730241; 730486];
ValuationDate   = 729391;
Rates = ratetimes(2, RefRates, RefDates, [], Dates, [], ValuationDate)

Rates = 2×1

    0.0520
    0.0520

Input Arguments
Compounding — Compounding rate
integer with value of 0, 1, 2, 3, 4, 6, 12, 365, -1

Compounding rate for which the input zero rates are compounded when annualized, specified as one
of the following scalar integers. Compounding determines the formula for the discount factors
(Disc):

• If Compounding = 0 for simple interest:

• Disc = 1/(1 + Z * T), where T is time in years and simple interest assumes annual times
F = 1.

• If Compounding = 1, 2, 3, 4, 6, 12:

• Disc = (1 + Z/F)^(-T), where F is the compounding frequency, Z is the zero rate, and T is
the time in periodic units, for example, T = F is one year.

• If Compounding = 365:

• Disc = (1 + Z/F)^(-T), where F is the number of days in the basis year and T is a number
of days elapsed computed by basis.

• If Compounding = -1:

• Disc = exp(-T*Z), where T is time in years.

Data Types: double

RefRates — Reference rates
decimal

Reference rates, specified as an NREFPTS-by-NCURVES matrix in decimal form. RefRates are the
yields over investment intervals from RefStartTimes, when the cash flow is valued, to
RefEndTimes, when the cash flow is received.
Data Types: double

RefEndTimes — End times
numeric | date character vector | serial date number
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End times, specified as a scalar or an NREFPTS-by-1 vector of times in periodic units ending the
intervals corresponding to RefRates. When RefEndTimes is not a date, the value for RefEndTimes
is T computed from SIA semi-annual time factors, Tsemi, by the formula T = Tsemi/2 * F, where
F is the compounding frequency. F is set to 1 for continuous compounding.

Note When ValuationDate is not passed, RefEndTimes is interpreted as times. If Compounding
= 365 (daily), RefEndTimes is measured in days.

Data Types: double | char

RefStartTimes — Start times
0 (default) | numeric | date character vector | serial date number

(Optional) Start times, specified a scalar or an NREFPTS-by-1 vector vector of times in periodic units
starting the intervals corresponding to RefRates. RefStartDates must be earlier than
RefEndDates. When RefStarTimes is not a date, the value for RefStartTimes is T computed
from SIA semi-annual time factors, Tsemi, by the formula T = Tsemi/2 * F, where F is the
compounding frequency. F is set to 1 for continuous compounding.

Note When ValuationDate is not passed, RefStartTimes is interpreted as times. If
Compounding = 365 (daily), RefStartTimes is measured in days.

(Optional) NREFPTS-by-1 vector or scalar of times in periodic units starting the intervals
corresponding to RefRates. Default = 0.
Data Types: double | char

EndTimes — End of interval where rates are desired
numeric | serial date number

End of interval where rates are desired, specified as a scalar or NPOINTS-by-1 vector.

Note You can specify the investment intervals either with input times or with input dates. Entering
ValuationDate invokes the date interpretation; omitting ValuationDate invokes the default time
interpretations.

Data Types: double

StartTimes — Starting new interval where rates are desired
0 (default) | numeric | serial date number

(Optional) Starting new interval where rates are desired, specified as a scalar or NPOINTS-by-1
vector.

Note You can specify the investment intervals either with input times or with input dates. Entering
ValuationDate invokes the date interpretation; omitting ValuationDate invokes the default time
interpretations.

Data Types: double
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ValuationDate — Observation date of the investment horizons entered in RefStartTimes
and RefEndTimes
serial date number

(Optional) Observation date of the investment horizons entered in RefStartTimes and
RefEndTimes, specified as a scalar serial date number.

Note You can specify the investment intervals either with input times or with input dates. Entering
ValuationDate invokes the date interpretation; omitting ValuationDate invokes the default time
interpretations.

Data Types: double

Output Arguments
Rates — Rates implied by reference interest-rate structure and sampled at new intervals
matrix

Rates implied by the reference interest-rate structure and sampled at new intervals, returned as an
NPOINTS-by-NCURVES.

EndTimes — Times ending the new intervals
vector

Times ending the new intervals, returned as an NPOINTS-by-1 column vector, measured in periodic
units.

StartTimes — Times starting the new intervals where rates are desired
vector

Times starting the new intervals where rates are desired, returned as an NPOINTS-by-1 column
vector, measured in periodic units.

See Also
disc2rate | rate2disc

Topics
“Modeling the Interest-Rate Term Structure” on page 2-57
“Interest-Rate Term Conversions” on page 2-53
“Interest Rates Versus Discount Factors” on page 2-48
“Understanding the Interest-Rate Term Structure” on page 2-48

Introduced before R2006a
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spreadbykirk
Price European spread options using Kirk pricing model

Syntax
Price = spreadbykirk(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,OptSpec,
Strike,Corr)

Description
Price = spreadbykirk(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,OptSpec,
Strike,Corr) returns the price for a European spread option using the Kirk pricing model.

Examples

Compute the Price of a Spread Option Using the Kirk Model

Define the spread option dates.

Settle = '01-Jan-2012';
Maturity = '01-April-2012';

Define asset 1. Price and volatility of RBOB gasoline

   Price1gallon = 2.85;          % $/gallon
   Price1 = Price1gallon * 42;   % $/barrel
   Vol1 = 0.29;

Define asset 2. Price and volatility of WTI crude oil

  Price2 = 93.20;         % $/barrel
  Vol2 = 0.36;

Define the correlation between the underlying asset prices of asset 1 and asset 2.

Corr = 0.42;

Define the spread option.

OptSpec = 'call';
Strike = 20;

Define the RateSpec.

rates = 0.05;
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rates', rates, ...
'Compounding', Compounding, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
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      Compounding: -1
             Disc: 0.9876
            Rates: 0.0500
         EndTimes: 0.2500
       StartTimes: 0
         EndDates: 734960
       StartDates: 734869
    ValuationDate: 734869
            Basis: 1
     EndMonthRule: 1

Define the StockSpec for the two assets.

StockSpec1 = stockspec(Vol1, Price1)

StockSpec1 = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2900
         AssetPrice: 119.7000
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

StockSpec2 = stockspec(Vol2, Price2)

StockSpec2 = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3600
         AssetPrice: 93.2000
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Compute the European spread option price based on the Kirk model.

Price = spreadbykirk(RateSpec, StockSpec1, StockSpec2, Settle, ...
Maturity, OptSpec, Strike, Corr)

Price = 11.1904

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec1 — Stock specification for underlying asset 1
structure

Stock specification for underlying asset 1. For information on the stock specification, see stockspec.
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stockspec can handle other types of underlying assets. For example, for physical commodities the
price is represented by StockSpec.Asset, the volatility is represented by StockSpec.Sigma, and
the convenience yield is represented by StockSpec.DividendAmounts.
Data Types: struct

StockSpec2 — Stock specification for underlying asset 2
structure

Stock specification for underlying asset 2. For information on the stock specification, see stockspec.

stockspec can handle other types of underlying assets. For example, for physical commodities the
price is represented by StockSpec.Asset, the volatility is represented by StockSpec.Sigma, and
the convenience yield is represented by StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement dates for spread option
serial date number | vector of serial date numbers | date character vector | cell array of character
vectors

Settlement dates for the spread option, specified as date character vectors or as serial date numbers
using a NINST-by-1 vector or cell array of character vector dates.
Data Types: double | char | cell

Maturity — Maturity date for spread option
serial date number | vector of serial date numbers | date character vector | cell array of date
character vectors

Maturity date for spread option, specified as date character vectors or as serial date numbers using a
NINST-by-1 vector or cell array of character vector dates.
Data Types: double | char | cell

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors

Definition of option as 'call' or 'put', specified as a NINST-by-1 cell array of character vectors.
Data Types: cell | char

Strike — Option strike price values
integer | vector of integers

Option strike price values, specified as an integer using a NINST-by-1 vector of strike price values.

If Strike is equal to 0, the function computes the price of an exchange option.
Data Types: single | double

Corr — Correlation between underlying asset prices
integer | vector of integers

Correlation between underlying asset prices, specified as an integer using a NINST-by-1 vector.
Data Types: single | double
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Output Arguments
Price — Expected prices of spread option
vector

Expected prices of the spread option, returned as a NINST-by-1 vector.

More About
Spread Option

A spread option is an option written on the difference of two underlying assets.

For example, a European call on the difference of two assets X1 and X2 would have the following pay
off at maturity:

max(X1− X2− K, 0)

where:

K is the strike price.

For more information, see “Spread Option” on page 3-30.

References
[1] Carmona, R., Durrleman, V. “Pricing and Hedging Spread Options.” SIAM Review. Vol. 45, No. 4,

pp. 627–685, Society for Industrial and Applied Mathematics, 2003.

See Also
spreadsensbykirk | spreadbybjs | spreadbyfd | spreadbyls

Topics
“Pricing European and American Spread Options” on page 3-97
“Pricing Asian Options” on page 3-110
“Spread Option” on page 3-30
“Supported Energy Derivative Functions” on page 3-34
“Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument Objects” on
page 1-82

External Websites
Energy Trading & Risk Management with MATLAB (47 min 31 sec)

Introduced in R2013b
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spreadbybjs
Price European spread options using Bjerksund-Stensland pricing model

Syntax
Price = spreadbybjs(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,OptSpec,
Strike,Corr)

Description
Price = spreadbybjs(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,OptSpec,
Strike,Corr) returns the price for a European spread option using the Bjerksund-Stensland pricing
model.

Examples

Compute the Price of a Spread Option Using the Bjerksund-Stensland Model

Define the spread option dates.

Settle = '01-Jan-2012';
Maturity = '01-April-2012';

Define asset 1. Price and volatility of RBOB gasoline

  Price1gallon = 2.85;          % $/gallon
  Price1 = Price1gallon * 42;   % $/barrel
  Vol1 = 0.29;

Define asset 2. Price and volatility of WTI crude oil

   Price2 = 93.20;         % $/barrel
   Vol2 = 0.36;

Define the correlation between the underlying asset prices of asset 1 and asset 2.

Corr = 0.42;

Define the spread option.

OptSpec = 'call';
Strike = 20;

Define the RateSpec.

rates = 0.05;
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rates', rates, ...
'Compounding', Compounding, 'Basis', Basis)
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RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9876
            Rates: 0.0500
         EndTimes: 0.2500
       StartTimes: 0
         EndDates: 734960
       StartDates: 734869
    ValuationDate: 734869
            Basis: 1
     EndMonthRule: 1

Define the StockSpec for the two assets.

StockSpec1 = stockspec(Vol1, Price1)

StockSpec1 = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2900
         AssetPrice: 119.7000
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

StockSpec2 = stockspec(Vol2, Price2)

StockSpec2 = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3600
         AssetPrice: 93.2000
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Compute the European spread option price based on the Bjerksund-Stensland model.

Price = spreadbybjs(RateSpec, StockSpec1, StockSpec2, Settle, ...
Maturity, OptSpec, Strike, Corr)

Price = 11.2000

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec1 — Stock specification for underlying asset 1
structure
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Stock specification for underlying asset 1. For information on the stock specification, see stockspec.

stockspec can handle other types of underlying assets. For example, for physical commodities the
price is represented by StockSpec.Asset, the volatility is represented by StockSpec.Sigma, and
the convenience yield is represented by StockSpec.DividendAmounts.
Data Types: struct

StockSpec2 — Stock specification for underlying asset 2
structure

Stock specification for underlying asset 2. For information on the stock specification, see stockspec.

stockspec can handle other types of underlying assets. For example, for physical commodities the
price is represented by StockSpec.Asset, the volatility is represented by StockSpec.Sigma, and
the convenience yield is represented by StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement dates for spread option
serial date number | vector of serial date numbers | date character vector | cell array of character
vectors

Settlement dates for the spread option, specified as date character vectors or as serial date numbers
using a NINST-by-1 vector or cell array of character vector dates.
Data Types: double | char | cell

Maturity — Maturity date for spread option
serial date number | vector of serial date numbers | date character vector | cell array of character
vectors

Maturity date for spread option, specified as date character vectors or as serial date numbers using a
NINST-by-1 vector or cell array of character vector dates.
Data Types: double | char | cell

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors

Definition of option as 'call' or 'put', specified as a NINST-by-1 cell array of character vectors.
Data Types: char | cell

Strike — Option strike price values
integer | vector of integers

Option strike price values, specified as an integer using a NINST-by-1 vector of strike price values.

If Strike is equal to zero, the function computes the price of an exchange option.
Data Types: single | double

Corr — Correlation between underlying asset prices
integer | vector of integers

Correlation between underlying asset prices, specified as an integer using a NINST-by-1 vector.
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Data Types: single | double

Output Arguments
Price — Expected prices of spread option
vector

Expected prices of the spread option, returned as a NINST-by-1 vector.

More About
Spread Option

A spread option is an option written on the difference of two underlying assets.

For example, a European call on the difference of two assets X1 and X2 would have the following pay
off at maturity:

max(X1− X2− K, 0)

where:

K is the strike price.

For more information, see “Spread Option” on page 3-30.

References
[1] Carmona, R., Durrleman, V. “Pricing and Hedging Spread Options.” SIAM Review. Vol. 45, No. 4,

pp. 627–685, Society for Industrial and Applied Mathematics, 2003.

[2] Bjerksund, Petter, Stensland, Gunnar. “Closed form spread option valuation.” Department of
Finance, NHH, 2006.

See Also
spreadsensbykirk | spreadbybjs | spreadbyfd | spreadbyls

Topics
“Pricing European and American Spread Options” on page 3-97
“Pricing Asian Options” on page 3-110
“Spread Option” on page 3-30
“Supported Energy Derivative Functions” on page 3-34
“Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument Objects” on
page 1-82

External Websites
Energy Trading & Risk Management with MATLAB (47 min 31 sec)

Introduced in R2013b
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spreadbyfd
Price European or American spread options using finite difference method

Syntax
Price = spreadbyfd(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,OptSpec,
Strike,Corr)
Price = spreadbyfd( ___ ,Name,Value)

[Price,PriceGrid,AssetPrice1,AssetPrice2,Times] = spreadbyfd(RateSpec,
StockSpec1,StockSpec2,Settle,Maturity,OptSpec,Strike,Corr)
[Price,PriceGrid,AssetPrice1,AssetPrice2,Times] = spreadbyfd( ___ ,Name,Value)

Description
Price = spreadbyfd(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,OptSpec,
Strike,Corr) returns the price of European or American call or put spread options using the
Alternate Direction Implicit (ADI) finite difference method. The spread is between the asset defined in
StockSpec1 minus the asset defined in StockSpec2.

Price = spreadbyfd( ___ ,Name,Value) adds optional name-value pair arguments.

[Price,PriceGrid,AssetPrice1,AssetPrice2,Times] = spreadbyfd(RateSpec,
StockSpec1,StockSpec2,Settle,Maturity,OptSpec,Strike,Corr) returns the Price,
PriceGrid, AssetPrice1, AssetPrice2, and Times for a European or American call or put spread
options using the Alternate Direction Implicit (ADI) finite difference method. The spread is between
the asset defined in StockSpec1 minus the asset defined in StockSpec2.

[Price,PriceGrid,AssetPrice1,AssetPrice2,Times] = spreadbyfd( ___ ,Name,Value)
returns the Price, PriceGrid, AssetPrice1, AssetPrice2, and Times and adds optional name-
value pair arguments.

Examples

Compute the Price of a Spread Option Using the Alternate Direction Implicit (ADI) Finite
Difference Method

Define the spread option dates.

Settle = '01-Jan-2012';
Maturity = '01-April-2012';

Define asset 1. Price and volatility of RBOB gasoline

  Price1gallon = 2.85;          % $/gallon
  Price1 = Price1gallon * 42;   % $/barrel  
  Vol1 = 0.29;

Define asset 2. Price and volatility of WTI crude oil
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  Price2 = 93.20;         % $/barrel
  Vol2 = 0.36;

Define the correlation between the underlying asset prices of asset 1 and asset 2.

Corr = 0.42;

Define the spread option.

OptSpec = 'call';
Strike = 20;

Define the RateSpec.

rates = 0.05;
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rates', rates, ...
'Compounding', Compounding, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9876
            Rates: 0.0500
         EndTimes: 0.2500
       StartTimes: 0
         EndDates: 734960
       StartDates: 734869
    ValuationDate: 734869
            Basis: 1
     EndMonthRule: 1

Define the StockSpec for the two assets.

StockSpec1 = stockspec(Vol1, Price1)

StockSpec1 = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2900
         AssetPrice: 119.7000
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

StockSpec2 = stockspec(Vol2, Price2)

StockSpec2 = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3600
         AssetPrice: 93.2000
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []
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Compute the spread option price based on the Alternate Direction Implicit (ADI) finite difference
method.

[Price, PriceGrid, AssetPrice1, AssetPrice2, Times] = ...
 spreadbyfd(RateSpec, StockSpec1, StockSpec2, Settle, ...
 Maturity, OptSpec, Strike, Corr);

Display the price.

Price

Price = 11.1998

Plot the finite difference grid.

mesh(AssetPrice1, AssetPrice2, PriceGrid(:, :, 1)');
    title('Spread Option Prices for Range of Underlying Prices');
    xlabel('Price of underlying asset 1');
    ylabel('Price of underlying asset 2');
    zlabel('Price of spread option');

Input Arguments
RateSpec — Interest-rate term structure
structure
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Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec1 — Stock specification for underlying asset 1
structure

Stock specification for underlying asset 1. For information on the stock specification, see stockspec.

stockspec can handle other types of underlying assets. For example, for physical commodities the
price is represented by StockSpec.Asset, the volatility is represented by StockSpec.Sigma, and
the convenience yield is represented by StockSpec.DividendAmounts.
Data Types: struct

StockSpec2 — Stock specification for underlying asset 2
structure

Stock specification for underlying asset 2. For information on the stock specification, see stockspec.

stockspec can handle other types of underlying assets. For example, for physical commodities the
price is represented by StockSpec.Asset, the volatility is represented by StockSpec.Sigma, and
the convenience yield is represented by StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement dates for spread option
serial date number | vector of serial date numbers | date character vector | cell array of character
vectors

Settlement dates for the spread option, specified as date character vectors or as serial date numbers
using a NINST-by-1 vector or cell array of character vector dates.
Data Types: double | char | cell

Maturity — Maturity date for spread option
serial date number | vector of serial date numbers | date character vector | cell array of character
vectors

Maturity date for spread option, specified as date character vectors or as serial date numbers using a
NINST-by-1 vector or cell array of character vector dates.
Data Types: double | char | cell

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors

Definition of option as 'call' or 'put', specified as a NINST-by-1 cell array of character vectors.
Data Types: char | cell

Strike — Option strike price values
integer | vector of integers

Option strike price values, specified as an integer using a NINST-by-1 vector of strike price values.
Data Types: single | double

11 Functions

11-1630



Corr — Correlation between underlying asset prices
integer | vector of integers

Correlation between underlying asset prices, specified as an integer using a NINST-by-1 vector.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceGrid,AssetPrice1,AssetPrice2,Times] =
spreadbyfd(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,OptSpec,Strike,Corr
,'AssetPriceMin','AssetPriceMax','PriceGridSize','TimeGridSize','AmericanOpt'
,0)

AssetPriceMin — Minimum price for price grid boundary
if unspecified, StockSpec values are calculated based on asset distributions at maturity (default) |
array

Minimum price for price grid boundary, specified as the comma-separated pair consisting of
'AssetPriceMin' and a 1-by-2 array. The first entry in the array corresponds to the first asset
defined by StockSpec1 and the second entry corresponds to the second asset defined by
StockSpec2.

For the finite difference method, the composition of the grid affects the quality of the output and the
execution time. It is highly recommended to use the optional arguments AssetPriceMin,
AssetPriceMax, PriceGridSize, and TimeGridSize to control the composition of the grid to
ensure the quality of the output and a reasonable execution time.
Data Types: single | double

AssetPriceMax — Maximum price for price grid boundary
if unspecified, StockSpec values are calculated based on asset distributions at maturity (default) |
array

Maximum price for price grid boundary, specified as the comma-separated pair consisting of
'AssetPriceMax' and a 1-by-2 array. The first entry in the array corresponds to the first asset
defined by StockSpec1 and the second entry corresponds to the second asset defined by
StockSpec2.

For the finite difference method, the composition of the grid affects the quality of the output and the
execution time. It is highly recommended to use the optional arguments AssetPriceMin,
AssetPriceMax, PriceGridSize, and TimeGridSize to control the composition of the grid to
ensure the quality of the output and a reasonable execution time.
Data Types: single | double

PriceGridSize — Size for finite difference grid
[300,300] (default) | array
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Size for finite difference grid, specified as the comma-separated pair consisting of
'PriceGridSize' and a 1-by-2 array. The first entry corresponds to the first asset defined by
StockSpec1 and the second entry corresponds to the second asset defined by StockSpec2.

For the finite difference method, the composition of the grid affects the quality of the output and the
execution time. It is highly recommended to use the optional argumentsAssetPriceMax,
PriceGridSize, and TimeGridSize to control the composition of the grid to ensure the quality of
the output and a reasonable execution time.
Data Types: single | double

TimeGridSize — Size of the time grid for finite difference grid
100 (default) | scalar | nonnegative integer

Size of the time grid for finite difference grid, specified as the comma-separated pair consisting of
'TimeGridSize' and a nonnegative integer.

For the finite difference method, the composition of the grid affects the quality of the output and the
execution time. It is highly recommended to use the optional argumentsAssetPriceMax,
PriceGridSize, and TimeGridSize to control the composition of the grid to ensure the quality of
the output and a reasonable execution time.
Data Types: single | double

AmericanOpt — Option type
0 European (default) | scalar | vector of positive integers[0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and NINST-by-1
positive integer scalar flags with values:

• 0 — European
• 1 — American

Data Types: single | double

Output Arguments
Price — Expected prices of spread option
vector

Expected prices of the spread option, returned as a NINST-by-1 vector.

PriceGrid — Grid containing prices calculated by finite difference method
array

Grid containing prices calculated by finite difference method, returned as a 3-D grid with a size of
PriceGridSize(1) * PriceGridSize(2) * TimeGridSize. The price for t = 0 is contained in
PriceGrid(:, :, 1).

AssetPrice1 — Prices for first asset defined by StockSpec1
vector

Prices for first asset defined by StockSpec1, corresponding to the first dimension of PriceGrid,
returned as a vector.
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AssetPrice2 — Prices for second asset defined by StockSpec2
vector

Prices for second asset defined by StockSpec2, corresponding to the second dimension of
PriceGrid, returned as a vector.

Times — Times corresponding to third dimension of PriceGrid
vector

Times corresponding to third dimension of PriceGrid, returned as a vector.

More About
Spread Option

A spread option is an option written on the difference of two underlying assets.

For example, a European call on the difference of two assets X1 and X2 would have the following pay
off at maturity:

max(X1− X2− K, 0)

where:

K is the strike price.

For more information, see “Spread Option” on page 3-30.
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pp. 627–685, Society for Industrial and Applied Mathematics, 2003.

[2] Villeneuve, S., Zanette, A. “Parabolic ADI Methods for Pricing American Options on Two Stocks.”
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[3] Ikonen, S., Toivanen, J. Efficient Numerical Methods for Pricing American Options Under
Stochastic Volatility. Wiley InterScience, 2007.

See Also
spreadsensbyfd | spreadbybjs | spreadbykirk | spreadbyls

Topics
“Pricing European and American Spread Options” on page 3-97
“Pricing Asian Options” on page 3-110
“Spread Option” on page 3-30
“Supported Energy Derivative Functions” on page 3-34
“Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument Objects” on
page 1-82

External Websites
Energy Trading & Risk Management with MATLAB (47 min 31 sec)
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spreadbyls
Price European or American spread options using Monte Carlo simulations

Syntax
Price = spreadbyls(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,OptSpec,
Strike,Corr)
Price = spreadbyls( ___ ,Name,Value)

[Price,Paths,Times,Z] = spreadbyls(RateSpec,StockSpec1,StockSpec2,Settle,
Maturity,OptSpec,Strike,Corr)
[Price,Paths,Times,Z] = spreadbyls( ___ ,Name,Value)

Description
Price = spreadbyls(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,OptSpec,
Strike,Corr) returns the price of a European or American call or put spread option using Monte
Carlo simulations.

For American options, the Longstaff-Schwartz least squares method is used to calculate the early
exercise premium.

Price = spreadbyls( ___ ,Name,Value) returns the price of a European or American call or put
spread option using Monte Carlo simulations using optional name-value pair arguments.

[Price,Paths,Times,Z] = spreadbyls(RateSpec,StockSpec1,StockSpec2,Settle,
Maturity,OptSpec,Strike,Corr) returns the Price, Paths, Times, and Z of a European or
American call or put spread option using Monte Carlo simulations.

[Price,Paths,Times,Z] = spreadbyls( ___ ,Name,Value) returns the Price, Paths, Times,
and Z of a European or American call or put spread option using Monte Carlo simulations using
optional name-value pair arguments.

Examples

Compute the Price of a Spread Option Using Monte Carlo Simulation

Define the spread option dates.

Settle = '01-Jan-2012';
Maturity = '01-April-2012';

Define asset 1. Price and volatility of RBOB gasoline

  Price1gallon = 2.85;          % $/gallon
  Price1 = Price1gallon * 42;   % $/barrel
  Vol1 = 0.29;

Define asset 2. Price and volatility of WTI crude oil
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   Price2 = 93.20;         % $/barrel
   Vol2 = 0.36;

Define the correlation between the underlying asset prices of asset 1 and asset 2.

Corr = 0.42;

Define the spread option.

OptSpec = 'call';
Strike = 20;

Define the RateSpec.

rates = 0.05;
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rates', rates, ...
'Compounding', Compounding, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9876
            Rates: 0.0500
         EndTimes: 0.2500
       StartTimes: 0
         EndDates: 734960
       StartDates: 734869
    ValuationDate: 734869
            Basis: 1
     EndMonthRule: 1

Define the StockSpec for the two assets.

StockSpec1 = stockspec(Vol1, Price1)

StockSpec1 = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2900
         AssetPrice: 119.7000
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

StockSpec2 = stockspec(Vol2, Price2)

StockSpec2 = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3600
         AssetPrice: 93.2000
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []
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Compute the spread option price using Monte Carlo simulation based on the Longstaff-Schwartz
model.

Price = spreadbyls(RateSpec, StockSpec1, StockSpec2, Settle, ...
Maturity, OptSpec, Strike, Corr)

Price = 11.0799

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec1 — Stock specification for underlying asset 1
structure

Stock specification for underlying asset 1. For information on the stock specification, see stockspec.

stockspec can handle other types of underlying assets. For example, for physical commodities the
price is represented by StockSpec.Asset, the volatility is represented by StockSpec.Sigma, and
the convenience yield is represented by StockSpec.DividendAmounts.
Data Types: struct

StockSpec2 — Stock specification for underlying asset 2
structure

Stock specification for underlying asset 2. For information on the stock specification, see stockspec.

stockspec can handle other types of underlying assets. For example, for physical commodities the
price is represented by StockSpec.Asset, the volatility is represented by StockSpec.Sigma, and
the convenience yield is represented by StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement date for spread option
date character vector | nonnegative scalar integer

Settlement date for the spread option specified, as a date character vector or nonnegative scalar
integer.
Data Types: char | double

Maturity — Maturity date for spread option
date character vector | nonnegative scalar integer

Maturity date for spread option, specified as a date character vector or a nonnegative scalar integer.
Data Types: char | double

OptSpec — Definition of option
character vector with values 'call' or 'put'

 spreadbyls

11-1637



Definition of option as 'call' or 'put', specified as a character vector.
Data Types: char

Strike — Option strike price value
nonnegative scalar integer

Option strike price value, specified, as a nonnegative scalar integer.
Data Types: single | double

Corr — Correlation between underlying asset prices
scalar integer

Correlation between underlying asset prices, specified as a scalar integer.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Price =
spreadbyls(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,OptSpec,Strike,Corr
,'AmericanOpt',1)

AmericanOpt — Option type
0 European (default) | scalar with value [0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and an integer
scalar flag with value:

• 0 — European
• 1 — American

Note For American options, the Longstaff-Schwartz least squares method is used to calculate the
early exercise premium. For more information on the least squares method, see https://
people.math.ethz.ch/%7Ehjfurrer/teaching/
LongstaffSchwartzAmericanOptionsLeastSquareMonteCarlo.pdf.

Data Types: single | double

NumTrials — Scalar number of independent sample paths
1000 (default) | nonnegative scalar integer

Scalar number of independent sample paths (simulation trials), specified as the comma-separated
pair consisting of 'NumTrials' and a nonnegative integer.
Data Types: single | double

NumPeriods — Scalar number of simulation periods per trial
100 (default) | nonnegative scalar integer
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Scalar number of simulation periods per trial, specified as the comma-separated pair consisting of
'NumPeriods' and a nonnegative integer. NumPeriods is considered only when pricing European
basket options. For American spread options, NumPeriod is equal to the number of exercise days
during the life of the option.
Data Types: single | double

Z — Time series array of dependent random variates
vector

Time series array of dependent random variates, specified as the comma-separated pair consisting of
'Z' and a NumPeriods-by-2-by-NumTrials 3-D array. The Z value generates the Brownian motion
vector (that is, Wiener processes) that drives the simulation.
Data Types: single | double

Antithetic — Indicator for antithetic sampling
false (default) | scalar logical flag with value of true or false

Indicator for antithetic sampling, specified as the comma-separated pair consisting of 'Antithetic'
and a value of true or false.
Data Types: logical

Output Arguments
Price — Expected price of spread option
scalar

Expected price of the spread option, returned as a 1-by-1 scalar.

Paths — Simulated paths of correlated state variables
vector

Simulated paths of correlated state variables, returned as a NumPeriods + 1-by-2-by-NumTrials 3-
D time series array. Each row of Paths is the transpose of the state vector X(t) at time t for a given
trial.

Times — Observation times associated with simulated paths
vector

Observation times associated with simulated paths, returned as a NumPeriods + 1-by-1 column
vector of observation times associated with the simulated paths. Each element of Times is associated
with the corresponding row of Paths.

Z — Time series array of dependent random variates
vector

Time series array of dependent random variates, returned as a NumPeriods-by-2-by-NumTrials 3-D
array when Z is specified as an input argument. If the Z input argument is not specified, then the Z
output argument contains the random variates generated internally.
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More About
Spread Option

A spread option is an option written on the difference of two underlying assets.

For example, a European call on the difference of two assets X1 and X2 would have the following pay
off at maturity:

max(X1− X2− K, 0)

where:

K is the strike price.

For more information, see “Spread Option” on page 3-30.

References
[1] Carmona, R., Durrleman, V. “Pricing and Hedging Spread Options.” SIAM Review. Vol. 45, No. 4,

pp. 627–685, Society for Industrial and Applied Mathematics, 2003.

See Also
spreadsensbyls | spreadbybjs | spreadbyfd | spreadbykirk

Topics
“Pricing European and American Spread Options” on page 3-97
“Pricing Asian Options” on page 3-110
“Spread Option” on page 3-30
“Supported Energy Derivative Functions” on page 3-34
“Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument Objects” on
page 1-82

External Websites
Energy Trading & Risk Management with MATLAB (47 min 31 sec)

Introduced in R2013b
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spreadsensbykirk
Calculate European spread option prices or sensitivities using Kirk pricing model

Syntax
PriceSens = spreadbykirk(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,
OptSpec,Strike,Corr)
PriceSens = spreadsensbykirk( ___ ,Name,Value)

Description
PriceSens = spreadbykirk(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,
OptSpec,Strike,Corr) returns the European spread option prices or sensitivities using the Kirk
pricing model.

PriceSens = spreadsensbykirk( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Compute the Price and Sensitivities of a Spread Option Using the Kirk Model

Define the spread option dates.

 Settle = '01-Jun-2012';
 Maturity = '01-Sep-2012';

Define asset 1. Price and volatility of RBOB gasoline

  Price1gallon = 2.85;          % $/gallon
  Price1 = Price1gallon * 42;   % $/barrel
  Vol1 = 0.29;

Define asset 2. Price and volatility of WTI crude oil

   Price2 = 93.20;         % $/barrel
   Vol2 = 0.36;

Define the correlation between the underlying asset prices of asset 1 and asset 2.

Corr = 0.42;

Define the spread option.

OptSpec = 'call';
Strike = 20;

Define the RateSpec.

rates = 0.05;
Compounding = -1;
Basis = 1;

 spreadsensbykirk

11-1641



RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rates', rates, ...
'Compounding', Compounding, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9876
            Rates: 0.0500
         EndTimes: 0.2500
       StartTimes: 0
         EndDates: 735113
       StartDates: 735021
    ValuationDate: 735021
            Basis: 1
     EndMonthRule: 1

Define the StockSpec for the two assets.

StockSpec1 = stockspec(Vol1, Price1)

StockSpec1 = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2900
         AssetPrice: 119.7000
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

StockSpec2 = stockspec(Vol2, Price2)

StockSpec2 = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3600
         AssetPrice: 93.2000
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Compute the spread option price and sensitivities based on the Kirk model.

OutSpec = {'Price', 'Delta', 'Gamma'};
[Price, Delta, Gamma] = spreadsensbykirk(RateSpec, StockSpec1, StockSpec2, Settle, ...
Maturity, OptSpec, Strike, Corr, 'OutSpec', OutSpec)

Price = 11.1904

Delta = 1×2

    0.6722   -0.6067

Gamma = 1×2

    0.0191    0.0217
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Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec1 — Stock specification for underlying asset 1
structure

Stock specification for underlying asset 1. For information on the stock specification, see stockspec.

stockspec can handle other types of underlying assets. For example, for physical commodities the
price is represented by StockSpec.Asset, the volatility is represented by StockSpec.Sigma, and
the convenience yield is represented by StockSpec.DividendAmounts.
Data Types: struct

StockSpec2 — Stock specification for underlying asset 2
structure

Stock specification for underlying asset 2. For information on the stock specification, see stockspec.

stockspec can handle other types of underlying assets. For example, for physical commodities the
price is represented by StockSpec.Asset, the volatility is represented by StockSpec.Sigma, and
the convenience yield is represented by StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement dates for spread option
serial date number | vector of serial date numbers | date character vector | cell array of character
vectors

Settlement dates for the spread option, specified as date character vectors or as serial date numbers
using a NINST-by-1 vector or cell array of character vector dates.
Data Types: char | cell | double

Maturity — Maturity date for spread option
serial date number | vector of serial date numbers | date character vector | cell array of character
vectors

Maturity date for spread option, specified as date character vectors or as serial date numbers using a
NINST-by-1 vector or cell array of character vector dates.
Data Types: char | cell | double

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors

Definition of option as 'call' or 'put', specified as a NINST-by-1 cell array of character vectors.
Data Types: char | cell
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Strike — Option strike price values
integer | vector of integers

Option strike price values, specified as an integer using as NINST-by-1 vector of strike price values.

If Strike is equal to zero, this function computes the price and sensitivities of an exchange option.
Data Types: single | double

Corr — Correlation between underlying asset prices
integer | vector of integers

Correlation between underlying asset prices, specified as an integer using as NINST-by-1 vector.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: PriceSens =
spreadsensbykirk(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,OptSpec,Strik
e,Corr,OutSpec,{'All'})

OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma', 'Vega',
'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with values 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a NOUT- by-1 or
1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta,
and Price, in that order. This is the same as specifying OutSpec to include each sensitivity:
Example: OutSpec = {'delta','gamma','vega','lambda','rho','theta','price'}
Data Types: char | cell

Output Arguments
PriceSens — Expected price or sensitivities values of spread option
vector

Expected price or sensitivities values (defined by OutSpec) of the spread option, returned as a
NINST-by-1 or NINST-by-2 vector.
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More About
Spread Option

A spread option is an option written on the difference of two underlying assets.

For example, a European call on the difference of two assets X1 and X2 would have the following pay
off at maturity:

max(X1− X2− K, 0)

where:

K is the strike price.

For more information, see “Spread Option” on page 3-30.

References
[1] Carmona, R., Durrleman, V. “Pricing and Hedging Spread Options.” SIAM Review. Vol. 45, No. 4,

pp. 627–685, Society for Industrial and Applied Mathematics, 2003.

See Also
spreadbykirk | spreadbybjs | spreadbyfd | spreadbyls

Topics
“Pricing European and American Spread Options” on page 3-97
“Pricing Asian Options” on page 3-110
“Spread Option” on page 3-30
“Supported Energy Derivative Functions” on page 3-34

External Websites
Energy Trading & Risk Management with MATLAB (47 min 31 sec)

Introduced in R2013b
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spreadsensbybjs
Calculate European spread option prices or sensitivities using Bjerksund-Stensland pricing model

Syntax
PriceSens = spreadbybjs(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,
OptSpec,Strike,Corr)
PriceSens = spreadsensbybjs( ___ ,Name,Value)

Description
PriceSens = spreadbybjs(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,
OptSpec,Strike,Corr) returns the European spread option prices or sensitivities using the
Bjerksund-Stensland pricing model.

PriceSens = spreadsensbybjs( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Compute the Price and Sensitivities of a Spread Option Using the Bjerksund-Stensland
Model

Define the spread option dates.

Settle = '01-Jun-2012';
Maturity = '01-Sep-2012';

Define asset 1. Price and volatility of RBOB gasoline

   Price1gallon = 2.85;          % $/gallon
   Price1 = Price1gallon * 42;   % $/barrel
   Vol1 = 0.29;

Define asset 2. Price and volatility of WTI crude oil

  Price2 = 93.20;         % $/barrel
  Vol2 = 0.36;

Define the correlation between the underlying asset prices of asset 1 and asset 2.

Corr = 0.42;

Define the spread option.

OptSpec = 'call';
Strike = 20;

Define the RateSpec.

rates = 0.05;
Compounding = -1;
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Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rates', rates, ...
'Compounding', Compounding, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9876
            Rates: 0.0500
         EndTimes: 0.2500
       StartTimes: 0
         EndDates: 735113
       StartDates: 735021
    ValuationDate: 735021
            Basis: 1
     EndMonthRule: 1

Define the StockSpec for the two assets.

StockSpec1 = stockspec(Vol1, Price1)

StockSpec1 = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2900
         AssetPrice: 119.7000
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

StockSpec2 = stockspec(Vol2, Price2)

StockSpec2 = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3600
         AssetPrice: 93.2000
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Compute the spread option price and sensitivities based on the Kirk model.

OutSpec = {'Price', 'Delta', 'Gamma'};
[Price, Delta, Gamma] = spreadsensbybjs(RateSpec, StockSpec1, StockSpec2, Settle, ...
Maturity, OptSpec, Strike, Corr, 'OutSpec', OutSpec)

Price = 11.2000

Delta = 1×2

    0.6737   -0.6082

Gamma = 1×2

    0.0190    0.0216
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Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec1 — Stock specification for underlying asset 1
structure

Stock specification for underlying asset 1. For information on the stock specification, see stockspec.

stockspec can handle other types of underlying assets. For example, for physical commodities the
price is represented by StockSpec.Asset, the volatility is represented by StockSpec.Sigma, and
the convenience yield is represented by StockSpec.DividendAmounts.
Data Types: struct

StockSpec2 — Stock specification for underlying asset 2
structure

Stock specification for underlying asset 2. For information on the stock specification, see stockspec.

stockspec can handle other types of underlying assets. For example, for physical commodities the
price is represented by StockSpec.Asset, the volatility is represented by StockSpec.Sigma, and
the convenience yield is represented by StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement dates for spread option
serial date number | vector of serial date numbers | date character vector | cell array of character
vectors

Settlement dates for the spread option, specified as date character vectors or as serial date numbers
using a NINST-by-1 vector or cell array of character vector dates.
Data Types: char | cell | double

Maturity — Maturity date for spread option
serial date number | vector of serial date numbers | date character vector | cell array of character
vectors

Maturity date for spread option, specified as date character vectors or as serial date numbers using a
NINST-by-1 vector or cell array of character vector dates.
Data Types: char | cell | double

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors

Definition of option as 'call' or 'put', specified as a NINST-by-1 cell array of character vectors.
Data Types: char | cell
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Strike — Option strike price values
integer | vector of integers

Option strike price values, specified as an integer using a NINST-by-1 vector of strike price values.

If Strike is equal to zero the function computes the price and sensitivities of an exchange option.
Data Types: single | double

Corr — Correlation between underlying asset prices
integer | vector of integers

Correlation between underlying asset prices, specified as an integer using a NINST-by-1 vector.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: PriceSens =
spreadsensbykirk(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,OptSpec,Strik
e,Corr,OutSpec,{'All'})

OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma', 'Vega',
'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with values 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a NOUT- by-1 or
1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta,
and Price, in that order. This is the same as specifying OutSpec to include each sensitivity:
Example: OutSpec = {'delta','gamma','vega','lambda','rho','theta','price'}
Data Types: char | cell

Output Arguments
PriceSens — Expected prices or sensitivities values of spread option
vector

Expected prices or sensitivities values (defined by OutSpec) of the spread option, returned as a
NINST-by-1 or NINST-by-2 vector.
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More About
Spread Option

A spread option is an option written on the difference of two underlying assets.

For example, a European call on the difference of two assets X1 and X2 would have the following pay
off at maturity:

max(X1− X2− K, 0)

where:

K is the strike price.

For more information, see “Spread Option” on page 3-30.

References
[1] Carmona, R., Durrleman, V. “Pricing and Hedging Spread Options,” SIAM Review. Vol. 45, No. 4,

pp. 627–685, Society for Industrial and Applied Mathematics, 2003.

[2] Bjerksund, Petter, Stensland, Gunnar. “Closed form spread option valuation.” Department of
Finance, NHH, 2006.

See Also
spreadbykirk | spreadbybjs | spreadbyfd | spreadbyls

Topics
“Pricing European and American Spread Options” on page 3-97
“Pricing Asian Options” on page 3-110
“Spread Option” on page 3-30
“Supported Energy Derivative Functions” on page 3-34

External Websites
Energy Trading & Risk Management with MATLAB (47 min 31 sec)

Introduced in R2013b
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spreadsensbyls
Calculate price and sensitivities for European or American spread options using Monte Carlo
simulations

Syntax
PriceSens = spreadsensbyls(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,
OptSpec,Strike,Corr)
PriceSens = spreadsensbyls( ___ ,Name,Value)

[PriceSens,Paths,Times,Z] = spreadsensbyls(RateSpec,StockSpec1,StockSpec2,
Settle,Maturity,OptSpec,Strike,Corr)
[PriceSens,Paths,Times,Z] = spreadsensbyls( ___ ,Name,Value)

Description
PriceSens = spreadsensbyls(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,
OptSpec,Strike,Corr) returns the price of a European or American call or put spread option
using Monte Carlo simulations.

For American options, the Longstaff-Schwartz least squares method is used to calculate the early
exercise premium.

PriceSens = spreadsensbyls( ___ ,Name,Value) adds optional name-value pair arguments.

[PriceSens,Paths,Times,Z] = spreadsensbyls(RateSpec,StockSpec1,StockSpec2,
Settle,Maturity,OptSpec,Strike,Corr) returns the PriceSens, Paths, Times, and Z of a
European or American call or put spread option using Monte Carlo simulations.

[PriceSens,Paths,Times,Z] = spreadsensbyls( ___ ,Name,Value) returns the PriceSens,
Paths, Times, and Z and adds optional name-value pair arguments.

Examples

Compute the Price and Sensitivities of a Spread Option Using Monte Carlo Simulation

Define the spread option dates.

Settle = '01-Jun-2012';
Maturity = '01-Sep-2012';

Define asset 1. Price and volatility of RBOB gasoline

  Price1gallon = 2.85;          % $/gallon
  Price1 = Price1gallon * 42;   % $/barrel
  Vol1 = 0.29;

Define asset 2. Price and volatility of WTI crude oil
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  Price2 = 93.20;         % $/barrel
  Vol2 = 0.36;

Define the correlation between the underlying asset prices of asset 1 and asset 2.

Corr = 0.42;

Define the spread option.

OptSpec = 'call';
Strike = 20;

Define the RateSpec.

rates = 0.05;
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rates', rates, ...
'Compounding', Compounding, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9876
            Rates: 0.0500
         EndTimes: 0.2500
       StartTimes: 0
         EndDates: 735113
       StartDates: 735021
    ValuationDate: 735021
            Basis: 1
     EndMonthRule: 1

Define the StockSpec for the two assets.

StockSpec1 = stockspec(Vol1, Price1)

StockSpec1 = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2900
         AssetPrice: 119.7000
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

StockSpec2 = stockspec(Vol2, Price2)

StockSpec2 = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3600
         AssetPrice: 93.2000
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

11 Functions

11-1652



Compute the spread option price and sensitivities using Monte Carlo simulation based on the
Longstaff-Schwartz model.

OutSpec = {'Price', 'Delta', 'Gamma'};
[Price, Delta, Gamma] = spreadsensbyls(RateSpec, StockSpec1, StockSpec2, ...
Settle, Maturity, OptSpec, Strike, Corr, 'OutSpec', OutSpec)

Price = 11.0799

Delta = 1×2

    0.6626   -0.5972

Gamma = 1×2

    0.0209    0.0240

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec1 — Stock specification for underlying asset 1
structure

Stock specification for underlying asset 1. For information on the stock specification, see stockspec.

stockspec can handle other types of underlying assets. For example, for physical commodities the
price is represented by StockSpec.Asset, the volatility is represented by StockSpec.Sigma, and
the convenience yield is represented by StockSpec.DividendAmounts.
Data Types: struct

StockSpec2 — Stock specification for underlying asset 2
structure

Stock specification for underlying asset 2. For information on the stock specification, see stockspec.

stockspec can handle other types of underlying assets. For example, for physical commodities the
price is represented by StockSpec.Asset, the volatility is represented by StockSpec.Sigma, and
the convenience yield is represented by StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement date for spread option
date character vector | nonnegative scalar integer

Settlement date for the spread option, specified as a date character vector or as a nonnegative scalar
integer.
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Data Types: char | double

Maturity — Maturity date for spread option
date character vector | nonnegative scalar integer

Maturity date for spread option, specified as a date character vector or as a nonnegative scalar
integer.
Data Types: char | double

OptSpec — Definition of option
character vector with values 'call' or 'put'

Definition of option as 'call' or 'put', specified as a character vector.
Data Types: char

Strike — Option strike price value
nonnegative scalar integer

Option strike price value, specified as a scalar integer.
Data Types: single | double

Corr — Correlation between underlying asset prices
scalar integer

Correlation between underlying asset prices, specified as a scalar integer.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: PriceSens =
spreadbyls(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,OptSpec,Strike,Corr
,'AmericanOpt',1)

AmericanOpt — Option type
0 European (default) | scalar with values [0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and a scalar
integer flag with values:

• 0 — European
• 1 — American

Note For American options, the Longstaff-Schwartz least squares method is used to calculate the
early exercise premium. For more information on the least squares method, see https://
people.math.ethz.ch/%7Ehjfurrer/teaching/
LongstaffSchwartzAmericanOptionsLeastSquareMonteCarlo.pdf.
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Data Types: single | double

NumTrials — Number of independent sample paths
1000 (default) | nonnegative scalar integer

Number of independent sample paths (simulation trials), specified as the comma-separated pair
consisting of 'NumTrials' and a nonnegative scalar integer.
Data Types: single | double

NumPeriods — Number of simulation periods per trial
100 (default) | nonnegative scalar integer

Number of simulation periods per trial, specified as the comma-separated pair consisting of
'NumPeriods' and a nonnegative scalar integer. NumPeriods is considered only when pricing
European basket options. For American spread options, NumPeriods is equal to the number of
exercise days during the life of the option.
Data Types: single | double

Z — Time series array of dependent random variates
vector

Time series array of dependent random variates, specified as the comma-separated pair consisting of
'Z' and a NumPeriods-by-2-by-NumTrials 3-D array. The Z value generates the Brownian motion
vector (that is, Wiener processes) that drives the simulation.
Data Types: single | double

Antithetic — Indicator for antithetic sampling
false (default) | logical flag with value of true or false

Indicator for antithetic sampling, specified as the comma-separated pair consisting of 'Antithetic'
and a value of true or false.
Data Types: logical

OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma', 'Vega',
'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with values 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec'and a NOUT- by-1 or
1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta,
and Price, in that order. This is the same as specifying OutSpec to include each sensitivity:
Example: OutSpec = {'delta','gamma','vega','lambda','rho','theta','price'}
Data Types: char | cell

Output Arguments
PriceSens — Expected price or sensitivities of spread option
scalar
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Expected price or sensitivities of the spread option, returned as a 1-by-1 array as defined by
OutSpec.

Paths — Simulated paths of correlated state variables
vector

Simulated paths of correlated state variables, returned as a NumPeriods + 1-by-2-by-NumTrials 3-
D time series array. Each row of Paths is the transpose of the state vector X(t) at time t for a given
trial.

Times — Observation times associated with simulated paths
vector

Observation times associated with simulated paths, returned as a NumPeriods + 1-by-1 column
vector of observation times associated with the simulated paths. Each element of Times is associated
with the corresponding row of Paths.

Z — Time series array of dependent random variates
vector

Time series array of dependent random variates, returned as a NumPeriods-by-2-by-NumTrials 3-D
array when Z is specified as an input argument. If the Z input argument is not specified, then the Z
output argument contains the random variates generated internally.

More About
Spread Option

A spread option is an option written on the difference of two underlying assets.

For example, a European call on the difference of two assets X1 and X2 would have the following pay
off at maturity:

max(X1− X2− K, 0)

where:

K is the strike price.

For more information, see “Spread Option” on page 3-30.

References
[1] Carmona, R., Durrleman, V. “Pricing and Hedging Spread Options.” SIAM Review. Vol. 45, No. 4,

pp. 627–685, Society for Industrial and Applied Mathematics, 2003.

See Also
spreadbyls | spreadbybjs | spreadbyfd | spreadbykirk

Topics
“Pricing European and American Spread Options” on page 3-97
“Pricing Asian Options” on page 3-110
“Spread Option” on page 3-30
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“Supported Energy Derivative Functions” on page 3-34

External Websites
Energy Trading & Risk Management with MATLAB (47 min 31 sec)

Introduced in R2013b
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spreadsensbyfd
Calculate price and sensitivities of European or American spread options using finite difference
method

Syntax
PriceSens = spreadsensbyfd(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,
OptSpec,Strike,Corr)
PriceSens = spreadsensbyfd( ___ ,Name,Value)

[PriceSens,PriceGrid,AssetPrice1,AssetPrice2,Times] = spreadsensbyfd(
RateSpec,StockSpec1,StockSpec2,Settle,Maturity,OptSpec,Strike,Corr)
[PriceSens,PriceGrid,AssetPrice1,AssetPrice2,Times] = spreadsensbyfd( ___ ,
Name,Value)

Description
PriceSens = spreadsensbyfd(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,
OptSpec,Strike,Corr) returns the price and sensitivities of European or American call or put
spread options using the Alternate Direction Implicit (ADI) finite difference method. The spread is
between the asset defined in StockSpec1 minus the asset defined in StockSpec2.

PriceSens = spreadsensbyfd( ___ ,Name,Value) adds optional name-value pair arguments.

[PriceSens,PriceGrid,AssetPrice1,AssetPrice2,Times] = spreadsensbyfd(
RateSpec,StockSpec1,StockSpec2,Settle,Maturity,OptSpec,Strike,Corr) returns the
PriceSens, PriceGrid, AssetPrice1, AssetPrice2, and Times for European or American call or
put spread options using the Alternate Direction Implicit (ADI) finite difference method. The spread is
between the asset defined in StockSpec1 minus the asset defined in StockSpec2.

[PriceSens,PriceGrid,AssetPrice1,AssetPrice2,Times] = spreadsensbyfd( ___ ,
Name,Value) returns the PriceSens, PriceGrid, AssetPrice1, AssetPrice2, and Times and
adds optional name-value pair arguments.

Examples

Compute the Price of a Spread Option Using the Alternate Direction Implicit (ADI) Finite
Difference Method

Define the spread option dates.

Settle = '01-Jun-2012';
Maturity = '01-Sep-2012';

Define asset 1. Price and volatility of RBOB gasoline

  Price1gallon = 2.85;          % $/gallon
  Price1 = Price1gallon * 42;   % $/barrel
  Vol1 = 0.29;
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Define asset 2. Price and volatility of WTI crude oil

   Price2 = 93.20;         % $/barrel
   Vol2 = 0.36;

Define the correlation between the underlying asset prices of asset 1 and asset 2.

Corr = 0.42;

Define the spread option.

OptSpec = 'call';
Strike = 20;

Define the RateSpec.

rates = 0.05;
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rates', rates, ...
'Compounding', Compounding, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9876
            Rates: 0.0500
         EndTimes: 0.2500
       StartTimes: 0
         EndDates: 735113
       StartDates: 735021
    ValuationDate: 735021
            Basis: 1
     EndMonthRule: 1

Define the StockSpec for the two assets.

StockSpec1 = stockspec(Vol1, Price1)

StockSpec1 = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2900
         AssetPrice: 119.7000
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

StockSpec2 = stockspec(Vol2, Price2)

StockSpec2 = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3600
         AssetPrice: 93.2000
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []
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Compute the spread option price and sensitivities based on the Alternate Direction Implicit (ADI)
finite difference method.

OutSpec = {'Price', 'Delta', 'Gamma'};
[Price, Delta, Gamma, PriceGrid, AssetPrice1, AssetPrice2, Times] = ...
spreadsensbyfd(RateSpec, StockSpec1, StockSpec2, Settle, ...
Maturity, OptSpec, Strike, Corr, 'OutSpec', OutSpec);

Display the price and sensitivities.

Price

Price = 11.1998

Delta

Delta = 1×2

    0.6736   -0.6082

Gamma

Gamma = 1×2

    0.0190    0.0214

Plot the finite difference grid.

mesh(AssetPrice1, AssetPrice2, PriceGrid(:, :, 1)');
    title('Spread Option Prices for Range of Underlying Prices');
    xlabel('Price of underlying asset 1');
    ylabel('Price of underlying asset 2');
    zlabel('Price of spread option');
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Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec1 — Stock specification for underlying asset 1
structure

Stock specification for underlying asset 1. For information on the stock specification, see stockspec.

stockspec can handle other types of underlying assets. For example, for physical commodities the
price is represented by StockSpec.Asset, the volatility is represented by StockSpec.Sigma, and
the convenience yield is represented by StockSpec.DividendAmounts.
Data Types: struct

StockSpec2 — Stock specification for underlying asset 2
structure

Stock specification for underlying asset 2. For information on the stock specification, see stockspec.
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stockspec can handle other types of underlying assets. For example, for physical commodities the
price is represented by StockSpec.Asset, the volatility is represented by StockSpec.Sigma, and
the convenience yield is represented by StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement dates for spread option
serial date number | vector of serial date numbers | date character vector | cell array of character
vectors

Settlement dates for the spread option, specified as date character vectors or as serial date numbers
using a NINST-by-1 vector or cell array of character vector dates.
Data Types: char | cell | double

Maturity — Maturity date for spread option
serial date number | vector of serial date numbers | date character vector | cell array of character
vectors

Maturity date for spread option, specified as date character vectors or as serial date numbers using a
NINST-by-1 vector or cell array of character vector dates.
Data Types: char | cell | double

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors

Definition of option as 'call' or 'put', specified as a NINST-by-1 cell array of character vectors.
Data Types: char | cell

Strike — Option strike price values
integer | vector of integers

Option strike price values, specified as an integer using a NINST-by-1 vector of strike price values.
Data Types: single | double

Corr — Correlation between underlying asset prices
integer | vector of integers

Correlation between underlying asset prices, specified as an integer using aNINST-by-1 vector.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [PriceSens,PriceGrid,AssetPrice1,AssetPrice2,Times] =
spreadsensbyfd(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,OptSpec,Strike,
Corr,
'AssetPriceMin','AssetPriceMax','PriceGridSize','TimeGridSize','AmericanOpt',
0,'OutSpec',{'All'})
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OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma', 'Vega',
'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with values 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a NOUT- by-1 or
1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta,
and Price, in that order. This is the same as specifying OutSpec to include each sensitivity:
Example: OutSpec = {'delta','gamma','vega','lambda','rho','theta','price'}
Data Types: char | cell

AssetPriceMin — Minimum price for price grid boundary
if unspecified, StockSpec values are calculated based on asset distributions at maturity (default) |
array

Minimum price for price grid boundary, specified as the comma-separated pair consisting of
'AssetPriceMin' and a 1-by-2 array. The first entry in the array corresponds to the first asset
defined by StockSpec1 and the second entry corresponds to the second asset defined by
StockSpec2.

For the finite difference method, the composition of the grid affects the quality of the output and the
execution time. It is highly recommended to use the optional arguments AssetPriceMin,
AssetPriceMax, PriceGridSize, and TimeGridSize to control the composition of the grid to
ensure the quality of the output and a reasonable execution time.
Data Types: single | double

AssetPriceMax — Maximum price for price grid boundary
if unspecified, StockSpec values are calculated based on asset distributions at maturity (default) |
array

Maximum price for price grid boundary, specified as the comma-separated pair consisting of
'AssetPriceMax' and a 1-by-2 array. The first entry in the array corresponds to the first asset
defined by StockSpec1 and the second entry corresponds to the second asset defined by
StockSpec2.

For the finite difference method, the composition of the grid affects the quality of the output and the
execution time. It is highly recommended to use the optional arguments AssetPriceMin,
AssetPriceMax, PriceGridSize, and TimeGridSize to control the composition of the grid to
ensure the quality of the output and a reasonable execution time.
Data Types: single | double

PriceGridSize — Size for finite difference grid
[300,300] (default) | array

Size for finite difference grid, specified as the comma-separated pair consisting of
'PriceGridSize' and a 1-by-2 array. The first entry corresponds to the first asset defined by
StockSpec1 and the second entry corresponds to the second asset defined by StockSpec2.

For the finite difference method, the composition of the grid affects the quality of the output and the
execution time. It is highly recommended to use the optional argumentsAssetPriceMax,
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PriceGridSize, and TimeGridSize to control the composition of the grid to ensure the quality of
the output and a reasonable execution time.
Data Types: single | double

TimeGridSize — Size of time grid for finite difference grid
100 (default) | scalar | nonnegative integer

Size of time grid for finite difference grid, specified as the comma-separated pair consisting of
'TimeGridSize' and a nonnegative integer.

For the finite difference method, the composition of the grid affects the quality of the output and the
execution time. It is highly recommended to use the optional argumentsAssetPriceMax,
PriceGridSize, and TimeGridSize to control the composition of the grid to ensure the quality of
the output and a reasonable execution time.
Data Types: single | double

AmericanOpt — Option type
0 European (default) | scalar | vector of positive integers[0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and NINST-by-1
positive integer scalar flags with values:

• 0 — European
• 1 — American

Data Types: single | double

Output Arguments
PriceSens — Expected prices or sensitivities of spread option
scalar

Expected price or sensitivities of the spread option, returned as a 1-by-1 array as defined by
OutSpec.

PriceGrid — Grid containing prices calculated by finite difference method
array

Grid containing prices calculated by finite difference method, returned as a 3-D grid with a size of
PriceGridSize(1) * PriceGridSize(2) * TimeGridSize. The price for t = 0 is contained in
PriceGrid(:, :, 1).

AssetPrice1 — Prices for first asset defined by StockSpec1
vector

Prices for first asset defined by StockSpec1, corresponding to the first dimension of PriceGrid,
returned as a vector.

AssetPrice2 — Prices for second asset defined by StockSpec2
vector

Prices for second asset defined by StockSpec2, corresponding to the second dimension of
PriceGrid, returned as a vector.
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Times — Times corresponding to third dimension of PriceGrid
vector

Times corresponding to third dimension of PriceGrid, returned as a vector.

More About
Spread Option

A spread option is an option written on the difference of two underlying assets.

For example, a European call on the difference of two assets X1 and X2 would have the following pay
off at maturity:

max(X1− X2− K, 0)

where:

K is the strike price.

For more information, see “Spread Option” on page 3-30.

References
[1] Carmona, R., Durrleman, V. “Pricing and Hedging Spread Options.” SIAM Review. Vol. 45, No. 4,

pp. 627–685, Society for Industrial and Applied Mathematics, 2003.

[2] Villeneuve, S., Zanette, A. “Parabolic ADI Methods for Pricing American Options on Two Stocks.”
Mathematics of Operations Research. Vol. 27, No. 1, pp. 121–149, INFORMS, 2002.

[3] Ikonen, S., Toivanen, J. Efficient Numerical Methods for Pricing American Options Under
Stochastic Volatility. Wiley InterScience, 2007.

See Also
spreadbyfd | spreadbybjs | spreadbykirk | spreadbyls

Topics
“Pricing European and American Spread Options” on page 3-97
“Pricing Asian Options” on page 3-110
“Spread Option” on page 3-30
“Supported Energy Derivative Functions” on page 3-34

External Websites
Energy Trading & Risk Management with MATLAB (47 min 31 sec)

Introduced in R2013b
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stockoptspec
Specify European stock option structure

Syntax
StockOptSpec = stockoptspec(OptPrice,Strike,Settle,Maturity,OptSpec,
InterpMethod)
StockOptSpec = stockoptspec( ___ ,InterpMethod)

Description
StockOptSpec = stockoptspec(OptPrice,Strike,Settle,Maturity,OptSpec,
InterpMethod) creates a structure encapsulating the properties of a stock option structure.

StockOptSpec = stockoptspec( ___ ,InterpMethod) specifies options using one or more
optional arguments in addition to the input arguments in the previous syntax.

Examples

Specify a European Stock Option Structure

This example shows how to specify a European stock option structure using the following data quoted
from liquid options in the market with varying strikes and maturity.

Settle =   '01/01/06';

Maturity =    ['07/01/06';
    '07/01/06';
    '07/01/06';
    '07/01/06';
    '01/01/07';
    '01/01/07';
    '01/01/07';
    '01/01/07';
    '07/01/07';
    '07/01/07';
    '07/01/07';
    '07/01/07';
    '01/01/08';
    '01/01/08';
    '01/01/08';
    '01/01/08'];

Strike = [113;
   101;
   100;
    88;
   128;
   112;
   100;
    78;
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   144;
   112;
   100;
    69;
   162;
   112;
   100;
    61];

OptPrice =[                 0;
   4.807905472659144;
   1.306321897011867;
   0.048039195057173;
                   0;
   2.310953054191461;
   1.421950392866235;
   0.020414826276740;
                   0;
   5.091986935627730;
   1.346534812295291;
   0.005101325584140;
                   0;
   8.047628153217246;
   1.219653432150932;
   0.001041436654748];

OptSpec = { 'call';
    'call';
    'put';
    'put';
    'call';
    'call';
    'put';
    'put';
    'call';
    'call';
    'put';
    'put';
    'call';
    'call';
    'put';
    'put'};

StockOptSpec = stockoptspec(OptPrice, Strike, Settle, Maturity, OptSpec)

StockOptSpec = struct with fields:
          FinObj: 'StockOptSpec'
        OptPrice: [16x1 double]
          Strike: [16x1 double]
          Settle: 732678
        Maturity: [16x1 double]
         OptSpec: {16x1 cell}
    InterpMethod: 'price'
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Input Arguments
OptPrice — European option prices
vector

European option prices, specified as an NINST-by-1 vector.
Data Types: double

Strike — Strike prices
vector

Strike prices, specified as an NINST-by-1 vector.
Data Types: double

Settle — Settlement date
scalar numeric date

Settlement date, specified as a scalar numeric date.
Data Types: double

Maturity — Maturity dates
vector

Maturity dates, specified as an NINST-by-1 vector.
Data Types: double

OptSpec — Option type
cell array of character vectors with a value of 'call' or 'put'

Option type, specified as an NINST-by-1 cell array of character vectors with a value of 'call' or
'put'.
Data Types: cell

InterpMethod — Interpolation method for option prices
'price' (default) | scalar character vector with value of 'price' or 'vol'

(Optional) Interpolation method for option prices, specified as a scalar character vector with one of
the following values:

• 'price' indicates that prices are used for interpolation purposes.
• 'vol' indicates that implied volatilities are used for interpolation purposes. The interpolated

values are then used to calculate the implicit interpolated prices.

.
Data Types: char

Output Arguments
StockOptSpec — Structure encapsulating the properties of a stock options structure
structure
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Structure encapsulating the properties of a stock options structure, returned as a structure.

See Also
ittprice | itttree | stockspec

Topics
“Building Implied Trinomial Trees” on page 3-6
“Examining Equity Trees” on page 3-14
“Understanding Equity Trees” on page 3-2
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2007a
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stockspec
Create stock structure

Syntax
StockSpec = stockspec(Sigma,AssetPrice)
StockSpec = stockspec( ___ ,DividendType,DividendAmounts,ExDividendDates)

Description
StockSpec = stockspec(Sigma,AssetPrice) creates a MATLAB structure containing the
properties of a stock.

Note StockSpec handles other types of underliers when pricing instruments other than equities.

StockSpec = stockspec( ___ ,DividendType,DividendAmounts,ExDividendDates) adds
optional arguments for DividendType, DividendAmounts, and ExDividendDates.

Examples

Create a StockSpec for Stocks With Cash Dividends

Consider a stock that provides four cash dividends of $0.50 on January 3, 2008, April 1, 2008, July 5,
2008 and October 1, 2008. The stock is trading at $50, and has a volatility of 20% per annum. Using
this data, create the structure StockSpec:

AssetPrice = 50;
Sigma = 0.20;

DividendType = {'cash'};
DividendAmounts = [0.50, 0.50, 0.50, 0.50];
ExDividendDates = {'03-Jan-2008', '01-Apr-2008', '05-July-2008', '01-Oct-2008'};
 
StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts, ExDividendDates)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2000
         AssetPrice: 50
       DividendType: {'cash'}
    DividendAmounts: [0.5000 0.5000 0.5000 0.5000]
    ExDividendDates: [733410 733499 733594 733682]

Examine the StockSpec structure.

datedisp(StockSpec.ExDividendDates)

03-Jan-2008   01-Apr-2008   05-Jul-2008   01-Oct-2008   
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StockSpec.DividendType

ans = 1x1 cell array
    {'cash'}

The StockSpec structure encapsulates the information of the stock and its four cash dividends.

Create a StockSpec for Stocks With Cash and Continuous Dividends

Consider two stocks that are trading at $40 and $35. The first one provides two cash dividends of
$0.25 on March 1, 2008 and June 1, 2008. The second stock provides a continuous dividend yield of
3%. The stocks have a volatility of 30% per annum. Using this data, create the structure StockSpec:

AssetPrice = [40; 35];
Sigma = .30;

DividendType = {'cash'; 'continuous'};
DividendAmount = [0.25, 0.25 ; 0.03 NaN];

DividendDate1 = 'March-01-2008';
DividendDate2 = 'Jun-01-2008';

StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmount,...
{ DividendDate1, DividendDate2 ; NaN NaN})

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: [2x1 double]
         AssetPrice: [2x1 double]
       DividendType: {2x1 cell}
    DividendAmounts: [2x2 double]
    ExDividendDates: [2x2 double]

Examine the StockSpec structure.

datedisp(StockSpec.ExDividendDates)

01-Mar-2008   01-Jun-2008   
   NaN           NaN        

StockSpec.DividendType

ans = 2x1 cell
    {'cash'      }
    {'continuous'}

The StockSpec structure encapsulates the information of the two stocks and their dividends.

Input Arguments
Sigma — Annual price volatility of underlying security
decimal
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Annual price volatility of underlying security, specified as a NINST-by-1 decimal.
Data Types: double

AssetPrice — Underlying asset price values at time 0
vector

Underlying asset price values at time 0, specified as a NINST-by-1 vector.
Data Types: double

DividendType — Stock dividend type
cell array of date character vectors

(Optional) Stock dividend type, specified as a NINST-by-1 cell array of character vectors.

Dividend type must be either cash for actual dollar dividends, constant for constant dividend yield,
or continuous for continuous dividend yield. This function does not handle stock option dividends.

Note Dividends are assumed to be paid in cash. Noncash dividends (stock) are not allowed. When
combining two or more types of dividends, shorter rows should be padded with the value NaN.

Data Types: char | cell

DividendAmounts — Dividend amounts
matrix | vector

(Optional) Dividend amounts, specified as a NINST-by-NDIV matrix of cash dividends or NINST-by-1
vector representing a constant or continuous annualized dividend yield.
Data Types: double

ExDividendDates — Ex-dividend dates
matrix | vector

(Optional) Ex-dividend dates, specified as a NINST-by-NDIV matrix of ex-dividend dates for a cash
DividendType or NINST-by-1 vector of ex-dividend dates for constant DividendType. For
continuous DividendType, this argument should be ignored.
Data Types: double | cell

Output Arguments
StockSpec — Properties of stock structure
structure

Properties of stock structure, returned as a structure encapsulating the properties of a stock.

See Also
crrprice | crrtree | intenvset | optstockbybjs | optstockbyblk | optstockbyls |
optstockbybls | spreadbykirk | spreadbybjs | spreadbyfd | spreadbyls | optstockbyrgw

Topics
“Portfolio Creation Using Functions” on page 1-6
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“Supported Equity Derivative Functions” on page 3-19

Introduced before R2006a
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sttprice
Price instruments using standard trinomial tree

Syntax
[Price,PriceTree] = sttprice(STTTree,InstSet)
[Price,PriceTree] = sttprice( ___ ,Name,Value)

Description
[Price,PriceTree] = sttprice(STTTree,InstSet) prices instruments using a standard
trinomial (STT) tree.

[Price,PriceTree] = sttprice( ___ ,Name,Value) prices instruments using a standard
trinomial (STT) tree with an optional name-value pair argument for Options.

Examples

Price a stttree Instrument Set

Load the data into the MATLAB® workspace.

load deriv.mat

STTTree and STTInstSet are the input arguments required to call the function sttprice. Use the
command instdisp to examine the set of instruments contained in the variable STTInstSet.

instdisp(STTInstSet)

Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name  Quantity
1     OptStock call    100    01-Jan-2009    01-Jan-2011    1           Call1 10      
2     OptStock put      80    01-Jan-2009    01-Jan-2012    0           Put1   5      
 
Index Type    OptSpec Strike Settle         ExerciseDates  AmericanOpt BarrierSpec Barrier Rebate Name     Quantity
3     Barrier call    105    01-Jan-2009    01-Jan-2012    1           ui          115     0      Barrier1 1       
 
Index Type     UOptSpec UStrike USettle        UExerciseDates UAmericanOpt COptSpec CStrike CSettle        CExerciseDates CAmericanOpt Name      Quantity
4     Compound call     95      01-Jan-2009    01-Jan-2012    1            put      5       01-Jan-2009    01-Jan-2011    1            Compound1 3       
 
Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name      Quantity
5     Lookback call    90     01-Jan-2009    01-Jan-2012    0           Lookback1 7       
6     Lookback call    95     01-Jan-2009    01-Jan-2013    0           Lookback2 9       
 
Index Type  OptSpec Strike Settle         ExerciseDates  AmericanOpt AvgType    AvgPrice AvgDate Name   Quantity
7     Asian call    100    01-Jan-2009    01-Jan-2012    0           arithmetic NaN      NaN     Asian1 4       
8     Asian call    100    01-Jan-2009    01-Jan-2013    0           arithmetic NaN      NaN     Asian2 6       
 

The instrument set contains eight instruments:
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• Two vanilla options (Call1, Put1)
• One barrier option (Barrier1)
• One compound option (Compound1)
• Two lookback options (Lookback1, Lookback2)
• Two Asian options (Asian1, Asian2)

Use sttprice to calculate the price of each instrument in the instrument set.

Price = sttprice(STTTree, STTInstSet)

Price = 8×1

    4.5025
    3.0603
    3.7977
    1.7090
   11.7296
   12.9120
    1.6905
    2.6203

Input Arguments
STTTree — Stock tree structure for standard trinomial tree
structure

Stock tree structure for a standard trinomial tree, specified by using stttree.
Data Types: struct

InstSet — Variable containing a collection instruments
structure

Variable containing a collection of NINST instruments, specified as a structure. Instruments are
broken down by type and each type can have different data fields.
Data Types: struct

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree] = sttprice(STTTree,InstSet,'Options',deriv)

Options — Derivatives pricing options
structure

Derivatives pricing options, specified as the comma-separated pair consisting of 'Options' and a
structure that is created with derivset.
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Data Types: struct

Output Arguments
Price — Expected prices for each instrument at time 0
matrix

Expected prices for each instrument at time 0, returned as a NINST-by-1 vector. The prices are
computed by backward dynamic programming on the standard trinomial (STT) stock tree. If an
instrument cannot be priced, a NaN is returned in that entry.

PriceTree — Structure with vector of instrument prices at each node
tree structure

Structure with a vector of instrument prices at each node, returned as a tree structure.

PriceTree is a MATLAB structure of trees containing vectors of instrument prices and a vector of
observation times for each node.

PriceTree.PTree contains the prices.

PriceTree.tObs contains the observation times.

PriceTree.dObs contains the observation dates.

See Also
stttree | sttsens | stttimespec

Topics
“Convertible Bond” on page 2-4

Introduced in R2015b
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sttsens
Instrument sensitivities and prices using standard trinomial tree

Syntax
[Delta,Gamma,Vega,Price] = sttsens(STTTree,InstSet)
[Delta,Gamma,Vega,Price] = sttsens( ___ ,Name,Value)

Description
[Delta,Gamma,Vega,Price] = sttsens(STTTree,InstSet) to generate instrument
sensitivities and prices using a standard trinomial (STT) tree.

[Delta,Gamma,Vega,Price] = sttsens( ___ ,Name,Value) to generate instrument
sensitivities and prices using a standard trinomial (STT) tree with an optional name-value pair
argument for Options.

Examples

Determine the Price and Sensitivities for a stttree Instrument Set

Load the data into the MATLAB® workspace.

load deriv.mat

STTTree and STTInstSet are the input arguments required to call the function sttprice. Use the
command instdisp to examine the set of instruments contained in the variable STTInstSet.

instdisp(STTInstSet)

Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name  Quantity
1     OptStock call    100    01-Jan-2009    01-Jan-2011    1           Call1 10      
2     OptStock put      80    01-Jan-2009    01-Jan-2012    0           Put1   5      
 
Index Type    OptSpec Strike Settle         ExerciseDates  AmericanOpt BarrierSpec Barrier Rebate Name     Quantity
3     Barrier call    105    01-Jan-2009    01-Jan-2012    1           ui          115     0      Barrier1 1       
 
Index Type     UOptSpec UStrike USettle        UExerciseDates UAmericanOpt COptSpec CStrike CSettle        CExerciseDates CAmericanOpt Name      Quantity
4     Compound call     95      01-Jan-2009    01-Jan-2012    1            put      5       01-Jan-2009    01-Jan-2011    1            Compound1 3       
 
Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name      Quantity
5     Lookback call    90     01-Jan-2009    01-Jan-2012    0           Lookback1 7       
6     Lookback call    95     01-Jan-2009    01-Jan-2013    0           Lookback2 9       
 
Index Type  OptSpec Strike Settle         ExerciseDates  AmericanOpt AvgType    AvgPrice AvgDate Name   Quantity
7     Asian call    100    01-Jan-2009    01-Jan-2012    0           arithmetic NaN      NaN     Asian1 4       
8     Asian call    100    01-Jan-2009    01-Jan-2013    0           arithmetic NaN      NaN     Asian2 6       
 

The instrument set contains eight instruments:
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• Two vanilla options (Call1, Put1)
• One barrier option (Barrier1)
• One compound option (Compound1)
• Two lookback options (Lookback1, Lookback2)
• Two Asian options (Asian1, Asian2)

Use sttsens to calculate the price and sensitivities for each instrument in the instrument set.

[Delta,Gamma,Vega,Price] = sttsens(STTTree, STTInstSet)

Delta = 8×1

    0.5267
   -0.0943
    0.4726
   -0.0624
    0.2313
    0.3266
    0.5706
    0.6646

Gamma = 8×1
105 ×

    0.0000
    0.0000
    0.0000
    0.0000
   -1.8650
   -1.9119
    1.8650
    1.9119

Vega = 8×1

   52.8980
   42.4369
   25.9792
   -9.5266
   70.3758
   92.9226
   25.8122
   37.8757

Price = 8×1

    4.5025
    3.0603
    3.7977
    1.7090
   11.7296
   12.9120
    1.6905
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    2.6203

Determine Price and Sensitivities for Convertible Bond Instruments Using a stttree

Create a RateSpec.

StartDates = 'Jan-1-2015'; 
EndDates = 'Jan-1-2020'; 
Rates = 0.025; 
Basis = 1; 

RateSpec = intenvset('ValuationDate',StartDates,'StartDates',StartDates,...
'EndDates',EndDates,'Rates',Rates,'Compounding',-1,'Basis',Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.8825
            Rates: 0.0250
         EndTimes: 5
       StartTimes: 0
         EndDates: 737791
       StartDates: 735965
    ValuationDate: 735965
            Basis: 1
     EndMonthRule: 1

Create a StockSpec.

AssetPrice = 80; 
Sigma = 0.12; 
StockSpec = stockspec(Sigma,AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1200
         AssetPrice: 80
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Create a STTTree.

TimeSpec = stttimespec(StartDates, EndDates, 20);
STTTree = stttree(StockSpec, RateSpec, TimeSpec)

STTTree = struct with fields:
       FinObj: 'STStockTree'
    StockSpec: [1x1 struct]
     TimeSpec: [1x1 struct]
     RateSpec: [1x1 struct]
         tObs: [0 0.2500 0.5000 0.7500 1 1.2500 1.5000 1.7500 2 2.2500 ... ]
         dObs: [735965 736056 736147 736238 736330 736421 736512 736604 ... ]
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        STree: {1x21 cell}
        Probs: {1x20 cell}

Define the convertible bond. The convertible bond can be called starting on Jan 1, 2016 with a strike
price of 95.

CouponRate = 0.03;
Settle = 'Jan-1-2015'; 
Maturity = 'April-1-2018'; 
Period = 1;
CallStrike = 95; 
CallExDates = [datenum('Jan-1-2016') datenum('April-1-2018')];
ConvRatio = 1;
Spread = 0.025;

Price the convertible bond using the standard trinomial tree model.

[Price,PriceTree,EqtTre,DbtTree] = cbondbystt(STTTree,CouponRate,Settle,Maturity,ConvRatio,...
'Period',Period,'Spread',Spread,'CallExDates',CallExDates,'CallStrike',CallStrike,'AmericanCall', 1)

Price = 90.2511

PriceTree = struct with fields:
    FinObj: 'TrinPriceTree'
     PTree: {1x21 cell}
      tObs: [0 0.2500 0.5000 0.7500 1 1.2500 1.5000 1.7500 2 2.2500 ... ]
      dObs: [735965 736056 736147 736238 736330 736421 736512 736604 ... ]

EqtTre = struct with fields:
    FinObj: 'TrinPriceTree'
     PTree: {1x21 cell}
      tObs: [0 0.2500 0.5000 0.7500 1 1.2500 1.5000 1.7500 2 2.2500 ... ]
      dObs: [735965 736056 736147 736238 736330 736421 736512 736604 ... ]

DbtTree = struct with fields:
    FinObj: 'TrinPriceTree'
     PTree: {1x21 cell}
      tObs: [0 0.2500 0.5000 0.7500 1 1.2500 1.5000 1.7500 2 2.2500 ... ]
      dObs: [735965 736056 736147 736238 736330 736421 736512 736604 ... ]

Compute the delta and gamma of the convertible bond.

InstSet= instcbond(CouponRate,Settle,Maturity,ConvRatio,'Spread',Spread,...
'CallExDates',CallExDates,'CallStrike',CallStrike,'AmericanCall',1);
[Delta,Gamma] = sttsens(STTTree,InstSet)

Delta = 0.3945

Gamma = 0.0324

Input Arguments
STTTree — Stock tree structure for standard trinomial tree
structure
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Stock tree structure for a standard trinomial tree, specified by using stttree.
Data Types: struct

InstSet — Variable containing a collection instruments
structure

Variable containing a collection of NINST instruments, specified as a structure. Instruments are
broken down by type and each type can have different data fields.
Data Types: struct

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Delta,Gamma,Vega,Price] = sttsens(STTTree,InstSet,'Options',deriv)

Options — Derivatives pricing options
structure

Derivatives pricing options, specified as the comma-separated pair consisting of 'Options' and a
structure that is created with derivset.
Data Types: struct

Output Arguments
Delta — Rate of change of instruments prices with respect to changes in the stock price
vector of deltas

Rate of change of instrument prices with respect to changes in the stock price, returned as a NINST-
by-1 vector of deltas. For more information on the stock tree, see stttree.

Gamma — Rate of change of instrument deltas with respect to changes in the stock price
vector of gammas

Rate of change of instrument deltas with respect to changes in the stock price, returned as a NINST-
by-1 vector of gammas.

Vega — Rate of change of instrument prices with respect to changes in the volatility of the
stock price
vector of vegas

Rate of change of instrument prices with respect to changes in the volatility of the stock price,
returned as a NINST-by-1 vector of vegas. For more information on the stock tree, see stttree.

Price — Expected prices for each instrument at time 0
matrix

Expected prices for each instrument at time 0, returned as a NINST-by-1 vector. The prices are
computed by backward dynamic programming on the standard trinomial (STT) stock tree. If an
instrument cannot be priced, a NaN is returned in that entry.
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See Also
stttree | sttsens | stttimespec | derivset

Topics
“Convertible Bond” on page 2-4

Introduced in R2015b
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stttimespec
Specify time structure for standard trinomial tree

Syntax
TimeSpec = stttimespec(ValuationDate,Maturity,NumPeriods)

Description
TimeSpec = stttimespec(ValuationDate,Maturity,NumPeriods) creates a time spec for a
standard trinomial (STT) tree.

Examples

Create a stttimespec to Build a STTTree

Create a RateSpec.

StartDates = 'Jan-1-2014'; 
EndDates = 'Jan-1-2018'; 
Rates = 0.025; 
Basis = 1; 
Compounding = -1;

RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,'EndDates',...
EndDates, 'Rates', Rates,'Compounding', Compounding, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9048
            Rates: 0.0250
         EndTimes: 4
       StartTimes: 0
         EndDates: 737061
       StartDates: 735600
    ValuationDate: 735600
            Basis: 1
     EndMonthRule: 1

Create a StockSpec.

AssetPrice = 110; 
Sigma = 0.22; 
Div = 0.02; 
StockSpec = stockspec(Sigma, AssetPrice, 'continuous', Div)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2200
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         AssetPrice: 110
       DividendType: {'continuous'}
    DividendAmounts: 0.0200
    ExDividendDates: []

Create a STTTimespec and STTTree.

NumPeriods = length(cfdates(StartDates,EndDates,12));
TimeSpec = stttimespec(StartDates, EndDates, NumPeriods)

TimeSpec = struct with fields:
           FinObj: 'STTTimeSpec'
    ValuationDate: 735600
         Maturity: 737061
       NumPeriods: 48
            Basis: 0
     EndMonthRule: 1
             tObs: [0 0.0833 0.1667 0.2500 0.3333 0.4167 0.5000 0.5833 ... ]
             dObs: [735600 735630 735660 735691 735721 735752 735782 ... ]

STTT = stttree(StockSpec, RateSpec, TimeSpec)

STTT = struct with fields:
       FinObj: 'STStockTree'
    StockSpec: [1x1 struct]
     TimeSpec: [1x1 struct]
     RateSpec: [1x1 struct]
         tObs: [0 0.0833 0.1667 0.2500 0.3333 0.4167 0.5000 0.5833 ... ]
         dObs: [735600 735630 735660 735691 735721 735752 735782 735813 ... ]
        STree: {1x49 cell}
        Probs: {1x48 cell}

Input Arguments
ValuationDate — Date marking the pricing date and first observation tree
serial date number | date character vector

Date marking the pricing date and first observation in the tree, specified as a scalar using a serial
date number or date character vector.
Data Types: double | char

Maturity — Date marking the depth of tree
serial date number | date character vector

Date marking the depth of the tree, specified as a scalar using a serial date number or date character
vector.
Data Types: double | char

NumPeriods — Determines how many time steps are in tree
nonnegative integer

Determines how many time steps are in tree, specified as a scalar using a nonnegative integer value.
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Data Types: double

Output Arguments
TimeSpec — Time layout for standard trinomial (STT) tree
structure

Time layout for standard trinomial (STT) tree, returned as a structure.

See Also
stttree

Introduced in R2015b
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stttree
Build standard trinomial tree

Syntax
STTTree = stttree(StockSpec,RateSpec,TimeSpec)

Description
STTTree = stttree(StockSpec,RateSpec,TimeSpec) builds a standard trinomial (STT) tree.

Examples

Build a STTTree

Create a RateSpec.

StartDates = 'Jan-1-2014'; 
EndDates = 'Jan-1-2018'; 
Rates = 0.025; 
Basis = 1; 
Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates,'Compounding', Compounding, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9048
            Rates: 0.0250
         EndTimes: 4
       StartTimes: 0
         EndDates: 737061
       StartDates: 735600
    ValuationDate: 735600
            Basis: 1
     EndMonthRule: 1

Create a StockSpec.

AssetPrice = 55; 
Sigma = 0.22; 
Div = 0.02; 
StockSpec = stockspec(Sigma, AssetPrice, 'continuous', Div)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2200
         AssetPrice: 55
       DividendType: {'continuous'}
    DividendAmounts: 0.0200
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    ExDividendDates: []

Create a Standard Trinomial Tree (STTTree).

NumSteps = 8;
TimeSpec = stttimespec(StartDates, EndDates, NumSteps);
STTT = stttree(StockSpec, RateSpec, TimeSpec)

STTT = struct with fields:
       FinObj: 'STStockTree'
    StockSpec: [1x1 struct]
     TimeSpec: [1x1 struct]
     RateSpec: [1x1 struct]
         tObs: [0 0.5000 1 1.5000 2 2.5000 3 3.5000 4]
         dObs: [735600 735782 735965 736147 736330 736513 736695 736878 ... ]
        STree: {1x9 cell}
        Probs: {1x8 cell}

Input Arguments
StockSpec — Stock specification for underlying asset
structure

Stock specification for underlying asset, specified using StockSpec obtained from stockspec. For
information on the stock specification, see stockspec.

stockspec can handle other types of underlying assets. For example, stocks, stock indices, and
commodities. If dividends are not specified in StockSpec, dividends are assumed to be 0.
Data Types: struct

RateSpec — Interest-rate term specification of initial risk-free rate curve
structure

Interest-rate term specification of initial risk-free rate curve, specified by the RateSpec obtained
from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

TimeSpec — Tree time layout specification
structure

Tree time layout specification, specified using stttimespec to define the observation dates of the
standard trinomial (STT) tree.
Data Types: struct

Output Arguments
STTTree — Tree specifying stock and time information for a standard trinomial (STT) tree
tree structure

Tree specifying stock and time information for a standard trinomial (STT) tree, returned as a tree
structure.

 stttree

11-1687



See Also
stttimespec

Topics
“Use treeviewer to Examine HWTree and PriceTree When Pricing European Callable Bond” on page
2-195

Introduced in R2015b
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supersharebybls
Determine price of supershare digital options using Black-Scholes model

Syntax
Price = supersharebybls(RateSpec,StockSpec,Settle,Maturity,StrikeLow,
StrikeHigh)

Description
Price = supersharebybls(RateSpec,StockSpec,Settle,Maturity,StrikeLow,
StrikeHigh) computes supershare digital options using the Black-Scholes option pricing model.

Examples

Compute the Price of Supershare Digital Options Using Black-Scholes Model

This example shows how to compute the price of supershare digital options using Black-Scholes
model. Consider a supershare based on a portfolio of nondividend paying stocks with a lower strike of
350 and an upper strike of 450. The value of the portfolio on November 1, 2008 is 400. The risk-free
rate is 4.5% and the volatility is 18%. Using this data, calculate the price of the supershare option on
February 1, 2009.

Settle = 'Nov-1-2008';
Maturity = 'Feb-1-2009';
Rates = 0.045;
Basis = 1;
Compounding = -1;

% create the RateSpec
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis);

% define the StockSpec
AssetPrice = 400;
Sigma = .18;
StockSpec = stockspec(Sigma, AssetPrice);

% define the high and low strike points
StrikeLow = 350;
StrikeHigh = 450;

% calculate the price
Pssh = supersharebybls(RateSpec, StockSpec, Settle, Maturity,...
StrikeLow, StrikeHigh)

Pssh = 0.9411
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Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification, see
stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities the
price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is
StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement or trade date
serial date number | date character vector

Settlement or trade date for the basket option, specified as an NINST-by-1 vector of serial date
numbers or date character vectors.
Data Types: double | char | cell

Maturity — Maturity date
serial date number | date character vector

Maturity date for the basket option, specified as an NINST-by-1 vector of serial date numbers or date
character vectors.
Data Types: double | char | cell

StrikeLow — Low strike price values
vector

Low strike price values, specified as an NINST-by-1 vector.
Data Types: double

StrikeHigh — High strike price values
vector

High strike price values, specified as an NINST-by-1 vector.
Data Types: double

Output Arguments
Price — Expected prices for supershare option
vector
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Expected prices for supershare option, returned as a NINST-by-1 vector.

More About
Supershare Option

A supershare option pays out a proportion of the assets underlying a portfolio if the asset lies
between a lower and an upper bound at the expiry of the option.

For more information, see “Digital Option” on page 3-26.

See Also
assetbybls | cashbybls | gapbybls | supersharesensbybls

Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-79
“Pricing European Call Options Using Different Equity Models” on page 3-88
“Pricing Using the Black-Scholes Model” on page 3-82
“Digital Option” on page 3-26
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2009a
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supersharesensbybls
Determine price or sensitivities of supershare digital options using Black-Scholes model

Syntax
PriceSens = supersharesensbybls(RateSpec,StockSpec,Settle,Maturity,StrikeLow,
StrikeHigh)
PriceSens = supersharesensbybls( ___ ,Name,Value)

Description
PriceSens = supersharesensbybls(RateSpec,StockSpec,Settle,Maturity,StrikeLow,
StrikeHigh) computes price or sensitivities of supershare digital options using the Black-Scholes
option pricing model.

PriceSens = supersharesensbybls( ___ ,Name,Value) specifies options using one or more
name-value pair arguments in addition to the input arguments in the previous syntax.

Examples

Compute Price and Sensitivities of Supershare Digital Options Using Black-Scholes Model

This example shows how to compute price and sensitivities of supershare digital options using a
Black-Scholes model. Consider a supershare based on a portfolio of nondividend paying stocks with a
lower strike of 350 and an upper strike of 450. The value of the portfolio on November 1, 2008 is 400.
The risk-free rate is 4.5% and the volatility is 18%. Using this data, calculate the price and sensitivity
of the supershare option on February 1, 2009.

Settle = 'Nov-1-2008';
Maturity = 'Feb-1-2009';
Rates = 0.045;
Basis = 1;
Compounding = -1;

% define the RateSpec
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis);

% define the StockSpec
AssetPrice = 400;
Sigma = .18;
StockSpec = stockspec(Sigma, AssetPrice);

% define the high and low strike points
StrikeLow = 350;
StrikeHigh = 450;

% calculate the price
Pssh = supersharebybls(RateSpec, StockSpec, Settle, Maturity,...
StrikeLow, StrikeHigh)
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Pssh = 0.9411

% compute the delta and theta of the supershare option
OutSpec = { 'delta';'theta'};
[Delta, Theta]= supersharesensbybls(RateSpec, StockSpec, Settle,...
Maturity, StrikeLow, StrikeHigh, 'OutSpec', OutSpec)

Delta = -0.0010

Theta = -1.0102

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification, see
stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities the
price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is
StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement or trade date
serial date number | date character vector

Settlement or trade date for the basket option, specified as an NINST-by-1 vector of serial date
numbers or date character vectors.
Data Types: double | char | cell

Maturity — Maturity date
serial date number | date character vector

Maturity date for the basket option, specified as an NINST-by-1 vector of serial date numbers or date
character vectors.
Data Types: double | char | cell

StrikeLow — Low strike price values
vector

Low strike price values, specified as an NINST-by-1 vector.
Data Types: double

 supersharesensbybls

11-1693



StrikeHigh — High strike price values
vector

High strike price values, specified as an NINST-by-1 vector.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Gamma,Theta,Price] =
supersharesensbybls(RateSpec,StockSpec,Settle,Maturity,StrikeLow,StrikeHigh,'
OutSpec',{'gamma';'theta';'price'})

OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma', 'Vega',
'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with values 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a NOUT- by-1 or
a 1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output is Delta, Gamma, Vega, Lambda, Rho, Theta, and
Price, in that order. This is the same as specifying OutSpec to include each sensitivity.
Example: OutSpec = {'delta','gamma','vega','lambda','rho','theta','price'}
Data Types: char | cell

Output Arguments
PriceSens — Expected prices or sensitivities for supershare option
vector

Expected prices or sensitivities for supershare option, returned as a NINST-by-1 vector.

More About
Supershare Option

A supershare option pays out a proportion of the assets underlying a portfolio if the asset lies
between a lower and an upper bound at the expiry of the option.

For more information, see “Digital Option” on page 3-26.

See Also
supersharebybls
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Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-79
“Pricing European Call Options Using Different Equity Models” on page 3-88
“Pricing Using the Black-Scholes Model” on page 3-82
“Digital Option” on page 3-26
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2009a
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swapbybdt
Price swap instrument from Black-Derman-Toy interest-rate tree

Syntax
[Price,PriceTree,CFTree,SwapRate] = swapbybdt(BDTTree,LegRate,Settle,
Maturity)
[Price,PriceTree,CFTree,SwapRate] = swapbybdt( ___ ,Name,Value)

Description
[Price,PriceTree,CFTree,SwapRate] = swapbybdt(BDTTree,LegRate,Settle,
Maturity) prices a swap instrument from a Black-Derman-Toy interest-rate tree. swapbybdt
computes prices of vanilla swaps, amortizing swaps and forward swaps.

[Price,PriceTree,CFTree,SwapRate] = swapbybdt( ___ ,Name,Value) adds additional
name-value pair arguments.

Examples

Price an Interest-Rate Swap

Price an interest-rate swap with a fixed receiving leg and a floating paying leg. Payments are made
once a year, and the notional principal amount is $100. The values for the remaining arguments are:

• Coupon rate for fixed leg: 0.15 (15%)
• Spread for floating leg: 10 basis points
• Swap settlement date: Jan. 01, 2000
• Swap maturity date: Jan. 01, 2003

Based on the information above, set the required arguments and build the LegRate, LegType, and
LegReset matrices:

Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Basis = 0; 
Principal = 100;
LegRate = [0.15 10]; % [CouponRate Spread] 
LegType = [1 0]; % [Fixed Float] 
LegReset = [1 1]; % Payments once per year

Price the swap using the BDTTree included in the MAT-file deriv.mat. BDTTree contains the time
and forward-rate information needed to price the instrument.

load deriv.mat;

Use swapbybdt to compute the price of the swap.

Price  = swapbybdt(BDTTree, LegRate, Settle, Maturity,... 
LegReset, Basis, Principal, LegType)
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Price = 7.4222

Using the previous data, calculate the swap rate, the coupon rate for the fixed leg, such that the swap
price at time = 0 is zero.

LegRate = [NaN 20]; 

[Price, PriceTree, CFTree, SwapRate] = swapbybdt(BDTTree,... 
LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType)

Price = -1.4211e-14

PriceTree = struct with fields:
    FinObj: 'BDTPriceTree'
      tObs: [0 1 2 3 4]
     PTree: {1x5 cell}

CFTree = struct with fields:
    FinObj: 'BDTCFTree'
      tObs: [0 1 2 3 4]
    CFTree: {[NaN]  [NaN NaN]  [NaN NaN NaN]  [NaN NaN NaN NaN]  [NaN NaN NaN NaN]}

SwapRate = 0.1205

Price an Amortizing Swap

Price an amortizing swap using the Principal input argument to define the amortization schedule.

Create the RateSpec.

Rates = 0.035;
ValuationDate = '1-Jan-2011';
StartDates = ValuationDate;
EndDates = '1-Jan-2017';
Compounding = 1;

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: 0.8135
            Rates: 0.0350
         EndTimes: 6
       StartTimes: 0
         EndDates: 736696
       StartDates: 734504
    ValuationDate: 734504
            Basis: 0
     EndMonthRule: 1

Create the swap instrument using the following data:
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Settle ='1-Jan-2011';
Maturity = '1-Jan-2017';
Period = 1;
LegRate = [0.04 10];

Define the swap amortizing schedule.

Principal ={{'1-Jan-2013' 100;'1-Jan-2014' 80;'1-Jan-2015' 60;'1-Jan-2016' 40; '1-Jan-2017' 20}};

Build the BDT tree and assume volatility is 10%.

MatDates = {'1-Jan-2012'; '1-Jan-2013';'1-Jan-2014';'1-Jan-2015';'1-Jan-2016';'1-Jan-2017'};
BDTTimeSpec = bdttimespec(ValuationDate, MatDates);
Volatility = 0.10;  
BDTVolSpec = bdtvolspec(ValuationDate, MatDates, Volatility*ones(1,length(MatDates))');
BDTT = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);

Compute the price of the amortizing swap.

Price = swapbybdt(BDTT, LegRate, Settle, Maturity, 'Principal' , Principal)

Price = 1.4574

Price a Forward Swap

Price a forward swap using the StartDate input argument to define the future starting date of the
swap.

Create the RateSpec.

Rates = 0.0325;
ValuationDate = '1-Jan-2012';
StartDates = ValuationDate;
EndDates = '1-Jan-2018';
Compounding = 1;

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: 0.8254
            Rates: 0.0325
         EndTimes: 6
       StartTimes: 0
         EndDates: 737061
       StartDates: 734869
    ValuationDate: 734869
            Basis: 0
     EndMonthRule: 1

Build the tree with a volatility of 10%.

MatDates = {'1-Jan-2013'; '1-Jan-2014';'1-Jan-2015';'1-Jan-2016';'1-Jan-2017';'1-Jan-2018'};
BDTTimeSpec = bdttimespec(ValuationDate, MatDates);
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Volatility = 0.10;  
BDTVolSpec = bdtvolspec(ValuationDate, MatDates, Volatility*ones(1,length(MatDates))');
BDTT = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);

Compute the price of a forward swap that starts in two years (Jan 1, 2014) and matures in three years
with a forward swap rate of 3.85%.

Settle ='1-Jan-2012';
Maturity = '1-Jan-2017';
StartDate = '1-Jan-2014';
LegRate = [0.0385 10];

Price = swapbybdt(BDTT, LegRate, Settle, Maturity, 'StartDate', StartDate)

Price = 1.3203

Using the previous data, compute the forward swap rate, the coupon rate for the fixed leg, such that
the forward swap price at time = 0 is zero.

LegRate = [NaN 10];
[Price, ~,~, SwapRate] = swapbybdt(BDTT, LegRate, Settle, Maturity, 'StartDate', StartDate)

Price = -4.9738e-12

SwapRate = 0.0335

Input Arguments
BDTTree — Interest-rate structure
structure

Interest-rate tree structure, created by bdttree
Data Types: struct

LegRate — Leg rate
matrix

Leg rate, specified as a NINST-by-2 matrix, with each row defined as one of the following:

• [CouponRate Spread] (fixed-float)
• [Spread CouponRate] (float-fixed)
• [CouponRate CouponRate] (fixed-fixed)
• [Spread Spread] (float-float)

CouponRate is the decimal annual rate. Spread is the number of basis points over the reference
rate. The first column represents the receiving leg, while the second column represents the paying
leg.
Data Types: double

Settle — Settlement date
serial date number | character vector

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers or date
character vectors.
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The Settle date for every swap is set to the ValuationDate of the BDT tree. The swap argument
Settle is ignored.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector

Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character vectors
representing the maturity date for each swap.
Data Types: char | double

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree,CFTree,SwapRate] =
swapbybdt(BDTTree,LegRate,Settle,Maturity,LegReset,Basis,Principal,LegType)

LegReset — Reset frequency per year for each swap
[1 1] (default) | vector

Reset frequency per year for each swap, specified as the comma-separated pair consisting of
'LegReset' and a NINST-by-2 vector.
Data Types: double

Basis — Day-count basis representing the basis for each leg
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis representing the basis for each leg, specified as the comma-separated pair consisting
of 'Basis' and a NINST-by-1 array (or NINST-by-2 if Basis is different for each leg).

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
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• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amounts or principal value schedules
100 (default) | vector or cell array

Notional principal amounts or principal value schedules, specified as the comma-separated pair
consisting of 'Principal' and a vector or cell array.

Principal accepts a NINST-by-1 vector or NINST-by-1 cell array (or NINST-by-2 if Principal is
different for each leg) of the notional principal amounts or principal value schedules. For schedules,
each element of the cell array is a NumDates-by-2 array where the first column is dates and the
second column is its associated notional principal value. The date indicates the last day that the
principal value is valid.
Data Types: cell | double

LegType — Leg type
[1 0] for each instrument (default) | matrix with values [1 1] (fixed-fixed), [1 0] (fixed-float), [0
1] (float-fixed), or [0 0] (float-float)

Leg type, specified as the comma-separated pair consisting of 'LegType' and a NINST-by-2 matrix
with values [1 1] (fixed-fixed), [1 0] (fixed-float), [0 1] (float-fixed), or [0 0] (float-float). Each
row represents an instrument. Each column indicates if the corresponding leg is fixed (1) or floating
(0). This matrix defines the interpretation of the values entered in LegRate. LegType allows [1 1]
(fixed-fixed), [1 0] (fixed-float), [0 1] (float-fixed), or [0 0] (float-float) swaps
Data Types: double

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure obtained from using derivset.
Data Types: struct

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month
having 30 or fewer days, specified as the comma-separated pair consisting of 'EndMonthRule' and
a nonnegative integer [0, 1] using a NINST-by-1 (or NINST-by-2 if EndMonthRule is different for
each leg).

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day count
false (default) | value of 0 (false) or 1 (true)
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Flag to adjust cash flows based on actual period day count, specified as the comma-separated pair
consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 (or NINST-by-2 if
AdjustCashFlowsBasis is different for each leg) of logicals with values of 0 (false) or 1 (true).
Data Types: logical

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 (or NINST-by-2 if
BusinessDayConvention is different for each leg) cell array of character vectors of business day
conventions. The selection for business day convention determines how non-business days are
treated. Non-business days are defined as weekends plus any other date that businesses are not open
(e.g. statutory holidays). Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-business days
are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on the
following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day. However if the following business day is in a different month, the
previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed on the
previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day. However if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair consisting of
'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

StartDate — Date swap actually starts
Settle date (default) | serial date number | character vector

Date swap actually starts, specified as the comma-separated pair consisting of 'StartDate' and a
NINST-by-1 vector of dates using a serial date number or a character vector.

Use this argument to price forward swaps, that is, swaps that start in a future date
Data Types: char | double

Output Arguments
Price — Expected swap prices at time 0
vector
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Expected swap prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing vectors of
swaption instrument prices and a vector of observation times for each node. Within PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.

CFTree — Swap cash flows
structure

Swap cash flows, returned as a tree structure with a vector of the swap cash flows at each node. This
structure contains only NaNs because with binomial recombining trees, cash flows cannot be
computed accurately at each node of a tree.

SwapRate — Rates applicable to fixed leg
matrix

Rates applicable to the fixed leg, returned as a NINST-by-1 vector of rates applicable to the fixed leg
such that the swaps’ values are zero at time 0. This rate is used in calculating the swaps’ prices when
the rate specified for the fixed leg in LegRate is NaN. The SwapRate output is padded with NaN for
those instruments in which CouponRate is not set to NaN.

More About
Amortizing Swap

In an amortizing swap, the notional principal decreases periodically because it is tied to an
underlying financial instrument with a declining (amortizing) principal balance, such as a mortgage.

Forward Swap

Agreement to enter into an interest-rate swap arrangement on a fixed date in future.

See Also
bdttree | capbybdt | cfbybdt | floorbybdt

Topics
“Computing Instrument Prices” on page 2-81
“Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-10
“Swap” on page 2-13
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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swapbybk
Price swap instrument from Black-Karasinski interest-rate tree

Syntax
[Price,PriceTree,CFTree,SwapRate] = swapbybk(BKTree,LegRate,Settle,Maturity)
[Price,PriceTree,CFTree,SwapRate] = swapbybk( ___ ,Name,Value)

Description
[Price,PriceTree,CFTree,SwapRate] = swapbybk(BKTree,LegRate,Settle,Maturity)
prices a swap instrument from a Black-Karasinski interest-rate tree. swapbybk computes prices of
vanilla swaps, amortizing swaps and forward swaps.

[Price,PriceTree,CFTree,SwapRate] = swapbybk( ___ ,Name,Value) adds additional
name-value pair arguments.

Examples

Price an Interest-Rate Swap

Price an interest-rate swap with a fixed receiving leg and a floating paying leg. Payments are made
once a year, and the notional principal amount is $100. The values for the remaining arguments are:

• Coupon rate for fixed leg: 0.06 (6%)
• Spread for floating leg: 20 basis points
• Swap settlement date: Jan. 01, 2004
• Swap maturity date: Jan. 01, 2006

Based on the information above, set the required arguments and build the LegRate, LegType, and
LegReset matrices:

Settle = '01-Jan-2004';
Maturity = '01-Jan-2006';
Basis = 0; 
Principal = 100;
LegRate = [0.06 20]; % [CouponRate Spread] 
LegType = [1 0]; % [Fixed Float] 
LegReset = [1 1]; % Payments once per year

Price the swap using the BKTree included in the MAT-file deriv.mat. BKTree contains the time and
forward-rate information needed to price the instrument.

load deriv.mat;

Use swapbybk to price of the swap.

Price = swapbybk(BKTree, LegRate,... 
Settle, Maturity, LegReset, Basis, Principal, LegType)
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Price = 5.0425

Using the previous data, calculate the swap rate, which is the coupon rate for the fixed leg, such that
the swap price at time = 0 is zero.

LegRate = [NaN 20]; 

[Price, PriceTree, SwapRate] = swapbybk(BKTree, LegRate,... 
Settle, Maturity, LegReset, Basis, Principal, LegType)

Price = -2.8422e-14

PriceTree = struct with fields:
     FinObj: 'BKPriceTree'
      PTree: {1x5 cell}
       tObs: [0 1 2 3 4]
    Connect: {[2]  [2 3 4]  [2 2 3 4 4]}
      Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

SwapRate = 0.0336

Price an Amortizing Swap

Price an amortizing swap using the Principal input argument to define the amortization schedule.

Create the RateSpec.

Rates = 0.035;
ValuationDate = '1-Jan-2011';
StartDates = ValuationDate;
EndDates = '1-Jan-2017';
Compounding = 1;

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: 0.8135
            Rates: 0.0350
         EndTimes: 6
       StartTimes: 0
         EndDates: 736696
       StartDates: 734504
    ValuationDate: 734504
            Basis: 0
     EndMonthRule: 1

Create the swap instrument using the following data:

Settle ='1-Jan-2011';
Maturity = '1-Jan-2017';
Period = 1;
LegRate = [0.04 10];
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Define the swap amortizing schedule.

Principal ={{'1-Jan-2013' 100;'1-Jan-2014' 80;'1-Jan-2015' 60;'1-Jan-2016' 40; '1-Jan-2017' 20}};

Build the BK tree and assume volatility is 10%.

MatDates = {'1-Jan-2012'; '1-Jan-2013';'1-Jan-2014';'1-Jan-2015';'1-Jan-2016';'1-Jan-2017'};
BKTimeSpec = bktimespec(ValuationDate, MatDates);
Volatility = 0.10;  
AlphaDates = '01-01-2017';
AlphaCurve = 0.1;
BKVolSpec = bkvolspec(ValuationDate, MatDates, Volatility*ones(1,length(MatDates))',...
AlphaDates, AlphaCurve);
BKT = bktree(BKVolSpec, RateSpec, BKTimeSpec);

Compute the price of the amortizing swap.

Price = swapbybk(BKT, LegRate, Settle, Maturity, 'Principal' , Principal)

Price = 1.4574

Price a Forward Swap

Price a forward swap using the StartDate input argument to define the future starting date of the
swap.

Create the RateSpec.

Rates = 0.0374;
ValuationDate = '1-Jan-2012';
StartDates = ValuationDate;
EndDates = '1-Jan-2018';
Compounding = 1;

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: 0.8023
            Rates: 0.0374
         EndTimes: 6
       StartTimes: 0
         EndDates: 737061
       StartDates: 734869
    ValuationDate: 734869
            Basis: 0
     EndMonthRule: 1

Build a BK tree.

VolDates = {'1-Jan-2013'; '1-Jan-2014';'1-Jan-2015';'1-Jan-2016';'1-Jan-2017';'1-Jan-2018'};
VolCurve = 0.1;
AlphaDates = '01-01-2018';
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AlphaCurve = 0.1;

BKVolSpec = bkvolspec(RateSpec.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
BKTimeSpec = bktimespec(RateSpec.ValuationDate, VolDates, Compounding);
BKT = bktree(BKVolSpec, RateSpec, BKTimeSpec);

Compute the price of a forward swap that starts in a year (Jan 1, 2013) and matures in four years
with a forward swap rate of 4.25%.

Settle ='1-Jan-2012';
Maturity = '1-Jan-2017';
StartDate = '1-Jan-2013';
LegRate = [0.0425 10];

Price = swapbybk(BKT, LegRate, Settle, Maturity, 'StartDate', StartDate)

Price = 1.4434

Using the previous data, compute the forward swap rate, the coupon rate for the fixed leg, such that
the forward swap price at time = 0 is zero.

LegRate = [NaN 10];
[Price, ~,SwapRate] = swapbybk(BKT, LegRate, Settle, Maturity, 'StartDate', StartDate)

Price = 1.4211e-14

SwapRate = 0.0384

Input Arguments
BKTree — Interest-rate structure
structure

Interest-rate tree structure, created by bktree
Data Types: struct

LegRate — Leg rate
matrix

Leg rate, specified as a NINST-by-2 matrix, with each row defined as one of the following:

• [CouponRate Spread] (fixed-float)
• [Spread CouponRate] (float-fixed)
• [CouponRate CouponRate] (fixed-fixed)
• [Spread Spread] (float-float)

CouponRate is the decimal annual rate. Spread is the number of basis points over the reference
rate. The first column represents the receiving leg, while the second column represents the paying
leg.
Data Types: double

Settle — Settlement date
serial date number | character vector
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Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers or date
character vectors.

The Settle date for every swap is set to the ValuationDate of the BK tree. The swap argument
Settle is ignored.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector

Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character vectors
representing the maturity date for each swap.
Data Types: char | double

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree,CFTree,SwapRate] =
swapbybk(BKTree,LegRate,Settle,Maturity,LegReset,Basis,Principal,LegType)

LegReset — Reset frequency per year for each swap
[1 1] (default) | vector

Reset frequency per year for each swap, specified as the comma-separated pair consisting of
'LegReset' and a NINST-by-2 vector.
Data Types: double

Basis — Day-count basis representing the basis for each leg
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis representing the basis for each leg, specified as the comma-separated pair consisting
of 'Basis' and a NINST-by-1 array (or NINST-by-2 if Basis is different for each leg).

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
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• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amounts or principal value schedules
100 (default) | vector or cell array

Notional principal amounts or principal value schedules, specified as the comma-separated pair
consisting of 'Principal' and a vector or cell array.

Principal accepts a NINST-by-1 vector or NINST-by-1 cell array (or NINST-by-2 if Principal is
different for each leg) of the notional principal amounts or principal value schedules. For schedules,
each element of the cell array is a NumDates-by-2 array where the first column is dates and the
second column is its associated notional principal value. The date indicates the last day that the
principal value is valid.
Data Types: cell | double

LegType — Leg type
[1 0] for each instrument (default) | matrix with values [1 1] (fixed-fixed), [1 0] (fixed-float), [0
1] (float-fixed), or [0 0] (float-float)

Leg type, specified as the comma-separated pair consisting of 'LegType' and a NINST-by-2 matrix
with values [1 1] (fixed-fixed), [1 0] (fixed-float), [0 1] (float-fixed), or [0 0] (float-float). Each
row represents an instrument. Each column indicates if the corresponding leg is fixed (1) or floating
(0). This matrix defines the interpretation of the values entered in LegRate. LegType allows [1 1]
(fixed-fixed), [1 0] (fixed-float), [0 1] (float-fixed), or [0 0] (float-float) swaps
Data Types: double

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure obtained from using derivset.
Data Types: struct

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month
having 30 or fewer days, specified as the comma-separated pair consisting of 'EndMonthRule' and
a nonnegative integer [0, 1] using a NINST-by-1 (or NINST-by-2 if EndMonthRule is different for
each leg).

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical
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AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-separated pair
consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 (or NINST-by-2 if
AdjustCashFlowsBasis is different for each leg) of logicals with values of 0 (false) or 1 (true).
Data Types: logical

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 (or NINST-by-2 if
BusinessDayConvention is different for each leg) cell array of character vectors of business day
conventions. The selection for business day convention determines how non-business days are
treated. Non-business days are defined as weekends plus any other date that businesses are not open
(e.g. statutory holidays). Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-business days
are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on the
following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day. However if the following business day is in a different month, the
previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed on the
previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day. However if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair consisting of
'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

StartDate — Date swap actually starts
Settle date (default) | serial date number | character vector

Date swap actually starts, specified as the comma-separated pair consisting of 'StartDate' and a
NINST-by-1 vector of dates using a serial date number or a character vector.

Use this argument to price forward swaps, that is, swaps that start in a future date
Data Types: char | double
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Output Arguments
Price — Expected swap prices at time 0
vector

Expected swap prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing vectors of
swaption instrument prices and a vector of observation times for each node. Within PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell array describes

how nodes in that level connect to the next. For a given tree level, there are NumNodes elements
in the vector, and they contain the index of the node at the next level that the middle branch
connects to. Subtracting 1 from that value indicates where the up-branch connects to, and adding
1 indicated where the down branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array contains the
up, middle, and down transition probabilities for each node of the level.

CFTree — Swap cash flows
structure

Swap cash flows, returned as a tree structure with a vector of the swap cash flows at each node. This
structure contains only NaNs because with binomial recombining trees, cash flows cannot be
computed accurately at each node of a tree.

SwapRate — Rates applicable to fixed leg
matrix

Rates applicable to the fixed leg, returned as a NINST-by-1 vector of rates applicable to the fixed leg
such that the swaps’ values are zero at time 0. This rate is used in calculating the swaps’ prices when
the rate specified for the fixed leg in LegRate is NaN. The SwapRate output is padded with NaN for
those instruments in which CouponRate is not set to NaN.

More About
Amortizing Swap

In an amortizing swap, the notional principal decreases periodically because it is tied to an
underlying financial instrument with a declining (amortizing) principal balance, such as a mortgage.

Forward Swap

Agreement to enter into an interest-rate swap arrangement on a fixed date in future.

See Also
bktree | bondbybk | capbybk | fixedbybk | floorbybk
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Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Swap” on page 2-13
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3
“Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on page 1-
73

Introduced before R2006a
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swapbycir
Price swap instrument from Cox-Ingersoll-Ross interest-rate tree

Syntax
[Price,PriceTree,SwapRate] = swapbycir(CIRTree,LegRate,Settle,Maturity)
[Price,PriceTree,SwapRate] = swapbycir( ___ ,Name,Value)

Description
[Price,PriceTree,SwapRate] = swapbycir(CIRTree,LegRate,Settle,Maturity) prices a
swap instrument from a Cox-Ingersoll-Ross (CIR) interest-rate tree. swapbycir computes prices of
vanilla swaps, amortizing swaps, and forward swaps using a CIR++ model with the Nawalka-Beliaeva
(NB) approach.

[Price,PriceTree,SwapRate] = swapbycir( ___ ,Name,Value) adds additional name-value
pair arguments.

Examples

Price an Interest-Rate Swap Using a CIR Interest-Rate Tree

Define an interest-rate swap with a fixed receiving leg and a floating paying leg. Payments are made
once a year and the notional principal amount is $100.

Basis = 0; 
Principal = 100;
LegRate = [0.06 20]; % [CouponRate Spread] 
LegType = [1 0]; % [Fixed Float] 
LegReset = [1 1]; % Payments once per year

Create a RateSpec using the intenvset function.

Rates = [0.035; 0.042147; 0.047345; 0.052707]; 
Dates = {'Jan-1-2017'; 'Jan-1-2018'; 'Jan-1-2019'; 'Jan-1-2020'; 'Jan-1-2021'}; 
ValuationDate = 'Jan-1-2017'; 
EndDates = Dates(2:end)'; 
Compounding = 1; 
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, 'EndDates',EndDates,'Rates', Rates, 'Compounding', Compounding); 

Create a CIR tree.

NumPeriods = 5;  
Alpha = 0.03; 
Theta = 0.02;  
Sigma = 0.1;   
Settle = '01-Jan-2017'; 
Maturity = '01-Jan-2022'; 
CIRTimeSpec = cirtimespec(ValuationDate, Maturity, NumPeriods); 
CIRVolSpec = cirvolspec(Sigma, Alpha, Theta); 
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CIRT = cirtree(CIRVolSpec, RateSpec, CIRTimeSpec)

CIRT = struct with fields:
      FinObj: 'CIRFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3 4]
        dObs: [736696 737061 737426 737791 738156]
     FwdTree: {1x5 cell}
     Connect: {[3x1 double]  [3x3 double]  [3x5 double]  [3x7 double]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]  [3x7 double]}

Price the interest-rate swap.

[Price,PriceTree] = swapbycir(CIRT,LegRate,Settle,Maturity,'LegReset',LegReset,'Basis',3,'Principal',100,'LegType',LegType) 

Price = 2.5522

PriceTree = struct with fields:
     FinObj: 'CIRPriceTree'
       tObs: [0 1 2 3 4 5]
      PTree: {1x6 cell}
    Connect: {[3x1 double]  [3x3 double]  [3x5 double]  [3x7 double]}

Input Arguments
CIRTree — Interest-rate structure
structure

Interest-rate tree structure, created by cirtree
Data Types: struct

LegRate — Leg rate
matrix

Leg rate, specified as a NINST-by-2 matrix, with each row defined as one of the following:

• [CouponRate Spread] (fixed-float)
• [Spread CouponRate] (float-fixed)
• [CouponRate CouponRate] (fixed-fixed)
• [Spread Spread] (float-float)

CouponRate is the decimal annual rate. Spread is the number of basis points over the reference
rate. The first column represents the receiving leg, while the second column represents the paying
leg.
Data Types: double

Settle — Settlement date
serial date number | character vector | string array | datetime
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Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers, date
character vectors, string arrays, or datetime arrays.

The Settle date for every swap is set to the ValuationDate of the CIR tree. The swap argument
Settle is ignored.
Data Types: char | double | string | datetime

Maturity — Maturity date
serial date number | character vector | string array | datetime

Maturity date, specified as a NINST-by-1 vector of serial date numbers, date character vectors, string
arrays, or datetime arrays representing the maturity date for each swap.
Data Types: char | double | string | datetime

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree,SwapRate] =
swapbycir(CIRTree,LegRate,Settle,Maturity,LegReset,Basis,Principal,LegType)

LegReset — Reset frequency per year for each swap
[1 1] (default) | vector

Reset frequency per year for each swap, specified as the comma-separated pair consisting of
'LegReset' and a NINST-by-2 vector.
Data Types: double

Basis — Day-count basis representing the basis for each leg
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis representing the basis for each leg, specified as the comma-separated pair consisting
of 'Basis' and a NINST-by-1 array (or NINST-by-2 if Basis is different for each leg).

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
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• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amounts or principal value schedules
100 (default) | vector or cell array

Notional principal amounts or principal value schedules, specified as the comma-separated pair
consisting of 'Principal' and a vector or cell array.

Principal accepts a NINST-by-1 vector or NINST-by-1 cell array (or NINST-by-2 if Principal is
different for each leg) of the notional principal amounts or principal value schedules. For schedules,
each element of the cell array is a NumDates-by-2 array where the first column is dates and the
second column is its associated notional principal value. The date indicates the last day that the
principal value is valid.
Data Types: cell | double

LegType — Leg type
[1 0] for each instrument (default) | matrix with values [1 1] (fixed-fixed), [1 0] (fixed-float), [0
1] (float-fixed), or [0 0] (float-float)

Leg type, specified as the comma-separated pair consisting of 'LegType' and a NINST-by-2 matrix
with values:

• [1 1] (fixed-fixed) swap
• [1 0] (fixed-float) swap
• [0 1] (float-fixed) swap
• [0 0] (float-float) swap

Each row represents an instrument. Each column indicates if the corresponding leg is fixed (1) or
floating (0). This matrix defines the interpretation of the values entered in LegRate.
Data Types: double

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month
having 30 or fewer days, specified as the comma-separated pair consisting of 'EndMonthRule' and
a nonnegative integer [0, 1] using a NINST-by-1 (or NINST-by-2 if EndMonthRule is different for
each leg).

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day count
false (default) | value of 0 (false) or 1 (true)
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Flag to adjust cash flows based on actual period day count, specified as the comma-separated pair
consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 (or NINST-by-2 if
AdjustCashFlowsBasis is different for each leg) of logicals with values of 0 (false) or 1 (true).
Data Types: logical

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 (or NINST-by-2 if
BusinessDayConvention is different for each leg) cell array of character vectors of business day
conventions. The selection for business day convention determines how nonbusiness days are treated.
Nonbusiness days are defined as weekends plus any other date that businesses are not open (e.g.
statutory holidays). Values are:

• actual — Nonbusiness days are effectively ignored. Cash flows that fall on nonbusiness days are
assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on the
following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day. However if the following business day is in a different month, the
previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed on the
previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day. However if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair consisting of
'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

StartDate — Date swap actually starts
Settle date (default) | serial date number | character vector | string array | datetime

Date swap actually starts, specified as the comma-separated pair consisting of 'StartDate' and a
NINST-by-1 vector of dates using a serial date number, character vector, string array, or string array.

Use this argument to price forward swaps, that is, swaps that start in a future date
Data Types: char | double | string | datetime

Output Arguments
Price — Expected swap prices at time 0
vector
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Expected swap prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing vectors of
swaption instrument prices and a vector of observation times for each node. Within PriceTree:

• PriceTree.tObs contains the observation times.
• PriceTree.PTree contains the clean prices.

SwapRate — Rates applicable to fixed leg
matrix

Rates applicable to the fixed leg, returned as a NINST-by-1 vector of rates applicable to the fixed leg
such that the swaps’ values are zero at time 0. This rate is used in calculating the swaps’ prices when
the rate specified for the fixed leg in LegRate is NaN. The SwapRate output is padded with NaN for
those instruments in which CouponRate is not set to NaN.

More About
Amortizing Swap

In an amortizing swap, the notional principal decreases periodically because it is tied to an
underlying financial instrument with a declining (amortizing) principal balance, such as a mortgage.

Forward Swap

Agreement to enter into an interest-rate swap arrangement on a fixed date in future.

References
[1] Cox, J., Ingersoll, J., and S. Ross. "A Theory of the Term Structure of Interest Rates."

Econometrica. Vol. 53, 1985.

[2] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer Finance, 2006.

[3] Hirsa, A. Computational Methods in Finance. CRC Press, 2012.

[4] Nawalka, S., Soto, G., and N. Beliaeva. Dynamic Term Structure Modeling. Wiley, 2007.

[5] Nelson, D. and K. Ramaswamy. "Simple Binomial Processes as Diffusion Approximations in
Financial Models." The Review of Financial Studies. Vol 3. 1990, pp. 393–430.

See Also
bondbycir | capbycir | cfbycir | fixedbycir | floatbycir | floorbycir | oasbycir |
optbndbycir | optfloatbycir | optembndbycir | optemfloatbycir | rangefloatbycir |
swaptionbycir | instswap

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Swap” on page 2-13
“Understanding Interest-Rate Tree Models” on page 2-66
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“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced in R2018a
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swapbyhjm
Price swap instrument from Heath-Jarrow-Morton interest-rate tree

Syntax
[Price,PriceTree,CFTree,SwapRate] = swapbyhjm(HJMTree,LegRate,Settle,
Maturity)
[Price,PriceTree,CFTree,SwapRate] = swapbyhjm( ___ ,Name,Value)

Description
[Price,PriceTree,CFTree,SwapRate] = swapbyhjm(HJMTree,LegRate,Settle,
Maturity) prices a swap instrument from a Heath-Jarrow-Morton interest-rate tree. swapbyhjm
computes prices of vanilla swaps, amortizing swaps and forward swaps.

[Price,PriceTree,CFTree,SwapRate] = swapbyhjm( ___ ,Name,Value) adds additional
name-value pair arguments.

Examples

Price an Interest-Rate Swap

This example shows how to price an interest-rate swap with a fixed receiving leg and a floating
paying leg. Payments are made once a year, and the notional principal amount is $100. The values for
the remaining arguments are:

• Coupon rate for fixed leg: 0.06 (6%)
• Spread for floating leg: 20 basis points
• Swap settlement date: Jan. 01, 2000
• Swap maturity date: Jan. 01, 2003

Based on the information above, set the required arguments and build the LegRate, LegType, and
LegReset matrices:

Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Basis = 0; 
Principal = 100;
LegRate = [0.06 20]; % [CouponRate Spread] 
LegType = [1 0]; % [Fixed Float] 
LegReset = [1 1]; % Payments once per year 

Price the swap using the HJMTree included in the MAT-file deriv.mat. The HJMTree structure
contains the time and forward-rate information needed to price the instrument.

load deriv.mat; 

Use swapbyhjm to compute the price of the swap.
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[Price, PriceTree, CFTree] = swapbyhjm(HJMTree, LegRate,... 
Settle, Maturity, LegReset, Basis, Principal, LegType) 

Price = 

   3.6923 

PriceTree = 

    FinObj: 'HJMPriceTree'
      tObs: [0 1 2 3 4]
     PBush: {1x5 cell}

CFTree = 

    FinObj: 'HJMCFTree'
      tObs: [0 1 2 3 4]
    CFBush: {[0] [1x1x2 double] [1x2x2 double] ... [1x8 double]}

Use treeviewer to examine CFTree graphically and see the cash flows from the swap along both
the up and the down branches. A positive cash flow indicates an inflow (income - payments > 0),
while a negative cash flow indicates an outflow (income - payments < 0).

treeviewer(CFTree)

In this example, you have sold a swap (receive fixed rate and pay floating rate). At time t = 3, if
interest rates go down, your cash flow is positive ($2.63), meaning that you receive this amount. But
if interest rates go up, your cash flow is negative (-$1.58), meaning that you owe this amount.

treeviewer price tree diagrams follow the convention that increasing prices appear on the upper
branch of a tree and, so, decreasing prices appear on the lower branch. Conversely, for interest-rate
displays, decreasing interest rates appear on the upper branch (prices are rising) and increasing
interest rates on the lower branch (prices are falling).

Using the previous data, calculate the swap rate, which is the coupon rate for the fixed leg, such that
the swap price at time = 0 is zero.
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LegRate = [NaN 20]; 

[Price, PriceTree, CFTree, SwapRate] = swapbyhjm(HJMTree,... 
LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType) 

Price = 

   0

PriceTree = 

FinObj: 'HJMPriceTree' 
  tObs: [0 1 2 3 4] 
 PBush:{[0] [1x1x2 double] [1x2x2 double] ... [1x8 double]}

CFTree = 

FinObj: 'HJMCFTree' 
  tObs: [0 1 2 3 4] 
CFBush:{[0] [1x1x2 double] [1x2x2 double] ... [1x8 double]}

SwapRate = 

   0.0466

Price an Amortizing Swap

Price an amortizing swap using the Principal input argument to define the amortization schedule.

Create the RateSpec.

Rates = 0.035;
ValuationDate = '1-Jan-2011';
StartDates = ValuationDate;
EndDates = '1-Jan-2017';
Compounding = 1;

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: 0.8135
            Rates: 0.0350
         EndTimes: 6
       StartTimes: 0
         EndDates: 736696
       StartDates: 734504
    ValuationDate: 734504
            Basis: 0
     EndMonthRule: 1

Create the swap instrument using the following data:

Settle ='1-Jan-2011';
Maturity = '1-Jan-2017';
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Period = 1;
LegRate = [0.04 10];

Define the swap amortizing schedule.

Principal ={{'1-Jan-2013' 100;'1-Jan-2014' 80;'1-Jan-2015' 60;'1-Jan-2016' 40; '1-Jan-2017' 20}};

Build the HJM tree using the following data:

MatDates = {'1-Jan-2012'; '1-Jan-2013';'1-Jan-2014';'1-Jan-2015';'1-Jan-2016';'1-Jan-2017'};
HJMTimeSpec = hjmtimespec(RateSpec.ValuationDate, MatDates);
Volatility = [.10; .08; .06; .04];
CurveTerm = [ 1; 2; 3; 4];
HJMVolSpec = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);
HJMT = hjmtree(HJMVolSpec,RateSpec,HJMTimeSpec);

Compute the price of the amortizing swap.

Price = swapbyhjm(HJMT, LegRate, Settle, Maturity, 'Principal', Principal)

Price = 1.4574

Price a Forward Swap

Price a forward swap using the StartDate input argument to define the future starting date of the
swap.

Create the RateSpec.

Rates = 0.0374;
ValuationDate = '1-Jan-2012';
StartDates = ValuationDate;
EndDates = '1-Jan-2018';
Compounding = 1;

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: 0.8023
            Rates: 0.0374
         EndTimes: 6
       StartTimes: 0
         EndDates: 737061
       StartDates: 734869
    ValuationDate: 734869
            Basis: 0
     EndMonthRule: 1

Build an HJM tree.

MatDates = {'1-Jan-2013'; '1-Jan-2014';'1-Jan-2015';'1-Jan-2016';'1-Jan-2017';'1-Jan-2018'};
HJMTimeSpec = hjmtimespec(RateSpec.ValuationDate, MatDates);
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Volatility = [.10; .08; .06; .04];
CurveTerm = [ 1; 2; 3; 4];
HJMVolSpec = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);
HJMT = hjmtree(HJMVolSpec,RateSpec,HJMTimeSpec);

Compute the price of a forward swap that starts in a year (Jan 1, 2013) and matures in four years
with a forward swap rate of 4.25%.

Settle ='1-Jan-2012';
Maturity = '1-Jan-2017';
StartDate = '1-Jan-2013';
LegRate = [0.0425 10];

Price = swapbyhjm(HJMT, LegRate, Settle, Maturity, 'StartDate', StartDate)

Price = 1.4434

Using the previous data, compute the forward swap rate, the coupon rate for the fixed leg, such that
the forward swap price at time = 0 is zero.

LegRate = [NaN 10];
[Price, ~,~, SwapRate] = swapbyhjm(HJMT, LegRate, Settle, Maturity, 'StartDate', StartDate)

Price = 0

SwapRate = 0.0384

Input Arguments
HJMTree — Interest-rate structure
structure

Interest-rate tree structure, created by hjmtree
Data Types: struct

LegRate — Leg rate
matrix

Leg rate, specified as a NINST-by-2 matrix, with each row defined as one of the following:

• [CouponRate Spread] (fixed-float)
• [Spread CouponRate] (float-fixed)
• [CouponRate CouponRate] (fixed-fixed)
• [Spread Spread] (float-float)

CouponRate is the decimal annual rate. Spread is the number of basis points over the reference
rate. The first column represents the receiving leg, while the second column represents the paying
leg.
Data Types: double

Settle — Settlement date
serial date number | character vector
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Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers or date
character vectors.

The Settle date for every swap is set to the ValuationDate of the HJM tree. The swap argument
Settle is ignored.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector

Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character vectors
representing the maturity date for each swap.
Data Types: char | double

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree,CFTree,SwapRate] =
swapbyhjm(HJMTree,LegRate,Settle,Maturity,LegReset,Basis,Principal,LegType)

LegReset — Reset frequency per year for each swap
[1 1] (default) | vector

Reset frequency per year for each swap, specified as the comma-separated pair consisting of
'LegReset' and a NINST-by-2 vector.
Data Types: double

Basis — Day-count basis representing the basis for each leg
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis representing the basis for each leg, specified as the comma-separated pair consisting
of 'Basis' and a NINST-by-1 array (or NINST-by-2 if Basis is different for each leg).

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
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• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amounts or principal value schedules
100 (default) | vector or cell array

Notional principal amounts or principal value schedules, specified as the comma-separated pair
consisting of 'Principal' and a vector or cell array.

Principal accepts a NINST-by-1 vector or NINST-by-1 cell array (or NINST-by-2 if Principal is
different for each leg) of the notional principal amounts or principal value schedules. For schedules,
each element of the cell array is a NumDates-by-2 array where the first column is dates and the
second column is its associated notional principal value. The date indicates the last day that the
principal value is valid.
Data Types: cell | double

LegType — Leg type
[1 0] for each instrument (default) | matrix with values [1 1] (fixed-fixed), [1 0] (fixed-float), [0
1] (float-fixed), or [0 0] (float-float)

Leg type, specified as the comma-separated pair consisting of 'LegType' and a NINST-by-2 matrix
with values [1 1] (fixed-fixed), [1 0] (fixed-float), [0 1] (float-fixed), or [0 0] (float-float). Each
row represents an instrument. Each column indicates if the corresponding leg is fixed (1) or floating
(0). This matrix defines the interpretation of the values entered in LegRate. LegType allows [1 1]
(fixed-fixed), [1 0] (fixed-float), [0 1] (float-fixed), or [0 0] (float-float) swaps
Data Types: double

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure obtained from using derivset.
Data Types: struct

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month
having 30 or fewer days, specified as the comma-separated pair consisting of 'EndMonthRule' and
a nonnegative integer [0, 1] using a NINST-by-1 (or NINST-by-2 if EndMonthRule is different for
each leg).

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical
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AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-separated pair
consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 (or NINST-by-2 if
AdjustCashFlowsBasis is different for each leg) of logicals with values of 0 (false) or 1 (true).
Data Types: logical

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 (or NINST-by-2 if
BusinessDayConvention is different for each leg) cell array of character vectors of business day
conventions. The selection for business day convention determines how non-business days are
treated. Non-business days are defined as weekends plus any other date that businesses are not open
(e.g. statutory holidays). Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-business days
are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on the
following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day. However if the following business day is in a different month, the
previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed on the
previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day. However if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair consisting of
'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

StartDate — Date swap actually starts
Settle date (default) | serial date number | character vector

Date swap actually starts, specified as the comma-separated pair consisting of 'StartDate' and a
NINST-by-1 vector of dates using a serial date number or a character vector.

Use this argument to price forward swaps, that is, swaps that start in a future date
Data Types: char | double
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Output Arguments
Price — Expected swap prices at time 0
vector

Expected swap prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing vectors of
swaption instrument prices and a vector of observation times for each node. Within PriceTree:

• PriceTree.tObs contains the observation times.
• PriceTree.PBush contains the clean prices.

CFTree — Swap cash flows
structure

Swap cash flows, returned as a tree structure with a vector of the swap cash flows at each node. This
structure contains only NaNs because with binomial recombining trees, cash flows cannot be
computed accurately at each node of a tree.

SwapRate — Rates applicable to fixed leg
matrix

Rates applicable to the fixed leg, returned as a NINST-by-1 vector of rates applicable to the fixed leg
such that the swaps’ values are zero at time 0. This rate is used in calculating the swaps’ prices when
the rate specified for the fixed leg in LegRate is NaN. The SwapRate output is padded with NaN for
those instruments in which CouponRate is not set to NaN.

More About
Amortizing Swap

In an amortizing swap, the notional principal decreases periodically because it is tied to an
underlying financial instrument with a declining (amortizing) principal balance, such as a mortgage.

Forward Swap

Agreement to enter into an interest-rate swap arrangement on a fixed date in future.

See Also
capbyhjm | cfbyhjm | floorbyhjm | hjmtree | treeviewer

Topics
“Computing Instrument Prices” on page 2-81
“Swap” on page 2-13
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3
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Introduced before R2006a
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swapbyhw
Price swap instrument from Hull-White interest-rate tree

Syntax
[Price,PriceTree,CFTree,SwapRate] = swapbyhw(HWTree,LegRate,Settle,Maturity)
[Price,PriceTree,CFTree,SwapRate] = swapbyhw( ___ ,Name,Value)

Description
[Price,PriceTree,CFTree,SwapRate] = swapbyhw(HWTree,LegRate,Settle,Maturity)
prices a swap instrument from a Hull-White interest-rate tree. swapbyhw computes prices of vanilla
swaps, amortizing swaps and forward swaps.

[Price,PriceTree,CFTree,SwapRate] = swapbyhw( ___ ,Name,Value) adds additional
name-value pair arguments.

Examples

Price an Interest-Rate Swap

Price an interest-rate swap with a fixed receiving leg and a floating paying leg. Payments are made
once a year, and the notional principal amount is $100. The values for the remaining arguments are:

• Coupon rate for fixed leg: 0.06 (6%)
• Spread for floating leg: 20 basis points
• Swap settlement date: Jan. 01, 2005
• Swap maturity date: Jan. 01, 2008

Based on the information above, set the required arguments and build the LegRate, LegType, and
LegReset matrices:

Settle = '01-Jan-2005';
Maturity = '01-Jan-2008';
Basis = 0; 
Principal = 100;
LegRate = [0.06 20]; % [CouponRate Spread] 
LegType = [1 0]; % [Fixed Float] 
LegReset = [1 1]; % Payments once per year

Price the swap using the HWTree included in the MAT-file deriv.mat. The HWTree structure
contains the time and forward-rate information needed to price the instrument.

load deriv.mat;

Use swapbyhw to compute the price of the swap.

[Price, PriceTree, SwapRate] = swapbyhw(HWTree, LegRate, ... 
Settle, Maturity, LegReset, Basis, Principal, LegType)
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Warning: Swaps are valued at Tree ValuationDate rather than Settle

Price = 5.9109

PriceTree = struct with fields:
     FinObj: 'HWPriceTree'
      PTree: {1x5 cell}
       tObs: [0 1 2 3 4]
    Connect: {[2]  [2 3 4]  [2 2 3 4 4]}
      Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

SwapRate = NaN

Using the previous data, calculate the swap rate, which is the coupon rate for the fixed leg, such that
the swap price at time = 0 is zero.

LegRate = [NaN 20]; 

[Price, PriceTree, SwapRate] = swapbyhw(HWTree, LegRate, ... 
Settle, Maturity, LegReset, Basis, Principal, LegType)

Warning: Swaps are valued at Tree ValuationDate rather than Settle

Price = 1.4211e-14

PriceTree = struct with fields:
     FinObj: 'HWPriceTree'
      PTree: {1x5 cell}
       tObs: [0 1 2 3 4]
    Connect: {[2]  [2 3 4]  [2 2 3 4 4]}
      Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

SwapRate = 0.0438

Price an Amortizing Swap

Price an amortizing swap using the Principal input argument to define the amortization schedule.

Create the RateSpec.

Rates = 0.035;
ValuationDate = '1-Jan-2011';
StartDates = ValuationDate;
EndDates = '1-Jan-2017';
Compounding = 1;

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: 0.8135
            Rates: 0.0350
         EndTimes: 6
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       StartTimes: 0
         EndDates: 736696
       StartDates: 734504
    ValuationDate: 734504
            Basis: 0
     EndMonthRule: 1

Create the swap instrument using the following data:

Settle ='1-Jan-2011';
Maturity = '1-Jan-2017';
Period = 1;
LegRate = [0.04 10];

Define the swap amortizing schedule.

Principal ={{'1-Jan-2013' 100;'1-Jan-2014' 80;'1-Jan-2015' 60;'1-Jan-2016' 40; '1-Jan-2017' 20}};

Build the HW tree using the following data:

VolDates = ['1-Jan-2012'; '1-Jan-2013';'1-Jan-2014';'1-Jan-2015';'1-Jan-2016';'1-Jan-2017'];
VolCurve = 0.1;
AlphaDates = '01-01-2017';
AlphaCurve = 0.1;

HWVolSpec = hwvolspec(RateSpec.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RateSpec.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVolSpec, RateSpec, HWTimeSpec);

Compute the price of the amortizing swap.

Price = swapbyhw(HWT, LegRate, Settle, Maturity, 'Principal', Principal)

Price = 1.4574

Price a Forward Swap

Price a forward swap using the StartDate input argument to define the future starting date of the
swap.

Create the RateSpec.

Rates = 0.0374;
ValuationDate = '1-Jan-2012';
StartDates = ValuationDate;
EndDates = '1-Jan-2018';
Compounding = 1;

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
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             Disc: 0.8023
            Rates: 0.0374
         EndTimes: 6
       StartTimes: 0
         EndDates: 737061
       StartDates: 734869
    ValuationDate: 734869
            Basis: 0
     EndMonthRule: 1

Build an HW tree.

VolDates = {'1-Jan-2013'; '1-Jan-2014';'1-Jan-2015';'1-Jan-2016';'1-Jan-2017';'1-Jan-2018'};
VolCurve = 0.1;
AlphaDates = '01-01-2018';
AlphaCurve = 0.1;

HWVolSpec = hwvolspec(RateSpec.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RateSpec.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVolSpec, RateSpec, HWTimeSpec);

Compute the price of a forward swap that starts in a year (Jan 1, 2013) and matures in four years
with a forward swap rate of 4.25%.

Settle ='1-Jan-2012';
Maturity = '1-Jan-2017';
StartDate = '1-Jan-2013';
LegRate = [0.0425 10];

Price = swapbyhw(HWT, LegRate, Settle, Maturity, 'StartDate', StartDate)

Price = 1.4434

Using the previous data, compute the forward swap rate, the coupon rate for the fixed leg, such that
the forward swap price at time = 0 is zero.

LegRate = [NaN 10];
[Price, ~,SwapRate] = swapbyhw(HWT, LegRate, Settle, Maturity, 'StartDate', StartDate)

Price = 4.2633e-14

SwapRate = 0.0384

Input Arguments
HWTree — Interest-rate structure
structure

Interest-rate tree structure, created by hwtree
Data Types: struct

LegRate — Leg rate
matrix
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Leg rate, specified as a NINST-by-2 matrix, with each row defined as one of the following:

• [CouponRate Spread] (fixed-float)
• [Spread CouponRate] (float-fixed)
• [CouponRate CouponRate] (fixed-fixed)
• [Spread Spread] (float-float)

CouponRate is the decimal annual rate. Spread is the number of basis points over the reference
rate. The first column represents the receiving leg, while the second column represents the paying
leg.
Data Types: double

Settle — Settlement date
serial date number | character vector

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers or date
character vectors.

The Settle date for every swap is set to the ValuationDate of the HW tree. The swap argument
Settle is ignored.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector

Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character vectors
representing the maturity date for each swap.
Data Types: char | double

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree,CFTree,SwapRate] =
swapbyhw(HWTree,LegRate,Settle,Maturity,LegReset,Basis,Principal,LegType)

LegReset — Reset frequency per year for each swap
[1 1] (default) | vector

Reset frequency per year for each swap, specified as the comma-separated pair consisting of
'LegReset' and a NINST-by-2 vector.
Data Types: double

Basis — Day-count basis representing the basis for each leg
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis representing the basis for each leg, specified as the comma-separated pair consisting
of 'Basis' and a NINST-by-1 array (or NINST-by-2 if Basis is different for each leg).
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• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amounts or principal value schedules
100 (default) | vector or cell array

Notional principal amounts or principal value schedules, specified as the comma-separated pair
consisting of 'Principal' and a vector or cell array.

Principal accepts a NINST-by-1 vector or NINST-by-1 cell array (or NINST-by-2 if Principal is
different for each leg) of the notional principal amounts or principal value schedules. For schedules,
each element of the cell array is a NumDates-by-2 array where the first column is dates and the
second column is its associated notional principal value. The date indicates the last day that the
principal value is valid.
Data Types: cell | double

LegType — Leg type
[1 0] for each instrument (default) | matrix with values [1 1] (fixed-fixed), [1 0] (fixed-float), [0
1] (float-fixed), or [0 0] (float-float)

Leg type, specified as the comma-separated pair consisting of 'LegType' and a NINST-by-2 matrix
with values [1 1] (fixed-fixed), [1 0] (fixed-float), [0 1] (float-fixed), or [0 0] (float-float). Each
row represents an instrument. Each column indicates if the corresponding leg is fixed (1) or floating
(0). This matrix defines the interpretation of the values entered in LegRate. LegType allows [1 1]
(fixed-fixed), [1 0] (fixed-float), [0 1] (float-fixed), or [0 0] (float-float) swaps
Data Types: double

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure obtained from using derivset.
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Data Types: struct

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month
having 30 or fewer days, specified as the comma-separated pair consisting of 'EndMonthRule' and
a nonnegative integer [0, 1] using a NINST-by-1 (or NINST-by-2 if EndMonthRule is different for
each leg).

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-separated pair
consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 (or NINST-by-2 if
AdjustCashFlowsBasis is different for each leg) of logicals with values of 0 (false) or 1 (true).
Data Types: logical

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 (or NINST-by-2 if
BusinessDayConvention is different for each leg) cell array of character vectors of business day
conventions. The selection for business day convention determines how non-business days are
treated. Non-business days are defined as weekends plus any other date that businesses are not open
(e.g. statutory holidays). Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-business days
are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on the
following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day. However if the following business day is in a different month, the
previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed on the
previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day. However if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers
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Holidays used in computing business days, specified as the comma-separated pair consisting of
'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

StartDate — Date swap actually starts
Settle date (default) | serial date number | character vector

Date swap actually starts, specified as the comma-separated pair consisting of 'StartDate' and a
NINST-by-1 vector of dates using a serial date number or a character vector.

Use this argument to price forward swaps, that is, swaps that start in a future date
Data Types: char | double

Output Arguments
Price — Expected swap prices at time 0
vector

Expected swap prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing vectors of
swaption instrument prices and a vector of observation times for each node. Within PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell array describes

how nodes in that level connect to the next. For a given tree level, there are NumNodes elements
in the vector, and they contain the index of the node at the next level that the middle branch
connects to. Subtracting 1 from that value indicates where the up-branch connects to, and adding
1 indicated where the down branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array contains the
up, middle, and down transition probabilities for each node of the level.

CFTree — Swap cash flows
structure

Swap cash flows, returned as a tree structure with a vector of the swap cash flows at each node. This
structure contains only NaNs because with binomial recombining trees, cash flows cannot be
computed accurately at each node of a tree.

SwapRate — Rates applicable to fixed leg
matrix

Rates applicable to the fixed leg, returned as a NINST-by-1 vector of rates applicable to the fixed leg
such that the swaps’ values are zero at time 0. This rate is used in calculating the swaps’ prices when
the rate specified for the fixed leg in LegRate is NaN. The SwapRate output is padded with NaN for
those instruments in which CouponRate is not set to NaN.
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More About
Amortizing Swap

In an amortizing swap, the notional principal decreases periodically because it is tied to an
underlying financial instrument with a declining (amortizing) principal balance, such as a mortgage.

Forward Swap

Agreement to enter into an interest-rate swap arrangement on a fixed date in future.

See Also
bondbyhw | capbyhw | cfbyhw | floorbyhw | fixedbyhw | hwtree

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Calibrating Hull-White Model Using Market Data” on page 2-92
“Swap” on page 2-13
“Understanding Interest-Rate Tree Models” on page 2-66
“Pricing Options Structure” on page A-2
“Supported Interest-Rate Instrument Functions” on page 2-3
“Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on page 1-
73

Introduced before R2006a
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swapbyzero
Price swap instrument from set of zero curves and price cross-currency swaps

Syntax
[Price,SwapRate,AI,RecCF,RecCFDates,PayCF,PayCFDates] = swapbyzero(RateSpec,
LegRate,Settle,Maturity)
[Price,SwapRate,AI,RecCF,RecCFDates,PayCF,PayCFDates] = swapbyzero(RateSpec,
LegRate,Settle,Maturity,Name,Value)

Description
[Price,SwapRate,AI,RecCF,RecCFDates,PayCF,PayCFDates] = swapbyzero(RateSpec,
LegRate,Settle,Maturity) prices a swap instrument. You can use swapbyzero to compute
prices of vanilla swaps, amortizing swaps, and forward swaps. All inputs are either scalars or NINST-
by-1 vectors unless otherwise specified. Any date can be a serial date number or date character
vector. An optional argument can be passed as an empty matrix [].

[Price,SwapRate,AI,RecCF,RecCFDates,PayCF,PayCFDates] = swapbyzero(RateSpec,
LegRate,Settle,Maturity,Name,Value) prices a swap instrument with additional options
specified by one or more Name,Value pair arguments. You can use swapbyzero to compute prices
of vanilla swaps, amortizing swaps, forward swaps, and cross-currency swaps. For more information
on the name-value pairs for vanilla swaps, amortizing swaps, and forward swaps, see Vanilla Swaps,
Amortizing Swaps, Forward Swaps on page 11-0 .

Specifically, you can use name-value pairs for FXRate, ExchangeInitialPrincipal, and
ExchangeMaturityPrincipal to compute the price for cross-currency swaps. For more
information on the name-value pairs for cross-currency swaps, see Cross-Currency Swaps on page 11-
0 .

Examples

Price an Interest-Rate Swap

Price an interest-rate swap with a fixed receiving leg and a floating paying leg. Payments are made
once a year, and the notional principal amount is $100. The values for the remaining arguments are:

• Coupon rate for fixed leg: 0.06 (6%)
• Spread for floating leg: 20 basis points
• Swap settlement date: Jan. 01, 2000
• Swap maturity date: Jan. 01, 2003

Based on the information above, set the required arguments and build the LegRate, LegType, and
LegReset matrices:

Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Basis = 0; 
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Principal = 100;
LegRate = [0.06 20]; % [CouponRate Spread] 
LegType = [1 0]; % [Fixed Float] 
LegReset = [1 1]; % Payments once per year

Load the file deriv.mat, which provides ZeroRateSpec, the interest-rate term structure needed to
price the bond.

load deriv.mat;

Use swapbyzero to compute the price of the swap.

Price = swapbyzero(ZeroRateSpec, LegRate, Settle, Maturity,... 
LegReset, Basis, Principal, LegType)

Price = 3.6923

Using the previous data, calculate the swap rate, which is the coupon rate for the fixed leg, such that
the swap price at time = 0 is zero.

LegRate = [NaN 20]; 

[Price, SwapRate] = swapbyzero(ZeroRateSpec, LegRate, Settle,...
Maturity, LegReset, Basis, Principal, LegType)

Price = 0

SwapRate = 0.0466

In swapbyzero , if Settle is not on a reset date (and 'StartDate' is not specified), the effective
date is assumed to be the previous reset date before Settle in order to compute the accrued interest
and dirty price. In this example, the effective date is ( '15-Sep-2009' ), which is the previous reset
date before the ( '08-Jun-2010' ) Settle date.

Use swapbyzero with name-value pair arguments for LegRate, LegType, LatestFloatingRate,
AdjustCashFlowsBasis, and BusinessDayConvention to calculate output for Price, SwapRate,
AI, RecCF, RecCFDates, PayCF, and PayCFDates:

Settle = datenum('08-Jun-2010');
RateSpec = intenvset('Rates', [.005 .0075 .01 .014 .02 .025 .03]',...
'StartDates',Settle, 'EndDates',{'08-Dec-2010','08-Jun-2011',...
'08-Jun-2012','08-Jun-2013','08-Jun-2015','08-Jun-2017','08-Jun-2020'}');
Maturity = datenum('15-Sep-2020');
LegRate = [.025 50];
LegType = [1 0]; % fixed/floating
LatestFloatingRate = .005;
 
[Price, SwapRate, AI, RecCF, RecCFDates, PayCF,PayCFDates] = ...
swapbyzero(RateSpec, LegRate, Settle, Maturity,'LegType',LegType,...
'LatestFloatingRate',LatestFloatingRate,'AdjustCashFlowsBasis',true,...
'BusinessDayConvention','modifiedfollow')

Price = -6.7259

SwapRate = NaN

AI = 1.4575

RecCF = 1×12
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   -1.8219    2.5000    2.5000    2.5137    2.4932    2.4932    2.5000    2.5000    2.5000    2.5137    2.4932  102.4932

RecCFDates = 1×12

      734297      734396      734761      735129      735493      735857      736222      736588      736953      737320      737684      738049

PayCF = 1×12

   -0.3644    0.5000    1.4048    1.9961    2.8379    3.2760    3.8218    4.1733    4.5164    4.4920    4.7950  104.6608

PayCFDates = 1×12

      734297      734396      734761      735129      735493      735857      736222      736588      736953      737320      737684      738049

Price Swaps By Specifying Multiple Term Structures Using RateSpec

Price three swaps using two interest-rate curves. First, define the data for the interest-rate term
structure:

StartDates = '01-May-2012'; 
EndDates = {'01-May-2013'; '01-May-2014';'01-May-2015';'01-May-2016'};
Rates = [[0.0356;0.041185;0.04489;0.047741],[0.0366;0.04218;0.04589;0.04974]];

Create the RateSpec using intenvset.

RateSpec = intenvset('Rates', Rates, 'StartDates',StartDates,...
'EndDates', EndDates, 'Compounding', 1)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x2 double]
            Rates: [4x2 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: 734990
    ValuationDate: 734990
            Basis: 0
     EndMonthRule: 1

Look at the Rates for the two interest-rate curves.

RateSpec.Rates

ans = 4×2

    0.0356    0.0366
    0.0412    0.0422
    0.0449    0.0459
    0.0477    0.0497
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Define the swap instruments.

Settle = '01-May-2012';
Maturity = '01-May-2015';
LegRate = [0.06 10]; 
Principal = [100;50;100];  % Three notional amounts

Price three swaps using two curves.

Price = swapbyzero(RateSpec, LegRate, Settle, Maturity, 'Principal', Principal)

Price = 3×2

    3.9688    3.6869
    1.9844    1.8434
    3.9688    3.6869

Price Swap By Specifying Multiple Term Structures Using a 1-by-2 RateSpec

Price a swap using two interest-rate curves. First, define data for the two interest-rate term
structures:

StartDates = '01-May-2012'; 
EndDates = {'01-May-2013'; '01-May-2014';'01-May-2015';'01-May-2016'};
Rates1 = [0.0356;0.041185;0.04489;0.047741];
Rates2 = [0.0366;0.04218;0.04589;0.04974];

Create the RateSpec using intenvset.

RateSpecReceiving = intenvset('Rates', Rates1, 'StartDates',StartDates,...
'EndDates', EndDates, 'Compounding', 1);
RateSpecPaying= intenvset('Rates', Rates2, 'StartDates',StartDates,...
'EndDates', EndDates, 'Compounding', 1);
RateSpec=[RateSpecReceiving RateSpecPaying]

RateSpec=1×2 struct array with fields:
    FinObj
    Compounding
    Disc
    Rates
    EndTimes
    StartTimes
    EndDates
    StartDates
    ValuationDate
    Basis
    EndMonthRule

Define the swap instruments.

Settle = '01-May-2012';
Maturity = '01-May-2015';
LegRate = [0.06 10]; 
Principal = [100;50;100];
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Price three swaps using the two curves.

Price = swapbyzero(RateSpec, LegRate, Settle, Maturity, 'Principal', Principal)

Price = 3×1

    3.9693
    1.9846
    3.9693

Compute a Forward Par Swap Rate

To compute a forward par swap rate, set the StartDate parameter to a future date and set the fixed
coupon rate in the LegRate input to NaN.

Define the zero curve data and build a zero curve using IRDataCurve.

ZeroRates = [2.09 2.47 2.71 3.12 3.43 3.85 4.57]'/100;
Settle = datenum('1-Jan-2012');
EndDates = datemnth(Settle,12*[1 2 3 5 7 10 20]');
Compounding = 1;

ZeroCurve = IRDataCurve('Zero',Settle,EndDates,ZeroRates,'Compounding',Compounding)

ZeroCurve = 
             Type: Zero
           Settle: 734869 (01-Jan-2012)
      Compounding: 1
            Basis: 0 (actual/actual)
     InterpMethod: linear
            Dates: [7x1 double]
             Data: [7x1 double]

Create a RateSpec structure using the toRateSpec method.

RateSpec = ZeroCurve.toRateSpec(EndDates)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [7x1 double]
            Rates: [7x1 double]
         EndTimes: [7x1 double]
       StartTimes: [7x1 double]
         EndDates: [7x1 double]
       StartDates: 734869
    ValuationDate: 734869
            Basis: 0
     EndMonthRule: 1

Compute the forward swap rate (the coupon rate for the fixed leg), such that the forward swap price
at time = 0 is zero. The forward swap starts in a month (1-Feb-2012) and matures in 10 years (1-
Feb-2022).
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StartDate = datenum('1-Feb-2012');
Maturity = datenum('1-Feb-2022');
LegRate = [NaN 0];

[Price, SwapRate] = swapbyzero(RateSpec, LegRate, Settle, Maturity,...
'StartDate', StartDate)

Price = 0

SwapRate = 0.0378

Compute a Forward Swap Rate Using the Optional Input BusinessDayConvention

The swapbyzero function generates the cash flow dates based on the Settle and Maturity dates,
while using the Maturity date as the "anchor" date from which to count backwards in regular
intervals. By default, swapbyzero does not distinguish non-business days from business days. To
make swapbyzero move non-business days to the following business days, you can you can set the
optional name-value input argument BusinessDayConvention with a value of follow.

Define the zero curve data and build a zero curve using IRDataCurve.

ZeroRates = [2.09 2.47 2.71 3.12 3.43 3.85 4.57]'/100;
Settle = datenum('5-Jan-2012');
EndDates = datemnth(Settle,12*[1 2 3 5 7 10 20]');
Compounding = 1;
ZeroCurve = IRDataCurve('Zero',Settle,EndDates,ZeroRates,'Compounding',Compounding);
RateSpec = ZeroCurve.toRateSpec(EndDates);
StartDate = datenum('5-Feb-2012');
Maturity = datenum('5-Feb-2022');
LegRate = [NaN 0];

To demonstrate the optional input BusinessDayConvention, swapbyzero is first used without and
then with the optional name-value input argument BusinessDayConvention. Notice that when
using BusinessDayConvention, all days are business days.

[Price1,SwapRate1,~,~,RecCFDates1,~,PayCFDates1] = swapbyzero(RateSpec,LegRate,Settle,Maturity,...
    'StartDate',StartDate);
datestr(RecCFDates1)

ans = 11x11 char array
    '05-Jan-2012'
    '05-Feb-2013'
    '05-Feb-2014'
    '05-Feb-2015'
    '05-Feb-2016'
    '05-Feb-2017'
    '05-Feb-2018'
    '05-Feb-2019'
    '05-Feb-2020'
    '05-Feb-2021'
    '05-Feb-2022'

isbusday(RecCFDates1)

ans = 11x1 logical array
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   1
   1
   1
   1
   1
   0
   1
   1
   1
   1
      ⋮

[Price2,SwapRate2,~,~,RecCFDates2,~,PayCFDates2] = swapbyzero(RateSpec,LegRate,Settle,Maturity,...
    'StartDate',StartDate,'BusinessDayConvention','follow');
datestr(RecCFDates2)

ans = 12x11 char array
    '05-Jan-2012'
    '06-Feb-2012'
    '05-Feb-2013'
    '05-Feb-2014'
    '05-Feb-2015'
    '05-Feb-2016'
    '06-Feb-2017'
    '05-Feb-2018'
    '05-Feb-2019'
    '05-Feb-2020'
    '05-Feb-2021'
    '07-Feb-2022'

isbusday(RecCFDates2)

ans = 12x1 logical array

   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
      ⋮

Price an Amortizing Swap

Price an amortizing swap using the Principal input argument to define the amortization schedule.

Create the RateSpec.
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Rates = 0.035;
ValuationDate = '1-Jan-2011';
StartDates = ValuationDate;
EndDates = '1-Jan-2017';
Compounding = 1;

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

Create the swap instrument using the following data:

Settle ='1-Jan-2011';
Maturity = '1-Jan-2017';
LegRate = [0.04 10];

Define the swap amortizing schedule.

Principal ={{'1-Jan-2013' 100;'1-Jan-2014' 80;'1-Jan-2015' 60;'1-Jan-2016' 40; '1-Jan-2017' 20}};

Compute the price of the amortizing swap.

Price = swapbyzero(RateSpec, LegRate, Settle, Maturity, 'Principal' , Principal)

Price = 1.4574

Price a Forward Swap

Price a forward swap using the StartDate input argument to define the future starting date of the
swap.

Create the RateSpec.

Rates = 0.0325;
ValuationDate = '1-Jan-2012';
StartDates = ValuationDate;
EndDates = '1-Jan-2018';
Compounding = 1;

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: 0.8254
            Rates: 0.0325
         EndTimes: 6
       StartTimes: 0
         EndDates: 737061
       StartDates: 734869
    ValuationDate: 734869
            Basis: 0
     EndMonthRule: 1
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Compute the price of a forward swap that starts in a year (Jan 1, 2013) and matures in three years
with a forward swap rate of 4.27%.

Settle ='1-Jan-2012';
StartDate = '1-Jan-2013';
Maturity = '1-Jan-2016';
LegRate = [0.0427 10];

Price = swapbyzero(RateSpec, LegRate, Settle, Maturity, 'StartDate' , StartDate)

Price = 2.5083

Using the previous data, compute the forward swap rate, the coupon rate for the fixed leg, such that
the forward swap price at time = 0 is zero.

LegRate = [NaN 10];
[Price, SwapRate] = swapbyzero(RateSpec, LegRate, Settle, Maturity,...
'StartDate' , StartDate)

Price = 0

SwapRate = 0.0335

Specify the Rate at the Instrument’s Starting Date When It Cannot Be Obtained from the
RateSpec

If Settle is not on a reset date of a floating-rate note, swapbyzero attempts to obtain the latest
floating rate before Settle from RateSpec or the LatestFloatingRate parameter. When the
reset date for this rate is out of the range of RateSpec (and LatestFloatingRate is not specified),
swapbyzero fails to obtain the rate for that date and generates an error. This example shows how to
use the LatestFloatingRate input parameter to avoid the error.

Create the error condition when a swap instrument’s StartDate cannot be determined from the
RateSpec.
Settle = '01-Jan-2000';
Maturity = '01-Dec-2003';
Basis = 0; 
Principal = 100;
LegRate = [0.06 20]; % [CouponRate Spread] 
LegType = [1 0]; % [Fixed Float] 
LegReset = [1 1]; % Payments once per year 

load deriv.mat; 

Price = swapbyzero(ZeroRateSpec,LegRate,Settle,Maturity,... 
'LegReset',LegReset,'Basis',Basis,'Principal',Principal, ...
'LegType',LegType)

Error using floatbyzero (line 256)
The rate at the instrument starting date cannot be obtained from RateSpec.
 Its reset date (01-Dec-1999) is out of the range of dates contained in RateSpec.
 This rate is required to calculate cash flows at the instrument starting date.
 Consider specifying this rate with the 'LatestFloatingRate' input parameter.

Error in swapbyzero (line 289)
[FloatFullPrice, FloatPrice,FloatCF,FloatCFDates] = floatbyzero(FloatRateSpec, Spreads, Settle,...

Here, the reset date for the rate at Settle was 01-Dec-1999, which was earlier than the valuation
date of ZeroRateSpec (01-Jan-2000). This error can be avoided by specifying the rate at the swap
instrument’s starting date using the LatestFloatingRate input parameter.
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Define LatestFloatingRate and calculate the floating-rate price.
Price = swapbyzero(ZeroRateSpec,LegRate,Settle,Maturity,... 
'LegReset',LegReset,'Basis',Basis,'Principal',Principal, ...
'LegType',LegType,'LatestFloatingRate',0.03)

Price =

    4.7594

Price a Swap Using a Different Curve to Generate the Cash Flows of the Floating Leg

Define the OIS and Libor rates.

Settle = datenum('15-Mar-2013');
CurveDates = daysadd(Settle,360*[1/12 2/12 3/12 6/12 1 2 3 4 5 7 10],1);
OISRates = [.0018 .0019 .0021 .0023 .0031 .006  .011 .017 .021 .026 .03]';
LiborRates = [.0045 .0047 .005 .0055 .0075 .011 .016 .022 .026 .030 .0348]';

Plot the dual curves.

figure,plot(CurveDates,OISRates,'r');hold on;plot(CurveDates,LiborRates,'b')
datetick
legend({'OIS Curve', 'Libor Curve'})

Create an associated RateSpec for the OIS and Libor curves.
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OISCurve = intenvset('Rates',OISRates,'StartDate',Settle,'EndDates',CurveDates);
LiborCurve = intenvset('Rates',LiborRates,'StartDate',Settle,'EndDates',CurveDates);

Define the swap.

Maturity = datenum('15-Mar-2018'); % Five year swap
FloatSpread = 0;
FixedRate = .025;
LegRate = [FixedRate FloatSpread];

Compute the price of the swap instrument. The LiborCurve term structure will be used to generate
the cash flows of the floating leg. The OISCurve term structure will be used for discounting the cash
flows.

Price = swapbyzero(OISCurve, LegRate, Settle,...
Maturity,'ProjectionCurve',LiborCurve)

Price = -0.3697

Compare results when the term structure OISCurve is used both for discounting and also generating
the cash flows of the floating leg.

PriceSwap = swapbyzero(OISCurve, LegRate, Settle, Maturity)

PriceSwap = 2.0517

Price a Fixed-Fixed Currency Swap

Price an existing cross currency swap that receives a fixed rate of JPY and pays a fixed rate of USD at
an annual frequency.

Settle = datenum('15-Aug-2015');
Maturity = datenum('15-Aug-2018');
Reset = 1;
LegType = [1 1]; % Fixed-Fixed

r_USD = .09;
r_JPY = .04;
 
FixedRate_USD = .08;
FixedRate_JPY = .05;

Principal_USD = 10000000;
Principal_JPY = 1200000000;
 
S = 1/110;

RateSpec_USD = intenvset('StartDate',Settle,'EndDate', Maturity,'Rates',r_USD,'Compounding',-1);
RateSpec_JPY = intenvset('StartDate',Settle,'EndDate', Maturity,'Rates', r_JPY,'Compounding',-1);

Price = swapbyzero([RateSpec_JPY RateSpec_USD], [FixedRate_JPY FixedRate_USD],...
Settle, Maturity,'Principal',[Principal_JPY Principal_USD],'FXRate',[S 1], 'LegType',LegType)

Price = 1.5430e+06
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Price a Float-Float Currency Swap

Price a new swap where you pay a EUR float and receive a USD float.

Settle = datenum('22-Dec-2015');
Maturity = datenum('15-Aug-2018');
LegRate = [0 -50/10000];
LegType = [0 0]; % Float Float
LegReset = [4 4];
FXRate = 1.1;
Notional = [10000000 8000000];

USD_Dates = datemnth(Settle,[1 3 6 12*[1 2 3 5 7 10 20 30]]');
USD_Zero = [0.03 0.06 0.08 0.13 0.36 0.76 1.63 2.29 2.88 3.64 3.89]'/100;
Curve_USD = intenvset('StartDate',Settle,'EndDates',USD_Dates,'Rates',USD_Zero);

EUR_Dates = datemnth(Settle,[3 6 12*[1 2 3 5 7 10 20 30]]');
EUR_Zero = [0.017 0.033 0.088 .27 .512 1.056 1.573 2.183 2.898 2.797]'/100;
Curve_EUR = intenvset('StartDate',Settle,'EndDates',EUR_Dates,'Rates',EUR_Zero);

Price = swapbyzero([Curve_USD Curve_EUR], ...
    LegRate, Settle, Maturity,'LegType',LegType,'LegReset',LegReset,'Principal',Notional,...
    'FXRate',[1 FXRate],'ExchangeInitialPrincipal',false)

Price = 1.2002e+06

Input Arguments
RateSpec — Interest-rate structure
structure

Interest-rate structure, specified using intenvset to create a RateSpec.

RateSpec can also be a 1-by-2 input variable of RateSpecs, with the second RateSpec structure
containing one or more discount curves for the paying leg. If only one RateSpec structure is
specified, then this RateSpec is used to discount both legs.
Data Types: struct

LegRate — Leg rate
matrix

Leg rate, specified as a NINST-by-2 matrix, with each row defined as one of the following:

• [CouponRate Spread] (fixed-float)
• [Spread CouponRate] (float-fixed)
• [CouponRate CouponRate] (fixed-fixed)
• [Spread Spread] (float-float)

CouponRate is the decimal annual rate. Spread is the number of basis points over the reference
rate. The first column represents the receiving leg, while the second column represents the paying
leg.
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Data Types: double

Settle — Settlement date
serial date number | character vector | cell array of character vectors

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers or date
character vectors of the same value which represent the settlement date for each swap. Settle must
be earlier than Maturity.
Data Types: char | cell | double

Maturity — Maturity date
serial date number | character vector | cell array of character vectors

Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character vectors
representing the maturity date for each swap.
Data Types: char | cell | double

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,SwapRate,AI,RecCF,RecCFDates,PayCF,PayCFDates] =
swapbyzero(RateSpec,LegRate,Settle,
Maturity,'LegType',LegType,'LatestFloatingRate',LatestFloatingRate,'AdjustCas
hFlowsBasis',true,
'BusinessDayConvention','modifiedfollow')

Vanilla Swaps, Amortizing Swaps, Forward Swaps

LegReset — Reset frequency per year for each swap
[1 1] (default) | vector

Reset frequency per year for each swap, specified as the comma-separated pair consisting of
'LegReset' and a NINST-by-2 vector.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis representing the basis for each leg, specified as the comma-separated pair consisting
of 'Basis' and a NINST-by-1 array (or NINST-by-2 if Basis is different for each leg).

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
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• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amounts or principal value schedules
100 (default) | vector or cell array

Notional principal amounts or principal value schedules, specified as the comma-separated pair
consisting of 'Principal' and a vector or cell array.

Principal accepts a NINST-by-1 vector or NINST-by-1 cell array (or NINST-by-2 if Principal is
different for each leg) of the notional principal amounts or principal value schedules. For schedules,
each element of the cell array is a NumDates-by-2 array where the first column is dates and the
second column is its associated notional principal value. The date indicates the last day that the
principal value is valid.
Data Types: cell | double

LegType — Leg type
[1 0] for each instrument (default) | matrix with values [1 1] (fixed-fixed), [1 0] (fixed-float), [0
1] (float-fixed), or [0 0] (float-float)

Leg type, specified as the comma-separated pair consisting of 'LegType' and a NINST-by-2 matrix
with values [1 1] (fixed-fixed), [1 0] (fixed-float), [0 1] (float-fixed), or [0 0] (float-float). Each
row represents an instrument. Each column indicates if the corresponding leg is fixed (1) or floating
(0). This matrix defines the interpretation of the values entered in LegRate. LegType allows [1 1]
(fixed-fixed), [1 0] (fixed-float), [0 1] (float-fixed), or [0 0] (float-float) swaps
Data Types: double

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month
having 30 or fewer days, specified as the comma-separated pair consisting of 'EndMonthRule' and
a nonnegative integer [0, 1] using a NINST-by-1 (or NINST-by-2 if EndMonthRule is different for
each leg).

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical
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AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-separated pair
consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 (or NINST-by-2 if
AdjustCashFlowsBasis is different for each leg) of logicals with values of 0 (false) or 1 (true).
Data Types: logical

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 (or NINST-by-2 if
BusinessDayConvention is different for each leg) cell array of character vectors of business day
conventions. The selection for business day convention determines how non-business days are
treated. Non-business days are defined as weekends plus any other date that businesses are not open
(e.g. statutory holidays). Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-business days
are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on the
following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day. However if the following business day is in a different month, the
previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed on the
previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day. However if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair consisting of
'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

StartDate — Dates when swaps actually start
If not specified, date is Settle (default) | serial date number | character vector | cell array of
character vectors

Dates when the swaps actually start, specified as the comma-separated pair consisting of
'StartDate' and a NINST-by-1 vector of serial date numbers, character vectors, or cell array of
character vectors.
Data Types: char | cell | double

LatestFloatingRate — Rate for the next floating payment
If not specified, then RateSpec must contain this information (default) | scalar numeric

 swapbyzero

11-1753



Rate for the next floating payment, set at the last reset date, specified as the comma-separated pair
consisting of 'LatestFloatingRate' and a scalar numeric value.

LatestFloatingRate accepts a Rate for the next floating payment, set at the last reset date.
LatestFloatingRate is a NINST-by-1 (or NINST-by-2 if LatestFloatingRate is different for each
leg).
Data Types: double

ProjectionCurve — Rate curve used in generating cash flows for the floating leg of the
swap
if ProjectionCurve is not specified, then RateSpec is used both for discounting and generating
cash flows for the floating leg (default) | RateSpec or vector

Rate curve used in generating cash flows for the floating leg of the swap, specified as the comma-
separated pair consisting of 'ProjectionCurve' and a RateSpec.

If specifying a fixed-float or a float-fixed swap, the ProjectionCurve rate curve is used in
generating cash flows for the floating leg of the swap. This structure must be created using
intenvset.

If specifying a fixed-fixed or a float-float swap, then ProjectionCurve is NINST-by-2 vector because
each floating leg could have a different projection curve.
Data Types: struct

Cross-Currency Swaps

FXRate — Foreign exchange (FX) rate applied to cash flows
if not specified, both legs of swapbyzero are in same currency (default) | array

Foreign exchange (FX) rate applied to cash flows, specified as the comma-separated pair consisting of
'FXRate' and a NINST-by-2 array of doubles. Since the foreign exchange rate could be applied to
either the payer or receiver leg, there are 2 columns in the input array and you must specify which
leg has the foreign currency.
Data Types: double

ExchangeInitialPrincipal — Flag to indicate if initial Principal is exchanged
0 (false) (default) | array

Flag to indicate if initial Principal is exchanged, specified as the comma-separated pair consisting
of 'ExchangeInitialPrincipal' and a NINST-by-1 array of logicals.
Data Types: logical

ExchangeMaturityPrincipal — Flag to indicate if Principal exchanged at Maturity
1 (true) (default) | array

Flag to indicate if Principal is exchanged at Maturity, specified as the comma-separated pair
consisting of 'ExchangeMaturityPrincipal' and a NINST-by-1 array of logicals. While in practice
most single currency swaps do not exchange principal at maturity, the default is true to maintain
backward compatibility.
Data Types: logical
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Output Arguments
Price — Swap prices
matrix

Swap prices, returned as the number of instruments (NINST) by number of curves (NUMCURVES)
matrix. Each column arises from one of the zero curves. Price output is the dirty price. To compute
the clean price, subtract the accrued interest (AI) from the dirty price.

SwapRate — Rates applicable to fixed leg
matrix

Rates applicable to the fixed leg, returned as a NINST-by-NUMCURVES matrix of rates applicable to the
fixed leg such that the swaps’ values are zero at time 0. This rate is used in calculating the swaps’
prices when the rate specified for the fixed leg in LegRate is NaN. The SwapRate output is padded
with NaN for those instruments in which CouponRate is not set to NaN.

AI — Accrued interest
matrix

Accrued interest, returned as a NINST-by-NUMCURVES matrix.

RecCF — Cash flows for receiving leg
matrix

Cash flows for the receiving leg, returned as a NINST-by-NUMCURVES matrix.

Note If there is more than one curve specified in the RateSpec input, then the first NCURVES row
corresponds to the first swap, the second NCURVES row correspond to the second swap, and so on.

RecCFDates — Payment dates for receiving leg
matrix

Payment dates for the receiving leg, returned as an NINST-by-NUMCURVES matrix.

PayCF — Cash flows for paying leg
matrix

Cash flows for the paying leg, returned as an NINST-by-NUMCURVES matrix.

PayCFDates — Payment dates for paying leg
matrix

Payment dates for the paying leg, returned as an NINST-by-NUMCURVES matrix.

More About
Amortizing Swap

In an amortizing swap, the notional principal decreases periodically because it is tied to an
underlying financial instrument with a declining (amortizing) principal balance, such as a mortgage.
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Forward Swap

Agreement to enter into an interest-rate swap arrangement on a fixed date in future.

Cross-currency Swap

Swaps where the payment legs of the swap are denominated in different currencies.

One difference between cross-currency swaps and standard swaps is that an exchange of principal
may occur at the beginning and/or end of the swap. The exchange of initial principal will only come
into play in pricing a cross-currency swap at inception (in other words, pricing an existing cross-
currency swap will occur after this cash flow has happened). Furthermore, these exchanges of
principal typically do not affect the value of the swap (since the principal values of the two legs are
chosen based on the currency exchange rate) but affect the cash flows for each leg.

References
[1] Hull, J. Options, Futures and Other Derivatives Fourth Edition. Prentice Hall, 2000.

See Also
bondbyzero | intenvset | cfbyzero | fixedbyzero | floatbyzero

Topics
“Pricing Using Interest-Rate Term Structure” on page 2-61
“Swap” on page 2-13
“Understanding the Interest-Rate Term Structure” on page 2-48
“Supported Interest-Rate Instrument Functions” on page 2-3
“Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on page 1-
73

Introduced before R2006a
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swaptionbybdt
Price swaption from Black-Derman-Toy interest-rate tree

Syntax
[Price,PriceTree] = swaptionbybdt(BDTTree,OptSpec,Strike,ExerciseDates,
Spread,Settle,Maturity)
[Price,PriceTree] = swaptionbybdt( ___ ,Name,Value)

Description
[Price,PriceTree] = swaptionbybdt(BDTTree,OptSpec,Strike,ExerciseDates,
Spread,Settle,Maturity) prices swaption using a Black-Derman-Toy tree.

[Price,PriceTree] = swaptionbybdt( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Price a 5-Year Call Swaption Using a BDT Interest-Rate Tree

This example shows how to price a 5-year call swaption using a BDT interest-rate tree. Assume that
interest rate and volatility are fixed at 6% and 20% annually between the valuation date of the tree
until its maturity. Build a tree with the following data.

Rates = 0.06 * ones (10,1);      
StartDates = ['jan-1-2007';'jan-1-2008';'jan-1-2009';'jan-1-2010';'jan-1-2011';...
'jan-1-2012';'jan-1-2013';'jan-1-2014';'jan-1-2015';'jan-1-2016'];    

EndDates =['jan-1-2008';'jan-1-2009';'jan-1-2010';'jan-1-2011';'jan-1-2012';...
'jan-1-2013';'jan-1-2014';'jan-1-2015';'jan-1-2016';'jan-1-2017'];
ValuationDate = 'jan-1-2007'; 
Compounding = 1; 

% define the RateSpec
RateSpec = intenvset('Rates', Rates, 'StartDates', StartDates, 'EndDates', EndDates, ...
'Compounding', Compounding);

% use VolSpec to compute interest-rate volatility
Volatility = 0.20 * ones (10,1);  VolSpec = bdtvolspec(ValuationDate,...
EndDates, Volatility);

% use TimeSpec to specify the structure of the time layout for a BDT tree
TimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);

% build the BDT tree
BDTTree = bdttree(VolSpec, RateSpec, TimeSpec); 

% use the following swaption arguments
ExerciseDates = 'jan-1-2012';
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SwapSettlement = ExerciseDates;
SwapMaturity   = 'jan-1-2015'; 
Spread = 0;
SwapReset = 1; 
Principal = 100;
OptSpec = 'call';
Strike=.062;
Basis=1;

% price the swaption
[Price, PriceTree] = swaptionbybdt(BDTTree, OptSpec, Strike, ExerciseDates, ...
Spread, SwapSettlement, SwapMaturity, 'SwapReset', SwapReset, ...
'Basis', Basis, 'Principal', Principal)

Price = 2.0592

PriceTree = struct with fields:
    FinObj: 'BDTPriceTree'
      tObs: [0 1 2 3 4 5 6 7 8 9 10]
     PTree: {1x11 cell}

Price a 5-Year Call Swaption with Receiving and Paying Legs Using a BDT Interest-Rate Tree

This example shows how to price a 5-year call swaption with receiving and paying legs using a BDT
interest-rate tree. Assume that interest rate and volatility are fixed at 6% and 20% annually between
the valuation date of the tree until its maturity. Build a tree with the following data.

Rates = 0.06 * ones (10,1);      
StartDates = ['jan-1-2007';'jan-1-2008';'jan-1-2009';'jan-1-2010';'jan-1-2011';...
'jan-1-2012';'jan-1-2013';'jan-1-2014';'jan-1-2015';'jan-1-2016'];    

EndDates =['jan-1-2008';'jan-1-2009';'jan-1-2010';'jan-1-2011';'jan-1-2012';...
'jan-1-2013';'jan-1-2014';'jan-1-2015';'jan-1-2016';'jan-1-2017'];
ValuationDate = 'jan-1-2007'; 
Compounding = 1;

Define the RateSpec.

RateSpec = intenvset('Rates', Rates, 'StartDates', StartDates, 'EndDates', EndDates, ...
'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [10x1 double]
            Rates: [10x1 double]
         EndTimes: [10x1 double]
       StartTimes: [10x1 double]
         EndDates: [10x1 double]
       StartDates: [10x1 double]
    ValuationDate: 733043
            Basis: 0
     EndMonthRule: 1
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Use VolSpec to compute interest-rate volatility.

Volatility = 0.20 * ones (10,1);  
VolSpec = bdtvolspec(ValuationDate,EndDates, Volatility);

Use TimeSpec to specify the structure of the time layout for a BDT tree.

TimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);

Build the BDT tree.

BDTTree = bdttree(VolSpec, RateSpec, TimeSpec)

BDTTree = struct with fields:
      FinObj: 'BDTFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3 4 5 6 7 8 9]
        dObs: [733043 733408 733774 734139 734504 734869 735235 735600 ... ]
        TFwd: {1x10 cell}
      CFlowT: {1x10 cell}
     FwdTree: {1x10 cell}

Define the swaption arguments.

ExerciseDates = 'jan-1-2012';
SwapSettlement = ExerciseDates;
SwapMaturity   = 'jan-1-2015'; 
Spread = 0;
SwapReset = [1 1]; % 1st column represents receiving leg, 2nd column represents paying leg
Principal = 100;
OptSpec = 'call';
Strike=.062;
Basis= [2 4]; % 1st column represents receiving leg, 2nd column represents paying leg

Price the swaption.

[Price, PriceTree] = swaptionbybdt(BDTTree, OptSpec, Strike, ExerciseDates, ...
Spread, SwapSettlement, SwapMaturity, 'SwapReset', SwapReset, ...
'Basis', Basis, 'Principal', Principal)

Price = 2.0592

PriceTree = struct with fields:
    FinObj: 'BDTPriceTree'
      tObs: [0 1 2 3 4 5 6 7 8 9 10]
     PTree: {1x11 cell}

Input Arguments
BDTTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bdttree.
Data Types: struct
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OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vector with values 'call' or
'put'

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of character
vectors. For more information, see “More About” on page 11-1762.
Data Types: char | cell

Strike — Strike swap rate values
decimal

Strike swap rate values, specified as a NINST-by-1 vector.
Data Types: double

ExerciseDates — Exercise dates for swaption
serial date number | date character vector | cell array of date character vectors

Exercise dates for the swaption, specified as a NINST-by-1 vector or NINST-by-2 using serial date
numbers or date character vectors, depending on the option type.

• For a European option, ExerciseDates are a NINST-by-1 vector of exercise dates. Each row is
the schedule for one option. When using a European option, there is only one ExerciseDate on
the option expiry date.

• For an American option, ExerciseDates are a NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be exercised on any coupon date between or including the
pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1,
the option can be exercised between the ValuationDate of the tree and the single listed
ExerciseDate.

Data Types: double | char | cell

Spread — Number of basis points over reference rate
numeric

Number of basis points over the reference rate, specified as a NINST-by-1 vector.
Data Types: double

Settle — Settlement date
serial date number | date character vector | cell array of date character vectors

Settlement date (representing the settle date for each swap), specified as a NINST-by-1 vector of
serial date numbers or a date character vectors. The Settle date for every swaption is set to the
ValuationDate of the BDT tree. The swap argument Settle is ignored. The underlying swap starts
at the maturity of the swaption.
Data Types: double | char

Maturity — Maturity date for swap
serial date number | date character vector | cell array of date character vectors

Maturity date for each swap, specified as a NINST-by-1 vector of dates using serial date numbers or
date character vectors.
Data Types: double | char | cell
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree] = swaptionbybdt(BDTTree,OptSpec,
ExerciseDates,Spread,Settle,Maturity,'SwapReset',4,'Basis',5,'Principal',1000
0)

AmericanOpt — Option type
0 (European) (default) | integer with values 0 or 1

(Optional) Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and
NINST-by-1 positive integer flags with values:

• 0 — European
• 1 — American

Data Types: double

SwapReset — Reset frequency per year for underlying swap
1 (default) | numeric

Reset frequency per year for the underlying swap, specified as the comma-separated pair consisting
of 'SwapReset' and a NINST-by-1 vector or NINST-by-2 matrix representing the reset frequency per
year for each leg. If SwapReset is NINST-by-2, the first column represents the receiving leg, while
the second column represents the paying leg.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis representing the basis used when annualizing the input forward rate tree for each
instrument, specified as the comma-separated pair consisting of 'Basis' and a NINST-by-1 vector or
NINST-by-2 matrix representing the basis for each leg. If Basis is NINST-by-2, the first column
represents the receiving leg, while the second column represents the paying leg.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)

 swaptionbybdt

11-1761



• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

Notional principal amount, specified as the comma-separated pair consisting of 'Principal' and a
NINST-by-1 vector.
Data Types: double

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure obtained from using derivset.
Data Types: struct

Output Arguments
Price — Expected prices of swaptions at time 0
vector

Expected prices of the swaptions at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing vectors of
swaption instrument prices and a vector of observation times for each node. Within PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.

More About
Call Swaption

A call swaption or payer swaption allows the option buyer to enter into an interest-rate swap in which
the buyer of the option pays the fixed rate and receives the floating rate.

Put Swaption

A put swaption or receiver swaption allows the option buyer to enter into an interest-rate swap in
which the buyer of the option receives the fixed rate and pays the floating rate.
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See Also
bdttree | instswaption | swapbybdt

Topics
“Computing Instrument Prices” on page 2-81
“Swaption” on page 2-14
“Pricing Options Structure” on page A-2
“Understanding Interest-Rate Tree Models” on page 2-66
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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swaptionbybk
Price swaption from Black-Karasinski interest-rate tree

Syntax
[Price,PriceTree] = swaptionbybk(BKTree,OptSpec,Strike,ExerciseDates,Spread,
Settle,Maturity)
[Price,PriceTree] = swaptionbybk( ___ ,Name,Value)

Description
[Price,PriceTree] = swaptionbybk(BKTree,OptSpec,Strike,ExerciseDates,Spread,
Settle,Maturity) prices swaption using a Black-Karasinski tree.

[Price,PriceTree] = swaptionbybk( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Price a 4-Year Call and Put Swaption Using a BK Interest-Rate Tree

This example shows how to price a 4-year call and put swaption using a BK interest-rate tree,
assuming the interest rate is fixed at 7% annually.

Rates =0.07 * ones (10,1);
Compounding = 2; 
StartDates = ['jan-1-2007';'jul-1-2007';'jan-1-2008';'jul-1-2008';'jan-1-2009'; ...
'jul-1-2009'; 'jan-1-2010'; 'jul-1-2010';'jan-1-2011';'jul-1-2011'];  
EndDates =['jul-1-2007';'jan-1-2008';'jul-1-2008';'jan-1-2009';'jul-1-2009'; ...
'jan-1-2010'; 'jul-1-2010';'jan-1-2011';'jul-1-2011';'jan-1-2012'];
ValuationDate = 'jan-1-2007'; 

% define the RateSpec

RateSpec = intenvset('Rates', Rates, 'StartDates', StartDates, 'EndDates', EndDates,...
'Compounding', Compounding); 

% use BKVolSpec to compute the interest-rate volatility
Volatility = 0.10*ones(10,1);  
AlphaCurve = 0.05*ones(10,1);  
AlphaDates = EndDates;  
BKVolSpec = bkvolspec(ValuationDate, EndDates, Volatility, AlphaDates, AlphaCurve); 

% use BKTimeSpec to specify the structure of the time layout for the BK interest-rate tree
BKTimeSpec = bktimespec(ValuationDate, EndDates, Compounding);

% build the BK tree
BKTree = bktree(BKVolSpec, RateSpec, BKTimeSpec); 

% use the following arguments for a 1-year swap and 4-year swaption
ExerciseDates = 'jan-1-2011';
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SwapSettlement = ExerciseDates;  
SwapMaturity   = 'jan-1-2012';  
Spread = 0;  
SwapReset = 2 ;   
Principal = 100;  
OptSpec = {'call' ;'put'};    
Strike= [ 0.07 ; 0.0725];    
Basis=1; 

% price the swaption
PriceSwaption = swaptionbybk(BKTree, OptSpec, Strike, ExerciseDates, ...
Spread, SwapSettlement, SwapMaturity, 'SwapReset', SwapReset, 'Basis', Basis, ...
'Principal', Principal)

PriceSwaption = 2×1

    0.3634
    0.4798

Price a 4-Year Call and Put Swaption with Receiving and Paying Legs Using a BK Interest-
Rate Tree

This example shows how to price a 4-year call and put swaption with receiving and paying legs using
a BK interest-rate tree, assuming the interest rate is fixed at 7% annually. Build a tree with the
following data.

Rates =0.07 * ones (10,1);
Compounding = 2; 
StartDates = ['jan-1-2007';'jul-1-2007';'jan-1-2008';'jul-1-2008';'jan-1-2009'; ...
'jul-1-2009'; 'jan-1-2010'; 'jul-1-2010';'jan-1-2011';'jul-1-2011'];  
EndDates =['jul-1-2007';'jan-1-2008';'jul-1-2008';'jan-1-2009';'jul-1-2009'; ...
'jan-1-2010'; 'jul-1-2010';'jan-1-2011';'jul-1-2011';'jan-1-2012'];
ValuationDate = 'jan-1-2007';

Define the RateSpec.

RateSpec = intenvset('Rates', Rates, 'StartDates', StartDates, 'EndDates', EndDates,...
'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 2
             Disc: [10x1 double]
            Rates: [10x1 double]
         EndTimes: [10x1 double]
       StartTimes: [10x1 double]
         EndDates: [10x1 double]
       StartDates: [10x1 double]
    ValuationDate: 733043
            Basis: 0
     EndMonthRule: 1

Use BKVolSpec to compute interest-rate volatility.
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Volatility = 0.10*ones(10,1);  
AlphaCurve = 0.05*ones(10,1);  
AlphaDates = EndDates;  
BKVolSpec = bkvolspec(ValuationDate, EndDates, Volatility, AlphaDates, AlphaCurve);

Use BKTimeSpec to specify the structure of the time layout for a BK tree.

BKTimeSpec = bktimespec(ValuationDate, EndDates, Compounding);

Build the BK tree.

BKTree = bktree(BKVolSpec, RateSpec, BKTimeSpec);

Define the arguments for a 1-year swap and 4-year swaption.

ExerciseDates = 'jan-1-2011';
SwapSettlement = ExerciseDates;  
SwapMaturity   = 'jan-1-2012';  
Spread = 0;  
SwapReset = [2 2]; % 1st column represents swaption receiving leg, 2nd column represents swaption paying leg
Principal = 100;  
OptSpec = {'call' ;'put'};    
Strike= [ 0.07 ; 0.0725];    
Basis= [1 3]; % 1st column represents swaption receiving leg, 2nd column represents swaption paying leg

Price the swaption.

PriceSwaption = swaptionbybk(BKTree, OptSpec, Strike, ExerciseDates, ...
Spread, SwapSettlement, SwapMaturity, 'SwapReset', SwapReset, 'Basis', Basis, ...
'Principal', Principal)

PriceSwaption = 2×1

    0.3634
    0.4798

Input Arguments
BKTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bktree.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vector with values 'call' or
'put'

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of character
vectors. For more information, see “More About” on page 11-1769.
Data Types: char | cell

Strike — Strike swap rate values
decimal
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Strike swap rate values, specified as a NINST-by-1 vector.
Data Types: double

ExerciseDates — Exercise dates for swaption
serial date number | date character vector | cell array of date character vectors

Exercise dates for the swaption, specified as a NINST-by-1 vector or NINST-by-2 using serial date
numbers or date character vectors, depending on the option type.

• For a European option, ExerciseDates are a NINST-by-1 vector of exercise dates. Each row is
the schedule for one option. When using a European option, there is only one ExerciseDate on
the option expiry date.

• For an American option, ExerciseDates are a NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be exercised on any coupon date between or including the
pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1,
the option can be exercised between the ValuationDate of the tree and the single listed
ExerciseDate.

Data Types: double | char | cell

Spread — Number of basis points over reference rate
numeric

Number of basis points over the reference rate, specified as a NINST-by-1 vector.
Data Types: double

Settle — Settlement date
serial date number | date character vector | cell array of date character vectors

Settlement date (representing the settle date for each swap), specified as a NINST-by-1 vector of
serial date numbers or date character vectors. The Settle date for every swaption is set to the
ValuationDate of the BK tree. The swap argument Settle is ignored. The underlying swap starts
at the maturity of the swaption.
Data Types: double | char

Maturity — Maturity date for swap
serial date number | date character vector | cell array of date character vectors

Maturity date for each swap, specified as a NINST-by-1 vector of dates using serial date numbers or
date character vectors.
Data Types: double | char | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree] = swaptionbybk(BKTree,OptSpec,
ExerciseDates,Spread,Settle,Maturity,'SwapReset',4,'Basis',5,'Principal',1000
0)
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AmericanOpt — Option type
0 (European) (default) | integer with values 0 or 1

(Optional) Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and
NINST-by-1 positive integer flags with values:

• 0 — European
• 1 — American

Data Types: double

SwapReset — Reset frequency per year for underlying swap
1 (default) | numeric

Reset frequency per year for the underlying swap, specified as the comma-separated pair consisting
of 'SwapReset' and a NINST-by-1 vector or NINST-by-2 matrix representing the reset frequency per
year for each leg. If SwapReset is NINST-by-2, the first column represents the receiving leg, while
the second column represents the paying leg.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis representing the basis used when annualizing the input forward rate tree for each
instrument, specified as the comma-separated pair consisting of 'Basis' and a NINST-by-1 vector or
NINST-by-2 matrix representing the basis for each leg. If Basis is NINST-by-2, the first column
represents the receiving leg, while the second column represents the paying leg.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amount
100 (default) | numeric
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Notional principal amount, specified as the comma-separated pair consisting of 'Principal' and a
NINST-by-1 vector.
Data Types: double

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure obtained from using derivset.
Data Types: struct

Output Arguments
Price — Expected prices of swaptions at time 0
vector

Expected prices of the swaptions at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing vectors of
swaption instrument prices and a vector of observation times for each node. Within PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.

More About
Call Swaption

A call swaption or payer swaption allows the option buyer to enter into an interest-rate swap in which
the buyer of the option pays the fixed rate and receives the floating rate.

Put Swaption

A put swaption or receiver swaption allows the option buyer to enter into an interest-rate swap in
which the buyer of the option receives the fixed rate and pays the floating rate.

See Also
bktree | instswaption | swapbybk

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Swaption” on page 2-14
“Pricing Options Structure” on page A-2
“Understanding Interest-Rate Tree Models” on page 2-66
“Supported Interest-Rate Instrument Functions” on page 2-3
“Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on page 1-
73
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Introduced before R2006a
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swaptionbycir
Price swaption from Cox-Ingersoll-Ross interest-rate tree

Syntax
[Price,PriceTree] = swaptionbycir(CIRTree,OptSpec,Strike,ExerciseDates,
Spread,Settle,Maturity)
[Price,PriceTree] = swaptionbycir( ___ ,Name,Value)

Description
[Price,PriceTree] = swaptionbycir(CIRTree,OptSpec,Strike,ExerciseDates,
Spread,Settle,Maturity) prices swaption with a Cox-Ingersoll-Ross (CIR) tree using a CIR++
model with the Nawalka-Beliaeva (NB) approach.

[Price,PriceTree] = swaptionbycir( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Price a Swaption Using a CIR Interest-Rate Tree

Define a 3-year put swaption.

Rates =0.075 * ones (10,1);   
Compounding = 2;    
StartDates = ['Jan-1-2017';'Jul-1-2017';'Jan-1-2018';'Jul-1-2018';'Jan-1-2019';...
'Jul-1-2019';'Jan-1-2020'; 'Jul-1-2020';'Jan-1-2021';'Jul-1-2021'];    
EndDates =['Jul-1-2017';'Jan-1-2018';'Jul-1-2018';'Jan-1-2019';'Jul-1-2019';...
'Jan-1-2020';'Jul-1-2020';'Jan-1-2021';'Jul-1-2021';'Jan-1-2022'];      
ValuationDate = 'Jan-1-2017';      

Create a RateSpec using the intenvset function.

RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, 'EndDates',EndDates,'Rates', Rates, 'Compounding', Compounding); 

Create a CIR tree.

NumPeriods = length(EndDates); 
Alpha = 0.03; 
Theta = 0.02;  
Sigma = 0.1;    
Maturity = '01-jan-2023'; 
CIRTimeSpec = cirtimespec(ValuationDate, Maturity, NumPeriods); 
CIRVolSpec = cirvolspec(Sigma, Alpha, Theta); 

CIRT = cirtree(CIRVolSpec, RateSpec, CIRTimeSpec)

CIRT = struct with fields:
      FinObj: 'CIRFwdTree'
     VolSpec: [1x1 struct]

 swaptionbycir

11-1771



    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 0.6000 1.2000 1.8000 2.4000 3 3.6000 4.2000 4.8000 5.4000]
        dObs: [736696 736915 737134 737353 737572 737791 738010 738229 ... ]
     FwdTree: {1x10 cell}
     Connect: {1x9 cell}
       Probs: {1x9 cell}

Use the following arguments for a 1-year swap and a 3-year swaption.

ExerciseDates = 'Jan-1-2020';
SwapSettlement = ExerciseDates;
SwapMaturity   = 'Jan-1-2022';
Spread = 0;
SwapReset = 2 ; 
Principal = 100;
OptSpec = 'put';  
Strike= 0.04;
Basis=1;

Price the swaption.

[Price,PriceTree] = swaptionbycir(CIRT,OptSpec,Strike,ExerciseDates,Spread,SwapSettlement,SwapMaturity,'SwapReset',SwapReset, ...
'Basis',Basis,'Principal',Principal)

Price = 3.1537

PriceTree = struct with fields:
     FinObj: 'CIRPriceTree'
      PTree: {1x11 cell}
       tObs: [0 0.6000 1.2000 1.8000 2.4000 3 3.6000 4.2000 4.8000 5.4000 6]
    Connect: {1x9 cell}
      Probs: {1x9 cell}

Input Arguments
CIRTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using cirtree.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vector with values 'call' or
'put' | string array with values "call" or "put"

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of character vectors
or string arrays. For more information, see “More About” on page 11-1769.
Data Types: char | cell | string

Strike — Strike swap rate values
decimal
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Strike swap rate values, specified as a NINST-by-1 vector.
Data Types: double

ExerciseDates — Exercise dates for swaption
serial date number | date character vector | cell array of date character vectors | string array |
datetime

Exercise dates for the swaption, specified as a NINST-by-1 vector or NINST-by-2 using serial date
numbers, date character vectors, string arrays, or datetime arrays depending on the option type.

• For a European option, ExerciseDates are a NINST-by-1 vector of exercise dates. Each row is
the schedule for one option. When using a European option, there is only one ExerciseDate on
the option expiry date.

• For an American option, ExerciseDates are a NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be exercised on any coupon date between or including the
pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1,
the option can be exercised between the ValuationDate of the tree and the single listed
ExerciseDate.

Data Types: double | char | cell | string | datetime

Spread — Number of basis points over reference rate
numeric

Number of basis points over the reference rate, specified as a NINST-by-1 vector.
Data Types: double

Settle — Settlement date
serial date number | date character vector | cell array of date character vectors | string array |
datetime

Settlement date (representing the settle date for each swap), specified as a NINST-by-1 vector of
serial date numbers, date character vectors, string arrays, or datetime arrays. The Settle date for
every swaption is set to the ValuationDate of the CIR tree. The swap argument Settle is ignored.
The underlying swap starts at the maturity of the swaption.
Data Types: double | char | string | datetime

Maturity — Maturity date for swap
serial date number | date character vector | cell array of date character vectors | string array |
datetime

Maturity date for each swap, specified as a NINST-by-1 vector of dates using serial date numbers,
date character vectors, string arrays, or datetime arrays.
Data Types: double | char | cell | string | datetime

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
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Example: [Price,PriceTree] = swaptionbycir(CIRTree,OptSpec,
ExerciseDates,Spread,Settle,Maturity,'SwapReset',4,'Basis',5,'Principal',1000
0)

AmericanOpt — Option type
0 (European) (default) | integer with values 0 or 1

Option type, specified as the comma-separated pair consisting of 'AmericanOpt'and NINST-by-1
positive integer flags with values:

• 0 — European
• 1 — American

Data Types: double

SwapReset — Reset frequency per year for underlying swap
1 (default) | numeric

Reset frequency per year for the underlying swap, specified as the comma-separated pair consisting
of 'SwapReset' and a NINST-by-1 vector or NINST-by-2 matrix representing the reset frequency per
year for each leg. If SwapReset is NINST-by-2, the first column represents the receiving leg, and the
second column represents the paying leg.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis representing the basis used when annualizing the input forward-rate tree for each
instrument, specified as the comma-separated pair consisting of 'Basis' and a NINST-by-1 vector or
NINST-by-2 matrix representing the basis for each leg. If Basis is NINST-by-2, the first column
represents the receiving leg, while the second column represents the paying leg.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double
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Principal — Notional principal amount
100 (default) | numeric

Notional principal amount, specified as the comma-separated pair consisting of 'Principal' and a
NINST-by-1 vector.
Data Types: double

Output Arguments
Price — Expected prices of swaptions at time 0
vector

Expected prices of the swaptions at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing vectors of
swaption instrument prices and a vector of observation times for each node. Within PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell array describes

how nodes in that level connect to the next. For a given tree level, there are NumNodes elements
in the vector, and they contain the index of the node at the next level that the middle branch
connects to. Subtracting 1 from that value indicates where the up-branch connects to, and adding
1 indicated where the down branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array contains the
up, middle, and down transition probabilities for each node of the level.

More About
Call Swaption

A call swaption or payer swaption allows the option buyer to enter into an interest-rate swap in which
the buyer of the option pays the fixed rate and receives the floating rate.

Put Swaption

A put swaption or receiver swaption allows the option buyer to enter into an interest-rate swap in
which the buyer of the option receives the fixed rate and pays the floating rate.

References
[1] Cox, J., Ingersoll, J., and S. Ross. "A Theory of the Term Structure of Interest Rates."

Econometrica. Vol. 53, 1985.

[2] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer Finance, 2006.

[3] Hirsa, A. Computational Methods in Finance. CRC Press, 2012.

[4] Nawalka, S., Soto, G., and N. Beliaeva. Dynamic Term Structure Modeling. Wiley, 2007.
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[5] Nelson, D. and K. Ramaswamy. "Simple Binomial Processes as Diffusion Approximations in
Financial Models." The Review of Financial Studies. Vol 3. 1990, pp. 393–430.

See Also
bondbycir | capbycir | cfbycir | fixedbycir | floatbycir | floorbycir | oasbycir |
optbndbycir | optfloatbycir | optembndbycir | optemfloatbycir | rangefloatbycir |
swapbycir | instswaption

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Swaption” on page 2-14
“Pricing Options Structure” on page A-2
“Understanding Interest-Rate Tree Models” on page 2-66
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced in R2018a
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swaptionbyblk
Price European swaption instrument using Black model

Syntax
Price = swaptionbyblk(RateSpec,OptSpec,Strike,Settle,ExerciseDates,Maturity,
Volatility)
Price = swaptionbyblk( ___ ,Name,Value)

Description
Price = swaptionbyblk(RateSpec,OptSpec,Strike,Settle,ExerciseDates,Maturity,
Volatility) prices swaptions using the Black option pricing model.

Price = swaptionbyblk( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Price a European Swaption Using the Black Model Where the Yield Curve is Flat at 6%

Price a European swaption that gives the holder the right to enter in five years into a three-year
paying swap where a fixed-rate of 6.2% is paid and floating is received. Assume that the yield curve is
flat at 6% per annum with continuous compounding, the volatility of the swap rate is 20%, the
principal is $100, and payments are exchanged semiannually.

Create the RateSpec.

Rate = 0.06;
Compounding  = -1;
ValuationDate = 'Jan-1-2010';
EndDates =   'Jan-1-2020'; 
Basis = 1; 

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', ValuationDate, ...
'EndDates', EndDates, 'Rates', Rate, 'Compounding', Compounding, 'Basis', Basis);

Price the swaption using the Black model.

Settle = 'Jan-1-2011';
ExerciseDates = 'Jan-1-2016';
Maturity = 'Jan-1-2019'; 
Reset = 2; 
Principal = 100;
Strike = 0.062;
Volatility = 0.2;
OptSpec = 'call';

Price= swaptionbyblk(RateSpec, OptSpec, Strike, Settle, ExerciseDates, Maturity, ...
Volatility, 'Reset', Reset, 'Principal', Principal, 'Basis', Basis)

Price = 2.0710
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Price a European Swaption with Receiving and Paying Legs Using the Black Model Where
the Yield Curve is 6%

This example shows Price a European swaption with receiving and paying legs that gives the holder
the right to enter in five years into a three-year paying swap where a fixed-rate of 6.2% is paid and
floating is received. Assume that the yield curve is flat at 6% per annum with continuous
compounding, the volatility of the swap rate is 20%, the principal is $100, and payments are
exchanged semiannually.

Rate = 0.06;
Compounding  = -1;
ValuationDate = 'Jan-1-2010';
EndDates =   'Jan-1-2020'; 
Basis = 1;

Define the RateSpec.

RateSpec = intenvset('ValuationDate',ValuationDate,'StartDates',ValuationDate, ...
'EndDates',EndDates,'Rates',Rate,'Compounding',Compounding,'Basis',Basis);

Define the swaption arguments.

Settle = 'Jan-1-2011';
ExerciseDates = 'Jan-1-2016';
Maturity = 'Jan-1-2019'; 
Reset = [2 4]; % 1st column represents receiving leg, 2nd column represents paying leg
Principal = 100;
Strike = 0.062;
Volatility = 0.2;
OptSpec = 'call';
Basis = [1 3]; % 1st column represents receiving leg, 2nd column represents paying leg

Price the swaption.

Price= swaptionbyblk(RateSpec,OptSpec,Strike,Settle,ExerciseDates,Maturity,Volatility, ...
'Reset',Reset,'Principal',Principal,'Basis',Basis)

Price = 1.6494

Price a European Swaption Using the Black Model Where the Yield Curve Is Incrementally
Increasing

Price a European swaption that gives the holder the right to enter into a 5-year receiving swap in a
year, where a fixed rate of 3% is received and floating is paid. Assume that the 1-year, 2-year, 3-year,
4-year and 5- year zero rates are 3%, 3.4%, 3.7%, 3.9% and 4% with continuous compounding. The
swap rate volatility is 21%, the principal is $1000, and payments are exchanged semiannually.

Create the RateSpec.

ValuationDate = 'Jan-1-2010';
EndDates = {'Jan-1-2011';'Jan-1-2012';'Jan-1-2013';'Jan-1-2014';'Jan-1-2015'};
Rates = [0.03; 0.034 ; 0.037; 0.039; 0.04;];
Compounding = -1;
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Basis = 1; 

RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, ...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding,'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: [5x1 double]
            Rates: [5x1 double]
         EndTimes: [5x1 double]
       StartTimes: [5x1 double]
         EndDates: [5x1 double]
       StartDates: 734139
    ValuationDate: 734139
            Basis: 1
     EndMonthRule: 1

Price the swaption using the Black model.

Settle = 'Jan-1-2011';
ExerciseDates = 'Jan-1-2012'; 
Maturity = 'Jan-1-2017';
Strike = 0.03;
Volatility = 0.21;
Principal =1000;
Reset = 2; 
OptSpec = 'put';

Price = swaptionbyblk(RateSpec, OptSpec, Strike, Settle,  ExerciseDates, ...
Maturity, Volatility,'Basis', Basis, 'Reset', Reset,'Principal', Principal)

Price = 0.5771

Price a Swaption Using a Different Curve to Generate the Future Forward Rates

Define the OIS and Libor curves.

Settle = datenum('15-Mar-2013');
CurveDates = daysadd(Settle,360*[1/12 2/12 3/12 6/12 1 2 3 4 5 7 10],1);
OISRates = [.0018 .0019 .0021 .0023 .0031 .006  .011 .017 .021 .026 .03]';
LiborRates = [.0045 .0047 .005 .0055 .0075 .0109  .0162 .0216 .0262 .0309 .0348]';

Create an associated RateSpec for the OIS and Libor curves.

OISCurve = intenvset('Rates',OISRates,'StartDate',Settle,'EndDates',CurveDates,'Compounding',2,'Basis',1);
LiborCurve = intenvset('Rates',LiborRates,'StartDate',Settle,'EndDates',CurveDates,'Compounding',2,'Basis',1);

Define the swaption instruments.

ExerciseDate = '15-Mar-2018';
Maturity = {'15-Mar-2020';'15-Mar-2023'};
OptSpec = 'call';
Strike = 0.04;
BlackVol = 0.2;
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Price the swaption instruments using the term structure OISCurve both for discounting the cash
flows and generating the future forward rates.

Price = swaptionbyblk(OISCurve, OptSpec, Strike, Settle, ExerciseDate, Maturity, BlackVol,'Reset',1)

Price = 2×1

    1.0956
    2.6944

Price the swaption instruments using the term structure LiborCurve to generate the future forward
rates. The term structure OISCurve is used for discounting the cash flows.

PriceLC = swaptionbyblk(OISCurve, OptSpec, Strike, Settle, ExerciseDate, Maturity, BlackVol,'ProjectionCurve',LiborCurve,'Reset',1)

PriceLC = 2×1

    1.5346
    3.8142

Price a Swaption Using the Shifted Black Model

Create the RateSpec.

ValuationDate = 'Jan-1-2016';
EndDates = {'Jan-1-2017';'Jan-1-2018';'Jan-1-2019';'Jan-1-2020';'Jan-1-2021'};
Rates = [-0.02; 0.024 ; 0.047; 0.090; 0.12;]/100;
Compounding = 1;
Basis = 1;

RateSpec = intenvset('ValuationDate',ValuationDate,'StartDates',ValuationDate, ...
'EndDates',EndDates,'Rates',Rates,'Compounding',Compounding,'Basis',Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [5x1 double]
            Rates: [5x1 double]
         EndTimes: [5x1 double]
       StartTimes: [5x1 double]
         EndDates: [5x1 double]
       StartDates: 736330
    ValuationDate: 736330
            Basis: 1
     EndMonthRule: 1

Price the swaption with a negative strike using the Shifted Black model.

Settle = 'Jan-1-2016';
ExerciseDates = 'Jan-1-2017';
Maturity = 'Jan-1-2020';
Strike = -0.003; % Set -0.3 percent strike.
ShiftedBlackVolatility = 0.31;
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Principal = 1000;
Reset = 1;
OptSpec = 'call';
Shift = 0.008; % Set 0.8 percent shift.

Price = swaptionbyblk(RateSpec,OptSpec,Strike,Settle,ExerciseDates, ...
Maturity,ShiftedBlackVolatility,'Basis',Basis,'Reset',Reset,...
'Principal',Principal,'Shift',Shift)

Price = 12.8301

Price Swaptions Using the Shifted Black Model with a Vector of Shifts

Create the RateSpec.

ValuationDate = 'Jan-1-2016';
EndDates = {'Jan-1-2017';'Jan-1-2018';'Jan-1-2019';'Jan-1-2020';'Jan-1-2021'};
Rates = [-0.02; 0.024 ; 0.047; 0.090; 0.12;]/100;
Compounding = 1;
Basis = 1;

RateSpec = intenvset('ValuationDate',ValuationDate,'StartDates',ValuationDate, ...
'EndDates',EndDates,'Rates',Rates,'Compounding',Compounding,'Basis',Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [5x1 double]
            Rates: [5x1 double]
         EndTimes: [5x1 double]
       StartTimes: [5x1 double]
         EndDates: [5x1 double]
       StartDates: 736330
    ValuationDate: 736330
            Basis: 1
     EndMonthRule: 1

Price the swaptions with using the Shifted Black model.

Settle = 'Jan-1-2016';
ExerciseDates = 'Jan-1-2017';
Maturities = {'Jan-1-2018';'Jan-1-2019';'Jan-1-2020'};
Strikes = [-0.0034;-0.0032;-0.003];
ShiftedBlackVolatilities = [0.33;0.32;0.31]; % A vector of volatilities.
Principal = 1000;
Reset = 1;
OptSpec = 'call';
Shifts = [0.0085;0.0082;0.008]; % A vector of shifts.

Prices = swaptionbyblk(RateSpec,OptSpec,Strikes,Settle,ExerciseDates, ...
Maturities,ShiftedBlackVolatilities,'Basis',Basis,'Reset',Reset, ...
'Principal',Principal,'Shift',Shifts)

Prices = 3×1
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    4.1117
    8.0577
   12.8301

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.

If the paying leg is different than the receiving leg, the RateSpec can be a NINST-by-2 input variable
of RateSpecs, with the second input being the discount curve for the paying leg. If only one curve is
specified, then it is used to discount both legs.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vector with values 'call' or
'put'

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of character
vectors.

A 'call' swaption, or Payer swaption, allows the option buyer to enter into an interest-rate swap in
which the buyer of the option pays the fixed rate and receives the floating rate.

A 'put' swaption, or Receiver swaption, allows the option buyer to enter into an interest-rate swap
in which the buyer of the option receives the fixed rate and pays the floating rate.
Data Types: char | cell

Strike — Strike swap rate values
decimal

Strike swap rate values, specified as a NINST-by-1 vector of decimal values.
Data Types: double

Settle — Settlement date
serial date number | date character vector | cell array of date character vectors

Settlement date (representing the settle date for each swaption), specified as a NINST-by-1 vector of
serial date numbers or date character vectors. Settle must not be later than ExerciseDates.

The Settle date input for swaptionbyblk is the valuation date on which the swaption (an option to
enter into a swap) is priced. The swaption buyer pays this price on this date to hold the swaption.
Data Types: double | char

ExerciseDates — Dates on which swaption expires and underlying swap starts
serial date number | date character vector | cell array of date character vectors
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Dates, specified as serial date numbers or date character vectors, on which the swaption expires and
the underlying swap starts. The swaption holder can choose to enter into the swap on this date if the
situation is favorable.

For a European option, ExerciseDates are a NINST-by-1 vector of exercise dates. Each row is the
schedule for one option. When using a European option, there is only one ExerciseDate on the
option expiry date.
Data Types: double | char | cell

Maturity — Maturity date for each forward swap
serial date number | date character vector | cell array of date character vectors

Maturity date for each forward swap, specified as a NINST-by-1 vector of dates using serial date
numbers or date character vectors.
Data Types: double | char | cell

Volatility — Annual volatilities values
numeric

Annual volatilities values, specified as a NINST-by-1 vector of numeric values.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Price =
swaptionbyblk(OISCurve,OptSpec,Strike,Settle,ExerciseDate,Maturity,BlackVol,'
Reset',1,'Shift',.5)

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis of the instrument, specified as the comma-separated pair consisting of 'Basis' and
a NINST-by-1 vector or NINST-by-2 matrix representing the basis for each leg. If Basis is NINST-
by-2, the first column represents the receiving leg, while the second column represents the paying
leg. Default is 0 (actual/actual).

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
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• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

Notional principal amount, specified as the comma-separated pair consisting of 'Principal' and a
NINST-by-1 vector.
Data Types: double

Reset — Reset frequency per year for underlying forward swap
1 (default) | numeric

Reset frequency per year for the underlying forward swap, specified as the comma-separated pair
consisting of 'Reset' and a NINST-by-1 vector or NINST-by-2 matrix representing the reset
frequency per year for each leg. If Reset is NINST-by-2, the first column represents the receiving
leg, while the second column represents the paying leg.
Data Types: double

ProjectionCurve — Rate curve used in generating future forward rates
if ProjectionCurve is not specified, then RateSpec is used both for discounting cash flows and
projecting future forward rates (default) | structure

The rate curve to be used in generating the future forward rates, specified as the comma-separated
pair consisting of 'ProjectionCurve' and a structure created using intenvset. Use this optional
input if the forward curve is different from the discount curve.
Data Types: struct

Shift — Shift in decimals for shifted Black model
0 (no shift) (default) | positive decimal

Shift in decimals for the shifted Black model, specified as the comma-separated pair consisting of
'Shift' and a scalar or NINST-by-1 vector of rate shifts in positive decimals. Set this parameter to a
positive rate shift in decimals to add a positive shift to the forward swap rate and strike, which
effectively sets a negative lower bound for the forward swap rate and strike. For example, a Shift of
0.01 is equal to a 1% shift.
Data Types: double

Output Arguments
Price — Prices for swaptions at time 0
vector
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Prices for the swaptions at time 0, returned as a NINST-by-1 vector of prices.

More About
Forward Swap

A forward swap is a swap that starts at a future date.

Shifted Black

The Shifted Black model is essentially the same as the Black’s model, except that it models the
movements of (F + Shift) as the underlying asset, instead of F (which is the forward swap rate in the
case of swaptions).

This model allows negative rates, with a fixed negative lower bound defined by the amount of shift;
that is, the zero lower bound of Black’s model has been shifted.

Algorithms
Black Model

dF = σBlackFdw

call = e−γT FN(d1)− KN(d2)

put = e−γT KN(− d2)− FN(− d1)

d1 =
ln F

K +
σB2

2 T

σB T ,    d2 = d1− σB T

σB = σBlack

Where F is the forward value and K is the strike.

Shifted Black Model

dF = σShif ted_Black F + Shif t dw

call = e−γT F + Shif t N(ds1)− K + Shif t N(ds2)

put = e−γT K + Shif t N(− ds2)− F + Shif t N(− ds1)

ds1 =
ln F + Shif t

K + Shif t +
σsB2

2 T

σsB T ,    ds2 = ds1− σsB T

σsB = σShif ted_Black

Where F+Shift is the forward value and K+Shift is the strike for the shifted version.

See Also
bondbyzero | cfbyzero | fixedbyzero | floatbyzero | blackvolbysabr | intenvset |
swaptionbynormal | capbyblk | floorbyblk
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Topics
“Calibrate the SABR Model” on page 2-33
“Price a Swaption Using the SABR Model” on page 2-38
“Price Swaptions with Negative Strikes Using the Shifted SABR Model” on page 2-26
“Swaption” on page 2-14
“Work with Negative Interest Rates Using Functions” on page 2-18
“Supported Interest-Rate Instrument Functions” on page 2-3
“Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on page 1-
73

External Websites
How to Price Interest Rate Options with Negative Interest Rates (3 min 05 sec)

Introduced before R2006a
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swaptionbyhjm
Price swaption from Heath-Jarrow-Morton interest-rate tree

Syntax
[Price,PriceTree] = swaptionbyhjm(HJMTree,OptSpec,Strike,ExerciseDates,
Spread,Settle,Maturity)
[Price,PriceTree] = swaptionbyhjm( ___ ,Name,Value)

Description
[Price,PriceTree] = swaptionbyhjm(HJMTree,OptSpec,Strike,ExerciseDates,
Spread,Settle,Maturity) prices swaption using a Heath-Jarrow-Morton tree.

[Price,PriceTree] = swaptionbyhjm( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Price a 1-Year Call Swaption Using an HJM Interest-Rate Tree

This example shows how to price a 1-year call swaption using an HJM interest-rate tree. Assume that
interest rate is fixed at 5% annually between the valuation date of the tree until its maturity. Build a
tree with the following data.

Rates = [ 0.05;0.05;0.05;0.05];  
StartDates = 'jan-1-2007';  
EndDates =['jan-1-2008';'jan-1-2009';'jan-1-2010';'jan-1-2011'];
ValuationDate = StartDates;  
Compounding = 1;    

% define the RateSpec
RateSpec = intenvset('Rates', Rates, 'StartDates', StartDates, 'EndDates',...
EndDates, 'Compounding', Compounding);   

% use VolSpec to compute the interest-rate volatility
VolSpec=hjmvolspec('Constant',0.01);

% use TimeSpec to specify the structure of the time layout for the HJM interest-rate tree
TimeSpec = hjmtimespec(ValuationDate, EndDates, Compounding);

% build the HJM tree
HJMTree = hjmtree(VolSpec, RateSpec, TimeSpec); 

% use the following swaption arguments
ExerciseDates = '01-Jan-2008';
SwapSettlement = ExerciseDates;
SwapMaturity   = 'jan-1-2010';
Spread = [0];  
SwapReset = 1;   
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Basis  = 1;  
Principal = 100;  
OptSpec = 'call';    
Strike=0.05;   

% price the swaption

[Price, PriceTree] = swaptionbyhjm(HJMTree, OptSpec, Strike, ExerciseDates, ...
Spread, SwapSettlement, SwapMaturity,'SwapReset', SwapReset, ...
'Basis', Basis, 'Principal', Principal)

Price = 0.9296

PriceTree = struct with fields:
    FinObj: 'HJMPriceTree'
      tObs: [5x1 double]
     PBush: {[0.9296]  [1x1x2 double]  [1x2x2 double]  [1x4x2 double]  [0 ... ]}

Price a 1-Year Call Swaption with Receiving and Paying Legs Using an HJM Interest-Rate
Tree

This example shows how to price a 1-year call swaption with receiving and paying legs using an HJM
interest-rate tree. Assume that interest rate is fixed at 5% annually between the valuation date of the
tree until its maturity. Build a tree with the following data.

Rates = [ 0.05;0.05;0.05;0.05];  
StartDates = 'jan-1-2007';  
EndDates =['jan-1-2008';'jan-1-2009';'jan-1-2010';'jan-1-2011'];
ValuationDate = StartDates;  
Compounding = 1;

Define the RateSpec.

RateSpec = intenvset('Rates',Rates,'StartDates',StartDates,'EndDates',...
EndDates,'Compounding',Compounding);

Use VolSpec to compute the interest-rate volatility.

VolSpec=hjmvolspec('Constant',0.01);

Use TimeSpec to specify the structure of the time layout for the HJM interest-rate tree.

TimeSpec = hjmtimespec(ValuationDate,EndDates,Compounding);

Build the HJM tree.

HJMTree = hjmtree(VolSpec,RateSpec,TimeSpec);

Use the following swaption arguments

ExerciseDates = '01-Jan-2008';
SwapSettlement = ExerciseDates;
SwapMaturity   = 'jan-1-2010';
Spread = [0];  
SwapReset = [1 1];  % 1st column represents receiving leg, 2nd column represents paying leg  
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Basis  = [1 3];     % 1st column represents receiving leg, 2nd column represents paying leg 
Principal = 100;  
OptSpec = 'call';    
Strike=0.05;

Price the swaption.

[Price, PriceTree] = swaptionbyhjm(HJMTree,OptSpec,Strike,ExerciseDates, ...
Spread,SwapSettlement,SwapMaturity,'SwapReset',SwapReset, ...
'Basis',Basis,'Principal',Principal)

Price = 0.9296

PriceTree = struct with fields:
    FinObj: 'HJMPriceTree'
      tObs: [5x1 double]
     PBush: {[0.9296]  [1x1x2 double]  [1x2x2 double]  [1x4x2 double]  [0 ... ]}

Input Arguments
HJMTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using hjmtree.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vector with values 'call' or
'put'

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of character
vectors. For more information, see “More About” on page 11-1792.
Data Types: char | cell

Strike — Strike swap rate values
decimal

Strike swap rate values, specified as a NINST-by-1 vector.
Data Types: double

ExerciseDates — Exercise dates for swaption
serial date number | date character vector | cell array of date character vectors

Exercise dates for the swaption, specified as a NINST-by-1 vector or NINST-by-2 using serial date
numbers or date character vectors, depending on the option type.

• For a European option, ExerciseDates are a NINST-by-1 vector of exercise dates. Each row is
the schedule for one option. When using a European option, there is only one ExerciseDate on
the option expiry date.

• For an American option, ExerciseDates are a NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be exercised on any coupon date between or including the
pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1,
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the option can be exercised between the ValuationDate of the tree and the single listed
ExerciseDate.

Data Types: double | char | cell

Spread — Number of basis points over reference rate
numeric

Number of basis points over the reference rate, specified as a NINST-by-1 vector.
Data Types: double

Settle — Settlement date
serial date number | date character vector | cell array of date character vectors

Settlement date (representing the settle date for each swap), specified as a NINST-by-1 vector of
serial date numbers or date character vectors. The Settle date for every swaption is set to the
ValuationDate of the HJM tree. The swap argument Settle is ignored. The underlying swap starts
at the maturity of the swaption.
Data Types: double | char

Maturity — Maturity date for swap
serial date number | date character vector | cell array of date character vectors

Maturity date for each swap, specified as a NINST-by-1 vector of dates using serial date numbers or
date character vectors.
Data Types: double | char | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree] = swaptionbyhjm(HJMTree,OptSpec,
ExerciseDates,Spread,Settle,Maturity,'SwapReset',4,'Basis',5,'Principal',1000
0)

AmericanOpt — Option type
0 (European) (default) | integer with values 0 or 1

(Optional) Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and
NINST-by-1 positive integer flags with values:

• 0 — European
• 1 — American

Data Types: double

SwapReset — Reset frequency per year for underlying swap
1 (default) | numeric

Reset frequency per year for the underlying swap, specified as the comma-separated pair consisting
of 'SwapReset' and a NINST-by-1 vector or NINST-by-2 matrix representing the reset frequency per
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year for each leg. If SwapReset is NINST-by-2, the first column represents the receiving leg, while
the second column represents the paying leg.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis representing the basis used when annualizing the input forward rate tree for each
instrument, specified as the comma-separated pair consisting of 'Basis' and a NINST-by-1 vector or
NINST-by-2 matrix representing the basis for each leg. If Basis is NINST-by-2, the first column
represents the receiving leg, while the second column represents the paying leg.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

Notional principal amount, specified as the comma-separated pair consisting of 'Principal' and a
NINST-by-1 vector.
Data Types: double

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure obtained from using derivset.
Data Types: struct
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Output Arguments
Price — Expected prices of swaptions at time 0
vector

Expected prices of the swaptions at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing vectors of
swaption instrument prices and a vector of observation times for each node. Within PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.

More About
Call Swaption

A call swaption or payer swaption allows the option buyer to enter into an interest-rate swap in which
the buyer of the option pays the fixed rate and receives the floating rate.

Put Swaption

A put swaption or receiver swaption allows the option buyer to enter into an interest-rate swap in
which the buyer of the option receives the fixed rate and pays the floating rate.

See Also
hjmtree | instswaption | swapbyhjm

Topics
“Computing Instrument Prices” on page 2-81
“Swaption” on page 2-14
“Pricing Options Structure” on page A-2
“Understanding Interest-Rate Tree Models” on page 2-66
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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swaptionbyhw
Price swaption from Hull-White interest-rate tree

Syntax
[Price,PriceTree] = swaptionbyhw(HWTree,OptSpec,Strike,ExerciseDates,Spread,
Settle,Maturity)
[Price,PriceTree] = swaptionbyhw( ___ ,Name,Value)

Description
[Price,PriceTree] = swaptionbyhw(HWTree,OptSpec,Strike,ExerciseDates,Spread,
Settle,Maturity) prices swaption using a Hull-White tree.

[Price,PriceTree] = swaptionbyhw( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Price a 3-Year Put Swaption Using an HW Interest-Rate Tree

This example shows how to price a 3-year put swaption using an HW interest-rate tree with the
following data.

Rates =0.075 * ones (10,1);   
Compounding = 2;    
StartDates = ['jan-1-2007';'jul-1-2007';'jan-1-2008';'jul-1-2008';'jan-1-2009';...
'jul-1-2009';'jan-1-2010'; 'jul-1-2010';'jan-1-2011';'jul-1-2011'];    
EndDates =['jul-1-2007';'jan-1-2008';'jul-1-2008';'jan-1-2009';'jul-1-2009';...
'jan-1-2010';'jul-1-2010';'jan-1-2011';'jul-1-2011';'jan-1-2012'];      
ValuationDate = 'jan-1-2007';      

% define the RatesSpec
RateSpec = intenvset('Rates', Rates, 'StartDates', StartDates, 'EndDates',...
EndDates, 'Compounding', Compounding);  

% use HWVolSpec to compute the interest-rate volatility
Volatility = 0.05*ones(10,1);
AlphaCurve = 0.01*ones(10,1);
AlphaDates = EndDates;
HWVolSpec = hwvolspec(ValuationDate, EndDates, Volatility, AlphaDates, AlphaCurve);

% use HWTimeSpec to specify the structure of the time layout for an HW interest-rate tree
HWTimeSpec = hwtimespec(ValuationDate, EndDates, Compounding);

% build the HW tree
HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec); 

% use the following arguments for a 1-year swap and 3-year swaption
ExerciseDates = 'jan-1-2010';
SwapSettlement = ExerciseDates;
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SwapMaturity   = 'jan-1-2012';
Spread = 0;
SwapReset = 2 ; 
Principal = 100;
OptSpec = 'put';  
Strike= 0.04;
Basis=1;

% price the swaption
PriceSwaption = swaptionbyhw(HWTree, OptSpec, Strike, ExerciseDates, ...
Spread, SwapSettlement, SwapMaturity,'SwapReset', SwapReset, ...
'Basis', Basis,'Principal', Principal)

PriceSwaption = 2.9201

Price a 3-Year Put Swaption with Receiving and Paying Legs Using an HW Interest-Rate Tree

This example shows how to price a 3-year put swaption with receiving and paying legs using an HW
interest-rate tree with the following data.

Rates =0.075 * ones (10,1);   
Compounding = 2;    
StartDates = ['jan-1-2007';'jul-1-2007';'jan-1-2008';'jul-1-2008';'jan-1-2009';...
'jul-1-2009';'jan-1-2010'; 'jul-1-2010';'jan-1-2011';'jul-1-2011'];    
EndDates =['jul-1-2007';'jan-1-2008';'jul-1-2008';'jan-1-2009';'jul-1-2009';...
'jan-1-2010';'jul-1-2010';'jan-1-2011';'jul-1-2011';'jan-1-2012'];      
ValuationDate = 'jan-1-2007';

Define the RatesSpec.

RateSpec = intenvset('Rates', Rates, 'StartDates', StartDates, 'EndDates',...
EndDates, 'Compounding', Compounding);

Use HWVolSpec to compute the interest-rate volatility.

Volatility = 0.05*ones(10,1);
AlphaCurve = 0.01*ones(10,1);
AlphaDates = EndDates;
HWVolSpec = hwvolspec(ValuationDate, EndDates, Volatility, AlphaDates, AlphaCurve);

Use HWTimeSpec to specify the structure of the time layout for an HW interest-rate tree.

HWTimeSpec = hwtimespec(ValuationDate, EndDates, Compounding);

Build the HW tree.

HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec);

Use the following arguments for a 1-year swap and 3-year swaption

ExerciseDates = 'jan-1-2010';
SwapSettlement = ExerciseDates;
SwapMaturity   = 'jan-1-2012';
Spread = 0;
SwapReset = [2 2]; % 1st column represents receiving leg, 2nd column represents paying leg 
Principal = 100;
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OptSpec = 'put';  
Strike= 0.04;
Basis= [1 3];    % 1st column represents receiving leg, 2nd column represents paying leg

Price the swaption.

PriceSwaption = swaptionbyhw(HWTree, OptSpec, Strike, ExerciseDates, ...
Spread, SwapSettlement, SwapMaturity,'SwapReset', SwapReset, ...
'Basis', Basis,'Principal', Principal)

PriceSwaption = 2.9201

Input Arguments
HWTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using hwtree.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vector with values 'call' or
'put'

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of character
vectors. For more information, see “More About” on page 11-1798.
Data Types: char | cell

Strike — Strike swap rate values
decimal

Strike swap rate values, specified as a NINST-by-1 vector.
Data Types: double

ExerciseDates — Exercise dates for swaption
serial date number | date character vector | cell array of date character vectors

Exercise dates for the swaption, specified as a NINST-by-1 vector or NINST-by-2 using serial date
numbers or date character vectors, depending on the option type.

• For a European option, ExerciseDates are a NINST-by-1 vector of exercise dates. Each row is
the schedule for one option. When using a European option, there is only one ExerciseDate on
the option expiry date.

• For an American option, ExerciseDates are a NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be exercised on any coupon date between or including the
pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1,
the option can be exercised between the ValuationDate of the tree and the single listed
ExerciseDate.

Data Types: double | char | cell

Spread — Number of basis points over reference rate
numeric
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Number of basis points over the reference rate, specified as a NINST-by-1 vector.
Data Types: double

Settle — Settlement date
serial date number | date character vector | cell array of date character vectors

Settlement date (representing the settle date for each swap), specified as a NINST-by-1 vector of
serial date numbers or date character vectors. The Settle date for every swaption is set to the
ValuationDate of the HW tree. The swap argument Settle is ignored. The underlying swap starts
at the maturity of the swaption.
Data Types: double | char

Maturity — Maturity date for swap
serial date number | date character vector | cell array of date character vectors

Maturity date for each swap, specified as a NINST-by-1 vector of dates using serial date numbers or
date character vectors.
Data Types: double | char | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Price,PriceTree] = swaptionbyhw(HWTree,OptSpec,
ExerciseDates,Spread,Settle,Maturity,'SwapReset',4,'Basis',5,'Principal',1000
0)

AmericanOpt — Option type
0 (European) (default) | integer with values 0 or 1

(Optional) Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and
NINST-by-1 positive integer flags with values:

• 0 — European
• 1 — American

Data Types: double

SwapReset — Reset frequency per year for underlying swap
1 (default) | numeric

Reset frequency per year for the underlying swap, specified as the comma-separated pair consisting
of 'SwapReset' and a NINST-by-1 vector or NINST-by-2 matrix representing the reset frequency per
year for each leg. If SwapReset is NINST-by-2, the first column represents the receiving leg, while
the second column represents the paying leg.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13
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Day-count basis representing the basis used when annualizing the input forward rate tree for each
instrument, specified as the comma-separated pair consisting of 'Basis' and a NINST-by-1 vector or
NINST-by-2 matrix representing the basis for each leg. If Basis is NINST-by-2, the first column
represents the receiving leg, while the second column represents the paying leg.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

Notional principal amount, specified as the comma-separated pair consisting of 'Principal' and a
NINST-by-1 vector.
Data Types: double

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure obtained from using derivset.
Data Types: struct

Output Arguments
Price — Expected prices of swaptions at time 0
vector

Expected prices of the swaptions at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure
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Tree structure of instrument prices, returned as a MATLAB structure of trees containing vectors of
swaption instrument prices and a vector of observation times for each node. Within PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.

More About
Call Swaption

A call swaption or payer swaption allows the option buyer to enter into an interest-rate swap in which
the buyer of the option pays the fixed rate and receives the floating rate.

Put Swaption

A put swaption or receiver swaption allows the option buyer to enter into an interest-rate swap in
which the buyer of the option receives the fixed rate and pays the floating rate.

See Also
hwtree | instswaption | swapbyhw

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-81
“Calibrating Hull-White Model Using Market Data” on page 2-92
“Swaption” on page 2-14
“Pricing Options Structure” on page A-2
“Understanding Interest-Rate Tree Models” on page 2-66
“Supported Interest-Rate Instrument Functions” on page 2-3
“Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on page 1-
73

Introduced before R2006a
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swaptionbylg2f
Price European swaption using Linear Gaussian two-factor model

Syntax
Price = swaptionbylg2f(ZeroCurve,a,b,sigma,eta,rho,Strike,ExerciseDate,
Maturity)
Price = swaptionbylg2f( ___ ,Name,Value)

Description
Price = swaptionbylg2f(ZeroCurve,a,b,sigma,eta,rho,Strike,ExerciseDate,
Maturity) returns the European swaption price for a two-factor additive Gaussian interest-rate
model.

Price = swaptionbylg2f( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Price a European Swaption Using a Linear Gaussian Two-Factor Model

Define the ZeroCurve, a, b, sigma, eta, and rho parameters to compute the price of the swaption.

Settle = datenum('15-Dec-2007');
 
ZeroTimes = [3/12 6/12 1 5 7 10 20 30]';
ZeroRates = [0.033 0.034 0.035 0.040 0.042 0.044 0.048 0.0475]';
CurveDates = daysadd(Settle,360*ZeroTimes,1);
 
irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);
 
a = .07;
b = .5;
sigma = .01;
eta = .006;
rho = -.7;
 
Reset = 1;
ExerciseDate = daysadd(Settle,360*5,1);
Maturity = daysadd(ExerciseDate,360*[3;4],1);
Strike = .05;
  
Price = swaptionbylg2f(irdc,a,b,sigma,eta,rho,Strike,ExerciseDate,Maturity,'Reset',Reset)

Price = 2×1

    1.1869
    1.5590
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Input Arguments
ZeroCurve — Zero-curve for Linear Gaussian two-factor model
structure

Zero-curve for the Linear Gaussian two-factor model, specified using IRDataCurve or RateSpec.
Data Types: struct

a — Mean reversion for first factor for Linear Gaussian two-factor model
scalar

Mean reversion for first factor for the Linear Gaussian two-factor model, specified as a scalar.
Data Types: single | double

b — Mean reversion for second factor for Linear Gaussian two-factor model
scalar

Mean reversion for second factor for the Linear Gaussian two-factor model, specified as a scalar.
Data Types: single | double

sigma — Volatility for first factor for Linear Gaussian two-factor model
scalar

Volatility for first factor for the Linear Gaussian two-factor model, specified as a scalar.
Data Types: single | double

eta — Volatility for second factor for Linear Gaussian two-factor model
scalar

Volatility for second factor for the Linear Gaussian two-factor model, specified as a scalar.
Data Types: single | double

rho — Scalar correlation of the factors
scalar

Scalar correlation of the factors, specified as a scalar.
Data Types: single | double

Strike — Swaption strike price
nonnegative integer | vector of nonnegative integers

Swaption strike price, specified as a nonnegative integer using a NumSwaptions-by-1 vector.
Data Types: single | double

ExerciseDate — Swaption exercise dates
vector of serial date numbers | character vector of dates

Swaption exercise dates, specified as a NumSwaptions-by-1 vector of serial date numbers or date
character vectors.
Data Types: single | double | char | cell
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Maturity — Underlying swap maturity date
vector of serial date numbers | character vector of dates

Underlying swap maturity date, specified using a NumSwaptions-by-1 vector of serial date numbers
or date character vectors.
Data Types: single | double | char | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Price =
swaptionbylg2f(irdc,a,b,sigma,eta,rho,Strike,ExerciseDate,Maturity,'Reset',1,
'Notional',100,'OptSpec','call')

Reset — Frequency of swaption payments per year
2 (default) | positive integer from the set[1,2,3,4,6,12] | vector of positive integers from the set
[1,2,3,4,6,12]

Frequency of swaption payments per year, specified as the comma-separated pair consisting of
'Reset' and positive integers for the values 1,2,4,6,12 in a NumSwaptions-by-1 vector.
Data Types: single | double

Notional — Notional value of swaption
100 (default) | nonnegative integer | vector of nonnegative integers

Notional value of swaption, specified as the comma-separated pair consisting of 'Notional' and a
nonnegative integer using a NumSwaptions-by-1 vector of notional amounts.
Data Types: single | double

OptSpec — Option specification for the swaption
'call' (default) | character vector with value of 'call' or 'put' | cell array of character vectors
with values of 'call' or 'put'

Option specification for the swaption, specified as the comma-separated pair consisting of
'OptSpec' and a character vector or a NumSwaptions-by-1 cell array of character vectors with a
value of 'call' or 'put'.

A 'call' swaption or Payer swaption allows the option buyer to enter into an interest-rate swap in
which the buyer of the option pays the fixed rate and receives the floating rate.

A 'put' swaption or Receiver swaption allows the option buyer to enter into an interest-rate swap in
which the buyer of the option receives the fixed rate and pays the floating rate.
Data Types: char | cell

Output Arguments
Price — Swaption price
scalar | vector
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Swaption price, returned as a scalar or an NumSwaptions-by-1 vector.

More About
Call Swaption

A call swaption or payer swaption allows the option buyer to enter into an interest-rate swap in which
the buyer of the option pays the fixed rate and receives the floating rate.

Put Swaption

A put swaption or receiver swaption allows the option buyer to enter into an interest-rate swap in
which the buyer of the option receives the fixed rate and pays the floating rate.

Algorithms
The following defines the swaption price for a two-factor additive Gaussian interest-rate model, given
the ZeroCurve, a, b, sigma, eta, and rho parameters:

r(t) = x(t) + y(t) + ϕ(t)

dx(t) = − ax(t)dt + σdW1(t),   x(0) = 0

dy(t) = − by(t)dt + ηdW2(t),   y(0) = 0

where dW1(t)dW2(t) = ρdt is a two-dimensional Brownian motion with correlation ρ and ϕ is a
function chosen to match the initial zero curve.

References
[1] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer Finance, 2006.

See Also
capbylg2f | floorbylg2f | LinearGaussian2F

Topics
“Price Swaptions with Interest-Rate Models Using Simulation” on page 2-101
“Swaption” on page 2-14
“Supported Interest-Rate Instrument Functions” on page 2-3
“Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on page 1-
73

Introduced in R2013a
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swaptionbynormal
Price swaptions using Normal or Bachelier option pricing model

Syntax
Price = swaptionbynormal(RateSpec,OptSpec,Strike,Settle,ExerciseDates,
Maturity,Volatility)
Price = swaptionbynormal( ___ ,Name,Value)

Description
Price = swaptionbynormal(RateSpec,OptSpec,Strike,Settle,ExerciseDates,
Maturity,Volatility) prices swaptions using the Normal or Bachelier option pricing model.

Price = swaptionbynormal( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Price a Swaption Using the Normal Model

Define the zero curve, and create a RateSpec.

Settle = datenum('20-Jan-2016');
ZeroTimes = [.5 1 2 3 4 5 7 10 20 30]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = datemnth(Settle,12*ZeroTimes);
RateSpec = intenvset('StartDate',Settle,'EndDates',ZeroDates,'Rates',ZeroRates)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 2
             Disc: [10x1 double]
            Rates: [10x1 double]
         EndTimes: [10x1 double]
       StartTimes: [10x1 double]
         EndDates: [10x1 double]
       StartDates: 736349
    ValuationDate: 736349
            Basis: 0
     EndMonthRule: 1

Define the swaption.

ExerciseDate = datenum('20-Jan-2021');
Maturity = datenum('20-Jan-2026');
OptSpec = 'call';
LegReset = [1 1];

Compute the par swap rate.

[~,ParSwapRate] = swapbyzero(RateSpec,[NaN 0],Settle,Maturity,'LegReset',LegReset)
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ParSwapRate = 0.0216

Strike = ParSwapRate;
BlackVol = .3;
NormalVol = BlackVol*ParSwapRate;

Price with Black volatility.

Price = swaptionbyblk(RateSpec,OptSpec,Strike,Settle,ExerciseDate,Maturity,BlackVol)

Price = 5.9756

Price with Normal volatility.

Price_Normal = swaptionbynormal(RateSpec,OptSpec,Strike,Settle,ExerciseDate,Maturity,NormalVol)

Price_Normal = 5.5537

Price a Swaption with a Receiving and Paying Leg Using the Normal Model

Create a RateSpec.

Rate = 0.06;
Compounding  = -1;
ValuationDate = 'Jan-1-2010';
EndDates =   'Jan-1-2020'; 
Basis = 1; 
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', ValuationDate, ...
'EndDates', EndDates, 'Rates', Rate, 'Compounding', Compounding, 'Basis', Basis);

Define the swaption.

ExerciseDate = datenum('20-Jan-2021');
Maturity = datenum('20-Jan-2026');
Settle = 'Jan-1-2010';
OptSpec = 'call';
Strike = .09;
NormalVol = .03;
Reset = [1 4];  % 1st column represents receiving leg, 2nd column represents paying leg
Basis = [1 7];  % 1st column represents receiving leg, 2nd column represents paying leg

Price with Normal volatility.

Price_Normal = swaptionbynormal(RateSpec,OptSpec,Strike,Settle,ExerciseDate,Maturity,NormalVol,'Reset',Reset,'Basis',Basis)

Price_Normal = 5.9084

Price a Swaption Using swaptionbynormal and Compare to swaptionbyblk

Define the RateSpec.

Settle = datenum('20-Jan-2016');
ZeroTimes = [.5 1 2 3 4 5 7 10 20 30]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
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ZeroDates = datemnth(Settle,12*ZeroTimes);
RateSpec = intenvset('StartDate',Settle,'EndDates',ZeroDates,'Rates',ZeroRates)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 2
             Disc: [10x1 double]
            Rates: [10x1 double]
         EndTimes: [10x1 double]
       StartTimes: [10x1 double]
         EndDates: [10x1 double]
       StartDates: 736349
    ValuationDate: 736349
            Basis: 0
     EndMonthRule: 1

Define the swaption instrument and price with swaptionbyblk.

ExerciseDate = datenum('20-Jan-2021');
Maturity = datenum('20-Jan-2026');
OptSpec = 'call';

[~,ParSwapRate] = swapbyzero(RateSpec,[NaN 0],Settle,Maturity,'StartDate',ExerciseDate)

ParSwapRate = 0.0326

Strike = ParSwapRate;
BlackVol = .3;
NormalVol = BlackVol*ParSwapRate;

Price = swaptionbyblk(RateSpec,OptSpec,Strike,Settle,ExerciseDate,Maturity,BlackVol)

Price = 3.6908

Price the swaption instrument using swaptionbynormal.

Price_Normal = swaptionbynormal(RateSpec,OptSpec,Strike,Settle,ExerciseDate,Maturity,NormalVol)

Price_Normal = 3.7602

Price the swaption instrument using swaptionbynormal for a negative strike.

 Price_Normal = swaptionbynormal(RateSpec,OptSpec,-.005,Settle,ExerciseDate,Maturity,NormalVol)

Price_Normal = 16.3674

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.

If the discount curve for the paying leg is different than the receiving leg, RateSpec can be a NINST-
by-2 input variable of RateSpecs, with the second input being the discount curve for the paying leg.
If only one curve is specified, then it is used to discount both legs.
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Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vector with values 'call' or
'put'

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of character
vectors.

A 'call' swaption, or Payer swaption, allows the option buyer to enter into an interest-rate swap in
which the buyer of the option pays the fixed rate and receives the floating rate.

A 'put' swaption, or Receiver swaption, allows the option buyer to enter into an interest-rate swap
in which the buyer of the option receives the fixed rate and pays the floating rate.
Data Types: char | cell

Strike — Strike swap rate values
decimal

Strike swap rate values, specified as a NINST-by-1 vector of decimal values.
Data Types: double

Settle — Settlement date
serial date number | date character vector | cell array of date character vectors | datetime object |
string object

Settlement date (representing the settle date for each swaption), specified as a NINST-by-1 vector of
serial date numbers, or cell array of date character vectors, datetime objects, or string objects.
Settle must not be later than ExerciseDates.

The Settle date input for swaptionbynormal is the valuation date on which the swaption (an
option to enter into a swap) is priced. The swaption buyer pays this price on this date to hold the
swaption.
Data Types: double | char | cell | datetime | string

ExerciseDates — Dates on which swaption expires and underlying swap starts
serial date number | date character vector | cell array of date character vectors | datetime object

Dates on which the swaption expires and the underlying swap starts, specified as a NINST-by-1 vector
of serial date numbers, or cell array of date character vectors, datetime objects, or string objects.
There is only one ExerciseDate on the option expiry date. This is also the StartDate of the
underlying forward swap.
Data Types: double | char | cell | datetime | string

Maturity — Maturity date for each forward swap
serial date number | date character vector | cell array of date character vectors | datetime object

Maturity date for each forward swap, specified as a NINST-by-1 vector of dates using serial date
numbers, cell array of date character vectors, datetime objects, or string objects.
Data Types: double | char | cell | datetime | string

Volatility — Volatilities values
numeric
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Volatilities values (for normal volatility), specified as a NINST-by-1 vector of numeric values.

For more information on the Normal model, see “Work with Negative Interest Rates Using Functions”
on page 2-18.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Price =
swaptionbynormal(OISCurve,OptSpec,Strike,Settle,ExerciseDate,Maturity,NormalV
ol,'Reset',4)

Reset — Reset frequency per year for underlying forward swap
1 (default) | numeric

Reset frequency per year for the underlying forward swap, specified as the comma-separated pair
consisting of 'Reset' and a NINST-by-1 vector or NINST-by-2 matrix representing the reset
frequency per year for each leg. If Reset is NINST-by-2, the first column represents the receiving
leg, while the second column represents the paying leg.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis of the instrument representing the basis used when annualizing the input term
structure, specified as the comma-separated pair consisting of 'Basis' and a NINST-by-1 vector or
NINST-by-2 matrix representing the basis for each leg. If Basis is NINST-by-2, the first column
represents the receiving leg, while the second column represents the paying leg.

Values are:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
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• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

Notional principal amount, specified as the comma-separated pair consisting of 'Principal' and a
NINST-by-1 vector.
Data Types: double

ProjectionCurve — Rate curve used in projecting future cash flows
if ProjectionCurve is not specified, then RateSpec is used both for discounting cash flows and
projecting future cash flows (default) | structure

The rate curve to be used in projecting the future cash flows, specified as the comma-separated pair
consisting of 'ProjectionCurve' and a rate curve structure. This structure must be created using
intenvset. Use this optional input if the forward curve is different from the discount curve.
Data Types: struct

Output Arguments
Price — Prices for swaptions at time 0
vector

Prices for the swaptions at time 0, returned as a NINST-by-1 vector of prices.

More About
Call Swaption

A Call swaption or Payer swaption allows the option buyer to enter into an interest rate swap in which
the buyer of the option pays the fixed rate and receives the floating rate.

Put Swaption

A Put swaption or Receiver swaption allows the option buyer to enter into an interest rate swap in
which the buyer of the option receives the fixed rate and pays the floating rate.

See Also
swaptionbyblk | capbynormal | floorbynormal | intenvset

Topics
“Swaption” on page 2-14
“Work with Negative Interest Rates Using Functions” on page 2-18
“Supported Interest-Rate Instrument Functions” on page 2-3
“Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on page 1-
73
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External Websites
How to Price Interest Rate Options with Negative Interest Rates (3 min 05 sec)

Introduced in R2017a
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time2date
Dates from time and frequency

Syntax
Maturity = time2date(Settle,Times)
Maturity = time2date( ___ ,Compounding,Basis,EndMonthRule)

Description
Maturity = time2date(Settle,Times) computes dates corresponding to compounded rate
quotes between Settle and time factors.

Maturity = time2date( ___ ,Compounding,Basis,EndMonthRule) add additional optional
arguments.

Examples

Dates From Time and Frequency

This example shows how to compute dates from time and frequency.

Settle = '1-Sep-2002';
Maturity = datenum(['31-Aug-2005'; '28-Feb-2006'; '15-Jun-2006'; 
                 '31-Dec-2006']);
Compounding = 2;
Basis = 0;
EndMonthRule = 1;
Times = date2time(Settle, Maturity, Compounding, Basis, EndMonthRule)

Times = 4×1

    5.9945
    6.9945
    7.5738
    8.6576

Dates_calc = time2date(Settle, Times, Compounding, Basis, EndMonthRule)

Dates_calc = 4×1

      732555
      732736
      732843
      733042

datestr(Dates_calc)

ans = 4x11 char array
    '31-Aug-2005'
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    '28-Feb-2006'
    '15-Jun-2006'
    '31-Dec-2006'

Input Arguments
Settle — Settlement date
date character vector | serial date number

Settlement date, specified as a scalar serial date number or date character vector.
Data Types: char | double

Times — Time factors corresponding to Compounding
vector

Time factors corresponding to Compounding, specified as an N-by-1 vector.

Compounding — Rate at which the input zero rates were compounded when annualized
2 (default) | integer with value of 1, 2, 3, 4, 6, 12, 365, or -1

(Optional) Rate at which the input zero rates were compounded when annualized, specified as a
scalar integer value.

• If Compounding = 1, 2, 3, 4, 6, 12:

Disc = (1 + Z/F)^(-T), where F is the compounding frequency, Z is the zero rate, and T is the
time in periodic units; for example, T = F is one year.

• If Compounding = 365:

Disc = (1 + Z/F)^(-T), where F is the number of days in the basis year and T is a number of
days elapsed computed by basis.

• If Compounding = −1:

Disc = exp(-T*Z), where T is time in years.

Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis, specified as a scalar or an N-by-1 vector using the following values:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
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• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer [0,1]

(Optional) End-of-month rule flag, specified as a scalar or an N-by-1 vector of end-of-month rules.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: logical

Output Arguments
Maturity — Maturity dates corresponding to compounded rate quotes between Settle and
time factors
serial date number

Maturity dates corresponding to compounded rate quotes between Settle and time factors,
returned as a scalar or an N-by-1 vector.

The time2date function is the inverse of date2time.

See Also
cftimes | date2time | cfamounts | disc2rate | rate2disc

Topics
“Modeling the Interest-Rate Term Structure” on page 2-57
“Interest-Rate Term Conversions” on page 2-53
“Interest Rates Versus Discount Factors” on page 2-48
“Understanding the Interest-Rate Term Structure” on page 2-48

Introduced before R2006a
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treepath
Entries from node of recombining binomial tree

Syntax
Values = treepath(Tree,BranchList)

Description
Values = treepath(Tree,BranchList) extracts entries of a node of a recombining binomial
tree. The node path is described by the sequence of branchings taken, starting at the root. The top
branch is number one, the second-to-top is two, and so on. Set the branch sequence to zero to obtain
the entries at the root node.

Examples

Extract Entries of a Node of a Recombining Binomial Tree

Create a BDT tree by loading the example file.

load deriv.mat;
FwdRates = treepath(BDTTree.FwdTree, [1 2 1])

FwdRates = 4×1

    1.1000
    1.0979
    1.1377
    1.1183

This returns the rates at the tree nodes located by taking the up branch, then the down branch, and
finally the up branch again.

You can visualize this with the treeviewer function.

treeviewer(BDTTree)
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Input Arguments
Tree — Recombining binomial tree or trinomial tree
struct

Recombining binomial tree or trinomial tree specified as a struct that is created using one of the
following functions:

• hjmtree
• bdttree
• hwtree
• bktree
• crrtree
• eqptree
• lrtree
• cirtree
• stttree
• itttree

Data Types: struct
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BranchList — Number of paths by path length
matrix

Number of paths (NUMPATHS) by path length (PATHLENGTH), specified as a matrix containing the
sequence of branchings.
Data Types: double

Output Arguments
Values — Retrieved entries of a recombining tree
matrix

Retrieved entries of a recombining tree, returned a number of values (NUMVALS)-by-NUMPATHS
matrix.

See Also
mktree | treeshape

Topics
“Graphical Representation of Trees” on page 2-220
“Use treeviewer to Examine HWTree and PriceTree When Pricing European Callable Bond” on page
2-195
“Overview of Interest-Rate Tree Models” on page 2-44

Introduced before R2006a
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treeshape
Shape of recombining binomial tree

Syntax
[NumLevels,NumPos,IsPriceTree] = treeshape(Tree)

Description
[NumLevels,NumPos,IsPriceTree] = treeshape(Tree) returns information on a recombining
binomial tree's shape.

Examples

Determine Shape of Recombining Binomial Tree

This example shows how to obtain information on a recombining binomial tree's shape.

Create a BDT tree by loading the example file.

load deriv.mat; 

With treeviewer you can see the general shape of the BDT interest-rate tree.

treeviewer(BDTTree)
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Use treeshape to display the shape of the binomial tree.

[NumLevels, NumPos, IsPriceTree] = treeshape(BDTTree.FwdTree) 

NumLevels = 4

NumPos = 1×4

     1     1     1     1

IsPriceTree = logical
   0

Input Arguments
Tree — Recombining binomial tree
struct

Recombining binomial tree, specified as a struct that is created using one of the following functions:

• hjmtree
• bdttree
• hwtree
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• bktree
• cirtree

Data Types: struct

Output Arguments
NumLevels — Number of time levels of tree
numeric

Number of time levels of tree, returned as a numeric.

NumPos — Length of the state vectors in each level
vector

Length of the state vectors in each level, returned as a 1-by-NUMLEVELS vector.

IsPriceTree — Indicates if final horizontal branch is present in the tree
logical

Indicates if final horizontal branch is present in the tree, returned as a Boolean.

See Also
mktree | treepath

Topics
“Graphical Representation of Trees” on page 2-220
“Use treeviewer to Examine HWTree and PriceTree When Pricing European Callable Bond” on page
2-195
“Overview of Interest-Rate Tree Models” on page 2-44

Introduced before R2006a
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treeviewer
Tree information

Syntax
treeviewer(Tree)
treeviewer(PriceTree,InstSet)
treeviewer(CFTree,InstSet)

Description
treeviewer(Tree) displays an interest rate tree, stock price tree, or money-market tree.

treeviewer(PriceTree,InstSet) displays a tree of instrument prices.

If you provide the name of an instrument set (InstSet) and you have named the instruments using
the field Name, the treeviewer display identifies the instrument being displayed with its name. (See
Example 3 on page 11-1822 for a description.) If you do not provide the optional InstSet input
argument, the instruments are identified by their sequence number in the instrument set. (See
Example 6 on page 11-1825 for a description.)

treeviewer(CFTree,InstSet) displays a cash flow tree that has been created with swapbybdt or
swapbyhjm. If you provide the name of an instrument set (InstSet) containing cash flow names, the
treeviewer display identifies the instrument being displayed with its name. (See Example 3 on page
11-1822 for a description.) If the optional InstSet argument is not present, the instruments are
identified by their sequence number in the instrument set. See Example 6 on page 11-1825 for a
description.)

Examples
Display an HJM Interest-Rate Tree

load deriv.mat
treeviewer(HJMTree)

The treeviewer function displays the structure of an HJM tree in the left pane. The tree
visualization in the right pane is blank.
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To visualize the actual interest-rate tree, go to the Tree Visualization pane and clickPath(the
default) and Diagram. Now, select the first path by clicking the last node (t = 3) of the upper
branch.

The entire upper path is highlighted in red.

To complete the process, select a second path by clicking the last node (t = 3) of another branch.
The second path is highlighted in purple. The final display looks like this.
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Alternative Forms of Display

The Tree Visualization pane allows you to select alternative ways to display tree data. For example,
if you select Path and Table as your visualization choices, the final display above instead appears in
tabular form.

To see a plot of interest rates along the chosen branches, click Path and Plot in the Tree
Visualization pane.
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With Plot selected, rising interest rates are shown on the upper branch and declining interest rates
on the lower.

Finally, if you clicked Node and Children under Tree Visualization, you restrict the data displayed
to just the selected parent node and its children.

With Node and Children selected, the choices under Visualization are unavailable.

Display a BDT Interest-Rate Tree

load deriv.mat
treeviewer(BDTTree)
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The treeviewer function displays the structure of a BDT tree in the left pane. The tree visualization
in the right pane is blank.

To visualize the actual interest-rate tree, go to the Tree Visualization pane and click Path (the
default) and Diagram. Now, select the first path by clicking the first node of the up branch (t = 1).
Continue by clicking the down branch at the next node (t = 2). The two figures below show the
treeviewer path diagrams for these selections.

Continue clicking all nodes in succession until you reach the end of the branch. The entire path you
have selected is highlighted in red.

Select a second path by clicking the first node of the lower branch (t = 1). Continue clicking lower
nodes as you did on the first branch. The second branch is highlighted in purple. The final display
looks like this.
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Display an HJM Price Tree for Named Instruments

load deriv.mat
[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet);
treeviewer(PriceTree, HJMInstSet)

Display a BDT Price Tree for Named Instruments

load deriv.mat
[Price, PriceTree] = bdtprice(BDTTree, BDTInstSet);
treeviewer(PriceTree, BDTInstSet)
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Display an HJM Price Tree with Renamed Instruments
load deriv.mat
[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet);
Names = {'Bond1', 'Bond2', 'Option', 'Fixed','Float', 'Cap',... 
'Floor', 'Swap'};
treeviewer(PriceTree, Names)

Display an HJM Price Tree Using Default Instrument Names (Numbers)

load deriv.mat
[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet);
treeviewer(PriceTree)
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Input Arguments
Tree — Interest-rate tree, stock price tree, or money-market tree
interest-rate tree structure | stock price tree structure | money-market tree structure

Interest-rate tree, stock price tree, or money-market tree, specified using the associated tree
function.

Interest-rate trees:

• Black-Derman-Toy (BDTTree) obtained from bdttree
• Black-Karasinski (BKTree) obtained from bktree
• Heath-Jarrow-Morton (HJMTree) obtained from hjmtree
• Hull-White (HWTree) obtained from hwtree
• Cox-Ingersoll-Ross (CIRTree) obtained from cirtree

Money market trees:

• Black-Derman-Toy (BDTMMktTree) obtained from mmktbybdt for a money-market tree from a BDT
interest-rate tree.

• Heath-Jarrow-Morton (HJMMMktTree) obtained from mmktbyhjm for a money-market tree from an
HJM interest-rate tree.

Note Money market trees cannot be created from BK or HW interest-rate trees.

Stock price trees:

• Cox-Ross-Rubinstein (CRRTree) obtained from crrtree
• Implied Trinomial tree (ITTTree) obtained from itttree
• Standard Trinomial tree (STTTree) obtained from stttree
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• Leisen-Reimer stock tree (LRTree) obtained from lrtree
• Equal probabilities (EQPTree) obtained from eqptree

Cash flow trees:

• Black-Derman-Toy (BDTCFTree) obtained as output from the swap function swapbybdt
• Heath-Jarrow-Morton (HJMCFTree) obtained as output from the swap function swapbyhjm

Note For the function swapbybdt, which uses a recombining binomial tree, this structure
contains only NaNs because cash flows cannot be accurately calculated at every tree node for
floating-rate notes.

Data Types: struct

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, specified as:

• Black-Derman-Toy (BDTPriceTree) obtained from the portfolio function bdtprice or the
individual functions, such as bondbybdt, capbybdt, and so on.

• Black-Karasinski (BKPriceTree) obtained from the portfolio function bkprice or the individual
functions, such as bondbybk, capbybk, and so on.

• Cox-Ingersoll-Ross (CIRPriceTree) obtained from the portfolio function cirprice or the
individual functions, such as bondbycir, capbycir, and so on.

• Heath-Jarrow-Morton (HJMPriceTree) obtained from the portfolio function hjmprice or the
individual functions, such as bondbyhjm, capbyhjm, and so on.

• Hull-White (HWPriceTree) obtained from the portfolio function hwprice or the individual
functions, such as bondbyhw, capbyhw, and so on.

• Leisen-Reimer (LRPriceTree) obtained from the individual function optstockbylr.
• Cox-Ross-Rubinstein (CRRPriceTree) obtained from the portfolio function crrprice or the

individual functions, such as asianbycrr, barrierbycrr, and so on.
• Equal probabilities (EQPPriceTree) obtained from the portfolio function eqpprice or the

individual functions, such as asianbyeqp, barrierbyeqp, and so on.
• Implied Trinomial tree (ITTPriceTree) obtained from the portfolio function ittprice or the

individual functions, such as asianbyitt, barrierbyitt, and so on.
• Standard trinomial tree (STTPriceTree) obtained from the portfolio function sttprice or the

individual functions, such as asianbystt, barrierbystt, and so on.

Data Types: struct

CFTree — Tree of swap cash flows
structure

CFTree is a tree of swap cash flows, specified when you create cash flow trees by executing the
Black-Derman-Toy (obtained as output from the swap function swapbybdt) and Heath-Jarrow-Morton
(swapbyhjm) swap functions. (Black-Derman-Toy cash flow trees contain only NaNs.)
Data Types: struct
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InstSet — Variable containing a collection of instruments whose prices or cash flows are
contained in a tree
structure

(Optional) Variable containing a collection of instruments whose prices or cash flows are contained in
a tree, specified using instadd. To display the names of the instruments, the field Name should exist
in InstSet. If InstSet is not passed, treeviewer uses default instruments names (numbers) when
displaying prices or cash flows.
Data Types: struct

More About
Treeviewer Conventions

treeviewer price tree diagrams follow the convention that increasing prices appear on the upper
branch of a tree and, so, decreasing prices appear on the lower branch.

Conversely, for interest rate displays, decreasing interest rates appear on the upper branch (prices
are rising) and increasing interest rates on the lower branch (prices are falling).

Using Treeviewer

treeviewer provides an interactive display of prices or interest rates.

The treeviewer display is activated by clicking the nodes along the price or interest rate path
shown in the left pane when the function is called.

• For HJM trees, you select the endpoints of the path, and treeviewer displays all data from
beginning to end.

• With recombining trees, such as BDT, BK, HW, and CIR you must click each node in succession
from the beginning (t = 1) to the last node (t = n). Do not include the root node, the node at
t = 0. If you do not click the nodes in the proper order, you are reminded with the message

Parent of selected node must be selected.

Note The Help button is not available for treeviewer in MATLAB Online.

See Also
bdttree | bktree | cirtree | eqptree | hjmtree | hwtree | instadd | itttree | stttree |
lrtree | mmktbybdt | mmktbyhjm | swapbybdt | swapbyhjm

Topics
“Graphical Representation of Trees” on page 2-220
“Use treeviewer to Examine HWTree and PriceTree When Pricing European Callable Bond” on page
2-195
“Overview of Interest-Rate Tree Models” on page 2-44

Introduced before R2006a
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trintreepath
Entries from node of recombining trinomial tree

Syntax
Values = trintreepath(TrinTree,BranchList)

Description
Values = trintreepath(TrinTree,BranchList) extracts entries of a node of a recombining
trinomial tree. The node path is described by the sequence of branchings taken, starting at the root.
The top branch is number 1, the middle branch is 2, and the bottom branch is 3. Set the branch
sequence to 0 to obtain the entries at the root node.

Examples

Extract Entries of a Node of a Recombining Trinomial Tree

Create a HW tree by loading the example file.

load deriv.mat;
FwdRates = trintreepath(HWTree, [1 2 3])

FwdRates = 4×1

    1.0279
    1.0528
    1.0652
    1.0591

This returns the rates at the tree nodes located by starting at 0, taking the up branch at the first
node, the middle branch at the second node, and finally the bottom branch at the third node.

You can visualize this with the treeviewer function.

treeviewer(HWTree)
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Input Arguments
TrinTree — Recombining price or interest-rate trinomial tree
struct

Recombining price or interest-rate trinomial tree, specified as a struct that is created using one of the
following functions:

• hjmtree
• bdttree
• hwtree
• bktree
• cirtree

Data Types: struct

BranchList — Number of paths by path length
matrix

Number of paths (NUMPATHS) by path length (PATHLENGTH), specified as a matrix containing the
sequence of branchings.
Data Types: double
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Output Arguments
Values — Retrieved entries of a recombining tree
matrix

Retrieved entries of a recombining tree, returned a number of values (NUMVALS)-by-NUMPATHS
matrix.

See Also
mktrintree

Topics
“Graphical Representation of Trees” on page 2-220
“Overview of Interest-Rate Tree Models” on page 2-44

Introduced before R2006a

 trintreepath

11-1831



trintreeshape
Shape of recombining trinomial tree

Syntax
[NumLevels,NumPos,NumStates] = treeshape(TrinTree)

Description
[NumLevels,NumPos,NumStates] = treeshape(TrinTree) returns information on a
recombining trinomial tree's shape.

Examples

Determine Shape of Recombining Trinomial Tree

This example shows how to obtain information on a recombining trinomial tree's shape.

Create a HW tree by loading the example file.

load deriv.mat; 

With treeviewer you can see the general shape of the HW interest-rate tree.

treeviewer(HWTree)
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Use trintreeshape to display the shape of the binomial tree.

[NumLevels, NumPos, IsPriceTree] = trintreeshape(HWTree) 

NumLevels = 4

NumPos = 1×4

     1     1     1     1

IsPriceTree = 1×4

     1     3     5     5

Input Arguments
TrinTree — Recombining price or interest-rate trinomial tree
struct

Recombining price or interest-rate trinomial tree, specified as a struct that is created using one of the
following functions:

• hjmtree
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• bdttree
• hwtree
• bktree
• cirtree

Data Types: struct

Output Arguments
NumLevels — Number of time levels of tree
numeric

Number of time levels of tree, returned as a numeric.

NumPos — Length of the state vectors in each level
vector

Length of the state vectors in each level, returned as a 1-by-NUMLEVELS vector.

NumStates — Number of state vectors in each level
vector

Number of state vectors in each level, returned as a 1-by-NUMLEVELS vector.

See Also
mktrintree | trintreepath

Topics
“Graphical Representation of Trees” on page 2-220
“Overview of Interest-Rate Tree Models” on page 2-44

Introduced before R2006a
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agencyoas
Determine option-adjusted spread of callable bond using Agency OAS model

Syntax
OAS = agencyoas(ZeroData,Price,CouponRate,Settle,Maturity,Vol,CallDate)
OAS = agencyoas( ___ ,Name,Value)

Description
OAS = agencyoas(ZeroData,Price,CouponRate,Settle,Maturity,Vol,CallDate)
computes OAS of a callable bond given price using the Agency OAS model.

OAS = agencyoas( ___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to the input arguments in the previous syntax.

Examples

Compute the Agency OAS Value

This example shows how to compute the agency OAS value.

Settle = datenum('20-Jan-2010');
ZeroRates = [.07 .164 .253 1.002 1.732 2.226 2.605 3.316 ...
3.474 4.188 4.902]'/100;
ZeroDates = daysadd(Settle,360*[.25 .5 1 2 3 4 5 7 10 20 30],1);
ZeroData = [ZeroDates ZeroRates];
 
Maturity = datenum('30-Dec-2013');
CouponRate = .022;
Price = 99.155;
Vol = .5117;
CallDate = datenum('30-Dec-2010');
OAS = agencyoas(ZeroData, Price, CouponRate, Settle, Maturity, Vol, CallDate)

OAS = 8.5837

Input Arguments
ZeroData — Zero curve
matrix

Zero curve, specified as an numRates-by-2 matrix where the first column is zero dates and the
second column is the accompanying zero rates.
Data Types: double

Price — Prices
vector
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Prices specified as an numBonds-by-1 vector.
Data Types: double

CouponRate — Coupon rates
vector in decimals

Coupon rates, specified as an numBonds-by-1 vector in decimals.
Data Types: double

Settle — Settlement date
serial date number

Settlement date, specified as a scalar serial date number.

Note The Settle date must be an identical settlement date for all the bonds and the zero curve.

Data Types: double

Maturity — Maturity date
serial date number

Maturity date, specified as a numBonds-by-1 vector.
Data Types: double

Vol — Volatilities
vector in decimals

Volatilities specified as a scalar or an numBonds-by-1 vector in decimals. Vol is the volatility of
interest rates corresponding to the time of the CallDate.
Data Types: double

CallDate — Call dates
vector

Call dates, specified as an numBonds-by-1 vector.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: OAS =
agencyoas(ZeroData,Price,CouponRate,Settle,Maturity,Vol,CallDate,'Basis',7,'F
ace',1000)

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13
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Day-count basis, specified as the comma-separated pair consisting of 'Basis' and a N-by-1 vector
using the following values:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

CurveBasis — Curve basis
0 (actual/actual) (default) | integer from 0 to 13

Curve basis, specified as the comma-separated pair consisting of 'CurveBasis' and a N-by-1 vector
using the following values:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double
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CurveCompounding — Compounding frequency of the zero curve
2 (semiannual) (default) | possible values include: –1, 0, 1, 2, 3, 4, 6, 12.

Compounding frequency of the zero curve, specified as the comma-separated pair consisting of
'CurveCompounding' and a N-by-1 vector using the supported values: –1, 0, 1, 2, 3, 4, 6, and 12.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
nonnegative integer [0, 1] using a N-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

Face — face value of bond
100 (default) | vector

Face value of bond, specified as the comma-separated pair consisting of 'Face' and an N-by-1 vector
of numeric values.
Data Types: double

FirstCouponDate — Irregular first coupon date
if you do not specify a FirstCouponDate, the cash flow payment dates are determined from other
inputs (default) | serial date number

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using a serial date numbers.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes
precedence in determining the coupon payment structure.
Data Types: double

InterpMethod — Interpolation method
'linear' (default) | 'cubic','pchip'

Interpolation method, specified as the comma-separated pair consisting of 'InterpMethod' and a N-
by-1 vector using a supported value. For more information on interpolation methods, see interp1.
Data Types: char

IssueDate — Bond issue date
if you do not specify an IssueDate, the cash flow payment dates are determined from other inputs
(default) | serial date number

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a N-by-1
vector using serial date numbers.
Data Types: double

LastCouponDate — Irregular last coupon date
serial date number
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Irregular last coupon date, specified as the comma-separated pair consisting of 'LastCouponDate'
and a N-by-1 vector using serial date numbers

In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the
coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate,
regardless of where it falls, and is followed only by the bond's maturity cash flow date.
Data Types: double

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and an N-by-1
vector. Values for Period are 0, 1, 2, 3, 4, 6, and 12.
Data Types: double

StartDate — Forward starting date of payments
Settle date (default) | serial date number

Forward starting date of payments (the date from which a bond cash flow is considered), specified as
the comma-separated pair consisting of 'StartDate' and a N-by-1 vector using serial date numbers.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: double

Output Arguments
OAS — Option-adjusted spreads
matrix

Option-adjusted spreads, returned as an numBonds-by-1 matrix.

More About
Agency OAS Model

The BMA European Callable Securities Formula provides a standard methodology for computing
price and option-adjusted spread for European Callable Securities (ECS).

References
[1] SIFMA, The BMA European Callable Securities Formula, https://www.sifma.org.

See Also
agencyprice

Topics
“Computing the Agency OAS for Bonds” on page 6-2
“Agency Option-Adjusted Spreads” on page 6-2
“Supported Interest-Rate Instrument Functions” on page 2-3
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agencyprice
Price callable bond using Agency OAS model

Syntax
Price = agencyprice(ZeroData,OAS,CouponRate,Settle,Maturity,Vol,CallDate)
Price = agencyprice( ___ ,Name,Value)

Description
Price = agencyprice(ZeroData,OAS,CouponRate,Settle,Maturity,Vol,CallDate)
computes the price for a callable bond, given OAS, using the Agency OAS model.

Price = agencyprice( ___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to the input arguments in the previous syntax.

Examples

Compute the Agency Price

This example shows how to compute the agency Price.

Settle = datenum('20-Jan-2010');
ZeroRates = [.07 .164 .253 1.002 1.732 2.226 2.605 3.316 ...
3.474 4.188 4.902]'/100;
ZeroDates = daysadd(Settle,360*[.25 .5 1 2 3 4 5 7 10 20 30],1);
ZeroData = [ZeroDates ZeroRates];
 
Maturity = datenum('30-Dec-2013');
CouponRate = .022;
OAS = 6.53/10000;
Vol = .5117;
CallDate = datenum('30-Dec-2010');
Price = agencyprice(ZeroData, OAS, CouponRate, Settle, Maturity, Vol, CallDate)

Price = 99.4212

Input Arguments
ZeroData — Zero curve
matrix

Zero curve, specified as an numRates-by-2 matrix where the first column is zero dates and the
second column is the accompanying zero rates.
Data Types: double

OAS — Option-adjusted spreads
vector in decimals
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Option-adjusted spreads, specified as an numBonds-by-1 vector expressed as a decimal (that is, 50
basis points is entered as .005).
Data Types: double

CouponRate — Coupon rates
vector in decimals

Coupon rates, specified as an numBonds-by-1 vector in decimals.
Data Types: double

Settle — Settlement date
serial date number

Settlement date, specified as a scalar serial date number.

Note The Settle date must be an identical settlement date for all the bonds and the zero curve.

Data Types: double

Maturity — Maturity date
serial date number

Maturity date, specified as a numBonds-by-1 vector.
Data Types: double

Vol — Volatilities
vector in decimals

Volatilities specified as a scalar or an numBonds-by-1 vector in decimals. Vol is the volatility of
interest rates corresponding to the time of the CallDate.
Data Types: double

CallDate — Call dates
vector

Call dates, specified as an numBonds-by-1 vector.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Price =
agencyprice(ZeroData,OAS,CouponRate,Settle,Maturity,Vol,CallDate,'Basis',7,'F
ace',1000)

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13
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Day-count basis, specified as the comma-separated pair consisting of 'Basis' and a N-by-1 vector
using the following values:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

CurveBasis — Curve basis
0 (actual/actual) (default) | integer from 0 to 13

Curve basis, specified as the comma-separated pair consisting of 'CurveBasis' and a N-by-1 vector
using the following values:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double
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CurveCompounding — Compounding frequency of the zero curve
2 (semiannual) (default) | possible values include: –1, 0, 1, 2, 3, 4, 6, 12.

Compounding frequency of the zero curve, specified as the comma-separated pair consisting of
'CurveCompounding' and a N-by-1 vector using the supported values: –1, 0, 1, 2, 3, 4, 6, and 12.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
nonnegative integer [0, 1] using a N-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

Face — face value of bond
100 (default) | vector

Face value of bond, specified as the comma-separated pair consisting of 'Face' and an N-by-1 vector
of numeric values.
Data Types: double

FirstCouponDate — Irregular first coupon date
if you do not specify a FirstCouponDate, the cash flow payment dates are determined from other
inputs (default) | serial date number

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using a serial date numbers.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes
precedence in determining the coupon payment structure.
Data Types: double

InterpMethod — Interpolation method
'linear' (default) | 'cubic','pchip'

Interpolation method, specified as the comma-separated pair consisting of 'InterpMethod' and a N-
by-1 vector using a supported value. For more information on interpolation methods, see interp1.
Data Types: char

IssueDate — Bond issue date
if you do not specify an IssueDate, the cash flow payment dates are determined from other inputs
(default) | serial date number

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a N-by-1
vector using serial date numbers.
Data Types: double

LastCouponDate — Irregular last coupon date
serial date number
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Irregular last coupon date, specified as the comma-separated pair consisting of 'LastCouponDate'
and a N-by-1 vector using serial date numbers

In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the
coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate,
regardless of where it falls, and is followed only by the bond's maturity cash flow date.
Data Types: double

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and an N-by-1
vector. Values for Period are 0, 1, 2, 3, 4, 6, and 12.
Data Types: double

StartDate — Forward starting date of payments
Settle date (default) | serial date number

Forward starting date of payments (the date from which a bond cash flow is considered), specified as
the comma-separated pair consisting of 'StartDate' and a N-by-1 vector using serial date numbers.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: double

Output Arguments
Price — Prices
matrix

Prices returned as an numBonds-by-1 matrix.

More About
Agency OAS Model

The BMA European Callable Securities Formula provides a standard methodology for computing
price and option-adjusted spread for European Callable Securities (ECS).

References
[1] SIFMA, The BMA European Callable Securities Formula, https://www.sifma.org.

See Also
agencyoas

Topics
“Computing the Agency OAS for Bonds” on page 6-2
“Agency Option-Adjusted Spreads” on page 6-2
“Supported Interest-Rate Instrument Functions” on page 2-3
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bkcall
Price European call option on bonds using Black model

Syntax
CallPrice = bkcall(Strike,ZeroData,Sigma,BondData,Settle,Expiry)
CallPrice = bkcall( ___ ,Period,Basis,EndMonthRule,InterpMethod,
StrikeConvention)

Description
CallPrice = bkcall(Strike,ZeroData,Sigma,BondData,Settle,Expiry) computes prices
of European call options using Black's model.

CallPrice = bkcall( ___ ,Period,Basis,EndMonthRule,InterpMethod,
StrikeConvention) adds optional input arguments for Period, Basis, EndMonthRule,
InterpMethod, and StrikeConvention.

Examples

Price a European Call Option On Bonds Using the Black Model

This example shows how to price a European call option on bonds using the Black model. Consider a
European call option on a bond maturing in 9.75 years. The underlying bond has a clean price of
$935, a face value of $1000, and pays 10% semiannual coupons. Since the bond matures in 9.75
years, a $50 coupon will be paid in 3 months and again in 9 months. Also, assume that the annualized
volatility of the forward bond price is 9%. Furthermore, suppose the option expires in 10 months and
has a strike price of $1000, and that the annualized continuously compounded risk-free discount rates
for maturities of 3, 9, and 10 months are 9%, 9.5%, and 10%, respectively.

% specify the option information
Settle       =  '15-Mar-2004';
Expiry       =  '15-Jan-2005'; % 10 months from settlement
Strike       =  1000;
Sigma        =  0.09;
Convention   =  [0 1]';

% specify the interest-rate environment
ZeroData     = [datenum('15-Jun-2004')  0.09   -1;  % 3 months
                datenum('15-Dec-2004')  0.095  -1;  % 9 months
                datenum(Expiry)         0.10   -1]; % 10 months
            
% specify the bond information           
CleanPrice   =  935;
CouponRate   =  0.1;
Maturity     = '15-Dec-2013';  % 9.75 years from settlement
Face         =  1000;
BondData     = [CleanPrice CouponRate datenum(Maturity) Face];
Period       =  2;
Basis        =  1;
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% call Black's model
CallPrices = bkcall(Strike, ZeroData, Sigma, BondData, Settle,... 
Expiry, Period, Basis, [], [], Convention)

CallPrices = 2×1

    9.4873
    7.9686

When the strike price is the dirty price (Convention = 0), the call option value is $9.49. When the
strike price is the clean price (Convention = 1), the call option value is $7.97.

Input Arguments
Strike — Strike price
numeric

Strike price, specified as a scalar numeric or an NOPT-by-1 vector of strike prices.
Data Types: double

ZeroData — Zero rate information used to discount future cash flows
matrix

Zero rate information used to discount future cash flows, specified using a two-column (optionally
three-column) matrix containing zero (spot) rate information used to discount future cash flows.

• Column 1 — Serial maturity date associated with the zero rate in the second column.
• Column 2 — Annualized zero rates, in decimal form, appropriate for discounting cash flows

occurring on the date specified in the first column. All dates must occur after Settle (dates must
correspond to future investment horizons) and must be in ascending order.

• Column 3 — (optional) Annual compounding frequency. Values are 1 (annual), 2 (semiannual,
default), 3 (three times per year), 4 (quarterly), 6 (bimonthly), 12 (monthly), and -1 (continuous).

If cash flows occur beyond the dates spanned by ZeroData, the input zero curve, the appropriate
zero rate for discounting such cash flows is obtained by extrapolating the nearest rate on the curve
(that is, if a cash flow occurs before the first or after the last date on the input zero curve, a flat curve
is assumed).

In addition, you can use the method getZeroRates for an IRDataCurve object with a Dates
property to create a vector of dates and data acceptable for bkcall. For more information, see
“Converting an IRDataCurve or IRFunctionCurve Object” on page 9-30.
Data Types: double

Sigma — Annualized price volatilities required by Black model
numeric

Annualized price volatilities required by the Black model, specified as a scalar or an NOPT-by-1 vector.
Data Types: struct
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BondData — Characteristics of underlying bonds
vector

Characteristics of underlying bonds, specified as a row vector with three (optionally four) columns or
NOPT-by-3 (optionally NOPT-by-4) matrix specifying characteristics of underlying bonds in the form:

[CleanPrice CouponRate Maturity Face]

• CleanPrice is the price excluding accrued interest.
• CouponRate is the decimal coupon rate.
• Maturity is the bond maturity date in serial date number format.
• Face is the face value of the bond. If unspecified, the face value is assumed to be 100.

Data Types: double

Settle — Settlement date
date character vector | serial date number

Settlement date, specified as a serial date number or date character vector. Settle also represents
the starting reference date for the input zero curve.
Data Types: char | double

Expiry — Option maturity date
date character vector | serial date number

Option maturity date, specified as a scalar or an NOPT-by-1 vector of serial date numbers or cell array
of date character vectors.
Data Types: char | cell | double

Period — Number of coupons per year for underlying bond
2 (semiannual) (default) | integer with value 0, 1, 2, 3, 4, 6, or 12

(Optional) Number of coupons per year for the underlying bond, specified as an integer with
supported values of 0, 1, 2, 3, 4, 6, and 12.
Data Types: double

Basis — Day-count basis of underlying bonds
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis of underlying bonds, specified as a scalar or an NOPT-by-1 vector using the
following values:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
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• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer [0,1]

(Optional) End-of-month rule flag, specified as a scalar or an NOPT-by-1 vector of end-of-month rules.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: logical

InterpMethod — Zero curve interpolation method
1 (linear interpolation) (default) | integer with value 0, 1, or 2

(Optional) Zero curve interpolation method for cash flows that do not fall on a date found in the
ZeroData spot curve, specified as a scalar integer. InterpMethod is used to interpolate the
appropriate zero discount rate. Available interpolation methods are (0) nearest, (1) linear, and (2)
cubic. For more information on interpolation methods, see interp1.
Data Types: double

StrikeConvention — Option contract strike price convention
0 (default) | integer with value 0 or 1

(Optional) Option contract strike price convention, specified as a scalar or an NOPT-by-1 vector.

StrikeConvention = 0 (default) defines the strike price as the cash (dirty) price paid for the
underlying bond.

StrikeConvention = 1 defines the strike price as the quoted (clean) price paid for the underlying
bond. When evaluating Black's model, the accrued interest of the bond at option expiration is added
to the input strike price.
Data Types: double

Output Arguments
CallPrice — Price for European call option on bonds derived from Black model
vector
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Price for European call option on bonds derived from the Black model, returned as a NOPT-by-1
vector.

References
[1] Hull, John C. Options, Futures, and Other Derivatives. 5th Edition, Prentice Hall, 2003, pp. 287–

288, 508–515.

See Also
bkput

Topics
“Analysis of Bond Futures” on page 7-12
“Fitting the Diebold Li Model” on page 2-151
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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bkcaplet
Price interest-rate caplet using Black model

Note bkcaplet has been removed. Use capbyblk instead.

Syntax
CapPrices = bkcaplet(CapData,FwdRates,ZeroPrice,Settle,StartDate,EndDate,Sigma)

Arguments
CapData Number of caps (NCAP)-by-2 matrix containing cap rates and bases:

[CapRates Basis].

Values for bases are:

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
FwdRates Scalar or NCAP-by-1 vector containing forward rates in decimal. FwdRates

accrue on the same basis as CapRates.
ZeroPrice Scalar or NCAP-by-1 vector containing zero coupon prices with maturities

corresponding to those of each cap in CapData, per $100 nominal value.
Settle Scalar or NCAP-by-1 vector of identical elements containing settlement date of

caplets.
StartDate Scalar or NCAP-by-1 vector containing start dates of the caplets.
EndDate Scalar or NCAP-by-1 vector containing maturity dates of caplets.
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Sigma Scalar or NCAP-by-1 vector containing volatility of forward rates in decimal,
corresponding to each caplet.

Description
CapPrices =
bkcaplet(CapData,FwdRates,ZeroPrice,Settle,StartDate,EndDate,Sigma) computes the
prices of interest-rate caplets for every $100 face value of principal.

Examples

Compute the Price of Interest-Rate Caplets for Every $100 Face Value of Principal

This example shows how to compute the price of interest-rate caplets for every $100 face value of
principal. Given a notional amount of $1,000,000, compute the value of a caplet on October 15, 2002
that starts on October 15, 2003 and ends on January 15, 2004.

CapData = [0.08, 1];
FwdRates = 0.07;
ZeroPrice = 100*exp(-0.065*1.25);
Settle = datenum('15-Oct-2002');
BeginDates = datenum('15-Oct-2003');
EndDates = datenum('15-Jan-2004');
Sigma = 0.20;

% because the caplet is $100 notional, divide $1,000,000 by $100
Notional   = 1000000/100;

CapPrice = Notional*bkcaplet(CapData, FwdRates, ZeroPrice, ...
Settle, BeginDates, EndDates, Sigma)

Error using bkcaplet (line 117)
BKCAPLET has been removed. Use CAPBYBLK instead.

See Also
Topics
“Analysis of Bond Futures” on page 7-12
“Fitting the Diebold Li Model” on page 2-151
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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bkfloorlet
Price interest-rate floorlet using Black model

Note bkfloorlet has been removed. Use floorbyblk instead.

Syntax
FloorPrices = bkfloorlet(FloorData,FwdRates,ZeroPrice,Settle,StartDate,EndDate,Sigma)

Arguments
FloorData Number of floors (NFLR)-by-2 matrix containing floor rates and bases:

[FloorRate Basis].

Values for bases are:

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
FwdRates Scalar or NFLR-by-1 vector containing forward rates in decimal. FwdRates

accrue on the same basis as FloorRates.
ZeroPrice Scalar or NFLR-by-1 vector containing zero coupon prices with maturities

corresponding to those of each floor in FloorData, per $100 nominal value.
Settle Scalar or NFLR-by-1 vector of identical elements containing settlement date of

floorlets.
StartDate Scalar or NFLR-by-1 vector containing start dates of the floorlets.
EndDate Scalar or NFLR-by-1 vector containing maturity dates of floorlets.
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Sigma Scalar or NFLR-by-1 vector containing volatility of forward rates in decimal,
corresponding to each floorlet.

Description
FloorPrices =
bkfloorlet(FloorData,FwdRates,ZeroPrice,Settle,StartDate,EndDate,Sigma)
computes the prices of interest-rate floorlets for every $100 of notional value.

Examples

Price an Interest-Rate Floorlet For Every $100 of Notional Value Using the Black Model

This example shows how to price an interest-rate floorlet for every $100 of notional value using the
Black model. Given a notional amount of $1,000,000, compute the value of a floorlet on October 15,
2002 that starts on October 15, 2003 and ends on January 15, 2004.

FloorData = [0.08, 1];
FwdRates = 0.07;
ZeroPrice = 100*exp(-0.065*1.25);
Settle = datenum('15-Oct-2002');
BeginDates = datenum('15-Oct-2003');
EndDates = datenum('15-Jan-2004');
Sigma = 0.20;

% because floorlet is $100 notional, divide $1,000,000 by $100
Notional = 1000000/100;

FloorPrice = Notional*bkfloorlet(FloorData, FwdRates, ...
ZeroPrice, Settle, BeginDates, EndDates, Sigma)

Error using bkfloorlet (line 115)
BKFLOORLET has been removed. Use FLOORBYBLK instead.

See Also
Topics
“Analysis of Bond Futures” on page 7-12
“Fitting the Diebold Li Model” on page 2-151
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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bkput
Price European put option on bonds using Black model

Syntax
PutPrice = bkput(Strike,ZeroData,Sigma,BondData,Settle,Expiry)
PutPrice = bkput( ___ ,Period,Basis,EndMonthRule,InterpMethod,StrikeConvention)

Description
PutPrice = bkput(Strike,ZeroData,Sigma,BondData,Settle,Expiry) computes prices of
European put options using a Black model.

PutPrice = bkput( ___ ,Period,Basis,EndMonthRule,InterpMethod,StrikeConvention)
adds optional input arguments for Period, Basis, EndMonthRule, InterpMethod, and
StrikeConvention.

Examples

Price European Put Options On Bonds Using the Black Model

This example shows how to price European put options on bonds using the Black model. Consider a
European put option on a bond maturing in 10 years. The underlying bond has a clean price of
$122.82, a face value of $100, and pays 8% semiannual coupons. Also, assume that the annualized
volatility of the forward bond yield is 20%. Furthermore, suppose the option expires in 2.25 years and
has a strike price of $115, and that the annualized continuously compounded risk free zero (spot)
curve is flat at 5%. For a hypothetical settlement date of March 15, 2004, the following code
illustrates the use of Black's model to duplicate the put prices in Example 22.2 of the Hull reference.
In particular, it illustrates how to convert a broker's yield volatility to a price volatility suitable for
Black's model.

% Specify the option information.
Settle       =  '15-Mar-2004';
Expiry       =  '15-Jun-2006';  % 2.25 years from settlement
Strike       =  115;
YieldSigma   =  0.2;
Convention   =  [0; 1];

% Specify the interest-rate environment. Since the
% zero curve is flat, interpolation into the curve always returns
% 0.05. Thus, the following curve is not unique to the solution.
ZeroData     = [datenum('15-Jun-2004') 0.05   -1;
                datenum('15-Dec-2004') 0.05   -1;
                datenum(Expiry)        0.05   -1];

% Specify the bond information.
CleanPrice   =  122.82;
CouponRate   =  0.08;
Maturity     = '15-Mar-2014';  % 10 years from settlement
Face         =  100;

11 Functions

11-1856



BondData     = [CleanPrice CouponRate datenum(Maturity) Face];
Period       =  2;  % semiannual coupons
Basis        =  1;  % 30/360 day-count basis

% Convert a broker's yield volatility quote to a price volatility 
% required by Black's model. To duplicate Example 22.2 in Hull, 
% first compute the periodic (semiannual) yield to maturity from 
% the clean bond price.
Yield  = bndyield(CleanPrice, CouponRate, Settle, Maturity,... 
Period, Basis);

% Compute the duration of the bond at option expiration. Most       
% fixed-income sensitivity analyses use the modified duration      
% statistic to examine the impact of small changes in periodic         
% yields on bond prices. However, Hull's example operates in        
% continuous time (annualized instantaneous volatilities and 
% continuously compounded zero yields for discounting coupons). 
% To duplicate Hull's results, use the second output of BNDDURY, 
% the Macaulay duration.
[Modified, Macaulay] = bnddury(Yield, CouponRate, Expiry,... 
Maturity, Period, Basis);

% Convert the yield-to-maturity from a periodic to a 
% continuous yield.
Yield  = Period .* log(1 + Yield./Period);

% Convert the yield volatility to a price volatility via 
% Hull's Equation 22.6 (page 514).
PriceSigma = Macaulay .* Yield .* YieldSigma;

% Finally, call Black's model. 
PutPrices  = bkput(Strike, ZeroData, PriceSigma, BondData,... 
Settle, Expiry, Period, Basis, [], [], Convention)

PutPrices = 2×1

    1.7838
    2.4071

When the strike price is the dirty price (Convention = 0), the call option value is $1.78. When the
strike price is the clean price (Convention = 1), the call option value is $2.41.

Input Arguments
Strike — Strike price
numeric

Strike price, specified as a scalar numeric or an NOPT-by-1 vector of strike prices.
Data Types: double

ZeroData — Zero rate information used to discount future cash flows
matrix

Zero rate information used to discount future cash flows, specified using a two-column (optionally
three-column) matrix containing zero (spot) rate information used to discount future cash flows.
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• Column 1 — Serial maturity date associated with the zero rate in the second column.
• Column 2 — Annualized zero rates, in decimal form, appropriate for discounting cash flows

occurring on the date specified in the first column. All dates must occur after Settle (dates must
correspond to future investment horizons) and must be in ascending order.

• Column 3 — (optional) Annual compounding frequency. Values are 1 (annual), 2 (semiannual,
default), 3 (three times per year), 4 (quarterly), 6 (bimonthly), 12 (monthly), and -1 (continuous).

If cash flows occur beyond the dates spanned by ZeroData, the input zero curve, the appropriate
zero rate for discounting such cash flows is obtained by extrapolating the nearest rate on the curve
(that is, if a cash flow occurs before the first or after the last date on the input zero curve, a flat curve
is assumed).

In addition, you can use the method getZeroRates for an IRDataCurve object with a Dates
property to create a vector of dates and data acceptable for bkput. For more information, see
“Converting an IRDataCurve or IRFunctionCurve Object” on page 9-30.
Data Types: double

Sigma — Annualized price volatilities required by Black model
numeric

Annualized price volatilities required by the Black model, specified as a scalar or an NOPT-by-1 vector.
Data Types: struct

BondData — Characteristics of underlying bonds
vector

Characteristics of underlying bonds, specified as a row vector with three (optionally four) columns or
NOPT-by-3 (optionally NOPT-by-4) matrix specifying characteristics of underlying bonds in the form:

[CleanPrice CouponRate Maturity Face]

• CleanPrice is the price excluding accrued interest.
• CouponRate is the decimal coupon rate.
• Maturity is the bond maturity date in serial date number format.
• Face is the face value of the bond. If unspecified, the face value is assumed to be 100.

Data Types: double

Settle — Settlement date
date character vector | serial date number

Settlement date, specified as a serial date number or date character vector. Settle also represents
the starting reference date for the input zero curve.
Data Types: char | double

Expiry — Option maturity date
date character vector | serial date number

Option maturity date, specified as a scalar or an NOPT-by-1 vector of serial date numbers or cell array
of date character vectors.
Data Types: char | cell | double
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Period — Number of coupons per year for underlying bond
2 (semiannual) (default) | integer with value 0, 1, 2, 3, 4, 6, or 12

(Optional) Number of coupons per year for the underlying bond, specified as an integer with
supported values of 0, 1, 2, 3, 4, 6, and 12.
Data Types: double

Basis — Day-count basis of underlying bonds
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis of underlying bonds, specified as a scalar or an NOPT-by-1 vector using the
following values:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer [0,1]

(Optional) End-of-month rule flag, specified as a scalar or an NOPT-by-1 vector of end-of-month rules.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: logical

InterpMethod — Zero curve interpolation method
1 (linear interpolation) (default) | integer with value 0, 1, or 2

(Optional) Zero curve interpolation method for cash flows that do not fall on a date found in the
ZeroData spot curve, specified as a scalar integer. InterpMethod is used to interpolate the
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appropriate zero discount rate. Available interpolation methods are (0) nearest, (1) linear, and (2)
cubic. For more information on interpolation methods, see interp1.
Data Types: double

StrikeConvention — Option contract strike price convention
0 (default) | integer with value 0 or 1

(Optional) Option contract strike price convention, specified as a scalar or an NOPT-by-1 vector.

StrikeConvention = 0 (default) defines the strike price as the cash (dirty) price paid for the
underlying bond.

StrikeConvention = 1 defines the strike price as the quoted (clean) price paid for the underlying
bond. When evaluating Black's model, the accrued interest of the bond at option expiration is added
to the input strike price.
Data Types: double

Output Arguments
PutPrice — Price for European put option on bonds derived from Black model
vector

Price for European put option on bonds derived from the Black model, returned as a NOPT-by-1
vector.

References
[1] Hull, John C. Options, Futures, and Other Derivatives. 5th Edition, Prentice Hall, 2003, pp. 287–

288, 508–515.

See Also
bkcall

Topics
“Analysis of Bond Futures” on page 7-12
“Fitting the Diebold Li Model” on page 2-151
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced before R2006a
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bndfutimprepo
Implied repo rates for bond future given price

Syntax
ImpRepo = bndfutimprep(Price,FutSettle,FutPrice,Delivery,ConvFactor,
CouponRate,Maturity)
ImpRepo = bndfutimprep( ___ ,Name,Value)

Description
ImpRepo = bndfutimprep(Price,FutSettle,FutPrice,Delivery,ConvFactor,
CouponRate,Maturity) computes the implied repo rate for a bond future given the price of a bond,
the bond properties, the price of the bond future, and the bond conversion factor. The default
behavior is that the coupon reinvestment rate matches the repo rate. However, you can specify a
separate reinvestment rate using optional inputs.

ImpRepo = bndfutimprep( ___ ,Name,Value) specifies options using one or more optional
name-value pair arguments in addition to the input arguments in the previous syntax.

Examples

Compute the Repo Rate For a Bond Future

This example shows how to compute the repo rate for a bond future using the following data.

bndfutimprepo(129,98,'9/21/2000','12/29/2000',1.3136,.0875,'8/15/2020')

ans = 0.0584

Input Arguments
Price — Bond prices
vector

Bond prices, specified as an numBonds-by-1 vector in decimals.
Data Types: double

FutPrice — Future prices
vector

Future prices, specified as an numBonds-by-1 vector.
Data Types: double | cell

FutSettle — Future settlement dates
vector
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Future settlement dates, specified as an numBonds-by-1 vector of serial date numbers or a cell array
of character vectors.
Data Types: double | cell

Delivery — Future delivery dates
vector

Future delivery dates, specified as an numBonds-by-1 vector.
Data Types: double | cell

ConvFactor — Bond conversion factors
vector

Bond conversion factors, specified as an numBonds-by-1 vector. For more information, see
convfactor.
Data Types: double

CouponRate — Coupon rates
vector

Coupon rates, specified as an numBonds-by-1 vector of numeric decimals.
Data Types: double

Maturity — Maturity dates
vector

Maturity dates, specified as an numBonds-by-1 vector of serial date numbers or a cell array of
character vectors.
Data Types: double | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: ImpRepo =
bndfutimprepo(Price,FutPrice,FutSettle,Delivery,ConvFactor,CouponRate,Maturit
y,'Basis',5,'Face',1000,'Period',4)

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13

Day count basis, specified as the comma-separated pair consisting of 'Basis' and a scalar integer
from 0 to 13.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
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• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

EndMonthRule — End-of-month rule flag for generating floorlet dates
1 (in effect) (default) | scalar of nonnegative integer [0,1]

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
scalar with a nonnegative integer [0, 1].

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

Face — Face value of the bond
100 (default) | scalar numeric

Face value of the bond, specified as the comma-separated pair consisting of 'Face' and a scalar
numeric. Face has no impact on key rate duration.
Data Types: double

FirstCouponDate — Irregular first coupon date
if you do not specify a FirstCouponDate, the cash flow payment dates are determined from other
inputs (default) | serial date number | date character vector

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a scalar date using a serial date number or a date character vector.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes
precedence in determining the coupon payment structure.
Data Types: double | char

IssueDate — Bond issue date
if you do not specify an IssueDate, the cash flow payment dates are determined from other inputs
(default) | serial date number | date character vector

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a scalar date
using a serial date number or a date character vector.
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Data Types: double | char

LastCouponDate — Irregular last coupon date
serial date number | date character vector

Irregular last coupon date, specified as the comma-separated pair consisting of 'LastCouponDate'
and a scalar date using a serial date number or a date character vector.

In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the
coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate,
regardless of where it falls, and is followed only by the bond's maturity cash flow date.
Data Types: double | char

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a scalar
integer. Values for Period are 0, 1, 2, 3, 4, 6, and 12.
Data Types: double

ReinvestBasis — Day count basis for reinvestment rate
identical to RepoBasis (default) | integer from 0 to 13

Day count basis for the reinvestment rate, specified as the comma-separated pair consisting of
'ReinvestBasis' and a scalar integer from 0 to 13.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

ReinvestRate — Underlying bond annual coupon
scalar decimal numeric

Underlying bond annual coupon, specified as the comma-separated pair consisting of
'ReinvestRate' and a scalar decimal numeric.
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Data Types: double

RepoBasis — Day count basis for repo rate
2 (actual/360) (default) | integer from 0 to 13

Day count basis for repo rate, specified as the comma-separated pair consisting of 'RepoBasis' and
a scalar integer from 0 to 13.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

StartDate — Forward starting date of payments
Settle date (default) | serial date number | date character vector

Forward starting date of payments (the date from which a bond cash flow is considered), specified as
the comma-separated pair consisting of 'StartDate' and a scalar date using a serial date number
or a date character vector.
Data Types: double

Output Arguments
ImpRepo — Implied repo rate
vector

Implied repo rate, or the repo rate that would produce the price input, returned as numBonds-by-1
vector.

References
[1] Burghardt, G., T. Belton, M. Lane, and J. Papa. The Treasury Bond Basis. McGraw-Hill, 2005.

[2] Krgin, Dragomir. Handbook of Global Fixed Income Calculations. John Wiley & Sons, 2002.
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See Also
bndfutprice | convfactor

Topics
“Analysis of Bond Futures” on page 7-12
“Fitting the Diebold Li Model” on page 2-151
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced in R2009b
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bndfutprice
Price bond future given repo rates

Syntax
[FutPrice,AccrInt] = bndfutprice(RepoRatePrice,FutSettle,Delivery,ConvFactor,
CouponRate,Maturity)
[FutPrice,AccrInt] = bndfutprice( ___ ,Name,Value)

Description
[FutPrice,AccrInt] = bndfutprice(RepoRatePrice,FutSettle,Delivery,ConvFactor,
CouponRate,Maturity) computes the price of a bond futures contract for one or more bonds given
a repo rate, and bond properties, including the bond conversion factor. The default behavior is that
the coupon reinvestment rate matches the repo rate. However, you can specify a separate
reinvestment rate using optional arguments.

[FutPrice,AccrInt] = bndfutprice( ___ ,Name,Value) specifies options using one or more
optional name-value pair arguments in addition to the input arguments in the previous syntax.

Examples

Compute the Price For a Bond Future

This example shows how to compute the price for a bond future using the following data.

bndfutprice(.064, 129, '9/21/2000','12/29/2000', 1.3136, .0875, '8/15/2020')

ans = 98.1516

Input Arguments
RepoRate — Repo rates
vector

Repo rates, specified as an numBonds-by-1 vector in decimals.
Data Types: double

Price — Bond prices
vector

Bond prices, specified as an numBonds-by-1 vector in decimals.
Data Types: double

FutSettle — Future settlement date
scalar
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Future settlement date, specified as scalar date using a serial date number or a date character vector.
Data Types: double | char

Delivery — Future delivery dates
vector

Future delivery dates, specified as an numBonds-by-1 vector.
Data Types: double | cell

ConvFactor — Bond conversion factors
vector

Bond conversion factors, specified as an numBonds-by-1 vector. For more information, see
convfactor.
Data Types: double

CouponRate — Coupon rates
vector

Coupon rates, specified as an numBonds-by-1 vector of numeric decimals.
Data Types: double

Maturity — Maturity dates
vector

Maturity dates, specified as an numBonds-by-1 vector of serial date numbers or a cell array of
character vectors.
Data Types: double | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [FutPrice,AccrInt] =
bndfutprice(RepoRate,Price,FutSettle,Delivery,ConvFactor,CouponRate,Maturity,
'Basis',5,'Face',1000,'Period',4)

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13

Day count basis, specified as the comma-separated pair consisting of 'Basis' and a scalar integer
from 0 to 13.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
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• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

EndMonthRule — End-of-month rule flag for generating floorlet dates
1 (in effect) (default) | scalar of nonnegative integer [0,1]

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
scalar with a nonnegative integer [0, 1].

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

IssueDate — Bond issue date
if you do not specify an IssueDate, the cash flow payment dates are determined from other inputs
(default) | serial date number | date character vector

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a scalar date
using a serial date number or a date character vector.
Data Types: double | char

Face — Face value of the bond
100 (default) | scalar numeric

Face value of the bond, specified as the comma-separated pair consisting of 'Face' and a scalar
numeric. Face has no impact on key rate duration.
Data Types: double

FirstCouponDate — Irregular first coupon date
if you do not specify a FirstCouponDate, the cash flow payment dates are determined from other
inputs (default) | serial date number | date character vector

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a scalar date using a serial date number or a date character vector.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes
precedence in determining the coupon payment structure.
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Data Types: double | char

LastCouponDate — Irregular last coupon date
serial date number | date character vector

Irregular last coupon date, specified as the comma-separated pair consisting of 'LastCouponDate'
and a scalar date using a serial date number or a date character vector.

In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the
coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate,
regardless of where it falls, and is followed only by the bond's maturity cash flow date.
Data Types: double | char

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a scalar
integer. Values for Period are 0, 1, 2, 3, 4, 6, and 12.
Data Types: double

ReinvestBasis — Day count basis for reinvestment rate
identical to RepoBasis (default) | integer from 0 to 13

Day count basis for the reinvestment rate, specified as the comma-separated pair consisting of
'ReinvestBasis' and a scalar integer from 0 to 13.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

ReinvestRate — Underlying bond annual coupon
scalar decimal numeric

Underlying bond annual coupon, specified as the comma-separated pair consisting of
'ReinvestRate' and a scalar decimal numeric.
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Data Types: double

RepoBasis — Day count basis for repo rate
2 (actual/360) (default) | integer from 0 to 13

Day count basis for repo rate, specified as the comma-separated pair consisting of 'RepoBasis' and
a scalar integer from 0 to 13.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

StartDate — Forward starting date of payments
Settle date (default) | serial date number | date character vector

Forward starting date of payments (the date from which a bond cash flow is considered), specified as
the comma-separated pair consisting of 'StartDate' and a scalar date using a serial date number
or a date character vector.
Data Types: double

Output Arguments
FutPrice — Quoted futures price, per $100 notional
vector

Quoted futures price, per $100 notional, returned as numBonds-by-1 vector.

AccrInt — Accrued interest due at delivery date, per $100 notional
vector

Accrued interest due at delivery date, per $100 notional, returned as numBonds-by-1 vector.
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References
[1] Burghardt, G., T. Belton, M. Lane, and J. Papa. The Treasury Bond Basis. McGraw-Hill, 2005.

[2] Krgin, Dragomir. Handbook of Global Fixed Income Calculations. John Wiley & Sons, 2002.

See Also
bndfutimprepo | convfactor

Topics
“Analysis of Bond Futures” on page 7-12
“Fitting the Diebold Li Model” on page 2-151
“Supported Interest-Rate Instrument Functions” on page 2-3

Introduced in R2009b
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bootstrap
Bootstrap interest-rate curve from market data

Syntax
DCurve = IRDataCurve.bootstrap(Type,Settle,InstrumentTypes,Instruments)
DCurve = IRDataCurve.bootstrap( ___ ,Name,Value)

Description
DCurve = IRDataCurve.bootstrap(Type,Settle,InstrumentTypes,Instruments)
bootstraps an interest-rate curve from market data. The dates of the bootstrapped curve correspond
to the maturity dates of the input instruments.

DCurve = IRDataCurve.bootstrap( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Use the bootstrap Method to Create an IRDataCurve Object

In this bootstrapping example, InstrumentTypes, Instruments, and a Settle date are defined:

InstrumentTypes = {'Deposit';'Deposit';...
'Futures';'Futures';'Futures';'Futures';'Futures';'Futures';...
'Swap';'Swap';'Swap';'Swap';};

Instruments = [datenum('08/10/2007'),datenum('09/17/2007'),.0532000; ...
datenum('08/10/2007'),datenum('11/17/2007'),.0535866; ...
datenum('08/08/2007'),datenum('19-Dec-2007'),9485; ...
datenum('08/08/2007'),datenum('19-Mar-2008'),9502; ...
datenum('08/08/2007'),datenum('18-Jun-2008'),9509.5; ...
datenum('08/08/2007'),datenum('17-Sep-2008'),9509; ...
datenum('08/08/2007'),datenum('17-Dec-2008'),9505.5; ...
datenum('08/08/2007'),datenum('18-Mar-2009'),9501; ...
datenum('08/08/2007'),datenum('08/08/2014'),.0530; ...
datenum('08/08/2007'),datenum('08/08/2019'),.0551; ...
datenum('08/08/2007'),datenum('08/08/2027'),.0565; ...
datenum('08/08/2007'),datenum('08/08/2037'),.0566];

CurveSettle = datenum('08/10/2007');

Use the bootstrap method to create an IRDataCurve object.

bootModel = IRDataCurve.bootstrap('Forward', CurveSettle, ...
InstrumentTypes, Instruments,'InterpMethod','pchip');

To create the plot for the bootstrapped market data:

PlottingDates = (datenum('08/11/2007'):30:CurveSettle+365*25)';
plot(PlottingDates, getParYields(bootModel, PlottingDates),'r')
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ylim([0 .06])
datetick

Use the bootstrap Method to Create an IRDataCurve Object That Includes Bonds

In this bootstrapping example, InstrumentTypes, Instruments, and a Settle date are defined:

CurveSettle = datenum('8-Mar-2010');

InstrumentTypes = {'Deposit';'Deposit';'Deposit';'Deposit';...
    'Futures';'Futures';'Futures';'Futures';'Swap';'Swap';'Bond';'Bond'};

Instruments = [datenum('8-Mar-2010'),datenum('8-Apr-2010'),.003; ...
    datenum('8-Mar-2010'),datenum('8-Jun-2010'),.005; ...
    datenum('8-Mar-2010'),datenum('8-Sep-2010'),.007; ...
    datenum('8-Mar-2010'),datenum('8-Mar-2011'),.009; ...
    datenum('8-Mar-2010'),datenum('18-Jun-2011'),9840; ...
    datenum('8-Mar-2010'),datenum('17-Sep-2011'),9820; ...
    datenum('8-Mar-2010'),datenum('17-Dec-2011'),9810; ...
    datenum('8-Mar-2010'),datenum('18-Mar-2012'),9800; ...
    datenum('8-Mar-2010'),datenum('8-Mar-2015'),.025; ...
    datenum('8-Mar-2010'),datenum('8-Mar-2020'),.035; ...
    datenum('8-Mar-2010'),datenum('8-Mar-2030'),99; ...
    datenum('8-Mar-2010'),datenum('8-Mar-2040'),101];
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When bonds are used, InstrumentCouponRate must be specified:

InstrumentCouponRate = [zeros(10,1);.045;.05];

Note, for parameters that are only applicable to bonds (InstrumentFirstCouponDate,
InstrumentLastCouponDate, InstrumentIssueDate, InstrumentFace) the entries for non-
bond instruments (deposits and futures) are ignored.

Use the bootstrap method to create an IRDataCurve object.

bootModel = IRDataCurve.bootstrap('Forward', CurveSettle, ...
InstrumentTypes, Instruments,'InterpMethod','pchip',...
'InstrumentCouponRate',InstrumentCouponRate);

Create the plot for the bootstrapped market data.

PlottingDates = datemnth(CurveSettle,1:30*12);
plot(PlottingDates, getParYields(bootModel, PlottingDates),'r')
ylim([0 .06])
datetick

Use IRBootstrapOptionsObj with bootstrap for Negative Zero Interest-Rates

Use the IRBootstrapOptionsObj optional argument with the bootstrap method to allow for
negative zero rates when solving for the swap zero points.
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Settle = datenum('15-Mar-2015'); 
InstrumentTypes = {'Deposit';'Deposit';'Swap';'Swap';'Swap';'Swap';}; 

Instruments = [Settle,datenum('15-Jun-2015'),.001; ... 
Settle,datenum('15-Dec-2015'),.0005; ... 
Settle,datenum('15-Mar-2016'),-.001; ... 
Settle,datenum('15-Mar-2017'),-0.0005; ... 
Settle,datenum('15-Mar-2018'),.0017; ... 
Settle,datenum('15-Mar-2020'),.0019]; 

irbo = IRBootstrapOptions('LowerBound',-1); 

bootModel = IRDataCurve.bootstrap('zero', Settle, InstrumentTypes,... 
    Instruments,'IRBootstrapOptions',irbo); 

bootModel.getZeroRates(datemnth(Settle,1:60))

ans = 60×1

    0.0012
    0.0011
    0.0010
    0.0009
    0.0008
    0.0008
    0.0007
    0.0006
    0.0005
   -0.0000
      ⋮

Note that optional argument for LowerBound is set to -1 for negative zero rates when solving the
swap zero points.

Input Arguments
Type — Type of interest-rate curve bootstrapped from market instruments
character vector with value of 'zero', 'discount', or 'forward'

Type of interest-rate curve bootstrapped from market instruments, specified by using a scalar
character vector.

When using the bootstrap, the choice of the Type parameter can impact the curve construction
because it will affect the type of data that will be interpolated on (that is, forward rates, zero rates, or
discount factors) during the bootstrapping process. So curves that are bootstrapped using different
Type parameters undergo different bootstrapping algorithms with different interpolation methods,
and they can sometimes produce different results when using the “get” functions (for example,
getForwardRates).
Data Types: char

Settle — Settle date of interest-rate curve
date character vector | serial date number

Settle date of interest-rate curve, specified using a scalar date character vector or serial date number.
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Data Types: double | char

InstrumentTypes — Instrument types
cell array of character vectors with values of 'deposit', 'futures', 'swap', 'bond', and 'fra'

Instrument types, specified using an N-by-1 cell array (where N is the number of instruments)
indicating what kind of instrument is in the Instruments matrix. Acceptable values are 'deposit',
'futures', 'swap', 'bond', and 'fra'.
Data Types: char | cell

Instruments — Instruments
matrix

Instruments, specified as an N-by-3 data matrix for Instruments where the first column is Settle
date, the second column is Maturity, and the third column is the market quote (dates must be
MATLAB date numbers). The market quote represents the following for each instrument:

• deposit: rate
• futures: price (for example, 9628.54)
• swap: rate
• bond: clean price
• fra: forward rate

Note Instruments input for fra and for futures are different. Specifically, the forward rate
underlying a fra starts on the start date (column 1 of Instruments) and ends on the end date
(column 2 of Instruments). While the forward rate underlying a futures contract starts on the
maturity date of the futures contract and ends on a date n months after the futures maturity,
where n is the periodicity of the futures contract.

Data Types: double

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: DCurve =
IRDataCurve.bootstrap('Forward',CurveSettle,InstrumentTypes,Instruments,'Inte
rpMethod','pchip')

Name-Value Pair Arguments for All Bond Instruments

Compounding — Compounding frequency per-year for IRDataCurve object
CurveObj.Compounding (default) | possible values include: –1, 0, 1, 2, 3, 4, 6, 12.

Compounding frequency per-year for the IRDataCurve object, specified as the comma-separated
pair consisting of 'Compounding' and a scalar numeric using one of the supported values:

• −1 = Continuous compounding
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• 0 = Simple interest (no compounding)
• 1 = Annual compounding
• 2 = Semiannual compounding
• 3 = Compounding three times per year
• 4 = Quarterly compounding
• 6 = Bimonthly compounding
• 12 = Monthly compounding

Data Types: double

Basis — Day count basis of the interest-rate curve
0 (actual/actual) (default) | integer from 0 to 13

Day count basis of the interest-rate curve, specified as the comma-separated pair consisting of
'Basis' and a scalar integer.

• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

InterpMethod — Interpolation method
'linear' (default) | character vector with values of 'linear', 'cubic', 'pchip', or 'spline'

Interpolation method, specified as the comma-separated pair consisting of 'InterpMethod' and a
scalar character vector. For more information on interpolation methods, see interp1.
Data Types: char

IRBootstrapOptionsObj — IRBootstrapOptions object
[] (default) | IRBootstrapOptions object

IRBootstrapOptions object, specified as the comma-separated pair consisting of
'IRBootstrapOptionsObj' and an IRBootstrapOptions object previously created using
IRBootstrapOptions.
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Data Types: object

DiscountCurve — RateSpec for curve used to discount cash flows
[] (default) | RateSpec object

RateSpec for curve used to discount cash flows, specified as the comma-separated pair consisting of
'DiscountCurve' and a RateSpec object previously created using intenvset or toRateSpec.
Data Types: object

Name-Value Pair Arguments for Each Bond Instrument

InstrumentCouponRate — Annual percentage rate to determine the coupons payable on an
instrument
[] (default) | decimal

Annual percentage rate to determine the coupons payable on an instrument, specified as the comma-
separated pair consisting of 'InstrumentCouponRate' and a scalar decimal value.
Data Types: double

InstrumentPeriod — Coupons per year for the instrument
2 (default) | numeric with value of 0, 1, 2, 3, 4, 6, and 12

Coupons per year for the instrument, specified as the comma-separated pair consisting of
'InstrumentPeriod' and a scalar numeric value.
Data Types: double

InstrumentBasis — Day-count basis of the instrument
0 (actual/actual) (default) | integer from 0 to 13

Day count basis of the instrument, specified as the comma-separated pair consisting of
'InstrumentBasis' and a scalar integer.

• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252
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Note InstrumentBasis distinguishes a bond instrument's Basis value from the interest-rate
curve's Basis value.

For more information, see “Basis” on page 2-229.
Data Types: double

InstrumentEndMonthRule — End-of-month rule
1 (default) | logical with value 0 or 1

End-of-month rule, specified as the comma-separated pair consisting of
'InstrumentEndMonthRule' and a logical value. This rule applies only when Maturity is an end-
of-month date for a month having 30 or fewer days.

• 0 = ignore rule, meaning that a bond's coupon payment date is always the same numerical day of
the month.

• 1 = set rule on (default), meaning that a bond's coupon payment date is always the last actual
day of the month.

Data Types: logical

InstrumentIssueDate — Instrument issue date
[] (default) | date character vector | serial date number

Instrument issue date, specified as the comma-separated pair consisting of
'InstrumentIssueDate' and a scalar date character vector or serial date number.
Data Types: char | double

InstrumentFirstCouponDate — Date when a bond makes its first coupon payment
cash flow payment dates are determined from other inputs (default) | date character vector | serial
date number

Date when a bond makes its first coupon payment (used when bond has an irregular first coupon
period), specified as the comma-separated pair consisting of 'InstrumentFirstCouponDate' and
a scalar date character vector or serial date number. When InstrumentFirstCouponDate and
InstrumentLastCouponDate are both specified, InstrumentFirstCouponDate takes
precedence in determining the coupon payment structure. If you do not specify a
InstrumentFirstCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: char | double

InstrumentLastCouponDate — Last coupon date of a bond before the maturity date
cash flow payment dates are determined from other inputs (default) | date character vector | serial
date number

Last coupon date of a bond before the maturity date (used when bond has an irregular last coupon
period), specified as the comma-separated pair consisting of 'InstrumentLastCouponDate' and a
scalar date character vector or serial date number. In the absence of a specified
InstrumentFirstCouponDate, a specified InstrumentLastCouponDate determines the coupon
structure of the bond. The coupon structure of a bond is truncated at the
InstrumentLastCouponDate, regardless of where it falls, and is followed only by the bond's
maturity cash flow date. If you do not specify a InstrumentLastCouponDate, the cash flow
payment dates are determined from other inputs.
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Data Types: char | double

InstrumentFace — Face or par value
100 (default) | numeric

Face or par value, specified as the comma-separated pair consisting of 'InstrumentFace' and a
scalar numeric.
Data Types: double

Note When using Instrument name-value pairs, you can specify simple interest for an Instrument
by specifying the InstrumentPeriod value as 0. If InstrumentBasis and InstrumentPeriod
are not specified for an Instrument, the following default values are used:

• deposit instrument uses InstrumentBasis as 2 (act/360) and InstrumentPeriod is 0 (simple
interest).

• futures instrument uses InstrumentBasis as 2 (act/360) and InstrumentPeriod is 4
(quarterly).

• swap instrument uses InstrumentBasis as 2 (act/360) and InstrumentPeriod is 2.
• bond instrument uses InstrumentBasis as 0 (act/act) and InstrumentPeriod is 2.
• FRA instrument uses InstrumentBasis as 2 (act/360) and InstrumentPeriod is 4 (quarterly).

Output Arguments
DCurve — Interest-rate curve from market data
structure

Interest-rate curve from market data, returned as a structure.

See Also
IRDataCurve | IRBootstrapOptions | toRateSpec | getForwardRates | getZeroRates |
getDiscountFactors | getParYields

Topics
“Creating Interest-Rate Curve Objects” on page 9-4
“Bootstrap IRDataCurve Based on Market Instruments” on page 9-7
“Dual Curve Bootstrapping” on page 9-12
“Interest-Rate Curve Objects and Workflow” on page 9-2
“Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework” on page 1-93

Introduced in R2008b
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cdsoptprice
Price payer and receiver credit default swap options

Syntax
[Payer,Receiver] = cdsoptprice(ZeroData,ProbData,Settle,OptionMaturity,
CDSMaturity,Strike,SpreadVol)
[Payer,Receiver] = cdsoptprice( ___ ,Name,Value)

Description
[Payer,Receiver] = cdsoptprice(ZeroData,ProbData,Settle,OptionMaturity,
CDSMaturity,Strike,SpreadVol) computes the price of payer and receiver credit default swap
options.

[Payer,Receiver] = cdsoptprice( ___ ,Name,Value) computes the price of payer and
receiver credit default swap options with additional options specified by one or more Name,Value
pair arguments.

Examples

Obtain Payer and Receiver Values for a Credit Default Swap Option

Use cdsoptprice to generate Payer and Receiver values for a credit default swap option.

Settle = datenum('12-Jun-2012');
OptionMaturity = datenum('20-Sep-2012');
CDSMaturity = datenum('20-Sep-2017');
OptionStrike = 200;
SpreadVolatility = .4;

Zero_Time = [.5 1 2 3 4 5]';
Zero_Rate = [.5 .75 1.5 1.7 1.9 2.2]'/100;
Zero_Dates = daysadd(Settle,360*Zero_Time,1);
ZeroData = [Zero_Dates Zero_Rate];

Market_Time = [1 2 3 5 7 10]';
Market_Rate = [100 120 145 220 245 270]';
Market_Dates = daysadd(Settle,360*Market_Time,1);
MarketData = [Market_Dates Market_Rate];

ProbData = cdsbootstrap(ZeroData, MarketData, Settle);

[Payer,Receiver] = cdsoptprice(ZeroData, ProbData, Settle,...
OptionMaturity, CDSMaturity, OptionStrike, SpreadVolatility)

Payer = 223.5780

Receiver = 22.7460
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Input Arguments
ZeroData — Zero rates
vector | IRDataCurve object

Zero rates, specified by using a M-by-2 vector of dates and zero rates or an IRDataCurve object of
zero rates. For more information on an IRDataCurve object, see “Creating an IRDataCurve Object”
on page 9-6..
Data Types: double | object

ProbData — Probability of default
array

Probability of default, specified as a P-by-2 array of dates and default probabilities.
Data Types: double

Settle — Settlement date
scalar for serial nonnegative date number | scalar for date character vector

Settlement date, specified as a scalar using a serial nonnegative date number or date character
vector. Settle must be earlier than the OptionMaturity date.
Data Types: double | char

OptionMaturity — Option maturity dates
serial nonnegative date number | date character vector

Option maturity dates, specified as an NINST-by-1 vector using a serial nonnegative date number or
date character vector.
Data Types: double | char

CDSMaturity — CDS maturity dates
serial nonnegative date number | date character vector

CDS maturity dates, specified as an NINST-by-1 vector using a serial nonnegative date number or
date character vector.
Data Types: double | char

Strike — Option strikes in basis points
vector

Option strikes in basis points, specified as an NINST-by-1 vector.
Data Types: double

SpreadVol — Annualized credit spread volatilities
positive decimal

Annualized credit spread volatilities, specified an NINST-by-1 vector of positive decimals.
Data Types: double
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Payer,Receiver] =
cdsoptprice(ZeroData,ProbData,Settle,OptionMaturity,CDSMaturity,OptionStrike,
SpreadVolatility)

AdjustedForwardSpread — Adjusted forward spread in basis points
unadjusted forward spread normally used for single-name CDS options (default) | vector

Adjusted forward spread in basis points, specified as the comma-separated pair consisting of
'AdjustedForwardSpread' and an NINST-by-1 vector.
Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13

Day count basis, specified as the comma-separated pair consisting of 'Basis' and an NINST-by-1
vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 cell array of character vectors of
business day conventions. The selection for business day convention determines how non-business
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days are treated. Non-business days are defined as weekends plus any other date that businesses are
not open (e.g. statutory holidays). Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-business days
are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on the
following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day. However if the following business day is in a different month, the
previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed on the
previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day. However if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell

Knockout — Indicator of knockout
False (default) | vector

Indicator of knockout, specified as the comma-separated pair consisting of 'Knockout' and an
NINST-by-1 vector of boolean flags. If the credit default swaptions is a knockout, the flag is True,
otherwise it is False.
Data Types: logical

PayAccruedPremium — Indicator of accrued premium
True (default) | vector

Indicator of accrued premium, specified as the comma-separated pair consisting of
'PayAccruedPremium' and an NINST-by-1 vector of boolean flags. If accrued premiums are paid
upon default, the flag is True, otherwise it is False.
Data Types: logical

Period — Premiums per year of CDS
4 per year (default) | vector

Premiums per year of CDS, specified as the comma-separated pair consisting of 'Period' and a
NINST-by-1 vector. Allowed values are 1, 2, 3, 4, 6, and 12.
Data Types: double

RecoveryRate — Recovery rates
0.4 per year (default) | vector

Recovery rates, specified as the comma-separated pair consisting of 'RecoveryRate' and a NINST-
by-1 vector of decimal values from 0 to 1.
Data Types: double

ZeroBasis — Basis of zero curve
0 (actual/actual) (default) | integer from 0 to 13
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Basis of zero curve, specified as the comma-separated pair consisting of 'ZeroBasis' and an
NINST-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

ZeroCompounding — Compounding frequency of zero curve
2 (default) | integer with value of 1, 2, 3, 4, 6, 12, or -1

Compounding frequency of zero curve, specified as the comma-separated pair consisting of
'ZeroCompounding' and an integer with one of the following allowed values:

• 1 — Annual compounding
• 2 — Semiannual compounding
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding
• −1 — Continuous compounding

Note  When ZeroData is an IRDataCurve object, the arguments ZeroCompounding and
ZeroBasis are implicit in ZeroData and are redundant inside this function. In that case, specify
these optional arguments when constructing the IRDataCurve object before calling this function.

Data Types: double

Output Arguments
Payer — Payer swap options in Basis points
vector
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Payer swap options in Basis points, returned as an NINST-by-1 vector of prices.

Receiver — Receiver swap options in Basis points
vector

Receiver swap options in Basis points, returned as an NINST-by-1 vector of prices.

More About
Credit Default Swap Option

A credit default swap (CDS) option, or credit default swaption, is a contract that provides the option
holder with the right, but not the obligation, to enter into a credit default swap in the future.

CDS options can either be payer swaptions or receiver swaptions. In a payer swaption, the option
holder has the right to enter into a CDS in which they are paying premiums and in a receiver
swaption, the option holder is receiving premiums.

Algorithms
The payer and receiver credit default swap options are computed using the Black's model as
described in O'Kane [1]:

VPay(Knockout) = RPV01(t, tE, T)(FΦ(d1)− KΦ(d2))

VRec(Knockout) = RPV01(t, tE, T)(KΦ(− d2)− FΦ(− d1))

d1 =
ln F

K + 1
2σ2(tE− t)

σ tE− t

d2 = d1− σ tE− t

VPay(Non− Knockout) = VPay(Knockout) + FEP

VPay(Non− Knockout) = VRec(Knockout)

where

RPV01 is the risky present value of a basis point (see cdsrpv01).

Φ is the normal cumulative distribution function.

σ is the spread volatility.

t is the valuation date.

tE is the option expiry date.

T is the CDS maturity date.

F is the forward spread (from option expiry to CDS maturity).

K is the strike spread.
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FEP is the front-end protection (from option initiation to option expiry).

References
[1] O'Kane, D. Modelling Single-name and Multi-name Credit Derivatives. Wiley, 2008, pp. 156–169.

See Also
cdsbootstrap | cdsspread | cdsprice | cdsrpv01 | IRDataCurve

Topics
“Pricing a Single-Name CDS Option” on page 8-28
“Pricing a CDS Index Option” on page 8-30
“Credit Default Swap Option” on page 8-27
“Mapping Financial Instruments Toolbox Functions for Credit Derivative Instrument Objects” on page
1-92

External Websites
Pricing and Valuation of Credit Default Swaps (4 min 22 sec)

Introduced in R2011a
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cmosched
Generate principal balance schedule for planned amortization class (PAC) or targeted amortization
class (TAC) bond

Syntax
[BalanceSchedule,InitialBalance] = cmosched(Principal,Coupon,OriginalTerm,
TermRemaining,PrepaySpeed)
[BalanceSchedule,InitialBalance] = cmosched( ___ ,TranchePrincipal)

Description
[BalanceSchedule,InitialBalance] = cmosched(Principal,Coupon,OriginalTerm,
TermRemaining,PrepaySpeed) generates a principal balance schedule for planned amortization
class (PAC) bonds using two bands of Public Securities Association Prepayment Model (PSA) speeds
or targeted amortization class (TAC) bonds using a single PSA speed.

[BalanceSchedule,InitialBalance] = cmosched( ___ ,TranchePrincipal) adds an
optional argument for TranchePrincipal.

Examples

Calculate the Principal Balance Schedule for a CMO PAC Bond

Define the mortgage pool under consideration and generate a principal balance schedule for planned
amortization class (PAC) bonds using two bands of PSA speeds.

Principal = 128687000;
GrossRate = 0.0648;
OriginalTerm = 360;
TermRemaining = 325;
PrepaySpeed = [300 525];
PacPrincipal = 100250000;

[BalanceSchedule, InitialBalance] ...
= cmosched(Principal, GrossRate, OriginalTerm, TermRemaining, ...
PrepaySpeed, PacPrincipal)

BalanceSchedule = 1×325
107 ×

    9.7996    9.5780    9.3602    9.1461    8.9357    8.7289    8.5257    8.3259    8.1296    7.9366    7.7469    7.5605    7.3773    7.1972    7.0202    6.8463    6.6754    6.5073    6.3422    6.1799    6.0204    5.8637    5.7096    5.5582    5.4094    5.2632    5.1194    4.9782    4.8394    4.7030    4.5689    4.4372    4.3077    4.1804    4.0554    3.9325    3.8118    3.6931    3.5765    3.4619    3.3494    3.2406    3.1353    3.0334    2.9348    2.8394    2.7470    2.6576    2.5711    2.4873

InitialBalance = 100250000
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Input Arguments
Principal — Principal of the underlying mortgage pool
numeric

Principal of the underlying mortgage pool, specified as a scalar numeric value.
Data Types: double

Coupon — Coupon rate of the underlying mortgage pool
decimal

Coupon rate of the underlying mortgage pool, specified as a scalar decimal value.
Data Types: double

OriginalTerm — Original term in months of the underlying mortgage pool
numeric

Original term in months of the underlying mortgage pool, specified as a scalar numeric value.
Data Types: double

TermRemaining — Terms remaining in months of the underlying mortgage pool
numeric

Terms remaining in months of the underlying mortgage pool, specified as a scalar numeric value.
Data Types: double

PrepaySpeed — PSA speed
matrix numeric | scalar numeric

PSA speed is specified as follows:

• For planned amortization class (PAC) bonds, PSA speed is specified as a 1-by-2 matrix, where the
first element is the lower band and the second element is the upper band.

• For targeted amortization class (TAC) bonds, the PSA speed is specified as a scalar numeric value

Data Types: double

TranchePrincipal — Principal of the scheduled tranche
numeric

(Optional) Principal of the scheduled tranche, specified as a scalar numeric value. If
TranchePrincipal is unspecified or empty [], the principal of the scheduled tranche is assumed to
be the sum of the payment schedule calculated from the PSA prepayment speeds.
Data Types: double

Output Arguments
BalanceSchedule — Number of terms remaining
matrix

11 Functions

11-1890



Number of terms remaining, returned as a matrix of size 1-by-NUMTERMS, where NUMTERMS is the
number of terms remaining. Each column contains the scheduled principal balance for the time
period corresponding to the column number.

InitialBalance — Initial principal balance of the scheduled tranche
scalar

initial principal balance of the scheduled tranche, returned as a scalar numeric value.

More About
Planned Amortization Class (PAC) Bond

PAC bonds are a type of CMO bond and are designed to largely eliminate prepayment risk for
investors.

They do this by transferring essentially all prepayment risk to other bonds in the CMO that are called
support bonds.

Targeted Amortization Class (TAC) Bond

TAC bonds are analogous to PAC bonds, but are structured differently.

TAC bonds offer one-sided protection, shielding investors from high prepayment rates up to a
specified PSA and do not protect against low prepayment rates.

References
[1] Hayre, Lakhbir, ed. Salomon Smith Barney Guide to Mortgage-Backed and Asset-Backed

Securities. John Wiley and Sons, New York, 2001.

[2] Lyuu, Yuh-Dah. Financial Engineering and Computation. Cambridge University Press, 2004.

See Also
cmoschedcf

Topics
“Create PAC and Sequential CMO” on page 5-49
“What Are CMOs?” on page 5-40
“Prepayment Risk” on page 5-41
“CMO Workflow” on page 5-47

Introduced in R2012a
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cmoschedcf
Generate cash flows for scheduled collateralized mortgage obligation (CMO) using PAC or TAC model

Syntax
[Balance,Principal,Interest] = cmoschedcf(PrincipalPayments,TranchePrincipals
TrancheCoupons,BalanceSchedule)

Description
[Balance,Principal,Interest] = cmoschedcf(PrincipalPayments,TranchePrincipals
TrancheCoupons,BalanceSchedule) generates cash flows for a scheduled CMO, such as the
planned amortization class (PAC) or targeted amortization class (TAC), given the underlying mortgage
pool payments (or payments from another CMO tranche). The output Balances, Principal, and
Interest from this function can be used as input into cmoseqcf to further divide the PAC, TAC, or
support dividing a tranche into sequential tranches.

Examples

Calculate Cash Flows for Each PAC Tranche

Define the mortgage pool under consideration for CMO structuring using mbscfamounts or
mbspassthrough. Calculate the underlying mortgage cash flow, define the PAC schedule and CMO
tranches, and calculate the cash flows for each tranche.

MortgagePrincipal = 1000000; % underlying mortgage
Coupon = 0.12;
Terms = 6; % months

[PrincipalBalance, MonthlyPayments, SchedPrincipalPayments, ...
InterestPayments, Prepayments] = ...
mbspassthrough(MortgagePrincipal, Coupon, Terms, Terms, 0, []);
PrincipalPayments = SchedPrincipalPayments.' + Prepayments.'

PrincipalPayments = 1×6
105 ×

    1.6255    1.6417    1.6582    1.6747    1.6915    1.7084

Calculate the PAC schedule for CMO using cmosched.

PrepaySpeed = [100 300];
[BalanceSchedule, InitialBalance] ...
= cmosched(MortgagePrincipal, Coupon, Terms, Terms, PrepaySpeed, [])

BalanceSchedule = 1×6
105 ×

    8.3617    6.7180    5.0581    3.3828    1.6955         0
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InitialBalance = 9.9886e+05

Define CMO tranches.

TranchePrincipals = ...
[InitialBalance; MortgagePrincipal-InitialBalance];
TrancheCoupons = [0.12; 0.12];

Calculate cash flows for each tranche.

[Balance, Principal, Interest] = ...
cmoschedcf(PrincipalPayments, TranchePrincipals, ...
TrancheCoupons, BalanceSchedule)

Balance = 2×6
105 ×

    8.3631    6.7213    5.0632    3.3885    1.6970         0
    0.0114    0.0114    0.0114    0.0114    0.0114    0.0000

Principal = 2×6
105 ×

    1.6255    1.6417    1.6582    1.6747    1.6915    1.6970
         0         0         0         0         0    0.0114

Interest = 2×6
103 ×

    9.9886    8.3631    6.7213    5.0632    3.3885    1.6970
    0.0114    0.0114    0.0114    0.0114    0.0114    0.0114

Input Arguments
PrincipalPayments — Number of terms remaining for underlying principal payments
numeric matrix

Number of terms remaining for underlying principal payments, specified as a matrix of size 1-by-
NUMTERMS, where NUMTERMS is the number of terms remaining. Each column contains the underlying
principal payment for the time period corresponding to the row number. Calculate underlying
principal payments using mbscfamounts or mbspassthrough. The underlying principal payments
can also be outputs from other CMO cash flow functions.
Data Types: double

TranchePrincipals — Initial principal for the scheduled and the support tranche
numeric matrix

Initial principal for the scheduled and the support tranche, specified as a matrix of size 2-by-1.
Data Types: double

TrancheCoupons — Coupons for the schedule tranche and the support tranche
matrix of coupon values
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Coupons for the schedule tranche and the support tranche, specified as a matrix of size 2-by-1 of
coupon values. The weighted average coupon for the CMO should not exceed the coupon of the
underlying mortgage.
Data Types: double

BalanceSchedule — Number of terms remaining for targeted balance
numeric matrix

Number of terms remaining for targeted balance, specified as a matrix of size 1-by-NUMTERMS, where
NUMTERMS is the number of terms remaining. Each element represents the targeted balance schedule
for the time period corresponding to that column.
Data Types: double

Output Arguments
Balance — Number of terms remaining and principal balances
matrix

Number of terms remaining and principal balances, returned as a matrix of size 2-by-NUMTERMS,
where NUMTERMS is the number of terms remaining. The first row is the principal balances of the
scheduled tranche, and the second row is the principal balances of the support tranche at the time
period corresponding to the column.

Principal — Number of terms remaining and principal payments
matrix

Number of terms remaining and principal payments, returned as a matrix of size 2-by-NUMTERMS,
where NUMTERMS is the number of terms remaining. The first row is the principal payments of the
scheduled tranche, and the second row is the principal payments of the support tranche at the time
period corresponding to the column.

Interest — Number of terms remaining and interest payments
scalar

Number of terms remaining and interest payments, returned as a matrix of size 2-by-NUMTERMS,
where NUMTERMS is the number of terms remaining. The first row is the interest payments of the
schedule tranche, and the second row is the interest payments of the support tranche at the time
period corresponding to the column.

More About
Planned Amortization Class (PAC) Tranches

In a PAC CMO, there is a main tranche, known as the schedule tranche, and a support tranche.

The main purpose of a schedule tranche is to give investors in the PAC tranche a more certain cash
flow.

Targeted Amortization Class (TAC) Tranches

TACs are like PACs, but principal payment is specified for only one prepayment rate.
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If prepayment rates are higher or lower, then the principal payment to TAC holders are higher or
lower accordingly.

Schedule and Support Tranche

The main purpose of a PAC tranche is to give investors in the PAC tranche a more certain cash flow.

The PAC tranche receives priority for receiving payments of principal and interest that gives investors
in the PAC tranche a steadier income. If prepayments differ from what was expected, then the
support tranche gets the variable portion of the payments. While income to the support tranche is
more variable, it is also higher yielding. Estimates of the yield, average life, and lockout periods of
the PAC tranche is more certain.

References
[1] Hayre, Lakhbir, ed. Salomon Smith Barney Guide to Mortgage-Backed and Asset-Backed

Securities. John Wiley and Sons, New York, 2001.

[2] Lyuu, Yuh-Dah. Financial Engineering and Computation. Cambridge University Press, 2004.

See Also
cmoseqcf | cmosched | mbscfamounts | mbspassthrough

Topics
“Create PAC and Sequential CMO” on page 5-49
“What Are CMOs?” on page 5-40
“Prepayment Risk” on page 5-41
“CMO Workflow” on page 5-47

Introduced in R2012a
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cmoseqcf
Generate cash flows for sequential collateralized mortgage obligation (CMO)

Syntax
[Balance,Principal,Interest] = cmoseqcf(PrincipalPayments,TranchePrincipals
TrancheCoupons)
[Balance,Principal,Interest] = cmoseqcf( ___ ,HasZ)

Description
[Balance,Principal,Interest] = cmoseqcf(PrincipalPayments,TranchePrincipals
TrancheCoupons) generates cash flows for a sequential CMO without a Z-bond, given the
underlying mortgage pool payments.

[Balance,Principal,Interest] = cmoseqcf( ___ ,HasZ) generates cash flows for a
sequential CMO with a Z-bond, given the underlying mortgage pool payments, by adding an
additional optional input for HasZ.

Examples

Calculate Cash Flows for a Sequential Collateralized Mortgage Obligation (CMO)

Define the mortgage pool under consideration for CMO structuring using mbscfamounts or
mbspassthrough and calculate the cash flows with an A and B tranche for a sequential CMO.

MortgagePrincipal = 1000000;
Coupon = 0.12;
Terms = 6; % months

% Calculate underlying mortgage cash flows
[PrincipalBalance, MonthlyPayments, SchedPrincipalPayments, ...
InterestPayments, Prepayments] = ...
mbspassthrough(MortgagePrincipal, Coupon, Terms, Terms, 0, []);
PrincipalPayments = SchedPrincipalPayments.' + Prepayments.'

PrincipalPayments = 1×6
105 ×

    1.6255    1.6417    1.6582    1.6747    1.6915    1.7084

Define CMO tranches, A and B.

TranchePrincipals = [500000; 500000];
TrancheCoupons = [0.12; 0.12];

Calculate cash flows for each tranche.

[Balance, Principal, Interest] = ...
cmoseqcf(PrincipalPayments, TranchePrincipals, TrancheCoupons, false)
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Balance = 2×6
105 ×

    3.3745    1.7328    0.0746         0         0         0
    5.0000    5.0000    5.0000    3.3999    1.7084    0.0000

Principal = 2×6
105 ×

    1.6255    1.6417    1.6582    0.0746         0         0
         0         0         0    1.6001    1.6915    1.7084

Interest = 2×6
103 ×

    5.0000    3.3745    1.7328    0.0746         0         0
    5.0000    5.0000    5.0000    5.0000    3.3999    1.7084

Input Arguments
PrincipalPayments — Number of terms remaining for underlying principal payments
numeric matrix

Number of terms remaining for underlying principal payments, specified as a matrix of size 1-by-
NUMTERMS, where NUMTERMS is the number of terms remaining. Each column contains the underlying
principal payment for the time period corresponding to the row number. Calculate underlying
principal payments using mbscfamounts or mbspassthrough. The underlying principal payments
can also be outputs from other CMO cash flow functions.
Data Types: double

TranchePrincipals — Initial principal for each tranche
numeric matrix

Initial principal for each tranche, specified as a matrix of size NUMTRANCHES-by-1, where
NUMTRANCHES is the number of tranches in the sequential CMO. Each element of the matrix
represents the initial principal for each tranche. If the sequential CMO includes a Z-bond (HasZ is
true), the last element of this matrix is the principal of the Z-bond.
Data Types: double

TrancheCoupons — Coupon for each tranche
matrix of coupon values

Coupon for each tranche, specified as a matrix of size NUMTRANCHES-by-1, where NUMTRANCHES is
the number of tranches in the sequential CMO. Each element of the matrix represents the coupon for
each tranche. If the sequential CMO includes a Z-bond (HasZ is true), the last element of this matrix
is the coupon of the Z-bond. The weighted average coupon for the CMO should not exceed the coupon
of the underlying mortgage.
Data Types: double
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HasZ — Indicates that the sequential CMO contains a Z-bond
false (default) | true | false

(Optional) Indicates that the sequential CMO contains a Z-bond, specified as a Boolean (true or
false). A value of true indicates that the sequential CMO contains a Z-bond, and the last element of
TranchePrincipals and TrancheCoupons is treated as that of the Z-bond. A value of false
indicates that there is no Z-bond in the sequential CMO, and the last element of
TranchePrincipals and TrancheCoupons is treated as an ordinary tranche.
Data Types: logical

Output Arguments
Balance — Principal balance for time period and tranche
matrix

Principal balance for time period and tranche, returned as a matrix of size NUMTRANCHES-by-
NUMTERMS, where NUMTRANCHES is the number of terms remaining and NUMTRANCHES is the number
of tranches. Each element represents the principal balance at the time period corresponding to the
column, and for the tranche corresponding to the row.

Principal — Principal payments for time period and tranche
matrix

Principal payments for time period and tranche, returned as a matrix of size NUMTRANCHES-by-
NUMTERMS, where NUMTRANCHES is the number of terms remaining and NUMTRANCHES is the number
of tranches. Each element represents the principal payments made at the time period corresponding
to the column, and to the tranche corresponding to the row.

Interest — Interest payments for time period and tranche
matrix

Interest payments for time period and tranche, returned as a matrix of size NUMTRANCHES-by-
NUMTERMS, where NUMTRANCHES is the number of terms remaining and NUMTRANCHES is the number
of tranches. Each element represents the interest payments made at the time period corresponding to
the column, and to the tranche corresponding to the row.

More About
Sequential Pay CMO

A sequential pay CMO involves tranches that pay off principal sequentially.

For example, consider the following case, where all principal from the underlying mortgage pool is
repaid on tranche A first, then tranche B, then tranche C. Interest is paid on each tranche as long as
the principal for the tranche has not been retired.

CMO Tranche

Tranche is a term often used to describe a specific class of bonds within an offering wherein each
tranche offers varying degrees of risk to the investor.
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References
[1] Hayre, Lakhbir, ed. Salomon Smith Barney Guide to Mortgage-Backed and Asset-Backed

Securities. John Wiley and Sons, New York, 2001.

[2] Lyuu, Yuh-Dah. Financial Engineering and Computation. Cambridge University Press, 2004.

See Also
cmoschedcf | cmosched | mbscfamounts | mbspassthrough

Topics
“Create PAC and Sequential CMO” on page 5-49
“What Are CMOs?” on page 5-40
“Prepayment Risk” on page 5-41
“CMO Workflow” on page 5-47

Introduced in R2012a
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convfactor
Bond conversion factors

Syntax
CF = convfactor(RefDate,Maturity,CouponRate)
CF = convfactor( ___ ,Name,Value)

Description
CF = convfactor(RefDate,Maturity,CouponRate) computes a conversion factor for a bond
futures contract.

CF = convfactor( ___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to the input arguments in the previous syntax.

Examples

Compute the Conversion Factors For a Bond Futures Contract

This example shows how to calculate CF, given the following RefDate, Maturity, and CouponRate.

RefDate  = {'1-Dec-2002';
               '1-Mar-2003';
               '1-Jun-2003';
               '1-Sep-2003';
               '1-Dec-2003';
               '1-Sep-2003';
               '1-Dec-2002';
               '1-Jun-2003'};
 
Maturity = {'15-Nov-2012';
               '15-Aug-2012';
               '15-Feb-2012';
               '15-Feb-2011';
               '15-Aug-2011';
               '15-Aug-2010';
               '15-Aug-2009';
               '15-Feb-2010'};
 
CouponRate = [0.04; 0.04375; 0.04875; 0.05; 0.05; 0.0575; 0.06; 0.065];
 
CF = convfactor(RefDate, Maturity, CouponRate)

CF = 8×1

    0.8539
    0.8858
    0.9259
    0.9418
    0.9403
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    0.9862
    1.0000
    1.0266

Compute the Conversion Factor For a German Bond

This example shows how to calculate cf, given the following RefDate, Maturity, and CouponRate
for a German bond.

cf = convfactor('3/10/2009','1/04/2018', .04,.06,3)

cf = 0.8659

Input Arguments
RefDate — Reference dates
serial date number

Reference dates for which conversion factor is computed (usually the first day of delivery months),
specified as an N-by-1 vector of serial date numbers.
Data Types: double

Maturity — Maturity date
serial date number

Maturity date, specified as a N-by-1 vector of serial date numbers.
Data Types: double

CouponRate — Annual coupon rates for underlying bond
vector in decimals

Annual coupon rates for underlying bond, specified as an numBonds-by-1 vector in decimals.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: CF = convfactor(RefDate,Maturity,CouponRate,'Convention',2)

Convention — Conversion factor convention
1 US Treasury bond (30-year) and Treasury note (10-year) futures contract (default) | integer from 1
to 5

Conversion factor convention, specified as the comma-separated pair consisting of 'Convention'
and a N-by-1 vector using the following values:
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• 1 = US Treasury bond (30-year) and Treasury note (10-year) futures contract
• 2 = US 2-year and 5-year Treasury note futures contract
• 3 = German Bobl, Bund, Buxl, and Schatz
• 4 = UK gilts
• 5 = Japanese Government Bonds (JGBs)

Data Types: double

FirstCouponDate — Irregular first coupon date
serial date number

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a N-by-1 vector using a serial date numbers.
Data Types: double

RefYield — Reference semiannual yield
0.06 (6%) (default) | vector in decimals

Reference semiannual yield, specified as the comma-separated pair consisting of 'RefYield' and an
N-by-1 vector in decimals.
Data Types: double

StartDate — Forward starting date of payments
serial date number

Forward starting date of payments, specified as the comma-separated pair consisting of
'StartDate' and a N-by-1 vector using serial date numbers.
Data Types: double

Output Arguments
CF — Conversion factors against the 6% yield par-bond
vector

Conversion factors against the 6% yield par-bond, returned as an N-by-1 vector.

More About
Conversion Factors

Conversion factors of US Treasury bonds and other government bonds are based on a bond yielding
6%.

Optionally, you can specify other types of bonds and yields using inputs for RefYield and
Convention. For US Treasury bonds, verify the output of convfactor by comparing the output
against the quotations provided by the Chicago Board of Trade (https://www.cmegroup.com/
company/cbot.html).

For German bonds, verify the output of convfactor by comparing the output against the quotations
provided by Eurex (https://www.eurexchange.com).
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For UK Gilts, verify the output of convfactor by comparing the output against the quotations
provided by Euronext (https://www.euronext.com).

For Japanese Government Bonds, verify the output of convfactor by comparing the output against
the quotations provided by the Tokyo Stock Exchange (https://www.jpx.co.jp/english/).

References
[1] Burghardt, G., T. Belton, M. Lane, and J. Papa. The Treasury Bond Basis. McGraw-Hill, 2005.

[2] Krgin, Dragomir. Handbook of Global Fixed Income Calculations. John Wiley & Sons, 2002.

See Also
tfutbyprice | tfutbyyield | tfutimprepo | bndfutimprepo | bndfutprice

Topics
“Analysis of Bond Futures” on page 7-12
“Fitting the Diebold Li Model” on page 2-151
“Managing Present Value with Bond Futures” on page 7-14

Introduced in R2009b
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fitFunction
Custom fit interest-rate curve object to bond market data

Syntax
CurveObj = fitFunction(Type,Settle,FunctionHandle,Instruments,
IRFitOptionsObj)
CurveObj = fitFunction( ___ ,Name,Value)

Description
CurveObj = fitFunction(Type,Settle,FunctionHandle,Instruments,
IRFitOptionsObj) fits a bond to a custom fitting function.

CurveObj = fitFunction( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Fit a Bond Using Custom Fitting Function

This example shows how to use fitFunction to custom fit a bond.

Settle = repmat(datenum('30-Apr-2008'),[6 1]);
Maturity = [datenum('07-Mar-2009');datenum('07-Mar-2011');...
datenum('07-Mar-2013');datenum('07-Sep-2016');...
datenum('07-Mar-2025');datenum('07-Mar-2036')];
CleanPrice = [100.1;100.1;100.8;96.6;103.3;96.3];
CouponRate = [0.0400;0.0425;0.0450;0.0400;0.0500;0.0425];
Instruments = [Settle Maturity CleanPrice CouponRate];
CurveSettle = datenum('30-Apr-2008');
OptOptions = optimoptions('lsqnonlin','display','iter');
functionHandle = @(t,theta) polyval(theta,t);    

CustomModel = IRFunctionCurve.fitFunction('Zero', CurveSettle, ...
functionHandle,Instruments, ...
IRFitOptions([.05 .05 .05],'FitType','price',...
'OptOptions',OptOptions))

                                         Norm of      First-order 
 Iteration  Func-count     f(x)          step          optimality
     0          4         38036.7                      4.92e+04
     1          8         38036.7             10       4.92e+04      
     2         12         38036.7            2.5       4.92e+04      
     3         16         38036.7          0.625       4.92e+04      
     4         20         38036.7        0.15625       4.92e+04      
     5         24         30741.5      0.0390625       1.72e+05      
     6         28         30741.5       0.078125       1.72e+05      
     7         32         30741.5      0.0195312       1.72e+05      
     8         36         28713.6     0.00488281       2.33e+05      
     9         40         20323.3     0.00976562       9.47e+05      
    10         44         20323.3      0.0195312       9.47e+05      
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    11         48         20323.3     0.00488281       9.47e+05      
    12         52         20323.3      0.0012207       9.47e+05      
    13         56         19698.8    0.000305176       1.08e+06      
    14         60           17493    0.000610352          7e+06      
    15         64           17493      0.0012207          7e+06      
    16         68           17493    0.000305176          7e+06      
    17         72         15455.1    7.62939e-05       2.25e+07      
    18         76         15455.1    0.000177499       2.25e+07      
    19         80         13317.1     3.8147e-05       3.18e+07      
    20         84         12865.3    7.62939e-05       7.83e+07      
    21         88         11779.8    7.62939e-05       7.58e+06      
    22         92         11747.6    0.000152588       1.45e+05      
    23         96         11720.9    0.000305176       2.33e+05      
    24        100         11667.2    0.000610352       1.48e+05      
    25        104         11558.6      0.0012207       3.55e+05      
    26        108         11335.5     0.00244141       1.57e+05      
    27        112         10863.8     0.00488281       6.36e+05      
    28        116         9797.14     0.00976562       2.53e+05      
    29        120         6882.83      0.0195312       9.18e+05      
    30        124         6882.83      0.0373993       9.18e+05      
    31        128         3218.45     0.00934981       1.96e+06      
    32        132         612.703      0.0186996       3.01e+06      
    33        136         13.0998      0.0253882       3.05e+06      
    34        140       0.0762922     0.00154002       5.05e+04      
    35        144       0.0731652    3.61102e-06           29.9      
    36        148       0.0731652    6.32344e-08          0.063      

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to 
its initial value is less than the value of the function tolerance.

CustomModel = 
             Type: Zero
           Settle: 733528 (30-Apr-2008)
      Compounding: 2
            Basis: 0 (actual/actual)

Input Arguments
Type — Type of interest-rate curve
character vector with value of 'zero', 'forward', or 'discount'

Type of interest-rate curve, specified by using a scalar character vector.
Data Types: char

Settle — Settle date of interest-rate curve
date character vector | serial date number

Settle date of interest-rate curve, specified using a scalar date character vector or serial date number.
Data Types: double | char

FunctionHandle — Function handle that defines the interest-rate curve
function handle
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Function handle that defines the interest-rate curve, specified using a function handle. The function
handle takes two numeric vectors (time-to-maturity and a vector of function coefficients) and returns
one numeric output (interest rate or discount factor). For more information on defining a function
handle, see the MATLAB Programming Fundamentals documentation.
Data Types: function_handle

Instruments — Instruments
matrix

Instruments, specified using an N-by-4 data matrix where the first column is Settle date, the second
column is Maturity, the third column is the clean price, and the fourth column is a CouponRate for
the bond.
Data Types: double

IRFitOptionsObj — IRFitOptions object
IRFitOptions object

IRFitOptions object, specified using previously created object using IRFitOptions.
Data Types: object

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: CurveObj =
IRFunctionCurve.fitFunction('Zero',CurveSettle,functionHandle,Instruments,IRF
itOptions([.05 .05 .05],'FitType','price','OptOptions',OptOptions))

Name-Value Pair Arguments for All Bond Instruments

Compounding — Compounding frequency per-year for IRFunctionCurve object
CurveObj.Compounding (default) | possible values include: –1, 0, 1, 2, 3, 4, 6, 12.

Compounding frequency per-year for the IRFunctionCurve object, specified as the comma-
separated pair consisting of 'Compounding' and a scalar numeric using one of the supported values:

• −1 = Continuous compounding
• 0 = Simple interest (no compounding)
• 1 = Annual compounding
• 2 = Semiannual compounding
• 3 = Compounding three times per year
• 4 = Quarterly compounding
• 6 = Bimonthly compounding
• 12 = Monthly compounding

Data Types: double
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Basis — Day count basis of the bond
0 (actual/actual) (default) | integer from 0 to 13

Day count basis of the bond, specified as the comma-separated pair consisting of 'Basis' and a
scalar integer.

• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Name-Value Pair Arguments for Each Bond Instrument

InstrumentPeriod — Coupons per year for the bond
2 (default) | numeric with value of 0, 1, 2, 3, 4, 6, and 12

Coupons per year for the bond, specified as the comma-separated pair consisting of
'InstrumentPeriod' and a scalar numeric value.
Data Types: double

InstrumentBasis — Day-count basis of the bond
0 (actual/actual) (default) | integer from 0 to 13

Day count basis of the bond, specified as the comma-separated pair consisting of
'InstrumentBasis' and a scalar integer.

• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
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• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

Note InstrumentBasis distinguishes a bond instrument's Basis value from the interest-rate
curve's Basis value.

For more information, see “Basis” on page 2-229.
Data Types: double

InstrumentEndMonthRule — End-of-month rule
1 (default) | logical with value 0 or 1

End-of-month rule, specified as the comma-separated pair consisting of
'InstrumentEndMonthRule' and a logical value. This rule applies only when Maturity is an end-
of-month date for a month having 30 or fewer days.

• 0 = ignore rule, meaning that a bond's coupon payment date is always the same numerical day of
the month.

• 1 = set rule on (default), meaning that a bond's coupon payment date is always the last actual
day of the month.

Data Types: logical

InstrumentIssueDate — Instrument issue date
[] (default) | date character vector | serial date number

Instrument issue date, specified as the comma-separated pair consisting of
'InstrumentIssueDate' and a scalar date character vector or serial date number.
Data Types: char | double

InstrumentFirstCouponDate — Date when a bond makes its first coupon payment
cash flow payment dates are determined from other inputs (default) | date character vector | serial
date number

Date when a bond makes its first coupon payment (used when bond has an irregular first coupon
period), specified as the comma-separated pair consisting of 'InstrumentFirstCouponDate' and
a scalar date character vector or serial date number. When InstrumentFirstCouponDate and
InstrumentLastCouponDate are both specified, InstrumentFirstCouponDate takes
precedence in determining the coupon payment structure. If you do not specify a
InstrumentFirstCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: char | double
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InstrumentLastCouponDate — Last coupon date of a bond before the maturity date
cash flow payment dates are determined from other inputs (default) | date character vector | serial
date number

Last coupon date of a bond before the maturity date (used when bond has an irregular last coupon
period), specified as the comma-separated pair consisting of 'InstrumentLastCouponDate' and a
scalar date character vector or serial date number. In the absence of a specified
InstrumentFirstCouponDate, a specified InstrumentLastCouponDate determines the coupon
structure of the bond. The coupon structure of a bond is truncated at the
InstrumentLastCouponDate, regardless of where it falls, and is followed only by the bond's
maturity cash flow date. If you do not specify a InstrumentLastCouponDate, the cash flow
payment dates are determined from other inputs.
Data Types: char | double

InstrumentFace — Face or par value
100 (default) | numeric

Face or par value, specified as the comma-separated pair consisting of 'InstrumentFace' and a
scalar numeric.
Data Types: double

Note When using Instrument name-value pairs, you can specify simple interest for a bond by
specifying the InstrumentPeriod value as 0. If InstrumentBasis and InstrumentPeriod are
not specified for a bond, the following default values are used: InstrumentBasis is 0 (act/act) and
InstrumentPeriod is 2.

Output Arguments
CurveObj — Curve model
structure

Curve model, returned as a structure.

See Also
IRFunctionCurve | IRFitOptions

Topics
“Creating an IRFunctionCurve Object” on page 9-16
“Fitting Interest-Rate Curve Functions” on page 9-24
“Using fitFunction to Create Custom Fitting Function” on page 9-21
“Interest-Rate Curve Objects and Workflow” on page 9-2
“Creating Interest-Rate Curve Objects” on page 9-4
“Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework” on page 1-93

External Websites
Calibration and Simulation Best Practices: Multifactor Interest Rate Models for Risk Applications (30
min 00 sec)

Introduced in R2008b
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fitNelsonSiegel
Fit Nelson-Siegel function to bond market data

Note fitNelsonSiegel for an IRFunctionCurve is not recommended. Use fitNelsonSiegel
with a parametercurve object instead. For more information, see fitNelsonSiegel.

Syntax
CurveObj = IRFunctionCurve.fitNelsonSiegel(Type,Settle,Instruments)
CurveObj = IRFunctionCurve.fitNelsonSiegel( ___ ,Name,Value)

Description
CurveObj = IRFunctionCurve.fitNelsonSiegel(Type,Settle,Instruments) fits a Nelson-
Siegel function to market data for a bond.

CurveObj = IRFunctionCurve.fitNelsonSiegel( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Use the Nelson-Siegel Function to Fit Bond Market Data

This example shows how to use the Nelson-Siegel function to fit bond market data.

Settle = repmat(datenum('30-Apr-2008'),[6 1]);
Maturity = [datenum('07-Mar-2009');datenum('07-Mar-2011');...
datenum('07-Mar-2013');datenum('07-Sep-2016');...
datenum('07-Mar-2025');datenum('07-Mar-2036')];

CleanPrice = [100.1;100.1;100.8;96.6;103.3;96.3];
CouponRate = [0.0400;0.0425;0.0450;0.0400;0.0500;0.0425];
Instruments = [Settle Maturity CleanPrice CouponRate];
PlottingPoints = datenum('07-Mar-2009'):180:datenum('07-Mar-2036');
Yield = bndyield(CleanPrice,CouponRate,Settle,Maturity);

NSModel = IRFunctionCurve.fitNelsonSiegel('Zero',datenum('30-Apr-2008'),Instruments);

NSModel.Parameters

ans = 1×4

    4.6617   -1.0227   -0.3484    1.2386

% create the plot
plot(PlottingPoints, getParYields(NSModel, PlottingPoints),'r')
hold on
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scatter(Maturity,Yield,'black')
datetick('x')

Input Arguments
Type — Type of interest-rate curve for a bond
character vector with value of 'zero' or 'forward'

Type of interest-rate curve for a bond, specified by using a scalar character vector.
Data Types: char

Settle — Settle date of interest-rate curve
date character vector | serial date number

Settle date of interest-rate curve, specified using a scalar date character vector or serial date number.
Data Types: double | char

Instruments — Instruments
matrix

Instruments, specified using an N-by-4 data matrix where the first column is Settle date, the second
column is Maturity, the third column is the clean price, and the fourth column is a CouponRate for
the bond.
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Data Types: double

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: CurveObj = IRFunctionCurve.fitNelsonSiegel('Zero',datenum('30-
Apr-2008'),Instruments)

Name-Value Pair Arguments for All Bond Instruments

Compounding — Compounding frequency per-year for IRFunctionCurve object
CurveObj.Compounding (default) | possible values include: –1, 0, 1, 2, 3, 4, 6, 12.

Compounding frequency per-year for the IRFunctionCurve object, specified as the comma-
separated pair consisting of 'Compounding' and a scalar numeric using one of the supported values:

• −1 = Continuous compounding
• 0 = Simple interest (no compounding)
• 1 = Annual compounding
• 2 = Semiannual compounding
• 3 = Compounding three times per year
• 4 = Quarterly compounding
• 6 = Bimonthly compounding
• 12 = Monthly compounding

Data Types: double

Basis — Day count basis of the interest-rate curve
0 (actual/actual) (default) | integer from 0 to 13

Day count basis of the interest-rate curve, specified as the comma-separated pair consisting of
'Basis' and a scalar integer.

• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
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• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

IRFitOptions — IRFitOptions object
IRFitOptions object

IRFitOptions object, specified using previously created object using IRFitOptions. When using
IRFitOption, the default FitType is DurationWeightedPrice. Duration weighted price refers to
the form of the objective function that needs to be minimized to find the optimal Nelson-Siegel
parameters. Specifically, this objective function minimizes using the following three algorithms:

• The difference between observed and model-predicted yields for each bond, ObsY_i – PredY_i
• The difference between observed and model-predicted prices for each bond, ObsP_i – PredP_i
• The difference between observed and model-predicted prices, weighted by the inverse of the

duration of each bond (ObsP_i – PredP_i) / D_i. Weighting price by inverse duration converts the
pricing errors into yield fitting errors, to a first approximation.

Data Types: object

Name-Value Pair Arguments for Each Bond Instrument

InstrumentPeriod — Coupons per year for the bond
2 (default) | numeric with value of 0, 1, 2, 3, 4, 6, and 12

Coupons per year for the bond, specified as the comma-separated pair consisting of
'InstrumentPeriod' and a scalar numeric value.
Data Types: double

InstrumentBasis — Day-count basis of the bond
0 (actual/actual) (default) | integer from 0 to 13

Day count basis of the bond, specified as the comma-separated pair consisting of
'InstrumentBasis' and a scalar integer.

• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
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• 10 — actual/365 (ICMA)
• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

Note InstrumentBasis distinguishes a bond instrument's Basis value from the interest-rate
curve's Basis value.

For more information, see “Basis” on page 2-229.
Data Types: double

InstrumentEndMonthRule — End-of-month rule
1 (default) | logical with value 0 or 1

End-of-month rule, specified as the comma-separated pair consisting of
'InstrumentEndMonthRule' and a logical value. This rule applies only when Maturity is an end-
of-month date for a month having 30 or fewer days.

• 0 = ignore rule, meaning that a bond's coupon payment date is always the same numerical day of
the month.

• 1 = set rule on (default), meaning that a bond's coupon payment date is always the last actual
day of the month.

Data Types: logical

InstrumentIssueDate — Instrument issue date
[] (default) | date character vector | serial date number

Instrument issue date, specified as the comma-separated pair consisting of
'InstrumentIssueDate' and a scalar date character vector or serial date number.
Data Types: char | double

InstrumentFirstCouponDate — Date when a bond makes its first coupon payment
cash flow payment dates are determined from other inputs (default) | date character vector | serial
date number

Date when a bond makes its first coupon payment (used when bond has an irregular first coupon
period), specified as the comma-separated pair consisting of 'InstrumentFirstCouponDate' and
a scalar date character vector or serial date number. When InstrumentFirstCouponDate and
InstrumentLastCouponDate are both specified, InstrumentFirstCouponDate takes
precedence in determining the coupon payment structure. If you do not specify a
InstrumentFirstCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: char | double

InstrumentLastCouponDate — Last coupon date of a bond before the maturity date
cash flow payment dates are determined from other inputs (default) | date character vector | serial
date number

Last coupon date of a bond before the maturity date (used when bond has an irregular last coupon
period), specified as the comma-separated pair consisting of 'InstrumentLastCouponDate' and a
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scalar date character vector or serial date number. In the absence of a specified
InstrumentFirstCouponDate, a specified InstrumentLastCouponDate determines the coupon
structure of the bond. The coupon structure of a bond is truncated at the
InstrumentLastCouponDate, regardless of where it falls, and is followed only by the bond's
maturity cash flow date. If you do not specify a InstrumentLastCouponDate, the cash flow
payment dates are determined from other inputs.
Data Types: char | double

InstrumentFace — Face or par value
100 (default) | numeric

Face or par value, specified as the comma-separated pair consisting of 'InstrumentFace' and a
scalar numeric.
Data Types: double

Note When using Instrument name-value pairs, you can specify simple interest for a bond by
specifying the InstrumentPeriod value as 0. If InstrumentBasis and InstrumentPeriod are
not specified for a bond, the following default values are used: InstrumentBasis is 0 (act/act) and
InstrumentPeriod is 2.

Output Arguments
CurveObj — Nelson-Siegel curve model
structure

Nelson-Siegel curve model, returned as a structure. After creating a Nelson-Siegel model, you can
view the Nelson-Siegel model parameters using:

CurveObj.Parameters

where the order of parameters is [Beta0,Beta1,Beta2,tau1].

Algorithms
The Nelson-Siegel model proposes that the instantaneous forward curve can be modeled with the
following:

f = β0 + β1e
−m

τ + β2
m
τ e

−m
τ

This can be integrated to derive an equation for the zero curve (see [6] for more information on the
equations and the derivation):

See [1] for more information.
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See Also
IRFitOptions | IRFunctionCurve | fitSvensson | fitSmoothingSpline | fitFunction

Topics
“Fitting IRFunctionCurve Object Using Nelson-Siegel Method” on page 9-16
“Fitting Interest-Rate Curve Functions” on page 9-24
“Using fitFunction to Create Custom Fitting Function” on page 9-21
“Interest-Rate Curve Objects and Workflow” on page 9-2
“Creating Interest-Rate Curve Objects” on page 9-4
“Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework” on page 1-93

External Websites
Calibration and Simulation Best Practices: Multifactor Interest Rate Models for Risk Applications (30
min 00 sec)

Introduced in R2008b
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fitSmoothingSpline
Fit smoothing spline to bond market data

Syntax
CurveObj = IRFunctionCurve.fitSmoothingSpline(Type,Settle,Instruments,
Lambdafun)
CurveObj = IRFunctionCurve.fitSmoothingSpline( ___ ,Name,Value)

Description
CurveObj = IRFunctionCurve.fitSmoothingSpline(Type,Settle,Instruments,
Lambdafun) fits a smoothing spline to market data for a bond.

Note You must have a license for Curve Fitting Toolbox software to use the fitSmoothingSpline
method.

CurveObj = IRFunctionCurve.fitSmoothingSpline( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Use a Smoothing Spline Function to Fit Market Data For a Bond

This example shows how to use a fitSmoothingSpline function to fit market data for a bond.

Settle = repmat(datenum('30-Apr-2008'),[6 1]);
Maturity = [datenum('07-Mar-2009');datenum('07-Mar-2011');...
datenum('07-Mar-2013');datenum('07-Sep-2016');...
datenum('07-Mar-2025');datenum('07-Mar-2036')];

CleanPrice = [100.1;100.1;100.8;96.6;103.3;96.3];
CouponRate = [0.0400;0.0425;0.0450;0.0400;0.0500;0.0425];
Instruments = [Settle Maturity CleanPrice CouponRate];
PlottingPoints = datenum('07-Mar-2009'):180:datenum('07-Mar-2036');
Yield = bndyield(CleanPrice,CouponRate,Settle,Maturity);

% Use the AUGKNT function to construct the knots for a cubic spline at
% every 5 years.
CustomKnots = augknt(0:5:30,4);
SmoothingModel = IRFunctionCurve.fitSmoothingSpline('Zero',datenum('30-Apr-2008'),...
Instruments,@(t) 1000,'knots', CustomKnots);

% Create the plot.
plot(PlottingPoints, getParYields(SmoothingModel, PlottingPoints),'b')
hold on
scatter(Maturity,Yield,'black')
datetick('x')
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Fitting an IRFunctionCurve Object Using fitSmoothingSpline with Penalty Function

This example shows for to use fitSmoothinSpline function to fit the interest-rate curve and model
the Lambdafun penalty function.

First, load the data.

load ukdata20080430

Convert the repo rates to be equivalent zero coupon bonds.

RepoCouponRate = repmat(0,size(RepoRates));
RepoPrice = bndprice(RepoRates, RepoCouponRate, RepoSettle, RepoMaturity);

Aggregate the data.

Settle = [RepoSettle;BondSettle];
Maturity = [RepoMaturity;BondMaturity];
CleanPrice = [RepoPrice;BondCleanPrice];
CouponRate = [RepoCouponRate;BondCouponRate];
Instruments = [Settle Maturity CleanPrice CouponRate];
InstrumentPeriod = [repmat(0,6,1);repmat(2,31,1)];
CurveSettle = datenum('30-Apr-2008');

Choose the parameters for the Lambdafun input argument.
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L = 9.2;
S = -1;
mu = 1;

Define the Lambdafun penalty function.

lambdafun = @(t) exp(L - (L-S)*exp(-t/mu));
t = 0:.1:25;
y = lambdafun(t);
figure
semilogy(t,y);
title('Penalty Function for VRP Approach')
ylabel('Penalty')
xlabel('Time')

Use the fitSmoothinSpline function to fit the interest-rate curve and model the Lambdafun
penalty function.

VRPModel = IRFunctionCurve.fitSmoothingSpline('Forward',CurveSettle,...
Instruments,lambdafun,'Compounding',-1, 'InstrumentPeriod',InstrumentPeriod)

VRPModel = 
             Type: Forward
           Settle: 733528 (30-Apr-2008)
      Compounding: -1
            Basis: 0 (actual/actual)
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Plot the smoothing spline interest-rate curve for the forward rates.

PlottingDates = CurveSettle+20:30:CurveSettle+365*25;
TimeToMaturity = yearfrac(CurveSettle,PlottingDates);
VRPForwardRates = getForwardRates(VRPModel, PlottingDates);
figure;plot(TimeToMaturity,VRPForwardRates)
title('Smoothing Spline Model of UK Instantaneous Nominal Forward Curve')

Input Arguments
Type — Type of interest-rate curve for a bond
character vector with value of 'zero', 'discount', or 'forward'

Type of interest-rate curve for a bond, specified by using a scalar character vector.
Data Types: char

Settle — Settle date of interest-rate curve
date character vector | serial date number

Settle date of interest-rate curve, specified using a scalar date character vector or serial date number.
Data Types: double | char

Instruments — Instruments
matrix
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Instruments, specified using an N-by-4 data matrix where the first column is Settle date, the second
column is Maturity, the third column is the clean price, and the fourth column is a CouponRate for
the bond.
Data Types: double

Lambdafun — Penalty function
function handle

Penalty function, specified using a function handle. The penalty function that takes as its input time
and returns a penalty value. The function handle for the penalty function takes one numeric input
(time-to-maturity) and returns one numeric output (penalty to be applied to the curvature of the
spline). For more information on defining a function handle, see the MATLAB Programming
Fundamentals documentation.

Note The smoothing spline represents the forward curve. The spline is penalized for curvature by
specifying a penalty function. This fit can only be done with a FitType of
DurationWeightedPrice.

Data Types: function_handle

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: CurveObj = IRFunctionCurve.fitSmoothingSpline('Zero',datenum('30-
Apr-2008'),Instruments,@(t) 1000,'knots',CustomKnots)

Name-Value Pair Arguments for All Bond Instruments

Compounding — Compounding frequency per-year for IRFunctionCurve object
CurveObj.Compounding (default) | possible values include: –1, 0, 1, 2, 3, 4, 6, 12.

Compounding frequency per-year for the IRFunctionCurve object, specified as the comma-
separated pair consisting of 'Compounding' and a scalar numeric using one of the supported values:

• −1 = Continuous compounding
• 0 = Simple interest (no compounding)
• 1 = Annual compounding
• 2 = Semiannual compounding
• 3 = Compounding three times per year
• 4 = Quarterly compounding
• 6 = Bimonthly compounding
• 12 = Monthly compounding

Data Types: double
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Basis — Day count basis of the interest-rate curve
0 (actual/actual) (default) | integer from 0 to 13

Day count basis of the interest-rate curve, specified as the comma-separated pair consisting of
'Basis' and a scalar integer.

• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Name-Value Pair Arguments for Each Bond Instrument

InstrumentPeriod — Coupons per year for the bond
2 (default) | numeric with value of 0, 1, 2, 3, 4, 6, and 12

Coupons per year for the bond, specified as the comma-separated pair consisting of
'InstrumentPeriod' and a scalar numeric value.
Data Types: double

InstrumentBasis — Day-count basis of the bond
0 (actual/actual) (default) | integer from 0 to 13

Day count basis of the bond, specified as the comma-separated pair consisting of
'InstrumentBasis' and a scalar integer.

• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
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• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

Note InstrumentBasis distinguishes a bond instrument's Basis value from the interest-rate
curve's Basis value.

For more information, see “Basis” on page 2-229.
Data Types: double

InstrumentEndMonthRule — End-of-month rule
1 (default) | logical with value 0 or 1

End-of-month rule, specified as the comma-separated pair consisting of
'InstrumentEndMonthRule' and a logical value. This rule applies only when Maturity is an end-
of-month date for a month having 30 or fewer days.

• 0 = ignore rule, meaning that a bond's coupon payment date is always the same numerical day of
the month.

• 1 = set rule on (default), meaning that a bond's coupon payment date is always the last actual
day of the month.

Data Types: logical

InstrumentIssueDate — Instrument issue date
[] (default) | date character vector | serial date number

Instrument issue date, specified as the comma-separated pair consisting of
'InstrumentIssueDate' and a scalar date character vector or serial date number.
Data Types: char | double

InstrumentFirstCouponDate — Date when a bond makes its first coupon payment
cash flow payment dates are determined from other inputs (default) | date character vector | serial
date number

Date when a bond makes its first coupon payment (used when bond has an irregular first coupon
period), specified as the comma-separated pair consisting of 'InstrumentFirstCouponDate' and
a scalar date character vector or serial date number. When InstrumentFirstCouponDate and
InstrumentLastCouponDate are both specified, InstrumentFirstCouponDate takes
precedence in determining the coupon payment structure. If you do not specify a
InstrumentFirstCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: char | double
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InstrumentLastCouponDate — Last coupon date of a bond before the maturity date
cash flow payment dates are determined from other inputs (default) | date character vector | serial
date number

Last coupon date of a bond before the maturity date (used when bond has an irregular last coupon
period), specified as the comma-separated pair consisting of 'InstrumentLastCouponDate' and a
scalar date character vector or serial date number. In the absence of a specified
InstrumentFirstCouponDate, a specified InstrumentLastCouponDate determines the coupon
structure of the bond. The coupon structure of a bond is truncated at the
InstrumentLastCouponDate, regardless of where it falls, and is followed only by the bond's
maturity cash flow date. If you do not specify a InstrumentLastCouponDate, the cash flow
payment dates are determined from other inputs.
Data Types: char | double

InstrumentFace — Face or par value
100 (default) | numeric

Face or par value, specified as the comma-separated pair consisting of 'InstrumentFace' and a
scalar numeric.
Data Types: double

Note When using Instrument name-value pairs, you can specify simple interest for a bond by
specifying the InstrumentPeriod value as 0. If InstrumentBasis and InstrumentPeriod are
not specified for a bond, the following default values are used: InstrumentBasis is 0 (act/act) and
InstrumentPeriod is 2.

Output Arguments
CurveObj — Smoothing spline curve model
structure

Smoothing spline curve model, returned as a structure.

Algorithms
The term structure can be modeled with a spline — specifically, one way to model the term structure
is by representing the forward curve with a cubic spline. To ensure that the spline is sufficiently
smooth, a penalty is imposed relating to the curvature (second derivative) of the spline:

where the first term is the difference between the observed price P and the predicted price, P ,
(weighted by the bond's duration, D) summed over all bonds in our data set and the second term is
the penalty term (where λ is a penalty function and f is the spline).

See [3], [4], [5] below.

11 Functions

11-1924



There have been different proposals for the specification of the penalty function λ. One approach,
advocated by [4], and currently used by the UK Debt Management Office, is a penalty function of the
following form:
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See Also
IRFunctionCurve | fitNelsonSiegel | fitSvensson | fitFunction

Topics
“Fitting IRFunctionCurve Object Using Smoothing Spline Method” on page 9-19
“Fitting Interest-Rate Curve Functions” on page 9-24
“Interest-Rate Curve Objects and Workflow” on page 9-2
“Creating Interest-Rate Curve Objects” on page 9-4
“Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework” on page 1-93

External Websites
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fitSvensson
Fit Svensson function to bond market data

Note fitSvensson for an IRFunctionCurve is not recommended. Use fitSvensson with a
parametercurve object instead. For more information, see fitSvensson.

Syntax
CurveObj = IRFunctionCurve.fitSvensson(Type,Settle,Instruments)
CurveObj = IRFunctionCurve.fitSvensson( ___ ,Name,Value)

Description
CurveObj = IRFunctionCurve.fitSvensson(Type,Settle,Instruments) fits the Svensson
function to market data for a bond.

CurveObj = IRFunctionCurve.fitSvensson( ___ ,Name,Value) adds optional name-value
pair arguments.

Examples

Use a Svensson Function to Fit Bond Market Data

This example shows how to use a Svensson function to fit bond market data.

Settle = datenum('15-Apr-2014'); 
Maturity = datemnth(Settle,12*[1 2 3 5 7 10 20 30]'); 

CleanPrice = [100.1 100.1 100.2 99.0 101.8 99.2 101.7 100.2]'; 
CouponRate = [0.0200 0.0275 0.035 0.042 0.0475 0.0525 0.055 0.052]'; 
Instruments = [repmat(Settle,size(Maturity)) Maturity CleanPrice CouponRate]; 
PlottingPoints = datemnth(Settle,1:360); 
Yield = bndyield(CleanPrice,CouponRate,Settle,Maturity); 

SvenssonModel = IRFunctionCurve.fitSvensson('Zero',Settle,Instruments); 

SvenssonModel.Parameters 

ans = 1×6

    1.8298   -1.2299    1.6316   12.3890    1.6982    8.9422

% create the plot
plot(PlottingPoints, getParYields(SvenssonModel, PlottingPoints),'g') 
hold on 
scatter(Maturity,Yield,'black') 
datetick('x') 
legend({'Svensson Fitted Curve','Yields'},'location','best')
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Input Arguments
Type — Type of interest-rate curve for a bond
character vector with value of 'zero' or 'forward'

Type of interest-rate curve for a bond, specified by using a scalar character vector.
Data Types: char

Settle — Settle date of interest-rate curve
date character vector | serial date number

Settle date of interest-rate curve, specified using a scalar date character vector or serial date number.
Data Types: double | char

Instruments — Instruments
matrix

Instruments, specified using an N-by-4 data matrix where the first column is Settle date, the second
column is Maturity, the third column is the clean price, and the fourth column is a CouponRate for
the bond.
Data Types: double
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Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: CurveObj = IRFunctionCurve.fitSvensson('Zero',Settle,Instruments)

Name-Value Pair Arguments for All Bond Instruments

Compounding — Compounding frequency per-year for IRFunctionCurve object
CurveObj.Compounding (default) | possible values include: –1, 0, 1, 2, 3, 4, 6, 12.

Compounding frequency per-year for the IRFunctionCurve object, specified as the comma-
separated pair consisting of 'Compounding' and a scalar numeric using one of the supported values:

• −1 = Continuous compounding
• 0 = Simple interest (no compounding)
• 1 = Annual compounding
• 2 = Semiannual compounding
• 3 = Compounding three times per year
• 4 = Quarterly compounding
• 6 = Bimonthly compounding
• 12 = Monthly compounding

Data Types: double

Basis — Day count basis of the interest-rate curve
0 (actual/actual) (default) | integer from 0 to 13

Day count basis of the interest-rate curve, specified as the comma-separated pair consisting of
'Basis' and a scalar integer.

• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
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• 13 — BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

IRFitOptions — IRFitOptions object
IRFitOptions object

IRFitOptions object, specified using previously created object using IRFitOptions.
Data Types: object

Name-Value Pair Arguments for Each Bond Instrument

InstrumentPeriod — Coupons per year for the bond
2 (default) | numeric with value of 0, 1, 2, 3, 4, 6, and 12

Coupons per year for the bond, specified as the comma-separated pair consisting of
'InstrumentPeriod' and a scalar numeric value.
Data Types: double

InstrumentBasis — Day-count basis of the bond
0 (actual/actual) (default) | integer from 0 to 13

Day count basis of the bond, specified as the comma-separated pair consisting of
'InstrumentBasis' and a scalar integer.

• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

Note InstrumentBasis distinguishes a bond instrument's Basis value from the interest-rate
curve's Basis value.

For more information, see “Basis” on page 2-229.
Data Types: double
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InstrumentEndMonthRule — End-of-month rule
1 (default) | logical with value 0 or 1

End-of-month rule, specified as the comma-separated pair consisting of
'InstrumentEndMonthRule' and a logical value. This rule applies only when Maturity is an end-
of-month date for a month having 30 or fewer days.

• 0 = ignore rule, meaning that a bond's coupon payment date is always the same numerical day of
the month.

• 1 = set rule on (default), meaning that a bond's coupon payment date is always the last actual
day of the month.

Data Types: logical

InstrumentIssueDate — Instrument issue date
[] (default) | date character vector | serial date number

Instrument issue date, specified as the comma-separated pair consisting of
'InstrumentIssueDate' and a scalar date character vector or serial date number.
Data Types: char | double

InstrumentFirstCouponDate — Date when a bond makes its first coupon payment
cash flow payment dates are determined from other inputs (default) | date character vector | serial
date number

Date when a bond makes its first coupon payment (used when bond has an irregular first coupon
period), specified as the comma-separated pair consisting of 'InstrumentFirstCouponDate' and
a scalar date character vector or serial date number. When InstrumentFirstCouponDate and
InstrumentLastCouponDate are both specified, InstrumentFirstCouponDate takes
precedence in determining the coupon payment structure. If you do not specify a
InstrumentFirstCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: char | double

InstrumentLastCouponDate — Last coupon date of a bond before the maturity date
cash flow payment dates are determined from other inputs (default) | date character vector | serial
date number

Last coupon date of a bond before the maturity date (used when bond has an irregular last coupon
period), specified as the comma-separated pair consisting of 'InstrumentLastCouponDate' and a
scalar date character vector or serial date number. In the absence of a specified
InstrumentFirstCouponDate, a specified InstrumentLastCouponDate determines the coupon
structure of the bond. The coupon structure of a bond is truncated at the
InstrumentLastCouponDate, regardless of where it falls, and is followed only by the bond's
maturity cash flow date. If you do not specify a InstrumentLastCouponDate, the cash flow
payment dates are determined from other inputs.
Data Types: char | double

InstrumentFace — Face or par value
100 (default) | numeric

Face or par value, specified as the comma-separated pair consisting of 'InstrumentFace' and a
scalar numeric.
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Data Types: double

Note When using Instrument name-value pairs, you can specify simple interest for a bond by
specifying the InstrumentPeriod value as 0. If InstrumentBasis and InstrumentPeriod are
not specified for a bond, the following default values are used: InstrumentBasis is 0 (act/act) and
InstrumentPeriod is 2.

Output Arguments
CurveObj — Svensson curve model
structure

Svensson curve model, returned as a structure. After creating a Nelson-Siegel model, you can view
the Nelson-Siegel model parameters using:

CurveObj.Parameters

where the order of parameters is [Beta0,Beta1,Beta2,Beta3,tau1,tau2].

Algorithms
A similar model to the Nelson-Siegel is the Svensson model, which adds two additional parameters to
account for greater flexibility in the term structure. This model proposes that the forward rate can be
modeled with the following form:

As above, this can be integrated to derive an equation for the zero curve:
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See Also
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Topics
“Fitting IRFunctionCurve Object Using Svensson Method” on page 9-17
“Fitting Interest-Rate Curve Functions” on page 9-24
“Interest-Rate Curve Objects and Workflow” on page 9-2
“Creating Interest-Rate Curve Objects” on page 9-4
“Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework” on page 1-93

External Websites
Calibration and Simulation Best Practices: Multifactor Interest Rate Models for Risk Applications (30
min 00 sec)

Introduced in R2008b
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getDiscountFactors
Get discount factors for input dates for IRDataCurve

Syntax
F = getDiscountFactors(CurveObj,InpDates)

Description
F = getDiscountFactors(CurveObj,InpDates) computes discount factors for input dates for
an IRDataCurve object.

Examples

Get Discount Factors For Input Dates for an IRDataCurve

This example shows how to get discount factors for input dates for an IRDataCurve.

CurveSettle = datenum('2-Mar-2016');
Data = [2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;
Dates = datemnth(CurveSettle,12*[1 2 3 5 7 10 20 30]);
irdc = IRDataCurve('Zero',CurveSettle,Dates,Data);
getDiscountFactors(irdc, CurveSettle+30:30:CurveSettle+720)

ans = 24×1

    0.9986
    0.9971
    0.9956
    0.9940
    0.9924
    0.9907
    0.9890
    0.9873
    0.9855
    0.9836
      ⋮

Input Arguments
CurveObj — Interest-rate curve object
object

Interest-rate curve object, specified by using IRDataCurve.
Data Types: object

InpDates — Input dates
vector
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Input dates, specified using MATLAB date format. The input dates must be after the Settle date of
IRDataCurve.
Data Types: double

Output Arguments
F — Discount factors
vector

Discount factors, returned as a vector.

See Also
IRDataCurve | getForwardRates | getZeroRates | getParYields | toRateSpec

Topics
“Creating Interest-Rate Curve Objects” on page 9-4
“Creating an IRDataCurve Object” on page 9-6
“Interest-Rate Curve Objects and Workflow” on page 9-2
“Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework” on page 1-93

Introduced in R2008b
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getDiscountFactors
Get discount factors for input dates for IRFunctionCurve

Syntax
F = getDiscountFactors(CurveObj,InpDates)

Description
F = getDiscountFactors(CurveObj,InpDates) computes discount factors for input dates for
an IRFunctionCurve object.

Examples

Get Discount Factors for Input Dates For an IRFunctionCurve

This example shows how to get discount factors for input dates for an IRFunctionCurve.

irfc = IRFunctionCurve('Forward',today,@(t) polyval([-0.0001 0.003 0.02],t));
getDiscountFactors(irfc, today+30:30:today+720)

ans = 24×1

    0.9984
    0.9967
    0.9950
    0.9933
    0.9916
    0.9899
    0.9881
    0.9864
    0.9846
    0.9828
      ⋮

Input Arguments
CurveObj — Interest-rate curve object
object

Interest-rate curve object, specified by using IRFunctionCurve.
Data Types: object

InpDates — Input dates
vector

Input dates, specified using MATLAB date format. The input dates must be after the Settle date of
IRFunctionCurve.
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Data Types: double

Output Arguments
F — Discount factors
vector

Discount factors, returned as a vector.

See Also
IRFunctionCurve | getForwardRates | getZeroRates | getParYields | toRateSpec

Topics
“Creating an IRFunctionCurve Object” on page 9-16
“Interest-Rate Curve Objects and Workflow” on page 9-2
“Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework” on page 1-93

Introduced in R2008b
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getForwardRates
Get forward rates for input dates for IRDataCurve

Syntax
F = getForwardRates(CurveObj,InpDates)
F = getForwardRates( ___ ,Name,Value)

Description
F = getForwardRates(CurveObj,InpDates) computes discount factors for input dates for an
IRDataCurve object. getForwardRates returns discrete forward rates for the intervals input into
this function. For example, running the following code:

getForwardRates(irdc, {Date1, Date2, Date3}) 

gives three forwards rates and the three tenors are: [Settle, Date1], [Date1, Date2], and
[Date2, Date3].

F = getForwardRates( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Get Forward Rates For Input Dates for an IRDataCurve

This example shows how to get forward rates for input dates for an IRDataCurve.

CurveSettle = datenum('2-Mar-2016');
Data = [2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;
Dates = datemnth(CurveSettle,12*[1 2 3 5 7 10 20 30]);
irdc = IRDataCurve('Zero',CurveSettle,Dates,Data);
getForwardRates(irdc, CurveSettle+30:30:CurveSettle+720)

ans = 24×1

    0.0174
    0.0180
    0.0187
    0.0193
    0.0199
    0.0205
    0.0212
    0.0218
    0.0224
    0.0230
      ⋮
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Use getForwardRates to Compute the Five Year Forward Rate in Five Years Time

Use getForwardRates to compute the forward rate from the Settle date to 5 years from March 1,
2017 and then the forward rate for the period from 5 years to 10 years from March 1, 2017.

Data = [2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;
Dates = daysadd(736755,[360 2*360 3*360 5*360 7*360 10*360 20*360 30*360],1);
irdc = IRDataCurve('Zero',today,Dates,Data);
getForwardRates(irdc,datemnth(irdc.Settle,12*[5 10]))

ans = 2×1

    0.0385
    0.0457

The first element (.0312) is the forward rate from the Settle to 5 years from March 1, 2017. The
second rate (0.0458) is the forward rate for the period from 5 years to 10 years from March 1, 2017,
in other words, the 5-year forward rate 5 years from March 1, 2017.

Compute the Six Month Forward Rates in 1 Month, 2 Months and 3 Months

Use the following data to create an IRDataCurve object:

Data = [0.1 0.30 0.70 1.05 1.45 1.71 2.12 2.43 2.85 3.57]/100;
Settle = datenum('08-Aug-2016'); % Today's date
Dates = datemnth(Settle,[3 6 9 12*[1 2 3 5 7 10 20]]);
irdc = IRDataCurve('Zero',Settle,Dates,Data)

irdc = 
             Type: Zero
           Settle: 736550 (08-Aug-2016)
      Compounding: 2
            Basis: 0 (actual/actual)
     InterpMethod: linear
            Dates: [10x1 double]
             Data: [10x1 double]

Compute the implied 6 month forward rates in 1 month, 2 months, and 3 months from the Settle
date.

IntervalMonth = 6; % Interval for 6 month forward rates
FwdMonths = [1 2 3]'; % Starting in 1, 2, and 3 months from Settle
N = length(FwdMonths);
FwdRates_6M = zeros(N,1);

for k = 1:N
    FwdDates = datemnth(irdc.Settle, [FwdMonths(k) FwdMonths(k)+IntervalMonth]);
    f = getForwardRates(irdc,FwdDates);
    FwdRates_6M(k) = f(2);
end

[FwdMonths FwdRates_6M]
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ans = 3×2

    1.0000    0.0050
    2.0000    0.0074
    3.0000    0.0101

Input Arguments
CurveObj — Interest-rate curve object
object

Interest-rate curve object, specified by using IRDataCurve.
Data Types: object

InpDates — Input dates
vector

Input dates, specified using MATLAB date format. The input dates must be after the Settle date of
IRDataCurve.
Data Types: double

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: F = getForwardRates(irdc, CurveSettle+30:30:CurveSettle+720)

Compounding — Compounding frequency per-year for forward rates
CurveObj.Compounding (default) | possible values include: –1, 0, 1, 2, 3, 4, 6, 12.

Compounding frequency per-year for forward rates, specified as the comma-separated pair consisting
of 'Compounding' and a scalar numeric using one of the supported values:

• −1 = Continuous compounding
• 0 = Simple interest (no compounding)
• 1 = Annual compounding
• 2 = Semiannual compounding
• 3 = Compounding three times per year
• 4 = Quarterly compounding
• 6 = Bimonthly compounding
• 12 = Monthly compounding

Data Types: double

Basis — Day count basis for the forward rates
0 (actual/actual) (default) | integer from 0 to 13
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Day count basis for the forward rates, specified as the comma-separated pair consisting of 'Basis'
and a scalar integer.

• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Output Arguments
F — Forward rates
vector

Forward rates, returned as a vector. getForwardRates returns forward rates corresponding to the
periodicity of the dates input to getForwardRates. For example, where the dates are monthly,
monthly forward rates are returned. The first element of the output is the forward rate from the
Settle to one month, the second element is the forward rate from one month to two months, and so
on.

See Also
IRDataCurve | getZeroRates | getDiscountFactors | getParYields | toRateSpec

Topics
“Creating Interest-Rate Curve Objects” on page 9-4
“Creating an IRDataCurve Object” on page 9-6
“Interest-Rate Curve Objects and Workflow” on page 9-2
“Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework” on page 1-93

Introduced in R2008b
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getForwardRates
Get forward rates for input dates for IRFunctionCurve

Syntax
F = getForwardRates(CurveObj,InpDates)
F = getForwardRates( ___ ,Name,Value)

Description
F = getForwardRates(CurveObj,InpDates) computes discount factors for input dates for an
IRFunctionCurve object. getForwardRates returns discrete forward rates for the intervals input
into this function. For example, running the following code:

getForwardRates(irdc, {Date1, Date2, Date3}) 

gives three forwards rates and the three tenors are: [Settle, Date1], [Date1, Date2], and
[Date2, Date3].

F = getForwardRates( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Get Forward Rates For Input Dates For an IRFunctionCurve

This example shows how to get forward rates for input dates for an IRFunctionCurve.

irfc = IRFunctionCurve('Forward',today,@(t) polyval([-0.0001 0.003 0.02],t));
getForwardRates(irfc, today+30:30:today+720)

ans = 24×1

    0.0202
    0.0205
    0.0207
    0.0210
    0.0212
    0.0215
    0.0217
    0.0219
    0.0222
    0.0224
      ⋮

Compute the Implied 2-Year Forward Rates in 1 Year, 2 Years, 5 Years, and 10 Years

This example shows how to compute the implied 2-year forward rates in 1 year, 2 years, 5 years, and
10 years from the Settle date by using the getForwardRates method.

 getForwardRates

11-1941



Use the following data for an IRFunctionCurve object that is created when using the fitSvensson
method.

Settle = datenum('15-Apr-2014');
Maturity = datemnth(Settle,12*[1 2 3 5 7 10 20 30]');

CleanPrice = [100.1 100.1 100.2 99.0 101.8 99.2 101.7 100.2]';
CouponRate = [0.0200 0.0275 0.035 0.042 0.0475 0.0525 0.055 0.052]';
Instruments = [repmat(Settle,size(Maturity)) Maturity CleanPrice CouponRate];

SvenssonModel = IRFunctionCurve.fitSvensson('Zero',Settle,Instruments);

Compute the implied 2-year forward rates in 1 year, 2 years, 5 years, and 10 years from the Settle
date.

IntervalMonth = 12.*2;         % Interval months for 2-year forward rates
FwdMonths = 12.*[1 2 5 10]';   % Starting in 1, 2, 5, and 10 years from Settle
N = length(FwdMonths);
FwdRates_2Y = zeros(N,1);

for k = 1:N
    FwdDates = datemnth(SvenssonModel.Settle, [FwdMonths(k) FwdMonths(k)+IntervalMonth]);
    f = getForwardRates(SvenssonModel,FwdDates);
    FwdRates_2Y(k) = f(2);
end

[FwdMonths FwdRates_2Y]

ans = 4×2

   12.0000    0.0418
   24.0000    0.0504
   60.0000    0.0620
  120.0000    0.0629

Input Arguments
CurveObj — Interest-rate curve object
object

Interest-rate curve object, specified by using IRFunctionCurve.
Data Types: object

InpDates — Input dates
vector

Input dates, specified using MATLAB date format. The input dates must be after the Settle date of
IRFunctionCurve.
Data Types: double
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Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: F = getForwardRates(irfc, CurveSettle+30:30:CurveSettle+720)

Compounding — Compounding frequency per-year for forward rates
CurveObj.Compounding (default) | possible values include: –1, 0, 1, 2, 3, 4, 6, 12.

Compounding frequency per-year for forward rates, specified as the comma-separated pair consisting
of 'Compounding' and a scalar numeric using one of the supported values:

• −1 = Continuous compounding
• 0 = Simple interest (no compounding)
• 1 = Annual compounding
• 2 = Semiannual compounding
• 3 = Compounding three times per year
• 4 = Quarterly compounding
• 6 = Bimonthly compounding
• 12 = Monthly compounding

Data Types: double

Basis — Day count basis for the forward rates
0 (actual/actual) (default) | integer from 0 to 13

Day count basis for the forward rates, specified as the comma-separated pair consisting of 'Basis'
and a scalar integer.

• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252
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For more information, see “Basis” on page 2-229.
Data Types: double

Output Arguments
F — Forward rates
vector

Forward rates, returned as a vector. getForwardRates returns forward rates corresponding to the
periodicity of the dates input to getForwardRates. For example, where the dates are monthly,
monthly forward rates are returned. The first element of the output is the forward rate from the
Settle to one month, the second element is the forward rate from one month to two months, and so
on.

See Also
IRFunctionCurve | getZeroRates | getDiscountFactors | getParYields

Topics
“Creating an IRFunctionCurve Object” on page 9-16
“Interest-Rate Curve Objects and Workflow” on page 9-2
“Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework” on page 1-93

Introduced in R2008b
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getParYields
Get par yields for input dates for IRDataCurve

Syntax
F = getParYields(CurveObj,InpDates)
F = getParYields( ___ ,Name,Value)

Description
F = getParYields(CurveObj,InpDates) computes par yields for input dates for an
IRDataCurve object.

F = getParYields( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Get Par Yields For Input Dates For an IRDataCurve

This example shows how to get par yields for input dates for an IRDataCurve.

CurveSettle = datenum('2-Mar-2016');
Data = [2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;
Dates = datemnth(CurveSettle,12*[1 2 3 5 7 10 20 30]);
irdc = IRDataCurve('Zero',CurveSettle,Dates,Data);
getParYields(irdc, CurveSettle+30:30:CurveSettle+720)

ans = 24×1

    0.0175
    0.0177
    0.0181
    0.0183
    0.0186
    0.0189
    0.0194
    0.0197
    0.0200
    0.0203
      ⋮

Compute Par Yields From a Curve With Simple Interest Compounding

This example shows how set the compounding of an IRDataCurve to Zero (simple interest) and then
compute par yields from that curve.

CurveSettle = datenum('2-Mar-2016');
Data = [2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;
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Dates = datemnth(CurveSettle,12*[1 2 3 5 7 10 20 30]);
irdc = IRDataCurve('Zero',CurveSettle,Dates,Data,'Compounding',0);
SimpleInt = irdc.getParYields(Dates(1), 'Basis', 2, 'Compounding', 1)

SimpleInt = 0.0209

Input Arguments
CurveObj — Interest-rate curve object
object

Interest-rate curve object, specified by using IRDataCurve.
Data Types: object

InpDates — Input dates
vector

Input dates, specified using MATLAB date format. The input dates must be after the Settle date of
IRDataCurve.
Data Types: double

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: F = getParYields(irdc, CurveSettle+30:30:CurveSettle+720)

Compounding — Compounding frequency per-year for par yield rates
CurveObj.Compounding (default) | possible values include: –1, 0, 1, 2, 3, 4, 6, 12.

Compounding frequency per-year for par yield rates, specified as the comma-separated pair
consisting of 'Compounding' and a scalar numeric using one of the supported values:

• −1 = Continuous compounding
• 0 = Simple interest (no compounding)
• 1 = Annual compounding
• 2 = Semiannual compounding
• 3 = Compounding three times per year
• 4 = Quarterly compounding
• 6 = Bimonthly compounding
• 12 = Monthly compounding

Data Types: double

Basis — Day count basis for the par yield rates
0 (actual/actual) (default) | integer from 0 to 13
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Day count basis for the par yield rates, specified as the comma-separated pair consisting of 'Basis'
and a scalar integer.

• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Output Arguments
F — Par yields
vector

Par yields, returned as a vector.

See Also
IRDataCurve | getForwardRates | getZeroRates | getDiscountFactors | toRateSpec

Topics
“Creating Interest-Rate Curve Objects” on page 9-4
“Creating an IRDataCurve Object” on page 9-6
“Interest-Rate Curve Objects and Workflow” on page 9-2
“Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework” on page 1-93

Introduced in R2008b
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getParYields
Get par yields for input dates for IRFunctionCurve

Syntax
F = getParYields(CurveObj,InpDates)
F = getParYields( ___ ,Name,Value)

Description
F = getParYields(CurveObj,InpDates) computes par yields for input dates for an
IRFunctionCurve object.

F = getParYields( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Get Par Yields For Input Dates For an IRFunctionCurve

This example shows how to get par yields for input dates for an IRFunctionCurve.

irfc = IRFunctionCurve('Forward',today,@(t) polyval([-0.0001 0.003 0.02],t));
getParYields(irfc, today+30:30:today+720)

ans = 24×1

    0.0200
    0.0203
    0.0203
    0.0205
    0.0205
    0.0206
    0.0210
    0.0210
    0.0212
    0.0212
      ⋮

Input Arguments
CurveObj — Interest-rate curve object
object

Interest-rate curve object, specified by using IRFunctionCurve.
Data Types: object

InpDates — Input dates
vector
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Input dates, specified using MATLAB date format. The input dates must be after the Settle date of
IRFunctionCurve.
Data Types: double

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: F = getParYields(irfc, CurveSettle+30:30:CurveSettle+720)

Compounding — Compounding frequency per-year for par yield rates
CurveObj.Compounding (default) | possible values include: –1, 0, 1, 2, 3, 4, 6, 12.

Compounding frequency per-year for par yield rates, specified as the comma-separated pair
consisting of 'Compounding' and a scalar numeric using one of the supported values:

• −1 = Continuous compounding
• 0 = Simple interest (no compounding)
• 1 = Annual compounding
• 2 = Semiannual compounding
• 3 = Compounding three times per year
• 4 = Quarterly compounding
• 6 = Bimonthly compounding
• 12 = Monthly compounding

Data Types: double

Basis — Day count basis for the par yield rates
0 (actual/actual) (default) | integer from 0 to 13

Day count basis for the par yield rates, specified as the comma-separated pair consisting of 'Basis'
and a scalar integer.

• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
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• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Output Arguments
F — Par yields
vector

Par yields, returned as a vector.

See Also
IRFunctionCurve | getForwardRates | getZeroRates | getDiscountFactors

Topics
“Creating an IRFunctionCurve Object” on page 9-16
“Interest-Rate Curve Objects and Workflow” on page 9-2
“Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework” on page 1-93

Introduced in R2008b
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getZeroRates
Get zero rates for input dates for IRDataCurve

Syntax
F = getZeroRates(CurveObj,InpDates)
F = getZeroRates( ___ ,Name,Value)

Description
F = getZeroRates(CurveObj,InpDates) computes zero rates for input dates for an
IRDataCurve object.

F = getZeroRates( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Get Zero Rates For Input Dates For an IRDataCurve

This example shows how to get zero rates for input dates for an IRDataCurve.

CurveSettle = datenum('2-Mar-2016');
Data = [2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;
Dates = datemnth(CurveSettle,12*[1 2 3 5 7 10 20 30]);
irdc = IRDataCurve('Zero',CurveSettle,Dates,Data);
getZeroRates(irdc, CurveSettle+30:30:CurveSettle+720)

ans = 24×1

    0.0174
    0.0177
    0.0180
    0.0183
    0.0187
    0.0190
    0.0193
    0.0196
    0.0199
    0.0202
      ⋮

Input Arguments
CurveObj — Interest-rate curve object
object

Interest-rate curve object, specified by using IRDataCurve.
Data Types: object
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InpDates — Input dates
vector

Input dates, specified using MATLAB date format. The input dates must be after the Settle date of
IRDataCurve.
Data Types: double

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: F = getZeroRates(irdc, CurveSettle+30:30:CurveSettle+720)

Compounding — Compounding frequency per-year for zero rates
CurveObj.Compounding (default) | possible values include: –1, 0, 1, 2, 3, 4, 6, 12.

Compounding frequency per-year for zero rates, specified as the comma-separated pair consisting of
'Compounding' and a scalar numeric using one of the supported values:

• −1 = Continuous compounding
• 0 = Simple interest (no compounding)
• 1 = Annual compounding
• 2 = Semiannual compounding
• 3 = Compounding three times per year
• 4 = Quarterly compounding
• 6 = Bimonthly compounding
• 12 = Monthly compounding

Data Types: double

Basis — Day count basis for the zero rates
0 (actual/actual) (default) | integer from 0 to 13

Day count basis for the zero rates, specified as the comma-separated pair consisting of 'Basis' and
a scalar integer.

• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
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• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Output Arguments
F — Zero rates
vector

Zero rates, returned as a vector.

See Also
IRDataCurve | getForwardRates | getDiscountFactors | getParYields | toRateSpec

Topics
“Creating Interest-Rate Curve Objects” on page 9-4
“Creating an IRDataCurve Object” on page 9-6
“Interest-Rate Curve Objects and Workflow” on page 9-2
“Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework” on page 1-93

Introduced in R2008b
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getZeroRates
Get zero rates for input dates for IRFunctionCurve

Syntax
F = getZeroRates(CurveObj,InpDates)
F = getZeroRates( ___ ,Name,Value)

Description
F = getZeroRates(CurveObj,InpDates) computes zero rates for input dates for an
IRFunctionCurve object.

F = getZeroRates( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Get Zero Rates For Input Dates For an IRFunctionCurve

This example shows how to get zero rates for input dates for an IRFunctionCurve.

irfc = IRFunctionCurve('Forward',today,@(t) polyval([-0.0001 0.003 0.02],t));
getZeroRates(irfc, today+30:30:today+720)

ans = 24×1

    0.0201
    0.0202
    0.0204
    0.0205
    0.0206
    0.0207
    0.0209
    0.0210
    0.0211
    0.0212
      ⋮

Input Arguments
CurveObj — Interest-rate curve object
object

Interest-rate curve object, specified by using IRFunctionCurve.
Data Types: object

InpDates — Input dates
vector
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Input dates, specified using MATLAB date format. The input dates must be after the Settle date of
IRFunctionCurve.
Data Types: double

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: F = getZeroRates(irfc, CurveSettle+30:30:CurveSettle+720)

Compounding — Compounding frequency per-year for zero rates
CurveObj.Compounding (default) | possible values include: –1, 0, 1, 2, 3, 4, 6, 12.

Compounding frequency per-year for zero rates, specified as the comma-separated pair consisting of
'Compounding' and a scalar numeric using one of the supported values:

• −1 = Continuous compounding
• 0 = Simple interest (no compounding)
• 1 = Annual compounding
• 2 = Semiannual compounding
• 3 = Compounding three times per year
• 4 = Quarterly compounding
• 6 = Bimonthly compounding
• 12 = Monthly compounding

Data Types: double

Basis — Day count basis for the zero rates
0 (actual/actual) (default) | integer from 0 to 13

Day count basis for the zero rates, specified as the comma-separated pair consisting of 'Basis' and
a scalar integer.

• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
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• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Output Arguments
F — Zero rates
vector

Zero rates, returned as a vector.

See Also
IRFunctionCurve | getForwardRates | getDiscountFactors | getParYields | toRateSpec

Topics
“Creating an IRFunctionCurve Object” on page 9-16
“Interest-Rate Curve Objects and Workflow” on page 9-2
“Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework” on page 1-93

Introduced in R2008b
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IRBootstrapOptions
Construct specific options for bootstrapping interest-rate curve object

Description
Build an IRBootstrapOptions object using IRBootstrapOptions.

After creating an IRBootstrapOptions object, you can use the object with bootstrap.

For more detailed information on this workflow, see “Interest-Rate Curve Objects and Workflow” on
page 9-2.

Creation

Syntax
IRBootstrapOptions_obj = IRBootstrapOptions(Name,Value)

Description

IRBootstrapOptions_obj = IRBootstrapOptions(Name,Value) sets properties on page 11-
1958 and create the IRBootstrapOptions object to use with the bootstrap function. For example,
IRBootstrapOptions_obj = IRBootstrapOptions('LowerBound',-1) creates an
IRBootstrapOptions object. You can specify multiple name-value pair arguments.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: IRBootstrapOptions_obj = IRBootstrapOptions('LowerBound',-1)

ConvexityAdjustment — Controls the convexity adjustment to interest rate futures
[] (default) | function handle | numeric vector

Controls the convexity adjustment to interest rate futures, specified as the comma-separated pair
consisting of 'ConvexityAdjustment' and a function handle or an N-by-1 numeric vector.

The function handle that takes one numeric input (time-to-maturity) and returns one numeric output,
ConvexityAdjustment. For more information on defining a function handle, see the MATLAB
Programming Fundamentals documentation.

Alternatively, you can define ConvexityAdjustment as an N-by-1 vector of values, where N is the
number of interest-rate futures.
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In either case, the ConvexityAdjustment is subtracted from the futures rate.
Data Types: double | function_handle

UpperBound — Upper bound for rates associated with bonds or swaps
1 (default) | scalar numeric | numeric vector

Upper bound for rates associated with bonds or swaps, specified as the comma-separated pair
consisting of 'UpperBound' and a scalar numeric or an N-by-1 vector where N is the number of
swaps and bonds. By default, UpperBound is 1. Specify an upper bound that is greater than 1 when
bootstrapping a discount curve.
Data Types: double

LowerBound — Lower bound for rates associated with bonds or swaps
0 (default) | scalar numeric | numeric vector

Lower bound for rates associated with bonds or swaps, specified as the comma-separated pair
consisting of 'LowerBound' and a scalar numeric or an N-by-1 vector where N is the number of
swaps and bonds. By default, LowerBound is 0.
Data Types: double

Properties
ConvexityAdjustment — Controls the convexity adjustment to interest rate futures
[] (default) | function handle | numeric vector

This property is read-only.

Controls the convexity adjustment to interest rate futures, returned as a function handle or an N-by-1
numeric vector.
Data Types: double | function_handle

UpperBound — Upper bound for rates associated with bonds or swaps
1 (default) | scalar numeric | numeric vector

Upper bound for rates associated with bonds or swaps, returned as a scalar numeric or an N-by-1
vector.
Data Types: double

LowerBound — Lower bound for rates associated with bonds or swaps
0 (default) | scalar numeric | numeric vector

Lower bound for rates associated with bonds or swaps, returned as a scalar numeric or an N-by-1
vector.
Data Types: double

Object Functions
bootstrap Bootstrap interest-rate curve from market data

Examples
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Create IRBootstrapOptionsObj to Use With the bootstrap Method

Set the ConvexityAdjustment to control interest-rate futures.

mybootoptions = IRBootstrapOptions('ConvexityAdjustment',repmat(.005,10,1))

mybootoptions = 
  IRBootstrapOptions with properties:

    ConvexityAdjustment: [10x1 double]
             LowerBound: 0
             UpperBound: 1

Use mybootoptions as the optional argument, IRBootstrapOptionsObj, to use with the
bootstrap method.

Create an IRBootstrapOptionsObj to Use With Negative Zero Interest-Rates

Use an IRBootstrapOptionsObj optional argument with the bootstrap method to allow for
negative zero rates when solving the swap zero points.

Settle = datenum('15-Mar-2015'); 
InstrumentTypes = {'Deposit';'Deposit';'Swap';'Swap';'Swap';'Swap';}; 

Instruments = [Settle,datenum('15-Jun-2015'),.001; ... 
Settle,datenum('15-Dec-2015'),.0005; ... 
Settle,datenum('15-Mar-2016'),-.001; ... 
Settle,datenum('15-Mar-2017'),-0.0005; ... 
Settle,datenum('15-Mar-2018'),.0017; ... 
Settle,datenum('15-Mar-2020'),.0019]; 

irbo = IRBootstrapOptions('LowerBound',-1); 

bootModel = IRDataCurve.bootstrap('zero', Settle, InstrumentTypes,... 
    Instruments,'IRBootstrapOptions',irbo); 

bootModel.getZeroRates(datemnth(Settle,1:60))

ans = 60×1

    0.0012
    0.0011
    0.0010
    0.0009
    0.0008
    0.0008
    0.0007
    0.0006
    0.0005
   -0.0000
      ⋮

Note that IRBootstrapOptions optional argument for LowerBound is set to -1 for negative zero
rates when solving the swap zero points.
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See Also
IRDataCurve | ratecurve | irbootstrap

Topics
“Creating Interest-Rate Curve Objects” on page 9-4
“Creating an IRDataCurve Object” on page 9-6
“Bootstrap IRDataCurve Based on Market Instruments” on page 9-7
“Interest-Rate Curve Objects and Workflow” on page 9-2
“Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework” on page 1-93

Introduced in R2008b
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IRDataCurve
Construct interest-rate curve object from dates and data

Description
Build an IRDataCurve object using IRDataCurve.

After creating an IRDataCurve object, you can use the associated object functions:

Object Function Description
getForwardRates Returns forward rates for input dates.
getZeroRates Returns zero rates for input dates.
getDiscountFactors Returns discount factors for input dates.
getParYields Returns par yields for input dates.
toRateSpec Converts to be a RateSpec object; this structure is identical

to the RateSpec produced by the function intenvset.
bootstrap Bootstraps an interest rate curve from market data.

For more detailed information on this workflow, see “Interest-Rate Curve Objects and Workflow” on
page 9-2.

Creation

Syntax
IRDataCurve_obj = IRDataCurve(Type,Settle,Dates,Data)
IRDataCurve_obj = IRDataCurve( ___ ,Name,Value)

Description

IRDataCurve_obj = IRDataCurve(Type,Settle,Dates,Data) sets properties on page 11-
1963 and creates an IRDataCurve object.

IRDataCurve_obj = IRDataCurve( ___ ,Name,Value) sets optional properties on page 11-1963
using name-value pairs and any of the arguments in the previous syntax. For example,
IRDataCurve_obj =
IRDataCurve('Zero',CurveSettle,Dates,Data,'Compounding',4,'Basis',4) creates an
IRDataCurve object for a zero curve. You can specify multiple name-value pair arguments.

Input Arguments

Type — Type of interest-rate curve
string with value "zero", "forward", or "discount" | character vector with value 'zero',
'forward', or 'discount'
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Type of interest-rate curve, specified as a scalar string or character vector for one of the supported
types.
Data Types: char | string

Settle — Settlement date for the curve
datetime | serial date number | date character vector | date string

Settlement date for the curve, specified as a scalar datetime, serial date number, date character
vector, or date string.
Data Types: double | char | string | datetime

Dates — Dates corresponding to rate data
datetime | serial date number | date character vector | date string

Dates corresponding to the rate data, specified as a vector of serial date numbers, cell array of date
character vectors, datetime object, or string array.
Data Types: double | char | cell | datetime | string

Data — Interest-rate data for curve object
numeric vector

Interest-rate data for curve object, specified as a numeric vector.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: IRDataCurve_obj =
IRDataCurve('Zero',CurveSettle,Dates,Data,'Compounding',4,'Basis',4)

Compounding — Compounding frequency for curve
-1 (default) | possible values include: –1, 0, 1, 2, 3, 4, 6, 12.

Compounding frequency for the curve, specified as the comma-separated pair consisting of
'Compounding' and a scalar numeric using the supported values: –1, 0, 1, 2, 3, 4, 6, or 12.

Note Simple interest can be specified by setting the Compounding value as 0 and is supported for
“zero” and “discount” curve types only (not supported for “forward” curves).

Data Types: double

Basis — Day count basis of interest-rate curve
0 (actual/actual) (default) | integer from 0 to 13

Day count basis of interest-rate curve, specified as the comma-separated pair consisting of 'Basis'
and a scalar integer.
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• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

InterpMethod — Interpolation method
'linear' (default) | character vector

Interpolation method, specified as the comma-separated pair consisting of 'InterpMethod' and a
character vector or string for one of the following values:

• 'linear' — Linear interpolation (default)
• 'constant' — Piecewise constant interpolation.
• 'pchip' — Piecewise cubic Hermite interpolation.
• 'spline' — Cubic spline interpolation

Data Types: char | string

Properties
Type — Type of interest-rate curve
string with value "zero", "forward", or "discount"

This property is read-only.

Instrument type, returned as a string.
Data Types: string

Settle — Settlement date
datetime

This property is read-only.

Settlement date, returned as a datetime.
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Data Types: datetime

Dates — Dates corresponding to rate data
numeric vector

This property is read-only.

Dates corresponding to rate data, returned as a numeric vector.
Data Types: double

Data — Interest-rate data for the curve object
numeric

This property is read-only.

Interest-rate data for the curve object, returned as a numeric vector.
Data Types: double

Compounding — Compounding frequency for curve
-1 (default) | possible values include: –1, 0, 1, 2, 3, 4, 6, 12.

This property is read-only.

Compounding frequency for curve, returned as a scalar numeric.
Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13

This property is read-only.

Day count basis, returned as a scalar integer.
Data Types: double

InterpMethod — Interpolation method
'linear' (default) | character vector

This property is read-only.

Interpolation method, returned as a scalar character vector.
Data Types: char

Object Functions
getForwardRates Get forward rates for input dates for IRDataCurve
getZeroRates Get zero rates for input dates for IRDataCurve
getDiscountFactors Get discount factors for input dates for IRDataCurve
getParYields Get par yields for input dates for IRDataCurve
toRateSpec Convert IRDataCurve object to RateSpec
bootstrap Bootstrap interest-rate curve from market data

Examples
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Create IRDataCurve Object

This example shows how to create an IRDataCurve object for an interest-rate curve.

Define the type of interest-rate curve, Settle date, Dates, and Data.

CurveSettle = datenum('2-Mar-2016');
Data = [2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;
Dates = datemnth(CurveSettle,12*[1 2 3 5 7 10 20 30]);

Use IRDataCurve to create an IRDataCurve object.

irdc = IRDataCurve('Zero',CurveSettle,Dates,Data,'Compounding',4,'Basis',4)

irdc = 
             Type: Zero
           Settle: 736391 (02-Mar-2016)
      Compounding: 4
            Basis: 4 (30/360 (PSA))
     InterpMethod: linear
            Dates: [8x1 double]
             Data: [8x1 double]

See Also
Functions
ratecurve

Topics
“Creating Interest-Rate Curve Objects” on page 9-4
“Creating an IRDataCurve Object” on page 9-6
“Creating an IRFunctionCurve Object” on page 9-16
“Convert RateSpec to a ratecurve Object” on page 1-49
“Interest-Rate Curve Objects and Workflow” on page 9-2
“Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework” on page 1-93

Introduced in R2008b
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IRFitOptions
Construct specific options for fitting interest-rate curve object

Description
Build an IRFitOptions object using IRFitOptions.

After creating an IRFitOptions object, you can use the object with fitFunction.

For more detailed information on this workflow, see “Interest-Rate Curve Objects and Workflow” on
page 9-2.

Creation

Syntax
IRFitOptions_obj = IRFitOptions(InitialGuess)
IRFitOptions_obj = IRFitOptions( ___ ,Name,Value)

Description

IRFitOptions_obj = IRFitOptions(InitialGuess) sets properties on page 11-1967 and
create the IRFitOptions object with an initial guess or with an initial guess and bounds.

IRFitOptions_obj = IRFitOptions( ___ ,Name,Value) sets optional properties on page 11-
1967 using name-value pairs and any of the arguments in the previous syntax. For example,
IRFitOptions_obj = IRFitOptions([7 2 1 0],'FitType','yield') creates an
IRFitOptions object to use with fitFunction when building a custom fitting function. You can
specify multiple name-value pair arguments.

Input Arguments

InitialGuess — Initial guess for the parameters of the curve function
vector

Initial guess for the parameters of the curve function, specified as vector of values for the starting
point of the optimization.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: IRFitOptions_obj = IRFitOptions([7 2 1 0],'FitType','yield')
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FitType — Minimize by in curve fitting process
'DurationWeightedPrice' (default) | character vector with value of
'DurationWeightedPrice', 'Price', or 'Yield'

Minimize by in curve fitting process, specified as the comma-separated pair consisting of 'FitType'
and a character vector.
Data Types: char

UpperBound — Upper bound for parameters of curve function
[] (default) | numeric

Upper bound for parameters of the curve function, specified as the comma-separated pair consisting
of 'UpperBound' and a scalar numeric.
Data Types: double

LowerBound — Lower bound for parameters of curve function
[] (default) | numeric

Lower bound for parameters of the curve function, specified as the comma-separated pair consisting
of 'LowerBound' and a scalar numeric.
Data Types: double

OptOptions — Optimization parameters
[] (default) | structure

Optimization parameters, specified as the comma-separated pair consisting of 'OptOptions' and a
structure defined by using optimoptions (optimset is also supported).
Data Types: struct

Properties
FitType — Minimize by in curve fitting process
'DurationWeightedPrice' (default) | character vector with value of
'DurationWeightedPrice', 'Price', or 'Yield'

This property is read-only.

Minimize by in curve fitting process, returned as a character vector.
Data Types: char

InitialGuess — Initial guess for the parameters of the curve function
vector

This property is read-only.

Initial guess for the parameters of the curve function, returned as a vector.
Data Types: double

UpperBound — Upper bound for parameters of curve function
[] (default) | numeric

This property is read-only.
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Upper bound for parameters of the curve function, returned as a scalar numeric.
Data Types: double

LowerBound — Lower bound for parameters of curve function
[] (default) | numeric

This property is read-only.

Lower bound for parameters of the curve function, returned as a scalar numeric.
Data Types: double

OptOptions — Optimization parameters
[] (default) | structure

This property is read-only.

Optimization parameters, returned as a structure defined by using optimoptions (optimset is also
supported).
Data Types: struct

A — Inequality constraint for parameters
[] (default) | numeric

This property is read-only.

Inequality constraint for parameters, returned as a scalar numeric.
Data Types: double

b — Inequality constraint for parameters
[] (default) | numeric

This property is read-only.

Inequality constraint for parameters, returned as a scalar numeric.
Data Types: double

OptimFunction — Optimization function used to fit function
lsqnonlin (default) | lsqnonlin or fmincon

This property is read-only.

Optimization function used to fit function, returned as lsqnonlin or fmincon.
Data Types: char

Object Functions
fitFunction Custom fit interest-rate curve object to bond market data

Examples
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Create IRFitOptions Object

This example shows how to create an IRFitOptions object with a 'yield' FitType.

myfitoptions = IRFitOptions([7 2 1 0],'FitType','yield')

myfitoptions = 
  IRFitOptions with properties:

          FitType: 'yield'
     InitialGuess: [7 2 1 0]
       UpperBound: []
       LowerBound: []
       OptOptions: []
                A: []
                b: []
    OptimFunction: 'lsqnonlin'

See Also
IRFunctionCurve | parametercurve

Topics
“Creating an IRFunctionCurve Object” on page 9-16
“Interest-Rate Curve Objects and Workflow” on page 9-2
“Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework” on page 1-93

Introduced in R2008b
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IRFunctionCurve
Construct interest-rate curve object from function handle or function and fit to market data

Description
Build a IRFunctionCurve object using IRFunctionCurve.

After you create an IRFunctionCurve object, you can fit the bond using the following functions.

Object Function Description
getForwardRates Returns forward rates for input dates.
getZeroRates Returns zero rates for input dates.
getDiscountFactors Returns discount factors for input dates.
getParYields Returns par yields for input dates.
toRateSpec Converts to be a RateSpec object.

This RateSpec structure is identical to the RateSpec
produced by the function intenvset.

Alternatively, you can create an IRFunctionCurve object using the following methods.

Method Description
fitNelsonSiegel Fits a Nelson-Siegel function to market data.
fitSvensson Fits a Svensson function to market data.
fitSmoothingSpline Fits a smoothing spline function to market data.
fitFunction Fits a custom function to market data.

For more detailed information on this workflow, see “Interest-Rate Curve Objects and Workflow” on
page 9-2.

Creation
Syntax
IRFunctionCurve_obj = IRFunctionCurve(Type,Settle,FunctionHandle)
IRFunctionCurve_obj = IRFunctionCurve( ___ ,Name,Value)

Description

IRFunctionCurve_obj = IRFunctionCurve(Type,Settle,FunctionHandle) creates an
interest-rate curve object directly by specifying a function handle and sets properties on page 11-
1972 and creates an IRFunctionCurve object. .

IRFunctionCurve_obj = IRFunctionCurve( ___ ,Name,Value) sets properties on page 11-
1972 using optional name-value pairs and any of the arguments in the previous syntax. For example,
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IRFunctionCurve_obj = IRFunctionCurve('Forward',today,@(t) polyval([-0.0001
0.003 0.02],t)) creates an IRFunctionCurve object for a forward curve. You can specify
multiple name-value pair arguments.

Input Arguments

Type — Type of interest-rate curve
string with value "zero", "forward", or "discount" | character vector with value 'zero',
'forward', or 'discount'

Type of interest-rate curve, specified as a scalar string or character vector for one of the supported
types.
Data Types: char | string

Settle — Settlement date for the curve
datetime | serial date number | date character vector | date string

Settlement date for the curve, specified as a scalar datetime, serial date number, date character
vector, or date string.
Data Types: double | char | string | datetime

FunctionHandle — Dates corresponding to rate data
function handle

Dates corresponding to the rate data, specified as a function handle. The function handle requires
one numeric input (time-to-maturity) and returns one numeric output (interest rate or discount
factor). For more information on creating a function handle, see “Create Function Handle”.
Data Types: function_handle

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: IRFunctionCurve_obj = IRFunctionCurve('Forward',today,@(t)
polyval([-0.0001 0.003 0.02],t))

Compounding — Compounding frequency per-year for curve
-1 (default) | possible values include: –1, 0, 1, 2, 3, 4, 6, 12.

Compounding frequency per-year for the curve, specified as the comma-separated pair consisting of
'Compounding' and a scalar numeric using the supported values: –1, 0, 1, 2, 3, 4, 6, or 12.
Data Types: double

Basis — Day count basis of the bond
0 (actual/actual) (default) | integer from 0 to 13

Day count basis of the bond, specified as the comma-separated pair consisting of 'Basis' and a
scalar integer.
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• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Parameters — Curve parameters
[ ] (default) | numeric

Curve parameters, specified as the comma-separated pair consisting of 'Parameters' and a
numeric value.
Data Types: double

Properties
Type — Type of interest-rate curve
string with value "zero", "forward", or "discount"

This property is read-only.

Instrument type, returned as a string.
Data Types: string

Settle — Settlement date for the curve
datetime

This property is read-only.

Settlement date for the curve, returned as a datetime.
Data Types: datetime

FunctionHandle — Dates corresponding to rate data
function handle

This property is read-only.
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Function handle that defines the interest-rate curve, returned as a scalar function handle.
Data Types: function_handle

Compounding — Compounding frequency per-year for curve
-1 (default) | possible values include: –1, 0, 1, 2, 3, 4, 6, 12.

This property is read-only.

Compounding frequency per-year for curve, returned as a scalar numeric.
Data Types: double

Basis — Day count basis of the bond
0 (actual/actual) (default) | integer from 0 to 13

This property is read-only.

Day count basis of the bond, returned as a scalar integer.
Data Types: double

Parameters — Curve parameters
[ ] (default) | numeric

This property is read-only.

Curve parameters, returned as a numeric value.
Data Types: double

Object Functions
getForwardRates Get forward rates for input dates for IRFunctionCurve
getZeroRates Get zero rates for input dates for IRFunctionCurve
getDiscountFactors Get discount factors for input dates for IRFunctionCurve
getParYields Get par yields for input dates for IRFunctionCurve
toRateSpec Convert IRFunctionCurve object to RateSpec

Examples

Create IRFunctionCurve Object

This example shows how to create an IRFunctionCurve object for a forward interest-rate curve.

irfc = IRFunctionCurve('Forward',today,@(t) polyval([-0.0001 0.003 0.02],t))

irfc = 
             Type: Forward
           Settle: 738578 (26-Feb-2022)
      Compounding: 2
            Basis: 0 (actual/actual)
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See Also
parametercurve

Topics
“Creating Interest-Rate Curve Objects” on page 9-4
“Creating an IRDataCurve Object” on page 9-6
“Creating an IRFunctionCurve Object” on page 9-16
“Interest-Rate Curve Objects and Workflow” on page 9-2
“Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework” on page 1-93

Introduced in R2008b

11 Functions

11-1974



liborduration
Duration of LIBOR-based interest-rate swap

Syntax
[PayFixDuration,GetFixDuration] = liborduration(SwapFixRate,Tenor,Settle)

Description
[PayFixDuration,GetFixDuration] = liborduration(SwapFixRate,Tenor,Settle)
computes the duration of LIBOR-based interest-rate swaps.

Examples

Compute the Duration of LIBOR-Based Interest-Rate Swaps

This example shows how to compute the duration of LIBOR-based interest-rate swaps using the
following data.

SwapFixRate = 0.0383;
Tenor = 7;
Settle = datenum('11-Oct-2002');

[PayFixDuration GetFixDuration] = liborduration(SwapFixRate,... 
Tenor, Settle)

PayFixDuration = -4.7567

GetFixDuration = 4.7567

Input Arguments
SwapFixRate — Par swap fixed rate
vector in decimals

Par swap fixed rate (quarterly compounded), specified as an N-by-1 vector in decimals. The Basis
should be actual/360.
Data Types: double

Tenor — Swap tenor in years
vector

Swap tenor in years, specified as a N-by-1 vector. Fractional numbers are rounded upward.
Data Types: double

Settle — Settlement date
vector
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Settlement date, specified as an N-by-1 vector using serial date numbers.
Data Types: double

Output Arguments
PayFixDuration — Modified duration, in years, for the pay-fix side of the swap
vector

Modified duration, in years, for the pay-fix side of the swap, returned as a N-by-1 vector.

GetFixDuration — Modified duration, in years, for the receive-fix side of the swap
vector

Modified duration, in years, for the receive-fix side of the swap, returned as a N-by-1 vector.

See Also
liborfloat2fixed | liborprice

Topics
“Analysis of Bond Futures” on page 7-12
“Fitting the Diebold Li Model” on page 2-151
“Managing Present Value with Bond Futures” on page 7-14

Introduced before R2006a
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liborfloat2fixed
Compute par fixed-rate of swap given 3-month LIBOR data

Syntax
[FixedSpec,ForwardDates,ForwardRates] = liborfloat2fixed(ThreeMonthRates,
Settle,Tenor)
Price = liborprice( ___ ,StartDate,Interpolation,ConvexAdj,RateParam,InArrears,
Sigma,FixedCompound,FixedBasis)

Description
[FixedSpec,ForwardDates,ForwardRates] = liborfloat2fixed(ThreeMonthRates,
Settle,Tenor) computes forward rates, dates, and the swap fixed rate.

Note The liborfloat2fixed function assumes that floating-rate observations occur quarterly on
the third Wednesday of a delivery month. The first delivery month is the month of the first third
Wednesday after Settle. Floating-side payments occur on the third-month anniversaries of
observation dates. Fixed payments start on the same date as the first floating payment, and recur on
the same date as the first-coupon date (on anniversary months).

Price = liborprice( ___ ,StartDate,Interpolation,ConvexAdj,RateParam,InArrears,
Sigma,FixedCompound,FixedBasis) specifies options using one or more optional arguments in
addition to the input arguments in the previous syntax.

Examples

Compute the Par Fixed-Rate of a Swap Given 3-Month LIBOR Data

This example shows how to compute the par fixed-rate of a swap given 3-month LIBOR data. Use the
supplied EDdata.xls file as input to a liborfloat2fixed computation.

[EDFutData, textdata] = xlsread('EDdata.xls');
Settle                = datenum('15-Oct-2002');
Tenor                 = 2;

[FixedSpec, ForwardDates, ForwardRates] =... 
liborfloat2fixed(EDFutData(:,1:3), Settle, Tenor)

FixedSpec = struct with fields:
      Coupon: 0.0222
      Settle: '16-Oct-2002'
    Maturity: '16-Oct-2004'
      Period: 4
       Basis: 1

ForwardDates = 8×1
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      731505
      731596
      731687
      731778
      731869
      731967
      732058
      732149

ForwardRates = 8×1

    0.0177
    0.0166
    0.0170
    0.0188
    0.0214
    0.0248
    0.0279
    0.0305

Input Arguments
ThreeMonthRates — Three-month Eurodollar futures data or forward rate agreement data
matrix

Three-month Eurodollar futures data or forward rate agreement data, specified as an N-by-3 matrix in
the form of [month year IMMQuote]. A forward rate agreement stipulates that a certain interest
rate applies to a certain principal amount for a given future time period. The floating rate is assumed
to compound quarterly and to accrue on an actual/360 basis.
Data Types: double

Settle — Settlement date of fixed-rate of swap
scalar numeric

Settlement date of fixed-rate of swap, specified as a scalar numeric using serial date numbers.
Data Types: double

Tenor — Life of the swap contract
scalar integer

Life of the swap contract, specified as a scalar integer.
Data Types: double

StartDate — Reference date for valuation of forward swap
Settle (default) | scalar numeric

(Optional) Reference date for valuation of forward swap, specified as a scalar numeric using serial
date numbers. This in effect allows forward swap valuation.
Data Types: double
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Interpolation — Interpolation method to determine applicable forward rate for months
when no Eurodollar data is available
'linear' (1) (default) | scalar integer with value of 0, 1, or 2

(Optional) Interpolation method to determine applicable forward rate for months when no Eurodollar
data is available, specified as a scalar numeric with values of:

• 0 is 'nearest'
• 1 is 'linear'
• 2 is 'cubic'

.
Data Types: double

ConvexAdj — Indicates whether futures/forward convexity adjustment is required
0 (off) (default) | scalar logical with a value of 0 or 1

(Optional) Indicates whether futures/forward convexity adjustment is required, specified as a scalar
logical. Use ConvexAdj for forward rate adjustments when those rates are taken from Eurodollar
futures data.
Data Types: logical

RateParam — Short-rate model's parameters (Hull-White)
[0.05 0.015] (default) | vector

(Optional) Short-rate model's parameters (Hull-White), specified a 1-by-2 vector to denote the
parameters [a S], where the short-rate process is:
dr = θ t − ar dt + Sdz .
Data Types: double

InArrears — Indicates whether the swap is in arrears
0 (off) (default) | scalar logical with a value of 0 or 1

(Optional) Indicates whether the swap is in arrears, specified as a scalar logical.
Data Types: logical

Sigma — Overall annual volatility of caplets
scalar numeric

(Optional) Overall annual volatility of caplets, specified as a scalar numeric.
Data Types: double

FixedCompound — Compounding or frequency of payment on the fixed side
4 (quarterly) (default) | scalar numeric with possible values of 1, 2,4, or 12

(Optional) Compounding or frequency of payment on the fixed side, specified as a scalar numeric with
one of the following possible values:

• 1 is annual
• 2 is semiannual
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• 4 is quarterly
• 12 is monthly

Data Types: double

FixedBasis — Basis of the fixed side
0 (actual/actual ) (default) | scalar numeric

(Optional) Basis of the fixed side, specified as a scalar numeric using one of the supported values:.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)

For more information, see “Basis” on page 2-229.
Data Types: double

Output Arguments
FixedSpec — Structure of the fixed-rate side of the swap
structure

Structure of the fixed-rate side of the swap, returned as a structure with the following fields:

• Coupon: Par-swap rate
• Settle: Start date
• Maturity: End date
• Period: Frequency of payment
• Basis: Accrual basis

ForwardDates — Dates corresponding to ForwardRates
numeric

Dates corresponding to ForwardRates, returned as serial date numbers. All of the dates are third
Wednesdays of the month, spread three months apart. The first element is the third Wednesday
immediately after Settle.
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ForwardRates — Forward rates corresponding to the forward dates
numeric

Forward rates corresponding to the forward dates, quarterly compounded, and on the actual/360
basis, returned as numeric decimal values.

See Also
liborduration | liborprice

Topics
“Analysis of Bond Futures” on page 7-12
“Fitting the Diebold Li Model” on page 2-151
“Managing Present Value with Bond Futures” on page 7-14

Introduced before R2006a
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liborprice
Price swap given swap rate

Syntax
Price = liborprice(ThreeMonthRates,Settle,Tenor,SwapRate)
Price = liborprice( ___ ,StartDate,Interpolation,ConvexAdj,RateParam,InArrears,
Sigma,FixedCompound,FixedBasis)

Description
Price = liborprice(ThreeMonthRates,Settle,Tenor,SwapRate) computes the price per
$100 notional value of a swap given the swap rate. A positive result indicates that fixed side is more
valuable than the floating side.

Price = liborprice( ___ ,StartDate,Interpolation,ConvexAdj,RateParam,InArrears,
Sigma,FixedCompound,FixedBasis) specifies options using one or more optional arguments in
addition to the input arguments in the previous syntax.

Examples

Compute the Price Per $100 Notional Value of a Swap Given the Swap Rate

This example shows that a swap paying the par swap rate has a value of 0.

% load the input data  
[EDFutData, textdata] = xlsread('EDdata.xls');
Settle = datenum('15-Oct-2002');
Tenor = 2;

% compute the fixed rate from the Eurodollar data
FixedSpec = liborfloat2fixed(EDFutData(:,1:3), Settle, Tenor)

FixedSpec = struct with fields:
      Coupon: 0.0222
      Settle: '16-Oct-2002'
    Maturity: '16-Oct-2004'
      Period: 4
       Basis: 1

% compute the price of a par swap
Price = liborprice(EDFutData(:,1:3), Settle, Tenor, FixedSpec.Coupon)

Price = 2.7756e-15

Price is effectively equal to 0.
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Input Arguments
ThreeMonthRates — Three-month Eurodollar futures data or forward rate agreement data
matrix

Three-month Eurodollar futures data or forward rate agreement data, specified as an N-by-3 matrix in
the form of [month year IMMQuote]. A forward rate agreement stipulates that a certain interest
rate applies to a certain principal amount for a given future time period. The floating rate is assumed
to compound quarterly and to accrue on an actual/360 basis.
Data Types: double

Settle — Settlement date of fixed-rate of swap
scalar numeric

Settlement date of fixed-rate of swap, specified as a scalar numeric using serial date numbers.
Data Types: double

Tenor — Life of the swap contract
scalar integer

Life of the swap contract, specified as a scalar integer.
Data Types: double

SwapRate — Swap rate
scalar decimal

Swap rate, specified as a scalar decimal.
Data Types: double

StartDate — Reference date for valuation of forward swap
Settle (default) | scalar numeric

(Optional) Reference date for valuation of forward swap, specified as a scalar numeric using serial
date numbers. This in effect allows forward swap valuation.
Data Types: double

Interpolation — Interpolation method to determine applicable forward rate for months
when no Eurodollar data is available
'linear' (1) (default) | scalar integer with value of 0, 1, or 2

(Optional) Interpolation method to determine applicable forward rate for months when no Eurodollar
data is available, specified as a scalar numeric with values of:

• 0 is 'nearest'
• 1 is 'linear'
• 2 is 'cubic'

.
Data Types: double
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ConvexAdj — Indicates whether futures/forward convexity adjustment is required
0 (off) (default) | scalar logical with a value of 0 or 1

(Optional) Indicates whether futures/forward convexity adjustment is required, specified as a scalar
logical. Use ConvexAdj for forward rate adjustments when those rates are taken from Eurodollar
futures data.
Data Types: logical

RateParam — Short-rate model's parameters (Hull-White)
[0.05 0.015] (default) | vector

(Optional) Short-rate model's parameters (Hull-White), specified a 1-by-2 vector to denote the
parameters [a S], where the short-rate process is:
dr = θ t − ar dt + Sdz .
Data Types: double

InArrears — Indicates whether the swap is in arrears
0 (off) (default) | scalar logical with a value of 0 or 1

(Optional) Indicates whether the swap is in arrears, specified as a scalar logical.
Data Types: logical

Sigma — Overall annual volatility of caplets
scalar numeric

(Optional) Overall annual volatility of caplets, specified as a scalar numeric.
Data Types: double

FixedCompound — Compounding or frequency of payment on the fixed side
4 (quarterly) (default) | scalar numeric with possible values of 1, 2,4, or 12

(Optional) Compounding or frequency of payment on the fixed side, specified as a scalar numeric with
one of the following possible values:

• 1 is annual
• 2 is semiannual
• 4 is quarterly
• 12 is monthly

Data Types: double

FixedBasis — Basis of the fixed side
0 (actual/actual ) (default) | scalar numeric

(Optional) Basis of the fixed side, specified as a scalar numeric using one of the supported values:.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
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• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)

For more information, see “Basis” on page 2-229.
Data Types: double

Output Arguments
Price — Present value of the difference between floating and fixed-rate sides of the swap
per $100 notional
numeric

Present value of the difference between floating and fixed-rate sides of the swap per $100 notional,
returned as a numeric value.

See Also
liborduration | liborfloat2fixed

Topics
“Analysis of Bond Futures” on page 7-12
“Fitting the Diebold Li Model” on page 2-151
“Managing Present Value with Bond Futures” on page 7-14

Introduced before R2006a
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mbscfamounts
Cash flow and time mapping for mortgage pool

Syntax
[CFlowAmounts,CFlowDates,TFactors,Factors,Payment,Principal,Interest,
Prepayment] = mbscfamounts(Settle,Maturity,IssueDate,GrossRate)
[CFlowAmounts,CFlowDates,TFactors,Factors,Payment,Principal,Interest,
Prepayment] = mbscfamounts( ___ ,CouponRate,Delay,PrepaySpeed,PrepayMatrix)

Description
[CFlowAmounts,CFlowDates,TFactors,Factors,Payment,Principal,Interest,
Prepayment] = mbscfamounts(Settle,Maturity,IssueDate,GrossRate) computes cash
flows between Settle and Maturity dates, the corresponding time factors in months from Settle
and the mortgage factor (the fraction of loan principal outstanding).

Note Unlike mbspassthrough, mbscfamounts does not accept an original balance amount as an
input. mbscfamounts assumes an original balance of 1.

[CFlowAmounts,CFlowDates,TFactors,Factors,Payment,Principal,Interest,
Prepayment] = mbscfamounts( ___ ,CouponRate,Delay,PrepaySpeed,PrepayMatrix)
specifies options using one or more optional arguments in addition to the input arguments in the
previous syntax.

Examples

Calculate Cash Flow Amounts and Dates, Time Factors, and Mortgage Factors for a Single
Mortgage

Given a mortgage with the following characteristics, compute the cash flow amounts and dates, the
time factors, and the mortgage factors.

Define the mortgage characteristics.

Settle      = datenum('17-April-2002');
Maturity    = datenum('1-Jan-2030');
IssueDate   = datenum('1-Jan-2000');
GrossRate   = 0.08125;
CouponRate  = 0.075;
Delay       = 14;
PrepaySpeed = 100;

Use mbscfamonts to evaluate the mortgage.

[CFlowAmounts, CFLowDates, TFactors, Factors] = ... 
mbscfamounts(Settle, Maturity, IssueDate, GrossRate, ... 
CouponRate, Delay, PrepaySpeed)
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CFlowAmounts = 1×334

   -0.0033    0.0118    0.0120    0.0121    0.0120    0.0119    0.0119    0.0118    0.0117    0.0117    0.0116    0.0115    0.0115    0.0114    0.0114    0.0113    0.0112    0.0112    0.0111    0.0110    0.0110    0.0109    0.0109    0.0108    0.0107    0.0107    0.0106    0.0106    0.0105    0.0105    0.0104    0.0103    0.0103    0.0102    0.0102    0.0101    0.0101    0.0100    0.0099    0.0099    0.0098    0.0098    0.0097    0.0097    0.0096    0.0096    0.0095    0.0095    0.0094    0.0094

CFLowDates = 1×334

      731323      731337      731368      731398      731429      731460      731490      731521      731551      731582      731613      731641      731672      731702      731733      731763      731794      731825      731855      731886      731916      731947      731978      732007      732038      732068      732099      732129      732160      732191      732221      732252      732282      732313      732344      732372      732403      732433      732464      732494      732525      732556      732586      732617      732647      732678      732709      732737      732768      732798

TFactors = 1×334

         0    0.9333    1.9333    2.9333    3.9333    4.9333    5.9333    6.9333    7.9333    8.9333    9.9333   10.9333   11.9333   12.9333   13.9333   14.9333   15.9333   16.9333   17.9333   18.9333   19.9333   20.9333   21.9333   22.9333   23.9333   24.9333   25.9333   26.9333   27.9333   28.9333   29.9333   30.9333   31.9333   32.9333   33.9333   34.9333   35.9333   36.9333   37.9333   38.9333   39.9333   40.9333   41.9333   42.9333   43.9333   44.9333   45.9333   46.9333   47.9333   48.9333

Factors = 1×334

    1.0000    0.9944    0.9887    0.9828    0.9769    0.9711    0.9653    0.9595    0.9538    0.9481    0.9424    0.9368    0.9311    0.9255    0.9199    0.9144    0.9089    0.9034    0.8979    0.8925    0.8871    0.8817    0.8763    0.8710    0.8657    0.8604    0.8552    0.8499    0.8447    0.8396    0.8344    0.8293    0.8242    0.8191    0.8140    0.8090    0.8040    0.7990    0.7941    0.7892    0.7842    0.7794    0.7745    0.7697    0.7649    0.7601    0.7553    0.7506    0.7458    0.7411

The result is contained in four 334-element row vectors.

Compute Cash Flow Amounts and Dates, Time Factors, and Mortgage Factors for a
Mortgage Portfolio

Given a portfolio of mortgage-backed securities, use mbscfamounts to compute the cash flows and
other factors from the portfolio.

Define characteristics for a mortgage portfolio.

Settle   = datenum(['13-Jan-2000';'17-Apr-2002';'17-May-2002']);
Maturity    = datenum('1-Jan-2030');
IssueDate   = datenum('1-Jan-2000');
GrossRate   = 0.08125;
CouponRate  = [0.075; 0.07875; 0.0775];
Delay       = 14;
PrepaySpeed = 100;

Use mbscfamonts to evaluate the mortgage.

[CFlowAmounts, CFlowDates, TFactors, Factors] = ... 
mbscfamounts(Settle, Maturity, IssueDate, GrossRate, ... 
CouponRate, Delay, PrepaySpeed)

CFlowAmounts = 3×361

   -0.0025    0.0071    0.0072    0.0074    0.0076    0.0077    0.0079    0.0080    0.0082    0.0084    0.0085    0.0087    0.0088    0.0090    0.0091    0.0093    0.0094    0.0095    0.0097    0.0098    0.0099    0.0101    0.0102    0.0103    0.0104    0.0106    0.0107    0.0108    0.0109    0.0110    0.0111    0.0110    0.0110    0.0109    0.0109    0.0108    0.0107    0.0107    0.0106    0.0106    0.0105    0.0104    0.0104    0.0103    0.0103    0.0102    0.0102    0.0101    0.0101    0.0100
   -0.0035    0.0121    0.0123    0.0124    0.0123    0.0122    0.0122    0.0121    0.0120    0.0120    0.0119    0.0118    0.0118    0.0117    0.0116    0.0116    0.0115    0.0115    0.0114    0.0113    0.0113    0.0112    0.0111    0.0111    0.0110    0.0110    0.0109    0.0108    0.0108    0.0107    0.0107    0.0106    0.0105    0.0105    0.0104    0.0104    0.0103    0.0103    0.0102    0.0101    0.0101    0.0100    0.0100    0.0099    0.0099    0.0098    0.0098    0.0097    0.0096    0.0096
   -0.0034    0.0122    0.0123    0.0123    0.0122    0.0121    0.0121    0.0120    0.0119    0.0119    0.0118    0.0117    0.0117    0.0116    0.0116    0.0115    0.0114    0.0114    0.0113    0.0112    0.0112    0.0111    0.0111    0.0110    0.0109    0.0109    0.0108    0.0108    0.0107    0.0106    0.0106    0.0105    0.0105    0.0104    0.0103    0.0103    0.0102    0.0102    0.0101    0.0101    0.0100    0.0099    0.0099    0.0098    0.0098    0.0097    0.0097    0.0096    0.0096    0.0095

CFlowDates = 3×361

      730498      730517      730546      730577      730607      730638      730668      730699      730730      730760      730791      730821      730852      730883      730911      730942      730972      731003      731033      731064      731095      731125      731156      731186      731217      731248      731276      731307      731337      731368      731398      731429      731460      731490      731521      731551      731582      731613      731641      731672      731702      731733      731763      731794      731825      731855      731886      731916      731947      731978
      731323      731337      731368      731398      731429      731460      731490      731521      731551      731582      731613      731641      731672      731702      731733      731763      731794      731825      731855      731886      731916      731947      731978      732007      732038      732068      732099      732129      732160      732191      732221      732252      732282      732313      732344      732372      732403      732433      732464      732494      732525      732556      732586      732617      732647      732678      732709      732737      732768      732798
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      731353      731368      731398      731429      731460      731490      731521      731551      731582      731613      731641      731672      731702      731733      731763      731794      731825      731855      731886      731916      731947      731978      732007      732038      732068      732099      732129      732160      732191      732221      732252      732282      732313      732344      732372      732403      732433      732464      732494      732525      732556      732586      732617      732647      732678      732709      732737      732768      732798      732829

TFactors = 3×361

         0    1.0667    2.0667    3.0667    4.0667    5.0667    6.0667    7.0667    8.0667    9.0667   10.0667   11.0667   12.0667   13.0667   14.0667   15.0667   16.0667   17.0667   18.0667   19.0667   20.0667   21.0667   22.0667   23.0667   24.0667   25.0667   26.0667   27.0667   28.0667   29.0667   30.0667   31.0667   32.0667   33.0667   34.0667   35.0667   36.0667   37.0667   38.0667   39.0667   40.0667   41.0667   42.0667   43.0667   44.0667   45.0667   46.0667   47.0667   48.0667   49.0667
         0    0.9333    1.9333    2.9333    3.9333    4.9333    5.9333    6.9333    7.9333    8.9333    9.9333   10.9333   11.9333   12.9333   13.9333   14.9333   15.9333   16.9333   17.9333   18.9333   19.9333   20.9333   21.9333   22.9333   23.9333   24.9333   25.9333   26.9333   27.9333   28.9333   29.9333   30.9333   31.9333   32.9333   33.9333   34.9333   35.9333   36.9333   37.9333   38.9333   39.9333   40.9333   41.9333   42.9333   43.9333   44.9333   45.9333   46.9333   47.9333   48.9333
         0    0.9333    1.9333    2.9333    3.9333    4.9333    5.9333    6.9333    7.9333    8.9333    9.9333   10.9333   11.9333   12.9333   13.9333   14.9333   15.9333   16.9333   17.9333   18.9333   19.9333   20.9333   21.9333   22.9333   23.9333   24.9333   25.9333   26.9333   27.9333   28.9333   29.9333   30.9333   31.9333   32.9333   33.9333   34.9333   35.9333   36.9333   37.9333   38.9333   39.9333   40.9333   41.9333   42.9333   43.9333   44.9333   45.9333   46.9333   47.9333   48.9333

Factors = 3×361

    1.0000    0.9992    0.9982    0.9970    0.9957    0.9942    0.9925    0.9907    0.9887    0.9865    0.9841    0.9816    0.9789    0.9761    0.9731    0.9699    0.9666    0.9631    0.9594    0.9556    0.9517    0.9475    0.9433    0.9389    0.9343    0.9296    0.9247    0.9197    0.9146    0.9093    0.9039    0.8985    0.8932    0.8878    0.8825    0.8772    0.8720    0.8668    0.8616    0.8564    0.8512    0.8461    0.8410    0.8359    0.8309    0.8258    0.8208    0.8159    0.8109    0.8060
    1.0000    0.9944    0.9887    0.9828    0.9769    0.9711    0.9653    0.9595    0.9538    0.9481    0.9424    0.9368    0.9311    0.9255    0.9199    0.9144    0.9089    0.9034    0.8979    0.8925    0.8871    0.8817    0.8763    0.8710    0.8657    0.8604    0.8552    0.8499    0.8447    0.8396    0.8344    0.8293    0.8242    0.8191    0.8140    0.8090    0.8040    0.7990    0.7941    0.7892    0.7842    0.7794    0.7745    0.7697    0.7649    0.7601    0.7553    0.7506    0.7458    0.7411
    1.0000    0.9942    0.9883    0.9824    0.9766    0.9707    0.9649    0.9592    0.9534    0.9477    0.9420    0.9364    0.9307    0.9251    0.9195    0.9140    0.9085    0.9030    0.8975    0.8921    0.8866    0.8813    0.8759    0.8706    0.8653    0.8600    0.8547    0.8495    0.8443    0.8391    0.8339    0.8288    0.8237    0.8186    0.8136    0.8085    0.8035    0.7985    0.7936    0.7887    0.7837    0.7789    0.7740    0.7692    0.7643    0.7595    0.7548    0.7500    0.7453    0.7406

Each output is a 3-by-361 element matrix padded with NaN's wherever elements are missing.

Calculate Payment, Principal, Interest, and Prepayment for a Single Mortgage

Given a mortgage with the following characteristics, compute payments, principal, interest, and
prepayment.

Define the mortgage characteristics.

Settle      = datenum('17-April-2002');
Maturity    = datenum('1-Jan-2030');
IssueDate   = datenum('1-Jan-2000');
GrossRate   = 0.08125;
CouponRate  = 0.075;
Delay       = 14;
PrepaySpeed = 100;

Use mbscfamonts to evaluate the mortgage.

[Payment, Principal, Interest, Prepayment] = ... 
mbscfamounts(Settle, Maturity, IssueDate, GrossRate, ... 
CouponRate, Delay, PrepaySpeed)

Payment = 1×334

   -0.0033    0.0118    0.0120    0.0121    0.0120    0.0119    0.0119    0.0118    0.0117    0.0117    0.0116    0.0115    0.0115    0.0114    0.0114    0.0113    0.0112    0.0112    0.0111    0.0110    0.0110    0.0109    0.0109    0.0108    0.0107    0.0107    0.0106    0.0106    0.0105    0.0105    0.0104    0.0103    0.0103    0.0102    0.0102    0.0101    0.0101    0.0100    0.0099    0.0099    0.0098    0.0098    0.0097    0.0097    0.0096    0.0096    0.0095    0.0095    0.0094    0.0094

Principal = 1×334

      731323      731337      731368      731398      731429      731460      731490      731521      731551      731582      731613      731641      731672      731702      731733      731763      731794      731825      731855      731886      731916      731947      731978      732007      732038      732068      732099      732129      732160      732191      732221      732252      732282      732313      732344      732372      732403      732433      732464      732494      732525      732556      732586      732617      732647      732678      732709      732737      732768      732798

Interest = 1×334

         0    0.9333    1.9333    2.9333    3.9333    4.9333    5.9333    6.9333    7.9333    8.9333    9.9333   10.9333   11.9333   12.9333   13.9333   14.9333   15.9333   16.9333   17.9333   18.9333   19.9333   20.9333   21.9333   22.9333   23.9333   24.9333   25.9333   26.9333   27.9333   28.9333   29.9333   30.9333   31.9333   32.9333   33.9333   34.9333   35.9333   36.9333   37.9333   38.9333   39.9333   40.9333   41.9333   42.9333   43.9333   44.9333   45.9333   46.9333   47.9333   48.9333

Prepayment = 1×334
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    1.0000    0.9944    0.9887    0.9828    0.9769    0.9711    0.9653    0.9595    0.9538    0.9481    0.9424    0.9368    0.9311    0.9255    0.9199    0.9144    0.9089    0.9034    0.8979    0.8925    0.8871    0.8817    0.8763    0.8710    0.8657    0.8604    0.8552    0.8499    0.8447    0.8396    0.8344    0.8293    0.8242    0.8191    0.8140    0.8090    0.8040    0.7990    0.7941    0.7892    0.7842    0.7794    0.7745    0.7697    0.7649    0.7601    0.7553    0.7506    0.7458    0.7411

Input Arguments
Settle — Settlement date
cell array of date character vectors | vector of serial date numbers

Settlement date, specified as an NMBS-by-1 vector using serial date numbers or a cell array of date
character vectors. Settle must be earlier than Maturity.
Data Types: double | char | cell

Maturity — Maturity date
cell array of date character vectors | vector of serial date numbers

Maturity date, specified as an NMBS-by-1 vector using serial date numbers or a cell array of date
character vectors.
Data Types: double | char | cell

IssueDate — Issue date
cell array of date character vectors | vector of serial date numbers

Issue date, specified as an NMBS-by-1 vector using serial date numbers or a cell array of date
character vectors.
Data Types: double | char | cell

GrossRate — Gross coupon rate (including fees)
vector of decimal values

Gross coupon rate (including fees), specified as an NMBS-by-1 vector of decimal values.
Data Types: double

CouponRate — Net coupon rate
GrossRate (default) | vector of decimal values

(Optional) Net coupon rate, specified as an NMBS-by-1 vector of decimal values.
Data Types: double

Delay — Delay (in days) between payment from homeowner and receipt by bondholder
0 (no delay between payment and receipt) (default) | vector

(Optional) Delay (in days) between payment from homeowner and receipt by bondholder, specified as
an NMBS-by-1 vector.
Data Types: double

PrepaySpeed — Speed relative to PSA standard
0 (no prepayment) (default) | vector

(Optional) Speed relative to PSA standard, specified as an NMBS-by-1 vector. The PSA standard is 100.
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Note Set the PrepaySpeed to [] if you input a customized PrepayMatrix.

Data Types: double

PrepayMatrix — Customized prepayment vector
matrix

(Optional) Customized prepayment vector, specified as a NaN-padded matrix of size
max(TermRemaining)-by-NMBS. Each column corresponds to each mortgage-backed security, and
each row corresponds to each month after settlement.

Note Use PrepayMatrix only when PrepaySpeed is unspecified.

Data Types: double

Output Arguments
CFlowAmounts — Cash flow amounts
matrix

Cash flows starting from Settle through end of the last month (Maturity), returned as a NMBS-by-P
matrix.

CFlowDates — Cash flow dates
matrix

Cash flow dates (including at Settle), returned as a NMBS-by-P matrix.

TFactors — Time factors
matrix

Time factors (in months from Settle), returned as a NMBS-by-P matrix.

Factors — Mortgage factors (the fraction of the balance still outstanding at the end of
each month)
matrix

Mortgage factors (the fraction of the balance still outstanding at the end of each month), returned as
a NMBS-by-P matrix.

Payment — Total monthly payment
matrix

Total monthly payment, returned as a NMBS-by-P matrix.

Principal — Principal portion of the payment
matrix

Principal portion of the payment, returned as a NMBS-by-P matrix.

Interest — Interest portion of the payment
matrix
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Interest portion of the payment, returned as a NMBS-by-P matrix.

Prepayment — Unscheduled payment of principal
matrix

Unscheduled payment of principal, returned as a NMBS-by-P matrix.

References
[1] PSA Uniform Practices, SF-49

See Also
mbspassthrough | mbsnoprepay | cmoseqcf | cmoschedcf | cmosched

Topics
“Generating Prepayment Vectors” on page 5-4
“Mortgage Prepayments” on page 5-5
“Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model” on page 5-
16
“What Are Mortgage-Backed Securities?” on page 5-2

Introduced in R2012a
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mbsconvp
Convexity of mortgage pool given price

Syntax
Convexity = mbsconvp(Price,Settle,Maturity,IssueDate,GrossRate)
Convexity = mbsconvp( ___ ,CouponRate,Delay,PrepaySpeed,PrepayMatrix)

Description
Convexity = mbsconvp(Price,Settle,Maturity,IssueDate,GrossRate) computes
mortgage-backed security convexity, given time information, price at settlement, and optionally, a
prepayment model.

Convexity = mbsconvp( ___ ,CouponRate,Delay,PrepaySpeed,PrepayMatrix) specifies
options using one or more optional arguments in addition to the input arguments in the previous
syntax.

Examples

Compute a Mortgage-Backed Security Convexity

This example shows how to compute a mortgage-backed security convexity, given a mortgage-backed
security with the following characteristics.

Price      = 101;
Settle     = '15-Apr-2002';
Maturity   = '1 Jan 2030';
IssueDate  = '1-Jan-2000';
GrossRate  = 0.08125;
CouponRate = 0.075;
Delay = 14;
Speed = 100;

Convexity = mbsconvp(Price, Settle, Maturity, IssueDate,... 
GrossRate, CouponRate, Delay, Speed)

Convexity = 71.6299

Input Arguments
Price — Clean price for every $100 face value
vector

Clean price for every $100 face value, specified as an NMBS-by-1 vector.
Data Types: double
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Settle — Settlement dates
vector

Settlement dates, specified as an NMBS-by-1 vector of serial date numbers or a cell array of character
vectors.
Data Types: double | cell

Maturity — Maturity dates
vector

Maturity dates, specified as an NMBS-by-1 vector of serial date numbers or a cell array of character
vectors.
Data Types: double | cell

IssueDate — Issue dates
vector

Maturity dates, specified as an NMBS-by-1 vector of serial date numbers or a cell array of character
vectors.
Data Types: double | cell

GrossRate — Gross coupon rate (including fees)
vector

Gross coupon rate (including fees), specified as an NMBS-by-1 vector of numeric decimals.
Data Types: double

CouponRate — Net coupon rate
GrossRate (default) | vector

(Optional) Net coupon rate, specified as an NMBS-by-1 vector of numeric decimals.
Data Types: double

Delay — Delay in days
0 (no delay) (default) | vector

(Optional) Delay in days, specified as an NMBS-by-1 vector.
Data Types: double

PrepaySpeed — Speed relative to PSA standard
0 (no prepayment) (default) | vector

(Optional) Speed relative to PSA standard, specified as an NMBS-by-1 vector. The PSA standard is 100.

Note Set the PrepaySpeed to [] if you input a customized PrepayMatrix.

Data Types: double

PrepayMatrix — Customized prepayment vector
matrix
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(Optional) Customized prepayment vector, specified as a NaN-padded matrix of size
max(TermRemaining)-by-NMBS. Each column corresponds to each mortgage-backed security, and
each row corresponds to each month after settlement.

Note Use PrepayMatrix only when PrepaySpeed is unspecified.

Data Types: double

Output Arguments
Convexity — Periodic convexity of mortgage pool
scalar numeric

Periodic convexity of mortgage pool, returned as a scalar numeric.

References
[1] PSA Uniform Practices, SF-49

See Also
mbsconvy | mbsdurp | mbspassthrough | mbsnoprepay | mbsdury

Topics
“Generating Prepayment Vectors” on page 5-4
“Mortgage Prepayments” on page 5-5
“Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model” on page 5-
16
“What Are Mortgage-Backed Securities?” on page 5-2

Introduced before R2006a
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mbsconvy
Convexity of mortgage pool given yield

Syntax
Convexity = mbsconvy(Yield,Settle,Maturity,IssueDate,GrossRate)
Convexity = mbsconvy( ___ ,CouponRate,Delay,PrepaySpeed,PrepayMatrix)

Description
Convexity = mbsconvy(Yield,Settle,Maturity,IssueDate,GrossRate) computes
mortgage-backed security convexity, given time information, semiannual mortgage yield, and
optionally, a prepayment model.

Convexity = mbsconvy( ___ ,CouponRate,Delay,PrepaySpeed,PrepayMatrix) specifies
options using one or more optional arguments in addition to the input arguments in the previous
syntax.

Examples

Compute the Convexity of a Mortgage Pool Given Yield

This example shows how to compute the convexity of mortgage pool given yield for a mortgage-
backed security with the following characteristics.

Yield      = 0.07125;
Settle     = '15-Apr-2002';
Maturity   = '1 Jan 2030';
IssueDate  = '1-Jan-2000';
GrossRate  = 0.08125;
Speed      = 100;
CouponRate = 0.075;
Delay = 14;

Convexity = mbsconvy(Yield, Settle, Maturity, IssueDate, ... 
GrossRate, CouponRate, Delay, Speed)

Convexity = 72.8263

Input Arguments
Yield — Mortgage yield, compounded monthly
vector

Mortgage yield, compounded monthly, specified as an NMBS-by-1 vector in decimals.
Data Types: double
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Settle — Settlement dates
vector

Settlement dates, specified as an NMBS-by-1 vector of serial date numbers or a cell array of character
vectors. Settle must be earlier than Maturity.
Data Types: double | cell

Maturity — Maturity dates
vector

Maturity dates, specified as an NMBS-by-1 vector of serial date numbers or a cell array of character
vectors.
Data Types: double | cell

IssueDate — Issue dates
vector

Maturity dates, specified as an NMBS-by-1 vector of serial date numbers or a cell array of character
vectors.
Data Types: double | cell

GrossRate — Gross coupon rate (including fees)
vector

Gross coupon rate (including fees), specified as an NMBS-by-1 vector of numeric decimals.
Data Types: double

CouponRate — Net coupon rate
GrossRate (default) | vector

(Optional) Net coupon rate, specified as an NMBS-by-1 vector of numeric decimals.
Data Types: double

Delay — Delay in days
0 (no delay) (default) | vector

(Optional) Delay in days, specified as an NMBS-by-1 vector.
Data Types: double

PrepaySpeed — Speed relative to PSA standard
0 (no prepayment) (default) | vector

(Optional) Speed relative to PSA standard, specified as an NMBS-by-1 vector. The PSA standard is 100.

Note Set the PrepaySpeed to [] if you input a customized PrepayMatrix.

Data Types: double

PrepayMatrix — Customized prepayment vector
matrix
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(Optional) Customized prepayment vector, specified as a NaN-padded matrix of size
max(TermRemaining)-by-NMBS. Each column corresponds to each mortgage-backed security, and
each row corresponds to each month after settlement.

Note Use PrepayMatrix only when PrepaySpeed is unspecified.

Data Types: double

Output Arguments
Convexity — Periodic convexity of mortgage pool
scalar numeric

Periodic convexity of mortgage pool, returned as a scalar numeric.

References
[1] PSA Uniform Practices, SF-49

See Also
mbsdurp | mbspassthrough | mbsnoprepay | mbsdury | mbsconvp

Topics
“Generating Prepayment Vectors” on page 5-4
“Mortgage Prepayments” on page 5-5
“Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model” on page 5-
16
“What Are Mortgage-Backed Securities?” on page 5-2

Introduced before R2006a
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mbsdurp
Duration of mortgage pool given price

Syntax
[YearDuration,ModDuration] = mbsdurp(Price,Settle,Maturity,IssueDate,
GrossRate)
[YearDuration,ModDuration] = mbsdurp( ___ ,CouponRate,Delay,PrepaySpeed,
PrepayMatrix)

Description
[YearDuration,ModDuration] = mbsdurp(Price,Settle,Maturity,IssueDate,
GrossRate) computes the mortgage-backed security Macaulay (YearDuration) in years and
modified (ModDuration) durations in years, given time information, price at settlement, and
optionally, a prepayment model.

[YearDuration,ModDuration] = mbsdurp( ___ ,CouponRate,Delay,PrepaySpeed,
PrepayMatrix) specifies options using one or more optional arguments in addition to the input
arguments in the previous syntax.

Examples

Find the Duration of a Mortgage Pool

This example shows how to find the duration of mortgage pool given a mortgage-backed security with
the following characteristics.

Price = 101;
Settle = datenum('15-Apr-2002');
Maturity = datenum('1 Jan 2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;;
Delay = 14;
Speed = 100;

[YearDuration, ModDuration] = mbsdurp(Price, Settle, Maturity,... 
IssueDate, GrossRate, CouponRate, Delay, Speed)

YearDuration = 6.4380

ModDuration = 6.2080

Input Arguments
Price — Clean price for every $100 face of issue
vector
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Clean price for every $100 face of issue, specified as an NMBS-by-1 vector.
Data Types: double

Settle — Settlement dates
vector

Settlement dates, specified as an NMBS-by-1 vector of serial date numbers or a cell array of character
vectors. Settle must be earlier than Maturity.
Data Types: double | cell

Maturity — Maturity dates
vector

Maturity dates, specified as an NMBS-by-1 vector of serial date numbers or a cell array of character
vectors.
Data Types: double | cell

IssueDate — Issue dates
vector

Maturity dates, specified as an NMBS-by-1 vector of serial date numbers or a cell array of character
vectors.
Data Types: double | cell

GrossRate — Gross coupon rate (including fees)
vector

Gross coupon rate (including fees), specified as an NMBS-by-1 vector of numeric decimals.
Data Types: double

CouponRate — Net coupon rate
GrossRate (default) | vector

(Optional) Net coupon rate, specified as an NMBS-by-1 vector of numeric decimals.
Data Types: double

Delay — Delay in days
0 (no delay) (default) | vector

(Optional) Delay in days, specified as an NMBS-by-1 vector.
Data Types: double

PrepaySpeed — Speed relative to PSA standard
0 (no prepayment) (default) | vector

(Optional) Speed relative to PSA standard, specified as an NMBS-by-1 vector. The PSA standard is 100.

Note Set the PrepaySpeed to [] if you input a customized PrepayMatrix.

Data Types: double
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PrepayMatrix — Customized prepayment vector
matrix

(Optional) Customized prepayment vector, specified as a NaN-padded matrix of size
max(TermRemaining)-by-NMBS. Each column corresponds to each mortgage-backed security, and
each row corresponds to each month after settlement.

Note Use PrepayMatrix only when PrepaySpeed is unspecified.

Data Types: double

Output Arguments
YearDuration — Macaulay duration in years
scalar numeric

Macaulay duration in years, returned as a scalar numeric.

ModDuration — Modified duration in years
scalar numeric

Modified duration in years, returned as a scalar numeric.

References
[1] PSA Uniform Practices, SF-49

See Also
mbspassthrough | mbsnoprepay | mbsdury | mbsconvp | mbsconvy

Topics
“Generating Prepayment Vectors” on page 5-4
“Mortgage Prepayments” on page 5-5
“Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model” on page 5-
16
“What Are Mortgage-Backed Securities?” on page 5-2

Introduced before R2006a
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mbsdury
Duration of mortgage pool given yield

Syntax
[YearDuration,ModDuration] = mbsdury(Yield,Settle,Maturity,IssueDate,
GrossRate)
[YearDuration,ModDuration] = mbsdury( ___ ,CouponRate,Delay,PrepaySpeed,
PrepayMatrix)

Description
[YearDuration,ModDuration] = mbsdury(Yield,Settle,Maturity,IssueDate,
GrossRate) computes the mortgage-backed security Macaulay (YearDuration) in years and
modified (ModDuration) durations in years, given time information, yield to maturity, and optionally,
a prepayment model.

[YearDuration,ModDuration] = mbsdury( ___ ,CouponRate,Delay,PrepaySpeed,
PrepayMatrix) specifies options using one or more optional arguments in addition to the input
arguments in the previous syntax.

Examples

Find the Duration of a Mortgage Pool Given the Yield

This example shows how to find the duration of mortgage pool given a mortgage-backed security with
the following characteristics.

Yield = 0.07298413;
Settle = '15-Apr-2002';
Maturity = '1 Jan 2030';
IssueDate = '1-Jan-2000';
GrossRate = 0.08125;
Speed = 100;
CouponRate = 0.075;
Delay = 14;

[YearDuration, ModDuration] = mbsdury(Yield, Settle, Maturity,... 
IssueDate, GrossRate, CouponRate, Delay, Speed)

YearDuration = 6.4380

ModDuration = 6.2080

Input Arguments
Yield — Mortgage yield, compounded monthly
vector
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Mortgage yield, compounded monthly, specified as an NMBS-by-1 vector in decimals.
Data Types: double

Settle — Settlement dates
vector

Settlement dates, specified as an NMBS-by-1 vector of serial date numbers or a cell array of character
vectors. Settle must be earlier than Maturity.
Data Types: double | cell

Maturity — Maturity dates
vector

Maturity dates, specified as an NMBS-by-1 vector of serial date numbers or a cell array of character
vectors.
Data Types: double | cell

IssueDate — Issue dates
vector

Maturity dates, specified as an NMBS-by-1 vector of serial date numbers or a cell array of character
vectors.
Data Types: double | cell

GrossRate — Gross coupon rate (including fees)
vector

Gross coupon rate (including fees), specified as an NMBS-by-1 vector of numeric decimals.
Data Types: double

CouponRate — Net coupon rate
GrossRate (default) | vector

(Optional) Net coupon rate, specified as an NMBS-by-1 vector of numeric decimals.
Data Types: double

Delay — Delay in days
0 (no delay) (default) | vector

(Optional) Delay in days, specified as an NMBS-by-1 vector.
Data Types: double

PrepaySpeed — Speed relative to PSA standard
0 (no prepayment) (default) | vector

(Optional) Speed relative to PSA standard, specified as an NMBS-by-1 vector. The PSA standard is 100.

Note Set the PrepaySpeed to [] if you input a customized PrepayMatrix.

Data Types: double
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PrepayMatrix — Customized prepayment vector
matrix

(Optional) Customized prepayment vector, specified as a NaN-padded matrix of size
max(TermRemaining)-by-NMBS. Each column corresponds to each mortgage-backed security, and
each row corresponds to each month after settlement.

Note Use PrepayMatrix only when PrepaySpeed is unspecified.

Data Types: double

Output Arguments
YearDuration — Macaulay duration in years
scalar numeric

Macaulay duration in years, returned as a scalar numeric.

ModDuration — Modified duration in years
scalar numeric

Modified duration in years, returned as a scalar numeric.

References
[1] PSA Uniform Practices, SF-49

See Also
mbspassthrough | mbsnoprepay | mbsconvp | mbsconvy | mbsdurp

Topics
“Generating Prepayment Vectors” on page 5-4
“Mortgage Prepayments” on page 5-5
“Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model” on page 5-
16
“What Are Mortgage-Backed Securities?” on page 5-2

Introduced before R2006a
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mbsnoprepay
End-of-month mortgage cash flows and balances without prepayment

Syntax
[Balance,Interest,Payment,Principal] = mbsnoprepay(OriginalBalance,GrossRate,
Term)

Description
[Balance,Interest,Payment,Principal] = mbsnoprepay(OriginalBalance,GrossRate,
Term) computes end-of-month mortgage balance, interest payments, principal payments, and cash
flow payments with zero prepayment rate.

mbsnoprepay returns amortizing cash flows and balances over a specified term with no prepayment.
When the lengths of pass-throughs are not the same, MATLAB software pads the shorter ones with
NaN.

Examples

Compute an Amortization Schedule from Mortgage Pools

Given mortgage pools with the following characteristics, compute an amortization schedule.

OriginalBalance = 400000000;
CouponRate = 0.08125;
Term = [357; 355]; % Three- and five-month old mortgage pools.

[Balance, Interest, Payment, Principal] = mbsnoprepay(OriginalBalance, CouponRate, Term)

Balance = 357×2
108 ×

    3.9973    3.9973
    3.9946    3.9946
    3.9919    3.9918
    3.9892    3.9890
    3.9864    3.9862
    3.9837    3.9834
    3.9809    3.9806
    3.9781    3.9778
    3.9753    3.9749
    3.9724    3.9720
      ⋮

Interest = 357×2
106 ×

    2.7083    2.7083
    2.7065    2.7065
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    2.7047    2.7046
    2.7029    2.7028
    2.7010    2.7009
    2.6992    2.6990
    2.6973    2.6971
    2.6954    2.6952
    2.6935    2.6933
    2.6916    2.6913
      ⋮

Payment = 357×2
106 ×

    2.9759    2.9799
    2.9759    2.9799
    2.9759    2.9799
    2.9759    2.9799
    2.9759    2.9799
    2.9759    2.9799
    2.9759    2.9799
    2.9759    2.9799
    2.9759    2.9799
    2.9759    2.9799
      ⋮

Principal = 357×2
106 ×

    0.2675    0.2715
    0.2693    0.2734
    0.2712    0.2752
    0.2730    0.2771
    0.2749    0.2790
    0.2767    0.2809
    0.2786    0.2828
    0.2805    0.2847
    0.2824    0.2866
    0.2843    0.2885
      ⋮

Input Arguments
OriginalBalance — Original face value in dollars
vector

Original face value in dollars, specified as a table or an NUMOBS-by-1 matrix.
Data Types: double

GrossRate — Gross coupon rate (including fees)
vector of decimal values

Gross coupon rate (including fees), specified as an NUMOBS-by-1 vector of decimal values.
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Data Types: double

Term — Term of the mortgage in months
vector

Term of the mortgage in months, specified as an NUMOBS-by-1 vector.
Data Types: double

Output Arguments
Balance — End-of-month balances over the life of the pass-through
vector

End-of-month balances over the life of the pass-through, returned as a Term-by-1 vector.

Interest — End-of-month interest payments over the life of the pass-through
vector

End-of-month interest payments over the life of the pass-through, returned as a Term-by-1 vector.

Payment — End-of-month payments over the life of the pass-through
vector

End-of-month payments over the life of the pass-through, returned as a Term-by-1 vector.

Principal — All scheduled end-of-month principal payments over the life of the pass-
through
vector

All scheduled end-of-month principal payments over the life of the pass-through, returned as a Term-
by-1 vector.

See Also
mbspassthrough | mbsconvp | mbsconvy | mbsdurp

Topics
“Generating Prepayment Vectors” on page 5-4
“Mortgage Prepayments” on page 5-5
“Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model” on page 5-
16
“What Are Mortgage-Backed Securities?” on page 5-2

Introduced before R2006a
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mbsoas2price
Price given option-adjusted spread

Syntax
Price = mbsoas2price(ZeroCurve,OAS,Settle,Maturity,IssueDate,GrossRate)
Price = mbsoas2price( ___ ,CouponRate,Delay,Interpolation,PrepaySpeed,
PrepayMatrix)

Description
Price = mbsoas2price(ZeroCurve,OAS,Settle,Maturity,IssueDate,GrossRate)
computes the clean price of a pass-through security for each $100 face value of outstanding principal.

Price = mbsoas2price( ___ ,CouponRate,Delay,Interpolation,PrepaySpeed,
PrepayMatrix) specifies options using one or more optional arguments in addition to the input
arguments in the previous syntax.

Examples

Compute the Theoretical Price of a Mortgage Pool

Given an option-adjusted spread, a spot curve, and a prepayment assumption, compute theoretical
price of a mortgage pool. First, create the bonds matrix:

Bonds = [datenum('11/21/2002')  0        100  0  2  1;
         datenum('02/20/2003')  0        100  0  2  1;
         datenum('07/31/2004')  0.03     100  2  3  1;
         datenum('08/15/2007')  0.035    100  2  3  1;
         datenum('08/15/2012')  0.04875  100  2  3  1;
         datenum('02/15/2031')  0.05375  100  2  3  1];

Choose a settlement date.

Settle = datenum('20-Aug-2002');

Assume the following clean prices for the bonds:

Prices =  [ 98.97467;
            98.58044;
           100.10534;
            98.18054;
           101.38136;
            99.25411];

Use the following formula to compute spot compounding for the bonds:

SpotCompounding = 2*ones(size(Prices));

Compute the zero curve.
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[ZeroRatesP, CurveDatesP] = zbtprice(Bonds, Prices, Settle);
ZeroCurve = [CurveDatesP, ZeroRatesP, SpotCompounding]

ZeroCurve = 6×3
105 ×

    7.3154    0.0000    0.0000
    7.3163    0.0000    0.0000
    7.3216    0.0000    0.0000
    7.3327    0.0000    0.0000
    7.3510    0.0000    0.0000
    7.4185    0.0000    0.0000

Assign the following parameters:

OAS           = [26.0502; 28.6348; 31.2222];
Maturity      = datenum('02-Jan-2030');
IssueDate     = datenum('02-Jan-2000');
GrossRate     = 0.08125;
CouponRate    = 0.075;
Delay         = 14;
Interpolation = 1;
PrepaySpeed   = [0 50 100];

Calculate the theoretical price from the option-adjusted spread.

Price = mbsoas2price(ZeroCurve, OAS, Settle, Maturity, ... 
IssueDate, GrossRate, CouponRate, Delay, Interpolation, ... 
PrepaySpeed)

Price = 3×1

  124.7133
  120.9534
  118.0698

Input Arguments
ZeroCurve — Zero curve
matrix

Zero curve, specified as a three-column matrix, where:

• Column 1 is serial date numbers.
• Column 2 is spot rates with maturities corresponding to the dates in Column 1, in decimal (for

example, 0.075).
• Column 3 is the compounding value of the rates in Column 2. (This is the agency spot rate on the

settlement date.) Allowable compounding values are: 1 (annual), 2 (semiannual, 3 (three times per
year), 4 (quarterly), 6 (bimonthly), 12 (monthly), and -1 (continuous).

For example:

[datenum('1-Jan-2003')  0.0154  12;
 datenum('1-Jan-2004')  0.0250  12;

11 Functions

11-2008



 ......
 datenum('1-Jan-2020')  0.0675   2];
 

Data Types: double | char | cell

OAS — Option-adjusted spreads
vector

Option-adjusted spreads, in basis points, specified as an NMBS-by-1 vector.
Data Types: double

Settle — Settlement date
cell array of date character vectors | vector of serial date numbers

Settlement date, specified as an NMBS-by-1 vector using serial date numbers or a cell array of date
character vectors. Settle must be earlier than Maturity.
Data Types: double | char | cell

Maturity — Maturity date
cell array of date character vectors | vector of serial date numbers

Maturity date, specified as an NMBS-by-1 vector using serial date numbers or a cell array of date
character vectors.
Data Types: double | char | cell

IssueDate — Issue date
cell array of date character vectors | vector of serial date numbers

Issue date, specified as an NMBS-by-1 vector using serial date numbers or a cell array of date
character vectors.
Data Types: double | char | cell

GrossRate — Gross coupon rate (including fees)
vector of decimal values

Gross coupon rate (including fees), specified as an NMBS-by-1 vector of decimal values.
Data Types: double

CouponRate — Net coupon rate
GrossRate (default) | vector of decimal values

(Optional) Net coupon rate, specified as an NMBS-by-1 vector of decimal values.
Data Types: double

Delay — Delay (in days) between payment from homeowner and receipt by bondholder
0 (no delay between payment and receipt) (default) | vector

(Optional) Delay (in days) between payment from homeowner and receipt by bondholder, specified as
an NMBS-by-1 vector.
Data Types: double
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Interpolation — Interpolation method to compute the corresponding spot rates for the
bond's cash flow
1 (linear) (default) | vector

(Optional) Interpolation method to compute the corresponding spot rates for the bond's cash flow,
specified as an NMBS-by-1 vector. Available methods are (0) nearest, (1) linear, and (2) cubic spline.
For more information on the supported interpolation methods, see interp1.
Data Types: double

PrepaySpeed — Speed relative to PSA standard
0 (no prepayment) (default) | vector

(Optional) Speed relative to PSA standard, specified as an NMBS-by-1 vector. The PSA standard is 100.

Note Set the PrepaySpeed to [] if you input a customized PrepayMatrix.

Data Types: double

PrepayMatrix — Customized prepayment vector
matrix

(Optional) Customized prepayment vector, specified as a NaN-padded matrix of size
max(TermRemaining)-by-NMBS. Each column corresponds to each mortgage-backed security, and
each row corresponds to each month after settlement.

Note Use PrepayMatrix only when PrepaySpeed is unspecified.

Data Types: double

Output Arguments
Price — Clean price of passthrough per $100 face of principal outstanding
vector

Clean price of passthrough per $100 face of principal outstanding, returned as a NMBS-by-1 vector.

References
[1] PSA Uniform Practices, SF-49

See Also
mbspassthrough | mbsprice2oas | mbsyield2oas

Topics
“Generating Prepayment Vectors” on page 5-4
“Mortgage Prepayments” on page 5-5
“Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model” on page 5-
16
“What Are Mortgage-Backed Securities?” on page 5-2
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Introduced before R2006a
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mbsoas2yield
Yield given option-adjusted spread

Syntax
[MYield,BEMBSYield] = mbsoas2yield(ZeroCurve,OAS,Settle,Maturity,IssueDate,
GrossRate)
[MYield,BEMBSYield] = mbsoas2yield( ___ ,CouponRate,Delay,Interpolation,
PrepaySpeed,PrepayMatrix)

Description
[MYield,BEMBSYield] = mbsoas2yield(ZeroCurve,OAS,Settle,Maturity,IssueDate,
GrossRate) computes the mortgage and bond-equivalent yields of a pass-through security.

[MYield,BEMBSYield] = mbsoas2yield( ___ ,CouponRate,Delay,Interpolation,
PrepaySpeed,PrepayMatrix) specifies options using one or more optional arguments in addition
to the input arguments in the previous syntax.

Examples

Compute the Theoretical Yield to Maturity of a Mortgage Pool

Given an option-adjusted spread, a spot curve, and a prepayment assumption, compute the
theoretical yield to maturity of a mortgage pool. First, create the bonds matrix:

Bonds = [datenum('11/21/2002')  0        100  0  2  1;
         datenum('02/20/2003')  0        100  0  2  1;
         datenum('07/31/2004')  0.03     100  2  3  1;
         datenum('08/15/2007')  0.035    100  2  3  1;
         datenum('08/15/2012')  0.04875  100  2  3  1;
         datenum('02/15/2031')  0.05375  100  2  3  1];

Choose a settlement date.

Settle = datenum('20-Aug-2002');

Assume the following clean prices for the bonds:

Prices =  [ 98.97467;
            98.58044;
           100.10534;
            98.18054;
           101.38136;
            99.25411];

Use the following formula to compute spot compounding for the bonds:

SpotCompounding = 2*ones(size(Prices));

Compute the zero curve.
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[ZeroRatesP, CurveDatesP] = zbtprice(Bonds, Prices, Settle);
ZeroCurve = [CurveDatesP, ZeroRatesP, SpotCompounding]

ZeroCurve = 6×3
105 ×

    7.3154    0.0000    0.0000
    7.3163    0.0000    0.0000
    7.3216    0.0000    0.0000
    7.3327    0.0000    0.0000
    7.3510    0.0000    0.0000
    7.4185    0.0000    0.0000

Assign the following parameters:

OAS           = [26.0502; 28.6348; 31.2222];
Maturity      = datenum('02-Jan-2030');
IssueDate     = datenum('02-Jan-2000');
GrossRate     = 0.08125;
CouponRate    = 0.075;
Delay         = 14;
Interpolation = 1;
PrepaySpeed   = [0 50 100];

Compute the mortgage yield and bond equivalent mortgage yield.

[MYield BEMBSYield] = mbsoas2yield(ZeroCurve, OAS, Settle, ...
Maturity, IssueDate, GrossRate, CouponRate, Delay, ... 
Interpolation, PrepaySpeed)

MYield = 3×1

    0.0527
    0.0513
    0.0499

BEMBSYield = 3×1

    0.0533
    0.0518
    0.0504

Input Arguments
ZeroCurve — Zero curve
matrix

Zero curve, specified as a three-column matrix, where:

• Column 1 is serial date numbers.
• Column 2 is spot rates with maturities corresponding to the dates in Column 1, in decimal (for

example, 0.075).
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• Column 3 is the compounding value of the rates in Column 2. (This is the agency spot rate on the
settlement date.) Allowable compounding values are: 1 (annual), 2 (semiannual, 3 (three times per
year), 4 (quarterly), 6 (bimonthly), 12 (monthly), and -1 (continuous).

For example:

[datenum('1-Jan-2003')  0.0154  12;
 datenum('1-Jan-2004')  0.0250  12;
 ......
 datenum('1-Jan-2020')  0.0675   2];
 

Data Types: double | char | cell

OAS — Option-adjusted spreads
vector

Option-adjusted spreads, in basis points, specified as an NMBS-by-1 vector.
Data Types: double

Settle — Settlement date
cell array of date character vectors | vector of serial date numbers

Settlement date, specified as an NMBS-by-1 vector using serial date numbers or a cell array of date
character vectors. Settle must be earlier than Maturity.
Data Types: double | char | cell

Maturity — Maturity date
cell array of date character vectors | vector of serial date numbers

Maturity date, specified as an NMBS-by-1 vector using serial date numbers or a cell array of date
character vectors.
Data Types: double | char | cell

IssueDate — Issue date
cell array of date character vectors | vector of serial date numbers

Issue date, specified as an NMBS-by-1 vector using serial date numbers or a cell array of date
character vectors.
Data Types: double | char | cell

GrossRate — Gross coupon rate (including fees)
vector of decimal values

Gross coupon rate (including fees), specified as an NMBS-by-1 vector of decimal values.
Data Types: double

CouponRate — Net coupon rate
GrossRate (default) | vector of decimal values

(Optional) Net coupon rate, specified as an NMBS-by-1 vector of decimal values.
Data Types: double
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Delay — Delay (in days) between payment from homeowner and receipt by bondholder
0 (no delay between payment and receipt) (default) | vector

(Optional) Delay (in days) between payment from homeowner and receipt by bondholder, specified as
an NMBS-by-1 vector.
Data Types: double

Interpolation — Interpolation method to compute the corresponding spot rates for the
bond's cash flow
1 (linear) (default) | vector

(Optional) Interpolation method to compute the corresponding spot rates for the bond's cash flow,
specified as an NMBS-by-1 vector. Available methods are (0) nearest, (1) linear, and (2) cubic spline.
For more information on the supported interpolation methods, see interp1.
Data Types: double

PrepaySpeed — Speed relative to PSA standard
0 (no prepayment) (default) | vector

(Optional) Speed relative to PSA standard, specified as an NMBS-by-1 vector. The PSA standard is 100.

Note Set the PrepaySpeed to [] if you input a customized PrepayMatrix.

Data Types: double

PrepayMatrix — Customized prepayment vector
matrix

(Optional) Customized prepayment vector, specified as a NaN-padded matrix of size
max(TermRemaining)-by-NMBS. Each column corresponds to each mortgage-backed security, and
each row corresponds to each month after settlement.

Note Use PrepayMatrix only when PrepaySpeed is unspecified.

Data Types: double

Output Arguments
MYield — Yield to maturity of the mortgage-backed security
vector

Yield to maturity of the mortgage-backed security, returned as a NMBS-by-1 vector. This yield is
compounded monthly (12 times a year).

BEMBSYield — Bond equivalent yield of the mortgage-backed security
vector

Bond equivalent yield of the mortgage-backed security, returned as a NMBS-by-1 vector. This yield is
compounded semiannually (two times a year).
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References
[1] PSA Uniform Practices, SF-49

See Also
mbspassthrough | mbsprice2oas | mbsyield2oas | mbsoas2price

Topics
“Generating Prepayment Vectors” on page 5-4
“Mortgage Prepayments” on page 5-5
“Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model” on page 5-
16
“What Are Mortgage-Backed Securities?” on page 5-2

Introduced before R2006a
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mbspassthrough
Mortgage pool cash flows and balances with prepayment

Syntax
[Balance,Payment,Principal,Interest,Prepayment] = mbspassthrough(
OriginalBalance,GrossRate,OriginalTerm)
[Balance,Payment,Principal,Interest,Prepayment] = mbspassthrough( ___ ,
TermRemaining,PrepaySpeed,PrepayMatrix)

Description
[Balance,Payment,Principal,Interest,Prepayment] = mbspassthrough(
OriginalBalance,GrossRate,OriginalTerm) calculates mortgage pool cash flows and balances
with prepayments.

If a standard (PSA) prepayment is specified, "aging" is applied to standard prepayment vector. Aging
is the same amount as the age of the pool (OriginalTerm - TermRemaining).

[Balance,Payment,Principal,Interest,Prepayment] = mbspassthrough( ___ ,
TermRemaining,PrepaySpeed,PrepayMatrix) specifies options using one or more optional
arguments in addition to the input arguments in the previous syntax.

Examples

Compute the Cash Flow of Principal, Interest, and Prepayment of a Pass-Through Security

This example shows how to compute the cash flows and balances of a 3-month old mortgage pool with
original term of 360 months, assuming a prepayment speed of 100.

OriginalBalance = 100000;
GrossRate = 0.08125;
OriginalTerm = 360;
TermRemaining = 357;
PrepaySpeed = 100;

[Balance, Payment, Principal, Interest, Prepayment] =... 
mbspassthrough(OriginalBalance, GrossRate, OriginalTerm,... 
TermRemaining, PrepaySpeed)

Balance = 357×1
104 ×

    9.9866
    9.9715
    9.9548
    9.9363
    9.9161
    9.8942
    9.8707
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    9.8454
    9.8185
    9.7900
      ⋮

Payment = 357×1

  743.9671
  743.4693
  742.8468
  742.0999
  741.2285
  740.2329
  739.1132
  737.8699
  736.5034
  735.0139
      ⋮

Principal = 357×1

   66.8837
   67.2915
   67.6904
   68.0802
   68.4607
   68.8317
   69.1929
   69.5442
   69.8854
   70.2163
      ⋮

Interest = 357×1

  677.0833
  676.1777
  675.1564
  674.0196
  672.7678
  671.4012
  669.9203
  668.3257
  666.6179
  664.7976
      ⋮

Prepayment = 357×1

   66.8676
   83.5494
  100.2000
  116.8108
  133.3731
  149.8785
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  166.3183
  182.6840
  198.9672
  215.1593
      ⋮

Input Arguments
OriginalBalance — Original balance value in dollars
vector

Original balance value in dollars (balance at the beginning of each TermRemaining), specified as an
NMBS-by-1 vector.
Data Types: double

GrossRate — Gross coupon rate (including fees)
vector of decimal values

Gross coupon rate (including fees), specified as an NMBS-by-1 vector of decimal values.
Data Types: double

OriginalTerm — Term of the mortgage in months
vector

Term of the mortgage in months, specified as an NMBS-by-1 vector.
Data Types: double

TermRemaining — Number of full months between settlement and maturity
OriginalTerm (default) | vector

(Optional) Number of full months between settlement and maturity, specified as an NMBS-by-1 vector.
For this argument, "full months" means not including fractional first term (if there is one).
Data Types: double

PrepaySpeed — Speed relative to PSA standard
0 (no prepayment) (default) | vector

(Optional) Speed relative to PSA standard, specified as an NMBS-by-1 vector. The PSA standard is 100.

Note Set the PrepaySpeed to [] if you input a customized PrepayMatrix.

Data Types: double

PrepayMatrix — Customized prepayment vector
matrix

(Optional) Customized prepayment vector, specified as a NaN-padded matrix of size
max(TermRemaining)-by-NMBS. Each column corresponds to each mortgage-backed security, and
each row corresponds to each month after settlement.
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Note Use PrepayMatrix only when PrepaySpeed is unspecified.

Data Types: double

Output Arguments
Balance — Principal balance at end of month
vector

Principal balance at end of month, returned as a TermRemaining-by-1 vectors of end-of-month
values.

Payment — Total monthly payment
vector

Total monthly payment, returned as a TermRemaining-by-1 vectors of end-of-month values.

Principal — Principal portion of the payment
vector

Principal portion of the payment, returned as a TermRemaining-by-1 vectors of end-of-month values.

Interest — Interest portion of the payment
vector

Interest portion of the payment, returned as a TermRemaining-by-1 vectors of end-of-month values.

Prepayment — Unscheduled principal payment
vector

Unscheduled principal payment, returned as a TermRemaining-by-1 vectors of end-of-month values.

See Also
mbswal

Topics
“Generating Prepayment Vectors” on page 5-4
“Mortgage Prepayments” on page 5-5
“Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model” on page 5-
16
“What Are Mortgage-Backed Securities?” on page 5-2

Introduced before R2006a
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mbsprice
Mortgage-backed security price given yield

Syntax
[Price,AccrInt] = mbsprice(Yield,Settle,Maturity,IssueDate,GrossRate)
[Price,AccrInt] = mbsprice( ___ CouponRate,Delay,PrepaySpeed,PrepayMatrix)

Description
[Price,AccrInt] = mbsprice(Yield,Settle,Maturity,IssueDate,GrossRate) computes
a mortgage-backed security price, given time information and mortgage yield at settlement.

[Price,AccrInt] = mbsprice( ___ CouponRate,Delay,PrepaySpeed,PrepayMatrix)
specifies options using one or more optional arguments in addition to the input arguments in the
previous syntax.

Examples

Determine the Mortgage-Backed Security Price Given the Yield

This example shows how to determine the mortgage-backed security price given a mortgage-backed
security with the following characteristics.

Yield = 0.0725;
Settle = datenum('15-Apr-2002');
Maturity = datenum('1 Jan 2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Speed = 100;

[Price AccrInt] = mbsprice(Yield, Settle, Maturity, IssueDate,...
GrossRate, CouponRate, Delay, Speed)

Price = 101.3147

AccrInt = 0.2917

Determine the Mortgage-Backed Security Price Using a Customized PrePaytMatrix

This example shows how to determine the mortgage-backed security price, given a mortgage-backed
security, and PrePaytMatrix with the following characteristics:

Yield = 0.0725;
Settle = datenum('15-Apr-2002');
Maturity = datenum('1 Jan 2030');
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IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
PrepayMatrix = 0.005*ones(360,1);

[Price AccrInt] = mbsprice(Yield, Settle, Maturity, IssueDate,...
GrossRate, PrepayMatrix)

Price = 360×1

   34.8583
   34.8583
   34.8583
   34.8583
   34.8583
   34.8583
   34.8583
   34.8583
   34.8583
   34.8583
      ⋮

AccrInt = 360×1

    0.0194
    0.0194
    0.0194
    0.0194
    0.0194
    0.0194
    0.0194
    0.0194
    0.0194
    0.0194
      ⋮

Input Arguments
Yield — Mortgage yield compounded monthly
vector of decimal values

Mortgage yield compounded monthly, specified as an NMBS-by-1 vector using decimal values.
Data Types: double

Settle — Settlement date
cell array of date character vectors | vector of serial date numbers

Settlement date, specified as an NMBS-by-1 vector using serial date numbers or a cell array of date
character vectors. Settle must be earlier than Maturity.
Data Types: double | char | cell

Maturity — Maturity date
cell array of date character vectors | vector of serial date numbers
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Maturity date, specified as an NMBS-by-1 vector using serial date numbers or a cell array of date
character vectors.
Data Types: double | char | cell

IssueDate — Issue date
cell array of date character vectors | vector of serial date numbers

Issue date, specified as an NMBS-by-1 vector using serial date numbers or a cell array of date
character vectors.
Data Types: double | char | cell

GrossRate — Gross coupon rate (including fees)
vector of decimal values

Gross coupon rate (including fees), specified as an NMBS-by-1 vector of decimal values.
Data Types: double

CouponRate — Net coupon rate
GrossRate (default) | vector of decimal values

(Optional) Net coupon rate, specified as an NMBS-by-1 vector of decimal values.
Data Types: double

Delay — Delay (in days) between payment from homeowner and receipt by bondholder
0 (no delay between payment and receipt) (default) | vector

(Optional) Delay (in days) between payment from homeowner and receipt by bondholder, specified as
an NMBS-by-1 vector.
Data Types: double

PrepaySpeed — Speed relative to PSA standard
0 (no prepayment) (default) | vector

(Optional) Speed relative to PSA standard, specified as an NMBS-by-1 vector. The PSA standard is 100.

Note Set the PrepaySpeed to [] if you input a customized PrepayMatrix.

Data Types: double

PrepayMatrix — Customized prepayment vector
matrix

(Optional) Customized prepayment vector, specified as a NaN-padded matrix of size
max(TermRemaining)-by-NMBS. Each column corresponds to each mortgage-backed security, and
each row corresponds to each month after settlement.

Note Use PrepayMatrix only when PrepaySpeed is unspecified.

Data Types: double
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Output Arguments
Price — Clean price for every $100 face value of the securities
vector

Clean price for every $100 face value of the securities, returned as a NMBS-by-1 vector.

AccrInt — Accrued interest of the mortgage-backed securities
vector

Accrued interest of the mortgage-backed securities, returned as a NMBS-by-1 vector.

References
[1] PSA Uniform Practices, SF-49

See Also
mbsyield

Topics
“Generating Prepayment Vectors” on page 5-4
“Mortgage Prepayments” on page 5-5
“Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model” on page 5-
16
“What Are Mortgage-Backed Securities?” on page 5-2

Introduced before R2006a
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mbsprice2oas
Option-adjusted spread given price

Syntax
OAS = mbsprice2oas(ZeroCurve,Price,Settle,Maturity,IssueDate,GrossRate)
OAS = mbsprice2oas( ___ ,CouponRate,Delay,Interpolation,PrepaySpeed,
PrepayMatrix)

Description
OAS = mbsprice2oas(ZeroCurve,Price,Settle,Maturity,IssueDate,GrossRate)
computes the option-adjusted spread in basis points.

OAS = mbsprice2oas( ___ ,CouponRate,Delay,Interpolation,PrepaySpeed,
PrepayMatrix) specifies options using one or more optional arguments in addition to the input
arguments in the previous syntax.

Examples

Calculate the Option-Adjusted Spread of a 30-Year Fixed-Rate Mortgage

Calculate the option-adjusted spread of a 30-year fixed-rate mortgage with about a 28-year weighted
average maturity remaining, given assumptions of 0, 50, and 100 PSA prepayments. First, create the
bonds matrix:

Bonds = [datenum('11/21/2002')  0        100  0  2  1;
         datenum('02/20/2003')  0        100  0  2  1;
         datenum('07/31/2004')  0.03     100  2  3  1;
         datenum('08/15/2007')  0.035    100  2  3  1;
         datenum('08/15/2012')  0.04875  100  2  3  1;
         datenum('02/15/2031')  0.05375  100  2  3  1];

Choose a settlement date.

Settle = datenum('20-Aug-2002');

Assume the following clean prices for the bonds:

Prices =  [ 98.97467;
            98.58044;
           100.10534;
            98.18054;
           101.38136;
            99.25411];

Use the following formula to compute spot compounding for the bonds:

SpotCompounding = 2*ones(size(Prices));

Compute the zero curve.
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[ZeroRatesP, CurveDatesP] = zbtprice(Bonds, Prices, Settle);
ZeroCurve = [CurveDatesP, ZeroRatesP, SpotCompounding]

ZeroCurve = 6×3
105 ×

    7.3154    0.0000    0.0000
    7.3163    0.0000    0.0000
    7.3216    0.0000    0.0000
    7.3327    0.0000    0.0000
    7.3510    0.0000    0.0000
    7.4185    0.0000    0.0000

Assign the following parameters:

Price         = 95;
Maturity      = datenum('02-Jan-2030');
IssueDate     = datenum('02-Jan-2000');
GrossRate     = 0.08125;
CouponRate    = 0.075;
Delay         = 14;
Interpolation = 1;
PrepaySpeed   = [0; 50; 100];
Interpolation = 1;

Compute the option-adjusted spread.

OAS = mbsprice2oas(ZeroCurve, Price, Settle, Maturity, ...
IssueDate, GrossRate, CouponRate, Delay, Interpolation, ... 
PrepaySpeed)

OAS = 3×1

   26.0508
   28.6355
   31.2232

Input Arguments
ZeroCurve — Zero curve
matrix

Zero curve, specified as a three-column matrix, where:

• Column 1 is serial date numbers.
• Column 2 is spot rates with maturities corresponding to the dates in Column 1, in decimal (for

example, 0.075).
• Column 3 is the compounding value of the rates in Column 2. (This is the agency spot rate on the

settlement date.) Allowable compounding values are: 1 (annual), 2 (semiannual, 3 (three times per
year), 4 (quarterly), 6 (bimonthly), 12 (monthly), and -1 (continuous).

For example:

[datenum('1-Jan-2003')  0.0154  12;
 datenum('1-Jan-2004')  0.0250  12;
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 ......
 datenum('1-Jan-2020')  0.0675   2];
 

Data Types: double | char | cell

Price — Clean price for every $100 face value of bond issue
vector

Clean price for every $100 face value of bond issue, specified as an NMBS-by-1 vector.
Data Types: double

Settle — Settlement date
cell array of date character vectors | vector of serial date numbers

Settlement date, specified as an NMBS-by-1 vector using serial date numbers or a cell array of date
character vectors. Settle must be earlier than Maturity.
Data Types: double | char | cell

Maturity — Maturity date
cell array of date character vectors | vector of serial date numbers

Maturity date, specified as an NMBS-by-1 vector using serial date numbers or a cell array of date
character vectors.
Data Types: double | char | cell

IssueDate — Issue date
cell array of date character vectors | vector of serial date numbers

Issue date, specified as an NMBS-by-1 vector using serial date numbers or a cell array of date
character vectors.
Data Types: double | char | cell

GrossRate — Gross coupon rate (including fees)
vector of decimal values

Gross coupon rate (including fees), specified as an NMBS-by-1 vector of decimal values.
Data Types: double

CouponRate — Net coupon rate
GrossRate (default) | vector of decimal values

(Optional) Net coupon rate, specified as an NMBS-by-1 vector of decimal values.
Data Types: double

Delay — Delay (in days) between payment from homeowner and receipt by bondholder
0 (no delay between payment and receipt) (default) | vector

(Optional) Delay (in days) between payment from homeowner and receipt by bondholder, specified as
an NMBS-by-1 vector.
Data Types: double

 mbsprice2oas

11-2027



Interpolation — Interpolation method to compute the corresponding spot rates for the
bond's cash flow
1 (linear) (default) | vector

(Optional) Interpolation method to compute the corresponding spot rates for the bond's cash flow,
specified as an NMBS-by-1 vector. Available methods are (0) nearest, (1) linear, and (2) cubic spline.
For more information on the supported interpolation methods, see interp1.
Data Types: double

PrepaySpeed — Speed relative to PSA standard
0 (no prepayment) (default) | vector

(Optional) Speed relative to PSA standard, specified as an NMBS-by-1 vector. The PSA standard is 100.

Note Set the PrepaySpeed to [] if you input a customized PrepayMatrix.

Data Types: double

PrepayMatrix — Customized prepayment vector
matrix

(Optional) Customized prepayment vector, specified as a NaN-padded matrix of size
max(TermRemaining)-by-NMBS. Each column corresponds to each mortgage-backed security, and
each row corresponds to each month after settlement.

Note Use PrepayMatrix only when PrepaySpeed is unspecified.

Data Types: double

Output Arguments
OAS — Zero volatility OAS
vector

Zero volatility OAS, in basis point (bp), returned as a NMBS-by-1 vector.

References
[1] PSA Uniform Practices, SF-49

See Also
mbsoas2price | mbsoas2yield | mbsyield2oas

Topics
“Generating Prepayment Vectors” on page 5-4
“Mortgage Prepayments” on page 5-5
“Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model” on page 5-
16
“What Are Mortgage-Backed Securities?” on page 5-2
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mbsprice2speed
Implied PSA prepayment speeds given price

Syntax
[ImpSpdOnPrc,ImpSpdOnDur,ImpSpdOnCnv] = mbsprice2speed(Price,Settle,Maturity,
IssueDate,GrossRate,PrepayMatrix)
[ImpSpdOnPrc,ImpSpdOnDur,ImpSpdOnCnv] = mbsprice2speed( ___ ,CouponRate,Delay)

Description
[ImpSpdOnPrc,ImpSpdOnDur,ImpSpdOnCnv] = mbsprice2speed(Price,Settle,Maturity,
IssueDate,GrossRate,PrepayMatrix) computes PSA prepayment speeds implied by pool prices
and projected (user-defined) prepayment vectors. The calculated PSA speed produces the same price,
modified duration, or modified convexity, depending upon the output requested.

[ImpSpdOnPrc,ImpSpdOnDur,ImpSpdOnCnv] = mbsprice2speed( ___ ,CouponRate,Delay)
specifies options using one or more optional arguments in addition to the input arguments in the
previous syntax.

Examples

Compute PSA Prepayment Speeds

This example shows how to compute the equivalent PSA benchmark prepayment speeds for a
mortgage pool with the following characteristics and prepayment matrix.

Price        = 101;
Settle       = datenum('1-Jan-2000');
Maturity     = datenum('1-Jan-2030');
IssueDate    = datenum('1-Jan-2000');
GrossRate    = 0.08125;
PrepayMatrix = 0.005*ones(360,1);
CouponRate   = 0.075;
Delay        = 14;

[ImpSpdOnPrc, ImpSpdOnDur, ImpSpdOnCnv] = ... 
mbsprice2speed(Price,Settle, Maturity, IssueDate, ... 
GrossRate, PrepayMatrix, CouponRate, Delay)

ImpSpdOnPrc = 118.5980

ImpSpdOnDur = 118.3946

ImpSpdOnCnv = 109.5115
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Input Arguments
Price — Clean price for every $100 face value
vector

Clean price for every $100 face value, specified as an NMBS-by-1 vector.
Data Types: double

Settle — Settlement date
cell array of date character vectors | vector of serial date numbers

Settlement date, specified as an NMBS-by-1 vector using serial date numbers or a cell array of date
character vectors. Settle must be earlier than Maturity.
Data Types: double | char | cell

Maturity — Maturity date
cell array of date character vectors | vector of serial date numbers

Maturity date, specified as an NMBS-by-1 vector using serial date numbers or a cell array of date
character vectors.
Data Types: double | char | cell

IssueDate — Issue date
cell array of date character vectors | vector of serial date numbers

Issue date, specified as an NMBS-by-1 vector using serial date numbers or a cell array of date
character vectors.
Data Types: double | char | cell

GrossRate — Gross coupon rate (including fees)
vector of decimal values

Gross coupon rate (including fees), specified as an NMBS-by-1 vector of decimal values.
Data Types: double

PrepayMatrix — Customized prepayment vector
matrix

Customized prepayment vector, specified as a NaN-padded matrix of size max(TermRemaining)-by-
NMBS. Each column corresponds to each mortgage-backed security, and each row corresponds to each
month after settlement.

Note Use PrepayMatrix only when PrepaySpeed is unspecified.

Data Types: double

CouponRate — Net coupon rate
GrossRate (default) | vector of decimal values

(Optional) Net coupon rate, specified as an NMBS-by-1 vector of decimal values.
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Data Types: double

Delay — Delay (in days) between payment from homeowner and receipt by bondholder
0 (no delay between payment and receipt) (default) | vector

(Optional) Delay (in days) between payment from homeowner and receipt by bondholder, specified as
an NMBS-by-1 vector.
Data Types: double

Output Arguments
ImpSpdOnPrc — Equivalent PSA benchmark prepayment speed for the pass-through to carry
the same price
vector

Equivalent PSA benchmark prepayment speed for the pass-through to carry the same price, returned
as a NMBS-by-1 vector.

ImpSpdOnDur — Equivalent PSA benchmark prepayment speed for the pass-through to carry
the same modified duration
vector

Equivalent PSA benchmark prepayment speed for the pass-through to carry the same modified
duration, returned as a NMBS-by-1 vector.

ImpSpdOnCnv — Equivalent PSA benchmark prepayment speed for the pass-through to carry
the same modified convexity
vector

Equivalent PSA benchmark prepayment speed for the pass-through to carry the same modified
convexity, returned as a NMBS-by-1 vector.

References
[1] PSA Uniform Practices, SF-49

See Also
mbsprice | mbsyield2speed

Topics
“Generating Prepayment Vectors” on page 5-4
“Mortgage Prepayments” on page 5-5
“Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model” on page 5-
16
“What Are Mortgage-Backed Securities?” on page 5-2

Introduced before R2006a
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mbswal
Weighted average life of mortgage pool

Syntax
WAL = mbswal(Settle,Maturity,IssueDate,GrossRate)
WAL = mbswal( ___ CouponRate,Delay,PrepaySpeed,PrepayMatrix)

Description
WAL = mbswal(Settle,Maturity,IssueDate,GrossRate) computes the weighted average life,
in number of years, of a mortgage pool, as measured from the settlement date.

WAL = mbswal( ___ CouponRate,Delay,PrepaySpeed,PrepayMatrix) specifies options using
one or more optional arguments in addition to the input arguments in the previous syntax.

Examples

Determine the Weighted Average Life of a Mortgage Pool

This example shows how to determine the weighted average life of a mortgage pool, given a pass-
through security with the following characteristics.

Settle = datenum('15-Apr-2002');
Maturity = datenum('1 Jan 2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Speed = 100;

WAL = mbswal(Settle, Maturity, IssueDate, GrossRate, ... 
CouponRate, Delay, Speed)

WAL = 10.5477

Input Arguments
Settle — Settlement date
cell array of date character vectors | vector of serial date numbers

Settlement date, specified as an NMBS-by-1 vector using serial date numbers or a cell array of date
character vectors. Settle must be earlier than Maturity.
Data Types: double | char | cell

Maturity — Maturity date
cell array of date character vectors | vector of serial date numbers
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Maturity date, specified as an NMBS-by-1 vector using serial date numbers or a cell array of date
character vectors.
Data Types: double | char | cell

IssueDate — Issue date
cell array of date character vectors | vector of serial date numbers

Issue date, specified as an NMBS-by-1 vector using serial date numbers or a cell array of date
character vectors.
Data Types: double | char | cell

GrossRate — Gross coupon rate (including fees)
vector of decimal values

Gross coupon rate (including fees), specified as an NMBS-by-1 vector of decimal values.
Data Types: double

CouponRate — Net coupon rate
GrossRate (default) | vector of decimal values

(Optional) Net coupon rate, specified as an NMBS-by-1 vector of decimal values.
Data Types: double

Delay — Delay (in days) between payment from homeowner and receipt by bondholder
0 (no delay between payment and receipt) (default) | vector

(Optional) Delay (in days) between payment from homeowner and receipt by bondholder, specified as
an NMBS-by-1 vector.
Data Types: double

PrepaySpeed — Speed relative to PSA standard
0 (no prepayment) (default) | vector

(Optional) Speed relative to PSA standard, specified as an NMBS-by-1 vector. The PSA standard is 100.

Note Set the PrepaySpeed to [] if you input a customized PrepayMatrix.

Data Types: double

PrepayMatrix — Customized prepayment vector
matrix

(Optional) Customized prepayment vector, specified as a NaN-padded matrix of size
max(TermRemaining)-by-NMBS. Each column corresponds to each mortgage-backed security, and
each row corresponds to each month after settlement.

Note Use PrepayMatrix only when PrepaySpeed is unspecified.

Data Types: double
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Output Arguments
WAL — Weighted Average Life of MBS, in number of years
vector

Weighted Average Life (WAL) of MBS, in number of years, returned as a NMBS-by-1 vector.

References
[1] PSA Uniform Practices, SF-49

See Also
mbspassthrough

Topics
“Generating Prepayment Vectors” on page 5-4
“Mortgage Prepayments” on page 5-5
“Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model” on page 5-
16
“What Are Mortgage-Backed Securities?” on page 5-2

Introduced before R2006a
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mbsyield
Mortgage-backed security yields given price

Syntax
[MYield,BEMBSYield] = mbsyield(Price,Settle,Maturity,IssueDate,GrossRate)
[MYield,BEMBSYield] = mbsyield( ___ CouponRate,Delay,PrepaySpeed,PrepayMatrix)

Description
[MYield,BEMBSYield] = mbsyield(Price,Settle,Maturity,IssueDate,GrossRate)
computes a mortgage-backed security yield to maturity and the bond equivalent yield, given time
information, and price at settlement.

[MYield,BEMBSYield] = mbsyield( ___ CouponRate,Delay,PrepaySpeed,PrepayMatrix)
specifies options using one or more optional arguments in addition to the input arguments in the
previous syntax.

Examples

Determine a Mortgage-Backed Security Yield Given the Price

This example shows how to determine the mortgage-backed security yield, given a mortgage-backed
security with the following characteristics.

Price = 102;
Settle = '15-Apr-2002';
Maturity = '1 Jan 2030';
IssueDate = '1-Jan-2000';
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Speed = 100;

[MYield, BEMBSYield] = mbsyield(Price, Settle, Maturity, ... 
IssueDate, GrossRate, CouponRate, Delay,  Speed)

MYield = 0.0715

BEMBSYield = 0.0725

Determine Multiple Mortgage-Backed Securities Yields Given the Price

This example shows how to determine multiple mortgage-backed securities yields, given a portfolio of
mortgage-backed securities with the following characteristics.

Price = 102;
Settle = datenum(['13-Feb-2000';'17-Apr-2002';'17-May-2002';... 
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'13-Jan-2000']);
Maturity  = datenum('1-Jan-2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
CouponRate = [0.075; 0.07875; 0.0775; 0.08125];
Delay = 14;
Speed = 100;

[MYield, BEMBSYield] = mbsyield(Price, Settle, Maturity,... 
IssueDate, GrossRate, CouponRate, Delay,  Speed)

MYield = 4×1

    0.0717
    0.0751
    0.0739
    0.0779

BEMBSYield = 4×1

    0.0728
    0.0763
    0.0750
    0.0791

Input Arguments
Price — Clean price for every $100 face value
vector

Clean price for every $100 face value, specified as an NMBS-by-1 vector.
Data Types: double

Settle — Settlement date
cell array of date character vectors | vector of serial date numbers

Settlement date, specified as an NMBS-by-1 vector using serial date numbers or a cell array of date
character vectors. Settle must be earlier than Maturity.
Data Types: double | char | cell

Maturity — Maturity date
cell array of date character vectors | vector of serial date numbers

Maturity date, specified as an NMBS-by-1 vector using serial date numbers or a cell array of date
character vectors.
Data Types: double | char | cell

IssueDate — Issue date
cell array of date character vectors | vector of serial date numbers

Issue date, specified as an NMBS-by-1 vector using serial date numbers or a cell array of date
character vectors.
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Data Types: double | char | cell

GrossRate — Gross coupon rate (including fees)
vector of decimal values

Gross coupon rate (including fees), specified as an NMBS-by-1 vector of decimal values.
Data Types: double

CouponRate — Net coupon rate
GrossRate (default) | vector of decimal values

(Optional) Net coupon rate, specified as an NMBS-by-1 vector of decimal values.
Data Types: double

Delay — Delay (in days) between payment from homeowner and receipt by bondholder
0 (no delay between payment and receipt) (default) | vector

(Optional) Delay (in days) between payment from homeowner and receipt by bondholder, specified as
an NMBS-by-1 vector.
Data Types: double

PrepaySpeed — Speed relative to PSA standard
0 (no prepayment) (default) | vector

(Optional) Speed relative to PSA standard, specified as an NMBS-by-1 vector. The PSA standard is 100.

Note Set the PrepaySpeed to [] if you input a customized PrepayMatrix.

Data Types: double

PrepayMatrix — Customized prepayment vector
matrix

(Optional) Customized prepayment vector, specified as a NaN-padded matrix of size
max(TermRemaining)-by-NMBS. Each column corresponds to each mortgage-backed security, and
each row corresponds to each month after settlement.

Note Use PrepayMatrix only when PrepaySpeed is unspecified.

Data Types: double

Output Arguments
MYield — Yield to maturity of the mortgage-backed security
vector

Yield to maturity of the mortgage-backed security, returned as a NMBS-by-1 vector. This yield is
compounded monthly (12 times a year).
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BEMBSYield — Bond equivalent yield of the mortgage-backed security
vector

Bond equivalent yield of the mortgage-backed security, returned as a NMBS-by-1 vector. This yield is
compounded semiannually (two times a year).

References
[1] PSA Uniform Practices, SF-49

See Also
mbsprice

Topics
“Generating Prepayment Vectors” on page 5-4
“Mortgage Prepayments” on page 5-5
“Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model” on page 5-
16
“What Are Mortgage-Backed Securities?” on page 5-2

Introduced before R2006a
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mbsyield2oas
Option-adjusted spread given yield

Syntax
OAS = mbsyield2oas(ZeroCurve,Yield,Settle,Maturity,IssueDate,GrossRate)
OAS = mbsyield2oas( ___ ,CouponRate,Delay,Interpolation,PrepaySpeed,
PrepayMatrix)

Description
OAS = mbsyield2oas(ZeroCurve,Yield,Settle,Maturity,IssueDate,GrossRate)
computes option-adjusted spread in basis points.

OAS = mbsyield2oas( ___ ,CouponRate,Delay,Interpolation,PrepaySpeed,
PrepayMatrix) specifies options using one or more optional arguments in addition to the input
arguments in the previous syntax.

Examples

Calculate the Option-Adjusted Spread of a 30-Year Fixed-Rate Mortgage Pool

Calculate the option-adjusted spread of a 30-year, fixed-rate mortgage pool with about 28-year
weighted average maturity left, given assumptions of 0, 50, and 100 PSA prepayments. First, create
the bonds matrix:

Bonds = [datenum('11/21/2002')  0        100  0  2  1;
         datenum('02/20/2003')  0        100  0  2  1;
         datenum('07/31/2004')  0.03     100  2  3  1;
         datenum('08/15/2007')  0.035    100  2  3  1;
         datenum('08/15/2012')  0.04875  100  2  3  1;
         datenum('02/15/2031')  0.05375  100  2  3  1];

Choose a settlement date.

Settle = datenum('20-Aug-2002');

Assume the following clean prices for the bonds:

Prices =  [ 98.97467;
            98.58044;
           100.10534;
            98.18054;
           101.38136;
            99.25411];

Use the following formula to compute spot compounding for the bonds:

SpotCompounding = 2*ones(size(Prices));

Compute the zero curve.
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[ZeroRatesP, CurveDatesP] = zbtprice(Bonds, Prices, Settle);
ZeroCurve = [CurveDatesP, ZeroRatesP, SpotCompounding]

ZeroCurve = 6×3
105 ×

    7.3154    0.0000    0.0000
    7.3163    0.0000    0.0000
    7.3216    0.0000    0.0000
    7.3327    0.0000    0.0000
    7.3510    0.0000    0.0000
    7.4185    0.0000    0.0000

Assign the following parameters:

Price         = 95;
Maturity      = datenum('02-Jan-2030');
IssueDate     = datenum('02-Jan-2000');
GrossRate     = 0.08125;
CouponRate    = 0.075;
Delay         = 14;
Interpolation = 1;
PrepaySpeed   = [0 50 100];

Compute the yield, and from the yield, compute the option-adjusted spread.

[mbsyld, beyld] = mbsyield(Price, Settle, ...
Maturity, IssueDate, GrossRate, CouponRate, Delay, PrepaySpeed);

OAS = mbsyield2oas(ZeroCurve, mbsyld, Settle, ...
Maturity, IssueDate, GrossRate, CouponRate, Delay, ... 
Interpolation, PrepaySpeed)

OAS = 3×1

   26.0508
   28.6355
   31.2232

Input Arguments
ZeroCurve — Zero curve
matrix

Zero curve, specified as a three-column matrix, where:

• Column 1 is serial date numbers.
• Column 2 is spot rates with maturities corresponding to the dates in Column 1, in decimal (for

example, 0.075).
• Column 3 is the compounding value of the rates in Column 2. (This is the agency spot rate on the

settlement date.) Allowable compounding values are: 1 (annual), 2 (semiannual, 3 (three times per
year), 4 (quarterly), 6 (bimonthly), 12 (monthly), and -1 (continuous).

For example:
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[datenum('1-Jan-2003')  0.0154  12;
 datenum('1-Jan-2004')  0.0250  12;
 ......
 datenum('1-Jan-2020')  0.0675   2];
 

Data Types: double | char | cell

Yield — Mortgage yield, compounded monthly
vector in decimals

Mortgage yield, compounded monthly, specified as an NMBS-by-1 vector in decimals.
Data Types: double

Settle — Settlement date
cell array of date character vectors | vector of serial date numbers

Settlement date, specified as an NMBS-by-1 vector using serial date numbers or a cell array of date
character vectors. Settle must be earlier than Maturity.
Data Types: double | char | cell

Maturity — Maturity date
cell array of date character vectors | vector of serial date numbers

Maturity date, specified as an NMBS-by-1 vector using serial date numbers or a cell array of date
character vectors.
Data Types: double | char | cell

IssueDate — Issue date
cell array of date character vectors | vector of serial date numbers

Issue date, specified as an NMBS-by-1 vector using serial date numbers or a cell array of date
character vectors.
Data Types: double | char | cell

GrossRate — Gross coupon rate (including fees)
vector of decimal values

Gross coupon rate (including fees), specified as an NMBS-by-1 vector of decimal values.
Data Types: double

CouponRate — Net coupon rate
GrossRate (default) | vector of decimal values

(Optional) Net coupon rate, specified as an NMBS-by-1 vector of decimal values.
Data Types: double

Delay — Delay (in days) between payment from homeowner and receipt by bondholder
0 (no delay between payment and receipt) (default) | vector

(Optional) Delay (in days) between payment from homeowner and receipt by bondholder, specified as
an NMBS-by-1 vector.
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Data Types: double

Interpolation — Interpolation method to compute the corresponding spot rates for the
bond's cash flow
1 (linear) (default) | vector

(Optional) Interpolation method to compute the corresponding spot rates for the bond's cash flow,
specified as an NMBS-by-1 vector. Available methods are (0) nearest, (1) linear, and (2) cubic spline.
For more information on the supported interpolation methods, see interp1.
Data Types: double

PrepaySpeed — Speed relative to PSA standard
0 (no prepayment) (default) | vector

(Optional) Speed relative to PSA standard, specified as an NMBS-by-1 vector. The PSA standard is 100.

Note Set the PrepaySpeed to [] if you input a customized PrepayMatrix.

Data Types: double

PrepayMatrix — Customized prepayment vector
matrix

(Optional) Customized prepayment vector, specified as a NaN-padded matrix of size
max(TermRemaining)-by-NMBS. Each column corresponds to each mortgage-backed security, and
each row corresponds to each month after settlement.

Note Use PrepayMatrix only when PrepaySpeed is unspecified.

Data Types: double

Output Arguments
OAS — Zero volatility OAS
vector

Zero volatility OAS, in basis point (bp), returned as a NMBS-by-1 vector.

References
[1] PSA Uniform Practices, SF-49

See Also
mbsoas2price | mbsoas2yield | mbsprice2oas

Topics
“Generating Prepayment Vectors” on page 5-4
“Mortgage Prepayments” on page 5-5
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“Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model” on page 5-
16
“What Are Mortgage-Backed Securities?” on page 5-2

Introduced before R2006a
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mbsyield2speed
Implied PSA prepayment speeds given yield

Syntax
[ImpSpdOnPrc,ImpSpdOnDur,ImpSpdOnCnv] = mbsyield2speed(Yield,Settle,Maturity,
IssueDate,GrossRate,PrepayMatrix)
[ImpSpdOnPrc,ImpSpdOnDur,ImpSpdOnCnv] = mbsyield2speed( ___ ,CouponRate,Delay)

Description
[ImpSpdOnPrc,ImpSpdOnDur,ImpSpdOnCnv] = mbsyield2speed(Yield,Settle,Maturity,
IssueDate,GrossRate,PrepayMatrix) computes PSA prepayment speeds implied by pool yields
and projected (user-defined) prepayment vectors. The calculated PSA speed produces the same yield,
modified duration, or modified convexity, depending upon the output requested.

[ImpSpdOnPrc,ImpSpdOnDur,ImpSpdOnCnv] = mbsyield2speed( ___ ,CouponRate,Delay)
specifies options using one or more optional arguments in addition to the input arguments in the
previous syntax.

Examples

Compute PSA Prepayment Speeds

Calculate the equivalent PSA benchmark prepayment speeds for a security with these characteristics
and prepayment matrix.

Yield        = 0.065;
Settle       = datenum('1-Jan-2000');
Maturity     = datenum('1-Jan-2030');
IssueDate    = datenum('1-Jan-2000');
GrossRate    = 0.08125;
PrepayMatrix = 0.005*ones(360,1);
CouponRate   = 0.075;
Delay        = 14;

[ImpSpdOnYld, ImpSpdOnDur, ImpSpdOnCnv] = ... 
mbsyield2speed(Yield, Settle, Maturity, IssueDate, GrossRate, ... 
PrepayMatrix, CouponRate, Delay)

ImpSpdOnYld = 117.7644

ImpSpdOnDur = 116.7436

ImpSpdOnCnv = 108.3309
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Input Arguments
Yield — Mortgage yield, compounded monthly
vector in decimals

Mortgage yield, compounded monthly, specified as an NMBS-by-1 vector in decimals.
Data Types: double

Settle — Settlement date
cell array of date character vectors | vector of serial date numbers

Settlement date, specified as an NMBS-by-1 vector using serial date numbers or a cell array of date
character vectors. Settle must be earlier than Maturity.
Data Types: double | char | cell

Maturity — Maturity date
cell array of date character vectors | vector of serial date numbers

Maturity date, specified as an NMBS-by-1 vector using serial date numbers or a cell array of date
character vectors.
Data Types: double | char | cell

IssueDate — Issue date
cell array of date character vectors | vector of serial date numbers

Issue date, specified as an NMBS-by-1 vector using serial date numbers or a cell array of date
character vectors.
Data Types: double | char | cell

GrossRate — Gross coupon rate (including fees)
vector of decimal values

Gross coupon rate (including fees), specified as an NMBS-by-1 vector of decimal values.
Data Types: double

PrepayMatrix — Customized prepayment vector
matrix

Customized prepayment vector, specified as a NaN-padded matrix of size max(TermRemaining)-by-
NMBS. Each column corresponds to each mortgage-backed security, and each row corresponds to each
month after settlement.

Note Use PrepayMatrix only when PrepaySpeed is unspecified.

Data Types: double

CouponRate — Net coupon rate
GrossRate (default) | vector of decimal values

(Optional) Net coupon rate, specified as an NMBS-by-1 vector of decimal values.
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Data Types: double

Delay — Delay (in days) between payment from homeowner and receipt by bondholder
0 (no delay between payment and receipt) (default) | vector

(Optional) Delay (in days) between payment from homeowner and receipt by bondholder, specified as
an NMBS-by-1 vector.
Data Types: double

Output Arguments
ImpSpdOnPrc — Equivalent PSA benchmark prepayment speed for the pass-through to carry
the same price
vector

Equivalent PSA benchmark prepayment speed for the pass-through to carry the same price, returned
as a NMBS-by-1 vector.

ImpSpdOnDur — Equivalent PSA benchmark prepayment speed for the pass-through to carry
the same modified duration
vector

Equivalent PSA benchmark prepayment speed for the pass-through to carry the same modified
duration, returned as a NMBS-by-1 vector.

ImpSpdOnCnv — Equivalent PSA benchmark prepayment speed for the pass-through to carry
the same modified convexity
vector

Equivalent PSA benchmark prepayment speed for the pass-through to carry the same modified
convexity, returned as a NMBS-by-1 vector.

References
[1] PSA Uniform Practices, SF-49

See Also
mbsyield | mbsprice2speed

Topics
“Generating Prepayment Vectors” on page 5-4
“Mortgage Prepayments” on page 5-5
“Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model” on page 5-
16
“What Are Mortgage-Backed Securities?” on page 5-2

Introduced before R2006a
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psaspeed2default
Benchmark default

Syntax
[ADRPSA,MDRPSA] = psaspeed2default(DefaultSpeed)

Description
[ADRPSA,MDRPSA] = psaspeed2default(DefaultSpeed) computes the benchmark default on
the performing balance of mortgage-backed securities per PSA benchmark speed.

Examples

Compute the Benchmark Default Rates on the Performing Balance of Mortgage-Backed
Securities Per PSA Benchmark Speed

This example shows how to compute the benchmark default rates on the performing balance of
mortgage-backed securities per PSA benchmark speed, given a mortgage-backed security with
annual speed set at the PSA default benchmark.

DefaultSpeed = 100;

[ADRPSA, MDRPSA] = psaspeed2default(DefaultSpeed)

ADRPSA = 360×1

    0.0002
    0.0004
    0.0006
    0.0008
    0.0010
    0.0012
    0.0014
    0.0016
    0.0018
    0.0020
      ⋮

MDRPSA = 360×1
10-3 ×

    0.0167
    0.0333
    0.0500
    0.0667
    0.0834
    0.1001
    0.1167
    0.1334
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    0.1501
    0.1668
      ⋮

Input Arguments
DefaultSpeed — Annual speed relative to the benchmark
vector in decimals

Annual speed relative to the benchmark, specified as an NDEF-by-1 vector. The PSA benchmark is
100.
Data Types: double

Output Arguments
ADRPSA — PSA default rate
vector

PSA default rate, returned as a 360-by-NDEF vector in decimals.

MDRPSA — PSA monthly default rate
vector

PSA monthly default rate, returned as a 360-by-NDEF vector in decimals.

References
[1] PSA Uniform Practices, SF-49

See Also
psaspeed2rate

Topics
“Generating Prepayment Vectors” on page 5-4
“Mortgage Prepayments” on page 5-5
“Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model” on page 5-
16
“What Are Mortgage-Backed Securities?” on page 5-2

Introduced before R2006a
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psaspeed2rate
Single monthly mortality rate given PSA speed

Syntax
[CPRPSA,SMMPSA] = psaspeed2rate(PSASpeed)

Description
[CPRPSA,SMMPSA] = psaspeed2rate(PSASpeed) calculates vectors of PSA prepayments, each
containing 360 prepayment elements, to represent the 360 months in a 30-year mortgage pool.

Examples

Compute the Prepayment and Mortality Rates

This example shows how to compute the prepayment and mortality rates, given a mortgage-backed
security with annual speed set at the PSA default benchmark.

PSASpeed = [100 200];
 
[CPRPSA, SMMPSA]= psaspeed2rate(PSASpeed)

CPRPSA = 360×2

    0.0020    0.0040
    0.0040    0.0080
    0.0060    0.0120
    0.0080    0.0160
    0.0100    0.0200
    0.0120    0.0240
    0.0140    0.0280
    0.0160    0.0320
    0.0180    0.0360
    0.0200    0.0400
      ⋮

SMMPSA = 360×2

    0.0002    0.0003
    0.0003    0.0007
    0.0005    0.0010
    0.0007    0.0013
    0.0008    0.0017
    0.0010    0.0020
    0.0012    0.0024
    0.0013    0.0027
    0.0015    0.0031
    0.0017    0.0034
      ⋮
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% view the plot of the output
psaspeed2rate(PSASpeed)

Input Arguments
PSASpeed — Annual speed relative to the benchmark
vector in decimals

Annual speed relative to the benchmark, specified as any value > 0 using an NSPD-by-1 vector. The
PSA benchmark is 100.
Data Types: double

Output Arguments
CPRPSA — PSA conditional prepayment rate
vector

PSA conditional prepayment rate, returned as a 360-by-NSPD vector in decimals.

SMMPSA — PSA single monthly mortality rate
vector

PSA monthly default rate, returned as a 360-by-NSPD vector in decimals.
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References
[1] PSA Uniform Practices, SF-49

See Also
psaspeed2default

Topics
“Generating Prepayment Vectors” on page 5-4
“Mortgage Prepayments” on page 5-5
“Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model” on page 5-
16
“What Are Mortgage-Backed Securities?” on page 5-2

Introduced before R2006a
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stepcpncfamounts
Cash flow amounts and times for bonds and stepped coupons

Syntax
[CFlows,CDates,CTimes] = stepcpncfamounts(Settle,Maturity,ConvDates,
CouponRates)
[CFlows,CDates,CTimes] = stepcpncfamounts( ___ ,Period,Basis,EndMonthRule,Face)

Description
[CFlows,CDates,CTimes] = stepcpncfamounts(Settle,Maturity,ConvDates,
CouponRates) returns matrices of cash flow amounts, cash flow dates, and time factors for a
portfolio of NUMBONDS stepped-coupon bonds.

[CFlows,CDates,CTimes] = stepcpncfamounts( ___ ,Period,Basis,EndMonthRule,Face)
adds additional optional arguments.

Examples

Generate Stepped Cash Flows for Three Different Bonds

This example generates stepped cash flows for three different bonds, all paying interest semiannually.
The life span of the bonds is about 18–19 years each:

• Bond A has two conversions, but the first one occurs on the settlement date and immediately
expires.

• Bond B has three conversions, with conversion dates exactly on the coupon dates.
• Bond C has three conversions, with some conversion dates not on the coupon dates. It has the

longest maturity. This case illustrates that only cash flows for full periods after conversion dates
are affected, as illustrated here:

The following table illustrates the interest-rate characteristics of this bond portfolio.

Define the bond specifications.
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Settle   = datenum('02-Aug-1992');

ConvDates = [datenum('02-Aug-1992'), datenum('15-Jun-2003'),...
             nan;
            datenum('15-Jun-1997'), datenum('15-Jun-2001'),... 
            datenum('15-Jun-2005');
            datenum('14-Jun-1997'), datenum('14-Jun-2001'),... 
            datenum('14-Jun-2005')];
        
Maturity = [datenum('15-Jun-2010'); 
            datenum('15-Jun-2010'); 
            datenum('15-Jun-2011')];

CouponRates = [0.075 0.08875 0.0925 nan;
               0.075 0.08875 0.0925 0.1;
               0.025 0.05    0.0750 0.1];
Basis = 1;
Period = 2;
EndMonthRule = 1;
Face = 100;

Use stepcpncfamounts to compute cash flows and timings.

[CFlows, CDates, CTimes] = stepcpncfamounts(Settle, Maturity, ConvDates, CouponRates)

CFlows = 3×39

   -1.1639    4.4375    4.4375    4.4375    4.4375    4.4375    4.4375    4.4375    4.4375    4.4375    4.4375    4.4375    4.4375    4.4375    4.4375    4.4375    4.4375    4.4375    4.4375    4.4375    4.4375    4.4375    4.4375    4.6250    4.6250    4.6250    4.6250    4.6250    4.6250    4.6250    4.6250    4.6250    4.6250    4.6250    4.6250    4.6250  104.6250       NaN       NaN
   -0.9836    3.7500    3.7500    3.7500    3.7500    3.7500    3.7500    3.7500    3.7500    3.7500    3.7500    4.4375    4.4375    4.4375    4.4375    4.4375    4.4375    4.4375    4.4375    4.6250    4.6250    4.6250    4.6250    4.6250    4.6250    4.6250    4.6250    5.0000    5.0000    5.0000    5.0000    5.0000    5.0000    5.0000    5.0000    5.0000  105.0000       NaN       NaN
   -0.3279    1.2500    1.2500    1.2500    1.2500    1.2500    1.2500    1.2500    1.2500    1.2500    2.5000    2.5000    2.5000    2.5000    2.5000    2.5000    2.5000    2.5000    3.7500    3.7500    3.7500    3.7500    3.7500    3.7500    3.7500    3.7500    5.0000    5.0000    5.0000    5.0000    5.0000    5.0000    5.0000    5.0000    5.0000    5.0000    5.0000    5.0000  105.0000

CDates = 3×39

      727778      727913      728095      728278      728460      728643      728825      729008      729191      729374      729556      729739      729921      730104      730286      730469      730652      730835      731017      731200      731382      731565      731747      731930      732113      732296      732478      732661      732843      733026      733208      733391      733574      733757      733939      734122      734304         NaN         NaN
      727778      727913      728095      728278      728460      728643      728825      729008      729191      729374      729556      729739      729921      730104      730286      730469      730652      730835      731017      731200      731382      731565      731747      731930      732113      732296      732478      732661      732843      733026      733208      733391      733574      733757      733939      734122      734304         NaN         NaN
      727778      727913      728095      728278      728460      728643      728825      729008      729191      729374      729556      729739      729921      730104      730286      730469      730652      730835      731017      731200      731382      731565      731747      731930      732113      732296      732478      732661      732843      733026      733208      733391      733574      733757      733939      734122      734304      734487      734669

CTimes = 3×39

         0    0.7377    1.7377    2.7377    3.7377    4.7377    5.7377    6.7377    7.7377    8.7377    9.7377   10.7377   11.7377   12.7377   13.7377   14.7377   15.7377   16.7377   17.7377   18.7377   19.7377   20.7377   21.7377   22.7377   23.7377   24.7377   25.7377   26.7377   27.7377   28.7377   29.7377   30.7377   31.7377   32.7377   33.7377   34.7377   35.7377       NaN       NaN
         0    0.7377    1.7377    2.7377    3.7377    4.7377    5.7377    6.7377    7.7377    8.7377    9.7377   10.7377   11.7377   12.7377   13.7377   14.7377   15.7377   16.7377   17.7377   18.7377   19.7377   20.7377   21.7377   22.7377   23.7377   24.7377   25.7377   26.7377   27.7377   28.7377   29.7377   30.7377   31.7377   32.7377   33.7377   34.7377   35.7377       NaN       NaN
         0    0.7377    1.7377    2.7377    3.7377    4.7377    5.7377    6.7377    7.7377    8.7377    9.7377   10.7377   11.7377   12.7377   13.7377   14.7377   15.7377   16.7377   17.7377   18.7377   19.7377   20.7377   21.7377   22.7377   23.7377   24.7377   25.7377   26.7377   27.7377   28.7377   29.7377   30.7377   31.7377   32.7377   33.7377   34.7377   35.7377   36.7377   37.7377

Visualize the third bond's cash flows (2.5 - 5 - 7.5 - 10) using the cfplot function.

cfplot(CDates(3,:),CFlows(3,:));
xlabel('Dates in Serial Number Format')
ylabel('Relative Amounts of Cash Flows')
title('CashFlow of 2.5 - 5 - 7.5 - 10 Stepped Coupon Bond')
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Input Arguments
Settle — Settlement date
serial date number

Settlement date, specified either as a scalar or NSTP-by-1 vector of serial date numbers.

Settle must be earlier than Maturity.
Data Types: double

Maturity — Maturity date
serial date number

Maturity date, specified as a scalar or an NSTP-by-1 vector of serial date numbers representing the
maturity date for each bond.
Data Types: double

ConvDates — Conversion dates
serial date number

Conversion dates, specified as a NSTP-by-max(NCONV) matrix containing conversion dates after
Settle. The size of the matrix is equal to the number of instruments by the maximum number of
conversions. Fill unspecified entries with NaN.
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Data Types: double

CouponRates — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NSTP-by-max(NCONV+1) matrix containing coupon rates for each
bond in the portfolio in decimal form. The matrix size is equal to the number of instruments by
maximum number of conversions + 1. First column of this matrix contains rates applicable between
Settle and the first conversion date (date in the first column of ConvDates). Fill unspecified entries
with NaN

ConvDates has the same number of rows as CouponRates to reflect the same number of bonds.
However, ConvDates has one less column than CouponRates. This situation is illustrated by
Settle---------ConvDate1-----------ConvDate2------------Maturity

        Rate1               Rate2                 Rate3

Data Types: double

Period — Coupons per year
2 per year (default) | vector

(Optional) Coupons per year, specified as an NSTP-by-1 vector. Values for Period are 1, 2, 3, 4, 6,
and 12.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis of each instrument, specified as an NSTP-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double
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EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

(Optional) End-of-month rule flag for generating dates when Maturity is an end-of-month date for a
month having 30 or fewer days, specified for each bond as a nonnegative integer [0, 1] using a NSTP-
by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

Face — Face value
100 (default) | vector of nonnegative values

(Optional) Face value, specified for each bond as an NSTP-by-1 vector of nonnegative face values.
Data Types: double

Output Arguments
CFlows — Cash flow amounts
vector

Cash flow amounts, returned as a vector where the first entry in each row vector is the (negative)
accrued interest due at settlement. If no accrued interest is due, the first column is zero.

CDates — Cash flow dates
vector

Cash flow dates, returned as vector in serial date number form. At least two columns are always
present: one for settlement and one for maturity.

CTimes — Time factor
vector

Time factor for the SIA semiannual price/yield conversion, returned as a vector. The SIA semi-annual
price/yield conversion is DiscountFactor = (1 + Yield/2).^(-TFactor). Time factors are in
units of semiannual coupon periods. For ISMA conventions: DiscountFactor = (1 +
Yield).^(-TFactor). Time factors are in units of annual coupon periods. In computing time
factors, use SIA actual/actual conventions for all time factor calculations.

Note For bonds with fixed coupons, use cfamounts. If you use a fixed-coupon bond with
stepcpncfamounts, MATLAB software generates an error.

See Also
stepcpnprice | stepcpnyield | cfplot

Topics
“Cash Flows from Stepped-Coupon Bonds” on page 6-8
“Price and Yield of Stepped-Coupon Bonds” on page 6-9
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“Managing Present Value with Bond Futures” on page 7-14

Introduced before R2006a
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stepcpnprice
Price bond with stepped coupons

Syntax
[Price,AccruedInterest] = stepcpnprice(Yield,Settle,Maturity,ConvDates,
CouponRates)
[Price,AccruedInterest] = stepcpnprice( ___ ,Period,Basis,EndMonthRule,Face)

Description
[Price,AccruedInterest] = stepcpnprice(Yield,Settle,Maturity,ConvDates,
CouponRates) computes the price of bonds with stepped coupons given the yield to maturity. The
function supports any number of conversion dates.

[Price,AccruedInterest] = stepcpnprice( ___ ,Period,Basis,EndMonthRule,Face)
adds additional optional arguments.

Examples

Compute Bond Prices with Stepped Coupons

Compute the price and accrued interest due on a portfolio of stepped-coupon bonds having a yield of
7.221%, given three conversion scenarios:

• Bond A has two conversions, the first one falling on the settle date and immediately expiring.
• Bond B has three conversions, with conversion dates exactly on the coupon dates.
• Bond C has three conversions, with one or more conversion dates not on coupon dates. This case

illustrates that only cash flows for full periods after conversion dates are affected, as illustrated
below:

The following table illustrates the interest-rate characteristics of this bond portfolio.

Define the specifications for the bonds.

Yield = 0.07221;
Settle   = datenum('02-Aug-1992');
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ConvDates = [datenum('02-Aug-1992'), datenum('15-Jun-2003'),... 
             nan;
            datenum('15-Jun-1997'), datenum('15-Jun-2001'),... 
            datenum('15-Jun-2005');
            datenum('14-Jun-1997'), datenum('14-Jun-2001'),... 
            datenum('14-Jun-2005')];
Maturity = datenum('15-Jun-2010');

CouponRates = [0.075 0.08875 0.0925 nan;
               0.075 0.08875 0.0925 0.1;
               0.075 0.08875 0.0925 0.1];
Basis = 1;
Period = 2;
EndMonthRule = 1;
Face = 100;

Use stepcpnprice to compute the bond prices with stepped coupons.

[Price, AccruedInterest] = stepcpnprice(Yield, Settle, Maturity, ConvDates, CouponRates, Period, Basis, EndMonthRule, Face)

Price = 3×1

  117.3874
  113.4387
  114.1759

AccruedInterest = 3×1

    1.1587
    0.9792
    0.9792

Input Arguments
Yield — Yield to maturity
numeric

Yield to maturity, specified as a scalar or NUMBONDS-by-1 vector of numeric values.
Data Types: double

Settle — Settlement date
serial date number

Settlement date, specified either as a scalar or NUMBONDS-by-1 vector of serial date numbers.

Settle must be earlier than Maturity.
Data Types: double

Maturity — Maturity date
serial date number

Maturity date, specified as a scalar or an NUMBONDS-by-1 vector of serial date numbers representing
the maturity date for each bond.
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Data Types: double

ConvDates — Conversion dates
serial date number

Conversion dates, specified as a NSTP-by-max(NCONV) matrix containing conversion dates after
Settle. The size of the matrix is equal to the number of instruments by the maximum number of
conversions. Fill unspecified entries with NaN.
Data Types: double

CouponRates — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NSTP-by-max(NCONV+1) matrix containing coupon rates for each
bond in the portfolio in decimal form. The matrix size is equal to the number of instruments by
maximum number of conversions + 1. First column of this matrix contains rates applicable between
Settle and the first conversion date (date in the first column of ConvDates). Fill unspecified entries
with NaN

ConvDates has the same number of rows as CouponRates to reflect the same number of bonds.
However, ConvDates has one less column than CouponRates. This situation is illustrated by
Settle---------ConvDate1-----------ConvDate2------------Maturity

        Rate1               Rate2                 Rate3

Data Types: double

Period — Coupons per year
2 per year (default) | vector

(Optional) Coupons per year, specified as an NUMBONDS-by-1 vector. Values for Period are 1, 2, 3, 4,
6, and 12.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis of each instrument, specified as an NUMBONDS-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
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• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

(Optional) End-of-month rule flag for generating dates when Maturity is an end-of-month date for a
month having 30 or fewer days, specified for each bond as a nonnegative integer [0, 1] using a
NUMBONDS-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

Face — Face value
100 (default) | vector of nonnegative values

(Optional) Face value, specified for each bond as an NUMBONDS-by-1 vector of nonnegative face
values.
Data Types: double

Output Arguments
Price — Clean price
vector

Clean price, returned as a NUMBONDS-by-1 vector.

Note For bonds with fixed coupons, use bndprice. If you use a fixed-coupon bond with
stepcpnprice, you receive the error: incorrect number of inputs.

AccruedInterest — Accrued interest payable at settlement dates
vector

accrued interest payable at settlement dates, returned as a NUMBONDS-by-1 vector.

See Also
stepcpnyield | tbillprice | stepcpncfamounts | cdprice | bndprice

Topics
“Cash Flows from Stepped-Coupon Bonds” on page 6-8
“Price and Yield of Stepped-Coupon Bonds” on page 6-9
“Managing Present Value with Bond Futures” on page 7-14
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Introduced before R2006a
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stepcpnyield
Yield to maturity of bond with stepped coupons

Syntax
Yield = stepcpnyield(Price,Settle,Maturity,ConvDates,CouponRates)
Yield = stepcpnyield( ___ ,Period,Basis,EndMonthRule,Face)

Description
Yield = stepcpnyield(Price,Settle,Maturity,ConvDates,CouponRates) computes the
yield to maturity of bonds with stepped coupons given the price. The function supports any number of
conversion dates.

Yield = stepcpnyield( ___ ,Period,Basis,EndMonthRule,Face) adds additional optional
arguments.

Examples

Compute Yield to Maturity for Bonds with Stepped Coupons

Find the yield to maturity of three stepped-coupon bonds of known price, given three conversion
scenarios:

• Bond A has two conversions, the first one falling on the settle date and immediately expiring.
• Bond B has three conversions, with conversion dates exactly on the coupon dates.
• Bond C has three conversions, with one or more conversion dates not on coupon dates. This case

illustrates that only cash flows for full periods after conversion dates are affected, as illustrated
below.

The following table illustrates the interest-rate characteristics of this bond portfolio.

Define the specifications for the bonds.

format long
Price = [117.3824; 113.4339; 113.4339];
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Settle = datenum('02-Aug-1992');

ConvDates = [datenum('02-Aug-1992'), datenum('15-Jun-2003'), nan;
datenum('15-Jun-1997'), datenum('15-Jun-2001'), datenum('15-Jun-2005'); 
datenum('14-Jun-1997'), datenum('14-Jun-2001'), datenum('14-Jun-2005')];
        
Maturity = datenum('15-Jun-2010');

CouponRates = [0.075 0.08875 0.0925 nan;
               0.075 0.08875 0.0925 0.1;
               0.075 0.08875 0.0925 0.1];
Basis = 1;
Period = 2;
EndMonthRule = 1;
Face = 100;

Use stepcpnyield to compute the yield to maturity for the bonds with stepped coupons.

Yield = stepcpnyield(Price, Settle, Maturity, ConvDates, CouponRates, Period, Basis, EndMonthRule, Face)

Yield = 3×1

   0.072214402049150
   0.072214267800360
   0.072864799557221

Input Arguments
Price — Price of bond
numeric

Price of bond, specified as a scalar or NUMBONDS-by-1 vector of numeric values.
Data Types: double

Settle — Settlement date
serial date number

Settlement date, specified either as a scalar or NUMBONDS-by-1 vector of serial date numbers.

Settle must be earlier than Maturity.
Data Types: double

Maturity — Maturity date
serial date number

Maturity date, specified as a scalar or an NUMBONDS-by-1 vector of serial date numbers representing
the maturity date for each bond.
Data Types: double

ConvDates — Conversion dates
serial date number
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Conversion dates, specified as a NSTP-by-max(NCONV) matrix containing conversion dates after
Settle. The size of the matrix is equal to the number of instruments by the maximum number of
conversions. Fill unspecified entries with NaN.
Data Types: double

CouponRates — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NSTP-by-max(NCONV+1) matrix containing coupon rates for each
bond in the portfolio in decimal form. The matrix size is equal to the number of instruments by
maximum number of conversions + 1. First column of this matrix contains rates applicable between
Settle and the first conversion date (date in the first column of ConvDates). Fill unspecified entries
with NaN

ConvDates has the same number of rows as CouponRates to reflect the same number of bonds.
However, ConvDates has one less column than CouponRates. This situation is illustrated by
Settle---------ConvDate1-----------ConvDate2------------Maturity

         Rate1               Rate2                 Rate3

Data Types: double

Period — Coupons per year
2 per year (default) | vector

(Optional) Coupons per year, specified as an NUMBONDS-by-1 vector. Values for Period are 1, 2, 3, 4,
6, and 12.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis of each instrument, specified as an NUMBONDS-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
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Data Types: double

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

(Optional) End-of-month rule flag for generating dates when Maturity is an end-of-month date for a
month having 30 or fewer days, specified for each bond as a nonnegative integer [0, 1] using a
NUMBONDS-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

Face — Face value
100 (default) | vector of nonnegative values

(Optional) Face value, specified for each bond as an NUMBONDS-by-1 vector of nonnegative face
values.
Data Types: double

Output Arguments
Yield — Yield to maturity
vector

Yield to maturity, returned as a NUMBONDS-by-1 vector in decimal form.

Note For bonds with fixed coupons, use bndyield. You receive the error incorrect number of
inputs if you use a fixed-coupon bond with stepcpnyield.

See Also
stepcpnprice | bndprice | cdprice | stepcpncfamounts | stepcpnprice | tbillprice |
zeroprice

Topics
“Cash Flows from Stepped-Coupon Bonds” on page 6-8
“Price and Yield of Stepped-Coupon Bonds” on page 6-9
“Managing Present Value with Bond Futures” on page 7-14

Introduced before R2006a
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tfutbyprice
Future prices of Treasury bonds given spot price

Syntax
[QtdFutPrice,AccrInt] = tfutbyprice(SpotCurve,Price,SettleFut,MatFut,
ConvFactor,CouponRate,Maturity)
[QtdFutPrice,AccrInt] = tfutbyprice( ___ ,Interpolation)

Description
[QtdFutPrice,AccrInt] = tfutbyprice(SpotCurve,Price,SettleFut,MatFut,
ConvFactor,CouponRate,Maturity) computes future prices of Treasury notes and bonds given
the spot price.

In addition, you can use the Financial Instruments Toolbox method getZeroRates for an
IRDataCurve object with a Dates property to create a vector of dates and data acceptable for
tfutbyprice. For more information, see “Converting an IRDataCurve or IRFunctionCurve Object”
on page 9-30.

[QtdFutPrice,AccrInt] = tfutbyprice( ___ ,Interpolation) specifies options using one or
more optional arguments in addition to the input arguments in the previous syntax.

Examples

Determine the Future Prices of Treasury Bonds Given the Spot Price

This example shows how to determine the future price of two Treasury bonds based upon a spot rate
curve constructed from data for November 14, 2002.

% construct spot curve from Nov 14, data
Bonds = [datenum('02/13/2003'),        0;
         datenum('05/15/2003'),        0;
         datenum('10/31/2004'),  0.02125;
         datenum('11/15/2007'),     0.03;
         datenum('11/15/2012'),     0.04;
         datenum('02/15/2031'),  0.05375];

Yields  = [1.20; 1.25; 1.86; 2.99; 4.02; 4.93]/100;     

Settle = datenum('11/15/2002');                  

[ZeroRates, CurveDates] = ...
zbtyield(Bonds, Yields, Settle);

SpotCurve  = [CurveDates, ZeroRates];

% calculate a particular bond's future quoted price
RefDate    = [datenum('1-Dec-2002'); datenum('1-Mar-2003')];
MatFut     = [datenum('15-Dec-2002'); datenum('15-Mar-2003')];
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Maturity   = [datenum('15-Aug-2009');datenum('15-Aug-2010')];
CouponRate = [0.06;0.0575];
ConvFactor = convfactor(RefDate, Maturity, CouponRate);
Price = [114.416; 113.171];
Interpolation = 1;

[QtdFutPrice, AccrInt] = tfutbyprice(SpotCurve, Price, Settle, ...
MatFut, ConvFactor, CouponRate, Maturity, Interpolation)

QtdFutPrice = 2×1

  114.0409
  113.4029

AccrInt = 2×1

    1.9891
    0.4448

Input Arguments
SpotCurve — Treasury spot curve
matrix

Treasury spot curve, specified as a number of futures using one of the following forms:

• NFUT-by-2 matrix in the form of [SpotDates SpotRates] and these spot rates must be quoted
as semiannual compounding (2) when the third column is not supplied.

• NFUT-by-3 matrix in the form of [SpotDates SpotRates Compounding], where allowed
Compounding values for the third column are −1, 1, 2 (default), 3, 4, and 12, where −1 is
continuous compounding.

Data Types: double

Price — Prices of Treasury bonds or notes per $100 notional at settlement date
scalar numeric | vector

Prices of Treasury bonds or notes per $100 notional at settlement date, specified as a scalar numeric
or an NINST-by-1 vector. Use bndprice for theoretical value of bond.
Data Types: double

SettleFut — Settlement date of futures contract
serial date number | date character vector

Settlement date of futures contract, specified as a scalar or an NINST-by-1 vector of serial date
numbers or date character vectors.
Data Types: double | char | cell

MatFut — Maturity dates (or anticipated delivery dates) of futures contract
serial date number | date character vector
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Maturity dates (or anticipated delivery dates) of futures contract, specified as a scalar or an NINST-
by-1 vector of serial date numbers or date character vectors.
Data Types: double | char | cell

ConvFactor — Conversion factor
numeric

Conversion factor, specified using convfactor.
Data Types: double | char | cell

CouponRate — Underlying bond annual coupon
scalar numeric in decimal | vector in decimals

Underlying bond annual coupon, specified as a scalar numeric decimal or an NINST-by-1 vector of
decimals.
Data Types: double

Maturity — Underlying bond maturity date
serial date number | date character vector

Underlying bond maturity date, specified as a scalar or an NINST-by-1 vector of serial date numbers
or date character vectors.
Data Types: double | char | cell

Interpolation — Interpolation method to compute the corresponding spot rates for the
bond's cash flow
1 (linear) (default) | vector

(Optional) Interpolation method to compute the corresponding spot rates for the bond's cash flow,
specified as an NMBS-by-1 vector. Available methods are (0) nearest, (1) linear, and (2) cubic spline.
For more information on the supported interpolation methods, see interp1.
Data Types: double

Output Arguments
QtdFutPrice — Quoted futures price, per $100 notional
vector

Quoted futures price, per $100 notional, returned as a NINST-by-1 vector.

AccrInt — Accrued Interest due at delivery date, per $100 notional
vector

Accrued Interest due at delivery date, per $100 notional, returned as a NINST-by-1 vector.

See Also
convfactor | tfutbyyield

Topics
“Computing Treasury Bill Price and Yield”
“Treasury Bills Defined”
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Introduced before R2006a
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tfutbyyield
Future prices of Treasury bonds given current yield

Syntax
[QtdFutPrice,AccrInt] = tfutbyyield(SpotCurve,Yield,SettleFut,MatFut,
ConvFactor,CouponRate,Maturity)
[QtdFutPrice,AccrInt] = tfutbyyield( ___ ,Interpolation)

Description
[QtdFutPrice,AccrInt] = tfutbyyield(SpotCurve,Yield,SettleFut,MatFut,
ConvFactor,CouponRate,Maturity) computes prices of Treasury bond futures given a spot curve
and bond yields at settlement.

In addition, you can use the Financial Instruments Toolbox method getZeroRates for an
IRDataCurve object with a Dates property to create a vector of dates and data acceptable for
tfutbyyield. For more information, see “Converting an IRDataCurve or IRFunctionCurve Object”
on page 9-30.

[QtdFutPrice,AccrInt] = tfutbyyield( ___ ,Interpolation) specifies options using one or
more optional arguments in addition to the input arguments in the previous syntax.

Examples

Determine Future Prices of Treasury Bonds Given the Current Yield

This example shows how to determine the future price of two Treasury bonds based upon a spot rate
curve constructed from data for November 14, 2002.

% construct spot curve from Nov 14, data
Bonds = [datenum('02/13/2003'),        0;
         datenum('05/15/2003'),        0;
         datenum('10/31/2004'),  0.02125;
         datenum('11/15/2007'),     0.03;
         datenum('11/15/2012'),     0.04;
         datenum('02/15/2031'),  0.05375];

Yields  = [1.20; 1.25; 1.86; 2.99; 4.02; 4.93]/100;

Settle = datenum('11/15/2002');

[ZeroRates, CurveDates] = ...
zbtyield(Bonds, Yields, Settle);

SpotCurve  = [CurveDates, ZeroRates];

% calculate a particular bond's future quoted price
RefDate    = [datenum('1-Dec-2002'); datenum('1-Mar-2003')];
MatFut     = [datenum('15-Dec-2002'); datenum('15-Mar-2003')];
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Maturity   = [datenum('15-Aug-2009');datenum('15-Aug-2010')];
CouponRate = [0.06;0.0575];
ConvFactor = convfactor(RefDate, Maturity, CouponRate);
Yield = [0.03576; 0.03773];
Interpolation = 1;

[QtdFutPrice, AccrInt] = tfutbyyield(SpotCurve, Yield, Settle, ...
MatFut, ConvFactor, CouponRate, Maturity, Interpolation)

QtdFutPrice = 2×1

  114.0416
  113.4034

AccrInt = 2×1

    1.9891
    0.4448

Input Arguments
SpotCurve — Treasury spot curve
matrix

Treasury spot curve, specified as a number of futures using one of the following forms:

• NFUT-by-2 matrix in the form of [SpotDates SpotRates] and these spot rates must be quoted
as semiannual compounding (2) when the third column is not supplied.

• NFUT-by-3 matrix in the form of [SpotDates SpotRates Compounding], where allowed
Compounding values for the third column are −1, 1, 2 (default), 3, 4, and 12, where −1 is
continuous compounding.

Data Types: double

Yield — Yield to maturities at settlement date
scalar numeric | vector

Yield to maturities at settlement date, specified as a scalar numeric or an NINST-by-1 vector. Use
bndyield for theoretical value of bond yield.
Data Types: double

SettleFut — Settlement date of futures contract
serial date number | date character vector

Settlement date of futures contract, specified as a scalar or an NINST-by-1 vector of serial date
numbers or date character vectors.
Data Types: double | char | cell

MatFut — Maturity dates (or anticipated delivery dates) of futures contract
serial date number | date character vector
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Maturity dates (or anticipated delivery dates) of futures contract, specified as a scalar or an NINST-
by-1 vector of serial date numbers or date character vectors.
Data Types: double | char | cell

ConvFactor — Conversion factor
numeric

Conversion factor, specified using convfactor.
Data Types: double | char | cell

CouponRate — Underlying bond annual coupon
scalar numeric in decimal | vector in decimals

Underlying bond annual coupon, specified as a scalar numeric decimal or an NINST-by-1 vector of
decimals.
Data Types: double

Maturity — Underlying bond maturity date
serial date number | date character vector

Underlying bond maturity date, specified as a scalar or an NINST-by-1 vector of serial date numbers
or date character vectors.
Data Types: double | char | cell

Interpolation — Interpolation method to compute the corresponding spot rates for the
bond's cash flow
1 (linear) (default) | vector

(Optional) Interpolation method to compute the corresponding spot rates for the bond's cash flow,
specified as an NMBS-by-1 vector. Available methods are (0) nearest, (1) linear, and (2) cubic spline.
For more information on the supported interpolation methods, see interp1.
Data Types: double

Output Arguments
QtdFutPrice — Quoted futures price, per $100 notional
vector

Quoted futures price, per $100 notional, returned as a NINST-by-1 vector.

AccrInt — Accrued Interest due at delivery date, per $100 notional
vector

Accrued Interest due at delivery date, per $100 notional, returned as a NINST-by-1 vector.

See Also
convfactor | tfutbyprice

Topics
“Computing Treasury Bill Price and Yield”
“Treasury Bills Defined”
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Introduced before R2006a
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tfutimprepo
Implied repo rates for Treasury bond future given price

Syntax
ImpliedRepo = tfutimprepo(ReinvestData,Price,QtdFutPrice,Settle,MatFut,
ConvFactor,CouponRate,Maturity)

Description
ImpliedRepo = tfutimprepo(ReinvestData,Price,QtdFutPrice,Settle,MatFut,
ConvFactor,CouponRate,Maturity) computes the implied repo rate that prevents arbitrage of
Treasury bond futures, given the clean price at the settlement and delivery dates.

Examples

Compute the Implied Repo Rates for Treasury Bond Futures Given the Price

This example shows how to compute the implied repo rate given the following set of data.

ReinvestData = [0.018  3];
Price = [114.4160; 113.1710];
QtdFutPrice = [114.1201; 113.7090];
Settle = datenum('11/15/2002'); 
MatFut = [datenum('15-Dec-2002'); datenum('15-Mar-2003')];
ConvFactor = [1; 0.9854];
CouponRate = [0.06; 0.0575];
Maturity = [datenum('15-Aug-2009'); datenum('15-Aug-2010')];
 
ImpliedRepo = tfutimprepo(ReinvestData, Price, QtdFutPrice, ...
Settle, MatFut, ConvFactor, CouponRate, Maturity)

ImpliedRepo = 2×1

    0.0200
    0.0200

Input Arguments
ReinvestData — Reinvestment of intervening coupons
matrix

Reinvestment of intervening coupons, specified as a number of futures NFUT-by-2 matrix of rates and
bases in the form of [ReinvestRate ReinvestBasis].

ReinvestRate is the simple reinvestment rate, in decimal. Specify ReinvestBasis as 0 = not
reinvested, 2 = actual/360, or 3 = actual/365.
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Data Types: double

Price — Current bond price per $100 notional
scalar numeric | vector

Current bond price per $100 notional, specified as a scalar numeric or an NINST-by-1 vector.
Data Types: double

QtdFutPrice — Quoted bond futures price per $100 notional
scalar numeric | vector

Quoted bond futures price per $100 notional, specified as a scalar numeric or an NINST-by-1 vector.
Data Types: double

Settle — Settlement/valuation date of futures contract
serial date number | date character vector

Settlement/valuation date of futures contract, specified as a scalar or an NINST-by-1 vector of serial
date numbers or date character vectors.
Data Types: double | char | cell

MatFut — Maturity dates (or anticipated delivery dates) of futures contract
serial date number | date character vector

Maturity dates (or anticipated delivery dates) of futures contract, specified as a scalar or an NINST-
by-1 vector of serial date numbers or date character vectors.
Data Types: double | char | cell

ConvFactor — Conversion factor
numeric

Conversion factor, specified using convfactor.
Data Types: double | char | cell

CouponRate — Underlying bond annual coupon
scalar numeric in decimal | vector in decimals

Underlying bond annual coupon, specified as a scalar numeric decimal or an NINST-by-1 vector of
decimals.
Data Types: double

Maturity — Underlying bond maturity date
serial date number | date character vector

Underlying bond maturity date, specified as a scalar or an NINST-by-1 vector of serial date numbers
or date character vectors.
Data Types: double | char | cell

 tfutimprepo

11-2077



Output Arguments
ImpliedRepo — Implied annual repo rate with an actual/360 basis
vector in decimals

Implied annual repo rate (in decimals) with an actual/360 basis, returned as a NINST-by-1 vector.

See Also
tfutpricebyrepo | tfutyieldbyrepo

Topics
“Computing Treasury Bill Price and Yield”
“Treasury Bills Defined”

Introduced before R2006a
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tfutpricebyrepo
Calculates Treasury bond futures price given the implied repo rates

Syntax
[QtdFutPrice,AccrInt] = tfutpricebyrepo(RepoData,ReinvestData,Price,Settle,
MatFut,ConvFactor,CouponRate,Maturity)

Description
[QtdFutPrice,AccrInt] = tfutpricebyrepo(RepoData,ReinvestData,Price,Settle,
MatFut,ConvFactor,CouponRate,Maturity) computes the theoretical futures bond price given
the settlement price, the repo/funding rates, and the reinvestment rate.

Examples

Compute Treasury Bond Futures Price Given the Implied Repo Rates

This example shows how to compute the quoted futures price and accrued interest due on the target
delivery date, given the following data.

RepoData     = [0.020  2];
ReinvestData = [0.018  3];
Price        = [114.416; 113.171];
Settle       = datenum('11/15/2002'); 
MatFut       = [datenum('15-Dec-2002'); datenum('15-Mar-2003')];
ConvFactor   = [1 ; 0.9854];
CouponRate   = [0.06;0.0575];
Maturity     = [datenum('15-Aug-2009'); datenum('15-Aug-2010')];
 
[QtdFutPrice AccrInt] = tfutpricebyrepo(RepoData, ... 
ReinvestData, Price, Settle, MatFut, ConvFactor, CouponRate, ... 
Maturity)

QtdFutPrice = 2×1

  114.1201
  113.7090

AccrInt = 2×1

    1.9891
    0.4448

Input Arguments
RepoData — Simple term repo/funding rates
matrix
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Simple term repo/funding rates, specified as a number of futures NFUT-by-2 matrix of rates in decimal
and their bases in the form of [RepoRate RepoBasis].

Specify RepoBasis as 2 = actual/360 or 3 = actual/365.
Data Types: double

ReinvestData — Reinvestment of intervening coupons
matrix

Reinvestment of intervening coupons, specified as a number of futures NFUT-by-2 matrix of rates and
bases in the form of [ReinvestRate ReinvestBasis].

ReinvestRate is the simple reinvestment rate, in decimal. Specify ReinvestBasis as 0 = not
reinvested, 2 = actual/360, or 3 = actual/365.
Data Types: double

Price — Current bond price per $100 notional
scalar numeric | vector

Current bond price per $100 notional, specified as a scalar numeric or an NINST-by-1 vector.
Data Types: double

Settle — Settlement/valuation date of futures contract
serial date number | date character vector

Settlement/valuation date of futures contract, specified as a scalar or an NINST-by-1 vector of serial
date numbers or date character vectors.
Data Types: double | char | cell

MatFut — Maturity dates (or anticipated delivery dates) of futures contract
serial date number | date character vector

Maturity dates (or anticipated delivery dates) of futures contract, specified as a scalar or an NINST-
by-1 vector of serial date numbers or date character vectors.
Data Types: double | char | cell

ConvFactor — Conversion factor
numeric

Conversion factor, specified using convfactor.
Data Types: double | char | cell

CouponRate — Underlying bond annual coupon
scalar numeric in decimal | vector in decimals

Underlying bond annual coupon, specified as a scalar numeric decimal or an NINST-by-1 vector of
decimals.
Data Types: double

Maturity — Underlying bond maturity date
serial date number | date character vector
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Underlying bond maturity date, specified as a scalar or an NINST-by-1 vector of serial date numbers
or date character vectors.
Data Types: double | char | cell

Output Arguments
QtdFutPrice — Quoted futures price, per $100 notional
vector

Quoted futures price, per $100 notional, returned as a NINST-by-1 vector.

AccrInt — Accrued Interest due at delivery date, per $100 notional
vector

Accrued Interest due at delivery date, per $100 notional, returned as a NINST-by-1 vector.

See Also
tfutimprepo | tfutyieldbyrepo

Topics
“Computing Treasury Bill Price and Yield”
“Treasury Bills Defined”

Introduced before R2006a
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tfutyieldbyrepo
Calculates Treasury bond futures yield given the implied repo rates

Syntax
FwdYield = tfutyieldbyrepo(RepoData,ReinvestData,Yield,Settle,MatFut,
ConvFactor,CouponRate,Maturity)

Description
FwdYield = tfutyieldbyrepo(RepoData,ReinvestData,Yield,Settle,MatFut,
ConvFactor,CouponRate,Maturity) computes the theoretical futures bond yield given the
settlement yield, the repo/funding rate, and the reinvestment rate.

Examples

Compute the Treasury Bond Futures Yield Given the Implied Repo Rates

This example shows how to compute the quoted futures bond yield, given the following data.

RepoData     = [0.020  2];
ReinvestData = [0.018  3];
Yield        = [0.0215; 0.0257];
Settle       = datenum('11/15/2002'); 
MatFut       = [datenum('15-Dec-2002'); datenum('15-Mar-2003')];
ConvFactor   = [1; 0.9854];
CouponRate   = [0.06; 0.0575];
Maturity     = [datenum('15-Aug-2009'); datenum('15-Aug-2010')];
 
FwdYield = tfutyieldbyrepo(RepoData, ReinvestData, Yield,... 
    Settle, MatFut, ConvFactor, CouponRate, Maturity)

FwdYield = 2×1

    0.0221
    0.0282

Input Arguments
RepoData — Simple term repo/funding rates
matrix

Simple term repo/funding rates, specified as a number of futures NFUT-by-2 matrix of rates in decimal
and their bases in the form of [RepoRate RepoBasis].

Specify RepoBasis as 2 = actual/360 or 3 = actual/365.
Data Types: double
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ReinvestData — Reinvestment of intervening coupons
matrix

Reinvestment of intervening coupons, specified as a number of futures NFUT-by-2 matrix of rates and
bases in the form of [ReinvestRate ReinvestBasis].

ReinvestRate is the simple reinvestment rate, in decimal. Specify ReinvestBasis as 0 = not
reinvested, 2 = actual/360, or 3 = actual/365.
Data Types: double

Yield — Yield to maturity of Treasury bonds per $100 notional at Settle
scalar numeric | vector

Yield to maturity of Treasury bonds per $100 notional at Settle, specified as a scalar numeric or an
NINST-by-1 vector.
Data Types: double

Settle — Settlement/valuation date of futures contract
serial date number | date character vector

Settlement/valuation date of futures contract, specified as a scalar or an NINST-by-1 vector of serial
date numbers or date character vectors.
Data Types: double | char | cell

MatFut — Maturity dates (or anticipated delivery dates) of futures contract
serial date number | date character vector

Maturity dates (or anticipated delivery dates) of futures contract, specified as a scalar or an NINST-
by-1 vector of serial date numbers or date character vectors.
Data Types: double | char | cell

ConvFactor — Conversion factor
numeric

Conversion factor, specified using convfactor.
Data Types: double | char | cell

CouponRate — Underlying bond annual coupon
scalar numeric in decimal | vector in decimals

Underlying bond annual coupon, specified as a scalar numeric decimal or an NINST-by-1 vector of
decimals.
Data Types: double

Maturity — Underlying bond maturity date
serial date number | date character vector

Underlying bond maturity date, specified as a scalar or an NINST-by-1 vector of serial date numbers
or date character vectors.
Data Types: double | char | cell
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Output Arguments
FwdYield — Forward yield to maturity compounded semiannually
vector in decimals

Forward yield to maturity, in decimals, compounded semiannually, returned as a NINST-by-1 vector.

See Also
tfutimprepo | tfutpricebyrepo

Topics
“Computing Treasury Bill Price and Yield”
“Treasury Bills Defined”

Introduced before R2006a
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toRateSpec
Convert IRDataCurve object to RateSpec

Syntax
F = toRateSpec(CurveObj,InpDates)

Description
F = toRateSpec(CurveObj,InpDates) computes RateSpec object for input dates for an
IRDataCurve object. The RateSpec object that is identical to the RateSpec structure created by
the function intenvset.

Examples

Convert an IRDataCurve Object to a RateSpec

This example shows how to convert an IRDataCurve object to a RateSpec. First, an IRDataCurve
object is created using the function IRDataCurve constructor with Dates and Data, then this object
is converted to a RateSpec structure using the toRateSpec method.

CurveSettle = datenum('2-Mar-2016');
Data = [2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;
Dates = datemnth(CurveSettle,12*[1 2 3 5 7 10 20 30]);
irdc = IRDataCurve('Forward',CurveSettle,Dates,Data);
toRateSpec(irdc, CurveSettle+30:30:CurveSettle+365)

ans = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 2
             Disc: [12x1 double]
            Rates: [12x1 double]
         EndTimes: [12x1 double]
       StartTimes: [12x1 double]
         EndDates: [12x1 double]
       StartDates: 736391
    ValuationDate: 736391
            Basis: 0
     EndMonthRule: 1

Input Arguments
CurveObj — Interest-rate curve object
object

Interest-rate curve object, specified by using IRDataCurve.
Data Types: object
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InpDates — Input dates
vector

Input dates, specified using MATLAB date format. The input dates must be after the Settle date of
IRDataCurve.
Data Types: double

Output Arguments
F — Rate spec
object

Rate spec, returned as an object. The RateSpec object that is identical to the RateSpec structure
created by the function intenvset.

Alternatively, you can convert the RateSpec object to a ratecurve object (see “Convert RateSpec to
a ratecurve Object” on page 1-49) and then use the Financial Instruments Toolbox object-based
framework for pricing instruments.

See Also
ratecurve | IRDataCurve | getForwardRates | getZeroRates | getDiscountFactors |
getParYields

Topics
“Creating Interest-Rate Curve Objects” on page 9-4
“Creating an IRDataCurve Object” on page 9-6
“Using the toRateSpec Function” on page 9-30
“Interest-Rate Curve Objects and Workflow” on page 9-2
“Convert RateSpec to a ratecurve Object” on page 1-49
“Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework” on page 1-93

Introduced in R2008b
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toRateSpec
Convert IRFunctionCurve object to RateSpec

Syntax
F = toRateSpec(CurveObj,InpDates)

Description
F = toRateSpec(CurveObj,InpDates) computes RateSpec object for input dates for an
IRFunctionCurve object. The RateSpec object that is identical to the RateSpec structure created
by the function intenvset.

Examples

Convert an IRFunctionCurve Object to a RateSpec

This example shows how to convert an IRFunctionCurve object to a RateSpec. First, an
IRFunctionCurve object is created using the function IRFunctionCurve constructor, then a
RateSpec structure is created using the toRateSpec method.

irfc = IRFunctionCurve('Forward',today,@(t) polyval([-0.0001 0.003 0.02],t));
toRateSpec(irfc, today+30:30:today+365)

ans = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 2
             Disc: [12x1 double]
            Rates: [12x1 double]
         EndTimes: [12x1 double]
       StartTimes: [12x1 double]
         EndDates: [12x1 double]
       StartDates: 738578
    ValuationDate: 738578
            Basis: 0
     EndMonthRule: 1

Input Arguments
CurveObj — Interest-rate curve object
object

Interest-rate curve object, specified by using IRFunctionCurve.
Data Types: object

InpDates — Input dates
vector
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Input dates, specified using MATLAB date format. The input dates must be after the Settle date of
IRFunctionCurve.
Data Types: double

Output Arguments
F — Rate spec
object

Rate spec, returned as an object. The RateSpec object that is identical to the RateSpec structure
created by the function intenvset.

Alternatively, you can convert the RateSpec object to a ratecurve object (see “Convert RateSpec to
a ratecurve Object” on page 1-49) and then use the Financial Instruments Toolbox object-based
framework for pricing instruments.

See Also
IRFunctionCurve | ratecurve | getForwardRates | getZeroRates | getDiscountFactors |
getParYields

Topics
“Creating an IRFunctionCurve Object” on page 9-16
“Using the toRateSpec Function” on page 9-30
“Interest-Rate Curve Objects and Workflow” on page 9-2
“Convert RateSpec to a ratecurve Object” on page 1-49
“Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework” on page 1-93

Introduced in R2008b
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zeroprice
Price zero-coupon instruments given yield

Syntax
Price = zeroprice(Yield,Settle,Maturity)
Price = zeroprice( ___ ,Period,Basis,EndMonthRule)

Description
Price = zeroprice(Yield,Settle,Maturity) prices zero-coupon instruments given a yield.
zeroprice calculates the prices for a portfolio of general short and long-term zero-coupon
instruments given the yield of reference bonds. In other words, if the zero-coupon computed with this
yield is used to discount the reference bond, the value of that reference bond is equal to its price.

Price = zeroprice( ___ ,Period,Basis,EndMonthRule) adds optional arguments for Period,
Basis, and EndMonthRule.

Examples

Compute the Price of a Short-Term Zero-Coupon Instrument

This example shows how to compute the price of a short-term zero-coupon instrument.

Settle = '24-Jun-1993';
Maturity = '1-Nov-1993';
Period = 2;
Basis = 0;
Yield = 0.04;

Price = zeroprice(Yield, Settle, Maturity, Period, Basis)

Price = 98.6066

Compute the Prices of a Portfolio of Two Zero-Coupon Instruments

This example shows how to compute the prices of a portfolio of two zero-coupon instruments, one
short-term, and the other long-term.

Settle = '24-Jun-1993';
Maturity = ['01-Nov-1993'; '15-Jan-2024'];
Basis = [0; 1];
Yield = [0.04; 0.1];

Price = zeroprice(Yield, Settle, Maturity, [], Basis)

Price = 2×1
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   98.6066
    5.0697

Input Arguments
Yield — Reference bond yield
scalar | vector

Reference bond yield, specified as a scalar or a NZERO-by-1 vector.
Data Types: double

Settle — Settlement date
serial date number

Settlement date, specified as a NZERO-by-1 vector of serial date numbers.
Data Types: double

Maturity — Maturity date
serial date number

Maturity date, specified as a NZERO-by-1 vector of serial date numbers.
Data Types: double

Period — Number of coupons in one year
2 (semiannual) (default) | vector of positive integers from the set [1,2,3,4,6,12]

(Optional) Number of coupons in one year, specified as a positive integer for the values 1,2,4,6,12
in a NZERO-by-1 vector.
Data Types: double

Basis — Day-count basis of bond
0 (actual/actual) (default) | vector of positive integers of the set [1...13]

(Optional) Day-count basis of the bond, specified as a positive integer using a NZERO-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
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• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer with value of 0 or 1

(Optional) End-of-month rule flag, specified as a nonnegative integer with a value of 0 or 1 using a
NZERO-by-1 vector. This rule applies only when Maturity is an end-of-month date for a month having
30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: double

Output Arguments
Price — Price for each zero-coupon instrument
vector

Price for each zero-coupon instrument (per $100 notional), returned as a column vector.

Algorithms
To compute the price when Period is 1 or 0 for the quasi-coupon periods to redemption, zeroprice
uses the formula

Price = RV
1 + DSR

E × Y
M

.

Quasi-coupon periods are the coupon periods that would exist if the bond were paying interest at a
rate other than zero.

When there is more than one quasi-coupon period to the redemption date, zeroprice uses the
formula

Price = RV

1 + Y
M

Nq− 1 + DSC
E

.

The elements of the equations are defined as follows.
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Variable Definition
DSC Number of days from settlement date to next quasi-coupon date as if the security

paid periodic interest.
DSR Number of days from settlement date to the redemption date (call date, put date,

and so on).
E Number of days in quasi-coupon period.
M Number of quasi-coupon periods per year (standard for the particular security

involved).
Nq Number of quasi-coupon periods between settlement date and redemption date. If

this number contains a fractional part, raise it to the next whole number.
Price Dollar price per $100 par value.
RV Redemption value.
Y Annual yield (decimal) when held to redemption.

References
[1] Mayle, Jan. Standard Securities Calculation Methods. 3rd Edition, Vol. 1, Securities Industry

Association, Inc., New York, 1993, ISBN 1-882936-01-9. Vol. 2, 1994, ISBN 1-882936-02-7.

See Also
bndprice | cdprice | tbillprice | zeroyield

Topics
“Computing Treasury Bill Price and Yield”
“Pricing Treasury Notes” on page 6-5
“Pricing Corporate Bonds” on page 6-7
“Measuring Zero-Coupon Bond Function Quality” on page 6-5

Introduced before R2006a
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zeroyield
Yield of zero-coupon instruments given price

Syntax
Yield = zeroyield(Price,Settle,Maturity)
Yield = zeroyield( ___ ,Period,Basis,EndMonthRule)

Description
Yield = zeroyield(Price,Settle,Maturity) computes the yield of zero-coupon instruments
given price. zeroyield calculates the bond-equivalent yield for a portfolio of general short and long-
term zero-coupon instruments given the price of the instruments. In other words, if the zero-coupon
computed with this yield is used to discount the reference bond, the value of that reference bond is
equal to its price

Yield = zeroyield( ___ ,Period,Basis,EndMonthRule) adds optional arguments for Period,
Basis, and EndMonthRule.

Examples

Compute the Yield of a Short-Term Zero-Coupon Instrument

This example shows how to compute the yield of a short-term zero-coupon instrument.

Settle   = '24-Jun-1993';
Maturity = '1-Nov-1993';
Basis    = 0;
Price    = 95;

Yield = zeroyield(Price, Settle, Maturity, [], Basis)

Yield = 0.1490

Compute the Yield of a Short-Term Zero-Coupon Instrument Using a Day-Count Basis of
30/360 (SIA)

This example shows how to compute the yield of a short-term zero-coupon instrument using a day-
count basis of 30/360 (SIA).

Settle   = '24-Jun-1993';
Maturity = '1-Nov-1993';
Basis    = 1;
Price    = 95;

Yield = zeroyield(Price, Settle, Maturity, [], Basis)

Yield = 0.1492
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Compute the Yield of a Long-Term Zero-Coupon Instrument

This example shows how to compute the yield of a long-term zero-coupon instrument.

Settle   = '24-Jun-1993';
Maturity = '15-Jan-2024';
Basis    = 0;
Price    = 9;

Yield = zeroyield(Price, Settle, Maturity, [], Basis)

Yield = 0.0804

Input Arguments
Price — Reference bond price
scalar | vector

Reference bond price, specified as a scalar or a NZERO-by-1 vector.
Data Types: double

Settle — Settlement date
serial date number

Settlement date, specified as a NZERO-by-1 vector of serial date numbers.
Data Types: double

Maturity — Maturity date
serial date number

Maturity date, specified as a NZERO-by-1 vector of serial date numbers.
Data Types: double

Period — Number of coupons in one year
2 (semiannual) (default) | vector of positive integers from the set [1,2,3,4,6,12]

(Optional) Number of coupons in one year, specified as a positive integer for the values 1,2,4,6,12
in a NZERO-by-1 vector.
Data Types: double

Basis — Day-count basis of bond
0 (actual/actual) (default) | vector of positive integers of the set [1...13]

(Optional) Day-count basis of the bond, specified as a positive integer using a NZERO-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360

11 Functions

11-2094



• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.

Note When the Maturity date is fewer than 182 days away and the Basis is actual/365, the
zeroyield uses a simple-interest algorithm. If Maturity is more than 182 days away, zeroyield
uses present value calculations.

When the Basis is actual/360, the simple interest algorithm gives the money-market yield for
short (1–6 months to maturity) Treasury bills.

Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer with value of 0 or 1

(Optional) End-of-month rule flag, specified as a nonnegative integer with a value of 0 or 1 using a
NZERO-by-1 vector. This rule applies only when Maturity is an end-of-month date for a month having
30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: double

Output Arguments
Yield — Bond-equivalent yield for each zero-coupon instrument
vector

Bond-equivalent yield for each zero-coupon instrument, returned as a column vector.

Algorithms
To compute the yield when there is zero or one quasi-coupon period to redemption, zeroyield uses
the formula
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Yield = RV − P
P × M × E

DSR

.

Quasi-coupon periods are the coupon periods which would exist if the bond was paying interest at a
rate other than zero. The first term calculates the yield on invested dollars. The second term converts
this yield to a per annum basis.

When there is more than one quasi-coupon period to the redemption date, zeroyield uses the
formula

Yield = RV
P

1
Nq− 1 + DSC

E − 1 × M

The elements of the equations are defined as follows.

Variable Definition
DSC Number of days from the settlement date to next quasi-coupon date as if the security

paid periodic interest.
DSR Number of days from the settlement date to redemption date (call date, put date, and

so on).
E Number of days in quasi-coupon period.
M Number of quasi-coupon periods per year (standard for the particular security

involved).
Nq Number of quasi-coupon periods between the settlement date and redemption date.

If this number contains a fractional part, raise it to the next whole number.
P Dollar price per $100 par value.
RV Redemption value.
Yield Annual yield (decimal) when held to redemption.

References
[1] Mayle, Jan. Standard Securities Calculation Methods. 3rd Edition, Vol. 1, Securities Industry

Association, Inc., New York, 1993, ISBN 1-882936-01-9. Vol. 2, 1994, ISBN 1-882936-02-7.

See Also
bndyield | cdyield | tbillyield | zeroprice

Topics
“Computing Treasury Bill Price and Yield”
“Pricing Treasury Notes” on page 6-5
“Pricing Corporate Bonds” on page 6-7
“Measuring Zero-Coupon Bond Function Quality” on page 6-5

Introduced before R2006a
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touchbybls
Price one-touch and no-touch binary options using Black-Scholes option pricing model

Syntax
Price = touchybls(RateSpec,StockSpec,Settle,Maturity,BarrierSpec,Barrier,
Payoff)

Description
Price = touchybls(RateSpec,StockSpec,Settle,Maturity,BarrierSpec,Barrier,
Payoff) calculates one-touch and no-touch binary options using the Black-Scholes option pricing
model.

Examples

Price a One-Touch Option

Compute the price of a one-touch option using the following data:

AssetPrice = 105;
Rate = 0.1;
Volatility = 0.2;
Settle = '01-Jan-2018';
Maturity = '01-Jul-2018';

Define the RateSpec using intenvset.

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates', ...
Maturity, 'Rates', Rate, 'Compounding', -1);

Define the StockSpec using stockspec.

DividendType = "Continuous";
DividendYield = Rate - 0.1;
StockSpec = stockspec(Volatility, AssetPrice, DividendType, DividendYield);

Calculate the price of a one-touch binary option.

BarrierSpec = "OT";
Barrier = 100;
Payoff = 15;
 
Price = touchbybls(RateSpec, StockSpec, Settle, Maturity, BarrierSpec, Barrier, Payoff)

Price = 9.7264
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Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification, see
stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities, the
price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is
StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement or trade date
serial date number | date character vector | datetime object

Settlement or trade date for the touch option, specified as an NINST-by-1 matrix using serial date
numbers, date character vectors, or datetime objects.
Data Types: double | char | datetime

Maturity — Maturity date
serial date number | date character vector

Maturity date for the touch option, specified as an NINST-by-1 vector of serial date numbers or date
character vectors.
Data Types: double | char | cell

BarrierSpec — Barrier option type
character vector with values 'OT' or 'NT'

Barrier option type, specified as an NINST-by-1 cell array of character vectors with the following
values:

• 'OT' — One-touch

The one-touch option provides a payoff if the underlying asset ever trades at or beyond the
Barrier level. Otherwise, the Payoff is zero.

• 'NT' — No-touch

The no-touch option provides a Payoff if the underlying asset never trades at or beyond the
Barrier level. Otherwise, the Payoff is zero.

Data Types: char | cell

Barrier — Barrier value
numeric
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Barrier value, specified as an NINST-by-1 matrix of numeric values.
Data Types: double

Payoff — Payoff value
numeric

Payoff value, specified as an NINST-by-1 matrix of numeric values.

Note The payoff value is calculated for the point in time that the Barrier value is reached. The
payoff is either cash or nothing. If a no-touch option is specified using the BarrierSpec, the payoff is
at the Maturity of the option.

Data Types: double

Output Arguments
Price — Expected prices for one-touch options
matrix

Expected prices for one-touch options at time 0, returned as an NINST-by-1 matrix.

More About
Touch and No-Touch Options

The one-touch and no-touch options provide a payoff if the underlying spot either ever or never trades
at or beyond the barrier level. Otherwise, the payoff is zero.

Only two outcomes are possible with a one-touch option if a trader holds the contract all the way
through expiration:

• The target price (Barrier) is reached and the trader collects the full premium.
• The target price (Barrier) is not reached and the trader loses the amount originally paid to open

the trade.

References
[1] Haug, E. The Complete Guide to Option Pricing Formulas. McGraw-Hill Education, 2007.

[2] Wystup, U. FX Options and Structured Products. Wiley Finance, 2007.

See Also
touchsensbybls | dbltouchbybls | dbltouchsensbybls

Topics
“One-Touch and Double One-Touch Options” on page 3-30
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2019b
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touchsensbybls
Calculate price or sensitivities for one-touch and no-touch binary options using Black-Scholes option
pricing model

Syntax
PriceSens = touchsensbybls(RateSpec,StockSpec,Settle,Maturity,BarrierSpec,
Barrier,Payoff)
PriceSens = touchsensbybls( ___ ,Name,Value)

Description
PriceSens = touchsensbybls(RateSpec,StockSpec,Settle,Maturity,BarrierSpec,
Barrier,Payoff) calculates the price and sensitivities for one-touch and no-touch binary options
using the Black-Scholes option pricing model.

PriceSens = touchsensbybls( ___ ,Name,Value) specifies options using one or more name-
value pair arguments in addition to the input arguments in the previous syntax.

Examples

Calculate the Price and Sensitivities for a One-Touch Option

Compute the price and sensitivities for a one-touch option using the following data:

AssetPrice = 105;
Rate = 0.1;
Volatility = 0.2;
Settle = '01-Jan-2018';
Maturity = '01-Jul-2018';

Define the RateSpec using intenvset.

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates', ...
Maturity, 'Rates', Rate, 'Compounding', -1);

Define the StockSpec using stockspec.

DividendType = "Continuous";
DividendYield = Rate - 0.1;
StockSpec = stockspec(Volatility, AssetPrice, DividendType, DividendYield);

Define the sensitivities.

OutSpec = {'price', 'delta', 'gamma'};

Calculate the price and sensitivities for a one-touch binary option.

BarrierSpec = "OT";
Barrier = 100;
Payoff = 15;
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[Price, Delta, Gamma] = touchsensbybls(RateSpec, StockSpec, Settle, Maturity, BarrierSpec, Barrier, Payoff,'OutSpec',OutSpec)

Price = 9.7264

Delta = -0.8939

Gamma = 0.0616

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification, see
stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities, the
price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is
StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement or trade date
serial date number | date character vector | datetime object

Settlement or trade date for the touch option, specified as an NINST-by-1 matrix using serial date
numbers, date character vectors, or datetime objects.
Data Types: double | char | datetime

Maturity — Maturity date
serial date number | date character vector

Maturity date for the touch option, specified as an NINST-by-1 vector of serial date numbers or date
character vectors.
Data Types: double | char | cell

BarrierSpec — Barrier option type
character vector with values 'OT' or 'NT'

Barrier option type, specified as an NINST-by-1 cell array of character vectors with the following
values:

• 'OT' — One-touch. The one-touch option provides a payoff if the underlying spot ever trades at or
beyond the Barrier level and the payoff is zero otherwise.
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• 'NT' — No-touch. The no-touch option provides a Payoff if the underlying spot ever never trades
at or beyond the Barrier level and the Payoff is zero otherwise.

Data Types: char | cell

Barrier — Barrier value
numeric

Barrier value, specified as an NINST-by-1 matrix of numeric values.
Data Types: double

Payoff — Payoff value
numeric

Payoff value, specified as an NINST-by-1 matrix of numeric values.

Note The payoff value is calculated for the point in time that the Barrier value is reached. The
payoff is either cash or nothing. If a no-touch option is specified using the BarrierSpec, the payoff is
at the Maturity of the option.

Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Price =
touchsensbybls(RateSpec,StockSpec,Settle,Maturity,BarrierSpec,Barrier,Payoff,
'OutSpec','Delta')

OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma', 'Vega',
'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with values 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and an NOUT- by-1 or
a 1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output is Delta, Gamma, Vega, Lambda, Rho, Theta, and
Price, in that order. This is the same as specifying OutSpec to include each sensitivity.
Example: OutSpec = {'delta','gamma','vega','lambda','rho','theta','price'}
Data Types: char | cell

Output Arguments
PriceSens — Expected prices or sensitivities for one-touch options
matrix
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Expected prices at time 0 or sensitivities (defined using OutSpec) for one-touch options, returned as
an NINST-by-1 matrix.

More About
Touch and No-Touch Options

The one-touch and no-touch options provide a payoff if the underlying spot either ever or never trades
at or beyond the barrier level. Otherwise, the payoff is zero.

Only two outcomes are possible with a one-touch option if a trader holds the contract all the way
through expiration:

• The target price (Barrier) is reached and the trader collects the full premium.
• The target price (Barrier) is not reached and the trader loses the amount originally paid to open

the trade.

References
[1] Haug, E. The Complete Guide to Option Pricing Formulas. McGraw-Hill Education, 2007.

[2] Wystup, U. FX Options and Structured Products. Wiley Finance, 2007.

See Also
touchbybls | dbltouchbybls | dbltouchsensbybls

Topics
“One-Touch and Double One-Touch Options” on page 3-30
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2019b
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dbltouchbybls
Price double one-touch and double no-touch binary options using Black-Scholes option pricing model

Syntax
Price = dbltouchbybls(RateSpec,StockSpec,Settle,Maturity,BarrierSpec,Barrier,
Payoff)

Description
Price = dbltouchbybls(RateSpec,StockSpec,Settle,Maturity,BarrierSpec,Barrier,
Payoff) calculates double one-touch and double no-touch binary options using Black-Scholes option
pricing model.

Examples

Price a Double No-Touch Option

Compute the price of a double no-touch option using the following data:

AssetPrice = 105;
Rate = 0.1;
Volatility = 0.2;
Settle = '01-Jan-2018';
Maturity = '01-Jul-2018';

Define the RateSpec using intenvset.

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates', ...
Maturity, 'Rates', Rate, 'Compounding', -1);

Define the StockSpec using stockspec.

DividendType = "Continuous";
DividendYield = Rate - 0.03;
StockSpec = stockspec(Volatility, AssetPrice, DividendType, DividendYield);

Calculate the price of a double no-touch binary option.

BarrierSpec = "DNT";
Barrier = [120 80];
Payoff = 10;
 
Price = dbltouchbybls(RateSpec, StockSpec, Settle, Maturity, BarrierSpec, Barrier, Payoff)

Price = 5.6368
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Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset, specified by the StockSpec obtained from stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities, the
price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is
StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement or trade date
serial date number | date character vector | datetime object

Settlement or trade date for the double touch option, specified as an NINST-by-1 matrix using serial
date numbers, date character vectors, or datetime objects.
Data Types: double | char | datetime

Maturity — Maturity date
serial date number | date character vector

Maturity date for the double touch option, specified as an NINST-by-1 vector of serial date numbers
or date character vectors.
Data Types: double | char | cell

BarrierSpec — Double barrier option type
cell array of character vectors with values of 'DOT' or 'DNT' | string array with values of "DOT" or
"DNT"

Double barrier option type, specified as an NINST-by-1 cell array of character vectors or string array
with the following values:

• 'DOT' — Double one-touch. The double one-touch option defines two Barrier levels. A double
one-touch option provides a Payoff if the underlying asset ever touches either the upper or lower
Barrier levels.

• 'DNT' — Double no-touch. The double no-touch option defines two Barrier levels. A double no-
touch option provides a Payoff if the underlying asset ever never touches either the upper or
lower Barrier levels.

Data Types: char | cell | string

Barrier — Double barrier value
numeric
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Double barrier value, specified as an NINST-by-2 matrix of numeric values, where the first column is
Upper Barrier(1)(UB) and the second column is Lower Barrier(2)(LB). Barrier(1) must be greater
than Barrier(2).
Data Types: double

Payoff — Payoff value
numeric

Payoff value, specified as an NINST-by-1 matrix of numeric values, where each element is a 1-by-2
vector in which the first column is Barrier(1)(UB) and the second column is Barrier(2)(LB). Barrier(1)
must be greater than Barrier(2).

Note The payoff value is calculated for the point in time that the Barrier value is reached. The
payoff is either cash or nothing. If you specify a double no-touch option using BarrierSpec, the
payoff is at the Maturity of the option.

Data Types: double

Output Arguments
Price — Expected prices for double one-touch options
matrix

Expected prices for double one-touch options at time 0, returned as an NINST-by-1 matrix.

More About
Double One-Touch and Double No-Touch Options

Double one-touch options and double no-touch options work the same way as one-touch options,
except that there are two barriers.

A double one-touch or double no-touch option provides a payoff if the underlying spot either ever or
never touches either the upper or lower Barrier levels. If neither barrier level is breached prior to
expiration, the option expires worthless and the trader loses all the premium paid to the broker for
setting up the trade. For example, if the current USD/EUR rate is 1.15, and the trader believes that
this rate will change significantly over the next 15 days, the trader can use a double one-touch option
with barriers at 1.10 and 1.20. The trader can profit if the rate moves beyond either of the two
barriers.

References
[1] Haug, E. The Complete Guide to Option Pricing Formulas. McGraw-Hill Education, 2007.

[2] Wystup, U. FX Options and Structured Products. Wiley Finance, 2007.

See Also
touchbybls | touchsensbybls | dbltouchsensbybls
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Topics
“One-Touch and Double One-Touch Options” on page 3-30
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2019b
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dbltouchsensbybls
Calculate prices and sensitivities for double one-touch and double no-touch binary options using
Black-Scholes option pricing model

Syntax
PriceSens = dbltouchsensbybls(RateSpec,StockSpec,Settle,Maturity,BarrierSpec,
Barrier,Payoff)
PriceSens = dbltouchsensbybls( ___ ,Name,Value)

Description
PriceSens = dbltouchsensbybls(RateSpec,StockSpec,Settle,Maturity,BarrierSpec,
Barrier,Payoff) calculates prices and sensitivities for double one-touch and double no-touch
binary options using the Black-Scholes option pricing model.

PriceSens = dbltouchsensbybls( ___ ,Name,Value) specifies options using one or more
name-value pair arguments in addition to the input arguments in the previous syntax.

Examples

Calculate the Price and Sensitivities for a Double No-Touch Option

Compute the price and sensitivities for a double no-touch option using the following data:

AssetPrice = 105;
Rate = 0.1;
Volatility = 0.2;
Settle = '01-Jan-2018';
Maturity = '01-Jul-2018';

Define the RateSpec using intenvset.

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates', ...
Maturity, 'Rates', Rate, 'Compounding', -1);

Define the StockSpec using stockspec.

DividendType = "Continuous";
DividendYield = Rate - 0.03;
StockSpec = stockspec(Volatility, AssetPrice, DividendType, DividendYield);

Define the sensitivities.

OutSpec = {'price', 'delta', 'gamma'};

Calculate the price and sensitivities for a double no-touch binary option.

BarrierSpec = "DNT";
Barrier = [120 80];
Payoff = 10;
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[Price, Delta, Gamma] = dbltouchsensbybls(RateSpec, StockSpec, Settle, Maturity, BarrierSpec, Barrier, Payoff,'OutSpec',OutSpec)

Price = 5.6368

Delta = -0.2536

Gamma = -0.0275

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset, specified by the StockSpec obtained from stockspec.

stockspec handles several types of underlying assets. For example, for physical commodities, the
price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is
StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement or trade date
serial date number | date character vector | datetime object

Settlement or trade date for the double touch option, specified as an NINST-by-1 matrix using serial
date numbers, date character vectors, or datetime objects.
Data Types: double | char | datetime

Maturity — Maturity date
serial date number | date character vector

Maturity date for the double touch option, specified as an NINST-by-1 vector of serial date numbers
or date character vectors.
Data Types: double | char | cell

BarrierSpec — Double barrier option type
cell array of character vectors with values of 'DOT' or 'DNT' | string array with values of "DOT" or
"DNT"

Double barrier option type, specified as an NINST-by-1 cell array of character vectors or string array
with the following values:

• 'DOT' — Double one-touch. The double one-touch option defines two Barrier levels. A double
one-touch option provides a Payoff if the underlying asset ever touches either the upper or lower
Barrier levels.
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• 'DNT' — Double no-touch. The double no-touch option defines two Barrier levels. A double no-
touch option provides a Payoff if the underlying asset ever never touches either the upper or
lower Barrier levels.

Data Types: char | cell | string

Barrier — Double barrier value
numeric

Double barrier value, specified as an NINST-by-2 matrix of numeric values, where the first column is
Upper Barrier(1)(UB) and the second column is Lower Barrier(2)(LB). Barrier(1) must be greater
than Barrier(2).
Data Types: double

Payoff — Payoff value
numeric

Payoff value, specified as an NINST-by-1 matrix of numeric values, where each element is a 1-by-2
vector in which the first column is Barrier(1)(UB) and the second column is Barrier(2)(LB). Barrier(1)
must be greater than Barrier(2).

Note The payoff value is calculated for the point in time that the Barrier value is reached. The
payoff is either cash or nothing. If you specify a double no-touch option using BarrierSpec, the
payoff is at the Maturity of the option.

Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: PriceSens =
dbltouchsensbybls(RateSpec,StockSpec,OptSpec,Strike,Settle,Maturity,BarrierSp
ec,Barrier,'OutSpec','Delta')

OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma', 'Vega',
'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with values 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All' | string array with values
"Price", "Delta", "Gamma", "Vega", "Lambda", "Rho", "Theta", and "All"

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and an NOUT- by-1 or
a 1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output is Delta, Gamma, Vega, Lambda, Rho, Theta, and
Price, in that order. This is the same as specifying OutSpec to include each sensitivity.
Example: OutSpec = {'delta','gamma','vega','lambda','rho','theta','price'}
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Data Types: char | cell

Output Arguments
PriceSens — Expected prices or sensitivities for double one-touch options
matrix

Expected prices at time 0 or sensitivities (defined using OutSpec) for double one-touch options,
returned as an NINST-by-1 matrix.

More About
Double One-Touch and Double No-Touch Options

Double one-touch options and double no-touch options work the same way as one-touch options,
except that there are two barriers.

A double one-touch or double no-touch option provides a payoff if the underlying spot either ever or
never touches either the upper or lower Barrier levels. If neither barrier level is breached prior to
expiration, the option expires worthless and the trader loses all the premium paid to the broker for
setting up the trade. For example, if the current USD/EUR rate is 1.15, and the trader believes that
this rate will change significantly over the next 15 days, the trader can use a double one-touch option
with barriers at 1.10 and 1.20. The trader can profit if the rate moves beyond either of the two
barriers.

References
[1] Haug, E. The Complete Guide to Option Pricing Formulas. McGraw-Hill Education, 2007.

[2] Wystup, U. FX Options and Structured Products. Wiley Finance, 2007.

See Also
touchbybls | touchsensbybls | dbltouchbybls

Topics
“One-Touch and Double One-Touch Options” on page 3-30
“Supported Equity Derivative Functions” on page 3-19

Introduced in R2019b
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fininstrument
Create specified instrument object type

Syntax
Instrument = fininstrument(InstrumentType,Name,Value)

Description
Instrument = fininstrument(InstrumentType,Name,Value) creates an instrument object
for one or more instruments specified by the InstrumentType and specifies options using one or
more name-value pair arguments. The available name-value pair arguments depend on the
InstrumentType you specify.

For more information on the workflow for creating an instrument object, a model object, and a pricer
object, see “Get Started with Workflows Using Object-Based Framework for Pricing Financial
Instruments” on page 1-22.

For more information on the available instruments, models, and pricing methods, see “Choose
Instruments, Models, and Pricers” on page 1-53.

Examples

Use fininstrument to Create OptionEmbeddedFixedBond Instrument

Use fininstrument to create an OptionEmbeddedFixedBond instrument object.

CallDates = datetime(2025,9,15) + calyears([0 1 2]');
CallStrikes = [101 103 105]';
CallSchedule = timetable(CallDates,CallStrikes);
OptionEmbedFixedBOption = fininstrument("OptionEmbeddedFixedBond",'Maturity',"15-Sep-2031",'CouponRate',.03,'CallSchedule',CallSchedule,'Period',1,'Name',"option_embedded_fixedbond")

OptionEmbedFixedBOption = 
  OptionEmbeddedFixedBond with properties:

                  CouponRate: 0.0300
                      Period: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 15-Sep-2031
                   CallDates: [3x1 datetime]
                    PutDates: [0x1 datetime]
                CallSchedule: [3x1 timetable]
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                 PutSchedule: [0x0 timetable]
           CallExerciseStyle: "bermudan"
            PutExerciseStyle: [0x0 string]
                        Name: "option_embedded_fixedbond"

Input Arguments
InstrumentType — Type of instrument
character vector | string

Type of instrument, specified as a scalar string or character vector.

Use these options for interest-rate instruments:

• "Deposit" — For more information, see Deposit.
• "FRA" — For more information, see FRA.
• "FixedBond" — For more information, see FixedBond.
• "FixedBondOption" — For more information, see FixedBondOption.
• "FloatBond" — For more information, see FloatBond.
• "FloatBondOption" — For more information, see FloatBondOption.
• "OptionEmbeddedFixedBond" — For more information, see OptionEmbeddedFixedBond.
• "OptionEmbeddedFloatBond" — For more information, see OptionEmbeddedFloatBond.
• "Swap" — For more information, see Swap.
• "Cap" — For more information, see Cap.
• "Floor" — For more information, see Floor.
• "Swaption" — For more information, see Swaption.
• "STIRFuture" — For more information, see STIRFuture.
• "OISFuture" — For more information, see OISFuture.
• "OvernightIndexSwap" — For more information, see OvernightIndexedSwap.
• "BondFuture" — For more information, see BondFuture.

Use these options for inflation instruments:

• "InflationBond" — For more information, see InflationBond.
• "YearYearInflationSwap" — For more information, see YearYearInflationSwap.
• "ZeroCouponInflationSwap" — For more information, see ZeroCouponInflationSwap.
• "ConvertibleBond" — For more information, see ConvertibleBond.

Use these options for equity, commodity, FX, or energy instruments:

• "Vanilla" — For more information, see Vanilla.
• "Lookback" — For more information, see Lookback.
• "PartialLookback" — For more information, see PartialLookback.
• "Barrier" — For more information, see Barrier.
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• "DoubleBarrier" — For more information, see DoubleBarrier.
• "Asian" — For more information, see Asian.
• "Spread" — For more information, see Spread.
• "VarianceSwap" — For more information, see VarianceSwap.
• "Touch" — For more information, see Touch.
• "DoubleTouch" — For more information, see DoubleTouch.
• "Cliquet" — For more information, see Cliquet.
• "Binary" — For more information, see Binary.
• "CommodityFuture" — For more information, see CommodityFuture.
• "EquityIndexFuture" — For more information, see EquityIndexFuture.
• "FXFuture" — For more information, see FXFuture.
• "ConvertibleBond" — For more information, see ConvertibleBond.

Use these options for credit derivative instruments:

• "CDS" — For more information, see CDS.
• "CDSOption" — For more information, see CDSOption.

Data Types: string | char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Instrument = fininstrument("Cap",Name,Value)

The available name-value pair arguments depend on the value you specify for InstrumentType.

Name-Value Pair Arguments for Interest-Rate Instruments

• Deposit — For more information, see “Deposit Name-Value Pair Arguments” on page 11-2838.
• FRA — For more information, see “FRA Name-Value Pair Arguments” on page 11-2680.
• FixedBond — For more information, see “FixedBond Name-Value Pair Arguments” on page 11-

2595.
• FixedBondOption — For more information, see “FixedBondOption Name-Value Pair Arguments”

on page 11-2615.
• FloatBond — For more information, see “FloatBond Name-Value Pair Arguments” on page 11-

2631.
• FloatBondOption — For more information, see “FloatBondOption Name-Value Pair Arguments”

on page 11-2649.
• OptionEmbeddedFixedBond — For more information, see “OptionEmbeddedFixedBond Name-

Value Pair Arguments” on page 11-2705.
• OptionEmbeddedFloatBond — For more information, see “OptionEmbeddedFloatBond Name-

Value Pair Arguments” on page 11-2729.
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• Swap — For more information, see “Swap Name-Value Pair Arguments” on page 11-2762.
• Cap — For more information, see “Cap Name-Value Pair Arguments” on page 11-2555.
• Floor — For more information, see “Floor Name-Value Pair Arguments” on page 11-2663.
• Swaption — For more information, see “Swaption Name-Value Pair Arguments” on page 11-2790.
• STIRFuture — For more information, see “STIRFuture Name-Value Arguments” on page 11-2355.
• OvernightIndexedSwap — For more information, see “OvernightIndexedSwap Name-Value

Arguments” on page 11-2378.
• OISFuture — For more information, see “OISFuture Name-Value Pair Arguments” on page 11-

2344.
• BondFuture — For more information, see “BondFuture Name-Value Arguments” on page 11-

2847.
• ConvertibleBond — For more information, see “ConvertibleBond Name-Value Pair Arguments”

on page 11-2401.

Name-Value Pair Arguments for Inflation Instruments

• InflationBond — For more information, see “InflationBond Name-Value Pair Arguments” on
page 11-2417.

• YearYearInflationSwap — For more information, see “YearYearInflationSwap Name-Value Pair
Arguments” on page 11-2430.

• ZeroCouponInflationSwap — For more information, see “ZeroCouponInflationSwap Name-
Value Pair Arguments” on page 11-2439.

Name-Value Pair Arguments for Equity Instruments

• Vanilla — For more information, see “Vanilla Name-Value Pair Arguments” on page 11-2810.
• Lookback — For more information, see “Lookback Name-Value Pair Arguments” on page 11-2689.
• PartialLookback — For more information, see “PartialLookback Name-Value Arguments” on

page 11-2389.
• Barrier — For more information, see “Barrier Name-Value Pair Arguments” on page 11-2483.
• DoubleBarrier — For more information, see “DoubleBarrier Name-Value Pair Arguments” on

page 11-2501.
• Asian — For more information, see “Asian Name-Value Pair Arguments” on page 11-2464.
• Spread — For more information, see “Spread Name-Value Pair Arguments” on page 11-2749.
• VarianceSwap — For more information, see “VarianceSwap Name-Value Pair Arguments” on

page 11-2781.
• Touch — For more information, see “Touch Name-Value Pair Arguments” on page 11-2518.
• DoubleTouch — For more information, see “DoubleTouch Name-Value Pair Arguments” on page

11-2530.
• Cliquet — For more information, see “Cliquet Name-Value Arguments” on page 11-2364.
• Binary — For more information, see “Binary Name-Value Pair Arguments” on page 11-2542.
• CommodityFuture — For more information, see “CommodityFuture Name-Value Arguments” on

page 11-2856.
• EquityIndexFuture — For more information, see “EquityIndexFuture Name-Value Arguments”

on page 11-2866.
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• FXFuture — For more information, see “FXFuture Name-Value Arguments” on page 11-2874.
• ConvertibleBond — For more information, see “ConvertibleBond Name-Value Pair Arguments”

on page 11-2401.

Name-Value Pair Arguments for Credit Derivative Instruments

• CDS — For more information, see “CDS Name-Value Pair Arguments” on page 11-2572.
• CDSOption — For more information, see “CDSOption Name-Value Pair Arguments” on page 11-

2581.

Output Arguments
Instrument — Instrument
instrument object

Instrument, returned as an instrument object.

See Also
finmodel | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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finmodel
Create specified model object type

Syntax
Model = finmodel(ModelType,Name,Value)

Description
Model = finmodel(ModelType,Name,Value) creates a Model object based on ModelType
creates a model object specified by ModelType and specifies model options using one or more name-
value pair arguments.

For more information on the workflow for creating an instrument object, a model object, and a pricer
object, see “Get Started with Workflows Using Object-Based Framework for Pricing Financial
Instruments” on page 1-22.

For more information on the available instruments, models, and pricing methods, see “Choose
Instruments, Models, and Pricers” on page 1-53.

Examples

Use finmodel to Create SABR Model

Use finmodel to create a SABR model object.

SabrModel = finmodel("SABR",'Alpha',0.032,'Beta',0.04, 'Rho', .08, 'Nu', 0043,'Shift',0.002)

SabrModel = 
  SABR with properties:

             Alpha: 0.0320
              Beta: 0.0400
               Rho: 0.0800
                Nu: 43
             Shift: 0.0020
    VolatilityType: "black"

Input Arguments
ModelType — Model type
character vector | string

Model type, specified as a scalar string or character vector.

These options are available for interest-rate instruments:
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• "Black" — For more information, see Black.
• "HullWhite" — For more information, see HullWhite.
• "BlackKarasinski" — For more information, see BlackKarasinski.
• "Normal" — For more information, see Normal.
• "SABR" — For more information, see SABR.
• "BraceGatarekMusiela" — For more information, see BraceGatarekMusiela.
• "SABRBraceGatarekMusiela" — For more information, see SABRBraceGatarekMusiela.
• "LinearGaussian2F" — For more information, see LinearGaussian2F.

These options are available for equity instruments:

• "BlackScholes" — For more information, see BlackScholes.
• "Bachelier" — For more information, see Bachelier.
• "Heston" — For more information, see Heston.
• "Bates" — For more information, see Bates.
• "Merton" — For more information, see Merton.
• "Dupire" — For more information, see Dupire.

These options are available for credit derivative instruments:

• "CDSBlack" — For more information, see CDSBlack.

Data Types: string | char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Model = finmodel("Black",Name,Value)

The available name-value pair arguments depend on the value you specify for ModelType.

Name-Value Pair Arguments for Interest-Rate Models

• Black — For more information, see “Black Name-Value Pair Arguments” on page 11-2890.
• HullWhite — For more information, see “HullWhite Name-Value Pair Arguments” on page 11-

2950.
• BlackKarasinski — For more information, see “BlackKarasinski Name-Value Pair Arguments”

on page 11-2938.
• Normal — For more information, see “Normal Name-Value Pair Arguments” on page 11-2960.
• Sabr — For more information, see “SABR Name-Value Pair Arguments” on page 11-2974
• BraceGatarekMusiela — For more information, see “BraceGatarekMusiela Name-Value

Arguments” on page 11-2907
• SABRBraceGatarekMusiela — For more information, see “SABRBraceGatarekMusiela Name-

Value Arguments” on page 11-2913
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• LinearGaussian2F — For more information, see “LinearGaussian2F Name-Value Arguments” on
page 11-2932

Name-Value Pair Arguments for Equity Models

• BlackScholes — For more information, see “BlackScholes Name-Value Pair Arguments” on page
11-2899.

• Bachelier — For more information, see “Bachelier Name-Value Pair Arguments” on page 11-
2965.

• Heston — For more information, see “Heston Name-Value Pair Arguments” on page 11-2943.
• Bates — For more information, see “Bates Name-Value Pair Arguments” on page 11-2882.
• Merton — For more information, see “Merton Name-Value Pair Arguments” on page 11-2954.
• Dupire — For more information, see “Dupire Name-Value Pair Arguments” on page 11-2968.

Name-Value Pair Arguments for Credit Derivative Models

• CDSBlack — For more information, see “CDSBlack Name-Value Pair Arguments” on page 11-2894.

Output Arguments
Model — Model
model object

Model, returned as a model object.

See Also
fininstrument | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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finpricer
Create pricing method

Syntax
Pricer = finpricer(PricerType,Name,Value)

Description
Pricer = finpricer(PricerType,Name,Value) creates a Pricer object based on
PricerType creates a pricer object and specifies pricing options using one or more name-value pair
arguments. The available name-value pair arguments depend on the PricerType you specify.

For more information on the workflow for creating an instrument object, a model object, and a pricer
object, see “Get Started with Workflows Using Object-Based Framework for Pricing Financial
Instruments” on page 1-22.

For more information on the available instruments, models, and pricing methods, see “Choose
Instruments, Models, and Pricers” on page 1-53.

Examples

Use finpricer to Create ConzeViswanathan Pricer

This example shows the workflow to create a BlackScholes model and ratecurve object to use
with a ConzeViswanathan pricing method.

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',.358)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.3580
    Correlation: 1

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2020,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)
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myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2020
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create ConzeViswanathan Pricer Object

Use finpricer to create a ConzeViswanathan pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'Model',BlackScholesModel,'DiscountCurve',myRC,'SpotPrice',950,'DividendValue',2.5,'DividendType',"continuous",'PricingMethod',"ConzeViswanathan")

outPricer = 
  ConzeViswanathan with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 950
    DividendValue: 2.5000
     DividendType: "continuous"

Input Arguments
PricerType — Pricer type
character vector | string

Pricer type, specified as a scalar string or character vector.

These options are available for interest-rate instruments:

• "Discount" — For more information, see Discount.
• "Future" — For more information, see Future.
• "IRTree" — For more information, see IRTree.
• "IRMonteCarlo" — For more information, see IRMonteCarlo.
• "HullWhite" — For more information, see HullWhite.
• "Analytic" — The "Analytic" pricer can be any one of the following types of pricing methods:

• SABR — For more information, see SABR.
• Normal — For more information, see Normal.
• Black — For more information, see Black.

These options are available for inflation instruments:
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• "Inflation" — For more information, see Inflation.

These options are available for equity instruments:

• "Analytic" — The "Analytic" pricer can be any one of the following types of pricing methods:

• BlackScholes — For more information, see BlackScholes.
• IkedaKunitomo — For more information, see IkedaKunitomo.
• HeynenKat — For more information, see HeynenKat.
• Heston — For more information, see Heston.
• Levy — For more information, see Levy.
• KemnaVorst — For more information, see KemnaVorst.
• TurnbullWakeman — For more information, see TurnbullWakeman.
• ConzeViswanathan — For more information, see ConzeViswanathan.
• GoldmanSosinGatto — For more information, see GoldmanSosinGatto.
• RollGeskeWhaley — For more information, see RollGeskeWhaley.
• Rubinstein — For more information, see Rubinstein.
• Kirk — For more information, see Kirk.
• BjerksundStensland — For more information, see BjerksundStensland.

• "AssetTree" — For more information, see AssetTree.
• "AssetMonteCarlo" — For more information, see AssetMonteCarlo.
• "FiniteDifference" — For more information, see FiniteDifference.
• "FFT" — For more information, see FFT.
• "NumericalIntegration" — For more information, see NumericalIntegration.
• "VannaVolga" — For more information, see VannaVolga.
• "ReplicatingVarianceSwap" — For more information, see ReplicatingVarianceSwap.
• "Future" — For more information, see Future.

These options are available for credit derivative instruments:

• "Credit" — For more information, see Credit.
• "Analytic" — The "Analytic" pricer can be any one of the following types of pricing methods:

• CDSBlack — For more information, see CDSBlack.

Data Types: string | char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Pricer = finpricer("Black",Name,Value)

Depending on the PricerType, the associated name-value pair arguments are different.
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Name-Value Pair Arguments for Interest-Rate Pricers

• IRTree — For more information, see .
• IRMonteCarlo — For more information, see .
• Black — For more information, see .
• HullWhite — For more information, see .
• Normal — For more information, see .
• Sabr — For more information, see .
• Discount — For more information, see .
• Future — For more information, see .

Name-Value Pair Arguments for Inflation Pricers

• Inflation — For more information, see .

Name-Value Pair Arguments for Equity Pricers

• Levy — For more information, see .
• KemnaVorst — For more information, see .
• TurnbullWakeman — For more information, see .
• BlackScholes — For more information, see .
• IkedaKunitomo — For more information, see .
• HeynenKat — For more information, see .
• Heston — For more information, see .
• ConzeViswanathan — For more information, see .
• GoldmanSosinGatto — For more information, see .
• Rubinstein — For more information, see .
• RollGeskeWhaley — For more information, see .
• Kirk — For more information, see .
• BjerksundStensland — For more information, see .
• AssetMonteCarlo — For more information, see .
• AssetTree — For more information, see .
• FiniteDifference — For more information, see .
• FFT — For more information, see .
• NumericalIntegration — For more information, see .
• VannaVolga — For more information, see .
• ReplicatingVarianceSwap — For more information, see .
• Future — For more information, see .

Name-Value Pair Arguments for Credit Derivative Pricers

• Credit — For more information, see .
• CDSBlack — For more information, see .
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Output Arguments
Pricer — Pricer
pricer object

Pricer, returned as a pricer object.

See Also
fininstrument | finmodel

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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irbootstrap
Bootstrap interest-rate curve from market data

Syntax
outCurve = irbootstrap(BootInstruments,Settle)
outCurve = irbootstrap( ___ ,Name,Value)

Description
outCurve = irbootstrap(BootInstruments,Settle) creates a data structure for storing
interest-rate term structure data. The outCurve output is a ratecurve object.

outCurve = irbootstrap( ___ ,Name,Value) specifies options using one or more name-value
pair arguments in addition to any of the input argument combinations in the previous syntax. For
example, OutCurve =
irbootstrap(Settle,BootInstruments,'Type',"zero",'Compounding',2,'Basis',5,'I
nterpMethod',"cubic") bootstraps a zero curve from BootInstruments.

Examples

Bootstrap ratecurve Object from Market Data

Define Deposit and Swap Parameters

Settle = datetime(2018,3,21);
DepRates = [.0050769 .0054934 .0061432 .0072388 .0093263]';
DepTimes = [1 2 3 6 12]';
DepDates = datemnth(Settle,DepTimes);
nDeposits = length(DepTimes);
 
SwapRates = [.0112597 0;.0128489 0;.0138917 0;.0146135 0;.0151175 0;...
      .0155184 0;.0158536 0;.0161435 0];
SwapTimes = (2:9)';
SwapDates = datemnth(Settle,12*SwapTimes);
nSwaps = length(SwapTimes);
 
nInst = nDeposits + nSwaps;

Create a Vector of Market Swap Instruments

Use fininstrument to create a vector of market Deposit and Swap instrument objects.

 BootInstruments(nInst,1) = fininstrument.FinInstrument;
 for ii=1:length(DepDates)
      BootInstruments(ii) = fininstrument("deposit",'Maturity',DepDates(ii),'Rate',DepRates(ii));
 end
 
 for ii=1:length(SwapDates)
      BootInstruments(ii+nDeposits) = fininstrument("swap",'Maturity',SwapDates(ii),'LegRate',[SwapRates(ii) 0]);
 end
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Create ratecurve Object for Zero-Rate Curve

Use irbootstrap to create a ratecurve object for the zero-rate curve.

ZeroCurve = irbootstrap(BootInstruments,Settle)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [13x1 datetime]
                Rates: [13x1 double]
               Settle: 21-Mar-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Zero Curve Using DiscountCurve Input

This example shows how to create a ratecurve object using irbootstrap with Deposit and Swap
instruments and a DiscountCurve for discounting cash flows.

Settle = datetime(2021,4,15); 
crvDates = Settle + [calmonths([1 2 3 6]) calyears([1 2 3 5 7 10 20 30])]';
crvRates = [0.0004 0.0004 0.0005 0.0006 0.0008 0.0018 0.0037 0.0088 0.013 0.0165 0.022 0.0233]';
DiscountCurve = ratecurve("zero",Settle,crvDates,crvRates);

DepRates = [0.002 0.0021 0.0023 0.0024 .0028]';
DepDates = Settle + calmonths([1 2 3 6 12]');

SwapRates = [0.0041 0;0.0057 0;0.017 0;0.0193 0;0.024 0;0.027 0];
SwapTimes = [2 3 5 10 20 30]';
SwapDates = datemnth(Settle,12*SwapTimes);

BootInstruments = [fininstrument("deposit","Maturity",DepDates,"Rate",DepRates); ...
    fininstrument("swap","Maturity",SwapDates,"LegRate",SwapRates)];

ZeroCurve = irbootstrap(BootInstruments,Settle,'DiscountCurve',DiscountCurve)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [11x1 datetime]
                Rates: [11x1 double]
               Settle: 15-Apr-2021
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"
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Bootstrap ratecurve Object from BootInstruments for OIS Futures and Overnight Indexed
Swaps

Create a BootInstruments variable as an input argument to irbootstrap to create a ratecurve
object. The BootInstruments variable has OISFuture instrument objects for one-month SOFR
Futures and three-month SOFR Futures, and an OvernightIndexedSwap instrument object.

Create Instruments

Use fininstrument to create an OISFuture instrument object for one-month SOFR Futures.

Settle = datetime(2021,3,4);
HFDates = datetime(2021,3,1) + caldays(0:3)';
HistFixing = timetable(HFDates,[0.02;0.04;0.04;0.02]);

% Data from the following: https://www.cmegroup.com/trading/interest-rates/stir/one-month-sofr_quotes_globex.html
Prices_1M = [99.97 99.96 99.95]';
Maturity_1M = lbusdate(2021,[3 4 5]',[],[],'datetime');
StartDate_1M = fbusdate(2021,[3 4 5]',[],[],'datetime');
FutInstruments_1M = fininstrument("OISFuture","Maturity",Maturity_1M ,"QuotedPrice",Prices_1M,"StartDate",StartDate_1M,"Method","Average",...
    'HistoricalFixing',HistFixing,'Name',"1MonthSOFRFuture")

FutInstruments_1M=3×1 object
  3x1 OISFuture array with properties:

    QuotedPrice
    Method
    Basis
    StartDate
    Maturity
    Notional
    BusinessDayConvention
    Holidays
    ProjectionCurve
    HistoricalFixing
    Name

Use fininstrument to create an OISFuture instrument object for three-month SOFR Futures.

% Data from the following: https://www.cmegroup.com/trading/interest-rates/stir/three-month-sofr_quotes_globex.html
Prices_3M = [99.92 99.895 99.84 99.74]';
Dates_3M_Maturity = thirdwednesday([6 9 12 3]',[2021 2021 2021 2022]','datetime');
Dates_3M_Start = thirdwednesday([3 6 9 12]',2021,'datetime');
FutInstruments_3M = fininstrument("OISFuture","Maturity",Dates_3M_Maturity,...
    "QuotedPrice",Prices_3M,"StartDate",Dates_3M_Start,'HistoricalFixing',HistFixing,'Name',"3MonthSOFRFuture");

Use fininstrument to create an OvernightIndexedSwap instrument object.

SOFRSwapRates = [.0023 0;.0064 0;.013 0;.017 0;.0175 0];
SOFRSwapTimes = [3 5 10 20 30];
SOFRSwapDates = datemnth(Settle,12*SOFRSwapTimes)';
SOFRSwapInstruments = fininstrument("OvernightIndexedSwap","Maturity",SOFRSwapDates,"LegRate",SOFRSwapRates,'Name',"overnight_swap_instrument")

SOFRSwapInstruments=5×1 object
  5x1 OvernightIndexedSwap array with properties:
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    LegRate
    LegType
    Reset
    Basis
    Notional
    HistoricalFixing
    ResetOffset
    ProjectionCurve
    BusinessDayConvention
    Holidays
    EndMonthRule
    StartDate
    Maturity
    Name

Define BootInstruments for the three types of instruments.

BootInstruments = [FutInstruments_1M;FutInstruments_3M;SOFRSwapInstruments]

BootInstruments=12×1 object
  12x1 heterogeneous FinInstrument (OISFuture, OvernightIndexedSwap) array with properties:

    Name

Create ratecurve Object

Use irbootstrap to create a ratecurve object.

SOFRCurve = irbootstrap(BootInstruments,Settle)

SOFRCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [12x1 datetime]
                Rates: [12x1 double]
               Settle: 04-Mar-2021
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Bootstrap ratecurve Object from STIRFuture, Deposit, and Swap BootInstruments

Create BootInstruments for multiple Deposit, STIRFuture, and Swap instruments and then use
irbootstrap to create and display a ratecurve object.

Create Instruments

Use fininstrument to create a Deposit instrument object.

Settle = datetime(2021,6,15); 
DepRates = [0.0016 0.0017 .00175]';
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DepDates = Settle + calmonths([1 2 3]');

Deposits = fininstrument("Deposit","Maturity",DepDates,"Rate",DepRates,'Name',"deposit_instrument")

Deposits=3×1 object
  3x1 Deposit array with properties:

    Rate
    Period
    Basis
    Maturity
    Principal
    BusinessDayConvention
    Holidays
    Name

Use fininstrument to create a STIRFuture instrument object.

FutureRates = [0.002 0.0025 0.0035]';
FutMat = [datetime(2021,9,15) datetime(2021,12,15) datetime(2022,3,16)]';
FutEndDates = [datetime(2021,12,15) datetime(2022,3,15) datetime(2022,6,15)]';

Futures = fininstrument("STIRFuture","Maturity",FutMat,"RateEndDate",FutEndDates,"QuotedPrice",100 - 100*FutureRates,'Name',"stir_future_instrument")

Futures=3×1 object
  3x1 STIRFuture array with properties:

    QuotedPrice
    Basis
    RateEndDate
    Maturity
    Notional
    BusinessDayConvention
    Holidays
    ProjectionCurve
    Name

Use fininstrument to create a Swap instrument object.

SwapRates = [.0063 0;.0108 0;.013 0;.015 0;0.017 0;.018 0;0.019 0];
SwapTimes = [2 5 7 10 15 20 30]';
SwapDates = datemnth(Settle,12*SwapTimes);

Swaps = fininstrument("Swap","Maturity",SwapDates,"LegRate",SwapRates,'Name',"swap_instrument")

Swaps=7×1 object
  7x1 Swap array with properties:

    LegRate
    LegType
    Reset
    Basis
    Notional
    LatestFloatingRate
    ResetOffset
    DaycountAdjustedCashFlow
    ProjectionCurve
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    BusinessDayConvention
    Holidays
    EndMonthRule
    StartDate
    Maturity
    Name

Define BootInstruments for the three instruments.

BootInstruments = [Deposits;Futures;Swaps];

Create ratecurve Object Using irbootstrap

Use irbootstrap to create a ratecurve object.

ConvexityAdj = (1:3)'/10000;
ZeroCurve = irbootstrap(BootInstruments,Settle,'ConvexityAdjustment',ConvexityAdj,'InterpMethod','pchip')

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [13x1 datetime]
                Rates: [13x1 double]
               Settle: 15-Jun-2021
         InterpMethod: "pchip"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Plot Bootstrapped Curve

PlottingDates = Settle + calmonths(1:360);
plot(PlottingDates,zerorates(ZeroCurve,PlottingDates))
xlabel('Maturity (Years)') 
ylabel('Zero Rate')
title('Bootstrapped Curve')
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Input Arguments
BootInstruments — Collection of instruments
array of instrument objects

Collection of instruments, specified as an array of instrument objects. The collection of instruments
can include Deposit, Swap, FRA, STIRFuture, OISFuture, and OvernightIndexedSwap
instruments.
Data Types: object

Settle — Settlement date
datetime | serial date number | date character vector | date string

Settlement date, specified as a scalar datetime, serial date number, date character vector, or date
string.
Data Types: double | char | string | datetime

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
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Example: OutCurve =
irbootstrap(Settle,BootInstruments,'Type',"zero",'Compounding',2,'Basis',5,'I
nterpMethod',"cubic")

Type — Type of interest-rate curve
"zero" (default) | string with value "discount", "forward", or "zero" | character vector with
value 'discount', 'forward', or 'zero'

Type of interest-rate curve, specified as the comma-separated pair consisting of 'Type' and a scalar
string or character vector.

Note When you use irbootstrap, the value you specify for Type can impact the curve construction
because it affects the type of data that is interpolated on (that is, forward rates, zero rates, or
discount factors) during the bootstrapping process.

Data Types: char | string

Compounding — Compounding frequency
Compounding for the ratecurve object (default) | possible values include: –1, 0, 1, 2, 3, 4, 6, 12.

Compounding frequency, specified as the comma-separated pair consisting of 'Compounding' and a
scalar numeric using the supported values: –1, 0, 1, 2, 3, 4, 6, or 12.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis, specified as the comma-separated pair consisting of 'Basis' and a scalar integer.

• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double
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InterpMethod — Interpolation method
"linear" (default) | string with value "linear", "cubic", "next", "previous", "pchip",
"v5cubic", "makima", or "spline" | character vector with value 'linear', 'cubic', 'next',
'previous', 'pchip', 'v5cubic', 'makima', or 'spline'

Interpolation method, specified as the comma-separated pair consisting of 'InterpMethod' and a
scalar string or character vector using a supported value. For more information on interpolation
methods, see interp1.
Data Types: char | string

ShortExtrapMethod — Extrapolation method for data before first data
"next" (default) | string with value "linear", "next", "previous", "pchip",
"cubic","v5cubic", "makima", or "spline" | character vector with value 'linear', 'next',
'previous', 'pchip', 'cubic','v5cubic', 'makima', or 'spline'

Extrapolation method for data before first data, specified as the comma-separated pair consisting of
'ShortExtrapMethod' and a scalar string or character vector using a supported value. For more
information on interpolation methods, see interp1.
Data Types: char | string

LongExtrapMethod — Extrapolation method for data after last data
"previous" (default) | string with value "linear", "next", "previous", "pchip",
"cubic","v5cubic", "makima", or "spline" | character vector with value 'linear', 'next',
'previous', 'pchip', 'cubic','v5cubic', 'makima', or 'spline'

Extrapolation method for data after last data, specified as the comma-separated pair consisting of
'LongExtrapMethod' and a scalar string or character vector using a supported value. For more
information on interpolation methods, see interp1.
Data Types: char | string

DiscountCurve — ratecurve object for discounting cash flows
ratecurve.empty (default) | scalar ratecurve object

ratecurve object for discounting cash flows, specified as the comma-separated pair consisting of
'DiscountCurve' and the name of a previously created ratecurve object.
Data Types: object

ConvexityAdjustment — Convexity adjustment for STIRFuture instrument
0 (default) | numeric vector

Convexity adjustment for one or more STIRFuture instruments, specified as the comma-separated
pair consisting of 'ConvexityAdjustment' and an NFutures-by-1 vector of numeric values.

Note You can only use ConvexityAdjustment when using irbootstrap with a STIRFuture
instrument. Also, the length of the ConvexityAdjustment vector must match the number of
STIRFuture instruments.

Data Types: double
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Output Arguments
outCurve — Rate curve
ratecurve object

Rate curve, returned as a ratecurve object. The object has the following properties:

• Type
• Settle
• Compounding
• Basis
• Dates
• Rates
• InterpMethod
• ShortExtrapMethod
• LongExtrapMethod

See Also
ratecurve | forwardrates | discountfactors | zerorates

Topics
“Compute LIBOR Fallback” on page 2-193
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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fitNelsonSiegel
Fit Nelson-Siegel model to bond market data

Syntax
outCurve = fitNelsonSiegel(Settle,Instruments,CleanPrice)

Description
outCurve = fitNelsonSiegel(Settle,Instruments,CleanPrice) fits a Nelson-Siegel model
to bond data.

Examples

Fit Nelson-Siegel Model to Bond Market Data

Define the bond data and use fininstrument to create FixedBond instrument objects.

 Settle = datetime(2017,9,15);
  Maturity = [datetime(2019,9,15);datetime(2021,9,15);...
      datetime(2023,9,15);datetime(2026,9,7);...
      datetime(2035,9,15);datetime(2047,9,15)];
  
  CleanPrice = [100.1;100.1;100.8;96.6;103.3;96.3];
  CouponRate = [0.0400;0.0425;0.0450;0.0400;0.0500;0.0425];
  
  nInst = numel(CouponRate);
Bonds(nInst,1) = fininstrument.FinInstrument;
for ii=1:nInst
    Bonds(ii) = fininstrument("FixedBond",'Maturity',Maturity(ii),...
        'CouponRate',CouponRate(ii));
end

Use fitNelsonSiegel to create a parametercurve object.

NSModel = fitNelsonSiegel(Settle,Bonds,CleanPrice)

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to 
its initial value is less than the value of the function tolerance.

NSModel = 
  parametercurve with properties:

              Type: "zero"
            Settle: 15-Sep-2017
       Compounding: -1
             Basis: 0
    FunctionHandle: @(t)fitF(Params,t)
        Parameters: [3.5246e-08 0.0363 0.0900 16.5823]
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Input Arguments
Settle — Settlement date
datetime | serial date number | date character vector | date string

Settlement date, specified as a scalar datetime, serial date number, date character vector, or date
string.
Data Types: double | char | string | datetime

Instruments — Bond instrument objects
array

Bond instrument objects, specified as an array of bond instruments objects.
Data Types: object

CleanPrice — Observed market prices
vector

Observed market prices, specified as a vector.
Data Types: double

Output Arguments
outCurve — Fitted Nelson-Siegel model
parametercurve object

Fitted Nelson-Siegel model, returned as a parametercurve object.

See Also
discountfactors | zerorates | forwardrates

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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price
Package: finpricer.analytic

Compute price for interest-rate, equity, or credit derivative instrument with Analytic pricer

Syntax
[Price,PriceResult] = price(inpPricer,inpInstrument)
[Price,PriceResult] = price( ___ ,inpSensitivity)

Description
[Price,PriceResult] = price(inpPricer,inpInstrument) computes the instrument price
and related pricing information based on the pricing object inpPricer and the instrument object
inpInstrument.

The Analytic pricer supports the following pricer objects:

• BjerksundStensland
• IkedaKunitomo
• Black
• BlackScholes
• CDSBlack
• ConzeViswanathan
• GoldmanSosinGatto
• HeynenKat
• HullWhite
• Heston
• KemnaVorst
• Kirk
• Levy
• Normal
• RollGeskeWhaley
• Rubinstein
• SABR
• TurnbullWakeman

[Price,PriceResult] = price( ___ ,inpSensitivity) adds an optional argument to specify
sensitivities.

Examples

 price
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Use Bjerksund-Stensland Pricer and Black-Scholes Model to Price Spread Instrument

This example shows the workflow to price a European exercise Spread instrument when you use a
BlackScholes model and a BjerksundStensland pricing method.

Create Spread Instrument Object

Use fininstrument to create a Spread instrument object.

SpreadOpt = fininstrument("Spread",'Strike',5,'ExerciseDate',datetime(2021,9,15),'OptionType',"put",'ExerciseStyle',"european",'Name',"spread_option")

SpreadOpt = 
  Spread with properties:

       OptionType: "put"
           Strike: 5
    ExerciseStyle: "european"
     ExerciseDate: 15-Sep-2021
             Name: "spread_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',[0.2,0.1])

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: [0.2000 0.1000]
    Correlation: [2x2 double]

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"
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Create BjerksundStensland Pricer Object

Use finpricer to create a BjerksundStensland pricer object and use the ratecurve object for
the 'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'Model',BlackScholesModel,'DiscountCurve',myRC,'SpotPrice',[100,105],'DividendValue',[0.09,0.17],'PricingMethod',"BjerksundStensland")

outPricer = 
  BjerksundStensland with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: [100 105]
    DividendValue: [0.0900 0.1700]
     DividendType: "continuous"

Price Spread Instrument

Use price to compute the price and sensitivities for the Spread instrument.

[Price, outPR] = price(outPricer,SpreadOpt,["all"])

Price = 7.0596

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []

outPR.Results

ans=1×7 table
    Price            Delta                    Gamma                   Lambda                Vega          Theta       Rho  
    ______    ____________________    ______________________    __________________    ________________    ______    _______

    7.0596    -0.23249     0.27057    0.0069887    0.0055319    -3.2932     3.8327    41.938    18.303    1.1011    -5.6943

Use Rubinstein Pricer and Black-Scholes Model to Price the Absolure Return for Cliquet
Instruments

This example shows the workflow to price the absolute return for three Cliquet instruments when
you use a BlackScholes model and a Rubinstein pricing method.

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,Basis=12)

myRC = 
  ratecurve with properties:

 price
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                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Cliquet Instrument Object

Use fininstrument to create a Cliquet instrument object for three Cliquet instruments.

ResetDates = Settle + years(0:0.25:1);  
CliquetOpt = fininstrument("Cliquet",ResetDates=ResetDates,InitialStrike=[140;150;160],ExerciseStyle="european",Name="cliquet_option")

CliquetOpt=3×1 object
  3x1 Cliquet array with properties:

    OptionType
    ExerciseStyle
    ResetDates
    LocalCap
    LocalFloor
    GlobalCap
    GlobalFloor
    ReturnType
    InitialStrike
    Name

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",Volatility=0.28)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.2800
    Correlation: 1

Create Rubinstein Pricer Object

Use finpricer to create a Rubinstein pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",DiscountCurve=myRC,Model=BlackScholesModel,SpotPrice=135,DividendValue=0.025,PricingMethod="Rubinstein")

outPricer = 
  Rubinstein with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
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        SpotPrice: 135
    DividendValue: 0.0250
     DividendType: "continuous"

Price Cliquet Instruments

Use price to compute the price and sensitivities for the three Cliquet instruments.

[Price, outPR] = price(outPricer,CliquetOpt,"all")

Price = 3×1

   28.1905
   25.3226
   23.8168

outPR=3×1 object
  3x1 priceresult array with properties:

    Results
    PricerData

outPR.Results 

ans=1×7 table
    Price      Delta      Gamma      Lambda     Vega      Rho      Theta 
    ______    _______    ________    ______    ______    ______    ______

    28.191    0.59697    0.020662    2.8588    105.38    60.643    -14.62

ans=1×7 table
    Price      Delta      Gamma      Lambda     Vega      Rho       Theta 
    ______    _______    ________    ______    ______    ______    _______

    25.323    0.41949    0.016816    2.2364    100.47    55.367    -11.708

ans=1×7 table
    Price      Delta      Gamma      Lambda     Vega      Rho      Theta 
    ______    _______    ________    ______    ______    ______    ______

    23.817    0.29729    0.011133    1.6851    93.219    51.616    -7.511

Input Arguments
inpPricer — Pricer object
BjerksundStensland object | IkedaKunitomo object | Black object | BlackScholes object |
CDSBlack object | ConzeViswanathan object | GoldmanSosinGatto object | HeynenKat object |
HullWhite object | Heston object | KemnaVorst object | Kirk object | Levy object | Normal object
| Rubinstein object | RollGeskeWhaley object | SABR object | TurnbullWakeman object

Pricer object (previously created using finpricer), specified as a scalar. The supported pricer
objects are:
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• BjerksundStensland
• IkedaKunitomo
• Black
• BlackScholes
• CDSBlack
• ConzeViswanathan
• GoldmanSosinGatto
• HeynenKat
• HullWhite
• Heston
• KemnaVorst
• Kirk
• Levy
• Normal
• RollGeskeWhaley
• SABR
• Rubinstein
• TurnbullWakeman

Data Types: object

inpInstrument — Instrument object
Cap object | Floor object | Swaption object | Vanilla object | Lookback object |
PartialLookback object | Barrier object | DoubleBarrier object | Asian object | Spread object
| Cliquet object | VarianceSwap object | CDSOption object

Instrument object (previously created using fininstrument), specified as a scalar or a vector.

The supported instrument objects using a scalar or vector are:

• Cap
• Floor
• Swaption
• Vanilla
• Lookback
• PartialLookback
• Barrier
• DoubleBarrier
• Asian
• Cliquet
• Spread
• CDSOption

The supported instrument object using a scalar is:
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• VarianceSwap

Data Types: object

inpSensitivity — List of sensitivities to compute
[ ] (default) | string array with values dependent on pricer object | cell array of character vectors
with values dependent on pricer object

(Optional) List of sensitivities to compute, specified as a NOUT-by-1 or a 1-by-NOUT cell array of
character vectors or string array.

The supported sensitivities depend on the pricing method.

inpPricer Object Supported Sensitivities
BjerksundStensland {'delta','gamma','vega',

'theta','rho','price','lambda'}
IkedaKunitomo {'delta','gamma','vega','theta','rho',

'price','lambda'}
Black 'price'
BlackScholes {'delta','gamma','vega','theta','rho',

'price','lambda'}
CDSBlack 'price'
ConzeViswanathan {'delta','gamma','vega','theta','rho',

'price','lambda}'
GoldmanSosinGatto {'delta','gamma','vega','theta','rho',

'price','lambda}'
HeynenKat {'delta','gamma','vega','theta','rho',

'price','lambda}'
HullWhite 'price'
Heston 'price'
KemnaVorst {'delta','gamma','vega','theta','rho',

'price','lambda'}
Kirk {'delta','gamma','vega','theta','rho',

'price','lambda'}
Levy {'delta','gamma','vega','theta','rho',

'price','lambda'}
Normal 'price'
RollGeskeWhaley {'delta','gamma','vega','theta','rho',

'price','lambda'}
Rubinstein {'delta','gamma','vega','theta','rho',

'price','lambda'}
SABR 'price'
TurnbullWakeman {'delta','gamma','vega','theta','rho',

'price',}
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inpSensitivity = {'All'} or inpSensitivity = ["All"] specifies that all sensitivities for
the pricing method are returned. This is the same as specifying inpSensitivity to include each
sensitivity.
Example: inpSensitivity =
["delta","gamma","vega","lambda","rho","theta","price"]

Data Types: cell | string

Output Arguments
Price — Instrument price
numeric

Instrument price, returned as a numeric.

PriceResult — Price result
PriceResult object

Price result, returned as a PriceResult object. The object has the following fields:

• PriceResult.Results — Table of results that includes sensitivities (if you specify
inpSensitivity)

• PriceResult.PricerData — Structure for pricer data

Note When pricing a VarianceSwap, PriceResult.FairVariance is returned.

Note The inpPricer options that do not support sensitivities do not return a PriceResult. For
example, there is no PriceResult returned for when using a Black, CDSBlack, HullWhite,
Normal, Heston, or SABR pricing method.

See Also
fininstrument | finmodel | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a

11 Functions

11-2144



price
Package: finpricer

Compute price for equity instrument with VannaVolga pricer

Syntax
[Price,PriceResult] = price(inpPricer,inpInstrument)
[Price,PriceResult] = price( ___ ,inpSensitivity)

Description
[Price,PriceResult] = price(inpPricer,inpInstrument) computes the instrument price
and related pricing information based on the pricing object inpPricer and the instrument object
inpInstrument.

[Price,PriceResult] = price( ___ ,inpSensitivity) adds an optional argument to specify
sensitivities.

Examples
TBD

Input Arguments
inpPricer — Pricer object
VannaVolga object

Pricer object, specified as a scalar VannaVolga pricer object. Use finpricer to create the
VannaVolga pricer object.
Data Types: object

inpInstrument — Instrument object
Vanilla object | Barrier object | DoubleBarrier object | Touch object

Instrument object, specified as a scalar or vector of Vanilla, Barrier, DoubleBarrier, Touch, or
DoubleTouch instrument objects. Use fininstrument to create the Vanilla, Barrier,
DoubleBarrier, Touch, or DoubleTouchinstrument objects.
Data Types: object

inpSensitivity — List of sensitivities to compute
[ ] (default) | string array with values "Price", "Delta", "Gamma", "Vega", "Rho", "Theta",
'Lambda', and "All" | cell array of character vectors with values 'Price', 'Delta', 'Gamma',
'Lambda', 'Vega', 'Rho', 'Theta', and 'All'

(Optional) List of sensitivities to compute, specified as a NOUT-by-1 or a 1-by-NOUT cell array of
character vectors or string array with supported values.
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inpSensitivity = {'All'} or inpSensitivity = ["All"] specifies that the output is
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'Price'. This is the same as
specifying inpSensitivity to include each sensitivity.
Example: inpSensitivity =
{'delta','gamma','vega','rho','lambda','theta','price'}

The sensitivities supported depend on the inpInstrument.

inpInstrument Supported Sensitivities
Vanilla, 'delta','gamma','vega','rho','lambda',

'theta','price'
Barrier 'delta','gamma','vega','rho','lambda',

'theta','price'
DoubleBarrier 'delta','gamma','vega','rho','lambda',

'theta','price'
Touch 'delta','gamma','vega','rho','lambda',

'theta','price'
DoubleTouch 'delta','gamma','vega','rho','lambda',

'theta','price'

Data Types: string | cell

Output Arguments
Price — Instrument price
numeric

Instrument price, returned as a numeric.

PriceResult — Price result
PriceResult object

Price result, returned as a PriceResult object. The object has the following fields:

• PriceResult.Results — Table of results that includes sensitivities (if you specify
inpSensitivity)

• PriceResult.PricerData — Structure for pricer data
• PriceResult.PricerData.Overhedge — TBD

See Also
fininstrument | finmodel | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020b
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price
Package: finpricer

Compute price for equity instrument with AssetMonteCarlo pricer

Syntax
[Price,PriceResult] = price(inpPricer,inpInstrument)
[Price,PriceResult] = price( ___ ,inpSensitivity)

Description
[Price,PriceResult] = price(inpPricer,inpInstrument) computes the equity instrument
price and related pricing information based on the pricing object inpPricer and the instrument
object inpInstrument.

[Price,PriceResult] = price( ___ ,inpSensitivity) adds an optional argument to specify
sensitivities. Use this syntax with the input argument combination in the previous syntax.

Examples

Price Touch Instrument Using Heston Model and Asset Monte Carlo Pricer

This example shows the workflow to price a Touch instrument when you use a Heston model and an
AssetMonteCarlo pricing method.

Create Touch Instrument Object

Use fininstrument to create a Touch instrument object.

TouchOpt = fininstrument("Touch",'ExerciseDate',datetime(2022,9,15),'BarrierValue',110,'PayoffValue',140,'BarrierType',"OT",'Name',"touch_option")

TouchOpt = 
  Touch with properties:

    ExerciseDate: 15-Sep-2022
    BarrierValue: 110
     PayoffValue: 140
     BarrierType: "ot"
      PayoffType: "expiry"
            Name: "touch_option"

Create Heston Model Object

Use finmodel to create a Heston model object.

HestonModel = finmodel("Heston",'V0',0.032,'ThetaV',0.1,'Kappa',0.003,'SigmaV',0.2,'RhoSV',0.9)

HestonModel = 
  Heston with properties:
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        V0: 0.0320
    ThetaV: 0.1000
     Kappa: 0.0030
    SigmaV: 0.2000
     RhoSV: 0.9000

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetMonteCarlo Pricer Object

Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("AssetMonteCarlo",'DiscountCurve',myRC,"Model",HestonModel,'SpotPrice',112,'simulationDates',datetime(2022,9,15))

outPricer = 
  HestonMonteCarlo with properties:

      DiscountCurve: [1x1 ratecurve]
          SpotPrice: 112
    SimulationDates: 15-Sep-2022
          NumTrials: 1000
      RandomNumbers: []
              Model: [1x1 finmodel.Heston]
       DividendType: "continuous"
      DividendValue: 0

Price Touch Instrument

Use price to compute the price and sensitivities for the Touch instrument.

[Price, outPR] = price(outPricer,TouchOpt,["all"])

Price = 63.5247
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outPR = 
  priceresult with properties:

       Results: [1x8 table]
    PricerData: [1x1 struct]

outPR.Results 

ans=1×8 table
    Price      Delta     Gamma     Lambda       Rho      Theta      Vega     VegaLT
    ______    _______    ______    _______    _______    ______    ______    ______

    63.525    -7.2363    1.0541    -12.758    -320.21    3.5527    418.94    8.1498

Input Arguments
inpPricer — Pricer object
AssetMonteCarlo object

Pricer object, specified as a previously created AssetMonteCarlo pricer object. Create the pricer
object using finpricer.
Data Types: object

inpInstrument — Instrument object
Vanilla object | Barrier object | Lookback object | Asian object | DoubleBarrier object |
Spread object | Touch object | DoubleTouch object | Cliquet object | Binary object

Instrument object, specified as a scalar or vector of previously created instrument objects. Create the
instrument objects using fininstrument. The following instrument objects are supported:

• Vanilla
• Lookback
• Barrier
• Asian
• Spread
• DoubleBarrier
• Cliquet
• Binary
• Touch
• DoubleTouch

Data Types: object

inpSensitivity — List of sensitivities to compute
[ ] (default) | string array with values dependent on pricer object | cell array of character vectors
with values dependent on pricer object

(Optional) List of sensitivities to compute, specified as an NOUT-by-1 or 1-by-NOUT cell array of
character vectors or string array.
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The supported sensitivities depend on the pricing method.

inpInstrument Object Supported Sensitivities
Vanilla {'delta','gamma','vega',

'theta','rho','price','lambda'}
Lookback {'delta','gamma','vega','theta','rho',

'price','lambda'}
Barrier {'delta','gamma','vega','theta','rho',

'price','lambda'}
Asian {'delta','gamma','vega','theta','rho',

'price','lambda'}
Spread {'delta','gamma','vega','theta','rho',

'price','lambda}'
DoubleBarrier {'delta','gamma','vega','theta','rho',

'price','lambda}'
Cliquet {'delta','gamma','vega','theta','rho',

'price','lambda}'
Binary {'delta','gamma','vega','theta','rho',

'price','lambda'}
Touch {'delta','gamma','vega','theta','rho',

'price','lambda'}
DoubleTouch {'delta','gamma','vega','theta','rho',

'price','lambda'}

inpSensitivity = {'All'} or inpSensitivity = ["All"] specifies that all sensitivities for
the pricing method are returned. This is the same as specifying inpSensitivity to include each
sensitivity.
Example: inpSensitivity =
["delta","gamma","vega","lambda","rho","theta","price"]

Data Types: cell | string

Output Arguments
Price — Instrument price
numeric

Instrument price, returned as a numeric.

PriceResult — Price result
PriceResult object

Price result, returned as a PriceResult object. The object has the following fields:

• PriceResult.Results — Table of results that includes sensitivities (if you specify
inpSensitivity)

• PriceResult.PricerData — Structure for pricer data
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Note The inpPricer options that do not support sensitivities do not return a PriceResult. For
example, there is no PriceResult returned for when you use a Black, CDSBlack, HullWhite,
Normal, or SABR pricing method.

See Also
fininstrument | finmodel | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020b
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price
Package: finpricer

Compute price for interest-rate instrument with IRMonteCarlo pricer

Syntax
[Price,PriceResult] = price(inpPricer,inpInstrument)
[Price,PriceResult] = price( ___ ,inpSensitivity)

Description
[Price,PriceResult] = price(inpPricer,inpInstrument) computes the interest-rate
instrument price and related pricing information based on the pricing object inpPricer and the
instrument object inpInstrument.

[Price,PriceResult] = price( ___ ,inpSensitivity) adds an optional argument to specify
sensitivities. Use this syntax with the input argument combination in the previous syntax.

Examples

Price Fixed Bond Instrument Using Hull-White Model and IRMonteCarlo Pricer

This example shows the workflow to price a FixedBond instrument when using a HullWhite model
and an IRMonteCarlo pricing method.

Create FixedBond Instrument Object

Use fininstrument to create a FixedBond instrument object.

FixB = fininstrument("FixedBond","Maturity",datetime(2022,9,15),"CouponRate",0.05,'Name',"fixed_bond")

FixB = 
  FixedBond with properties:

                  CouponRate: 0.0500
                      Period: 2
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 15-Sep-2022
                        Name: "fixed_bond"
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Create HullWhite Model Object

Use finmodel to create a HullWhite model object.

HullWhiteModel = finmodel("HullWhite",'Alpha',0.32,'Sigma',0.49)

HullWhiteModel = 
  HullWhite with properties:

    Alpha: 0.3200
    Sigma: 0.4900

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2019,1,1);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 01-Jan-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create IRMonteCarlo Pricer Object

Use finpricer to create an IRMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("IRMonteCarlo",'Model',HullWhiteModel,'DiscountCurve',myRC,'SimulationDates',ZeroDates)

outPricer = 
  HWMonteCarlo with properties:

          NumTrials: 1000
      RandomNumbers: []
      DiscountCurve: [1x1 ratecurve]
    SimulationDates: [01-Jul-2019    01-Jan-2020    01-Jan-2021    ...    ]
              Model: [1x1 finmodel.HullWhite]

Price FixedBond Instrument

Use price to compute the price and sensitivities for the FixedBond instrument.
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[Price,outPR] = price(outPricer,FixB,["all"])

Price = 115.0303

outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×4 table
    Price      Delta     Gamma     Vega
    ______    _______    ______    ____

    115.03    -397.13    1430.4     0  

Input Arguments
inpPricer — Pricer object
IRMonteCarlo object

Pricer object, specified as a previously created IRMonteCarlo pricer object. Create the pricer object
using finpricer.
Data Types: object

inpInstrument — Instrument object
Cap object | Floor object | Swaption object | Swap object | FixedBond object |
OptionEmbeddedFixedBond object | OptionEmbeddedFloatBond object | FixedBondOption
object | FloatBond object | FloatBondOption object

Instrument object, specified as scalar or a vector of previously created instrument objects. Create the
instrument objects using fininstrument. The following instrument objects are supported:

• Cap
• Floor
• Swap
• Swaption
• FixedBond
• OptionEmbeddedFixedBond
• FixedBondOption
• FloatBond
• FloatBondOption
• OptionEmbeddedFloatBond

Data Types: object
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inpSensitivity — List of sensitivities to compute
[ ] (default) | string array with values dependent on pricer object | cell array of character vectors
with values dependent on pricer object

(Optional) List of sensitivities to compute, specified as an NOUT-by-1 or 1-by-NOUT cell array of
character vectors or string array.

The supported sensitivities depend on the pricing method.

inpInstrument Supported Sensitivities
Cap {'delta','gamma','vega','price'}

('vega' not supported when using
SABRBraceGatarekMusiela model with the
IRMonteCarlo pricer.)

Floor {'delta','gamma','vega','price'}
('vega' not supported when using
SABRBraceGatarekMusiela model with the
IRMonteCarlo pricer.)

Swap {'delta','gamma','vega','price'}
Swaption {'delta','gamma','vega','price'}
FixedBond {'delta','gamma','vega','price'}

('vega' not supported when using
SABRBraceGatarekMusiela model with the
IRMonteCarlo pricer.)

OptionEmbeddedFixedBond {'delta','gamma','vega','price'}
('vega' not supported when using
SABRBraceGatarekMusiela model with the
IRMonteCarlo pricer.)

FixedBondOption {'delta','gamma','vega','price'}
('vega' not supported when using
SABRBraceGatarekMusiela model with the
IRMonteCarlo pricer.)

FloatBond {'delta','gamma','vega','price'}
('vega' not supported when using
SABRBraceGatarekMusiela model with the
IRMonteCarlo pricer.)

FloatBondOption {'delta','gamma','vega','price'}
('vega' not supported when using
SABRBraceGatarekMusiela model with the
IRMonteCarlo pricer.)

OptionEmbeddedFloatBond {'delta','gamma','vega','price'}
('vega' not supported when using
SABRBraceGatarekMusiela model with the
IRMonteCarlo pricer.)

inpSensitivity = 'All' or inpSensitivity = "All" specifies that all sensitivities for the
pricing method are returned. This is the same as specifying inpSensitivity to include each
sensitivity.
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Example: inpSensitivity = ["delta","gamma","vega","price"]
Data Types: cell | string

Output Arguments
Price — Instrument price
numeric

Instrument price, returned as a numeric.

PriceResult — Price result
PriceResult object

Price result, returned as a PriceResult object. The object has the following fields:

• PriceResult.Results — Table of results that includes sensitivities (if you specify
inpSensitivity)

• PriceResult.PricerData — Structure for pricer data

See Also
fininstrument | finmodel | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2021b
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price
Package: finpricer

Compute price for interest-rate instrument with IRTree pricer

Syntax
[Price,PriceResult] = price(inpPricer,inpInstrument)
[Price,PriceResult] = price( ___ ,inpSensitivity)

Description
[Price,PriceResult] = price(inpPricer,inpInstrument) computes the instrument price
and related pricing information based on the pricing object inpPricer and the instrument object
inpInstrument.

[Price,PriceResult] = price( ___ ,inpSensitivity) adds an optional argument to specify
sensitivities.

Examples

Use Hull-White Tree Pricer and Hull-White Model to Price FixedBondOption Instrument

This example shows the workflow to price a FixedBondOption instrument when you use a
HullWhite model and an IRTree pricing method.

Create FixedBond Instrument Object

Use fininstrument to create a FixedBond instrument object as the underlying bond.

BondInst = fininstrument("FixedBond",'Maturity',datetime(2029,9,15),'CouponRate',0.025,'Period', 1,'Name',"fixed_bond_instrument")

BondInst = 
  FixedBond with properties:

                  CouponRate: 0.0250
                      Period: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 15-Sep-2029
                        Name: "fixed_bond_instrument"
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Create FixedBondOption Instrument Object

Use fininstrument to create a FixedBondOption instrument object.

FixedBOption = fininstrument("FixedBondOption",'ExerciseDate',datetime(2025,9,15),'Strike',98,'Bond',BondInst,'Name',"fixed_bond_option_instrument")

FixedBOption = 
  FixedBondOption with properties:

       OptionType: "call"
    ExerciseStyle: "european"
     ExerciseDate: 15-Sep-2025
           Strike: 98
             Bond: [1x1 fininstrument.FixedBond]
             Name: "fixed_bond_option_instrument"

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2019,9,15);
Type = 'zero';
ZeroTimes = [calyears([1:10])]';
ZeroRates = [0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307 0.0310]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create HullWhite Model Object

Use finmodel to create a HullWhite model object.

HullWhiteModel = finmodel("HullWhite",'Alpha',0.01,'Sigma',0.05)

HullWhiteModel = 
  HullWhite with properties:

    Alpha: 0.0100
    Sigma: 0.0500
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Create IRTree Pricer Object

Use finpricer to create an IRTree pricer object and use the ratecurve object with the
'DiscountCurve' name-value pair argument.

HWTreePricer = finpricer("irtree",'Model',HullWhiteModel,'DiscountCurve',myRC,'TreeDates',ZeroDates)

HWTreePricer = 
  HWBKTree with properties:

             Tree: [1x1 struct]
        TreeDates: [10x1 datetime]
            Model: [1x1 finmodel.HullWhite]
    DiscountCurve: [1x1 ratecurve]

HWTreePricer.Tree

ans = struct with fields:
        tObs: [0 1 1.9973 2.9945 3.9918 4.9918 5.9891 6.9863 7.9836 8.9836]
        dObs: [15-Sep-2019    15-Sep-2020    15-Sep-2021    ...    ]
      CFlowT: {1x10 cell}
       Probs: {1x9 cell}
     Connect: {1x9 cell}
     FwdTree: {1x10 cell}
    RateTree: {1x10 cell}

Price FixedBondOption Instrument

Use price to compute the price and sensitivities for the FixedBondOption instrument.

[Price, outPR] = price(HWTreePricer,FixedBOption,["all"])

Price = 11.1739

outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×4 table
    Price      Vega     Gamma      Delta 
    ______    ______    ______    _______

    11.174    243.09    3667.6    -272.19

Input Arguments
inpPricer — Pricer object
IRTree object

Pricer object, specified as a scalar IRTree pricer object. Use finpricer to create the IRTree pricer
object.
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Data Types: object

inpInstrument — Instrument object
Cap object | Floor object | Swaption object | FixedBond object | OptionEmbeddedFixedBond
object | OptionEmbeddedFloatBond object | FixedBondOption object | FloatBond object |
FloatBondOption object

Instrument object, specified as scalar or a vector of previously created instrument objects. Create the
instrument objects using fininstrument. The following instrument objects are supported:

• Cap
• Floor
• Swaption
• FixedBond
• OptionEmbeddedFixedBond
• FixedBondOption
• FloatBond
• FloatBondOption
• OptionEmbeddedFloatBond

Data Types: object

inpSensitivity — List of sensitivities to compute
[ ] (default) | string array with values "Price", "Delta", "Gamma", "Vega", and "All" | cell array
of character vectors with values 'Price', 'Delta', 'Gamma', 'Vega', and 'All'

(Optional) List of sensitivities to compute, specified as a NOUT-by-1 or a 1-by-NOUT cell array of
character vectors or string array with possible values of 'Price', 'Delta', 'Gamma', 'Vega', and
'All'.

inpSensitivity = {'All'} or inpSensitivity = ["All"] specifies that the output is
'Delta', 'Gamma', 'Vega', and 'Price'. This is the same as specifying inpSensitivity to
include each sensitivity.

The sensitivities supported depend on the inpInstrument.

inpInstrument Supported Sensitivities
Cap {'delta','gamma','vega','price'}
Floor {'delta','gamma','vega','price'}
Swaption {'delta','gamma','vega','price'}
FixedBond {'delta','gamma','vega','price'}
OptionEmbeddedFixedBond {'delta','gamma','vega','price'}
FixedBondOption {'delta','gamma','vega','price'}
FloatBond {'delta','gamma','vega','price'}
FloatBondOption {'delta','gamma','vega','price'}
OptionEmbeddedFloatBond {'delta','gamma','vega','price'}
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Note Sensitivities are calculated based on yield shifts of 1 basis point, where the ShiftValue =
1/10000. All sensitivities are returned as dollar sensitivities. To find the per-dollar sensitivities, divide
the sensitivities by their respective instrument price.

Example: inpSensitivity = {'delta','gamma','vega','price'}
Data Types: string | cell

Output Arguments
Price — Instrument price
numeric

Instrument price, returned as a numeric.

PriceResult — Price result
PriceResult object

Price result, returned as a PriceResult object. The object has the following fields:

• PriceResult.Results — Table of results that includes sensitivities (if you specify
inpSensitivity)

• PriceResult.PricerData — Structure for pricer data that depends on the instrument that is
being priced

FixedBond, FloatBond, FixedBondOption, and OptionEmbeddedFixedBond have the
following shared fields for PriceResult.PricerData.PriceTree:

• tObs contains the observation times.
• Connect contains the connectivity vectors. Each element in the cell array describes how nodes

in that level connect to the next. For a given tree level, there are NumNodes elements in the
vector, and they contain the index of the node at the next level that the middle branch connects
to. Subtracting 1 from that value indicates where the up-branch connects to, and adding 1
indicates where the down branch connects to.

The following additional fields for PriceResult.PricerData.PriceTree depend on the
instrument type:

• PTree contains the clean prices.
• AITree contains the accrued interest.
• Probs contains the probability arrays. Each element of the cell array contains the up, middle, and

down transition probabilities for each node of the level.
• dObs contains the date of each level of the tree.
• CFlowT is a cell array with as many elements as levels of the tree. Each cell array element

contains the time factors (tObs) corresponding to its level of the tree and those levels ahead of it.
• FwdTree contains the forward spot rate from one node to the next. The forward spot rate is
defined as the inverse of the discount factor.

• ExTree contains the exercise indicator arrays. Each element of the cell array is an array
containing 1's where an option is exercised and 0's where it isn't.

• ProbTree contains the probability of reaching each node from root node.
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• ExProbTree contains the exercise probabilities. Each element in the cell array is an array
containing 0's where there is no exercise, or the probability of reaching that node where exercise
happens.

• ExProbsByTreeLevel is an array with each row holding the exercise probability for a given
option at each tree observation time.

A FixedBond instrument has these additional fields within
PriceResult.PricerData.PriceTree:

• PTree
• AITree
• Probs.

A FloatBond instrument has these additional fields within
PriceResult.PricerData.PriceTree:

• dObs
• CFlowT
• Probs
• FwdTree

A FixedBondOption instrument has these additional fields within
PriceResult.PricerData.PriceTree:

• PTree
• Probs
• ExTree

A OptionEmbeddedFixedBond instrument has these additional fields within
PriceResult.PricerData.PriceTree:

• PTree
• ExTree
• ProbTree
• ExProbTree
• ExProbsByTreeLevel

The following table displays the PriceResult.PricerData.PriceTree fields related to each
instrument.

PriceResult.Pr
icerData.Price
Tree Fields

FixedBond FloatBond FixedBondOptio
n

OptionEmbedded
FixedBond

tObs ✓ ✓ ✓ ✓

Connect ✓ ✓ ✓ ✓

PTree ✓ No ✓ ✓

AITree ✓ No No No
Probs ✓ ✓ ✓ No
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PriceResult.Pr
icerData.Price
Tree Fields

FixedBond FloatBond FixedBondOptio
n

OptionEmbedded
FixedBond

dObs No ✓ No No
CFlowT No ✓ No No
FwdTree No ✓ ✓ ✓

ExTree No No ✓ ✓

ProbTree No No No ✓

ExProbTree No No No ✓

ExProbsByTreeL
evel

No No No ✓

See Also
fininstrument | finmodel | finpricer

Topics
“Use treeviewer to Examine HWTree and PriceTree When Pricing European Callable Bond” on page
2-195
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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price
Package: finpricer

Compute price for equity instrument with AssetTree pricer

Syntax
[Price,PriceResult] = price(inpPricer,inpInstrument)
[Price,PriceResult] = price( ___ ,inpSensitivity)

Description
[Price,PriceResult] = price(inpPricer,inpInstrument) computes the equity instrument
price and related pricing information based on the pricing object inpPricer and the instrument
object inpInstrument.

[Price,PriceResult] = price( ___ ,inpSensitivity) adds an optional argument to specify
sensitivities in addition to the required arguments in the previous syntax.

Examples

Use Leisen-Reimer Tree Pricer and Black-Scholes Model to Price Vanilla Instrument

This example shows the workflow to price a Vanilla instrument when you use a BlackScholes
model and an AssetTree pricing method.

Create Vanilla Instrument Object

Use fininstrument to create a Vanilla instrument object.

VanillaOpt = fininstrument("Vanilla",'ExerciseDate',datetime(2019,5,1),'Strike',29,'OptionType',"put",'ExerciseStyle',"european",'Name',"vanilla_option")

VanillaOpt = 
  Vanilla with properties:

       OptionType: "put"
    ExerciseStyle: "european"
     ExerciseDate: 01-May-2019
           Strike: 29
             Name: "vanilla_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',0.25)

BlackScholesModel = 
  BlackScholes with properties:
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     Volatility: 0.2500
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,1,1);
Maturity = datetime(2020,1,1);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',1)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 1
                Dates: 01-Jan-2020
                Rates: 0.0350
               Settle: 01-Jan-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetTree Pricer Object

Use finpricer to create an AssetTree pricer object for an LR equity tree and use the ratecurve
object for the 'DiscountCurve' name-value pair argument.

LRPricer = finpricer("AssetTree",'DiscountCurve',myRC,'Model',BlackScholesModel,'SpotPrice',30,'PricingMethod',"LeisenReimer",'Maturity',datetime(2019,5,1),'NumPeriods',15)

LRPricer = 
  LRTree with properties:

    InversionMethod: PP1
             Strike: 30
               Tree: [1x1 struct]
         NumPeriods: 15
              Model: [1x1 finmodel.BlackScholes]
      DiscountCurve: [1x1 ratecurve]
          SpotPrice: 30
       DividendType: "continuous"
      DividendValue: 0
          TreeDates: [02-Feb-2018 08:00:00    06-Mar-2018 16:00:00    ...    ]

Price Vanilla Instrument

Use price to compute the price and sensitivities for the Vanilla instrument.

[Price, outPR] = price(LRPricer,VanillaOpt,"all")

Price = 2.2542

outPR = 
  priceresult with properties:
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       Results: [1x7 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×7 table
    Price      Delta       Gamma       Vega     Lambda      Rho       Theta  
    ______    ________    ________    ______    ______    _______    ________

    2.2542    -0.33628    0.044039    12.724    -4.469    -16.433    -0.76073

Use Standard Trinomial Tree Pricer and Black-Scholes Model to Price Vanilla Instrument

This example shows the workflow to price a Vanilla instrument when you use a BlackScholes
model and an AssetTree pricing method for a Standard Trinomial (STT) tree.

Create Vanilla Instrument Object

Use fininstrument to create a Vanilla instrument object.

VanillaOpt = fininstrument("Vanilla",'ExerciseDate',datetime(2019,5,1),'Strike',29,'OptionType',"put",'ExerciseStyle',"european",'Name',"vanilla_option")

VanillaOpt = 
  Vanilla with properties:

       OptionType: "put"
    ExerciseStyle: "european"
     ExerciseDate: 01-May-2019
           Strike: 29
             Name: "vanilla_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',0.25)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.2500
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,1,1);
Maturity = datetime(2020,1,1);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',1)
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myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 1
                Dates: 01-Jan-2020
                Rates: 0.0350
               Settle: 01-Jan-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetTree Pricer Object

Use finpricer to create an AssetTree pricer object for an Standard Trinomial equity tree and use
the ratecurve object for the 'DiscountCurve' name-value pair argument.

STTPricer = finpricer("AssetTree",'DiscountCurve',myRC,'Model',BlackScholesModel,'SpotPrice',30,'PricingMethod',"StandardTrinomial",'Maturity',datetime(2019,5,1),'NumPeriods',15)

STTPricer = 
  STTree with properties:

             Tree: [1x1 struct]
       NumPeriods: 15
            Model: [1x1 finmodel.BlackScholes]
    DiscountCurve: [1x1 ratecurve]
        SpotPrice: 30
     DividendType: "continuous"
    DividendValue: 0
        TreeDates: [02-Feb-2018 08:00:00    06-Mar-2018 16:00:00    ...    ]

Price Vanilla Instrument

Use price to compute the price and sensitivities for the Vanilla instrument.

[Price, outPR] = price(STTPricer,VanillaOpt,"all")

Price = 2.2826

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×7 table
    Price      Delta      Gamma      Vega     Lambda       Rho       Theta  
    ______    _______    ________    _____    _______    _______    ________
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    2.2826    -0.2592    0.030949    12.51    -3.8981    -16.516    -0.73845

Input Arguments
inpPricer — Pricer object
AssetTree object

Pricer object, specified as a scalar AssetTree pricer object. Use finpricer to create the
AssetTree pricer object.
Data Types: object

inpInstrument — Instrument object
Vanilla object | Barrier object | Asian object | Lookback object

Instrument object, specified as a scalar or vector of previously created instrument objects. Create the
instrument objects using fininstrument. The following instrument objects are supported:

• Vanilla
• Lookback
• Barrier
• Asian

Data Types: object

inpSensitivity — List of sensitivities to compute
[ ] (default) | string array with values "Price", "Delta", "Gamma", "Vega", "Theta", "Rho",
"Lambda", and "All" | cell array of character vectors with values 'Price', 'Delta', 'Gamma',
'Vega', 'Theta', 'Rho', 'Lambda', and 'All'

(Optional) List of sensitivities to compute, specified as an NOUT-by-1 or a 1-by-NOUT cell array of
character vectors or string array with possible values of 'Price', 'Delta', 'Gamma', 'Vega',
'Theta', 'Rho', 'Lambda', and 'All'.

inpSensitivity = {'All'} or inpSensitivity = ["All"] specifies that the output is
'Delta', 'Gamma', 'Vega', 'Theta', 'Rho', 'Lambda', and 'Price'. Using this syntax is the
same as specifying inpSensitivity to include each sensitivity.

inpInstrument Supported Sensitivities
Asian {'delta','gamma','vega','theta','rho',

'lambda','price'}
Barrier {'delta','gamma','vega','theta','rho',

'lambda','price'}
Lookback {'delta','gamma','vega','theta','rho',

'lambda','price'}
Vanilla {'delta','gamma','vega','theta','rho',

'lambda','price'}
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Note Sensitivities are calculated based on yield shifts of 1 basis point, where the ShiftValue =
1/10000. All sensitivities are returned as dollar sensitivities. To find the per-dollar sensitivities, divide
the sensitivities by their respective instrument price.

Example: inpSensitivity = {'delta','gamma','vega','price'}
Data Types: string | cell

Output Arguments
Price — Instrument price
numeric

Instrument price, returned as a numeric.

PriceResult — Price result
PriceResult object

Price result, returned as a PriceResult object. The object has the following fields:

• PriceResult.Results — Table of results that includes sensitivities (if you specify
inpSensitivity)

• PriceResult.PricerData — Structure for pricer data that depends on the instrument that is
being priced

Asian and Lookback have an empty ([]) PricerData field because the pricing functions for
these instruments cannot unambiguously assign a price to any node but the root node.

Vanilla and Barrier have the following shared fields for
PriceResult.PricerData.PriceTree:

• PTree contains the clean prices.
• ExTree contains the exercise indicator arrays. Each element of the cell array is an array

where 1 indicates that an option is exercised and 0 indicates that an option is not exercised.
• dObs contains the date of each level of the tree.
• tObs contains the observation times.
• Probs contains the probability arrays. Each element of the cell array contains the up, middle,

and down transition probabilities for each node of the level.

See Also
fininstrument | finmodel | finpricer

Topics
“Use treeviewer to Examine HWTree and PriceTree When Pricing European Callable Bond” on page
2-195
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2021a
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price
Package: finpricer

Compute price for credit derivative instrument with Credit pricer

Syntax
[Price,PriceResult] = price(inpPricer,inpInstrument)

Description
[Price,PriceResult] = price(inpPricer,inpInstrument) computes the instrument price
and related pricing information based on the pricing object inpPricer and the instrument object
inpInstrument.

Examples

Use Credit Pricer and Default Probability Curve to Price CDS Instrument

This example shows the workflow to price a CDS instrument when you use a defprobcurve model
and a Credit pricing method.

Create CDS Instrument Object

Use fininstrument to create a CDS instrument object.

CDS = fininstrument("cds",'Maturity',datetime(2027,9,20),'ContractSpread', 50,'Name',"CDS_instrument")

CDS = 
  CDS with properties:

           ContractSpread: 50
                 Maturity: 20-Sep-2027
                   Period: 4
                    Basis: 2
             RecoveryRate: 0.4000
    BusinessDayConvention: "actual"
                 Holidays: NaT
        PayAccruedPremium: 1
                 Notional: 10000000
                     Name: "CDS_instrument"

Create defprobcurve Object

Create a defprobcurve object using defprobcurve.

Settle = datetime(2017, 9, 20);
DefProbTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])];
DefaultProbabilities = [0.005 0.007 0.01 0.015 0.026 0.04 0.077 0.093 0.15 0.20]';
ProbDates = Settle + DefProbTimes;
DefaultProbCurve = defprobcurve(Settle,ProbDates,DefaultProbabilities)
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DefaultProbCurve = 
  defprobcurve with properties:

                  Settle: 20-Sep-2017
                   Basis: 2
                   Dates: [10x1 datetime]
    DefaultProbabilities: [10x1 double]

Create ratecurve Object

Create a ratecurve object using ratecurve.

ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])];
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 20-Sep-2017
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Credit Pricer Object

Use finpricer to create a Credit pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

CDSpricer = finpricer("credit",'DiscountCurve',ZeroCurve,'DefaultProbabilityCurve',DefaultProbCurve)

CDSpricer = 
  Credit with properties:

              DiscountCurve: [1x1 ratecurve]
                   TimeStep: 10
    DefaultProbabilityCurve: [1x1 defprobcurve]

Price CDS Instrument

Use price to compute the price for the CDS instrument.

outPrice = price(CDSpricer, CDS)

outPrice = 6.9363e+04

Input Arguments
inpPricer — Pricer object
Credit pricer object
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Pricer object, specified as a scalar Credit pricer object. Use finpricer to create the Credit pricer
object.
Data Types: object

inpInstrument — Instrument object
CDS object

Instrument object, specified as a scalar or vector of previously created CDS instrument objects. Use
fininstrument to create CDS instrument objects.
Data Types: object

Output Arguments
Price — Instrument price
numeric

Instrument price, returned as a numeric.

PriceResult — Price result
PriceResult object

Price result, returned as a PriceResult object. The object has the following fields:

• PriceResult.Results — Table of results that includes the CDS price and accrued premium
• PriceResult.PricerData — Structure that includes the premium leg payment dates, times,

and cash flows

See Also
fininstrument | finmodel | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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price
Package: finpricer

Compute price for interest-rate instrument with Discount pricer

Syntax
[Price,PriceResult] = price(inpPricer,inpInstrument)
[Price,PriceResult] = price( ___ ,inpSensitivity)

Description
[Price,PriceResult] = price(inpPricer,inpInstrument) computes the instrument price
and related pricing information based on the pricing object inpPricer and the instrument object
inpInstrument.

[Price,PriceResult] = price( ___ ,inpSensitivity) adds an optional argument to specify
sensitivities.

Examples

Use Discount Pricer and ratecurve to Price Swap Instrument

This example shows the workflow to price a Swap instrument when using a ratecurve and a
Discount pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve for the underlying interest-rate curve for the Swap
instrument.

Settle = datetime(2022,1,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Jan-2022
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
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     LongExtrapMethod: "previous"

Create Swap Instrument Object

Use fininstrument to create a Swap instrument object.

SwapOpt = fininstrument("Swap",'Maturity',datetime(2027,1,15),'LegRate',[0.024 0.015],'LegType',["fixed","float"],'ProjectionCurve',myRC,'Name',"swap_instrument")

SwapOpt = 
  Swap with properties:

                     LegRate: [0.0240 0.0150]
                     LegType: ["fixed"    "float"]
                       Reset: [2 2]
                       Basis: [0 0]
                    Notional: 100
          LatestFloatingRate: [NaN NaN]
                 ResetOffset: [0 0]
    DaycountAdjustedCashFlow: [0 0]
             ProjectionCurve: [1x2 ratecurve]
       BusinessDayConvention: ["actual"    "actual"]
                    Holidays: NaT
                EndMonthRule: [1 1]
                   StartDate: NaT
                    Maturity: 15-Jan-2027
                        Name: "swap_instrument"

Create Discount Pricer Object

Use finpricer to create a Discount pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("Discount", 'DiscountCurve',myRC)

outPricer = 
  Discount with properties:

    DiscountCurve: [1x1 ratecurve]

Price Swap Instrument

Use price to compute the price and sensitivities for the Swap instrument.

[Price, outPR] = price(outPricer, SwapOpt,["all"])

Price = -1.3834

outPR = 
  priceresult with properties:

       Results: [1x2 table]
    PricerData: []

outPR.Results
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ans=1×2 table
     Price       DV01  
    _______    ________

    -1.3834    0.048336

Input Arguments
inpPricer — Pricer object
Discount pricer object

Pricer object, specified as a scalar Discount pricer object. Use finpricer to create the
Discountpricer object.
Data Types: object

inpInstrument — Instrument object
Deposit object | FixedBond object | FloatBond object | FRA object | Swap object | OISFuture
object | STIRFuture object | OvernightIndexedSwap object

Instrument object, specified as a scalar or vector for Deposit, FixedBond, FloatBond, FRA, Swap,
STIRFuture, OISFuture, or OvernightIndexedSwap instrument objects. Use fininstrument to
create the Deposit, FixedBond, FloatBond, FRA, Swap, STIRFuture, OISFuture, or
OvernightIndexedSwap instrument objects.
Data Types: object

inpSensitivity — List of sensitivities to compute
[ ] (default) | string array of character vector with values "Price", "DV01", and "All" | cell array
of character vectors with values 'Price', 'DV01', and 'All'

(Optional) List of sensitivities to compute, specified as a NOUT-by-1 or a 1-by-NOUT cell array of
character vectors or string array with possible values of 'Price' and 'DV01'.

inpSensitivity = {'All'} or inpSensitivity = ["All"] specifies that the output is Price
and DV01. This is the same as specifying inpSensitivity to include each sensitivity.

The sensitivities supported depend on the inpInstrument.

inpInstrument Supported Sensitivities
Deposit {'DV01','price'}
FixedBond {'DV01','price'}
FloatBond {'DV01','price'}
FRA {'DV01','price'}
Swap {'DV01','price'}
STIRFuture {'DV01','price'}
OISFuture {'DV01','price'}
OvernightIndexedSwap {'DV01','price'}

Example: inpSensitivity = {'DV01','price'}
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Data Types: cell | string

Output Arguments
Price — Instrument price
numeric

Instrument price, returned as a numeric.

PriceResult — Price result
PriceResult object

Price result, returned as an object. The object has the following fields:

• PriceResult.Results — Table of results that includes sensitivities (if you specify
inpSensitivity)

• PriceResult.PricerData — Structure for pricer data

See Also
fininstrument | finmodel | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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price
Package: finpricer

Compute price for interest-rate instrument with Future pricer

Syntax
[Price,PriceResult] = price(inpPricer,inpInstrument)

Description
[Price,PriceResult] = price(inpPricer,inpInstrument) computes the instrument price
and related pricing information based on the pricing object inpPricer and the instrument object
inpInstrument.

The price function computes the value of the futures contract for the party that is long (not short)
for the underlying asset, assuming the contract is held until maturity like a forward contract. If the
price is negative for the party that is long, then the value is positive for the other party that is short.
If the price is positive for the party that is long, then the value is negative for the other party that is
short.

Examples

Use Future Pricer and ratecurve to Price BondFuture Instrument

This example shows the workflow to price a BondFuture instrument when you use a ratecurve
object and a Future pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2022,3,1);
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])];
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates,Compounding=2);

Create Underlying FixedBond Instrument Object

Use fininstrument to create a FixedBond instrument object.

FixB = fininstrument("FixedBond",Maturity=datetime(2032,9,1),CouponRate=0.05,Name="fixed_bond_instrument")

FixB = 
  FixedBond with properties:

                  CouponRate: 0.0500
                      Period: 2
                       Basis: 0
                EndMonthRule: 1

 price

11-2177



                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 01-Sep-2032
                        Name: "fixed_bond_instrument"

Create BondFuture Instrument Object

Use fininstrument to create a BondFuture instrument object.

BondFut = fininstrument("BondFuture",Maturity=datetime(2022,9,1),QuotedPrice=86,Bond=FixB,ConversionFactor=1.43,Name="bondfuture_instrument")

BondFut = 
  BondFuture with properties:

            Maturity: 01-Sep-2022
         QuotedPrice: 86
                Bond: [1x1 fininstrument.FixedBond]
    ConversionFactor: 1.4300
            Notional: 100000
                Name: "bondfuture_instrument"

Create Future Pricer Object

Use finpricer to create a Future pricer object and use the ratecurve object with the
DiscountCurve name-value argument.

outPricer = finpricer("Future",DiscountCurve=ZeroCurve,SpotPrice=125)

outPricer = 
  Future with properties:

    DiscountCurve: [1x1 ratecurve]
        SpotPrice: 125

Price BondFuture Instrument

Use price to compute the price and price result for the BondFuture instrument.

[Price,outPR] = price(outPricer,BondFut)

Price = -151.9270

outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: []

outPR.Results
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ans=1×4 table
     Price     FairDeliveryPrice    FairFuturePrice    AccruedInterest
    _______    _________________    _______________    _______________

    -151.93       1.2283e+05            85.893                0       

Input Arguments
inpPricer — Pricer object
Future pricer object

Pricer object, specified as a scalar Future pricer object. Use finpricer to create the Future pricer
object.
Data Types: object

inpInstrument — Instrument object
BondFuture object | CommodityFuture object | EquityIndexFuture object | FXFuture object

Instrument object, specified as a scalar or vector for BondFuture, CommodityFuture, FXFuture,
or EquityIndexFuture instrument objects. Use fininstrument to create these instrument
objects.
Data Types: object

Output Arguments
Price — Instrument price
numeric

Instrument price, returned as a numeric.

PriceResult — Price result
PriceResult object

Price result, returned as an object. The PriceResult.Results is a table of results that includes
Price, FairDeliveryPrice, FairFuturePrice, and AccruedInterest.

See Also
fininstrument | finmodel | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2022a
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price
Package: finpricer

Compute price for equity instrument with FFT pricer

Syntax
[Price,PriceResult] = price(inpPricer,inpInstrument)
[Price,PriceResult] = price( ___ ,inpSensitivity)

Description
[Price,PriceResult] = price(inpPricer,inpInstrument) computes the instrument price
and related pricing information based on the pricing object inpPricer and the instrument object
inpInstrument.

[Price,PriceResult] = price( ___ ,inpSensitivity) adds an optional argument to specify
sensitivities.

Examples

Use FFT Pricer and Heston Model to Price Vanilla Instrument

This example shows the workflow to price a Vanilla instrument when you use a Heston model and
an FFT pricing method.

Create Vanilla Instrument Object

Use fininstrument to create a Vanilla instrument object.

VanillaOpt = fininstrument("Vanilla",'ExerciseDate',datetime(2022,9,15),'Strike',105,'ExerciseStyle',"european",'Name',"vanilla_option")

VanillaOpt = 
  Vanilla with properties:

       OptionType: "call"
    ExerciseStyle: "european"
     ExerciseDate: 15-Sep-2022
           Strike: 105
             Name: "vanilla_option"

Create Heston Model Object

Use finmodel to create a Heston model object.

HestonModel = finmodel("Heston",'V0',0.032,'ThetaV',0.1,'Kappa',0.003,'SigmaV',0.2,'RhoSV',0.9)

HestonModel = 
  Heston with properties:
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        V0: 0.0320
    ThetaV: 0.1000
     Kappa: 0.0030
    SigmaV: 0.2000
     RhoSV: 0.9000

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create FFT Pricer Object

Use finpricer to create an FFT pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("fft",'DiscountCurve',myRC,'Model',HestonModel,'SpotPrice',100,'CharacteristicFcnStep', 0.2,'NumFFT',2^13)

outPricer = 
  FFT with properties:

                    Model: [1x1 finmodel.Heston]
            DiscountCurve: [1x1 ratecurve]
                SpotPrice: 100
             DividendType: "continuous"
            DividendValue: 0
                   NumFFT: 8192
    CharacteristicFcnStep: 0.2000
            LogStrikeStep: 0.0038
        CharacteristicFcn: @characteristicFcnHeston
            DampingFactor: 1.5000
               Quadrature: "simpson"
           VolRiskPremium: 0
               LittleTrap: 1

Price Vanilla Instrument

Use price to compute the price and sensitivities for the Vanilla instrument.
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[Price, outPR] = price(outPricer,VanillaOpt,["all"])

Price = 14.7545

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []

outPR.Results

ans=1×7 table
    Price      Delta      Gamma       Theta       Rho       Vega     VegaLT
    ______    _______    ________    ________    ______    ______    ______

    14.754    0.44868    0.021649    -0.20891    120.45    88.192    1.3248

Input Arguments
inpPricer — Pricer object
FFT object

Pricer object, specified as a scalar FFT pricer object. Use finpricer to create the FFT pricer object.
Data Types: object

inpInstrument — Instrument object
Vanilla object

Instrument object, specified as a scalar or vector of Vanilla instrument objects. Use
fininstrument to create Vanilla instrument objects.
Data Types: object

inpSensitivity — List of sensitivities to compute
[ ] (default) | string array with values "Price", "Delta", "Gamma", "Vega", "Rho", "Theta",
"Vegalt", and "All" | cell array of character vectors with values 'Price', 'Delta', 'Gamma',
'Vega', 'Rho', 'Theta', 'Vegalt', and 'All'

(Optional) List of sensitivities to compute, specified as a NOUT-by-1 or a 1-by-NOUT cell array of
character vectors or string array with possible values of 'Price', 'Delta', 'Gamma', 'Vega',
'Rho', 'Theta', 'Vegalt', and 'All'.

Note For a Vanilla instrument using a Heston model, 'Vegalt' is not supported.

inpSensitivity = {'All'} or inpSensitivity = ["All"] specifies that the output is
'Delta', 'Gamma', 'Vega', 'Rho', 'Theta', 'Vegalt', and 'Price'. This is the same as
specifying inpSensitivity to include each sensitivity.
Example: inpSensitivity =
{'delta','gamma','vega','rho','theta','vegalt','price'}

Data Types: string | cell

11 Functions

11-2182



Output Arguments
Price — Instrument price
numeric

Instrument price, returned as a numeric.

PriceResult — Price result
PriceResult object

Price result, returned as a PriceResult object. The object has the following fields:

• PriceResult.Results — Table of results that includes sensitivities (if you specify
inpSensitivity)

• PriceResult.PricerData — Structure for pricer data

See Also
fininstrument | finmodel | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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price
Package: finpricer

Compute price for equity instrument with FiniteDifference pricer

Syntax
[Price,PriceResult] = price(inpPricer,inpInstrument)
[Price,PriceResult] = price( ___ ,inpSensitivity)

Description
[Price,PriceResult] = price(inpPricer,inpInstrument) computes the instrument price
and related pricing information based on the pricing object inpPricer and the instrument object
inpInstrument.

[Price,PriceResult] = price( ___ ,inpSensitivity) adds an optional argument to specify
sensitivities.

Examples

Use Finite Difference Pricer and Black-Scholes Model to Price Barrier Instrument

This example shows the workflow to price a Barrier instrument when you use a BlackScholes
model and a FiniteDifference pricing method.

Create Barrier Instrument Object

Use fininstrument to create a Barrier instrument object.

BarrierOpt = fininstrument("Barrier",'Strike',105,'ExerciseDate',datetime(2019,1,1),'OptionType',"call",'ExerciseStyle',"american",'BarrierType',"DO",'BarrierValue',40,'Name',"barrier_option")

BarrierOpt = 
  Barrier with properties:

       OptionType: "call"
           Strike: 105
      BarrierType: "do"
     BarrierValue: 40
           Rebate: 0
    ExerciseStyle: "american"
     ExerciseDate: 01-Jan-2019
             Name: "barrier_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',0.30)
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BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.3000
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,1,1);
Maturity = datetime(2023,1,1);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',1)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 1
                Dates: 01-Jan-2023
                Rates: 0.0350
               Settle: 01-Jan-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create FiniteDifference Pricer Object

Use finpricer to create a FiniteDifference pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("FiniteDifference",'Model',BlackScholesModel,'DiscountCurve',myRC,'SpotPrice',100)

outPricer = 
  FiniteDifference with properties:

     DiscountCurve: [1x1 ratecurve]
             Model: [1x1 finmodel.BlackScholes]
         SpotPrice: 100
    GridProperties: [1x1 struct]
      DividendType: "continuous"
     DividendValue: 0

Price Barrier Instrument

Use price to compute the price and sensitivities for the Barrier instrument.

[Price, outPR] = price(outPricer,BarrierOpt,["all"])

Price = 11.3230

outPR = 
  priceresult with properties:
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       Results: [1x7 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×7 table
    Price      Delta     Gamma     Lambda     Theta      Rho       Vega 
    ______    _______    ______    ______    _______    ______    ______

    11.323    0.54126    0.0132    4.7802    -7.4408    42.766    39.627

Input Arguments
inpPricer — Pricer object
FiniteDifference object

Pricer object, specified as a scalar FiniteDifference pricer object. Use finpricer to create the
FiniteDifference pricer object.
Data Types: object

inpInstrument — Instrument object
Vanilla object | Barrier object | DoubleBarrier object | ConvertibleBond object

Instrument object, specified as a scalar or vector of Vanilla, Barrier, DoubleBarrier, or
ConvertibleBond instrument objects. Use fininstrument to create the Vanilla, Barrier,
DoubleBarrier, or ConvertibleBond instrument objects.
Data Types: object

inpSensitivity — List of sensitivities to compute
[ ] (default) | string array with values "Price", "Delta", "Gamma", "Vega", "Rho", "Theta",
"Lambda", "Vegalt", and "All" | cell array of character vectors with values 'Price', 'Delta',
'Gamma', 'Lambda', 'Vegalt', 'Vega', 'Rho', 'Theta', and 'All'

(Optional) List of sensitivities to compute, specified as a NOUT-by-1 or a 1-by-NOUT cell array of
character vectors or string array with supported values.

inpSensitivity = {'All'} or inpSensitivity = ["All"] specifies that the output is
'Delta', 'Gamma', 'Vega', 'Vegalt', 'Lambda', 'Rho', 'Theta', and 'Price'. This is the
same as specifying inpSensitivity to include each sensitivity.

Note When you price a Barrier or ConvertibleBond instruments using a BlackScholes model,
'Vegalt' is not supported.

Example: inpSensitivity =
{'delta','gamma','vega','vegalt','rho','lambda','theta','price'}

The sensitivities supported depend on the inpInstrument.
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inpInstrument Supported Sensitivities
Vanilla, 'delta','gamma','vega','vegalt','rho',

'lambda','theta','price'
Barrier 'delta','gamma','vega','rho','lambda',

'theta','price'
DoubleBarrier 'delta','gamma','vega','vegalt','rho',

'lambda','theta','price'
ConvertibleBond 'delta','gamma','vega','rho','lambda',

'theta','price'

Data Types: string | cell

Output Arguments
Price — Instrument price
numeric

Instrument price, returned as a numeric.

PriceResult — Price result
PriceResult object

Price result, returned as a PriceResult object. The object has the following fields:

• PriceResult.Results — Table of results that includes sensitivities (if you specify
inpSensitivity)

• PriceResult.PricerData — Structure for pricer data

See Also
fininstrument | finmodel | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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price
Package: finpricer

Compute price for equity instrument with NumericalIntegration pricer

Syntax
[Price,PriceResult] = price(inpPricer,inpInstrument)
[Price,PriceResult] = price( ___ ,inpSensitivity)

Description
[Price,PriceResult] = price(inpPricer,inpInstrument) computes the instrument price
and related pricing information based on the pricing object inpPricer and the instrument object
inpInstrument.

[Price,PriceResult] = price( ___ ,inpSensitivity) adds an optional argument to specify
sensitivities.

Examples

Use Numerical Integration Pricer and Merton Model to Price Vanilla Instrument

This example shows the workflow to price a Vanilla instrument when you use a Merton model and
a NumericalIntegration pricing method.

Create Vanilla Instrument Object

Use fininstrument to create a Vanilla instrument object.

VanillaOpt = fininstrument("Vanilla",'ExerciseDate',datetime(2020,3,15),'ExerciseStyle',"european",'Strike',105,'Name',"vanilla_option")

VanillaOpt = 
  Vanilla with properties:

       OptionType: "call"
    ExerciseStyle: "european"
     ExerciseDate: 15-Mar-2020
           Strike: 105
             Name: "vanilla_option"

Create Merton Model Object

Use finmodel to create a Merton model object.

MertonModel = finmodel("Merton",'Volatility',0.45,'MeanJ',0.02,'JumpVol',0.07,'JumpFreq',0.09)

MertonModel = 
  Merton with properties:
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    Volatility: 0.4500
         MeanJ: 0.0200
       JumpVol: 0.0700
      JumpFreq: 0.0900

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

myRC = ratecurve('zero',datetime(2019,9,15),datetime(2020,3,15),0.02)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: 15-Mar-2020
                Rates: 0.0200
               Settle: 15-Sep-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create NumericalIntegration Pricer Object

Use finpricer to create a NumericalIntegration pricer object and use the ratecurve object
for the 'DiscountCurve'name-value pair argument.

outPricer = finpricer("numericalintegration",'Model',MertonModel,'DiscountCurve',myRC,'SpotPrice',100,'DividendValue',.01,'VolRiskPremium',0.9,'LittleTrap',false,'AbsTol',0.5,'RelTol',0.4,'Framework',"lewis2001")

outPricer = 
  NumericalIntegration with properties:

                Model: [1x1 finmodel.Merton]
        DiscountCurve: [1x1 ratecurve]
            SpotPrice: 100
         DividendType: "continuous"
        DividendValue: 0.0100
               AbsTol: 0.5000
               RelTol: 0.4000
     IntegrationRange: [1.0000e-09 Inf]
    CharacteristicFcn: @characteristicFcnMerton76
            Framework: "lewis2001"
       VolRiskPremium: 0.9000
           LittleTrap: 0

Price Vanilla Instrument

Use price to compute the price and sensitivities for the Vanilla instrument.

[Price, outPR] = price(outPricer,VanillaOpt,["all"])

Price = 10.7325

outPR = 
  priceresult with properties:
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       Results: [1x6 table]
    PricerData: []

outPR.Results

ans=1×6 table
    Price     Delta      Gamma       Theta      Rho       Vega 
    ______    ______    ________    _______    ______    ______

    10.732    0.5058    0.012492    -12.969    19.815    27.954

Input Arguments
inpPricer — Pricer object
NumericalIntegration object

Pricer object, specified as a scalar NumericalIntegration pricer object. Use finpricer to create
the NumericalIntegration pricer object.
Data Types: object

inpInstrument — Instrument object
Vanilla object

Instrument object, specified as a scalar or vector of Vanilla instrument objects. Use
fininstrument to create Vanilla instrument objects.
Data Types: object

inpSensitivity — List of sensitivities to compute
[ ] (default) | string array with values "Price", "Delta", "Gamma", "Vega", "Rho", "Theta",
"Vegalt", and "All" | cell array of character vectors with values 'Price', 'Delta', 'Gamma',
'Vega', 'Rho', 'Theta', 'Vegalt', and 'All'

(Optional) List of sensitivities to compute, specified as a NOUT-by-1 or a 1-by-NOUT cell array of
character vectors or string array with possible values of 'Price', 'Delta', 'Gamma', 'Vega',
'Rho', 'Theta', 'Vegalt', and 'All'.

Note 'Vegalt' is not supported when you price a Vanilla option with a Merton model.

inpSensitivity = {'All'} or inpSensitivity = ["All"] specifies that the output is
'Delta', 'Gamma', 'Vega', 'Rho', 'Theta', 'Vegalt', and 'Price'. This is the same as
specifying inpSensitivity to include each sensitivity.
Example: inpSensitivity =
{'delta','gamma','vega','rho','theta','vegalt','price'}

Data Types: string | cell
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Output Arguments
Price — Instrument price
numeric

Instrument price, returned as a numeric.

PriceResult — Price result
PriceResult object

Price result, returned as an object. The PriceResult object. The object has the following fields:

• PriceResult.Results — Table of results that includes sensitivities (if you specify
inpSensitivity)

• PriceResult.PricerData — Structure for pricer data

See Also
fininstrument | finmodel | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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price
Package: finpricer

Compute price for equity instrument with ReplicatingVarianceSwap pricer

Syntax
[Price,PriceResult] = price(inpPricer,inpInstrument)
[Price,PriceResult] = price( ___ ,inpSensitivity)

Description
[Price,PriceResult] = price(inpPricer,inpInstrument) computes the instrument price
and related pricing information based on the pricing object inpPricer and the instrument object
inpInstrument.

[Price,PriceResult] = price( ___ ,inpSensitivity) adds an optional argument to specify
sensitivities.

Examples

Use Replicating Variance Swap Pricer and ratecurve to Price Variance Swap Instrument

This example shows the workflow to price a VarianceSwap instrument when you use a ratecurve
and a ReplicatingVarianceSwap pricing method.

Create VarianceSwap Instrument Object

Use fininstrument to create a VarianceSwap instrument object.

VarianceSwapInst = fininstrument("VarianceSwap",'Maturity',datetime(2021,5,1),'Notional',150,'StartDate',datetime(2020,5,1),'RealizedVariance',0.05,'Strike',0.1,'Name',"variance_swap_instrument")

VarianceSwapInst = 
  VarianceSwap with properties:

            Notional: 150
    RealizedVariance: 0.0500
              Strike: 0.1000
           StartDate: 01-May-2020
            Maturity: 01-May-2021
                Name: "variance_swap_instrument"

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2020, 9, 15);
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])];
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
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Basis = 1;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates,'Basis',Basis)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 1
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2020
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create ReplicatingVarianceSwap Pricer Object

Use finpricer to create a ReplicatingVarianceSwap pricer object and use the ratecurve
object for the 'DiscountCurve' name-value pair argument.

Strike = (50:5:135)';
Volatility = [.49;.45;.42;.38;.34;.31;.28;.25;.23;.21;.2;.21;.21;.22;.23;.24;.25;.26];
VolatilitySmile = table(Strike, Volatility);
SpotPrice = 100;
CallPutBoundary = 100;

outPricer =  finpricer("ReplicatingVarianceSwap",'DiscountCurve', ZeroCurve, 'VolatilitySmile', VolatilitySmile, ...
'SpotPrice', SpotPrice, 'CallPutBoundary', CallPutBoundary)

outPricer = 
  ReplicatingVarianceSwap with properties:

      DiscountCurve: [1x1 ratecurve]
       InterpMethod: "linear"
    VolatilitySmile: [18x2 table]
          SpotPrice: 100
    CallPutBoundary: 100

Price VarianceSwap Instrument

Use price to compute the price and fair variance for the VarianceSwap instrument.

[Price, outPR] = price(outPricer,VarianceSwapInst,["all"])

Price = 8.1997

outPR = 
  priceresult with properties:

       Results: [1x2 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×2 table
    Price     FairVariance
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    ______    ____________

    8.1997      0.21701   

outPR.PricerData.ReplicatingPortfolio

ans=19×6 table
    CallPut    Strike    Volatility      Weight       Value     Contribution
    _______    ______    __________    __________    _______    ____________

    "put"        50         0.49        0.0064038    0.39164      0.002508  
    "put"        55         0.45        0.0052877    0.49353     0.0026097  
    "put"        60         0.42        0.0044402    0.67329     0.0029895  
    "put"        65         0.38        0.0037814    0.80343     0.0030381  
    "put"        70         0.34        0.0032592     0.9419     0.0030698  
    "put"        75         0.31        0.0028382      1.223     0.0034711  
    "put"        80         0.28        0.0024938       1.58     0.0039403  
    "put"        85         0.25        0.0022086     2.0456     0.0045177  
    "put"        90         0.23        0.0019696     2.9221     0.0057554  
    "put"        95         0.21        0.0017675     4.1406     0.0073183  
    "put"       100          0.2       0.00082405     6.1408     0.0050603  
    "call"      100          0.2       0.00077087     6.4715     0.0049887  
    "call"      105         0.21        0.0014465     4.7094     0.0068119  
    "call"      110         0.21        0.0013178     3.1644     0.0041701  
    "call"      115         0.22        0.0012056      2.307     0.0027814  
    "call"      120         0.23        0.0011072     1.7127     0.0018962  
      ⋮

Input Arguments
inpPricer — Pricer object
ReplicatingVarianceSwap object

Pricer object, specified as a scalar ReplicatingVarianceSwap pricer object. Use finpricer to
create the ReplicatingVarianceSwap pricer object.
Data Types: object

inpInstrument — Instrument object
VarianceSwap object

Instrument object, specified as a scalar VarianceSwap instrument object. Use fininstrument to
create the VarianceSwap instrument object.
Data Types: object

inpSensitivity — List of sensitivities to compute
[ ] (default) | string array with values "Price" and "All" | cell array of character vectors with
values 'Price' and 'All'

(Optional) List of sensitivities to compute, specified as an NOUT-by-1 or 1-by-NOUT cell array of
character vectors or string array with possible values of 'Price' and 'All'.

inpSensitivity = {'All'} or inpSensitivity = ["All"] specifies that the output is
'Price'. This is the same as specifying inpSensitivity to include each sensitivity.
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Example: inpSensitivity = {'price'}
Data Types: string | cell

Output Arguments
Price — Instrument price
numeric

Instrument price, returned as a numeric.

PriceResult — Price result
PriceResult object

Price result, returned as a PriceResult object. The object has the following fields:

• PriceResult.Results — Table of results that includes:

• Price — Numeric scalar swap price value
• FairVariance — Numeric fair variance in decimals

• PriceResult.PricerData.ReplicatingPortfolio — Table containing pricer data

See Also
fininstrument | finmodel | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020b
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pricePortfolio
Compute price and sensitivities for portfolio of instruments

Syntax
[PortPrice,InstPrice,PortSens,InstSens] = pricePortfolio(inPort)

Description
[PortPrice,InstPrice,PortSens,InstSens] = pricePortfolio(inPort) calculates the
price and sensitivities for a portfolio of instruments that is previously created using finportfolio.

Examples

Price Portfolio of Heterogeneous Instruments

Use finportfolio and pricePortfolio to create and price a portfolio containing a FixedBond
instrument and an American Vanilla option instrument.

Create FixedBond Instrument Object

Use fininstrument to create a FixedBond instrument object.

FixB = fininstrument("FixedBond",'Maturity',datetime(2022,9,15),'CouponRate',0.05,'Name',"fixed_bond")

FixB = 
  FixedBond with properties:

                  CouponRate: 0.0500
                      Period: 2
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 15-Sep-2022
                        Name: "fixed_bond"

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
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ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Discount Pricer Object for FixedBond Instrument

Use finpricer to create a Discount pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

FBPricer = finpricer("Discount",'DiscountCurve',myRC)

FBPricer = 
  Discount with properties:

    DiscountCurve: [1x1 ratecurve]

Create Vanilla Instrument Object

Use fininstrument to create an American Vanilla instrument object.

Maturity = datetime(2023,9,15);
AmericanOpt = fininstrument("Vanilla",'ExerciseDate',Maturity,'Strike',120,'ExerciseStyle',"american",'Name',"vanilla_option")

AmericanOpt = 
  Vanilla with properties:

       OptionType: "call"
    ExerciseStyle: "american"
     ExerciseDate: 15-Sep-2023
           Strike: 120
             Name: "vanilla_option"

Create BlackScholes Model Object for Vanilla Instrument

Use finmodel to create a BlackScholes model object.

BSModel = finmodel("BlackScholes",'Volatility',0.12)

BSModel = 
  BlackScholes with properties:

     Volatility: 0.1200
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    Correlation: 1

Create BjerksundStensland Pricer Object for Vanilla Instrument

Use finpricer to create an analytic pricer object for the BjerksundStensland pricing method
and use the ratecurve object for the 'DiscountCurve' name-value pair argument.

BJSPricer = finpricer("analytic",'Model',BSModel,'DiscountCurve',myRC,'SpotPrice',100,'DividendValue',.02,'PricingMethod',"BjerksundStensland")

BJSPricer = 
  BjerksundStensland with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 100
    DividendValue: 0.0200
     DividendType: "continuous"

Add the Instruments to a finportfolio Object

Create a finportfolio object using finportfolio and add the two instruments with their
associated pricers to the portfolio.

f1 = finportfolio([AmericanOpt,FixB],[BJSPricer,FBPricer])

f1 = 
  finportfolio with properties:

    Instruments: [2x1 fininstrument.FinInstrument]
        Pricers: [2x1 finpricer.FinPricer]
    PricerIndex: [2x1 double]
       Quantity: [2x1 double]

Price Portfolio

Use pricePortfolio to compute the price and sensitivities for the portfolio and the instruments in
the portfolio.

[PortPrice,InstPrice,PortSens,InstSens] = pricePortfolio(f1)

PortPrice = 119.1665

InstPrice = 2×1

    3.1912
  115.9753

PortSens=1×8 table
    Price      DV01       Delta      Gamma      Lambda     Vega      Theta       Rho 
    ______    _______    _______    ________    ______    ______    ________    _____

    119.17    0.04295    0.23188    0.011522    7.2661    65.454    -0.81408    86.71

InstSens=2×8 table
                      Price      DV01       Delta      Gamma      Lambda     Vega      Theta       Rho 
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                      ______    _______    _______    ________    ______    ______    ________    _____

    vanilla_option    3.1912        NaN    0.23188    0.011522    7.2661    65.454    -0.81408    86.71
    fixed_bond        115.98    0.04295        NaN         NaN       NaN       NaN         NaN      NaN

Price Portfolio of Bond and Bond Option Instruments

This example shows the workflow to create and price a portfolio of bond and bond option
instruments. You can use finportfolio and pricePortfolio to price FixedBond,
FixedBondOption, OptionEmbeddedFixedBond, and FloatBond instruments using an IRTree
pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018, 1, 1);
 ZeroTimes = calyears(1:4)';
 ZeroRates = [0.035; 0.042147; 0.047345; 0.052707];
 ZeroDates = Settle + ZeroTimes;
 Compounding = 1;
 ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates, "Compounding",Compounding)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: 1
                Basis: 0
                Dates: [4x1 datetime]
                Rates: [4x1 double]
               Settle: 01-Jan-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Bond and Option Instruments

Use fininstrument to create a FixedBond, FixedBondOption, OptionEmbeddedFixedBond,
and FloatBond instrument objects.

CDates = datetime([2020,1,1 ; 2022,1,1]);
CRates = [.0425; .0750];
CouponRate = timetable(CDates,CRates);
Maturity = datetime(2022,1,1);
Period = 1;

% Vanilla FixedBond
VBond = fininstrument("FixedBond",'Maturity',Maturity,'CouponRate',0.0425,'Period',Period,'Name',"vanilla_fixed") 

VBond = 
  FixedBond with properties:

                  CouponRate: 0.0425
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                      Period: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 01-Jan-2022
                        Name: "vanilla_fixed"

 % Stepped coupon bond
SBond = fininstrument("FixedBond",'Maturity',Maturity,'CouponRate',CouponRate,'Period',Period,'Name',"stepped_coupon_bond") 

SBond = 
  FixedBond with properties:

                  CouponRate: [2x1 timetable]
                      Period: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 01-Jan-2022
                        Name: "stepped_coupon_bond"

% FloatBond
Spread = 0;
Reset = 1;
Float = fininstrument("FloatBond",'Maturity',Maturity,'Spread',Spread,'Reset', Reset,...
                      'ProjectionCurve',ZeroCurve,'Name',"floatbond")

Float = 
  FloatBond with properties:

                      Spread: 0
             ProjectionCurve: [1x1 ratecurve]
                 ResetOffset: 0
                       Reset: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
          LatestFloatingRate: NaN
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
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              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 01-Jan-2022
                        Name: "floatbond"

% Call option
Strike = 100;
ExerciseDates = datetime(2020,1,1); 
OptionType ='call';
Period = 1;
CallOption = fininstrument("FixedBondOption",'Strike',Strike,'ExerciseDate',ExerciseDates,...
                   'OptionType',OptionType,'ExerciseStyle',"american",'Bond', VBond,'Name',"fixed_bond_option")    

CallOption = 
  FixedBondOption with properties:

       OptionType: "call"
    ExerciseStyle: "american"
     ExerciseDate: 01-Jan-2020
           Strike: 100
             Bond: [1x1 fininstrument.FixedBond]
             Name: "fixed_bond_option"

% Option for embedded bond (callable bond)
CDates = datetime([2020,1,1 ; 2022,1,1]);
CRates = [.0425; .0750];
CouponRate = timetable(CDates,CRates);
StrikeOE = [100; 100];
ExerciseDatesOE = [datetime(2020,1,1); datetime(2021,1,1)];
CallSchedule =  timetable(ExerciseDatesOE,StrikeOE,'VariableNames',{'Strike Schedule'}); 
CallableBond = fininstrument("OptionEmbeddedFixedBond", 'Maturity',Maturity,...
                              'CouponRate',CouponRate,'Period', Period, ...
                              'CallSchedule',CallSchedule,'Name',"option_embedded_fixedbond")

CallableBond = 
  OptionEmbeddedFixedBond with properties:

                  CouponRate: [2x1 timetable]
                      Period: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 01-Jan-2022
                   CallDates: [2x1 datetime]
                    PutDates: [0x1 datetime]
                CallSchedule: [2x1 timetable]
                 PutSchedule: [0x0 timetable]
           CallExerciseStyle: "american"
            PutExerciseStyle: [0x0 string]

 pricePortfolio
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                        Name: "option_embedded_fixedbond"

Create HullWhite Model

Use finmodel to create a HullWhite model object.

VolCurve = 0.01;
AlphaCurve = 0.1;

HWModel = finmodel("hullwhite",'alpha',AlphaCurve,'sigma',VolCurve)

HWModel = 
  HullWhite with properties:

    Alpha: 0.1000
    Sigma: 0.0100

Create IRTree Pricer for HullWhite Model

Use finpricer to create an IRTree pricer object for a HullWhite model and use the ratecurve
object for the 'DiscountCurve' name-value pair argument.

HWTreePricer = finpricer("IRTree",'Model',HWModel,'DiscountCurve',ZeroCurve,'TreeDates',ZeroDates)

HWTreePricer = 
  HWBKTree with properties:

             Tree: [1x1 struct]
        TreeDates: [4x1 datetime]
            Model: [1x1 finmodel.HullWhite]
    DiscountCurve: [1x1 ratecurve]

Create finportfolio Object and Add Callable Bond Instrument

Create a finportfolio object with the vanilla bond, stepped coupon bond, float bond, and the call
option.

myportfolio = finportfolio([VBond,SBond,Float,CallOption],HWTreePricer, [1,2,2,1])

myportfolio = 
  finportfolio with properties:

    Instruments: [4x1 fininstrument.FinInstrument]
        Pricers: [1x1 finpricer.irtree.HWBKTree]
    PricerIndex: [4x1 double]
       Quantity: [4x1 double]

Use addInstrument to add the callable bond instrument to the existing portfolio.

myportfolio = addInstrument(myportfolio,CallableBond,HWTreePricer,1)

myportfolio = 
  finportfolio with properties:

    Instruments: [5x1 fininstrument.FinInstrument]
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        Pricers: [1x1 finpricer.irtree.HWBKTree]
    PricerIndex: [5x1 double]
       Quantity: [5x1 double]

myportfolio.PricerIndex

ans = 5×1

     1
     1
     1
     1
     1

The PricerIndex property has a length equal to the length of instrument objects in the
finportfolio object and stores the index of which pricer is used for each instrument object. In this
case, because there is only one pricer, each instrument must use that pricer.

Price Portfolio

Use pricePortfolio to compute the price and sensitivities for the portfolio and the bond and
option instruments in the portfolio.

format bank
[PortPrice,InstPrice,PortSens,InstSens] = pricePortfolio(myportfolio)

PortPrice = 
        600.55

InstPrice = 5×1

         96.59
        204.14
        200.00
          0.05
         99.77

PortSens=1×4 table
    Price      Vega      Gamma      Delta  
    ______    ______    _______    ________

    600.55    -63.40    5759.65    -1297.48

InstSens=5×4 table
                                 Price      Vega      Gamma      Delta 
                                 ______    ______    _______    _______

    vanilla_fixed                 96.59     -0.00    1603.49    -344.81
    stepped_coupon_bond          204.14      0.00    3364.60    -725.96
    floatbond                    200.00     -0.00      -0.00       0.00
    fixed_bond_option              0.05     12.48      24.15      -3.69
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    option_embedded_fixedbond     99.77    -75.88     767.41    -223.03

Input Arguments
inPort — Portfolio object
finportfolio object

Portfolio object, previously created using finportfolio.
Data Types: object

Output Arguments
PortPrice — Price of portfolio of instruments
numeric

Price of the portfolio of instruments, returned as a numeric.

InstPrice — Instrument prices
numeric

Instrument prices, returned as a numeric.

PortSens — Portfolio sensitivities
numeric

Portfolio sensitivities, returned as a numeric.

InstSens — Instrument sensitivities
numeric

Instrument sensitivities, returned as a numeric.

See Also
fininstrument | addInstrument | setPricer | removeInstrument

Topics
“Price Portfolio of Bond and Bond Option Instruments” on page 2-173
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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addInstrument
Add instrument to portfolio of instruments

Syntax
outPort = addInstrument(inPort,inInst)
outPort = addInstrument(inPort,inInst,inPricer)
outPort = addInstrument( ___ ,inQuant)

Description
outPort = addInstrument(inPort,inInst) adds the instrument inInst to a portfolio inPort
of instruments previously created using finportfolio.

outPort = addInstrument(inPort,inInst,inPricer) adds the instrument inInst and the
associated pricer inPricer to a portfolio inPort of instruments previously created using
finportfolio.

outPort = addInstrument( ___ ,inQuant) optionally specifies the number (inQuant) of added
instruments. Use this syntax with any of the input argument combinations in previous syntaxes.

Examples

Add Instruments to Portfolio

Use finportfolio to create an empty portfolio and then use addInstrument to add instruments to
the portfolio.

Create FixedBond Instrument Objects

Use fininstrument to create two FixedBond instrument objects.

FixB1 = fininstrument("FixedBond", 'Maturity',datetime(2022,9,15),'CouponRate',0.045,'Name',"fixed_bond1")

FixB1 = 
  FixedBond with properties:

                  CouponRate: 0.0450
                      Period: 2
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 15-Sep-2022
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                        Name: "fixed_bond1"

FixB2 = fininstrument("FixedBond", 'Maturity',datetime(2022,9,15),'CouponRate',0.035,'Name',"fixed_bond2")

FixB2 = 
  FixedBond with properties:

                  CouponRate: 0.0350
                      Period: 2
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 15-Sep-2022
                        Name: "fixed_bond2"

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Type = "zero";
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Discount Pricer Object for FixedBond Instruments

Use finpricer to create a Discount pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

DiscountPricer = finpricer("Discount", 'DiscountCurve',myRC)

DiscountPricer = 
  Discount with properties:
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    DiscountCurve: [1x1 ratecurve]

Add Instruments to finportfolio Object

Create an empty finportfolio object using finportfolio and then use addInstrument to put
the FixedBond instruments into the portfolio.

f1 = finportfolio;
f1 = addInstrument(f1,FixB1)

f1 = 
  finportfolio with properties:

    Instruments: [1x1 fininstrument.FixedBond]
        Pricers: [0x1 finpricer.FinPricer]
    PricerIndex: NaN
       Quantity: 1

f1 = addInstrument(f1,FixB2)

f1 = 
  finportfolio with properties:

    Instruments: [2x1 fininstrument.FixedBond]
        Pricers: [0x1 finpricer.FinPricer]
    PricerIndex: [2x1 double]
       Quantity: [2x1 double]

Set Pricer for Portfolio

Use setPricer to set the pricer for the portfolio and then use pricePortfolio to calculate the
price and sensitivities for the instruments in the portfolio.

f1 = setPricer(f1,DiscountPricer,[1,2])

f1 = 
  finportfolio with properties:

    Instruments: [2x1 fininstrument.FixedBond]
        Pricers: [1x1 finpricer.Discount]
    PricerIndex: [2x1 double]
       Quantity: [2x1 double]

[PortPrice,InstPrice,PortSens,InstSens] = pricePortfolio(f1)

PortPrice = 224.0834

InstPrice = 2×1

  114.0085
  110.0749

PortSens=1×2 table
    Price       DV01  
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    ______    ________

    224.08    0.084139

InstSens=2×2 table
                   Price       DV01  
                   ______    ________

    fixed_bond1    114.01     0.04251
    fixed_bond2    110.07    0.041629

Add Multiple Instruments to Portfolio

Use finportfolio to create an empty portfolio and then use addInstrument to add multiple
instruments to the portfolio.

Create FixedBond Instrument Objects

Use fininstrument to create two FixedBond instrument objects each with two instruments.

FixB1 = fininstrument("FixedBond", 'Maturity',datetime([2022,9,15 ; 2022,10,15]),'CouponRate',0.045,'Name',"fixed_bond1")

FixB1=2×1 object
  2x1 FixedBond array with properties:

    CouponRate
    Period
    Basis
    EndMonthRule
    Principal
    DaycountAdjustedCashFlow
    BusinessDayConvention
    Holidays
    IssueDate
    FirstCouponDate
    LastCouponDate
    StartDate
    Maturity
    Name

FixB2 = fininstrument("FixedBond", 'Maturity',datetime([2022,11,15 ; 2022,12,15]),'CouponRate',0.035,'Name',"fixed_bond2")

FixB2=2×1 object
  2x1 FixedBond array with properties:

    CouponRate
    Period
    Basis
    EndMonthRule
    Principal
    DaycountAdjustedCashFlow
    BusinessDayConvention
    Holidays
    IssueDate
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    FirstCouponDate
    LastCouponDate
    StartDate
    Maturity
    Name

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2020,9,15);
Type = "zero";
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2020
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Discount Pricer Object for FixedBond Instruments

Use finpricer to create a Discount pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

DiscountPricer = finpricer("Discount", 'DiscountCurve',myRC)

DiscountPricer = 
  Discount with properties:

    DiscountCurve: [1x1 ratecurve]

Add Instruments to finportfolio Object

Create an empty finportfolio object using finportfolio and then use addInstrument to put
the FixedBond instruments into the portfolio.

f1 = finportfolio;
f1 = addInstrument(f1,FixB1(1))

f1 = 
  finportfolio with properties:

    Instruments: [1x1 fininstrument.FixedBond]
        Pricers: [0x1 finpricer.FinPricer]
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    PricerIndex: NaN
       Quantity: 1

f1 = addInstrument(f1,FixB1(2))

f1 = 
  finportfolio with properties:

    Instruments: [2x1 fininstrument.FixedBond]
        Pricers: [0x1 finpricer.FinPricer]
    PricerIndex: [2x1 double]
       Quantity: [2x1 double]

f1 = addInstrument(f1,FixB2(1))

f1 = 
  finportfolio with properties:

    Instruments: [3x1 fininstrument.FixedBond]
        Pricers: [0x1 finpricer.FinPricer]
    PricerIndex: [3x1 double]
       Quantity: [3x1 double]

f1 = addInstrument(f1,FixB2(2))

f1 = 
  finportfolio with properties:

    Instruments: [4x1 fininstrument.FixedBond]
        Pricers: [0x1 finpricer.FinPricer]
    PricerIndex: [4x1 double]
       Quantity: [4x1 double]

Set Pricer for Portfolio

Use setPricer to set the pricer for the portfolio and then use pricePortfolio to calculate the
prices and sensitivities for the instruments in the portfolio.

f1 = setPricer(f1,DiscountPricer,[1,2,3,4])

f1 = 
  finportfolio with properties:

    Instruments: [4x1 fininstrument.FixedBond]
        Pricers: [1x1 finpricer.Discount]
    PricerIndex: [4x1 double]
       Quantity: [4x1 double]

[PortPrice,InstPrice,PortSens,InstSens] = pricePortfolio(f1)

PortPrice = 428.2788

InstPrice = 4×1

  107.7226
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  108.0156
  106.1642
  106.3765

PortSens=1×2 table
    Price       DV01  
    ______    ________

    428.28    0.088272

InstSens=4×2 table
                     Price       DV01  
                     ______    ________

    fixed_bond1      107.72    0.020871
    fixed_bond1_1    108.02    0.021761
    fixed_bond2      106.16    0.022387
    fixed_bond2_1    106.38    0.023253

Input Arguments
inPort — finportfolio object
finportfolio object

finportfolio object, specified as a scalar finportfolio object.
Data Types: object

inInst — Instrument object to add to portfolio
scalar instrument object

Instrument object to add to portfolio, specified as a scalar instrument object that is previously created
using fininstrument.

Note If the instrument object for inInst is a vector of instruments, you must use addInstrument
to add each instrument separately.

Data Types: object

inPricer — Pricer object associated with an added instrument object
scalar pricer object | array of pricer objects

Pricer object associated with an added instrument object, specified as a scalar pricer object or an
array of pricer objects that are previously created using finpricer.
Data Types: object

inQuant — Number of added instruments
1 (default) | positive or negative numeric

Number of instruments, specified as a scalar numeric. Use a positive value for a long position and a
negative value for a short position.
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Data Types: double

Output Arguments
outPort — Updated finportfolio object
finportfolio object

Updated finportfolio, returned as a finportfolio object.

See Also
fininstrument | removeInstrument | pricePortfolio | setPricer

Topics
“Price Portfolio of Bond and Bond Option Instruments” on page 2-173
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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removeInstrument
Remove instrument from portfolio of instruments

Syntax
outPort = removeInstrument(inPort,inInst)

Description
outPort = removeInstrument(inPort,inInst) removes an instrument object (inInst) from a
portfolio of instruments (inPort) previously created using finportfolio.

Examples

Remove Instrument From a Portfolio

Use addInstrument to add instruments to an empty portfolio and then remove an instrument from
the portfolio using removeInstrument.

Create FixedBond Instrument Objects

Use fininstrument to create two FixedBond instrument objects.

FixB1 = fininstrument("FixedBond", 'Maturity',datetime(2022,9,15),'CouponRate',0.045,'Name',"fixed_bond1")

FixB1 = 
  FixedBond with properties:

                  CouponRate: 0.0450
                      Period: 2
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 15-Sep-2022
                        Name: "fixed_bond1"

FixB2 = fininstrument("FixedBond", 'Maturity',datetime(2022,9,15),'CouponRate',0.035,'Name',"fixed_bond2")

FixB2 = 
  FixedBond with properties:

                  CouponRate: 0.0350
                      Period: 2

 removeInstrument
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                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 15-Sep-2022
                        Name: "fixed_bond2"

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Discount Pricer Object for FixedBond Instruments

Use finpricer to create a Discount pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

DiscountPricer = finpricer("Discount",'DiscountCurve',myRC)

DiscountPricer = 
  Discount with properties:

    DiscountCurve: [1x1 ratecurve]

Add Instruments to finportfolio Object

Create an empty finportflio object using finportfolio and then use addInstrument to add
the two FixedBond instruments to the portfolio.
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f1 = finportfolio;
f1 = addInstrument(f1,FixB1)

f1 = 
  finportfolio with properties:

    Instruments: [1x1 fininstrument.FixedBond]
        Pricers: [0x1 finpricer.FinPricer]
    PricerIndex: NaN
       Quantity: 1

f1 = addInstrument(f1,FixB2)

f1 = 
  finportfolio with properties:

    Instruments: [2x1 fininstrument.FixedBond]
        Pricers: [0x1 finpricer.FinPricer]
    PricerIndex: [2x1 double]
       Quantity: [2x1 double]

Remove Instrument from finportfolio Object

Use removeInstrument to remove the first FixedBond instrument from the portfolio.

f1 = removeInstrument(f1,1)

f1 = 
  finportfolio with properties:

    Instruments: [1x1 fininstrument.FixedBond]
        Pricers: [0x1 finpricer.FinPricer]
    PricerIndex: NaN
       Quantity: 1

Set Pricer for Portfolio

Use setPricer to set the Discount pricer for the portfolio and then use pricePortfolio to
calculate the price and sensitivities for the single instrument in the portfolio.

f1 = setPricer(f1,DiscountPricer)

f1 = 
  finportfolio with properties:

    Instruments: [1x1 fininstrument.FixedBond]
        Pricers: [1x1 finpricer.Discount]
    PricerIndex: 1
       Quantity: 1

[PortPrice,InstPrice,PortSens,InstSens] = pricePortfolio(f1)

PortPrice = 110.0749

InstPrice = 110.0749
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PortSens=1×2 table
    Price       DV01  
    ______    ________

    110.07    0.041629

InstSens=1×2 table
                   Price       DV01  
                   ______    ________

    fixed_bond2    110.07    0.041629

Input Arguments
inPort — finportfolio object
finportfolio object

finportfolio object, specified as a scalar finportfolio object.
Data Types: object

inInst — Instrument to remove from finportfolio object
instrument object | index | string for the instrument object 'Name' property

Instrument to remove from finportfolio object, specified as a scalar instrument object, string for
the instrument object 'Name' property, or index value for the position of instrument in the
finportfolio object.
Data Types: object | double | string

Output Arguments
outPort — Updated finportfolio object
finportfolio object

Updated finportfolio, returned as a finportfolio object.

See Also
fininstrument | setPricer | pricePortfolio | addInstrument

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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setPricer
Set pricer for finportfolio object

Syntax
outPort = setPricer(inPort,inPricer,Index)

Description
outPort = setPricer(inPort,inPricer,Index) sets a specified pricer for the previously
created finportfolio object.

Examples

Set Pricer for Portfolio Containing Instruments

Use finportfolio to create a portfolio of instruments and then use setPricer to set the pricer for
the portfolio.

Create FixedBond Instrument Objects

Use fininstrument to create two FixedBond instrument objects.

FixB1 = fininstrument("FixedBond",'Maturity',datetime(2022,9,15),'CouponRate',0.045,'Name',"fixed_bond1")

FixB1 = 
  FixedBond with properties:

                  CouponRate: 0.0450
                      Period: 2
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 15-Sep-2022
                        Name: "fixed_bond1"

FixB2 = fininstrument("FixedBond",'Maturity',datetime(2022,9,15),'CouponRate',0.035,'Name',"fixed_bond2")

FixB2 = 
  FixedBond with properties:

                  CouponRate: 0.0350
                      Period: 2

 setPricer
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                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 15-Sep-2022
                        Name: "fixed_bond2"

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Discount Pricer Object for FixedBond Instruments

Use finpricer to create a Discount pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

DiscountPricer = finpricer("Discount",'DiscountCurve',myRC)

DiscountPricer = 
  Discount with properties:

    DiscountCurve: [1x1 ratecurve]

Add Instruments to finportfolio Object

Create a finportflio object using finportfolio and use addInstrument to put the FixedBond
instruments in the portfolio.
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f1 = finportfolio;
f1 = addInstrument(f1,FixB1)

f1 = 
  finportfolio with properties:

    Instruments: [1x1 fininstrument.FixedBond]
        Pricers: [0x1 finpricer.FinPricer]
    PricerIndex: NaN
       Quantity: 1

f1 = addInstrument(f1,FixB2)

f1 = 
  finportfolio with properties:

    Instruments: [2x1 fininstrument.FixedBond]
        Pricers: [0x1 finpricer.FinPricer]
    PricerIndex: [2x1 double]
       Quantity: [2x1 double]

Set Pricer for Portfolio

Use setPricer to set the pricer for the portfolio and then use pricePortfolio to calculate the
price and sensitivities for the instruments in the portfolio.

f1 = setPricer(f1,DiscountPricer,[1,2])

f1 = 
  finportfolio with properties:

    Instruments: [2x1 fininstrument.FixedBond]
        Pricers: [1x1 finpricer.Discount]
    PricerIndex: [2x1 double]
       Quantity: [2x1 double]

[PortPrice,InstPrice,PortSens,InstSens] = pricePortfolio(f1)

PortPrice = 224.0834

InstPrice = 2×1

  114.0085
  110.0749

PortSens=1×2 table
    Price       DV01  
    ______    ________

    224.08    0.084139

InstSens=2×2 table
                   Price       DV01  
                   ______    ________
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    fixed_bond1    114.01     0.04251
    fixed_bond2    110.07    0.041629

Input Arguments
inPort — Portfolio
finportfolio object

Portfolio, specified using a previously created finportfolio object.
Data Types: object

inPricer — Pricer object to set for an instrument in a finportfolio object
object

Pricer object to set for an instrument in a finportfolio object, specified using a previously created
pricer object with finpricer.
Data Types: object

Index — Index to instruments in finportfolio object
numeric

Index to instruments in the finportfolio object, specified as a numeric value.
Data Types: double

Output Arguments
outPort — Updated portfolio
finportfolio object

Updated portfolio, returned as an finportfolio object.

See Also
finportfolio | pricePortfolio | addInstrument | removeInstrument

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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cashflows
Package: fininstrument

Compute cash flow for FixedBond, FloatBond, Swap, FRA, STIRFuture, OISFuture,
OvernightIndexedSwap, or Deposit instrument

Syntax
CF = cashflows(InstrumentObject,Settle)

Description
CF = cashflows(InstrumentObject,Settle) computes cash flow for a Deposit, FRA, ,Swap,
STIRFuture, OISFuture, FixedBond, OvernightIndexedSwap, or FloatBond instrument object.

Examples

Calculate Cash Flow for FRA Instrument

This example shows the workflow to price a FRA (forward rate agreement) instrument and then use
cashflows to determine the cash flow for the FRA instrument.

Create FRA Instrument Object

Use fininstrument to create a FRA instrument object.

FRAObj = fininstrument("FRA",'StartDate',datetime(2020,9,15),'Maturity',datetime(2022,9,15),'Rate',0.175)

FRAObj = 
  FRA with properties:

                     Rate: 0.1750
                    Basis: 2
                StartDate: 15-Sep-2020
                 Maturity: 15-Sep-2022
                Principal: 100
    BusinessDayConvention: "actual"
                 Holidays: NaT
                     Name: ""

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Type = "zero";
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)
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myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Discount Pricer Object

Use finpricer to create a Discount pricer object and use the ratecurve object with the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("Discount", 'DiscountCurve',myRC)

outPricer = 
  Discount with properties:

    DiscountCurve: [1x1 ratecurve]

Price FRA Instrument

Use price to compute the price and sensitivities for the FRA instrument.

[Price, outPR] = price(outPricer, FRAObj,["all"])

Price = 34.1757

outPR = 
  priceresult with properties:

       Results: [1x2 table]
    PricerData: []

outPR.Results

ans=1×2 table
    Price      DV01  
    ______    _______

    34.176    0.01368

Use cashflows for the FRA instrument with a Settle date of 15-Dec-2021. The specified Settle
date must be before the instrument Maturity date.

CF = cashflows(FRAObj,datetime(2021,12,15))

CF= 1×1timetable
       Time         CFA  
    ___________    ______
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    15-Sep-2022    35.486

Calculate Cash Flow for OIS Future Instrument

This example shows the workflow to price an OISFuture instrument and then use cashflows to
calculate the cashflow for the OISFuture instrument.

Create ratecurve Object

Create a ratecurve object using ratecurve for the underlying interest-rate curve for the
STIRFuture instrument.

Settle = datetime(2019,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create OISFuture Instrument Object

Use fininstrument to create an OISFuture instrument object.

OISFuture = fininstrument("OISFuture",'Maturity',datetime(2022,12,15),'QuotedPrice',99.5,'StartDate',datetime(2022,9,15),'Notional',90,'ProjectionCurve',myRC,'Name',"ois_future_instrument")

OISFuture = 
  OISFuture with properties:

              QuotedPrice: 99.5000
                   Method: "compound"
                    Basis: 2
                StartDate: 15-Sep-2022
                 Maturity: 15-Dec-2022
                 Notional: 90
    BusinessDayConvention: "actual"
                 Holidays: NaT
          ProjectionCurve: [1x1 ratecurve]
         HistoricalFixing: [0x0 timetable]
                     Name: "ois_future_instrument"
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Create Discount Pricer Object

Use finpricer to create a Discount pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("Discount",'DiscountCurve',myRC)

outPricer = 
  Discount with properties:

    DiscountCurve: [1x1 ratecurve]

Price OISFuture Instrument

Use price to compute the price and sensitivities for the OISFuture instrument.

[Price, outPR] = price(outPricer,OISFuture,["all"])

Price = 2.6543

outPR = 
  priceresult with properties:

       Results: [1x2 table]
    PricerData: []

outPR.Results

ans=1×2 table
    Price        DV01   
    ______    __________

    2.6543    -0.0013589

Use cashflows to calculate the cash flow for the OISFuture instrument with a Settle date of 15-
Sep-2022. The specified Settle date must be before the instrument Maturity date.

CF = cashflows(OISFuture,datetime(2022,9,15))

CF= 1×1timetable
       Time         CFA  
    ___________    ______

    15-Dec-2022    2.7225

Calculate Cash Flow for Multiple FRA Instruments

This example shows the workflow to price multiple FRA (forward rate agreement) instruments and
then use cashflows to determine the cash flow for each of the FRA instruments.

Create FRA Instrument Object

Use fininstrument to create a FRA instrument object for three FRA instruments.
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FRAObj = fininstrument("FRA",'StartDate',datetime([2020,9,15 ; 2020,10,15 ; 2020,11,15]),'Maturity',datetime([2022,9,15 ; 2022,10,15 ; 2022,11,15]),'Rate',0.175)

FRAObj=3×1 object
  3x1 FRA array with properties:

    Rate
    Basis
    StartDate
    Maturity
    Principal
    BusinessDayConvention
    Holidays
    Name

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Type = "zero";
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Discount Pricer Object

Use finpricer to create a Discount pricer object and use the ratecurve object with the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("Discount", 'DiscountCurve',myRC)

outPricer = 
  Discount with properties:

    DiscountCurve: [1x1 ratecurve]

Price FRA Instruments

Use price to compute the prices and sensitivities for the three FRA instrument.

[Price, outPR] = price(outPricer, FRAObj,["all"])
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Price = 3×1

   34.1757
   34.1207
   34.0627

outPR=1×3 object
  1x3 priceresult array with properties:

    Results
    PricerData

outPR.Results

ans=1×2 table
    Price      DV01  
    ______    _______

    34.176    0.01368

ans=1×2 table
    Price       DV01  
    ______    ________

    34.121    0.013938

ans=1×2 table
    Price       DV01  
    ______    ________

    34.063    0.014204

Use cashflows for the three FRA instruments with a Settle date of April 15, 2022. The specified
Settle date must be before the instrument Maturity date.

CF = cashflows(FRAObj(1),datetime(2022,4,15))

CF= 1×1timetable
       Time         CFA  
    ___________    ______

    15-Sep-2022    35.486

CF = cashflows(FRAObj(2),datetime(2022,4,15))

CF= 1×1timetable
       Time         CFA  
    ___________    ______

    15-Oct-2022    35.486

CF = cashflows(FRAObj(3),datetime(2022,4,15))
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CF= 1×1timetable
       Time         CFA  
    ___________    ______

    15-Nov-2022    35.486

Calculate Cash Flow for FixedBond Instrument

This example shows the workflow to price a FixedBond instrument and then use cashflows to
calculate the cash flow for the FixedBond instrument.

Create FixedBond Instrument Object

Use fininstrument to create a FixedBond instrument object.

FixB = fininstrument("FixedBond",'Maturity',datetime(2022,9,15),'CouponRate',0.05,'Period',4,'Basis',7,'Principal',1000,'BusinessDayConvention',"follow",'Name',"fixed_bond_instrument")

FixB = 
  FixedBond with properties:

                  CouponRate: 0.0500
                      Period: 4
                       Basis: 7
                EndMonthRule: 1
                   Principal: 1000
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "follow"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 15-Sep-2022
                        Name: "fixed_bond_instrument"

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
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               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Discount Pricer Object

Use finpricer to create a Discount pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("Discount",'DiscountCurve',myRC)

outPricer = 
  Discount with properties:

    DiscountCurve: [1x1 ratecurve]

Price FixedBond Instrument

Use price to compute the price and sensitivities for the FixedBond instrument.

[Price, outPR] = price(outPricer, FixB,["all"])

Price = 1.1600e+03

outPR = 
  priceresult with properties:

       Results: [1x2 table]
    PricerData: []

outPR.Results

ans=1×2 table
    Price     DV01  
    _____    _______

    1160     0.42712

Use cashflows to calculate the cash flow for the FixedBond instrument for any specified Settle
date before the instrument Maturity date.

CF = cashflows(FixB,datetime(2021,9,15))

CF=5×1 timetable
       Time         Var1 
    ___________    ______

    15-Sep-2021         0
    15-Dec-2021      12.5
    15-Mar-2022      12.5
    15-Jun-2022      12.5
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    15-Sep-2022    1012.5

Input Arguments
InstrumentObject — Instrument object
Deposit object | FixedBond object | FloatBond object | Swap object | STIRFuture object |
OISFuture object | OvernightIndexedSwap object | FRA object

Instrument object, specified using a previously created instrument object for one of the following:
Deposit, FixedBond, FloatBond, Swap, STIRFuture, OISFuture, OvernightIndexedSwap, or
FRA.

Note If the InstrumentObject is a vector of instruments, you must use cashflows separately
with each instrument.

Data Types: object

Settle — Settlement date for instrument cash flow
datetime | serial date number | date character vector | string array

Settlement date for instrument cash flow, specified as a scalar using a datetime, serial date number,
date character vector, or date string.

Note The Settle date you specify must be before the Maturity date for the Deposit, FixedBond,
FloatBond, Swap, STIRFuture, OISFuture,OvernightIndexedSwap, or FRA instrument.

Data Types: double | char | datetime | string

Output Arguments
CF — Cash flow
timetable

Cash flow, returned as a timetable.

See Also
fininstrument | finmodel | finpricer | timetable

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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cashsettle
Package: fininstrument

Compute cash settlement for BondFuture, CommodityFuture, EquityIndexFuture, or FXFuture
instrument

Syntax
outCS = cashsettle(InstrumentObject,SpotPrice,DiscountCurve)

Description
outCS = cashsettle(InstrumentObject,SpotPrice,DiscountCurve) computes the cash
settlement for a BondFuture, CommodityFuture, FXFuture, or EquityIndexFuture instrument
object.

Examples

Compute Cash Settlement for BondFuture Instrument

This example shows the workflow to price a BondFuture instrument and then use cashsettle to
compute the cash settlement amount for the BondFuture instrument.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2022,3,1);
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])];
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates,Compounding=2);

Create Underlying FixedBond Instrument Object

Use fininstrument to create a FixedBond instrument object.

FixB = fininstrument("FixedBond",Maturity=datetime(2032,9,1),CouponRate=0.05,Name="fixed_bond_instrument")

FixB = 
  FixedBond with properties:

                  CouponRate: 0.0500
                      Period: 2
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
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             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 01-Sep-2032
                        Name: "fixed_bond_instrument"

Create BondFuture Instrument Object

Use fininstrument to create a BondFuture instrument object.

BondFut = fininstrument("BondFuture",Maturity=datetime(2022,9,1),QuotedPrice=86,Bond=FixB,ConversionFactor=1.43,Name="bondfuture_instrument")

BondFut = 
  BondFuture with properties:

            Maturity: 01-Sep-2022
         QuotedPrice: 86
                Bond: [1x1 fininstrument.FixedBond]
    ConversionFactor: 1.4300
            Notional: 100000
                Name: "bondfuture_instrument"

Create Future Pricer Object

Use finpricer to create a Future pricer object and use the ratecurve object with the
DiscountCurve name-value argument.

outPricer = finpricer("Future",DiscountCurve=ZeroCurve,SpotPrice=125)

outPricer = 
  Future with properties:

    DiscountCurve: [1x1 ratecurve]
        SpotPrice: 125

Price BondFuture Instrument

Use price to compute the price and price result for the BondFuture instrument.

[Price,outPR] = price(outPricer,BondFut)

Price = -151.9270

outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: []

outPR.Results

ans=1×4 table
     Price     FairDeliveryPrice    FairFuturePrice    AccruedInterest
    _______    _________________    _______________    _______________
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    -151.93       1.2283e+05            85.893                0       

Compute Cash Settlement Amount

Use cashsettle with the BondFuture instrument to compute the cash settlement.

SpotPrice = 125; % Clean spot price for $100 face value of underlying bond.
outCS = cashsettle(BondFut,SpotPrice,ZeroCurve)

outCS= 1×1timetable
       Time        CashSettleAmount
    ___________    ________________

    01-Sep-2022        -152.33     

Compute Cash Settlement for Multiple FXFuture Instruments

This example shows the workflow to price multiple FXFuture instruments and then use cashsettle
to compute the cash settlement amount for the FXFuture instruments.

Create ratecurve Objects

Create ratecurve objects using ratecurve for the foreign and domestic zero curves.

% Define Foreign Zero Curve
Settle = datetime(2022, 3, 1);
ForeignZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ForeignZeroRates = [0.0031 0.0035 0.0047 0.0058 0.0062 0.0093 0.0128 0.0182 0.0223 0.0285]';
ForeignZeroDates = Settle + ForeignZeroTimes;
ForeignRC = ratecurve('zero', Settle, ForeignZeroDates, ForeignZeroRates);

% Define Domestic Zero Curve
DomesticZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
DomesticZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
DomesticZeroDates = Settle + DomesticZeroTimes;
DomesticRC = ratecurve('zero', Settle, DomesticZeroDates, DomesticZeroRates);

Create FXFuture Instrument Object

Use fininstrument to create a FXFuture instrument object for three FX Future instruments.

FXFut = fininstrument("FXFuture",Maturity=datetime([2022,9,1 ; 2022,10,1 ; 2022,11,1]),QuotedPrice=[0.78 ; 0.82 ; 0.86],ForeignRateCurve=ForeignRC,Notional=200000,Name=["FXfuture_instrument1";"FXfuture_instrument2";"FXfuture_instrument3"])

FXFut=3×1 object
  3x1 FXFuture array with properties:

    Maturity
    QuotedPrice
    ForeignRateCurve
    Notional
    Name
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Create Future Pricer Object

Use finpricer to create a Future pricer object and use the ratecurve object with the
DiscountCurve name-value argument.

outPricer = finpricer("Future",DiscountCurve=DomesticRC,SpotPrice=0.79)

outPricer = 
  Future with properties:

    DiscountCurve: [1x1 ratecurve]
        SpotPrice: 0.7900

Price FXFuture Instruments

Use price to compute the prices and price results for the FXFuture instrument.

[Price,outPR] = price(outPricer,FXFut)

Price = 3×1
104 ×

    0.2162
   -0.5789
   -1.3732

outPR=1×3 object
  1x3 priceresult array with properties:

    Results
    PricerData

outPR.Results

ans=1×4 table
    Price     FairDeliveryPrice    FairFuturePrice    AccruedInterest
    ______    _________________    _______________    _______________

    2161.7       1.5817e+05            0.79084               0       

ans=1×4 table
    Price    FairDeliveryPrice    FairFuturePrice    AccruedInterest
    _____    _________________    _______________    _______________

    -5789       1.5819e+05            0.79097               0       

ans=1×4 table
    Price     FairDeliveryPrice    FairFuturePrice    AccruedInterest
    ______    _________________    _______________    _______________

    -13732       1.5822e+05            0.7911                0       
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Compute Cash Settlement Amounts

Use cashsettle with the FXFuture instruments to compute the cash settlement.

SpotPrice = 0.79; % Quoted in domestic currency for one unit of foreign currency
outCS = cashsettle(FXFut(1),SpotPrice,DomesticRC)

outCS= 1×1timetable
       Time        CashSettleAmount
    ___________    ________________

    01-Sep-2022         2167.4     

outCS = cashsettle(FXFut(2),SpotPrice,DomesticRC)

outCS= 1×1timetable
       Time        CashSettleAmount
    ___________    ________________

    01-Oct-2022        -5806.9     

outCS = cashsettle(FXFut(3),SpotPrice,DomesticRC)

outCS= 1×1timetable
       Time        CashSettleAmount
    ___________    ________________

    01-Nov-2022         -13781     

Input Arguments
InstrumentObject — Instrument object
BondFuture object | CommodityFuture object | EquityIndexFuture object | FXFuture object

Instrument object, specified using a previously created instrument object for one of the following:
BondFuture, CommodityFuture, FXFuture, or EquityIndexFuture.

Note If InstrumentObject is a vector of instruments, you must use cashsettle separately with
each instrument.

Data Types: object

DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, specified using the name of a previously created
ratecurve object.
Data Types: object

SpotPrice — Quoted spot price for underlying asset to be delivered
numeric
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Quoted spot price for underlying asset to be delivered, specified using a numeric value that depends
on the type of future instrument being priced:

• BondFuture instrument — Clean spot price quoted for $100 face value of underlying bond
• CommodityFuture instrument — Spot price for underlying commodity quantity specified in

contract
• EquityIndexFuture instrument — Spot equity index value
• FXFuture instrument — Spot price quoted in domestic currency for one unit of foreign currency

Data Types: double

Output Arguments
outCS — Cash settlement
timetable

Cash settlement, returned as a timetable.

See Also
fininstrument | finmodel | finpricer | fairdelivery

Topics
“Select Cheapest-to-Deliver Bond Using BondFuture Instrument” on page 2-213
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2022a
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fairdelivery
Package: fininstrument

Compute fair delivery price of underlying asset for BondFuture, CommodityFuture,
EquityIndexFuture, or FXFuture instrument

Syntax
[FairDeliveryPrice,FairFuturePrice,AccruedInterest] = fairdelivery(
InstrumentObject,SpotPrice,DiscountCurve)

Description
[FairDeliveryPrice,FairFuturePrice,AccruedInterest] = fairdelivery(
InstrumentObject,SpotPrice,DiscountCurve) computes the fair delivery price of the
underlying asset for a BondFuture, CommodityFuture, FXFuture, or EquityIndexFuture
instrument object.

Examples

Compute Fair Delivery Price of Underlying Bond for BondFuture Instrument

This example shows the workflow to price a BondFuture instrument and then use fairdelivery to
compute the fair delivery price for the underlying FixedBond.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2022,3,1);
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])];
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates,Compounding=2);

Create Underlying FixedBond Instrument Object

Use fininstrument to create a FixedBond instrument object.

FixB = fininstrument("FixedBond",Maturity=datetime(2032,9,1),CouponRate=0.05,Name="fixed_bond_instrument")

FixB = 
  FixedBond with properties:

                  CouponRate: 0.0500
                      Period: 2
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
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                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 01-Sep-2032
                        Name: "fixed_bond_instrument"

Create BondFuture Instrument Object

Use fininstrument to create a BondFuture instrument object.

BondFut = fininstrument("BondFuture",Maturity=datetime(2022,9,1),QuotedPrice=86,Bond=FixB,ConversionFactor=1.43,Name="bondfuture_instrument")

BondFut = 
  BondFuture with properties:

            Maturity: 01-Sep-2022
         QuotedPrice: 86
                Bond: [1x1 fininstrument.FixedBond]
    ConversionFactor: 1.4300
            Notional: 100000
                Name: "bondfuture_instrument"

Create Future Pricer Object

Use finpricer to create a Future pricer object and use the ratecurve object with the
DiscountCurve name-value argument.

outPricer = finpricer("Future",DiscountCurve=ZeroCurve,SpotPrice=125)

outPricer = 
  Future with properties:

    DiscountCurve: [1x1 ratecurve]
        SpotPrice: 125

Price BondFuture Instrument

Use price to compute the price and price result for the BondFuture instrument.

[Price,outPR] = price(outPricer,BondFut)

Price = -151.9270

outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: []

outPR.Results

ans=1×4 table
     Price     FairDeliveryPrice    FairFuturePrice    AccruedInterest
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    _______    _________________    _______________    _______________

    -151.93       1.2283e+05            85.893                0       

Compute Fair Delivery Price

Use fairdelivery with the BondFuture instrument to compute the fair delivery price for the
underlying FixedBond.

SpotPrice = 125; % Clean spot price for $100 face value of underlying bond.
[FairDeliveryPrice,FairFuturePrice,AccruedInterest] = fairdelivery(BondFut,SpotPrice,ZeroCurve)

FairDeliveryPrice = 1.2283e+05

FairFuturePrice = 85.8935

AccruedInterest = 0

Compute Fair Delivery Price for Multiple FXFuture Instruments

This example shows the workflow to price multiple FXFuture instruments and then use
fairdelivery to compute the fair delivery price for the FXFuture instruments.

Create ratecurve Objects

Create ratecurve objects using ratecurve for the foreign and domestic zero curves.

% Define Foreign Zero Curve
Settle = datetime(2022, 3, 1);
ForeignZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ForeignZeroRates = [0.0031 0.0035 0.0047 0.0058 0.0062 0.0093 0.0128 0.0182 0.0223 0.0285]';
ForeignZeroDates = Settle + ForeignZeroTimes;
ForeignRC = ratecurve('zero', Settle, ForeignZeroDates, ForeignZeroRates);

% Define Domestic Zero Curve
DomesticZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
DomesticZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
DomesticZeroDates = Settle + DomesticZeroTimes;
DomesticRC = ratecurve('zero', Settle, DomesticZeroDates, DomesticZeroRates);

Create FXFuture Instrument Object

Use fininstrument to create a FXFuture instrument object for three FX Future instruments.

FXFut = fininstrument("FXFuture",Maturity=datetime([2022,9,1 ; 2022,10,1 ; 2022,11,1]),QuotedPrice=[0.78 ; 0.82 ; 0.86],ForeignRateCurve=ForeignRC,Notional=200000,Name=["FXfuture_instrument1";"FXfuture_instrument2";"FXfuture_instrument3"])

FXFut=3×1 object
  3x1 FXFuture array with properties:

    Maturity
    QuotedPrice
    ForeignRateCurve
    Notional
    Name
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Create Future Pricer Object

Use finpricer to create a Future pricer object and use the ratecurve object with the
DiscountCurve name-value argument.

outPricer = finpricer("Future",DiscountCurve=DomesticRC,SpotPrice=0.79)

outPricer = 
  Future with properties:

    DiscountCurve: [1x1 ratecurve]
        SpotPrice: 0.7900

Price FXFuture Instruments

Use price to compute the prices and price results for the FXFuture instrument.

[Price,outPR] = price(outPricer,FXFut)

Price = 3×1
104 ×

    0.2162
   -0.5789
   -1.3732

outPR=1×3 object
  1x3 priceresult array with properties:

    Results
    PricerData

outPR.Results

ans=1×4 table
    Price     FairDeliveryPrice    FairFuturePrice    AccruedInterest
    ______    _________________    _______________    _______________

    2161.7       1.5817e+05            0.79084               0       

ans=1×4 table
    Price    FairDeliveryPrice    FairFuturePrice    AccruedInterest
    _____    _________________    _______________    _______________

    -5789       1.5819e+05            0.79097               0       

ans=1×4 table
    Price     FairDeliveryPrice    FairFuturePrice    AccruedInterest
    ______    _________________    _______________    _______________

    -13732       1.5822e+05            0.7911                0       
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Compute Fair Delivery for FXFuture Instruments

Use fairdelivery with the FXFuture instruments to compute the fair delivery price for the
FXFuture instruments.

SpotPrice = 0.79; % Quoted in domestic currency for one unit of foreign currency
[FairDeliveryPrice,FairFuturePrice,AccruedInterest] = fairdelivery(FXFut(1),SpotPrice,DomesticRC)

FairDeliveryPrice = 1.5817e+05

FairFuturePrice = 0.7908

AccruedInterest = 0

[FairDeliveryPrice,FairFuturePrice,AccruedInterest] = fairdelivery(FXFut(2),SpotPrice,DomesticRC)

FairDeliveryPrice = 1.5819e+05

FairFuturePrice = 0.7910

AccruedInterest = 0

[FairDeliveryPrice,FairFuturePrice,AccruedInterest] = fairdelivery(FXFut(3),SpotPrice,DomesticRC)

FairDeliveryPrice = 1.5822e+05

FairFuturePrice = 0.7911

AccruedInterest = 0

Input Arguments
InstrumentObject — Instrument object
BondFuture object | CommodityFuture object | EquityIndexFuture object | FXFuture object

Instrument object, specified using a previously created instrument object for one of the following:
BondFuture, CommodityFuture, FXFuture, or EquityIndexFuture.

Note If the InstrumentObject is a vector of instruments, you must use fairdelivery separately
with each instrument.

Data Types: object

SpotPrice — Quoted spot price for underlying asset to be delivered
numeric

Quoted spot price for underlying asset to be delivered, specified as SpotPrice and a numeric value
that depends on the type of future instrument being priced:

• BondFuture instrument — Clean spot price quoted for $100 face value of underlying bond
• CommodityFuture instrument — Spot price for underlying commodity quantity specified in

contract
• EquityIndexFuture instrument — Spot equity index value
• FXFuture instrument — Spot price quoted in domestic currency for one unit of foreign currency

11 Functions

11-2240



Data Types: double

DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, specified as DiscountCurve and the name of a
previously created ratecurve object.
Data Types: object

Output Arguments
FairDeliveryPrice — Fair delivery price for underlying asset
numeric

Fair delivery price for underlying asset, returned as a numeric. Depending on InstrumentObject,
the FairDeliveryPrice output is defined:

• BondFuture instrument — Fair delivery price (full cash price) for underlying bond
• CommodityFuture instrument — Fair delivery price for underlying commodity
• EquityIndexFuture instrument — Fair delivery price for equity index future
• FXFuture instrument — Fair delivery price for FX future in domestic currency

FairFuturePrice — Fair future price (clean price) for $100 face value
numeric

Fair future price (clean price) for 100 face value, returned as a numeric. Depending on
InstrumentObject, the FairFuturePrice output is defined:

• BondFuture instrument — Fair future price (clean price) for $100 face value
• CommodityFuture instrument — Fair future price
• EquityIndexFuture instrument — Fair future price
• FXFuture instrument — Fair future price in domestic currency for one unit of foreign currency

AccruedInterest — Accrued interest at delivery
numeric

Accrued interest at delivery, returned as a numeric. Depending on InstrumentObject, the
AccruedInterest output is defined:

• BondFuture instrument — Accrued interest at delivery for $100 face value
• CommodityFuture instrument — Accrued interest at delivery
• EquityIndexFuture instrument — Accrued interest at delivery
• FXFuture instrument — Accrued interest at delivery

See Also
fininstrument | finmodel | finpricer | cashsettle

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22

 fairdelivery
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“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2022a
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setCallExercisePolicy
Package: fininstrument

Set call exercise policy for OptionEmbeddedFixedBond, OptionEmbeddedFloatBond, or
ConvertibleBond instrument

Syntax
UpdatedInstrumentObject = setCallExercisePolicy(InstrumentObject,
exerciseSchedule,exerciseStyle)

Description
UpdatedInstrumentObject = setCallExercisePolicy(InstrumentObject,
exerciseSchedule,exerciseStyle) sets the call exercise policy for a
OptionEmbeddedFixedBond, OptionEmbeddedFloatBond, or ConvertibleBond instrument
object.

Examples

Set Call Exercise Policy for Option Embedded Fixed Bond Instrument

This example shows how to use setCallExercisePolicy to maintain consistency between the
exercise schedule and exercise style when using a OptionEmbeddedFixedBond instrument object.

Create OptionEmbeddedFixedBond Instrument Object

Use fininstrument to create an OptionEmbeddedFixedBond instrument object with different
exercise styles.

Maturity = datetime(2024,1,1);
Strike = [100;100];
ExerciseDates = [datetime(2020,1,1); datetime(2024,1,1)];
Period = 1;
CallSchedule =  timetable(ExerciseDates,Strike,'VariableNames',{'Strike Schedule'}); 

CallableBond = fininstrument("OptionEmbeddedFixedBond",'Maturity',Maturity,...
                              'CouponRate',0.025,'Period',Period, ...
                              'CallSchedule',CallSchedule)

CallableBond = 
  OptionEmbeddedFixedBond with properties:

                  CouponRate: 0.0250
                      Period: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
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                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 01-Jan-2024
                   CallDates: [2x1 datetime]
                    PutDates: [0x1 datetime]
                CallSchedule: [2x1 timetable]
                 PutSchedule: [0x0 timetable]
           CallExerciseStyle: "american"
            PutExerciseStyle: [0x0 string]
                        Name: ""

Set the Exercise Style to Bermudan

Use setCallExercisePolicy to define the CallExerciseStyle as Bermudan.

CallableBond = setCallExercisePolicy(CallableBond, CallSchedule, "Bermudan") 

CallableBond = 
  OptionEmbeddedFixedBond with properties:

                  CouponRate: 0.0250
                      Period: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 01-Jan-2024
                   CallDates: [2x1 datetime]
                    PutDates: [0x1 datetime]
                CallSchedule: [2x1 timetable]
                 PutSchedule: [0x0 timetable]
           CallExerciseStyle: "bermudan"
            PutExerciseStyle: [0x0 string]
                        Name: ""

Use setCallExercisePolicy to modify CallSchedule and continue using a Bermudan exercise
style.

Strike = [100; 101;102;103];
ExerciseDates = [datetime(2018,1,1);datetime(2020,1,1);datetime(2022,1,1);datetime(2024,1,1)];

CallSchedule =  timetable(ExerciseDates,Strike,'VariableNames',{'Strike Schedule'}); 

CallableBond = setCallExercisePolicy(CallableBond, CallSchedule)   

CallableBond = 
  OptionEmbeddedFixedBond with properties:

11 Functions

11-2244



                  CouponRate: 0.0250
                      Period: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 01-Jan-2024
                   CallDates: [4x1 datetime]
                    PutDates: [0x1 datetime]
                CallSchedule: [4x1 timetable]
                 PutSchedule: [0x0 timetable]
           CallExerciseStyle: "bermudan"
            PutExerciseStyle: [0x0 string]
                        Name: ""

Set Call Exercise Policy for Specific Option Embedded Fixed Bond Instrument

This example shows how to use setCallExercisePolicy to maintain consistency between the
exercise schedule and exercise style when using a OptionEmbeddedFixedBond instrument object
with three OptionEmbeddedFixedBond instruments.

Create OptionEmbeddedFixedBond Instrument Object

Use fininstrument to create an OptionEmbeddedFixedBond instrument object for three Option
Embedded Fixed Bond instruments with American exercise styles.

Maturity = datetime([2024,1,1 ; 2024,4,1 ; 2024,8,1]);
Strike = [100;100];
ExerciseDates = [datetime(2020,1,1); datetime(2024,1,1)];
Period = 1;
CallSchedule =  timetable(ExerciseDates,Strike,'VariableNames',{'Strike Schedule'}); 

CallableBond = fininstrument("OptionEmbeddedFixedBond",'Maturity',Maturity,...
                              'CouponRate',0.025,'Period',Period, ...
                              'CallSchedule',CallSchedule)

CallableBond=3×1 object
  3x1 OptionEmbeddedFixedBond array with properties:

    CouponRate
    Period
    Basis
    EndMonthRule
    Principal
    DaycountAdjustedCashFlow
    BusinessDayConvention
    Holidays
    IssueDate
    FirstCouponDate
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    LastCouponDate
    StartDate
    Maturity
    CallDates
    PutDates
    CallSchedule
    PutSchedule
    CallExerciseStyle
    PutExerciseStyle
    Name

CallableBond.CallExerciseStyle

ans = 
"american"

ans = 
"american"

ans = 
"american"

The CallExerciseStyle is "American" because the fininstrument syntax does not contain a
CallExercideStyle specification and there are two exercise dates defined in the CallSchedule.

Set the Exercise Style to Bermudan

Use setCallExercisePolicy to define the CallExerciseStyle as Bermudan for the second
(CallableBond(2)) instrument.

CallableBond(2) = setCallExercisePolicy(CallableBond(2), CallSchedule, "Bermudan") 

CallableBond=3×1 object
  3x1 OptionEmbeddedFixedBond array with properties:

    CouponRate
    Period
    Basis
    EndMonthRule
    Principal
    DaycountAdjustedCashFlow
    BusinessDayConvention
    Holidays
    IssueDate
    FirstCouponDate
    LastCouponDate
    StartDate
    Maturity
    CallDates
    PutDates
    CallSchedule
    PutSchedule
    CallExerciseStyle
    PutExerciseStyle
    Name

CallableBond.CallExerciseStyle
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ans = 
"american"

ans = 
"bermudan"

ans = 
"american"

Use setCallExercisePolicy to modify CallSchedule and continue using a Bermudan exercise
style.

Strike = [100; 101;102;103];
ExerciseDates = [datetime(2018,1,1);datetime(2020,1,1);datetime(2022,1,1);datetime(2024,1,1)];

CallSchedule =  timetable(ExerciseDates,Strike,'VariableNames',{'Strike Schedule'}); 

CallableBond(2) = setCallExercisePolicy(CallableBond(2), CallSchedule)

CallableBond=3×1 object
  3x1 OptionEmbeddedFixedBond array with properties:

    CouponRate
    Period
    Basis
    EndMonthRule
    Principal
    DaycountAdjustedCashFlow
    BusinessDayConvention
    Holidays
    IssueDate
    FirstCouponDate
    LastCouponDate
    StartDate
    Maturity
    CallDates
    PutDates
    CallSchedule
    PutSchedule
    CallExerciseStyle
    PutExerciseStyle
    Name

CallableBond.CallExerciseStyle

ans = 
"american"

ans = 
"bermudan"
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ans = 
"american"

Input Arguments
InstrumentObject — Instrument object
OptionEmbeddedFixedBond object | OptionEmbeddedFloatBond object | ConvertibleBond
object

Instrument object, specified as a previously created OptionEmbeddedFixedBond,
OptionEmbeddedFloatBond, or ConvertibleBond object instrument object.

Note If the OptionEmbeddedFixedBond, OptionEmbeddedFloatBond, or ConvertibleBond
instrument object is a vector of instruments, you must use setCallExercisePolicy separately
with each instrument.

Data Types: object

exerciseSchedule — Call exercise schedule
timetable

Call exercise schedule, specified as a timetable. The timetable must contain both the exerciseDate
value and Strike information.
Data Types: timetable

exerciseStyle — Call option exercise style
"American" (default) | string with value "European", "American", or "Bermudan" | character
vector with value 'European', 'American', or 'Bermudan'

Call option exercise style, specified as a scalar string or character vector.
Data Types: string | char

Output Arguments
UpdatedInstrumentObject — Updated instrument
object

Updated instrument, returned as an object.

See Also
fininstrument | finmodel | finpricer | timetable

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020b
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setPutExercisePolicy
Package: fininstrument

Set put exercise policy for OptionEmbeddedFixedBond, OptionEmbeddedFloatBond, or
ConvertibleBond instrument

Syntax
UpdatedInstrumentObject = setPutExercisePolicy(InstrumentObject,
exerciseSchedule,exerciseStyle)

Description
UpdatedInstrumentObject = setPutExercisePolicy(InstrumentObject,
exerciseSchedule,exerciseStyle) sets the put exercise policy for an
OptionEmbeddedFixedBond, OptionEmbeddedFloatBond, or ConvertibleBond instrument
object.

Examples

Set Put Exercise Policy for Option Embedded Fixed Bond Instrument

This example shows how to use setPutExercisePolicy to maintain consistency between the
exercise schedule and exercise style when using a OptionEmbeddedFixedBond instrument object.

Create OptionEmbeddedFixedBond Instrument Object

Use fininstrument to create an OptionEmbeddedFixedBond instrument object with different
exercise styles.

Maturity = datetime(2024,1,1);
Strike = [100;100];
ExerciseDates = [datetime(2020,1,1); datetime(2024,1,1)];
Period = 1;
PutSchedule =  timetable(ExerciseDates,Strike,'VariableNames',{'Strike Schedule'}); 

PuttableBond = fininstrument("OptionEmbeddedFixedBond",'Maturity',Maturity,...
                              'CouponRate',0.025,'Period',Period, ...
                              'PutSchedule',PutSchedule)

PuttableBond = 
  OptionEmbeddedFixedBond with properties:

                  CouponRate: 0.0250
                      Period: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
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                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 01-Jan-2024
                   CallDates: [0x1 datetime]
                    PutDates: [2x1 datetime]
                CallSchedule: [0x0 timetable]
                 PutSchedule: [2x1 timetable]
           CallExerciseStyle: [0x0 string]
            PutExerciseStyle: "american"
                        Name: ""

Set Exercise Style to Bermudan

Use setPutExercisePolicy to define PutExerciseStyle as Bermudan.

PuttableBond = setPutExercisePolicy(PuttableBond, PutSchedule, "Bermudan") 

PuttableBond = 
  OptionEmbeddedFixedBond with properties:

                  CouponRate: 0.0250
                      Period: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 01-Jan-2024
                   CallDates: [0x1 datetime]
                    PutDates: [2x1 datetime]
                CallSchedule: [0x0 timetable]
                 PutSchedule: [2x1 timetable]
           CallExerciseStyle: [0x0 string]
            PutExerciseStyle: "bermudan"
                        Name: ""

Use setPutExercisePolicy to modify PutSchedule and continue using a Bermudan exercise
style.

Strike = [100; 101;102;103];
ExerciseDates = [datetime(2018,1,1);datetime(2020,1,1);datetime(2022,1,1);datetime(2024,1,1)];

PutSchedule =  timetable(ExerciseDates,Strike,'VariableNames',{'Strike Schedule'}); 

PuttableBond = setPutExercisePolicy(PuttableBond, PutSchedule)   

PuttableBond = 
  OptionEmbeddedFixedBond with properties:
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                  CouponRate: 0.0250
                      Period: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 01-Jan-2024
                   CallDates: [0x1 datetime]
                    PutDates: [4x1 datetime]
                CallSchedule: [0x0 timetable]
                 PutSchedule: [4x1 timetable]
           CallExerciseStyle: [0x0 string]
            PutExerciseStyle: "bermudan"
                        Name: ""

Set Put Exercise Policy for Specific Option Embedded Fixed Bond Instrument

This example shows how to use setPutExercisePolicy to maintain consistency between the
exercise schedule and exercise style when using a OptionEmbeddedFixedBond instrument object
with three OptionEmbeddedFixedBond instruments.

Create OptionEmbeddedFixedBond Instrument Object

Use fininstrument to create an OptionEmbeddedFixedBond instrument object for three Option
Embedded Fixed Bond instruments with American exercise styles.

Maturity = datetime([2024,1,1 ; 2024,4,1 ; 2024,8,1]);
Strike = [100;100];
ExerciseDates = [datetime(2020,1,1); datetime(2024,1,1)];
Period = 1;
PutSchedule =  timetable(ExerciseDates,Strike,'VariableNames',{'Strike Schedule'}); 

PuttableBond = fininstrument("OptionEmbeddedFixedBond",'Maturity',Maturity,...
                              'CouponRate',0.025,'Period',Period, ...
                              'PutSchedule',PutSchedule)

PuttableBond=3×1 object
  3x1 OptionEmbeddedFixedBond array with properties:

    CouponRate
    Period
    Basis
    EndMonthRule
    Principal
    DaycountAdjustedCashFlow
    BusinessDayConvention
    Holidays
    IssueDate
    FirstCouponDate
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    LastCouponDate
    StartDate
    Maturity
    CallDates
    PutDates
    CallSchedule
    PutSchedule
    CallExerciseStyle
    PutExerciseStyle
    Name

PuttableBond.PutExerciseStyle

ans = 
"american"

ans = 
"american"

ans = 
"american"

The PutExerciseStyle is "American" because the fininstrument syntax does not contain a
PutExercideStyle specification and there are two exercise dates defined in the PutSchedule.

Set Exercise Style to Bermudan

Use setPutExercisePolicy to define PutExerciseStyle as Bermudan for the second
(PuttableBond(2)) instrument.

PuttableBond(2) = setPutExercisePolicy(PuttableBond(2), PutSchedule, "Bermudan") 

PuttableBond=3×1 object
  3x1 OptionEmbeddedFixedBond array with properties:

    CouponRate
    Period
    Basis
    EndMonthRule
    Principal
    DaycountAdjustedCashFlow
    BusinessDayConvention
    Holidays
    IssueDate
    FirstCouponDate
    LastCouponDate
    StartDate
    Maturity
    CallDates
    PutDates
    CallSchedule
    PutSchedule
    CallExerciseStyle
    PutExerciseStyle
    Name

PuttableBond.PutExerciseStyle
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ans = 
"american"

ans = 
"bermudan"

ans = 
"american"

Use setPutExercisePolicy to modify PutSchedule and continue using a Bermudan exercise
style.

Strike = [100; 101;102;103];
ExerciseDates = [datetime(2018,1,1);datetime(2020,1,1);datetime(2022,1,1);datetime(2024,1,1)];

PutSchedule =  timetable(ExerciseDates,Strike,'VariableNames',{'Strike Schedule'}); 

PuttableBond(2) = setPutExercisePolicy(PuttableBond(2), PutSchedule)   

PuttableBond=3×1 object
  3x1 OptionEmbeddedFixedBond array with properties:

    CouponRate
    Period
    Basis
    EndMonthRule
    Principal
    DaycountAdjustedCashFlow
    BusinessDayConvention
    Holidays
    IssueDate
    FirstCouponDate
    LastCouponDate
    StartDate
    Maturity
    CallDates
    PutDates
    CallSchedule
    PutSchedule
    CallExerciseStyle
    PutExerciseStyle
    Name

PuttableBond.PutExerciseStyle

ans = 
"american"

ans = 
"bermudan"
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ans = 
"american"

Input Arguments
InstrumentObject — Instrument object
OptionEmbeddedFixedBond object | OptionEmbeddedFloatBond object | ConvertibleBond
object

Instrument object, specified using a previously created OptionEmbeddedFixedBond,
OptionEmbeddedFloatBond, or ConvertibleBond instrument object.

Note If the OptionEmbeddedFixedBond, OptionEmbeddedFloatBond, or ConvertibleBond
instrument object is a vector of instruments, you must use setCallExercisePolicy separately
with each instrument.

Data Types: object

exerciseSchedule — Put exercise schedule
timetable

Put exercise schedule, specified as a timetable. The timetable must contain both the exerciseDate
value and Strike information.
Data Types: timetable

exerciseStyle — Put option exercise style
"American" (default) | string with value "European", "American", or "Bermudan" | character
vector with value 'European', 'American', or 'Bermudan'

Put option exercise style, specified as a scalar string or character vector.
Data Types: string | char

Output Arguments
UpdatedInstrumentObject — Updated instrument
object

Updated instrument, returned as an object.

See Also
fininstrument | finmodel | finpricer | timetable

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020b

11 Functions

11-2254



setExercisePolicy
Package: fininstrument

Set exercise policy for FixedBondOption, FloatBondOption, or Vanilla instrument

Syntax
UpdatedInstrumentObject = setExercisePolicy(InstrumentObject,exerciseDate,
Strike,exerciseStyle)

Description
UpdatedInstrumentObject = setExercisePolicy(InstrumentObject,exerciseDate,
Strike,exerciseStyle) sets the exercise policy for a FixedBondOption, FloatBondOption, or
Vanilla instrument object.

Examples

Set Exercise Policy for Fixed Bond Option Instrument

This example shows how to use setExercisePolicy to maintain consistency between the exercise
schedule and exercise style when using a FixedBondOption instrument.

Create FixedBond Instrument Object

Use fininstrument to create a FixedBond instrument object as the underlying bond.

BondInst = fininstrument("FixedBond",'Maturity',datetime(2029,9,15),'CouponRate',.021,'Period',1,'Name',"bond_instrument");

Create FixedBondOption Instrument Object

Use fininstrument to create a callable FixedBondOption instrument object with a European
exercise.

FixedBOption = fininstrument("FixedBondOption",'ExerciseDate',datetime(2025,9,15),'Strike',98,'Bond',BondInst,'OptionType',"call",'ExerciseStyle',"european",'Name',"fixed_bond_option")

FixedBOption = 
  FixedBondOption with properties:

       OptionType: "call"
    ExerciseStyle: "european"
     ExerciseDate: 15-Sep-2025
           Strike: 98
             Bond: [1x1 fininstrument.FixedBond]
             Name: "fixed_bond_option"

Set the Exercise Style to American

Use setExercisePolicy to define ExerciseStyle as American.
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FixedBOption = setExercisePolicy(FixedBOption,datetime(2025,9,15),98,"American")

FixedBOption = 
  FixedBondOption with properties:

       OptionType: "call"
    ExerciseStyle: "american"
     ExerciseDate: 15-Sep-2025
           Strike: 98
             Bond: [1x1 fininstrument.FixedBond]
             Name: "fixed_bond_option"

Set Exercise Policy for a Specific Fixed Bond Option Instrument

This example shows how to use setExercisePolicy to maintain consistency between the exercise
schedule and exercise style when using a FixedBondOption instrument object with three Fixed
Bond instruments.

Create FixedBond Instrument Object

Use fininstrument to create a FixedBond instrument object as the underlying bond.

BondInst = fininstrument("FixedBond",'Maturity',datetime(2029,9,15),'CouponRate',.021,'Period',1,'Name',"bond_instrument");

Create FixedBondOption Instrument Object

Use fininstrument to create a callable FixedBondOption instrument object for three Fixed Bond
Option instruments with European exercises.

FixedBOption = fininstrument("FixedBondOption",'ExerciseDate',datetime([2025,9,15 ; 2025,10,15 ; 2025,11,15]),'Strike',98,'Bond',BondInst,'OptionType',"call",'ExerciseStyle',"european",'Name',"fixed_bond_option")

FixedBOption=3×1 object
  3x1 FixedBondOption array with properties:

    OptionType
    ExerciseStyle
    ExerciseDate
    Strike
    Bond
    Name

Set the Exercise Style to American

Use setExercisePolicy to define ExerciseStyle as American for the second
(FixedBOption(2)) instrument.

FixedBOption(2) = setExercisePolicy(FixedBOption(2),datetime(2025,9,15),98,"American")

FixedBOption=3×1 object
  3x1 FixedBondOption array with properties:

    OptionType
    ExerciseStyle
    ExerciseDate
    Strike
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    Bond
    Name

FixedBOption(2).ExerciseStyle

ans = 
"american"

FixedBOption.ExerciseStyle

ans = 
"european"

ans = 
"american"

ans = 
"european"

Input Arguments
InstrumentObject — Instrument object
FixedBondOption object | FloatBondOption object | Vanilla object

Instrument object, specified using a previously created FixedBondOption, FloatBondOption, or
Vanilla instrument object.

Note If the FixedBondOption, FloatBondOption, or Vanilla instrument object is a vector of
instruments, you must use setExercisePolicy separately with each instrument.

Data Types: object

exerciseDate — Exercise date
datetime

Exercise date, specified as a scalar datetime.
Data Types: datetime

Strike — Strike
numeric

Strike, specified as a scalar numeric.
Data Types: double

exerciseStyle — Option exercise style
"American" (default) | string with value "European", "American", or "Bermudan" | character
vector with value 'European', 'American', or 'Bermudan'

Option exercise style, specified as a scalar string or character vector.
Data Types: string | char
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Output Arguments
UpdatedInstrumentObject — Updated instrument object
object

Updated instrument object, returned as an object.

See Also
fininstrument | finmodel | finpricer | timetable

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020b
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parswaprate
Package: fininstrument

Compute par swap rate for Swap instrument

Syntax
outRate = parswaprate(SwapObject,inCurve)

Description
outRate = parswaprate(SwapObject,inCurve) computes a par swap rate for a Swap
instrument object.

Examples

Compute Par Swap Rate for Vanilla Swap Instrument Using ratecurve and Discount Pricer

This example shows the workflow to compute the par swap rate for a vanilla Swap instrument when
you use a ratecurve and a Discount pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve for the underlying interest-rate curve for the Swap
instrument.

Settle = datetime(2018,3,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Mar-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Swap Instrument Object

Use fininstrument to create a vanilla Swap instrument object.
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Swap = fininstrument("Swap",'Maturity',datetime(2020,9,15),'LegRate',[0.022 0.019 ],'LegType',["float","fixed"],'ProjectionCurve',myRC,'Name',"swap_instrument")

Swap = 
  Swap with properties:

                     LegRate: [0.0220 0.0190]
                     LegType: ["float"    "fixed"]
                       Reset: [2 2]
                       Basis: [0 0]
                    Notional: 100
          LatestFloatingRate: [NaN NaN]
                 ResetOffset: [0 0]
    DaycountAdjustedCashFlow: [0 0]
             ProjectionCurve: [1x2 ratecurve]
       BusinessDayConvention: ["actual"    "actual"]
                    Holidays: NaT
                EndMonthRule: [1 1]
                   StartDate: NaT
                    Maturity: 15-Sep-2020
                        Name: "swap_instrument"

Create Discount Pricer Object

Use finpricer to create a Discount pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("Discount", 'DiscountCurve',myRC)

outPricer = 
  Discount with properties:

    DiscountCurve: [1x1 ratecurve]

Price Swap Instrument

Use price to compute the price and sensitivities for the vanilla Swap instrument.

[Price, outPR] = price(outPricer, Swap,["all"])

Price = 2.4066

outPR = 
  priceresult with properties:

       Results: [1x2 table]
    PricerData: []

outPR.Results

ans=1×2 table
    Price       DV01   
    ______    _________

    2.4066    -0.024499

Compute the par swap rate using parswaprate.
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outRate = parswaprate(Swap,myRC)

outRate = 0.0287

Compute Par Swap Rate for Multiple Vanilla Swap Instruments Using ratecurve and
Discount Pricer

This example shows the workflow to compute the par swap rate for multiple vanilla Swap instruments
when you use a ratecurve and a Discount pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve for the underlying interest-rate curve for the Swap
instrument.

Settle = datetime(2019,4,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Apr-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Swap Instrument Object

Use fininstrument to create a vanilla Swap instrument object for three Swap instruments.

Swap = fininstrument("Swap",'Maturity',datetime([2020,4,15 ; 2021,4,15 ; 2024,4,15]),'LegRate',[0.022 0.019 ],'LegType',["float","fixed"],'ProjectionCurve',myRC,'Name',"swap_instrument")

Swap=3×1 object
  3x1 Swap array with properties:

    LegRate
    LegType
    Reset
    Basis
    Notional
    LatestFloatingRate
    ResetOffset
    DaycountAdjustedCashFlow
    ProjectionCurve
    BusinessDayConvention
    Holidays
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    EndMonthRule
    StartDate
    Maturity
    Name

Create Discount Pricer Object

Use finpricer to create a Discount pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("Discount", 'DiscountCurve',myRC)

outPricer = 
  Discount with properties:

    DiscountCurve: [1x1 ratecurve]

Price Swap Instruments

Use price to compute the prices and sensitivities for the vanilla Swap instruments.

[Price, outPR] = price(outPricer, Swap,["all"])

Price = 3×1

    0.8473
    1.8067
    7.2322

outPR=1×3 object
  1x3 priceresult array with properties:

    Results
    PricerData

outPR.Results

ans=1×2 table
     Price        DV01   
    _______    __________

    0.84728    -0.0099228

ans=1×2 table
    Price       DV01   
    ______    _________

    1.8067    -0.019656

ans=1×2 table
    Price       DV01  
    ______    ________
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    7.2322    -0.04664

Compute the par swap rate for each of the three Swap instruments using parswaprate.

outRate = parswaprate(Swap(1),myRC)

outRate = 0.0275

outRate = parswaprate(Swap(2),myRC)

outRate = 0.0281

outRate = parswaprate(Swap(3),myRC)

outRate = 0.0338

Input Arguments
SwapObject — Swap object
Swap object

Swap object, specified using a previously created Swap instrument object.

Note If the SwapObject is a vector of instruments, you must use parswaprate separately with
each instrument.

Data Types: object

inCurve — Rate curve
ratecurve object

Rate curve, specified as a previously created ratecurve object.
Data Types: object

Output Arguments
outRate — Par swap rate
decimal

Par swap rate, returned as a decimal.

More About
Par Swap Rate

The par swap rate is the rate that renders a swap value equal to zero.

In other words, the par swap rate is the value of the fixed rate that gives the swap a zero present
value, or the fixed rate that makes the value of both legs equal (that is, the value of the fixed leg and
the value of the floating leg).
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See Also
fininstrument | finmodel | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020b
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volatilities
Package: finpricer.analytic

Compute implied volatilities when using SABR pricer

Syntax
outVolatilities = volatilities(inpPricer,ExerciseDate,ForwardValue,Strike)

Description
outVolatilities = volatilities(inpPricer,ExerciseDate,ForwardValue,Strike)
computes implied volatilities for a Swaption instrument when you use a SABR pricer.

Examples

Compute Implied Volatilities for Swaption Instrument

This example shows the workflow to compute implied volatilities for a Swaption Instrument.

Create ratecurve Object

Create a ratecurve object using ratecurve.

ValuationDate = datetime(2016,3,5);
ZeroDates = datemnth(ValuationDate,[1 2 3 6 9 12*[1 2 3 4 5 6 7 8 9 10 12]])';
ZeroRates = [-0.33 -0.28 -0.24 -0.12 -0.08 -0.03 0.015 0.028 ...
            0.033 0.042 0.056 0.095 0.194 0.299 0.415 0.525]'/100;
Compounding = 1;
ZeroCurve = ratecurve("zero",ValuationDate,ZeroDates,ZeroRates,'Compounding',Compounding)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: 1
                Basis: 0
                Dates: [16x1 datetime]
                Rates: [16x1 double]
               Settle: 05-Mar-2016
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create SABR Model Object

Use finmodel to create a SABR model object.

Alpha = 0.0135;
Beta = 0.5;

 volatilities
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Rho = 0.4654;
Nu = 0.4957;
Shift = 0.008;
 
SABRModel = finmodel("SABR",'Alpha',Alpha,'Beta',Beta,'Rho',Rho,'Nu',Nu,'Shift',Shift)

SABRModel = 
  SABR with properties:

             Alpha: 0.0135
              Beta: 0.5000
               Rho: 0.4654
                Nu: 0.4957
             Shift: 0.0080
    VolatilityType: "black"

Create SABR Pricer Object

Use finpricer to create a SABR pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

SABRPricer = finpricer("Analytic", 'Model', SABRModel,'DiscountCurve', ZeroCurve)

SABRPricer = 
  SABR with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.SABR]

Compute Implied Volatilities

Use volatilities to compute the implied volatilities for a Swaption instrument.

SwaptionExerciseDate = datetime(2017,3,5);
ForwardValue = 0.0007;
StrikeGrid = [-0.5; -0.25; -0.125; 0; 0.125; 0.25; 0.5; 1.0; 1.5]/100;
MarketStrikes = ForwardValue + StrikeGrid;

outVolatilities = volatilities(SABRPricer, SwaptionExerciseDate, ForwardValue, MarketStrikes)

outVolatilities = 9×1

    0.2132
    0.1500
    0.1409
    0.1474
    0.1609
    0.1752
    0.2004
    0.2372
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    0.2627

Input Arguments
inpPricer — SABR pricer
SABR pricer object

SABR pricer, specified as a previously created SABR pricer object.
Data Types: object

ExerciseDate — Option exercise date
datetime | serial date number | date character vector | date string

Option exercise date, specified as a scalar datetime, serial date number, date character vector, or
date string.
Data Types: double | char | string | datetime

ForwardValue — Forward swap rate
decimal

Forward swap rate, specified as a scalar decimal.
Data Types: object

Strike — Strike rate
decimal

Strike rate, specified as a scalar decimal.
Data Types: double

Output Arguments
outVolatilities — Output volatilities
numeric

Output volatilities, returned as a numeric.

See Also
fininstrument | finmodel | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020b
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fitSvensson
Fit Svensson model to bond market data

Syntax
outCurve = fitSvensson(Settle,Instruments,CleanPrice)

Description
outCurve = fitSvensson(Settle,Instruments,CleanPrice) fits a Svensson model to bond
data.

Examples

Fit Svensson Model to Bond Market Data

Define the bond data and use fininstrument to create FixedBond instrument objects.

 Settle = datetime(2017,9,15);
  Maturity = [datetime(2019,9,15);datetime(2021,9,15);...
      datetime(2023,9,15);datetime(2026,9,7);...
      datetime(2035,9,15);datetime(2047,9,15)];
  
  CleanPrice = [100.1;100.1;100.8;96.6;103.3;96.3];
  CouponRate = [0.0400;0.0425;0.0450;0.0400;0.0500;0.0425];
 
nInst = numel(CouponRate);
Bonds(nInst,1) = fininstrument.FinInstrument;
for ii=1:nInst
    Bonds(ii) = fininstrument("FixedBond",'Maturity',Maturity(ii),...
        'CouponRate',CouponRate(ii));
end

Use fitSvensson to create a parametercurve object.

SvenModel = fitSvensson(Settle,Bonds,CleanPrice)

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to 
its initial value is less than the value of the function tolerance.

SvenModel = 
  parametercurve with properties:

              Type: "zero"
            Settle: 15-Sep-2017
       Compounding: -1
             Basis: 0
    FunctionHandle: @(t)fitF(Params,t)
        Parameters: [3.3043e-08 0.0197 0.0624 0.1391 1.3563 11.7741]
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Input Arguments
Settle — Settlement date
datetime | serial date number | date character vector | date string

Settlement date, specified as a scalar datetime, serial date number, date character vector, or date
string.
Data Types: double | char | string | datetime

Instruments — Bond instrument objects
array

Bond instrument objects, specified as an array of bond instrument objects.
Data Types: object

CleanPrice — Observed market prices
vector

Observed market prices, specified as a vector.
Data Types: double

Output Arguments
outCurve — Fitted Svensson model
object

Fitted Svensson model, returned as a parametercurve object.

See Also
discountfactors | zerorates | forwardrates

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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discountfactors
Calculate discount factors for a ratecurve object

Syntax
outDF = discountfactors(obj,inpDates)

Description
outDF = discountfactors(obj,inpDates) calculates the discount factors for a ratecurve
object.

Examples

Calculate Discount Factors for a ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2019,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates,'Compounding',2,'Basis',5,'InterpMethod',"pchip",'ShortExtrapMethod',"linear",'LongExtrapMethod',"pchip")

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: 2
                Basis: 5
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2019
         InterpMethod: "pchip"
    ShortExtrapMethod: "linear"
     LongExtrapMethod: "pchip"

Compute the discount factors using discountfactors.

CurveSettle = datetime(2019,9,15);
outRates = discountfactors(myRC,CurveSettle+30:30:CurveSettle+720)

outRates = 1×24

    0.9996    0.9992    0.9988    0.9983    0.9979    0.9974    0.9970    0.9965    0.9961    0.9956    0.9951    0.9946    0.9941    0.9936    0.9931    0.9926    0.9921    0.9915    0.9910    0.9904    0.9899    0.9893    0.9887    0.9881
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Input Arguments
obj — ratecurve object
ratecurve object

ratecurve object, specified using a previously created ratecurve object.
Data Types: object

inpDates — Input dates
datetime | serial date number | date character vector | date string

Input dates, specified as a scalar or an NPOINTS-by-1 vector of datetimes, serial date numbers, cell
array of date character vectors, or string array.
Data Types: string | datetime | double | char | cell

Output Arguments
outDF — Discount factors
numeric

Discount factors, returned as a numeric.

See Also
ratecurve | forwardrates | zerorates | irbootstrap

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a

 discountfactors

11-2271



forwardrates
Calculate forward rates for ratecurve object

Syntax
outRates = forwardrates(obj,startDates,endDates)
outRates = forwardrates( ___ ,inpComp,inpBasis)

Description
outRates = forwardrates(obj,startDates,endDates) calculates forward rates for the
ratecurve object (obj) based on the startDates and endDates.

outRates = forwardrates( ___ ,inpComp,inpBasis) optionally specifies the input
compounding frequency (inpComp) and the input day-count basis (inpBasis) in addition to any of
the input argument combinations in the previous syntax.

Examples

Calculate Forward Rates for ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2019,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates,'Compounding',2,'Basis',5,'InterpMethod',"pchip",'ShortExtrapMethod',"linear",'LongExtrapMethod',"pchip")

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: 2
                Basis: 5
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2019
         InterpMethod: "pchip"
    ShortExtrapMethod: "linear"
     LongExtrapMethod: "pchip"

Compute the forward rates using forwardrates.

outRates = forwardrates(myRC,datetime(2019,12,15),datetime(2021,9,15),6,7)

outRates = 0.0062
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Input Arguments
obj — ratecurve object
ratecurve object

ratecurve object, specified using a previously created ratecurve object.
Data Types: object

startDates — Start dates of interval to discount over
datetime | serial date number | date character vector | date string

Start dates of the interval to discount over, specified as a scalar or an NPOINTS-by-1 vector of
datetimes, serial date numbers, cell array of date character vectors, or string array. startDates
must be earlier than endDates.
Data Types: string | datetime | double | char | cell

endDates — Maturity dates ending interval to discount over
datetime | serial date number | date character vector | date string

Maturity dates ending the interval to discount over, specified as a scalar or an NPOINTS-by-1 vector
of datetimes, serial date numbers, cell array of date character vectors, or string array.
Data Types: string | datetime | double | char | cell

inpComp — Input compounding frequency
Compounding for the ratecurve object (default) | possible values include: –1, 0, 1, 2, 3, 4, 6, 12.

(Optional) Input compounding frequency, specified as a scalar numeric using one of the supported
values: –1, 0, 1, 2, 3, 4, 6, or 12.
Data Types: double

inpBasis — Input day-count basis
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Input day-count basis, specified as a scalar integer.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
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• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Output Arguments
outRates — Forward rates
numeric

Forward rates, returned as a numeric.

See Also
ratecurve | discountfactors | zerorates | irbootstrap

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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zerorates
Calculate zero rates for ratecurve object

Syntax
outRates = zerorates(obj,inpDates)
outRates = zerorates( ___ ,inpComp,inpBasis)

Description
outRates = zerorates(obj,inpDates) computes zero rates for the ratecurve object (obj)
based on inpDates.

outRates = zerorates( ___ ,inpComp,inpBasis) optionally specifies the input compounding
frequency (inpComp) and the input day-count basis (inpBasis) in addition to any of the input
argument combinations in the previous syntax.

Examples

Calculate Zero Rates for ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2019,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates,'Compounding',2,'Basis',5,'InterpMethod',"pchip",'ShortExtrapMethod',"linear",'LongExtrapMethod',"pchip")

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: 2
                Basis: 5
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2019
         InterpMethod: "pchip"
    ShortExtrapMethod: "linear"
     LongExtrapMethod: "pchip"

Compute the zero rates using zerorates.

CurveSettle = datetime(2019,9,15);
outRates = zerorates(myRC,CurveSettle+30:30:CurveSettle+720)

outRates = 1×24
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    0.0049    0.0050    0.0050    0.0051    0.0051    0.0052    0.0052    0.0053    0.0053    0.0054    0.0054    0.0055    0.0055    0.0056    0.0056    0.0057    0.0057    0.0058    0.0058    0.0059    0.0059    0.0060    0.0060    0.0061

Input Arguments
obj — ratecurve object
ratecurve object

ratecurve object, specified using a previously created ratecurve object.
Data Types: object

inpDates — Input dates
datetime | serial date number | date character vector | date string

Input dates, specified as a scalar or an NPOINTS-by-1 vector of datetimes, serial date numbers, cell
array of date character vectors, or string array.
Data Types: string | datetime | double | char | cell

inpComp — Input compounding frequency
Compounding for the ratecurve object (default) | possible values include: –1, 0, 1, 2, 3, 4, 6, 12.

(Optional) Input compounding frequency, specified as a scalar numeric using one of the supported
values: –1, 0, 1, 2, 3, 4, 6, or 12.
Data Types: double

inpBasis — Input day-count basis
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Input day-count basis, specified as a scalar integer.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double
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Output Arguments
outRates — Zero rates
numeric

Zero rates, returned as a numeric.

See Also
ratecurve | forwardrates | discountfactors | irbootstrap

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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discountfactors
Calculate discount factors for parametercurve object

Syntax
outDF = discountfactors(obj,inpDates)

Description
outDF = discountfactors(obj,inpDates) calculates the discount factors for a
parametercurve object.

Examples

Calculate Discount Factors for parametercurve Object

Create a parametercurve object using parametercurve.

PCobj = parametercurve('zero',datetime(2019,9,15),@(t)polyval([-0.0001 0.003 0.02],t),'Compounding',4,'Basis',5,'Parameters',[-0.0001 0.003 0.02])

PCobj = 
  parametercurve with properties:

              Type: "zero"
            Settle: 15-Sep-2019
       Compounding: 4
             Basis: 5
    FunctionHandle: @(t)polyval([-0.0001,0.003,0.02],t)
        Parameters: [-1.0000e-04 0.0030 0.0200]

Compute the discount factors using discountfactors.

CurveSettle = datetime(2019,9,15);
outDF = discountfactors(PCobj,CurveSettle+30:30:CurveSettle+720)

outDF = 1×24

    0.9983    0.9967    0.9949    0.9932    0.9914    0.9895    0.9876    0.9857    0.9838    0.9818    0.9798    0.9778    0.9757    0.9737    0.9715    0.9694    0.9673    0.9649    0.9627    0.9604    0.9581    0.9558    0.9535    0.9511

Input Arguments
obj — parametercurve object
parametercurve object

parametercurve object, specified as a previously created parametercurve object.
Data Types: object
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inpDates — Input dates
datetime | serial date number | date character vector | date string

Input dates, specified as a scalar or an NPOINTS-by-1 vector of a datetimes, serial date numbers, cell
array of date character vectors, or string array.
Data Types: string | datetime | double | char | cell

Output Arguments
outDF — Discount factors
numeric

Discount factors, returned as a numeric.

See Also
ratecurve | zerorates | forwardrates | fitNelsonSiegel | fitSvensson

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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forwardrates
Calculate forward rates for parametercurve object

Syntax
outRates = forwardrates(obj,startDates,endDates)
outRates = forwardrates( ___ ,inpComp,inpBasis)

Description
outRates = forwardrates(obj,startDates,endDates) computes forward rates for the
parametercurve object (obj) based on startDates and endDates.

outRates = forwardrates( ___ ,inpComp,inpBasis) specifies options in addition to any of the
input argument combinations in the previous syntax.

Examples

Calculate Forward Rates for parametercurve Object

Create a parametercurve object using parametercurve.

PCobj = parametercurve('zero',datetime(2019,9,15),@(t)polyval([-0.0001 0.003 0.02],t),'Compounding',4,'Basis',5,'Parameters',[-0.0001 0.003 0.02])

PCobj = 
  parametercurve with properties:

              Type: "zero"
            Settle: 15-Sep-2019
       Compounding: 4
             Basis: 5
    FunctionHandle: @(t)polyval([-0.0001,0.003,0.02],t)
        Parameters: [-1.0000e-04 0.0030 0.0200]

Compute the forward rates using forwardrates.

CurveSettle = datetime(2019,9,15);
outRates = forwardrates(PCobj,datetime(2019,12,15),datetime(2020,9,15),6,7)

outRates = 0.0236

Input Arguments
obj — parametercurve object
parametercurve object

parametercurve object, specified as a previously created parametercurve object.
Data Types: object
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startDates — Start dates of interval to discount over
datetime | serial date number | date character vector | date string

Start dates of the interval to discount over, specified as a scalar or an NPOINTS-by-1 vector of a
datetimes, serial date numbers, cell array of date character vectors, or string array. startDates
must be earlier than endDates.
Data Types: string | datetime | double | char | cell

endDates — Maturity dates ending the interval to discount over
serial date number | date character vector | date string | datetime

Maturity dates ending the interval to discount over, specified as a scalar or an NPOINTS-by-1 vector
of a datetimes, serial date numbers, cell array of date character vectors, or string array.
Data Types: string | datetime | double | char | cell

inpComp — Input compounding frequency
Compounding for the parametercurve object (default) | possible values include: –1, 0, 1, 2, 3, 4, 6,
12.

(Optional) Input compounding frequency, specified as a scalar numeric using one of the supported
values: –1, 0, 1, 2, 3, 4, 6, or 12.
Data Types: double

inpBasis — Input day-count basis
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Input day-count basis, specified as a scalar integer.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double
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Output Arguments
outRates — Forward rates
numeric

Forward rates, returned as a numeric.

See Also
ratecurve | discountfactors | zerorates | fitNelsonSiegel | fitSvensson

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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zerorates
Calculate zero rates for parametercurve object

Syntax
outRates = zerorates(obj,inpDates)
outRates = zerorates( ___ ,inpComp,inpBasis)

Description
outRates = zerorates(obj,inpDates) computes zero rates for the parametercurve object
(obj) based on inpDates.

outRates = zerorates( ___ ,inpComp,inpBasis) specifies options in addition to any of the
input argument combinations in the previous syntax.

Examples

Calculate Zero Rates for parametercurve Object

Create a parametercurve object using parametercurve.

PCobj = parametercurve('zero',datetime(2019,9,15),@(t)polyval([-0.0001 0.003 0.02],t),'Compounding',4,'Basis',5,'Parameters',[-0.0001 0.003 0.02])

PCobj = 
  parametercurve with properties:

              Type: "zero"
            Settle: 15-Sep-2019
       Compounding: 4
             Basis: 5
    FunctionHandle: @(t)polyval([-0.0001,0.003,0.02],t)
        Parameters: [-1.0000e-04 0.0030 0.0200]

Compute the zero rates using zerorates.

CurveSettle = datetime(2019,9,15);
outRates = zerorates(PCobj,CurveSettle+30:30:CurveSettle+720)

outRates = 1×24

    0.0202    0.0205    0.0207    0.0210    0.0212    0.0215    0.0217    0.0219    0.0222    0.0224    0.0226    0.0229    0.0231    0.0233    0.0235    0.0238    0.0240    0.0242    0.0244    0.0247    0.0249    0.0251    0.0253    0.0255

Input Arguments
obj — parametercurve object
parametercurve object

 zerorates

11-2283



parametercurve object, specified as a previously created parametercurve object.
Data Types: object

inpDates — Input dates
datetime | serial date number | date character vector | date string

Input dates, specified as a scalar or an NPOINTS-by-1 vector of a datetimes, serial date numbers, cell
array of date character vectors, or string array. StartDates must be earlier than EndDates.
Data Types: string | datetime | double | char | cell

inpComp — Input compounding frequency
Compounding for the parametercurve object (default) | possible values include: –1, 0, 1, 2, 3, 4, 6,
12.

(Optional) Input compounding frequency, specified as a scalar numeric using one of the supported
values: –1, 0, 1, 2, 3, 4, 6, or 12.
Data Types: double

inpBasis — Input day-count basis
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Input day-count basis, specified as a scalar integer.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Output Arguments
outRates — Zero rates
numeric

Zero rates, returned as a numeric.
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See Also
ratecurve | discountfactors | forwardrates | fitNelsonSiegel | fitSvensson

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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finportfolio
Create a finportfolio object

Description
Create a finportfolio object for a collection of instrument objects.

After creating instruments, models, and pricer objects, use finportfolio to create a
finportfolio object for a collection of instruments. For more detailed information on this workflow,
see “Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments”
on page 1-22.

For more information on the available instruments, models, and pricing methods, see “Choose
Instruments, Models, and Pricers” on page 1-53.

Creation
Syntax
finportfolio_obj = finportfolio
finportfolio_obj = finportfolio(inInstruments)
finportfolio_obj = finportfolio(inInstruments,inPricers)
finportfolio_obj = finportfolio( ___ ,inQuant)

Description

finportfolio_obj = finportfolio creates an empty finportfolio object.

finportfolio_obj = finportfolio(inInstruments) creates a finportfolio object
containing the instrument objects inInstruments.

finportfolio_obj = finportfolio(inInstruments,inPricers) creates a finportfolio
object containing the instrument objects inInstruments and the pricer objects inPricers.

finportfolio_obj = finportfolio( ___ ,inQuant) optionally sets the inQuant property
which specifies the number of instruments. Use this syntax with any of the input argument
combinations in previous syntaxes to set the properties on page 11-2287 for the finportfolio
object. For example, finportfolio_obj =
finportfolio([CapObj,FloorObj,SwaptionObj],
[BlackPricerObj,NormalPricerObj,SabrPricerObj]) creates a finportfolio object that
contains instrument and pricer objects.

Input Arguments

inInstruments — Instrument objects in the portfolio
scalar Instrument object | array of Instrument objects

Instrument objects in the portfolio, specified as a scalar Instrument object or an array of Instrument
objects.
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Data Types: object

inPricers — Pricer objects in the portfolio
scalar Pricer object | array of Pricer objects

Pricer objects in the portfolio, specified as a scalar Pricer object or an array of Pricer objects.
Data Types: object

inQuant — Number of instruments
positive or negative numeric | array of positive or negative numerics

Number of instruments, specified as a scalar numeric or an NINST-by-1 array of numeric values. Use
a positive value for long positions and a negative value for short positions.
Data Types: double

Properties
Instruments — Instrument objects in the portfolio
scalar instrument object | array of instrument objects

Instrument objects in the portfolio, returned as a scalar instrument object or an array of instrument
objects.
Data Types: struct

Pricers — Pricer objects in the portfolio
scalar pricer object | array of pricer objects

Pricer objects in the portfolio, returned as a scalar pricer object or an array of pricer objects.
Data Types: struct

PricerIndex — Mapping of instrument objects to pricer objects in the portfolio
numeric

This property is read-only.

Mapping of instrument objects to pricer objects in the portfolio, returned as numeric.

PricerIndex has a length equal to the number of instrument objects in the finportfolio object
and stores an index of which pricer is used for each instrument object.

Data Types: struct

Quantity — Number of instruments
numeric

Number of instruments, returned as a scalar numeric or numeric array.
Data Types: double

Object Functions
pricePortfolio Compute price and sensitivities for portfolio of instruments

 finportfolio

11-2287



addInstrument Add instrument to portfolio of instruments
removeInstrument Remove instrument from portfolio of instruments
setPricer Set pricer for finportfolio object

Examples

Price Portfolio of Heterogeneous Instruments

Use finportfolio and pricePortfolio to create and price a portfolio containing a FixedBond
instrument and an American Vanilla option instrument.

Create FixedBond Instrument Object

Use fininstrument to create a FixedBond instrument object.

FixB = fininstrument("FixedBond",'Maturity',datetime(2022,9,15),'CouponRate',0.05,'Name',"fixed_bond")

FixB = 
  FixedBond with properties:

                  CouponRate: 0.0500
                      Period: 2
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 15-Sep-2022
                        Name: "fixed_bond"

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
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               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Discount Pricer Object for FixedBond Instrument

Use finpricer to create a Discount pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

FBPricer = finpricer("Discount",'DiscountCurve',myRC)

FBPricer = 
  Discount with properties:

    DiscountCurve: [1x1 ratecurve]

Create Vanilla Instrument Object

Use fininstrument to create an American Vanilla instrument object.

Maturity = datetime(2023,9,15);
AmericanOpt = fininstrument("Vanilla",'ExerciseDate',Maturity,'Strike',120,'ExerciseStyle',"american",'Name',"vanilla_option")

AmericanOpt = 
  Vanilla with properties:

       OptionType: "call"
    ExerciseStyle: "american"
     ExerciseDate: 15-Sep-2023
           Strike: 120
             Name: "vanilla_option"

Create BlackScholes Model Object for Vanilla Instrument

Use finmodel to create a BlackScholes model object.

BSModel = finmodel("BlackScholes",'Volatility',0.12)

BSModel = 
  BlackScholes with properties:

     Volatility: 0.1200
    Correlation: 1

Create BjerksundStensland Pricer Object for Vanilla Instrument

Use finpricer to create an analytic pricer object for the BjerksundStensland pricing method
and use the ratecurve object for the 'DiscountCurve' name-value pair argument.

BJSPricer = finpricer("analytic",'Model',BSModel,'DiscountCurve',myRC,'SpotPrice',100,'DividendValue',.02,'PricingMethod',"BjerksundStensland")

BJSPricer = 
  BjerksundStensland with properties:
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    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 100
    DividendValue: 0.0200
     DividendType: "continuous"

Add the Instruments to a finportfolio Object

Create a finportfolio object using finportfolio and add the two instruments with their
associated pricers to the portfolio.

f1 = finportfolio([AmericanOpt,FixB],[BJSPricer,FBPricer])

f1 = 
  finportfolio with properties:

    Instruments: [2x1 fininstrument.FinInstrument]
        Pricers: [2x1 finpricer.FinPricer]
    PricerIndex: [2x1 double]
       Quantity: [2x1 double]

Price Portfolio

Use pricePortfolio to compute the price and sensitivities for the portfolio and the instruments in
the portfolio.

[PortPrice,InstPrice,PortSens,InstSens] = pricePortfolio(f1)

PortPrice = 119.1665

InstPrice = 2×1

    3.1912
  115.9753

PortSens=1×8 table
    Price      DV01       Delta      Gamma      Lambda     Vega      Theta       Rho 
    ______    _______    _______    ________    ______    ______    ________    _____

    119.17    0.04295    0.23188    0.011522    7.2661    65.454    -0.81408    86.71

InstSens=2×8 table
                      Price      DV01       Delta      Gamma      Lambda     Vega      Theta       Rho 
                      ______    _______    _______    ________    ______    ______    ________    _____

    vanilla_option    3.1912        NaN    0.23188    0.011522    7.2661    65.454    -0.81408    86.71
    fixed_bond        115.98    0.04295        NaN         NaN       NaN       NaN         NaN      NaN

Price Portfolio of Bond and Bond Option Instruments

This example shows the workflow to create and price a portfolio of bond and bond option
instruments. You can use finportfolio and pricePortfolio to price FixedBond,
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FixedBondOption, OptionEmbeddedFixedBond, and FloatBond instruments using an IRTree
pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018, 1, 1);
 ZeroTimes = calyears(1:4)';
 ZeroRates = [0.035; 0.042147; 0.047345; 0.052707];
 ZeroDates = Settle + ZeroTimes;
 Compounding = 1;
 ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates, "Compounding",Compounding)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: 1
                Basis: 0
                Dates: [4x1 datetime]
                Rates: [4x1 double]
               Settle: 01-Jan-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Bond and Option Instruments

Use fininstrument to create a FixedBond, FixedBondOption, OptionEmbeddedFixedBond,
and FloatBond instrument objects.

CDates = datetime([2020,1,1 ; 2022,1,1]);
CRates = [.0425; .0750];
CouponRate = timetable(CDates,CRates);
Maturity = datetime(2022,1,1);
Period = 1;

% Vanilla FixedBond
VBond = fininstrument("FixedBond",'Maturity',Maturity,'CouponRate',0.0425,'Period',Period,'Name',"vanilla_fixed") 

VBond = 
  FixedBond with properties:

                  CouponRate: 0.0425
                      Period: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 01-Jan-2022
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                        Name: "vanilla_fixed"

 % Stepped coupon bond
SBond = fininstrument("FixedBond",'Maturity',Maturity,'CouponRate',CouponRate,'Period',Period,'Name',"stepped_coupon_bond") 

SBond = 
  FixedBond with properties:

                  CouponRate: [2x1 timetable]
                      Period: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 01-Jan-2022
                        Name: "stepped_coupon_bond"

% FloatBond
Spread = 0;
Reset = 1;
Float = fininstrument("FloatBond",'Maturity',Maturity,'Spread',Spread,'Reset', Reset,...
                      'ProjectionCurve',ZeroCurve,'Name',"floatbond")

Float = 
  FloatBond with properties:

                      Spread: 0
             ProjectionCurve: [1x1 ratecurve]
                 ResetOffset: 0
                       Reset: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
          LatestFloatingRate: NaN
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 01-Jan-2022
                        Name: "floatbond"

% Call option
Strike = 100;
ExerciseDates = datetime(2020,1,1); 
OptionType ='call';
Period = 1;
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CallOption = fininstrument("FixedBondOption",'Strike',Strike,'ExerciseDate',ExerciseDates,...
                   'OptionType',OptionType,'ExerciseStyle',"american",'Bond', VBond,'Name',"fixed_bond_option")    

CallOption = 
  FixedBondOption with properties:

       OptionType: "call"
    ExerciseStyle: "american"
     ExerciseDate: 01-Jan-2020
           Strike: 100
             Bond: [1x1 fininstrument.FixedBond]
             Name: "fixed_bond_option"

% Option for embedded bond (callable bond)
CDates = datetime([2020,1,1 ; 2022,1,1]);
CRates = [.0425; .0750];
CouponRate = timetable(CDates,CRates);
StrikeOE = [100; 100];
ExerciseDatesOE = [datetime(2020,1,1); datetime(2021,1,1)];
CallSchedule =  timetable(ExerciseDatesOE,StrikeOE,'VariableNames',{'Strike Schedule'}); 
CallableBond = fininstrument("OptionEmbeddedFixedBond", 'Maturity',Maturity,...
                              'CouponRate',CouponRate,'Period', Period, ...
                              'CallSchedule',CallSchedule,'Name',"option_embedded_fixedbond")

CallableBond = 
  OptionEmbeddedFixedBond with properties:

                  CouponRate: [2x1 timetable]
                      Period: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 01-Jan-2022
                   CallDates: [2x1 datetime]
                    PutDates: [0x1 datetime]
                CallSchedule: [2x1 timetable]
                 PutSchedule: [0x0 timetable]
           CallExerciseStyle: "american"
            PutExerciseStyle: [0x0 string]
                        Name: "option_embedded_fixedbond"

Create HullWhite Model

Use finmodel to create a HullWhite model object.

VolCurve = 0.01;
AlphaCurve = 0.1;

HWModel = finmodel("hullwhite",'alpha',AlphaCurve,'sigma',VolCurve)
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HWModel = 
  HullWhite with properties:

    Alpha: 0.1000
    Sigma: 0.0100

Create IRTree Pricer for HullWhite Model

Use finpricer to create an IRTree pricer object for a HullWhite model and use the ratecurve
object for the 'DiscountCurve' name-value pair argument.

HWTreePricer = finpricer("IRTree",'Model',HWModel,'DiscountCurve',ZeroCurve,'TreeDates',ZeroDates)

HWTreePricer = 
  HWBKTree with properties:

             Tree: [1x1 struct]
        TreeDates: [4x1 datetime]
            Model: [1x1 finmodel.HullWhite]
    DiscountCurve: [1x1 ratecurve]

Create finportfolio Object and Add Callable Bond Instrument

Create a finportfolio object with the vanilla bond, stepped coupon bond, float bond, and the call
option.

myportfolio = finportfolio([VBond,SBond,Float,CallOption],HWTreePricer, [1,2,2,1])

myportfolio = 
  finportfolio with properties:

    Instruments: [4x1 fininstrument.FinInstrument]
        Pricers: [1x1 finpricer.irtree.HWBKTree]
    PricerIndex: [4x1 double]
       Quantity: [4x1 double]

Use addInstrument to add the callable bond instrument to the existing portfolio.

myportfolio = addInstrument(myportfolio,CallableBond,HWTreePricer,1)

myportfolio = 
  finportfolio with properties:

    Instruments: [5x1 fininstrument.FinInstrument]
        Pricers: [1x1 finpricer.irtree.HWBKTree]
    PricerIndex: [5x1 double]
       Quantity: [5x1 double]

myportfolio.PricerIndex

ans = 5×1

     1
     1
     1
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     1
     1

The PricerIndex property has a length equal to the length of instrument objects in the
finportfolio object and stores the index of which pricer is used for each instrument object. In this
case, because there is only one pricer, each instrument must use that pricer.

Price Portfolio

Use pricePortfolio to compute the price and sensitivities for the portfolio and the bond and
option instruments in the portfolio.

format bank
[PortPrice,InstPrice,PortSens,InstSens] = pricePortfolio(myportfolio)

PortPrice = 
        600.55

InstPrice = 5×1

         96.59
        204.14
        200.00
          0.05
         99.77

PortSens=1×4 table
    Price      Vega      Gamma      Delta  
    ______    ______    _______    ________

    600.55    -63.40    5759.65    -1297.48

InstSens=5×4 table
                                 Price      Vega      Gamma      Delta 
                                 ______    ______    _______    _______

    vanilla_fixed                 96.59     -0.00    1603.49    -344.81
    stepped_coupon_bond          204.14      0.00    3364.60    -725.96
    floatbond                    200.00     -0.00      -0.00       0.00
    fixed_bond_option              0.05     12.48      24.15      -3.69
    option_embedded_fixedbond     99.77    -75.88     767.41    -223.03

Price Portfolio of Multiple Instances of Heterogeneous Instruments

Use finportfolio and pricePortfolio to create and price a portfolio containing three
FixedBond instruments and three American Vanilla option instruments.

Create FixedBond Instrument Object

Use fininstrument to create a FixedBond instrument object for three Fixed Bond instruments.

FixB = fininstrument("FixedBond",'Maturity',datetime([2022,9,15 ; 2022,10,15 ; 2022,11,15]),'CouponRate',0.05,'Name',"fixed_bond")
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FixB=3×1 object
  3x1 FixedBond array with properties:

    CouponRate
    Period
    Basis
    EndMonthRule
    Principal
    DaycountAdjustedCashFlow
    BusinessDayConvention
    Holidays
    IssueDate
    FirstCouponDate
    LastCouponDate
    StartDate
    Maturity
    Name

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Discount Pricer Object for FixedBond Instruments

Use finpricer to create a Discount pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

FBPricer = finpricer("Discount",'DiscountCurve',myRC)

FBPricer = 
  Discount with properties:

    DiscountCurve: [1x1 ratecurve]
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Create Vanilla Instrument Object

Use fininstrument to create an American Vanilla instrument object for three Vanilla
instruments.

Maturity = datetime([2023,9,15 ; 2023,10,15 ; 2023,11,15]);
AmericanOpt = fininstrument("Vanilla",'ExerciseDate',Maturity,'Strike',120,'ExerciseStyle',"american",'Name',"vanilla_option")

AmericanOpt=3×1 object
  3x1 Vanilla array with properties:

    OptionType
    ExerciseStyle
    ExerciseDate
    Strike
    Name

Create BlackScholes Model Object for Vanilla Instruments

Use finmodel to create a BlackScholes model object.

BSModel = finmodel("BlackScholes",'Volatility',0.12)

BSModel = 
  BlackScholes with properties:

     Volatility: 0.1200
    Correlation: 1

Create BjerksundStensland Pricer Object for Vanilla Instruments

Use finpricer to create an analytic pricer object for the BjerksundStensland pricing method
and use the ratecurve object for the 'DiscountCurve' name-value pair argument.

BJSPricer = finpricer("analytic",'Model',BSModel,'DiscountCurve',myRC,'SpotPrice',100,'DividendValue',.02,'PricingMethod',"BjerksundStensland")

BJSPricer = 
  BjerksundStensland with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 100
    DividendValue: 0.0200
     DividendType: "continuous"

Add the Instruments to a finportfolio Object

Create a finportfolio object using finportfolio and add the six instruments with their
associated pricers to the portfolio.

f1 = finportfolio([AmericanOpt;FixB],[BJSPricer, BJSPricer, BJSPricer, FBPricer, FBPricer, FBPricer])

f1 = 
  finportfolio with properties:

    Instruments: [6x1 fininstrument.FinInstrument]
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        Pricers: [6x1 finpricer.FinPricer]
    PricerIndex: [6x1 double]
       Quantity: [6x1 double]

Price Portfolio

Use pricePortfolio to compute the price and sensitivities for the portfolio and the instruments in
the portfolio.

[PortPrice,InstPrice,PortSens,InstSens] = pricePortfolio(f1)

PortPrice = 358.4108

InstPrice = 6×1

    3.1912
    3.2579
    3.3272
  115.9753
  116.2114
  116.4478

PortSens=1×8 table
    Price      DV01       Delta      Gamma      Lambda     Vega      Theta      Rho  
    ______    _______    _______    ________    ______    ______    _______    ______

    358.41    0.13159    0.70286    0.034471    21.572    198.96    -2.4455    266.62

InstSens=6×8 table
                        Price       DV01       Delta      Gamma      Lambda     Vega      Theta       Rho  
                        ______    ________    _______    ________    ______    ______    ________    ______

    vanilla_option      3.1912         NaN    0.23188    0.011522    7.2661    65.454    -0.81408     86.71
    vanilla_option_1    3.2579         NaN    0.23427    0.011494    7.1907    66.314    -0.81353    88.842
    vanilla_option_2    3.3272         NaN    0.23672    0.011455    7.1147    67.196    -0.81784    91.063
    fixed_bond          115.98     0.04295        NaN         NaN       NaN       NaN         NaN       NaN
    fixed_bond_1        116.21    0.043858        NaN         NaN       NaN       NaN         NaN       NaN
    fixed_bond_2        116.45    0.044786        NaN         NaN       NaN       NaN         NaN       NaN

See Also
Functions
fininstrument | finmodel | finpricer

Topics
“Create and Price Portfolio of Instruments” on page 3-131
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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ratecurve
Create ratecurve object for interest-rate curve from dates and data

Description
Build a ratecurve object using ratecurve.

After creating a ratecurve object, you can use the associated object functions forwardrates,
discountfactors, and zerorates.

Note If you have the RateSpec obtained previously from intenvset or toRateSpec for an
IRDataCurve or toRateSpec for an IRFunctionCurve, refer to “Convert RateSpec to a ratecurve
Object” on page 1-49.

To price a Swap, FixedBond, FloatBond, FRA, or Deposit instrument, you must create a
ratecurve object and then create Discount pricer object.

For more detailed information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available instruments, models, and pricing methods, see “Choose
Instruments, Models, and Pricers” on page 1-53.

Creation
Syntax
ratecurve_obj = ratecurve(Type,Settle,Dates,Rates)
ratecurve_obj = ratecurve( ___ ,Name,Value)

Description

ratecurve_obj = ratecurve(Type,Settle,Dates,Rates) creates a ratecurve object.

ratecurve_obj = ratecurve( ___ ,Name,Value) creates a ratecurve object using name-value
pairs and any of the arguments in the previous syntax. For example, myRC =
ratecurve("zero",Settle,ZeroDates,ZeroRates,'Compounding',2,'Basis',5,'Interp
Method',"pchip",'ShortExtrapMethod',"linear",'LongExtrapMethod',"cubic")
creates a ratecurve object for a zero curve. You can specify multiple name-value pair arguments.

Input Arguments

Type — Type of interest-rate curve
string with value "zero", "forward", or "discount" | character vector with value 'zero',
'forward', or 'discount'

Type of interest-rate curve, specified as a string or character vector for one of the supported types.
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Data Types: char | string

Settle — Settlement date
datetime | serial date number | date character vector | date string

Settlement date, specified as a scalar datetime, serial date number, date character vector, or date
string.

If you use a date character vector or date string, the format must be recognizable by datetime
because the Settle property is stored as a datetime.
Data Types: double | char | string | datetime

Dates — Dates corresponding to rate data
datetime | serial date number | date character vector | date string

Dates corresponding to the rate data, specified as a scalar datetime, serial date number, date
character vector, or date string.

If you use a date character vector or date string, the format must be recognizable by datetime
because the Dates property is stored as a datetime.
Data Types: double | char | string | datetime

Rates — Interest-rate data for the curve
numeric

Interest-rate data for the curve, specified as a scalar numeric.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: myRC =
ratecurve("zero",Settle,ZeroDates,ZeroRates,'Compounding',2,'Basis',5,'Interp
Method',"pchip",'ShortExtrapMethod',"linear",'LongExtrapMethod',"cubic")

Compounding — Compounding frequency
-1 (default) | possible values include: –1, 0, 1, 2, 3, 4, 6, or 12.

Compounding frequency, specified as the comma-separated pair consisting of 'Compounding' and a
scalar numeric using the supported values: –1, 0, 1, 2, 3, 4, 6, or 12.
Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13

Day count basis, specified as the comma-separated pair consisting of 'Basis' and a scalar integer.

• 0 — actual/actual
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• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

InterpMethod — Interpolation method
"linear" (default) | string with value "linear", "cubic", "next", "previous", "pchip",
"v5cubic", "makima", or "spline" | character vector with value 'linear', 'cubic', 'next',
'previous', 'pchip', 'v5cubic', 'makima', or 'spline'

Interpolation method, specified as the comma-separated pair consisting of 'InterpMethod' and a
scalar string or character vector using a supported value. For more information on interpolation
methods, see interp1.
Data Types: char | string

ShortExtrapMethod — Extrapolation method for data before first data
"next" (default) | string with value "linear", "next", "previous", "pchip",
"cubic","v5cubic", "makima", or "spline" | character vector with value 'linear', 'next',
'previous', 'pchip', 'cubic','v5cubic', 'makima', or 'spline'

Extrapolation method for data before first data, specified as the comma-separated pair consisting of
'ShortExtrapMethod' and a scalar string or character vector using a supported value. For more
information on interpolation methods, see interp1.
Data Types: char | string

LongExtrapMethod — Extrapolation method for data after last data
"previous" (default) | string with value "linear", "next", "previous", "pchip",
"cubic","v5cubic", "makima", or "spline" | character vector with value 'linear', 'next',
'previous', 'pchip', 'cubic','v5cubic', 'makima', or 'spline'

Extrapolation method for data after last data, specified as the comma-separated pair consisting of
'LongExtrapMethod' and a scalar string or character vector using a supported value. For more
information on interpolation methods, see interp1.
Data Types: char | string
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Properties
Type — Type of interest-rate curve
string with value "zero", "forward", or "discount"

Type of interest-rate curve, returned as a string.
Data Types: string

Compounding — Compounding frequency
-1 (default) | possible values include: –1, 0, 1, 2, 3, 4, 6, or 12.

Compounding frequency, returned as a scalar numeric.
Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13

Day count basis of the instrument, returned as a scalar integer.
Data Types: double

Dates — Dates corresponding to rate data
datetime

Dates corresponding to the rate data, returned as a datetime.
Data Types: datetime

Rates — Rates corresponding to dates data
vector

Rates corresponding to dates data, returned as vector.
Data Types: datetime

Settle — Settlement date
datetime

Settlement date, returned as a datetime.
Data Types: datetime

InterpMethod — Interpolation method
"linear" (default) | string with value "linear", "cubic", "next", "previous", "pchip",
"v5cubic", "makima", or "spline"

Interpolation method, returned as a scalar string.
Data Types: string

ShortExtrapMethod — Short extrapolation method
"next" (default) | string with value "linear", "next", "previous", "pchip",
"cubic","v5cubic", "makima", or "spline"

Short extrapolation method, returned as a scalar string.
Data Types: string
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LongExtrapMethod — Long extrapolation method
"previous" (default) | string with value "linear", "next", "previous", "pchip",
"cubic","v5cubic", "makima", or "spline"

Log extrapolation method, returned as a scalar string.
Data Types: string

Object Functions
forwardrates Calculate forward rates for ratecurve object
discountfactors Calculate discount factors for a ratecurve object
zerorates Calculate zero rates for ratecurve object
irbootstrap Bootstrap interest-rate curve from market data

Examples

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Type = "zero";
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve("zero",Settle,ZeroDates,ZeroRates,'Compounding',2,'Basis',5,'InterpMethod',"pchip",'ShortExtrapMethod',"linear",'LongExtrapMethod',"cubic")

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: 2
                Basis: 5
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2018
         InterpMethod: "pchip"
    ShortExtrapMethod: "linear"
     LongExtrapMethod: "cubic"

See Also
Functions
parametercurve

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53
“Convert RateSpec to a ratecurve Object” on page 1-49
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inflationcurve
Create inflationcurve object for interest-rate curve from dates and data

Description
Build an inflationcurve object using inflationcurve.

After creating a inflationcurve object, you can use the associated object function indexvalues.

To price an InflationBond, YearYearInflationSwap, or ZeroCouponInflationSwap
instrument, you must create an inflationcurve object and then create an Inflation pricer
object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available instruments, models, and pricing methods, see “Choose
Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
inflationcurve_obj = inflationcurve(Dates,InflationIndexValues)
inflationcurve_obj = inflationcurve( ___ ,Name,Value)

Description

inflationcurve_obj = inflationcurve(Dates,InflationIndexValues) creates an
inflationcurve object.

inflationcurve_obj = inflationcurve( ___ ,Name,Value) creates an inflationcurve
object using name-value pairs and any of the arguments in the previous syntax. For example,
myInflationCurve =
inflationcurve(InflationDates,InflationIndexValues,'Basis',4) creates an
inflationcurve object. You can specify multiple name-value pair arguments.

Input Arguments

Dates — Dates corresponding to InflationIndexValues
datetime array | serial date number | cell array of date character vectors | date string array

Dates corresponding to InflationIndexValues, specified as a datetime array, serial date numbers,
cell array of date character vectors, or date string array. The first date is the base date.

If you use a date character vector or date string, the format must be recognizable by datetime
because the Dates property is stored as a datetime.
Data Types: double | char | cell | string | datetime
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InflationIndexValues — Inflation index values for the curve
vector of positive values

Inflation index values for the curve, specified as a vector of positive values. The first value is the base
index value.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: myInflationCurve =
inflationcurve(InflationDates,InflationIndexValues,'Basis',4)

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13

Day count basis, specified as the comma-separated pair consisting of 'Basis' and a scalar integer.

• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Seasonality — Seasonal adjustment rates
12-by-1 vector of 0s (no seasonality) (default) | decimal

Seasonal adjustment rates, specified as the comma-separated pair consisting of 'Seasonality' and
a 12-by-1 vector in decimals for each month ordered from January to December. The rates are
annualized and continuously compounded seasonal rates that are internally corrected to add to 0.
Data Types: double
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Properties
Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13

Day count basis of the instrument, returned as a scalar integer.
Data Types: double

Dates — Dates corresponding to InflationIndexValues
datetime

Dates corresponding to InflationIndexValues, returned as a datetime array.
Data Types: datetime

InflationIndexValues — Inflation index values for the curve
vector

Inflation index values for the curve, returned as vector.
Data Types: double

ForwardInflationRates — Forward inflation rates
vector

Forward inflation rates, returned as vector.
Data Types: double

Seasonality — Seasonal adjustment rates
vector

Seasonal adjustment rates, returned as a 12-by-1 vector.
Data Types: double

Object Functions
indexvalues Calculate index values for inflationcurve object

Examples

Create inflationcurve Object

Create an inflationcurve object using inflationcurve.

BaseDate = datetime(2020, 9, 20);
InflationTimes = [0 calyears([1 2 3 4 5 7 10 20 30])]';
InflationIndexValues = [100 102 103.5 105 106.8 108.2 111.3 120.1 130.4 150.2]';
InflationDates = BaseDate + InflationTimes;

myInflationCurve = inflationcurve(InflationDates,InflationIndexValues)

myInflationCurve = 
  inflationcurve with properties:
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                    Basis: 0
                    Dates: [10x1 datetime]
     InflationIndexValues: [10x1 double]
    ForwardInflationRates: [9x1 double]
              Seasonality: [12x1 double]

Algorithms
Build an inflation curve from a series of breakeven zero-coupon inflation swap (ZCIS) rates:

I(0, T1Y) = I(T0)(1

I(0, T2Y) = I(T0)(1

I(0, T3Y) = I(T0)(1

...

I(0, Ti) = I(T0)(1

where

• I(0, Ti) is the breakeven inflation index reference number for maturity date Ti.

• I(T0) is the base inflation index value for the starting date T0.

• b(0; T0, Ti) is the breakeven inflation rate for the ZCIS maturing on Ti.

The ZCIS rates typically have maturities that increase in whole number of years. So the inflation
curve is built on an annual basis. From the annual basis inflation curve, the annual unadjusted (that
is, not seasonally adjusted) forward inflation rates are computed as follows:

f i = 1
(Ti− Ti− 1) log

I(0, Ti)
I(0, Ti− 1)

The unadjusted forward inflation rates are used for interpolating and also for incorporating
seasonality to the inflation curve.

For monthly periods that are not a whole number of years, seasonal adjustments can be made to
reflect seasonal patterns of inflation within the year. These 12 monthly seasonal adjustments are
annualized and they add up to zero to ensure that the cumulative seasonal adjustments are reset to
zero every year.

I(0, Ti) = I(T0)exp ∫
T0

Ti
f (u)du) exp ∫

T0

Ti
s(u)du)

I(0, Ti) = I(0, Ti− 1)exp((Ti− Ti− 1)(f i + si))

where

• I(0, Ti) is the breakeven inflation index reference number.

• I(0, Ti− 1) is the previous inflation reference number.
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• fi is the annual unadjusted forward inflation rate.
• si is the annualized seasonal component for the period [Ti− 1, Ti].

The first year seasonal adjustment may need special treatment, because typically, the breakeven
inflation reference number of the first month is already known. If that is the case, the unadjusted
forward inflation rate for the first year needs to be recomputed for the remaining 11 months.

References
[1] Brody, D. C., Crosby, J., and Li, H. "Convexity Adjustments in Inflation-Linked Derivatives." Risk

Magazine. November 2008, pp. 124–129.

[2] Kerkhof, J. "Inflation Derivatives Explained: Markets, Products, and Pricing." Fixed Income
Quantitative Research, Lehman Brothers, July 2005.

[3] Zhang, J. X. "Limited Price Indexation (LPI) Swap Valuation Ideas." Wilmott Magazine. no. 57,
January 2012, pp. 58–69.

See Also
Functions
inflationbuild

Topics
“Analyze Inflation-Indexed Instruments” on page 2-133
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53
“Convert RateSpec to a ratecurve Object” on page 1-49

Introduced in R2021a
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indexvalues
Calculate index values for inflationcurve object

Syntax
outIndexValues = indexvalues(inpInflationCurve,inpDates)

Description
outIndexValues = indexvalues(inpInflationCurve,inpDates) calculates the inflation
index values for the inflationcurve object (inpInflationCurve) based on the Inflation index
end dates (inpDates).

Examples

Calculate Index Values for inflationcurve Object

Create an inflationcurve object using inflationcurve.

BaseDate = datetime(2020,9,20);
InflationTimes = [0 calyears([1 2 3 4 5 7 10 20 30])]';
InflationIndexValues = [100 102 103.5 105 106.8 108.2 111.3 120.1 130.4 150.2]';
InflationDates = BaseDate + InflationTimes;
myInflationCurve = inflationcurve(InflationDates,InflationIndexValues);

Compute the index values using indexvalues.

outIndexValues = indexvalues(myInflationCurve,datetime(2023,9,20))

outIndexValues = 105

Input Arguments
inpInflationCurve — Inflation curve
inflationcurve object

Inflation curve, specified using a previously created inflationcurve object.
Data Types: object

inpDates — Inflation index end dates
datetime | serial date number | date character vector | date string

Inflation index end dates, specified as a vector of datetimes, serial date numbers, cell array of date
character vectors, or string array.
Data Types: string | datetime | double | char | cell
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Output Arguments
outIndexValues — Output inflation index values
numeric

Output inflation index values, returned as a numeric.

See Also
inflationbuild

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2021a
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inflationbuild
Build inflation curve from market zero-coupon inflation swap rates

Syntax
InflationCurve = inflationbuild(BaseDate,BaseIndexValue,ZCISDates,ZCISRates)
myInflationCurve = inflationbuild( ___ ,Name,Value)

Description
InflationCurve = inflationbuild(BaseDate,BaseIndexValue,ZCISDates,ZCISRates)
builds an inflation curve from market zero-coupon inflation swap (ZCIS) rates. The InflationCurve
output is an inflationcurve object.

myInflationCurve = inflationbuild( ___ ,Name,Value) specifies options using one or more
name-value pair arguments in addition to any of the input argument combinations in the previous
syntax. For example, myInflationCurve =
inflationbuild(BaseDate,BaseIndexValue,ZCISDates,ZCISRates,'Seasonality',Seas
onalRates) builds an inflationcurve object from market zero ZCIS dates and rates.

Examples

Build Inflation Curve from Zero-Coupon Inflation Swap Rates

This example shows the workflow to build an inflationcurve object from zero-coupon inflation
swap (ZCIS) rates using inflationbuild.

Define the inflation curve parameters.

BaseDate = datetime(2020,9,20);
BaseIndexValue = 100;
ZCISTimes = [calyears([1 2 3 4 5 7 10 20 30])]';
ZCISRates = [0.51 0.65 0.87 0.92 0.95 1.42 1.75 2.03 2.54]'./100;
ZCISDates = BaseDate + ZCISTimes;
SeasonalRates = [-0.19 -0.09 -0.04 0.1 0.16 0.11 0.26 0.17 -0.07 -0.08 -0.14 -0.19]'./100;

Use inflationbuild to create an inflationcurve object.

myInflationCurve = inflationbuild(BaseDate,BaseIndexValue,ZCISDates,ZCISRates,'Seasonality',SeasonalRates)

myInflationCurve = 
  inflationcurve with properties:

                    Basis: 0
                    Dates: [10x1 datetime]
     InflationIndexValues: [10x1 double]
    ForwardInflationRates: [9x1 double]
              Seasonality: [12x1 double]
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Input Arguments
BaseDate — Base date of inflation curve
datetime | serial date number | date character vector | date string

Base date of inflation curve, specified as a scalar datetime, serial date number, date character vector,
or date string.
Data Types: double | char | string | datetime

BaseIndexValue — Base index value of inflation curve
numeric

Base index value of inflation curve, specified as a scalar numeric.
Data Types: double

ZCISDates — Market ZCIS maturity dates minus lag
datetimes | serial date numbers | cell array of date character vectors | date strings

Market ZCIS maturity dates minus lag, specified as an NINST-by-1 vector of datetimes, serial date
numbers, cell array of date character vectors, or date string array.
Data Types: double | cell | char | string | datetime

ZCISRates — Market ZCIS rates
decimal

Market ZCIS rates, specified as an NINST-by-1 vector of decimals.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: myInflationCurve =
inflationbuild(BaseDate,BaseIndexValue,ZCISDates,ZCISRates,'Seasonality',Seas
onalRates)

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13

Day count basis, specified as the comma-separated pair consisting of 'Basis' and a scalar integer.

• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
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• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Seasonality — Seasonal adjustment rates
12-by-1 vector of 0s (no seasonality) (default) | decimal

Seasonal adjustment rates, specified as the comma-separated pair consisting of 'Seasonality' and
a 12-by-1 vector in decimals for each month ordered from January to December. The rates are
annualized and continuously compounded seasonal rates that are internally corrected to add to 0.
Data Types: double

FirstMonthIndex — First month inflation index
[] (not known) (default) | positive numeric

First month inflation index, specified as the comma-separated pair consisting of
'FirstMonthIndex' and a positive numeric.
Data Types: double

Output Arguments
InflationCurve — Inflation curve
inflationcurve object

Inflation curve, returned as an inflationcurve object. The object has the following properties:

• Basis
• Dates
• InflationIndexValues
• ForwardInflationRates
• Seasonality

Algorithms
Build an inflation curve from a series of breakeven zero-coupon inflation swap (ZCIS) rates:
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I(0, T1Y) = I(T0)(1

I(0, T2Y) = I(T0)(1

I(0, T3Y) = I(T0)(1

...

I(0, Ti) = I(T0)(1

where

• I(0, Ti) is the breakeven inflation index reference number for maturity date Ti.
• I(T0) is the base inflation index value for the starting date T0.
• b(0; T0, Ti) is the breakeven inflation rate for the ZCIS maturing on Ti.

The ZCIS rates typically have maturities that increase in whole number of years, so the inflation
curve is built on an annual basis. From the annual basis inflation curve, the annual unadjusted (that
is, not seasonally adjusted) forward inflation rates are computed as follows:

f i = 1
(Ti− Ti− 1) log

I(0, Ti)
I(0, Ti− 1)

The unadjusted forward inflation rates are used for interpolating and also for incorporating
seasonality to the inflation curve.

For monthly periods that are not a whole number of years, seasonal adjustments can be made to
reflect seasonal patterns of inflation within the year. These 12 monthly seasonal adjustments are
annualized and they add up to zero to ensure that the cumulative seasonal adjustments are reset to
zero every year.

I(0, Ti) = I(T0)exp ∫
T0

Ti
f (u)du) exp ∫

T0

Ti
s(u)du)

I(0, Ti) = I(0, Ti− 1)exp((Ti− Ti− 1)(f i + si))

where

• I(0, Ti) is the breakeven inflation index reference number.
• I(0, Ti− 1) is the previous inflation reference number.
• fi is the annual unadjusted forward inflation rate.
• si is the annualized seasonal component for the period [Ti− 1, Ti].

The first year seasonal adjustment may need special treatment because, typically, the breakeven
inflation reference number of the first month is already known. If that is the case, the unadjusted
forward inflation rate for the first year needs to be recomputed for the remaining 11 months.

See Also
indexvalues

Topics
“Analyze Inflation-Indexed Instruments” on page 2-133
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“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2021a
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price
Package: finpricer

Compute price for inflation instrument with Inflation pricer

Syntax
[Price,PriceResult] = price(inpPricer,inpInstrument)
[Price,PriceResult] = price( ___ ,inpSensitivity)

Description
[Price,PriceResult] = price(inpPricer,inpInstrument) computes the instrument price
and related pricing information based on the pricing object inpPricer and the instrument object
inpInstrument.

[Price,PriceResult] = price( ___ ,inpSensitivity) adds an optional argument to specify
sensitivities.

Examples

Use Inflation Pricer and inflationcurve to Price Inflation Bond Instrument

This example shows the workflow to price an InflationBond instrument when you use an
inflationcurve object and an Inflation pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2021,1,15);
Type = "zero";
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
ZeroCurve = ratecurve('zero',Settle,ZeroDates,ZeroRates)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Jan-2021
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"
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Create inflationcurve Object

Create an inflationcurve object using inflationcurve.

BaseDate = datetime(2020,10,1);
InflationTimes = [0 calyears([1 2 3 4 5 7 10 20 30])]';
InflationIndexValues = [100 102 103.5 105 106.8 108.2 111.3 120.1 130.4 150.2]';
InflationDates = BaseDate + InflationTimes;
myInflationCurve = inflationcurve(InflationDates,InflationIndexValues)

myInflationCurve = 
  inflationcurve with properties:

                    Basis: 0
                    Dates: [10x1 datetime]
     InflationIndexValues: [10x1 double]
    ForwardInflationRates: [9x1 double]
              Seasonality: [12x1 double]

Create InflationBond Instrument Object

Use fininstrument to create an InflationBond instrument object.

IssueDate = datetime(2021,1,1);
Maturity = datetime(2026,1,1);
CouponRate = 0.02;

InflationBond = fininstrument("InflationBond",'IssueDate',IssueDate,'Maturity',Maturity,'CouponRate',CouponRate,'Name',"inflation_bond_instrument")

InflationBond = 
  InflationBond with properties:

                  CouponRate: 0.0200
                      Period: 2
                       Basis: 0
                   Principal: 100
    DaycountAdjustedCashFlow: 0
                         Lag: 3
       BusinessDayConvention: "actual"
                    Holidays: NaT
                EndMonthRule: 1
                   IssueDate: 01-Jan-2021
             FirstCouponDate: NaT
              LastCouponDate: NaT
                    Maturity: 01-Jan-2026
                        Name: "inflation_bond_instrument"

Create Inflation Pricer Object

Use finpricer to create an Inflation pricer object and use the ratecurve object with the
'DiscountCurve' name-value pair argument and the inflationcurve object with the
'InflationCurve' name-value pair argument.

outPricer = finpricer("Inflation",'DiscountCurve',ZeroCurve,'InflationCurve',myInflationCurve)

outPricer = 
  Inflation with properties:
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     DiscountCurve: [1x1 ratecurve]
    InflationCurve: [1x1 inflationcurve]

Price InflationBond Instrument

Use price to compute the price and sensitivities for the InflationBond instrument.

[Price,outPR] = price(outPricer,InflationBond)

Price = 112.1856

outPR = 
  priceresult with properties:

       Results: [1x1 table]
    PricerData: []

outPR.Results

ans=table
    Price 
    ______

    112.19

Input Arguments
inpPricer — Pricer object
Inflation pricer object

Pricer object, specified as a scalar Inflation pricer object. Use finpricer to create the
Inflation pricer object.
Data Types: object

inpInstrument — Instrument object
ZeroCouponInflationSwap object | YearYearInflationSwap object | InflationBond object

Instrument object, specified as a scalar or vector of InflationBond, YearYearInflationSwap, or
ZeroCouponInflationSwap instrument objects. Use fininstrument to create the
InflationBond, YearYearInflationSwap, or ZeroCouponInflationSwap instrument objects.
Data Types: object

inpSensitivity — List of sensitivities to compute
[ ] (default) | string array with values "Price" and "All" | cell array of character vectors with
values 'Price' and 'All'

(Optional) List of sensitivities to compute, specified as an NOUT-by-1 or 1-by-NOUT cell array of
character vectors or string array with possible values of 'Price' and 'All'.

inpSensitivity = {'All'} or inpSensitivity = ["All"] specifies that the output is
'Price'. This option is the same as specifying inpSensitivity to include each sensitivity.
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Example: inpSensitivity = {'price'}
Data Types: string | cell

Output Arguments
Price — Instrument price
numeric

Instrument price, returned as a numeric.

PriceResult — Price result
PriceResult object

Price result, returned as an object. The object has the following fields:

• PriceResult.Results — Table of results
• PriceResult.PricerData — Structure for pricer data

See Also
fininstrument | finpricer

Topics
“Analyze Inflation-Indexed Instruments” on page 2-133
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2021a
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inflationCashflows
Package: fininstrument

Compute cash flows for InflationBond instrument

Syntax
outCF = inflationCashflows(inpInstrumentObject,Settle,inpInflationCurve)

Description
outCF = inflationCashflows(inpInstrumentObject,Settle,inpInflationCurve)
computes cash flows for an InflationBond instrument object.

Examples

Price Inflation Bond Instrument Using inflationcurve and Inflation Pricer and Compute
Cash Flows

This example shows the workflow to price an InflationBond instrument when you use an
inflationcurve object and an Inflation pricing method. The cash flows for the InflationBond
instrument are computed using inflationCashflows.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2021,1,15);
Type = "zero";
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
ZeroCurve = ratecurve('zero',Settle,ZeroDates,ZeroRates)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Jan-2021
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create inflationcurve Object

Create an inflationcurve object using inflationcurve.
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BaseDate = datetime(2020,10,1);
InflationTimes = [0 calyears([1 2 3 4 5 7 10 20 30])]';
InflationIndexValues = [100 102 103.5 105 106.8 108.2 111.3 120.1 130.4 150.2]';
InflationDates = BaseDate + InflationTimes;
myInflationCurve = inflationcurve(InflationDates,InflationIndexValues)

myInflationCurve = 
  inflationcurve with properties:

                    Basis: 0
                    Dates: [10x1 datetime]
     InflationIndexValues: [10x1 double]
    ForwardInflationRates: [9x1 double]
              Seasonality: [12x1 double]

Create InflationBond Instrument Object

Use fininstrument to create an InflationBond instrument object.

IssueDate = datetime(2021,1,1);
Maturity = datetime(2026,1,1);
CouponRate = 0.02;

InflationBond = fininstrument("InflationBond",'IssueDate',IssueDate,'Maturity',Maturity,'CouponRate',CouponRate,'Name',"inflation_bond_instrument")

InflationBond = 
  InflationBond with properties:

                  CouponRate: 0.0200
                      Period: 2
                       Basis: 0
                   Principal: 100
    DaycountAdjustedCashFlow: 0
                         Lag: 3
       BusinessDayConvention: "actual"
                    Holidays: NaT
                EndMonthRule: 1
                   IssueDate: 01-Jan-2021
             FirstCouponDate: NaT
              LastCouponDate: NaT
                    Maturity: 01-Jan-2026
                        Name: "inflation_bond_instrument"

Create Inflation Pricer Object

Use finpricer to create an Inflation pricer object and use the ratecurve object with the
'DiscountCurve' name-value pair argument and the inflationcurve object with the
'InflationCurve' name-value pair argument.

outPricer = finpricer("Inflation",'DiscountCurve',ZeroCurve,'InflationCurve',myInflationCurve)

outPricer = 
  Inflation with properties:

     DiscountCurve: [1x1 ratecurve]
    InflationCurve: [1x1 inflationcurve]
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Price InflationBond Instrument

Use price to compute the price and sensitivities for the InflationBond instrument.

[Price,outPR] = price(outPricer,InflationBond)

Price = 112.1856

outPR = 
  priceresult with properties:

       Results: [1x1 table]
    PricerData: []

outPR.Results

ans=table
    Price 
    ______

    112.19

Compute Cash Flows for InflationBond Instrument

Use inflationCashflows to compute the cash flows for the InflationBond instrument.

outCF = inflationCashflows(InflationBond,datetime(2021,1,15),myInflationCurve)

outCF=11×1 timetable
       Time        InflationCFAmounts
    ___________    __________________

    15-Jan-2021        -0.077407     
    01-Jul-2021           1.0099     
    01-Jan-2022             1.02     
    01-Jul-2022           1.0275     
    01-Jan-2023            1.035     
    01-Jul-2023           1.0425     
    01-Jan-2024             1.05     
    01-Jul-2024            1.059     
    01-Jan-2025            1.068     
    01-Jul-2025            1.075     
    01-Jan-2026           109.28     

Price Multiple Inflation Bond Instruments Using inflationcurve and Inflation Pricer and
Compute Cash Flows

This example shows the workflow to price multiple InflationBond instruments when you use an
inflationcurve object and an Inflation pricing method. The cash flows for the InflationBond
instruments are computed using inflationCashflows.

Create ratecurve Object

Create a ratecurve object using ratecurve.

 inflationCashflows

11-2323



Settle = datetime(2021,1,15);
Type = "zero";
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
ZeroCurve = ratecurve('zero',Settle,ZeroDates,ZeroRates)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Jan-2021
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create inflationcurve Object

Create an inflationcurve object using inflationcurve.

BaseDate = datetime(2019,8,1);
InflationTimes = [0 calyears([1 2 3 4 5 7 10 20 30])]';
InflationIndexValues = [100 102 103.5 105 106.8 108.2 111.3 120.1 130.4 150.2]';
InflationDates = BaseDate + InflationTimes;
myInflationCurve = inflationcurve(InflationDates,InflationIndexValues)

myInflationCurve = 
  inflationcurve with properties:

                    Basis: 0
                    Dates: [10x1 datetime]
     InflationIndexValues: [10x1 double]
    ForwardInflationRates: [9x1 double]
              Seasonality: [12x1 double]

Create InflationBond Instrument Object

Use fininstrument to create an InflationBond instrument object for three Inflation Bond
instruments.

IssueDate = datetime([2020,1,1 ; 2019,12,1 ; 2019,11,1]);
Maturity = datetime([2026,1,1 ; 2026,2,1 ; 2026,3,1]);
CouponRate = 0.02;

InflationBond = fininstrument("InflationBond",'IssueDate',IssueDate,'Maturity',Maturity,'CouponRate',CouponRate,'Name',"inflation_bond_instrument")

InflationBond=3×1 object
  3x1 InflationBond array with properties:

    CouponRate
    Period
    Basis
    Principal
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    DaycountAdjustedCashFlow
    Lag
    BusinessDayConvention
    Holidays
    EndMonthRule
    IssueDate
    FirstCouponDate
    LastCouponDate
    Maturity
    Name

Create Inflation Pricer Object

Use finpricer to create an Inflation pricer object and use the ratecurve object with the
'DiscountCurve' name-value pair argument and the inflationcurve object with the
'InflationCurve' name-value pair argument.

outPricer = finpricer("Inflation",'DiscountCurve',ZeroCurve,'InflationCurve',myInflationCurve)

outPricer = 
  Inflation with properties:

     DiscountCurve: [1x1 ratecurve]
    InflationCurve: [1x1 inflationcurve]

Price InflationBond Instruments

Use price to compute the prices and sensitivities for the InflationBond instruments.

[Price,outPR] = price(outPricer,InflationBond)

Price = 3×1

  113.6829
  113.9533
  114.2316

outPR=1×3 object
  1x3 priceresult array with properties:

    Results
    PricerData

outPR.Results

ans=table
    Price 
    ______

    113.68

ans=table
    Price 
    ______
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    113.95

ans=table
    Price 
    ______

    114.23

Compute Cash Flows for InflationBond Instruments

Use inflationCashflows to compute the cash flows for the three InflationBond instruments.

outCF = inflationCashflows(InflationBond(1),datetime(2021,1,15),myInflationCurve)

outCF=11×1 timetable
       Time        InflationCFAmounts
    ___________    __________________

    15-Jan-2021        -0.078871     
    01-Jul-2021           1.0266     
    01-Jan-2022           1.0341     
    01-Jul-2022           1.0415     
    01-Jan-2023           1.0495     
    01-Jul-2023           1.0585     
    01-Jan-2024           1.0668     
    01-Jul-2024           1.0738     
    01-Jan-2025            1.081     
    01-Jul-2025           1.0886     
    01-Jan-2026           110.73     

outCF = inflationCashflows(InflationBond(2),datetime(2021,1,15),myInflationCurve)

outCF=12×1 timetable
       Time        InflationCFAmounts
    ___________    __________________

    15-Jan-2021         -0.92699     
    01-Feb-2021            1.022     
    01-Aug-2021           1.0295     
    01-Feb-2022            1.037     
    01-Aug-2022           1.0444     
    01-Feb-2023           1.0527     
    01-Aug-2023           1.0617     
    01-Feb-2024           1.0697     
    01-Aug-2024           1.0767     
    01-Feb-2025            1.084     
    01-Aug-2025           1.0917     
    01-Feb-2026           111.05     

outCF = inflationCashflows(InflationBond(3),datetime(2021,1,15),myInflationCurve)

outCF=12×1 timetable
       Time        InflationCFAmounts
    ___________    __________________
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    15-Jan-2021         -0.76871     
    01-Mar-2021            1.025     
    01-Sep-2021           1.0325     
    01-Mar-2022             1.04     
    01-Sep-2022           1.0475     
    01-Mar-2023            1.056     
    01-Sep-2023            1.065     
    01-Mar-2024           1.0726     
    01-Sep-2024           1.0797     
    01-Mar-2025           1.0871     
    01-Sep-2025           1.0948     
    01-Mar-2026           111.36     

Input Arguments
inpInstrumentObject — Instrument object
InflationBond object

Instrument object, specified using a previously created instrument object for an InflationBond.

Note If the inpInstrumentObject is a vector of instruments, you must use inflationCashflows
separately with each instrument.

Data Types: object

Settle — Settlement date for instrument cash flow
datetime | serial date number | date character vector | string array

Settlement date for instrument cash flow, specified as a scalar using a datetime, serial date number,
date character vector, or date string.

Note The Settle date you specify must be before the Maturity date for the InflationBond
instrument.

Data Types: double | char | datetime | string

inpInflationCurve — Inflation curve
inflationcurve object

Inflation curve, specified using a previously created inflation curve object using inflationcurve.
Data Types: object

Output Arguments
outCF — Output cash flow
timetable

Output cash flow, returned as a timetable.
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See Also
fininstrument | finpricer | timetable

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2021a
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inflationCashflows
Package: fininstrument

Compute cash flows for YearYearInflationSwap instrument

Syntax
outCF = inflationCashflows(inpInstrumentObject,Settle,inpInflationCurve)

Description
outCF = inflationCashflows(inpInstrumentObject,Settle,inpInflationCurve)
computes cash flows for an YearYearInflationSwap instrument object.

Examples

Price Year-on-Year Inflation-Indexed Swap Instrument Using inflationcurve and Inflation
Pricer and Compute Cash Flows

This example shows the workflow to price a YearYearInflationSwap instrument when you use an
inflationcurve object and an Inflation pricing method. Then use inflationCashflows to
compute the cash flows for the YearYearInflationSwap instrument.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2021,1,15);
Type = "zero";
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
ZeroCurve = ratecurve('zero',Settle,ZeroDates,ZeroRates)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Jan-2021
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create inflationcurve Object

Create an inflationcurve object using inflationcurve.
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BaseDate = datetime(2020,10,1);
InflationTimes = [0 calyears([1 2 3 4 5 7 10 20 30])]';
InflationIndexValues = [100 102 103.5 105 106.8 108.2 111.3 120.1 130.4 150.2]';
InflationDates = BaseDate + InflationTimes;
myInflationCurve = inflationcurve(InflationDates,InflationIndexValues)

myInflationCurve = 
  inflationcurve with properties:

                    Basis: 0
                    Dates: [10x1 datetime]
     InflationIndexValues: [10x1 double]
    ForwardInflationRates: [9x1 double]
              Seasonality: [12x1 double]

Create YearYearInflationSwap Instrument Object

Use fininstrument to create a YearYearInflationSwap instrument object.

Maturity = datetime(2025,1,1);
FixedInflationRate = 0.015;
Notional = 2000;

YYInflationSwap = fininstrument("YearYearInflationSwap",'Maturity',Maturity,'FixedInflationRate',FixedInflationRate,'Notional',Notional,'Name',"YYInflationSwap_instrument")

YYInflationSwap = 
  YearYearInflationSwap with properties:

              Notional: 2000
    FixedInflationRate: 0.0150
                 Basis: 0
                   Lag: 3
              Maturity: 01-Jan-2025
                  Name: "YYInflationSwap_instrument"

Create Inflation Pricer Object

Use finpricer to create an Inflation pricer object and use the ratecurve object with the
'DiscountCurve' name-value pair argument and the inflationcurve object with the
'InflationCurve' name-value pair argument.

outPricer = finpricer("Inflation",'DiscountCurve',ZeroCurve,'InflationCurve',myInflationCurve)

outPricer = 
  Inflation with properties:

     DiscountCurve: [1x1 ratecurve]
    InflationCurve: [1x1 inflationcurve]

Price YearYearInflationSwap Instrument

Use price to compute the price and sensitivities for the YearYearInflationSwap instrument.

[Price,outPR] = price(outPricer,YYInflationSwap,"all")

Price = 12.5035
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outPR = 
  priceresult with properties:

       Results: [1x1 table]
    PricerData: []

outPR.Results

ans=table
    Price 
    ______

    12.504

Compute Cash Flows for YearYearInflationSwap Instrument

Use inflationCashflows to compute the cash flows for the YearYearInflationSwap
instrument.

outCF = inflationCashflows(YYInflationSwap,datetime(2021,1,15),myInflationCurve)

outCF=4×2 timetable
       Time        Var1     Var2 
    ___________    ____    ______

    01-Jan-2022    -30         40
    01-Jan-2023    -30     29.412
    01-Jan-2024    -30     28.986
    01-Jan-2025    -30     34.286

Price Multiple Year-on-Year Inflation-Indexed Swap Instruments Using inflationcurve and
Inflation Pricer and Compute Cash Flows

This example shows the workflow to price multiple YearYearInflationSwap instrument when you
use an inflationcurve object and an Inflation pricing method. Then use
inflationCashflows to compute the cash flows for the YearYearInflationSwap instruments.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2021,1,15);
Type = "zero";
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
ZeroCurve = ratecurve('zero',Settle,ZeroDates,ZeroRates)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
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                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Jan-2021
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create inflationcurve Object

Create an inflationcurve object using inflationcurve.

BaseDate = datetime(2019,10,1);
InflationTimes = [0 calyears([1 2 3 4 5 7 10 20 30])]';
InflationIndexValues = [100 102 103.5 105 106.8 108.2 111.3 120.1 130.4 150.2]';
InflationDates = BaseDate + InflationTimes;
myInflationCurve = inflationcurve(InflationDates,InflationIndexValues)

myInflationCurve = 
  inflationcurve with properties:

                    Basis: 0
                    Dates: [10x1 datetime]
     InflationIndexValues: [10x1 double]
    ForwardInflationRates: [9x1 double]
              Seasonality: [12x1 double]

Create YearYearInflationSwap Instrument Object

Use fininstrument to create a YearYearInflationSwap instrument object for three Year-on-Year
Inflation-Indexed Swap instruments.

Maturity = datetime([2024,1,1 ; 2024,11,1 ; 2024,12,1]);
FixedInflationRate = 0.015;
Notional = [20000 ; 30000 ; 40000];

YYInflationSwap = fininstrument("YearYearInflationSwap",'Maturity',Maturity,'FixedInflationRate',FixedInflationRate,'Notional',Notional,'Name',"YYInflationSwap_instrument")

YYInflationSwap=3×1 object
  3x1 YearYearInflationSwap array with properties:

    Notional
    FixedInflationRate
    Basis
    Lag
    Maturity
    Name

Create Inflation Pricer Object

Use finpricer to create an Inflation pricer object and use the ratecurve object with the
'DiscountCurve' name-value pair argument and the inflationcurve object with the
'InflationCurve' name-value pair argument.

outPricer = finpricer("Inflation",'DiscountCurve',ZeroCurve,'InflationCurve',myInflationCurve)

outPricer = 
  Inflation with properties:
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     DiscountCurve: [1x1 ratecurve]
    InflationCurve: [1x1 inflationcurve]

Price YearYearInflationSwap Instruments

Use price to compute the prices and sensitivities for the YearYearInflationSwap instruments.

[Price,outPR] = price(outPricer,YYInflationSwap,"all")

Price = 3×1

   26.0701
   18.1540
    1.3201

outPR=1×3 object
  1x3 priceresult array with properties:

    Results
    PricerData

outPR.Results

ans=table
    Price
    _____

    26.07

ans=table
    Price 
    ______

    18.154

ans=table
    Price 
    ______

    1.3201

Compute Cash Flows for YearYearInflationSwap Instruments

Use inflationCashflows to compute the cash flows for the YearYearInflationSwap
instruments.

outCF = inflationCashflows(YYInflationSwap(1),datetime(2021,1,15),myInflationCurve)

outCF=3×2 timetable
       Time        Var1     Var2 
    ___________    ____    ______
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    01-Jan-2022    -300    294.12
    01-Jan-2023    -300    289.86
    01-Jan-2024    -300    342.86

outCF = inflationCashflows(YYInflationSwap(2),datetime(2021,1,15),myInflationCurve)

outCF=4×2 timetable
       Time        Var1     Var2 
    ___________    ____    ______

    01-Nov-2021    -450    467.39
    01-Nov-2022    -450    435.85
    01-Nov-2023    -450    500.98
    01-Nov-2024    -450    413.63

outCF = inflationCashflows(YYInflationSwap(3),datetime(2021,1,15),myInflationCurve)

outCF=4×2 timetable
       Time        Var1     Var2 
    ___________    ____    ______

    01-Dec-2021    -600    605.42
    01-Dec-2022    -600    580.41
    01-Dec-2023    -600    676.99
    01-Dec-2024    -600     537.7

Input Arguments
inpInstrumentObject — Instrument object
YearYearInflationSwap object

Instrument object, specified using a previously created instrument object for a
YearYearInflationSwap.

Note If the inpInstrumentObject is a vector of instruments, you must use inflationCashflows
separately with each instrument.

Data Types: object

Settle — Settlement date for instrument cash flow
datetime | serial date number | date character vector | string array

Settlement date for instrument cash flow, specified as a scalar using a datetime, serial date number,
date character vector, or date string.

Note The Settle date you specify must be before the Maturity date for the
YearYearInflationSwap instrument.

Data Types: double | char | datetime | string
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inpInflationCurve — Inflation curve
inflationcurve object

Inflation curve, specified using a previously created inflation curve object using inflationcurve.
Data Types: object

Output Arguments
outCF — Output cash flow
timetable

Output cash flow, returned as a timetable.

See Also
fininstrument | finpricer | timetable

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2021a

 inflationCashflows
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inflationCashflows
Package: fininstrument

Compute cash flows for ZeroCouponInflationSwap instrument

Syntax
outCF = inflationCashflows(inpInstrumentObject,Settle,inpInflationCurve)

Description
outCF = inflationCashflows(inpInstrumentObject,Settle,inpInflationCurve)
computes cash flows for a ZeroCouponInflationSwap instrument object.

Examples

Price Zero-Coupon Inflation Swap Instrument Using inflationcurve and Inflation Pricer
and Compute Cash Flow

This example shows the workflow to price a ZeroCouponInflationSwap instrument when you use
an inflationcurve object and an Inflation pricing method. Then use inflationCashflows to
compute the cash flow for the ZeroCouponInflationSwap instrument.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2021,1,15);
Type = "zero";
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
ZeroCurve = ratecurve('zero',Settle,ZeroDates,ZeroRates)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Jan-2021
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create inflationcurve Object

Create an inflationcurve object using inflationcurve.
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BaseDate = datetime(2020, 10, 1);
InflationTimes = [0 calyears([1 2 3 4 5 7 10 20 30])]';
InflationIndexValues = [100 102 103.5 105 106.8 108.2 111.3 120.1 130.4 150.2]';
InflationDates = BaseDate + InflationTimes;
myInflationCurve = inflationcurve(InflationDates,InflationIndexValues)

myInflationCurve = 
  inflationcurve with properties:

                    Basis: 0
                    Dates: [10x1 datetime]
     InflationIndexValues: [10x1 double]
    ForwardInflationRates: [9x1 double]
              Seasonality: [12x1 double]

Create ZeroCouponInflationSwap Instrument Object

Use fininstrument to create a ZeroCouponInflationSwap instrument object.

StartDate = datetime(2021,1,1);
Maturity = datetime(2022,10,1);
FixedInflationRate = 0.015;
Notional = 2000;

ZCInflationSwap = fininstrument("ZeroCouponInflationSwap",'StartDate',StartDate,'Maturity',Maturity,'FixedInflationRate',FixedInflationRate,'Notional',Notional,'Name',"zero_coupon_inflation_swap_instrument")

ZCInflationSwap = 
  ZeroCouponInflationSwap with properties:

              Notional: 2000
    FixedInflationRate: 0.0150
                 Basis: 0
                   Lag: 3
             StartDate: 01-Jan-2021
              Maturity: 01-Oct-2022
                  Name: "zero_coupon_inflation_swap_instrument"

Create Inflation Pricer Object

Use finpricer to create an Inflation pricer object and use the ratecurve object with the
'DiscountCurve' name-value pair argument and the inflationcurve object with the
'InflationCurve' name-value pair argument.

outPricer = finpricer("Inflation",'DiscountCurve',ZeroCurve,'InflationCurve',myInflationCurve)

outPricer = 
  Inflation with properties:

     DiscountCurve: [1x1 ratecurve]
    InflationCurve: [1x1 inflationcurve]

Price ZeroCouponInflationSwap Instrument

Use price to compute the price and sensitivities for the ZeroCouponInflationSwap instrument.

[Price,outPR] = price(outPricer,ZCInflationSwap,"all")
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Price = 9.5675

outPR = 
  priceresult with properties:

       Results: [1x1 table]
    PricerData: []

outPR.Results

ans=table
    Price 
    ______

    9.5675

Compute Cash Flow for ZeroCouponInflationSwap Instrument

Use inflationCashflows to compute the cash flow for the ZeroCouponInflationSwap
instrument.

outCF = inflationCashflows(ZCInflationSwap,datetime(2021,1,1),myInflationCurve)

outCF=1×2 timetable
       Time         Var1       Var2 
    ___________    _______    ______

    01-Oct-2022    -52.732    62.397

Price Multiple Zero-Coupon Inflation Swap Instruments Using inflationcurve and Inflation
Pricer and Compute Cash Flow

This example shows the workflow to price multiple ZeroCouponInflationSwap instruments when
you use an inflationcurve object and an Inflation pricing method. Then use
inflationCashflows to compute the cash flow for the ZeroCouponInflationSwap instruments.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2021,12,15);
Type = "zero";
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
ZeroCurve = ratecurve('zero',Settle,ZeroDates,ZeroRates)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
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                Rates: [10x1 double]
               Settle: 15-Dec-2021
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create inflationcurve Object

Create an inflationcurve object using inflationcurve.

BaseDate = datetime(2020, 10, 1);
InflationTimes = [0 calyears([1 2 3 4 5 7 10 20 30])]';
InflationIndexValues = [100 102 103.5 105 106.8 108.2 111.3 120.1 130.4 150.2]';
InflationDates = BaseDate + InflationTimes;
myInflationCurve = inflationcurve(InflationDates,InflationIndexValues)

myInflationCurve = 
  inflationcurve with properties:

                    Basis: 0
                    Dates: [10x1 datetime]
     InflationIndexValues: [10x1 double]
    ForwardInflationRates: [9x1 double]
              Seasonality: [12x1 double]

Create ZeroCouponInflationSwap Instrument Object

Use fininstrument to create a ZeroCouponInflationSwap instrument object for three Zero-
Coupon Inflation Swap instruments.

StartDate = datetime([2021,5,1 ; 2021,6,1 ; 2021,7,1]);
Maturity = datetime([2022,10,1 ; 2022,11,1 ;2022,12,1]);
FixedInflationRate = 0.015;
Notional = [20000 ; 30000 ; 40000];

ZCInflationSwap = fininstrument("ZeroCouponInflationSwap",'StartDate',StartDate,'Maturity',Maturity,'FixedInflationRate',FixedInflationRate,'Notional',Notional,'Name',"zero_coupon_inflation_swap_instrument")

ZCInflationSwap=3×1 object
  3x1 ZeroCouponInflationSwap array with properties:

    Notional
    FixedInflationRate
    Basis
    Lag
    StartDate
    Maturity
    Name

Create Inflation Pricer Object

Use finpricer to create an Inflation pricer object and use the ratecurve object with the
'DiscountCurve' name-value pair argument and the inflationcurve object with the
'InflationCurve' name-value pair argument.

outPricer = finpricer("Inflation",'DiscountCurve',ZeroCurve,'InflationCurve',myInflationCurve)
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outPricer = 
  Inflation with properties:

     DiscountCurve: [1x1 ratecurve]
    InflationCurve: [1x1 inflationcurve]

Price ZeroCouponInflationSwap Instruments

Use price to compute the prices and sensitivities for the ZeroCouponInflationSwap instruments.

[Price,outPR] = price(outPricer,ZCInflationSwap,"all")

Price = 3×1

   59.4576
   80.6037
   89.4137

outPR=1×3 object
  1x3 priceresult array with properties:

    Results
    PricerData

outPR.Results

ans=table
    Price 
    ______

    59.458

ans=table
    Price 
    ______

    80.604

ans=table
    Price 
    ______

    89.414

Compute Cash Flow for ZeroCouponInflationSwap Instruments

Use inflationCashflows to compute the cash flow for the ZeroCouponInflationSwap
instruments.

outCF = inflationCashflows(ZCInflationSwap(1),datetime(2022,1,1),myInflationCurve)

outCF=1×2 timetable
       Time         Var1      Var2 
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    ___________    _______    _____

    01-Oct-2022    -427.09    486.8

outCF = inflationCashflows(ZCInflationSwap(2),datetime(2022,1,1),myInflationCurve)

outCF=1×2 timetable
       Time         Var1       Var2 
    ___________    _______    ______

    01-Nov-2022    -640.63    721.62

outCF = inflationCashflows(ZCInflationSwap(3),datetime(2022,1,1),myInflationCurve)

outCF=1×2 timetable
       Time         Var1       Var2 
    ___________    _______    ______

    01-Dec-2022    -854.18    944.06

Input Arguments
inpInstrumentObject — Instrument object
ZeroCouponInflationSwap object

Instrument object, specified using a previously created instrument object for a
ZeroCouponInflationSwap.

Note If the inpInstrumentObject is a vector of instruments, you must use inflationCashflows
separately with each instrument.

Data Types: object

Settle — Settlement date for instrument cash flow
datetime | serial date number | date character vector | string array

Settlement date for instrument cash flow, specified as a scalar using a datetime, serial date number,
date character vector, or date string.

Note The Settle date you specify must be before the Maturity date for the
ZeroCouponInflationSwap instrument.

Data Types: double | char | datetime | string

inpInflationCurve — Inflation curve
inflationcurve object

Inflation curve, specified using a previously created inflation curve object using inflationcurve.
Data Types: object
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Output Arguments
outCF — Output cash flow
timetable

Output cash flow, returned as a timetable.

See Also
fininstrument | finpricer | timetable

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2021a
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OISFuture
OISFuture instrument object

Description
Create and price an OISFuture instrument object for one or more one-month or three-month future
instruments using this workflow:

1 Use fininstrument to create an OISFuture instrument object for one or more OIS Future
instruments.

2 Use ratecurve to specify an interest-rate model for the OISFuture instrument object.
3 Use finpricer to specify a Discount pricing method for one or more OISFuture instruments.

Create an OISFuture instrument object for one or more OIS futures instruments to use in curve
construction using this workflow:

1 Use fininstrument to create an OISFuture instrument object for one or more OIS future
instruments.

2 Use irbootstrap to create an interest-rate curve (ratecurve) for one or more OISFuture
instruments.

For more information on these workflows, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available models and pricing methods for an OISFuture instrument, see
“Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
OISFutureInst = fininstrument(InstrumentType,QuotedPrice=OIS_quoted_price,
Maturity=maturity_date,StartDate=start_date)
OISFutureInst = fininstrument( ___ ,Name=Value)

Description

OISFutureInst = fininstrument(InstrumentType,QuotedPrice=OIS_quoted_price,
Maturity=maturity_date,StartDate=start_date) creates an OISFuture instrument object
for one or more OIS future instruments by specifying InstrumentType, QuotedPrice, Maturity,
and StartDate.

The OISFuture instrument supports many alternative reference rate (ARR) securities that are
compliant with standards from the International Organization of Securities Commissions (IOSCO).
For example, ARRs like SOFR, EONIA, SONIA, SARON, and TONAR focus on risk-free rate or near
risk-free rates based on transactions of overnight funding.
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OISFutureInst = fininstrument( ___ ,Name=Value) sets optional properties on page 11-2347
using additional name-value arguments in addition to the required arguments in the previous syntax.
For example, OISFutureInst =
fininstrument("OISFuture",QuotedPrice=99.5,Maturity=datetime(2022,12,15),Star
tDate=datetime(2022,9,15)) creates an OIS future instrument. You can specify multiple name-
value arguments.

Input Arguments

InstrumentType — Instrument type
string with value "OISFuture" | string array with values of "OISFuture" | character vector with
value 'OISFuture' | cell array of character vectors with values of 'OISFuture'

Instrument type, specified as a string with the value of "OISFuture", a character vector with the
value of 'OISFuture', an NINST-by-1 string array with values of "OISFuture", or an NINST-by-1
cell array of character vectors with values of 'OISFuture'.
Data Types: char | cell | string

OISFuture Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.
Example: OISFutureInst =
fininstrument("OISFuture",QuotedPrice=99.5,Maturity=datetime(2022,12,15),Star
tDate=datetime(2022,9,15))

Required OISFuture Name-Value Arguments

QuotedPrice — OIS future quoted price
scalar numeric | numeric decimal

OIS future quoted price, specified as QuotedPrice and a scalar numeric or an NINST-by-1 numeric
vector.
Data Types: double

Maturity — OIS future maturity date
datetime | serial date number | date character vector | date string | vector of datetimes | vector of
serial date numbers | cell array of date character vectors | date string array

OIS future maturity date, specified as Maturity and a scalar datetime, serial date number, date
character vector, date string or an NINST-by-1 vector of datetimes, serial date numbers, cell array of
date character vectors, or date string array.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the Maturity property is stored as a datetime.
Data Types: char | cell | double | string | datetime

StartDate — OIS future underlying rate end date
datetime | serial date number | date character vector | date string | vector of datetimes | vector of
serial date numbers | cell array of date character vectors | date string array
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OIS future underlying rate end date, specified as StartDate and a scalar datetime, serial date
number, date character vector, date string, or an NINST-by-1 vector of datetimes, serial date
numbers, cell array of date character vectors, or date string array.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the StartDate property is stored as a datetime.
Data Types: char | cell | double | string | datetime

Optional OISFuture Name-Value Arguments

Method — Computation method
"Compound" (default) | string with value "Compound" or "Average" | string array with values of
"Compound" or "Average" | character vector with value 'Compound' or 'Average' | cell array of
character vectors with values of 'Compound' or 'Average'

Computation method, specified as Method and a scalar character vector or string or an NINST-by-1
cell array of character vectors or string array.
Data Types: cell | char | string

Basis — Day count basis
2 (actual/360) (default) | scalar integer from 0 to 13 | vector of integers from 0 to 13

Day count basis, specified as Basis and a scalar integer or an NINST-by-1 vector of integers for the
following:

• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Notional — Notional principal amount
100 (default) | scalar numeric | numeric vector

Notional principal amount, specified as Notional and a scalar numeric or an NINST-by-1 numeric
vector.
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Data Types: double

BusinessDayConvention — Business day convention for cash flow dates
"actual" (default) | string | string array | character vector | cell array of character vectors

Business day convention for cash flow dates, specified as BusinessDayConvention and a scalar
string or character vector or an NINST-by-1 cell array of character vectors or string array. The
selection for business day convention determines how nonbusiness days are treated. Nonbusiness
days are defined as weekends plus any other date that businesses are not open (for example,
statutory holidays). Values are:

• "actual" — Nonbusiness days are effectively ignored. Cash flows that fall on nonbusiness days
are assumed to be distributed on the actual date.

• "follow" — Cash flows that fall on a nonbusiness day are assumed to be distributed on the
following business day.

• "modifiedfollow" — Cash flows that fall on a nonbusiness day are assumed to be distributed
on the following business day. However, if the following business day is in a different month, the
previous business day is adopted instead.

• "previous" — Cash flows that fall on a nonbusiness day are assumed to be distributed on the
previous business day.

• "modifiedprevious" — Cash flows that fall on a nonbusiness day are assumed to be distributed
on the previous business day. However, if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell | string

Holidays — Holidays used in computing business days
NaT (default) | datetimes | cell array of date character vectors | date string array | serial date
numbers

Holidays used in computing business days, specified as Holidays and dates using an NINST-by-1
vector of datetimes, serial date numbers, cell array of date character vectors, or date string array. For
example:

H = holidays(datetime('today'),datetime(2025,12,15));
OISFutureInst = fininstrument("OISFuture",Maturity=datetime(2022,12,15),QuotedPrice=99.5,ExerciseDate=datetime(2022,6,15),Holidays=H)

Data Types: double | cell | datetime | string

ProjectionCurve — Projection curve used to price OIS future
ratecurve.empty (default) | ratecurve object | vector of ratecurve objects

Projection curve used to price OIS future, specified as ProjectionCurve and a scalar ratecurve
object or an NINST-by-1 vector of ratecurve objects. These objects must be created using
ratecurve. Use this optional input if the forward curve is different from the discount curve.
Data Types: object

HistoricalFixing — Historical fixing for OISFuture
timetable.empty (default) | timetable

Historical fixing for OISFuture, specified as HistoricalFixing and a timetable.
Data Types: timetable
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Name — User-defined name for instrument
"" (default) | string | character vector

User-defined name for the instrument, specified as Name and a scalar string or character vector or an
NINST-by-1 cell array of character vectors or string array.
Data Types: char | cell | string

Properties
QuotedPrice — OIS future quoted price
scalar numeric | numeric vector

OIS future quoted price, returned as a scalar numeric or an NINST-by-1 numeric vector.
Data Types: double

Maturity — OIS future maturity date
datetime | vector of datetimes

OIS future maturity date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

StartDate — OIS future underlying end date
datetime | vector of datetimes

OIS future underlying end date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

Method — Computation method
"Compound" (default) | string with value "Compound" or "Average" | string array with values of
"Compound" or "Average"

Computation method, returned as a string or an NINST-by-1 string array.
Data Types: string

Basis — Day count basis
0 (actual/actual) (default) | scalar integer from 0 to 13 | vector of integers from 0 to 13

Day count basis, returned as a scalar integer or an NINST-by-1 vector of integers.
Data Types: double

Notional — Notional principal amount
100 (default) | scalar numeric | numeric vector

Notional principal amount, returned as a scalar numeric or an NINST-by-1 numeric vector.
Data Types: double

BusinessDayConvention — Business day convention for cash flows
"actual" (default) | scalar string | string array

Business day convention for cash flows, returned as a scalar string or an NINST-by-1 string array.
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Data Types: string

Holidays — Holidays used in computing business days
NaT (default) | datetimes

Holidays used in computing business days, returned as an NINST-by-1 vector of datetimes.
Data Types: datetime

ProjectionCurve — Projection curve used to price OIS future
ratecurve.empty (default) | ratecurve object | vector of ratecurve objects

Projection curve used to price OIS future, returned as a scalar ratecurve object or an NINST-by-1
vector of ratecurve objects.
Data Types: object

HistoricalFixing — Historical fixing for OISFuture
timetable.empty (default) | timetable

Historical fixing for OISFuture, returned as a timetable.
Data Types: timetable

Name — User-defined name for instrument
"" (default) | string | string array

User-defined name for the instrument, returned as a string or an NINST-by-1 string array.
Data Types: string

Object Functions
cashflows Compute cash flow for FixedBond, FloatBond, Swap, FRA, STIRFuture, OISFuture,

OvernightIndexedSwap, or Deposit instrument

Examples

Price SOFR Future Using ratecurve and Discount Pricer

This example shows the workflow to price an OISFuture instrument for a one-month SOFR future
when you use a ratecurve object and a Discount pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve for the underlying interest-rate curve for the
OISFuture instrument.

Settle = datetime(2021,1,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)
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myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Jan-2021
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create OISFuture Instrument Object

Use fininstrument to create an OISFuture instrument object for a one-month SOFR future.

HFDates = datetime(2021,3,1) + caldays(0:3)';
HistFixing = timetable(HFDates,[0.02;0.04;0.04;0.02]);

% Data from the following: https://www.cmegroup.com/trading/interest-rates/stir/one-month-sofr_quotes_globex.html
Prices_1M = 99.97;
Maturity_1M = lbusdate(2021,3,[],[],'datetime');
StartDate_1M = fbusdate(2021,3,[],[],'datetime');
FutInstrument_1M = fininstrument("OISFuture",Maturity=Maturity_1M ,QuotedPrice=Prices_1M,StartDate=StartDate_1M,Method="Average", ...
    HistoricalFixing=HistFixing,Name="1MonthSOFRFuture")

FutInstrument_1M = 
  OISFuture with properties:

              QuotedPrice: 99.9700
                   Method: "average"
                    Basis: 2
                StartDate: 01-Mar-2021
                 Maturity: 31-Mar-2021
                 Notional: 100
    BusinessDayConvention: "actual"
                 Holidays: NaT
          ProjectionCurve: [0x0 ratecurve]
         HistoricalFixing: [4x1 timetable]
                     Name: "1MonthSOFRFuture"

Create Discount Pricer Object

Use finpricer to create a Discount pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("Discount",DiscountCurve=myRC)

outPricer = 
  Discount with properties:

    DiscountCurve: [1x1 ratecurve]
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Price OISFuture Instrument for SOFR Future

Use price to compute the price and sensitivities for the OISFuture instrument for a one-month
SOFR future.

[Price,outPR] = price(outPricer,FutInstrument_1M,["all"])

Price = 0.0408

outPR = 
  priceresult with properties:

       Results: [1x2 table]
    PricerData: []

outPR.Results

ans=1×2 table
     Price        DV01    
    _______    ___________

    0.04079    -0.00083163

Price Multiple SOFR Futures Using ratecurve and Discount Pricer

This example shows the workflow to price multiple OISFuture instruments for one-month SOFR
futures and three-month SOFR futures when you use a ratecurve object and a Discount pricing
method.

Create ratecurve Object

Create a ratecurve object using ratecurve for the underlying interest-rate curve for the
OISFuture instruments.

Settle = datetime(2019,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"
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Create OISFuture Instrument Objects for SOFR Futures

Use fininstrument to create an OISFuture instrument object for one-month SOFR futures.

HFDates = datetime(2021,3,1) + caldays(0:3)';
HistFixing = timetable(HFDates,[0.02;0.04;0.04;0.02]);

% Data from the following: https://www.cmegroup.com/trading/interest-rates/stir/one-month-sofr_quotes_globex.html
Prices_1M = [99.97 99.96 99.95]';
Maturity_1M = lbusdate(2021,[3 4 5]',[],[],'datetime');
StartDate_1M = fbusdate(2021,[3 4 5]',[],[],'datetime');
FutInstruments_1M = fininstrument("OISFuture",Maturity=Maturity_1M ,QuotedPrice=Prices_1M,StartDate=StartDate_1M,Method="Average", ...
    HistoricalFixing=HistFixing,Name="1MonthSOFRFuture")

FutInstruments_1M=3×1 object
  3x1 OISFuture array with properties:

    QuotedPrice
    Method
    Basis
    StartDate
    Maturity
    Notional
    BusinessDayConvention
    Holidays
    ProjectionCurve
    HistoricalFixing
    Name

Use fininstrument to create an OISFuture instrument object for three-month SOFR futures.

% Data from the following: https://www.cmegroup.com/trading/interest-rates/stir/three-month-sofr_quotes_globex.html
Prices_3M = [99.92 99.895 99.84 99.74]';
Dates_3M_Maturity = thirdwednesday([6 9 12 3]',[2021 2021 2021 2022]','datetime');
Dates_3M_Start = thirdwednesday([3 6 9 12]',2021,'datetime');
FutInstruments_3M = fininstrument("OISFuture",Maturity=Dates_3M_Maturity, ...
    QuotedPrice=Prices_3M,StartDate=Dates_3M_Start,HistoricalFixing=HistFixing,Name="3MonthSOFRFuture")

FutInstruments_3M=4×1 object
  4x1 OISFuture array with properties:

    QuotedPrice
    Method
    Basis
    StartDate
    Maturity
    Notional
    BusinessDayConvention
    Holidays
    ProjectionCurve
    HistoricalFixing
    Name

Create Discount Pricer Object

Use finpricer to create a Discount pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.
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outPricer = finpricer("Discount",DiscountCurve=myRC)

outPricer = 
  Discount with properties:

    DiscountCurve: [1x1 ratecurve]

Price OISFuture Instruments for SOFR Futures

Use price to compute the prices for the OISFuture instruments for one-month and three-month
SOFR futures.

Price = price(outPricer,[FutInstruments_1M ; FutInstruments_3M])

Price = 7×1

    0.0527
    0.0509
    0.0439
    0.1511
    0.1520
    0.1791
    0.1687

More About
OIS Future

An OIS future is a futures contract that has an overnight index swap as the underlying asset.

To support the LIBOR transition, the OISFuture instrument supports the adoption of alternative
reference rates (ARR) like SOFR, EONIA, SONIA, SARON, and TONAR. The ARRs replace the LIBOR
benchmark, which underpins many loans, mortgages, bonds, and interest-rate derivatives.

The secured overnight financing rate (SOFR) ARR tracks the overnight effective federal funds rate
(which is a benchmark of the US short-term interest rate market). SOFR is becoming the benchmark
rate for dollar-denominated derivatives and loans. Other countries have sought their own alternative
rates, such as SONIA and EONIA. In the US, SOFR futures mature in three months and the start
dates for an SOFR future coincide with international money market (IMM) expiration dates. The
SOFR futures trade on maturity dates of money market futures and money market futures options,
which are set by futures and options exchanges. These dates are always the third Wednesday of the
last month of the quarter (March, June, September, December). You can determine these third
Wednesday dates using thirdwednesday.

See Also
Functions
OvernightIndexedSwap | STIRFuture | finmodel | finpricer | timetable

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Bootstrap ratecurve Object from STIRFuture, Deposit, and Swap BootInstruments” on page 11-2128
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“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2021b
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STIRFuture
STIRFuture instrument object

Description
Create and price a STIRFuture instrument object for one or more STIR future instruments using this
workflow:

1 Use fininstrument to create a STIRFuture instrument object for one or more STIR future
instruments.

2 Use ratecurve to specify an interest-rate model for the STIRFuture instrument object.
3 Use finpricer to specify a Discount pricing method for one or more STIRFuture

instruments.

Create a STIRFuture instrument object for one or more STIR future instruments to use in curve
construction using this workflow:

1 Use fininstrument to create a STIRFuture instrument object for one or more STIR future
instruments.

2 Use irbootstrap to create an interest-rate curve (ratecurve) for one or more STIRFuture
instruments. In addition, you can use the irbootstrap optional name-value input argument
ConvexityAdjustment to specify a convexity adjustment for the STIRFuture instruments.

For more information on these workflows, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available models and pricing methods for a STIRFuture instrument, see
“Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
STIRFutureInst = fininstrument(InstrumentType,QuotedPrice=quoted_stir_price,
Maturity=maturity_date,RateEndDate=rate_end_date)
STIRFutureInst = fininstrument( ___ ,Name=Value)

Description

STIRFutureInst = fininstrument(InstrumentType,QuotedPrice=quoted_stir_price,
Maturity=maturity_date,RateEndDate=rate_end_date) creates a STIRFuture object for
one or more STIR future instruments by specifying InstrumentType, QuotedPrice, Maturity,
and EndDate.

STIRFutureInst = fininstrument( ___ ,Name=Value) sets optional properties on page 11-
2357 using additional name-value arguments in addition to the required arguments in the previous
syntax. For example, STIRFutureInst =
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fininstrument("STIRFuture",QuotedPrice=99.5,Maturity=datetime(2022,12,15),Rat
eEndDate=datetime(2022,6,15)) creates a STIR future instrument. You can specify multiple
name-value arguments.

Input Arguments

InstrumentType — Instrument type
string with value "STIRFuture" | string array with values of "STIRFuture" | character vector with
value 'STIRFuture' | cell array of character vectors with values of 'STIRFuture'

Instrument type, specified as a string with the value of "STIRFuture", a character vector with the
value of 'STIRFuture', an NINST-by-1 string array 'with values of "STIRFuture", or an NINST-
by-1 cell array of character vectors with values of 'STIRFuture'.
Data Types: char | cell | string

STIRFuture Name-Value Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.
Example: STIRFutureInst =
fininstrument("STIRFuture",QuotedPrice=99.5,Maturity=datetime(2022,12,15),Rat
eEndDate=datetime(2022,6,15))

Required STIRFuture Name-Value Arguments

QuotedPrice — STIR future quoted price
scalar numeric | numeric vector

STIR future quoted price, specified as QuotedPrice and a scalar numeric or an NINST-by-1 numeric
vector.
Data Types: double

Maturity — STIR future maturity date
datetime | serial date number | date character vector | date string | vector of datetimes | vector of
serial date numbers | cell array of date character vectors | date string array

STIR future maturity date, specified as Maturity and a scalar datetime, serial date number, date
character vector, date string, or an NINST-by-1 vector of datetimes, serial date numbers, cell array of
date character vectors, or date string array.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the Maturity property is stored as a datetime.
Data Types: char | cell | double | string | datetime

RateEndDate — STIR future underlying rate end date
datetime | serial date number | date character vector | date string | vector of datetimes | vector of
serial date numbers | cell array of date character vectors | date string array

STIR future underlying rate end date, specified as RateEndDate and a scalar datetime, serial date
number, date character vector, date string, or an NINST-by-1 vector of datetimes, serial date
numbers, cell array of date character vectors, or date string array.
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If you use date character vectors or date strings, the format must be recognizable by datetime
because the RateEndDate property is stored as a datetime.
Data Types: char | cell | double | string | datetime

Optional STIRFuture Name-Value Arguments

Basis — Day count basis
0 (actual/actual) (default) | scalar integer from 0 to 13 | vector of integers from 0 to 13

Day count basis, specified as Basis and a scalar integer or an NINST-by-1 vector of integers for the
following:

• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Notional — Notional principal amount
100 (default) | scalar numeric | numeric vector

Notional principal amount, specified as Notional and a scalar numeric or an NINST-by-1 numeric
vector.
Data Types: double

BusinessDayConvention — Business day convention for cash flow dates
"actual" (default) | string | string array | character vector | cell array of character vectors

Business day convention for cash flow dates, specified as BusinessDayConvention and a scalar
string or character vector or an NINST-by-1 cell array of character vectors or string array. The
selection for business day convention determines how nonbusiness days are treated. Nonbusiness
days are defined as weekends plus any other date that businesses are not open (for example,
statutory holidays). Values are:

• "actual" — Nonbusiness days are effectively ignored. Cash flows that fall on nonbusiness days
are assumed to be distributed on the actual date.
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• "follow" — Cash flows that fall on a nonbusiness day are assumed to be distributed on the
following business day.

• "modifiedfollow" — Cash flows that fall on a nonbusiness day are assumed to be distributed
on the following business day. However, if the following business day is in a different month, the
previous business day is adopted instead.

• "previous" — Cash flows that fall on a nonbusiness day are assumed to be distributed on the
previous business day.

• "modifiedprevious" — Cash flows that fall on a nonbusiness day are assumed to be distributed
on the previous business day. However, if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell | string

Holidays — Holidays used in computing business days
NaT (default) | datetimes | cell array of date character vectors | date string array | serial date
numbers

Holidays used in computing business days, specified as Holidays and dates using an NINST-by-1
vector of datetimes, serial date numbers, cell array of date character vectors, or date string array. For
example:

H = holidays(datetime('today'),datetime(2025,12,15));
STIRFutureInst = fininstrument("STIRFuture",Maturity=datetime(2022,12,15),QuotedPrice=99.5,ExerciseDate=datetime(2022,6,15),Holidays=H)

Data Types: double | cell | datetime | string

ProjectionCurve — Projection curve used to price STIR future
ratecurve.empty (default) | ratecurve object | vector of ratecurve objects

Projection curve used to price STIR future, specified as ProjectionCurve and a scalar ratecurve
object or an NINST-by-1 vector of ratecurve objects. These objects must be created using
ratecurve. Use this optional input if the forward curve is different from the discount curve.
Data Types: object

Name — User-defined name for instrument
"" (default) | string | character vector

User-defined name for the instrument, specified as Name and a scalar string or character vector or an
NINST-by-1 cell array of character vectors or string array.
Data Types: char | cell | string

Properties
QuotedPrice — STIR future quoted price
scalar numeric | numeric vector

STIR Future quoted price, returned as a scalar numeric or an NINST-by-1 numeric vector.
Data Types: double

Maturity — STIR future maturity date
datetime | vector of datetimes
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STIR future maturity date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

RateEndDate — STIR future underlying rate end date
datetime | vector of datetimes

STIR future underlying rate end date, returned as a scalar datetime or an NINST-by-1 vector of
datetimes.
Data Types: datetime

Basis — Day count basis
0 (actual/actual) (default) | scalar integer from 0 to 13 | vector of integers from 0 to 13

Day count basis, returned as a scalar integer or an NINST-by-1 vector of integers.
Data Types: double

Notional — Notional principal amount
100 (default) | scalar numeric | numeric vector

Notional principal amount, returned as a scalar numeric or an NINST-by-1 numeric vector.
Data Types: double

BusinessDayConvention — Business day convention for cash flow dates
"actual" (default) | scalar string | string array

Business day convention for cash flow dates, returned as a scalar string or an NINST-by-1 string
array.
Data Types: string

Holidays — Holidays used in computing business days
NaT (default) | datetimes

Holidays used in computing business days, returned as an NINST-by-1 vector of datetimes.
Data Types: datetime

ProjectionCurve — Projection curve used to price STIR future
ratecurve.empty (default) | ratecurve object | vector of ratecurve objects

Projection curve used to price STIR future, returned as a scalar ratecurve object or an NINST-by-1
vector of ratecurve objects.
Data Types: object

Name — User-defined name for instrument
"" (default) | string | string array

User-defined name for the instrument, returned as a string or an NINST-by-1 string array.
Data Types: string
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Object Functions
cashflows Compute cash flow for FixedBond, FloatBond, Swap, FRA, STIRFuture, OISFuture,

OvernightIndexedSwap, or Deposit instrument

Examples

Price STIR Future Instrument Using ratecurve and Discount Pricer

This example shows the workflow to price a STIRFuture instrument when you use a ratecurve
object and a Discount pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve for the underlying interest-rate curve for the
STIRFuture instrument.

Settle = datetime(2019,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create STIRFuture Instrument Object

Use fininstrument to create a STIRFuture instrument object.

STIRFuture = fininstrument("STIRFuture",Maturity=datetime(2022,9,15),QuotedPrice=99.5,RateEndDate=datetime(2022,12,15),Notional=500,Name="stir_future_instrument")

STIRFuture = 
  STIRFuture with properties:

              QuotedPrice: 99.5000
                    Basis: 2
              RateEndDate: 15-Dec-2022
                 Maturity: 15-Sep-2022
                 Notional: 500
    BusinessDayConvention: "actual"
                 Holidays: NaT
          ProjectionCurve: [0x0 ratecurve]
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                     Name: "stir_future_instrument"

Create Discount Pricer Object

Use finpricer to create a Discount pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("Discount",DiscountCurve=myRC)

outPricer = 
  Discount with properties:

    DiscountCurve: [1x1 ratecurve]

Price STIRFuture Instrument

Use price to compute the price and sensitivities for the STIRFuture instrument.

[Price, outPR] = price(outPricer,STIRFuture,["all"])

Price = 97.3030

outPR = 
  priceresult with properties:

       Results: [1x2 table]
    PricerData: []

outPR.Results

ans=1×2 table
    Price       DV01  
    ______    ________

    97.303    0.041513

Price Multiple STIR Future Instruments Using ratecurve and Discount Pricer

This example shows the workflow to price multiple STIRFuture instruments when you use a
ratecurve object and a Discount pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve for the underlying interest-rate curve for the
STIRFuture instrument.

Settle = datetime(2019,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)
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myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create STIRFuture Instrument Object

Use fininstrument to create a STIRFuture instrument object for three STIR future instruments.

STIRFuture = fininstrument("STIRFuture",Maturity=datetime([2022,4,15 ; 2022,5,15 ; 2022,6,15]),QuotedPrice=[99.5 ; 101 ; 105],RateEndDate=datetime([2022,7,15 ; 2022,8,15 ; 2022,9,15]),Notional=500,Name="stir_future_instrument")

STIRFuture=3×1 object
  3x1 STIRFuture array with properties:

    QuotedPrice
    Basis
    RateEndDate
    Maturity
    Notional
    BusinessDayConvention
    Holidays
    ProjectionCurve
    Name

Create Discount Pricer Object

Use finpricer to create a Discount pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("Discount",DiscountCurve=myRC)

outPricer = 
  Discount with properties:

    DiscountCurve: [1x1 ratecurve]

Price STIRFuture Instruments

Use price to compute the prices for the STIRFuture instruments.

Price = price(outPricer,STIRFuture)

Price = 3×1

   98.2155
   98.8120
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   97.6983

More About
STIR Future

A STIR future is a short-term interest-rate future.

A STIR future is a cash settled derivative contract on a specified term interest rate paid on a notional
deposit. The price of a STIR future is quoted as 100.00 minus the rate of interest, meaning there is an
inverse relationship between the direction in which the underlying interest rate is expected to move
and the value of the contract.

See Also
Functions
OvernightIndexedSwap | OISFuture | finmodel | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Bootstrap ratecurve Object from STIRFuture, Deposit, and Swap BootInstruments” on page 11-2128
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2021b
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Cliquet
Cliquet instrument object

Description
Create and price a Cliquet instrument object for one or more Cliquet instruments using this
workflow:

1 Use fininstrument to create a Cliquet instrument object for one or more Cliquet
instruments.

2 Use finmodel to specify a BlackScholes, Bates, Merton, or Heston model for the Cliquet
instrument object.

3 Choose a pricing method.

• When using a BlackScholes model, use finpricer to specify a Rubinstein pricing
method for one or more Cliquet instruments.

• When using a BlackScholes, Heston, Bates, or Merton model, use finpricer to specify
an AssetMonteCarlo pricing method for one or more Cliquet instruments.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available models and pricing methods for a Cliquet instrument, see
“Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
CliquetOpt = fininstrument(InstrumentType,ResetDates=reset_dates)
CliquetOpt = fininstrument( ___ ,Name=Value)

Description

CliquetOpt = fininstrument(InstrumentType,ResetDates=reset_dates) creates a
Cliquet instrument object for one or more Cliquet instruments by specifying InstrumentType and
sets properties on page 11-2366 using the required name-value argument for ResetDates.

CliquetOpt = fininstrument( ___ ,Name=Value) sets optional properties on page 11-2366
using additional name-value arguments in addition to the required arguments in the previous syntax.
For example, CliquetOpt =
fininstrument("Cliquet",ResetDates=ResetDates,Name="Cliquet_option") creates a
Cliquet option. You can specify multiple name-value arguments.
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Input Arguments

InstrumentType — Instrument type
string with value "Cliquet" | string array with values of "Cliquet" | character vector with value
'Cliquet' | cell array of character vectors with values of 'Cliquet'

Instrument type, specified as a string with the value of "Cliquet", a character vector with the value
of 'Cliquet', an NINST-by-1 string array with values of "Cliquet", or an NINST-by-1 cell array of
character vectors with values of 'Cliquet'.
Data Types: char | cell | string

Cliquet Name-Value Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.
Example: CliquetOpt =
fininstrument("Cliquet",ResetDates=ResetDates,Name="Cliquet_option")

Required Cliquet Name-Value Arguments

ResetDates — Reset dates when option strike is set
vector of datetimes

Reset dates when option strike is set, specified as ResetDates and a 1-by-NumDates vector of
datetimes. The last element corresponds to the maturity date of the Cliquet option.

A cliquet option is a path-dependent, exotic option that periodically settles and then resets its strike
price at the level of the underlying asset at the time of settlement. The reset of the strike price is not
conditional to the value of the underlying asset at the reset date.
Data Types: datetime

Optional Cliquet Name-Value Arguments

OptionType — Option type
"call" (default) | string with value "call" or "put" | string array with values of "call" or "put"
| character vector with value 'call' or 'put' | cell array of character vectors with values of
'call' or 'put'

Option type, specified as OptionType and a scalar string or character vector or an NINST-by-1 cell
array of character vectors or string array.
Data Types: char | string

ExerciseStyle — Option exercise style
"European" (default) | string with value "European" | string array with values of "European" |
character vector with value 'European' | cell array of character vectors with values of 'European'

Option exercise style, specified as ExerciseStyle and a scalar string or character vector or an
NINST-by-1 cell array of character vectors or string array.
Data Types: string | char
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ReturnType — Return calculation type
"absolute" (default) | string with value "absolute" or "relative" | string array with values of
"absolute" or "relative" | character vector with value 'absolute' or 'relative' | cell array
of character vectors with values of 'absolute' or 'relative'

Option type, specified as ReturnType and a scalar string or character vector or an NINST-by-1 cell
array of character vectors or string array.
Data Types: char | string

InitialStrike — Original strike price used for first reset date
0 (default) | nonnegative numeric | vector of nonnegative numeric

Original strike price used for first reset date, specified as InitialStrike and a scalar nonnegative
numeric value or an NINST-by-1 vector of nonnegative numeric values.
Data Types: double

LocalCap — Local cap
inf (default) | nonnegative numeric | vector of nonnegative numeric

Local cap, specified as LocalCap and a scalar nonnegative numeric value or an NINST-by-1 vector of
nonnegative numeric values.
Data Types: double

LocalFloor — Local floor
0 (default) | nonnegative numeric | vector of nonnegative numeric

Local floor, specified as LocalFloor and a scalar nonnegative numeric value or an NINST-by-1
vector of nonnegative numeric values.
Data Types: double

GlobalCap — Global cap
inf (default) | nonnegative numeric | vector of nonnegative numeric

Global cap, specified as GlobalCap and a scalar nonnegative numeric value or an NINST-by-1 vector
of nonnegative numeric values.
Data Types: double

GlobalFloor — Global floor
0 (default) | nonnegative numeric | vector of nonnegative numeric

Global floor, specified as GlobalFloor and a scalar nonnegative numeric value or an NINST-by-1
vector of nonnegative numeric values.
Data Types: double

Name — User-defined name for instrument
" " (default) | string | string array | character vector | cell array of character vectors

User-defined name for one or more instruments, specified as Name and a scalar string or character
vector or an NINST-by-1 cell array of character vectors or string array.
Data Types: char | cell | string
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Properties
ResetDates — Reset dates when option strike is set
vector of datetimes

Reset dates when option strike is set, returned as a 1-by-NumDates vector of datetimes.
Data Types: datetime

OptionType — Option type
"call" (default) | string with value "call" or "put"

Option type, returned as a scalar string.
Data Types: string

ReturnType — Return calculation type
"absolute" (default) | string with value "absolute" or "relative"

Option type, returned as a scalar string.
Data Types: string

InitialStrike — Original strike price used for first reset date
0 (default) | nonnegative numeric |

Original strike price used for first reset date, returned as a scalar nonnegative numeric value.
Data Types: double

ExerciseStyle — Option exercise style
"European" (default) | string with value "European"

Option exercise style, returned as a scalar string.
Data Types: string

LocalCap — Local cap
inf (default) | nonnegative numeric

Local cap, returned as a scalar nonnegative numeric value.
Data Types: double

LocalFloor — Local floor
0 (default) | nonnegative numeric

Local floor, returned as a scalar nonnegative numeric value.
Data Types: double

GlobalCap — Global cap
inf (default) | nonnegative numeric

Global cap, returned as a scalar nonnegative numeric value.
Data Types: double
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GlobalFloor — Global floor
0 (default) | nonnegative numeric

Global floor, returned as a scalar nonnegative numeric value.
Data Types: double

Name — User-defined name for instrument
" " (default) | string | string array

User-defined name for the instrument, returned as a scalar string or an NINST-by-1 string array.
Data Types: string

Examples

Price Absolute Return for Cliquet Instrument Using a Black-Scholes Model and Asset Monte
Carlo Pricer

This example shows the workflow to price the absolute return for a Cliquet instrument when you
use a BlackScholes model and an AssetMonteCarlo pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2020,1,1);
Date = datetime(2021,1,1);
Rates = 0.10;
Basis = 1;
ZeroCurve = ratecurve('zero',Settle,Date,Rates,Basis=Basis)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 1
                Dates: 01-Jan-2021
                Rates: 0.1000
               Settle: 01-Jan-2020
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Cliquet Instrument Object

Use fininstrument to create a Cliquet instrument object.

ResetDates =  Settle + years(0:0.25:1);
CliquetOpt = fininstrument("Cliquet",ResetDates=ResetDates,Name="cliquet_option")

CliquetOpt = 
  Cliquet with properties:

       OptionType: "call"
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    ExerciseStyle: "european"
       ResetDates: [01-Jan-2020 00:00:00    01-Apr-2020 07:27:18    ...    ]
         LocalCap: Inf
       LocalFloor: 0
        GlobalCap: Inf
      GlobalFloor: 0
       ReturnType: "absolute"
    InitialStrike: NaN
             Name: "cliquet_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",Volatility=0.1)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.1000
    Correlation: 1

Create AssetMonteCarlo Pricer Object

Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("AssetMonteCarlo",DiscountCurve=ZeroCurve,Model=BlackScholesModel,SpotPrice=100,simulationDates=Settle+days(1):days(1):Date)

outPricer = 
  GBMMonteCarlo with properties:

      DiscountCurve: [1x1 ratecurve]
          SpotPrice: 100
    SimulationDates: [02-Jan-2020    03-Jan-2020    04-Jan-2020    ...    ]
          NumTrials: 1000
      RandomNumbers: []
              Model: [1x1 finmodel.BlackScholes]
       DividendType: "continuous"
      DividendValue: 0

Price Cliquet Instrument

Use price to compute the price and sensitivities for the Cliquet instrument.

[Price, outPR] = price(outPricer,CliquetOpt,"all")

Price = 13.1885

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: [1x1 struct]

outPR.Results 
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ans=1×7 table
    Price      Delta       Gamma       Lambda     Rho      Theta     Vega 
    ______    _______    __________    ______    ______    _____    ______

    13.189    0.13189    1.2434e-14      1       59.019      0      66.068

Price Relative Return for Cliquet Instrument Using a Black-Scholes Model and Asset Monte
Carlo Pricer

This example shows the workflow to price a Cliquet instrument when you use a BlackScholes
model and an AssetMonteCarlo pricing method. This example demonstrates how variations in caps
and floors affect option prices on European Cliquet options.

This example uses three 1-year call cliquet options with quarterly observation dates. The first Cliquet
option has no caps or floors, the second Cliquet option has a local floor, and the third Cliquet option
has a local cap and a local floor.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2020,01,01);
Dates = datetime(2021,01,01);
Rate = 0.035;
Compounding = -1;
ZeroCurve = ratecurve('zero',Settle,Dates,Rate,Compounding=Compounding)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: 01-Jan-2021
                Rates: 0.0350
               Settle: 01-Jan-2020
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BSModel = finmodel("BlackScholes",Volatility=0.20)

BSModel = 
  BlackScholes with properties:

     Volatility: 0.2000
    Correlation: 1
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Create Cliquet Instrument Objects with Quarterly Observation Dates

Use fininstrument to create the first Cliquet instrument object with no caps or floors.

ResetDates = Settle + years(0:0.25:1);

Cliquet = fininstrument("Cliquet",ResetDates=ResetDates,ReturnType="relative",LocalFloor="-inf",GlobalFloor="-inf",Name="Vanilla_Cliquet")

Cliquet = 
  Cliquet with properties:

       OptionType: "call"
    ExerciseStyle: "european"
       ResetDates: [01-Jan-2020 00:00:00    01-Apr-2020 07:27:18    ...    ]
         LocalCap: Inf
       LocalFloor: -Inf
        GlobalCap: Inf
      GlobalFloor: -Inf
       ReturnType: "relative"
    InitialStrike: NaN
             Name: "Vanilla_Cliquet"

Use fininstrument to create the second Cliquet instrument object with a local floor of 0%.

LFCliquet = fininstrument("Cliquet",ResetDates=ResetDates,ReturnType="relative",GlobalFloor="-inf",Name="LFCliquet")

LFCliquet = 
  Cliquet with properties:

       OptionType: "call"
    ExerciseStyle: "european"
       ResetDates: [01-Jan-2020 00:00:00    01-Apr-2020 07:27:18    ...    ]
         LocalCap: Inf
       LocalFloor: 0
        GlobalCap: Inf
      GlobalFloor: -Inf
       ReturnType: "relative"
    InitialStrike: NaN
             Name: "LFCliquet"

Use fininstrument to create the third Cliquet instrument object with a local cap of 7% and a
local floor of 0%.

LocalCap = 0.07;
LFLCCliquet = fininstrument("Cliquet",ResetDates=ResetDates,ReturnType="relative",LocalCap=LocalCap,GlobalFloor="-inf",Name="LFLCCLiquet")

LFLCCliquet = 
  Cliquet with properties:

       OptionType: "call"
    ExerciseStyle: "european"
       ResetDates: [01-Jan-2020 00:00:00    01-Apr-2020 07:27:18    ...    ]
         LocalCap: 0.0700
       LocalFloor: 0
        GlobalCap: Inf
      GlobalFloor: -Inf
       ReturnType: "relative"
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    InitialStrike: NaN
             Name: "LFLCCLiquet"

Create AssetMonteCarlo Pricer Object

Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

SpotPrice = 100;
NumTrials =  5000;
MCPricer = finpricer("AssetMonteCarlo",DiscountCurve=ZeroCurve,Model=BSModel,...
                     SpotPrice=SpotPrice,SimulationDates=[Settle+years(0:0.25:1),Settle+calmonths(0:1:12)],NumTrials=NumTrials)

MCPricer = 
  GBMMonteCarlo with properties:

      DiscountCurve: [1x1 ratecurve]
          SpotPrice: 100
    SimulationDates: [01-Jan-2020 00:00:00    01-Feb-2020 00:00:00    ...    ]
          NumTrials: 5000
      RandomNumbers: []
              Model: [1x1 finmodel.BlackScholes]
       DividendType: "continuous"
      DividendValue: 0

Price Cliquet Instruments

Use price to compute the prices for the three Cliquet instruments.

Price = price(MCPricer,[Cliquet;LFCliquet;LFLCCliquet])

Price = 3×1

    0.0337
    0.1717
    0.1042

The underlying asset has good and poor performances when simulating Cliquet option returns. You
can observe the effect of caps and floors on these performances when computing the payoff of the
three Cliquet instruments:

• The first Cliquet option has no local floor, so it picks up all the poor performances. Since there is
no local cap, none of the returns are capped for this Cliquet option.

• The price of the second Cliquet option is higher than the price of the first Cliquet option. The
effect of the local floor on the second Cliquet option is that none of the performances below 0%
are considered.

• The price of the third Cliquet option is lower than the price of the second Cliquet option because
of the capped performances (returns above 7% are not considered), but it is higher than the price
of the first Cliquet option with no local floor, since poor performances below 0% are not
considered.
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Price Multiple Cliquet Instruments Using Black-Scholes Model and Rubinstein Pricer

This example shows the workflow to price multiple Cliquet instruments when you use a
BlackScholes model and a Rubinstein pricing method.

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,Basis=12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Cliquet Instrument Object

Use fininstrument to create a Cliquet instrument object for three Cliquet instruments.

ResetDates = Settle + years(0:0.25:1);  
CliquetOpt = fininstrument("Cliquet",ResetDates=ResetDates,InitialStrike=[140;150;160],ExerciseStyle="european",Name="cliquet_option")

CliquetOpt=3×1 object
  3x1 Cliquet array with properties:

    OptionType
    ExerciseStyle
    ResetDates
    LocalCap
    LocalFloor
    GlobalCap
    GlobalFloor
    ReturnType
    InitialStrike
    Name

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",Volatility=0.28)

BlackScholesModel = 
  BlackScholes with properties:
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     Volatility: 0.2800
    Correlation: 1

Create Rubinstein Pricer Object

Use finpricer to create a Rubinstein pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",DiscountCurve=myRC,Model=BlackScholesModel,SpotPrice=135,DividendValue=0.025,PricingMethod="Rubinstein")

outPricer = 
  Rubinstein with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 135
    DividendValue: 0.0250
     DividendType: "continuous"

Price Cliquet Instruments

Use price to compute the prices and sensitivities for the three Cliquet instruments.

[Price, outPR] = price(outPricer,CliquetOpt,"all")

Price = 3×1

   28.1905
   25.3226
   23.8168

outPR=3×1 object
  3x1 priceresult array with properties:

    Results
    PricerData

outPR.Results 

ans=1×7 table
    Price      Delta      Gamma      Lambda     Vega      Rho      Theta 
    ______    _______    ________    ______    ______    ______    ______

    28.191    0.59697    0.020662    2.8588    105.38    60.643    -14.62

ans=1×7 table
    Price      Delta      Gamma      Lambda     Vega      Rho       Theta 
    ______    _______    ________    ______    ______    ______    _______

    25.323    0.41949    0.016816    2.2364    100.47    55.367    -11.708

ans=1×7 table
    Price      Delta      Gamma      Lambda     Vega      Rho      Theta 

 Cliquet

11-2373



    ______    _______    ________    ______    ______    ______    ______

    23.817    0.29729    0.011133    1.6851    93.219    51.616    -7.511

More About
Cliquet Option

A cliquet option, also called a "ratchet option," is a series of at-the-money (ATM) options, either puts
or calls, where each successive option becomes active when the previous one expires.

A cliquet option is a series of forward start options, all related to each other. Each forward start
option represents the advance purchase of a put, or call, option with an at-the-money strike price to
be determined at a later date, typically when the option becomes active. A forward start option
becomes active at a specified date in the future. The premium is paid in advance, while the time to
expiration and the underlying security are established at the time the forward start option is
purchased.

For example, a comparison of a European cliquet with a European vanilla option illustrates the
behavior of a cliquet option. Assume that a cliquet call and put option has these characteristics:

Underlying index = FTST 100 index
Settle = June 19, 2019
Maturity = June 19, 2022
Intial Strike = 3000
% Assume that the underlying asset has the following values at these ResetDates:
ResetDate(1) = Strike = 3300
ResetDate(2) = Strike = 2700
ResetDate(3) = Strike = 2900
Local floor = 0

Assume that a vanilla call and put option has these characteristics:

Underlying index = FTST 100 index
Settle = June 19, 2019
Maturity = June 19, 2022
Strike = 3000

A three-year cliquet call on the FTST with annual resets is a series of three annual at-the-money spot
calls. The initial strike is set at 3000. If at the end of year 1, the FTST closes at 3300, the first call
matures in-the-money and the holder makes $300 in profit on the one-year start call. The call strike
for year 2 is then reset at 3300. If at the end of year 2, the FTST closes at 2700, the call will expire
worthless. The call strike for year 3 is then reset at 2700. If at the end of year 3 the underlying asset
is trading at 2900, the call matures in-the-money and the holder makes a profit of $200. In summary,
the holder has locked $500 in profit.

Year Strike Payoff at End of Each Year
1 $3000 $300
2 $3300 $0
3 $2700 $200

On the other hand, a three-year call vanilla option with a strike of 3000 will expire worthless.
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A three-year cliquet put on the FTST with annual resets is a series of three annual at-the-money spot
puts. The initial strike is set at 3000. If at the end of year 1, the FTST closes at 3300, the first put
expires worthless. The put strike for year 2 is then reset at 3300. If at the end of year 2, the FTST
closes at 2700, the put matures in-the-money and the holder makes $600 in profit on the second-year
start put. The put strike for year 3 is then reset at 2700. If at the end of year 3 the underlying asset is
trading at 2900, the put matures worthless. In summary, the holder has locked $600 in profit.

Year Strike Payoff at End of Each Year
1 $3000 0
2 $3300 $600
3 $2700 0

On the other hand, a three-year vanilla put option with a strike of $3000 will expire in-the-money with
a $100 profit.

Algorithms
A cliquet option is constructed as a series of forward start options. The premium and observation
(reset) dates are set in advance and its payoff depends on the returns of the underlying asset at given
observation or reset dates. This return can be based in terms of absolute or relative returns. The
return during the period [Tn-1, Tn] is defined as follows:

Rn =

STn− STn− 1
STn− 1

relative return

STn− STn− 1absolute return

Where n = 1,…,Nobs and Nobs is the number of observations (reset dates) during the life of the
contract, Sn is the price of the underlying asset at observation time n.

Since the cliquet instrument is built as a series of forward start options, then its payoff is the sum of
the returns:

Payoff cliquet = ∑
i = 1

n
(Ri)

Depending on the underlying asset performance, there would be positive and negative returns, and
the presence of caps and floors play a big role in the payoff and price of the cliquet instrument.

If a local cap (LC) and a local floor (LF) of the individual returns are considered, then the payoff of
the cliquet option is the sum of the returns, capped and floored by LC and LF, at every observation
time tn:

LCLFCliquetPayoff = ∑
i = 1

n
max(LF, min(LC, Ri))

At maturity, the sum of these modified local returns might also be globally capped and floored. If a
global cap (GC) and a global floor (GF) are also considered, the cliquet option has a final payoff of:

GCGFCliquetPayoff = max GF, min(GC,∑i = 1
n max(LF,min(LC,RI))
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In this case the total sum of all the cliquets is now globally capped and floored.

There are two popular cliquets in the market, the globally capped and locally floored cliquet (GCLF)
and the globally floored and locally capped cliquet (GFLC). Their payoffs are defined as follows:

GCLFCliquetPayoff = min(GC,∑i = 1
n max(LF, Ri))

GFLCCliquetPayoff = max(GF,∑i = 1
n min(LF, Ri))

In summary, the payoff of a cliquet instrument is the sum of the capped and floored returns.

See Also
Functions
finmodel | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53
“Supported Exercise Styles” on page 1-62

Introduced in R2021b
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OvernightIndexedSwap
OvernightIndexedSwap instrument object

Description
Create and price an OvernightIndexedSwap instrument object for one or more Overnight Indexed
Swap (OIS) instruments using this workflow:

1 Use fininstrument to create an OvernightIndexedSwap instrument object for one or more
OIS instruments.

2 Use ratecurve to specify a curve model for the OvernightIndexedSwap instrument object.
3 Use finpricer to specify a Discount pricing method for one or more

OvernightIndexedSwap instruments when using a ratecurve object.

Create an OvernightIndexedSwap instrument object for one or more OIS instruments to use in
curve construction using this workflow:

1 Use fininstrument to create an OvernightIndexedSwap instrument object for one or more
OIS instruments.

2 Use irbootstrap to create an interest-rate curve (ratecurve) for one or more
OvernightIndexedSwap instruments.

For more information on these workflows, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available models and pricing methods for an OvernightIndexedSwap
instrument, see “Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
OvernightIndexedSwapInst = fininstrument(InstrumentType,
Maturity=maturity_date,LegRate=leg_rate)
OvernightIndexedSwapInst = fininstrument( ___ ,Name=Value)

Description

OvernightIndexedSwapInst = fininstrument(InstrumentType,
Maturity=maturity_date,LegRate=leg_rate) creates a OvernightIndexedSwap object for
one or more OIS instruments by specifying InstrumentType and sets the properties on page 11-
2382 for the required name-value arguments Maturity and LegRate. The OvernightIndexedSwap
instrument supports vanilla Overnight Indexed Swaps, amortizing Overnight Indexed Swaps, and
forward Overnight Indexed Swaps.

OvernightIndexedSwapInst = fininstrument( ___ ,Name=Value) sets optional properties on
page 11-2382 using additional name-value arguments in addition to the required arguments in the
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previous syntax. For example, OvernightIndexedSwapInst =
fininstrument("OvernightIndexedSwap",Maturity=datetime(2019,1,30),LegRate=[0.
06
0.12],LegType=["fixed","fixed"],Basis=1,Notional=100,StartDate=datetime(2018,
1,30),DaycountAdjustedCashFlow=true,BusinessDayConvention="follow",Projection
Curve=ratecurve,Name="overnight_indexed_swap_instrument") creates an
OvernightIndexedSwap instrument with a maturity of January 30, 2019. You can specify multiple
name-value arguments.

Input Arguments

InstrumentType — Instrument type
string with value "OvernigntIndexedSwap" | string array with values of
"OvernigntIndexedSwap" | character vector with value 'OvernigntIndexedSwap' | cell array of
character vectors with values of 'OvernigntIndexedSwap'

Instrument type, specified as a string with the value of "OvernigntIndexedSwap", a character
vector with the value of 'OvernigntIndexedSwap', an NINST-by-1 string array with values of
"OvernigntIndexedSwap", or an NINST-by-1 cell array of character vectors with values of
'OvernigntIndexedSwap'.
Data Types: char | cell | string

OvernightIndexedSwap Name-Value Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.
Example: OvernightIndexedSwapInst =
fininstrument("OvernightIndexedSwap",Maturity=datetime(2019,1,30),LegRate=[0.
06
0.12],LegType=["fixed","fixed"],Basis=1,Notional=100,StartDate=datetime(2018,
1,30),DaycountAdjustedCashFlow=true,BusinessDayConvention="follow",Projection
Curve=ratecurve,Name="overnight_indexed_swap_instrument")

Required OvernightIndexedSwap Name-Value Arguments

Maturity — Swap maturity date
datetime | serial date number | date character vector | date string | vector of datetimes | vector of
serial date numbers | cell array of date character vectors | date string array

Swap maturity date, specified as Maturity and a scalar datetime, serial date number, date character
vector, date string or an NINST-by-1 vector of datetimes, serial date numbers, cell array of date
character vectors, or date string array.

If you use a date character vector or date string, the format must be recognizable by datetime
because the Maturity property is stored as a datetime.
Data Types: char | cell | double | string | datetime

LegRate — Leg rate in decimal values
matrix

Leg rate in decimal values, specified as LegRate and a NINST-by-2 matrix. Each row can be defined
as one of the following:
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• [CouponRate Spread] (fixed-float)
• [Spread CouponRate] (float-fixed)
• [CouponRate CouponRate] (fixed-fixed)
• [Spread Spread] (float-float)

CouponRate is the decimal annual rate. Spread is the number of basis points in decimals over the
reference rate. The first column represents the receiving leg, while the second column represents the
paying leg.
Data Types: double

Optional OvernightIndexedSwap Name-Value Arguments

LegType — OvernightIndexedSwap leg type
["fixed","float"] for each instrument (default) | cell array of character vectors with values
{'fixed','fixed'}, {'fixed','float'}, {'float','fixed'}, or {'float','float'} |
string array with values ["fixed","fixed"], ["fixed","float"], ["float","fixed"], or
["float","float"]

OvernightIndexedSwap leg type, specified as LegType and a cell array of character vectors or a
string array with the supported values. The LegType defines the interpretation of the values entered
in LegRate.
Data Types: cell | string

ProjectionCurve — Rate curve for projecting floating cash flows
ratecurve.empty (default) | scalar ratecurve object | vector of ratecurve objects

Rate curve for projecting floating cash flows, specified as ProjectionCurve and a scalar
ratecurve object or an NINST-by-1 vector of ratecurve objects. You must create this object using
ratecurve. Use this optional input if the forward curve is different from the discount curve.
Data Types: object

Reset — Frequency of payments per year
[2 2] (default) | numeric value of 0, 1, 2, 3, 4, 6, or 12 | matrix

Frequency of payments per year, specified as Reset and a scalar or a NINST-by-2 matrix if Reset is
different for each leg) with one of the following values: 0, 1, 2, 3, 4, 6, or 12.
Data Types: double

Basis — Day count basis representing the basis for each leg
[0 0] (actual/actual) (default) | integer from 0 to 13

Day count basis representing the basis for each leg, specified as Basis and a NINST-by-1 matrix (or
NINST-by-2 matrix if Basis is different for each leg).

• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
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• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Notional — Notional principal amount
100 (default) | scalar numeric | numeric vector

Notional principal amount, specified as Notional and a scalar numeric or an NINST-by-1 numeric
vector.

Notional accepts a scalar for a principal amount (or a NINST-by-2 matrix if Notional is different
for each leg).
Data Types: double

HistoricalFixing — Historical fixing data
timetable.empty (default) | timetable

Historical fixing data, specified as HistoricalFixing and a timetable.

Note If you are creating one or more OvernightIndexedSwap instruments and use a timetable, the
timetable specification applies to all of the OvernightIndexedSwap instruments.
HistoricalFixing does not accept an NINST-by-1 cell array of timetables as input.

Data Types: timetable

ResetOffset — Lag in rate setting
[0 0] (default) | vector

Lag in rate setting, specified as ResetOffset and a NINST-by-2 matrix.
Data Types: double

BusinessDayConvention — Business day conventions
"actual" (default) | string | string array | character vector | cell array of character vectors

Business day conventions, specified as BusinessDayConvention and string (or NINST-by-2 string
array if BusinessDayConvention is different for each leg) or a character vector (or NINST-by-2 cell
array of character vectors if BusinessDayConvention is different for each leg). The selection for
business day convention determines how nonbusiness days are treated. Nonbusiness days are defined
as weekends plus any other date that businesses are not open (for example, statutory holidays).
Values are:
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• "actual" — Nonbusiness days are effectively ignored. Cash flows that fall on nonbusiness days
are assumed to be distributed on the actual date.

• "follow" — Cash flows that fall on a nonbusiness day are assumed to be distributed on the
following business day.

• "modifiedfollow" — Cash flows that fall on a nonbusiness day are assumed to be distributed
on the following business day. However, if the following business day is in a different month, the
previous business day is adopted instead.

• "previous" — Cash flows that fall on a nonbusiness day are assumed to be distributed on the
previous business day.

• "modifiedprevious" — Cash flows that fall on a nonbusiness day are assumed to be distributed
on the previous business day. However, if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell | string

Holidays — Holidays used in computing business days
NaT (default) | datetime | cell array of date character vectors | date string array | serial date numbers

Holidays used in computing business days, specified as Holidays and dates using an NINST-by-1
vector of datetimes, serial date numbers, cell array of date character vectors, or date string array. For
example:

H = holidays(datetime('today'),datetime(2025,12,15));
OvernightIndexedSwapInst = fininstrument("OvernightIndexedSwap",Maturity=datetime(2025,12,15),LegRate=[0.06 20],Holidays=H)

Data Types: double | cell | datetime | string

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month with 30 or fewer days
[true true] (in effect) (default) | logical with value of true or false

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month with
30 or fewer days, specified as EndMonthRule and a logical value of true or false using a NINST-
by-1 matrix (or NINST-by-2 matrix if EndMonthRule is different for each leg).

• If you set EndMonthRule to false, the software ignores the rule, meaning that a payment date is
always the same numerical day of the month.

• If you set EndMonthRule to true, the software sets the rule on, meaning that a payment date is
always the last actual day of the month.

Data Types: logical

StartDate — Date OvernightIndexedSwap starts payments
Settle date (default) | datetime | serial date number | date character vector | date string | vector of
datetimes | vector of serial date numbers | cell array of date character vectors | date string array

Date OvernightIndexedSwap starts payments, specified as StartDate and a scalar datetime,
serial date number, date character vector, date string, or an NINST-by-1 vector of datetimes, serial
date numbers, cell array of date character vectors, or date string array.

Use StartDate to price a forward OvernightIndexedSwap, that is, an OvernightIndexedSwap
that starts at a future date.
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If you use a date character vector or date string, the format must be recognizable by datetime
because the StartDate property is stored as a datetime.
Data Types: char | double | string | datetime

Name — User-defined name for instrument
" " (default) | string | string array | character vector | cell array of character vectors

User-defined name for the instrument, specified as Name and a scalar string or character vector or an
NINST-by-1 cell array of character vectors or string array.
Data Types: char | cell | string

Properties
Maturity — Maturity date
scalar datetime | vector of datetimes

Maturity date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

LegRate — Leg rate
matrix

Leg rate, returned as a NINST-by-2 matrix of decimal values, with each row defined as one of the
following:

• [CouponRate Spread] (fixed-float)
• [Spread CouponRate] (float-fixed)
• [CouponRate CouponRate] (fixed-fixed)
• [Spread Spread] (float-float)

Data Types: double

LegType — Leg type
["fixed","float"] for each instrument (default) | string array with values ["fixed","fixed"],
["fixed","float"], ["float","fixed"], or ["float","float"]

Leg type, returned as a string array with the values ["fixed","fixed"], ["fixed","float"],
["float","fixed"], or ["float","float"].
Data Types: string

ProjectionCurve — Rate curve used in generating future cash flows
ratecurve.empty (default) | scalar ratecurve object | vector of ratecurve objects

Rate curve used in projecting the future cash flows, returned as a ratecurve object or an NINST-
by-1 vector of ratecurve objects.
Data Types: object

Reset — Reset frequency per year for each swap
[2 2] (default) | vector

Reset frequency per year for each swap, returned as an 1-by-2 matrix.
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Data Types: double

Basis — Day count basis
[0 0] (actual/actual) (default) | integer from 0 to 13

Day count basis, returned as an 1-by-2 matrix.
Data Types: double

ResetOffset — Lag in rate setting
[0 0] (default) | matrix

Lag in rate setting, returned as an NINST-by-2 matrix.
Data Types: double

Notional — Notional principal amount
100 (default) | scalar numeric | numeric vector

Notional principal amount, returned as a scalar numeric or an NINST-by-1 numeric vector.
Data Types: double

HistoricalFixing — Historical fixing data
timetable.empty (default) | timetable

Historical fixing data, returned as a timetable.
Data Types: timetable

BusinessDayConvention — Business day conventions
"actual" (default) | string | string array

Business day conventions, returned as a string or a NINST-by-2 string array if
BusinessDayConvention is different for each leg.
Data Types: char | cell | string

Holidays — Holidays used in computing business days
NaT (default) | datetimes

Holidays used in computing business days, returned as an NINST-by-1 vector of datetimes.
Data Types: datetime

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month with 30 or fewer days
[true true] (in effect) (default) | logical with value of true or false | vector of logicals with
values of true or false

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month with
30 or fewer days, returned as an NINST-by-1 matrix (or NINST-by-2 matrix if EndMonthRule is
different for each leg).
Data Types: logical

StartDate — Date OvernightIndexedSwap starts payments
Settle date (default) | scalar datetime | vector of datetimes
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Date OvernightIndexedSwap starts payments, returned as a scalar datetime or an NINST-by-1
vector of datetimes.
Data Types: datetime

Name — User-defined name for instrument
"" (default) | string | string array

User-defined name for the instrument, returned as a scalar string or an NINST-by-1 string array.
Data Types: string

Object Functions
cashflows Compute cash flow for FixedBond, FloatBond, Swap, FRA, STIRFuture, OISFuture,

OvernightIndexedSwap, or Deposit instrument

Examples

Price Overnight Indexed Swap Instrument Using ratecurve and Discount Pricer

This example shows the workflow to price an OvernightIndexedSwap instrument when you use a
ratecurve object and a Discount pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve for the underlying interest-rate curve for the
OvernightIndexedSwap instrument.

Settle = datetime(2019,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create OvernightIndexedSwap Instrument Object

Use fininstrument to create an OvernightIndexedSwap instrument object.

OvernightIndexedSwap = fininstrument("OvernightIndexedSwap",Maturity=datetime(2022,9,15),LegRate=[0.022 0.019 ],LegType=["float","fixed"],Notional=100,ProjectionCurve=myRC,Name="overnight_swap_instrument")
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OvernightIndexedSwap = 
  OvernightIndexedSwap with properties:

                  LegRate: [0.0220 0.0190]
                  LegType: ["float"    "fixed"]
                    Reset: [2 2]
                    Basis: [0 0]
                 Notional: 100
         HistoricalFixing: [0x0 timetable]
              ResetOffset: [0 0]
          ProjectionCurve: [1x1 ratecurve]
    BusinessDayConvention: ["actual"    "actual"]
                 Holidays: NaT
             EndMonthRule: [1 1]
                StartDate: NaT
                 Maturity: 15-Sep-2022
                     Name: "overnight_swap_instrument"

Create Discount Pricer Object

Use finpricer to create a Discount pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("Discount",DiscountCurve=myRC)

outPricer = 
  Discount with properties:

    DiscountCurve: [1x1 ratecurve]

Price OvernightIndexedSwap Instrument

Use price to compute the price and sensitivities for the OvernightIndexedSwap instrument.

[Price, outPR] = price(outPricer,OvernightIndexedSwap,["all"])

Price = 3.0226

outPR = 
  priceresult with properties:

       Results: [1x2 table]
    PricerData: []

outPR.Results

ans=1×2 table
    Price       DV01  
    ______    ________

    3.0226    -0.02915
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Price Multiple Overnight Indexed Swap Instruments Using ratecurve and Discount Pricer

This example shows the workflow to price multiple OvernightIndexedSwap instruments when you
use a ratecurve object and a Discount pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve for the underlying interest-rate curve for the
OvernightIndexedSwap instrument.

Settle = datetime(2020,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2020
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create OvernightIndexedSwap Instrument Object

Use fininstrument to create an OvernightIndexedSwap instrument object for three Overnight
Indexed Swap instruments.

OvernightIndexedSwap = fininstrument("OvernightIndexedSwap",Maturity=datetime([2022,9,15 ; 2023,9,15 ; 2024,9,15]),LegRate=[0 0.01],LegType=["float","fixed"],Notional=[100 ; 90; 80],ProjectionCurve=myRC,Name="overnight_swap_instrument")

OvernightIndexedSwap=3×1 object
  3x1 OvernightIndexedSwap array with properties:

    LegRate
    LegType
    Reset
    Basis
    Notional
    HistoricalFixing
    ResetOffset
    ProjectionCurve
    BusinessDayConvention
    Holidays
    EndMonthRule
    StartDate
    Maturity
    Name
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Create Discount Pricer Object

Use finpricer to create a Discount pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("Discount",DiscountCurve=myRC)

outPricer = 
  Discount with properties:

    DiscountCurve: [1x1 ratecurve]

Price OvernightIndexedSwap Instruments

Use price to compute the prices for the OvernightIndexedSwap instruments.

Price = price(outPricer,OvernightIndexedSwap)

Price = 3×1

   -0.7832
   -0.7336
   -0.2178

More About
Overnight Indexed Swap

An Overnight Indexed Swap (OIS) is an interest-rate swap over some fixed term where the periodic
floating payment is based on a return calculated from a daily compound interest investment.

The overnight indexed swap denotes an interest-rate swap involving the overnight rate being
exchanged for a fixed interest rate. An overnight indexed swap uses an overnight rate index such as
the federal funds rate as the underlying rate for the floating leg, while the fixed leg is set at a rate
agreed on by both parties.

See Also
Functions
STIRFuture | OISFuture | finmodel | finpricer | irbootstrap

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Bootstrap ratecurve Object from STIRFuture, Deposit, and Swap BootInstruments” on page 11-2128
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2021b
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PartialLookback
PartialLookback instrument

Description
Create and price a PartialLookback instrument object for one or more Partial Lookback
instruments using this workflow:

1 Use fininstrument to create a PartialLookback instrument object for one or more Partial
Lookback instruments.

2 Use finmodel to specify a BlackScholes, Heston, Bates, or Merton model for the
PartialLookback instrument object.

3 Choose a pricing method.

• When using a BlackScholes model, use finpricer to specify a HeynenKat pricing method
for one or more PartialLookback instruments.

• When using a BlackScholes, Heston, Bates, or Merton model, use finpricer to specify
an AssetMonteCarlo pricing method for one or more PartialLookback instruments.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available models and pricing methods for a PartialLookback
instrument, see “Choose Instruments, Models, and Pricers” on page 1-53.

Creation
Syntax
PartialLookbackObj = fininstrument(InstrumentType,ExerciseDate=exercise_date,
Strike=strike_value,MonitorDate=monitor_date)
PartialLookbackObj = fininstrument( ___ ,Name=Value)

Description

PartialLookbackObj = fininstrument(InstrumentType,ExerciseDate=exercise_date,
Strike=strike_value,MonitorDate=monitor_date) creates a PartialLookback object for
one or more Partial Lookback instruments by specifying InstrumentType and sets the properties on
page 11-2391 for the required name-value arguments Strike, ExerciseDate, and MonitorDate.

The PartialLookback instrument supports fixed-strike and floating-strike partial lookback options.
To compute the value of a floating-strike partial lookback option, the Strike must be specified as
NaN. For more information on a PartialLookback instrument, see “More About” on page 11-2398.

PartialLookbackObj = fininstrument( ___ ,Name=Value) sets optional

properties on page 11-2391 using additional name-value arguments in addition to the required
arguments in the previous syntax. For example, LookbackObj =
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fininstrument("Lookback",Strike=100,ExerciseDate=datetime(2022,1,30),MonitorD
ate=datetime(2021,1,30),OptionType="put",ExerciseStyle="European",Name="parti
al_lookback_option") creates a PartialLookback put option with an European exercise. You
can specify multiple name-value arguments.

Input Arguments

InstrumentType — Instrument type
string with value "PartialLookback" | string array with values of "PartialLookback" |
character vector with value 'PartialLookback' | cell array of character vectors with values of
'PartialLookback'

Instrument type, specified as a string with the value of "PartialLookback", a character vector with
the value of 'PartialLookback', an NINST-by-1 string array with values of "PartialLookback",
or an NINST-by-1 cell array of character vectors with values of 'PartialLookback'.
Data Types: char | cell | string

PartialLookback Name-Value Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.
Example: LookbackObj =
fininstrument("Lookback",Strike=100,ExerciseDate=datetime(2022,1,30),MonitorD
ate=datetime(2021,1,30),OptionType="put",ExerciseStyle="European",Name="parti
al_lookback_option")

Required Lookback Name-Value Arguments

Strike — Option strike price value
nonnegative numeric | vector of nonnegative values | NaN

Option strike price value, specified as Strike and a scalar nonnegative numeric or an NINST-by-1
vector of nonnegative values for a fixed-strike PartialLookback option. For a floating-strike partial
lookback option, specify Strike as a NaN or an NINST-by-1 vector of NaNs.
Data Types: double

ExerciseDate — Option exercise date
datetime | serial date number | date character vector | date string | vector of datetimes | vector of
serial date numbers | cell array of date character vectors | date string array

Option exercise date, specified as ExerciseDate and a scalar datetime, serial date number, date
character vector, date string or an NINST-by-1 vector of datetimes, serial date numbers, cell array of
date character vectors, or date string array.

Note For a European option, there is only one ExerciseDate on the option expiry date.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the ExerciseDate property is stored as a datetime.
Data Types: double | char | cell | string | datetime
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MonitorDate — Predetermined lookback monitoring date
datetime | serial date number | date character vector | date string | vector of datetimes | vector of
serial date numbers | cell array of date character vectors | date string array

Predetermined lookback monitoring date, specified as MonitorDate and a scalar datetime, serial
date number, date character vector, date string or an NINST-by-1 vector of datetimes, serial date
numbers, cell array of date character vectors, or date string array.

• For a fixed-strike partial lookback, the monitoring period is [MonitorDate, ExerciseDate]. The
MonitorDate is the start date for a fixed-strike partial lookback option.

• For a floating-strike partial lookback, the monitoring period is [Settle, MonitorDate], where
Settle is < MonitorDate < ExerciseDate. The MonitorDate is the end date for a floating-
strike partial lookback option.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the ExerciseDate property is stored as a datetime.
Data Types: double | char | cell | string | datetime

Optional PartialLookback Name-Value Arguments

OptionType — Option type
"call" (default) | string with value "call" or "put" | string array with values "call" or "put" |
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'

Option type, specified as OptionType and a scalar string or character vector or an NINST-by-1 cell
array of character vectors or string array.
Data Types: char | cell | string

ExerciseStyle — Option exercise style
"European" (default) | string with value "European" or "American" | string array with values
"European" or "American" | character vector with value 'European' or 'American' | cell array
of character vectors with values 'European' or 'American'

Option exercise style, specified as ExerciseStyle and a scalar string or character vector or an
NINST-by-1 cell array of character vectors or string array.
Data Types: string | cell | char

AssetMinMax — Maximum or minimum underlying asset price
NaN where SpotPrice of the underlying asset is used (default) | scalar numeric | numeric vector

Maximum or minimum underlying asset price, specified as AssetMinMax and a scalar numeric or an
NINST-by-1 numeric vector.
Data Types: double

StrikeScaler — Degree of partiality for floating-strike partial lookback
1 (default) | scalar numeric | numeric vector

Degree of partiality for a floating-strike partial lookback, specified as StrikeScaler and a scalar
numeric or an NINST-by-1 numeric vector. The StrikeScaler value indicates the percentage of the
Strike that is fixed above or below the AssetMinMax value.
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• For a call floating-strike partial lookback, the StrikeScaler is ≥ 1.
• For a put floating-strike partial lookback, 0 < StrikeScaler ≤ 1.

Data Types: double

Name — User-defined name for instrument
" " (default) | string | string array | character vector | cell array of character vectors

User-defined name for one of more instruments, specified as Name and a scalar string or character
vector or an NINST-by-1 cell array of character vectors or string array.
Data Types: char | cell | string

Properties
Strike — Option strike price value
nonnegative numeric | vector of nonnegative values

Option strike price value, returned as a scalar nonnegative numeric or an NINST-by-1 vector of
nonnegative values.
Data Types: double

ExerciseDate — Option exercise date
datetime | vector of datetimes

Option exercise date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

MonitorDate — Predetermined lookback monitoring date
datetime | vector of datetimes

Predetermined monitoring date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

OptionType — Option type
"call" (default) | string with value "call" or "put" | string array with values "call" or "put"

Option type, returned as a scalar string or an NINST-by-1 string array with values of "call" or
"put".
Data Types: string

ExerciseStyle — Option exercise style
"European" (default) | string with value "European" or "American" | string array with value
"European" or "American"

Option exercise style, returned as a scalar string or an NINST-by-1 string array with values of
"European" or "American".
Data Types: string

AssetMinMax — Maximum or minimum underlying asset price
NaN where SpotPrice of the underlying asset is used (default) | scalar numeric | numeric vector
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Maximum or minimum underlying asset price, returned as a scalar numeric or an NINST-by-1
numeric vector.
Data Types: double

StrikeScaler — Degree of partiality for partial floating-strike lookback
1 (default) | scalar numeric | numeric vector

Degree of partiality for partial floating-strike lookback, returned as a scalar numeric or an NINST-
by-1 numeric vector.
Data Types: double

Name — User-defined name for instrument
" " (default) | string | string array

User-defined name for the instrument, returned as an NINST-by-1 string array.
Data Types: string

Examples

Price Partial Lookback Instrument Using Black-Scholes Model and Heynen-Kat Pricer

This example shows the workflow to price a floating-strike PartialLookback instrument when you
use a BlackScholes model and a HeynenKat pricing method.

Create PartialLookback Instrument Object

Use fininstrument to create an PartialLookback instrument object.

PartialLookbackOpt = fininstrument("PartialLookback",ExerciseDate=datetime(2022,9,15),Strike=NaN,StrikeScaler=0.75,MonitorDate=datetime(2021,9,15),OptionType="put",ExerciseStyle="european",AssetMinMax=98,Name="partial_lookback_option")

PartialLookbackOpt = 
  PartialLookback with properties:

      MonitorDate: 15-Sep-2021
     StrikeScaler: 0.7500
       OptionType: "put"
           Strike: NaN
      AssetMinMax: 98
    ExerciseStyle: "european"
     ExerciseDate: 15-Sep-2022
             Name: "partial_lookback_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",Volatility=0.32)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.3200
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    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,Basis=12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create HeynenKat Pricer Object

Use finpricer to create a HeynenKat pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",Model=BlackScholesModel,DiscountCurve=myRC,SpotPrice=100,DividendType="continuous",DividendValue=.05,PricingMethod="HeynenKat")

outPricer = 
  HeynenKat with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 100
    DividendValue: 0.0500
     DividendType: "continuous"

Price PartialLookback Instrument

Use price to compute the price and sensitivities for the PartialLookback instrument.

[Price, outPR] = price(outPricer,PartialLookbackOpt,["all"])

Price = 24.8148

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []

outPR.Results 
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ans=1×7 table
    Price      Delta      Gamma      Lambda     Vega      Theta       Rho  
    ______    _______    ________    ______    ______    _______    _______

    24.815    0.27297    0.012438     1.1      131.33    -5.0942    -193.51

Price Multiple Partial Lookback Instruments Using Black-Scholes Model and Heynen-Kat
Pricer

This example shows the workflow to price multiple floating-strike PartialLookback instruments
when you use a BlackScholes model and a HeynenKat pricing method.

Create PartialLookback Instrument Object

Use fininstrument to create an PartialLookback instrument object for three Partial Lookback
instruments.

PartialLookbackOpt = fininstrument("PartialLookback",ExerciseDate=datetime([2022,9,15 ; 2022,10,15 ; 2022,11,15]),Strike=NaN,StrikeScaler=0.75,MonitorDate=datetime([2021,9,15 ; 2021,10,15 ; 2021,11,15]),OptionType="put",ExerciseStyle="european",AssetMinMax=98,Name="partial_lookback_option")

PartialLookbackOpt=3×1 object
  3x1 PartialLookback array with properties:

    MonitorDate
    StrikeScaler
    OptionType
    Strike
    AssetMinMax
    ExerciseStyle
    ExerciseDate
    Name

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",Volatility=0.32)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.3200
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,Basis=12)

myRC = 
  ratecurve with properties:
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                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create HeynenKat Pricer Object

Use finpricer to create a HeynenKat pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",Model=BlackScholesModel,DiscountCurve=myRC,SpotPrice=100,DividendType="continuous",DividendValue=0.05,PricingMethod="HeynenKat")

outPricer = 
  HeynenKat with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 100
    DividendValue: 0.0500
     DividendType: "continuous"

Price PartialLookback Instruments

Use price to compute the prices and sensitivities for the PartialLookback instruments.

[Price, outPR] = price(outPricer,PartialLookbackOpt,["all"])

Price = 3×1

   24.8148
   25.2306
   25.6545

outPR=3×1 object
  3x1 priceresult array with properties:

    Results
    PricerData

outPR.Results 

ans=1×7 table
    Price      Delta      Gamma      Lambda     Vega      Theta       Rho  
    ______    _______    ________    ______    ______    _______    _______

    24.815    0.27297    0.012438     1.1      131.33    -5.0942    -193.51

ans=1×7 table
    Price      Delta      Gamma      Lambda     Vega      Theta       Rho  
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    ______    _______    ________    ______    ______    _______    _______

    25.231    0.27694    0.012349    1.0976    133.05    -5.0265    -198.37

ans=1×7 table
    Price      Delta      Gamma      Lambda     Vega      Theta      Rho  
    ______    _______    ________    ______    ______    _______    ______

    25.655    0.28099    0.012264    1.0953    134.81    -4.9578    -203.4

Price Partial Lookback Instrument Using Heston Model and Asset Monte-Carlo Pricer

This example shows the workflow to price a fixed-strike PartialLookback instrument when you use
a Heston model and an AssetMonteCarlo pricing method.

Create PartialLookback Instrument Object

Use fininstrument to create an PartialLookback instrument object.

PartialLookbackOpt = fininstrument("PartialLookback",ExerciseDate=datetime(2022,9,15),Strike=102,MonitorDate=datetime(2021,9,15),OptionType="call",ExerciseStyle="european",Name="partial_lookback_option")

PartialLookbackOpt = 
  PartialLookback with properties:

      MonitorDate: 15-Sep-2021
     StrikeScaler: 1
       OptionType: "call"
           Strike: 102
      AssetMinMax: NaN
    ExerciseStyle: "european"
     ExerciseDate: 15-Sep-2022
             Name: "partial_lookback_option"

Create Heston Model Object

Use finmodel to create a Hestone model object.

HestonModel = finmodel("Heston",V0=0.032,ThetaV=0.1,Kappa=0.003,SigmaV=0.2,RhoSV=-0.9)

HestonModel = 
  Heston with properties:

        V0: 0.0320
    ThetaV: 0.1000
     Kappa: 0.0030
    SigmaV: 0.2000
     RhoSV: -0.9000

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
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Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,Basis=12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetMonteCarlo Pricer Object

Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("AssetMonteCarlo",DiscountCurve=myRC,Model=HestonModel,SpotPrice=100,simulationDates=Settle+calmonths(1):calmonths(1):datetime(2022,9,15))

outPricer = 
  HestonMonteCarlo with properties:

      DiscountCurve: [1x1 ratecurve]
          SpotPrice: 100
    SimulationDates: [15-Oct-2018    15-Nov-2018    15-Dec-2018    ...    ]
          NumTrials: 1000
      RandomNumbers: []
              Model: [1x1 finmodel.Heston]
       DividendType: "continuous"
      DividendValue: 0

Price PartialLookback Instrument

Use price to compute the price and sensitivities for the PartialLookback instrument.

[Price, outPR] = price(outPricer,PartialLookbackOpt,["all"])

Price = 19.9479

outPR = 
  priceresult with properties:

       Results: [1x8 table]
    PricerData: [1x1 struct]

outPR.Results 

ans=1×8 table
    Price      Delta       Gamma      Lambda     Rho      Theta     Vega     VegaLT
    ______    _______    _________    ______    ______    ______    _____    ______
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    19.948    0.93159    0.0084898    4.6701    283.87    1.9218    48.04    2.666 

More About
Partial Lookback Option

A partial lookback option gives the investor the right to exercise the option with the highest (or
lowest) price of the underling asset during the partial lookback period.

Partial lookback options are called fractional lookback options because:

• The extreme values (Smax and Smin) are monitored during a subset of the lives of the options
• Only a fraction of the floating-strike values are in effect

For the latter, the factor λ (lambda) is introduced. The λ factor, represented by the optional name-
value argument StrikeScaler, is a constant and enables the creation of the fractional floating-
strike lookback option where the strike is fixed at some percentage above or below the actual
extreme values (Smax and Smin).

• For calls when λ ≥ 1, the call floating strike increases
• For puts when 0 ≤ λ ≤ 1, the put floating strike decreases

Financial Instruments Toolbox software supports two types of partial lookback options: fixed and
floating. The fixed-strike partial lookback option is similar to a standard fixed-strike lookback option,
but the lookback period starts at a predetermined date (T) after the settlement date of the option. The
payoff for this options is

• Max(0, Smax - K) for a call
• Max(0, K -Smin) for a put

where

Smax is the maximum value of underlying asset during the monitoring period.

Smin is the minimum value of underlying asset during the monitoring period.

K is the strike price.

The floating-strike partial lookback option is similar to a standard floating-strike lookback option, but
the lookback period starts at settle and ends at a predetermined date(T) before expiration.

The payoff for this options is

• Max(0, S - λ × Smin) for a call
• Max(0, λ × Smax - S) for a put

where

Smax is the maximum value of underlying asset during the monitoring period.

Smin is the minimum value of underlying asset during the monitoring period.

K is the strike price.
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S is the price of underlying asset.

λ, represented by StrikeScaler, is the degree of partiality.

See Also
Functions
Lookback | finmodel | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53
“Supported Exercise Styles” on page 1-62

Introduced in R2021b
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ConvertibleBond
ConvertibleBond instrument object

Description
Create and price a ConvertibleBond instrument object for one of more Convertible Bond
instruments using this workflow:

1 Use fininstrument to create a ConvertibleBond instrument object for one of more
Convertible Bond instruments.

2 Use finmodel to specify a BlackScholes model for the ConvertibleBond instrument object.
3 Use finpricer to specify a FiniteDifference pricing method for one or more

ConvertibleBond instruments.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available models and pricing methods for a ConvertibleBond
instrument, see “Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
ConvertibleBondObj = fininstrument(InstrumentType,'
CouponRate',couponrate_value,'Maturity',maturity_date,'
ConversionRatio',conversion_ratio_value)
ConvertibleBondObj = fininstrument( ___ ,Name,Value)

Description

ConvertibleBondObj = fininstrument(InstrumentType,'
CouponRate',couponrate_value,'Maturity',maturity_date,'
ConversionRatio',conversion_ratio_value) creates a ConvertibleBond object for one of
more Convertible Bond instruments by specifying InstrumentType and sets the properties on page
11-2406 for the required name-value pair arguments CouponRate, Maturity, and
ConversionRatio.

ConvertibleBondObj = fininstrument( ___ ,Name,Value) sets optional properties on page
11-2406 using name-value pair arguments in addition to the required arguments in the previous
syntax. For example, ConvertibleBondObj =
fininstrument("ConvertibleBond",'CouponRate',CouponRate,
'Maturity',Maturity,'ConversionRatio',ConvRatio,'Period',Period,'Spread',Spre
ad,'CallSchedule',CallSchedule,'CallExerciseStyle',"american") creates an
ConvertibleBond instrument with an American exercise and a call schedule. You can specify
multiple name-value pair arguments.
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Input Arguments

InstrumentType — Instrument type
string with value "ConvertibleBond" | string array with values of "ConvertibleBond" |
character vector with value 'ConvertibleBond' | cell array of character vectors with values of
'ConvertibleBond'

Instrument type, specified as a string with the value of "ConvertibleBond", a character vector with
the value of 'ConvertibleBond', an NINST-by-1 string array with values of "ConvertibleBond",
or an NINST-by-1 cell array of character vectors with values of 'ConvertibleBond'.
Data Types: char | cell | string

ConvertibleBond Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: ConvertibleBondObj =
fininstrument("ConvertibleBond",'CouponRate',CouponRate,
'Maturity',Maturity,'ConversionRatio',ConvRatio,'Period',Period,'Spread',Spre
ad,'CallSchedule',CallSchedule,'CallExerciseStyle',"american")

Required ConvertibleBond Name-Value Pair Arguments

CouponRate — Coupon rate for ConvertibleBond object
scalar decimal | decimal vector | timetable

Coupon rate for the ConvertibleBond object, specified as the comma-separated pair consisting of
'CouponRate' as a scalar decimal or an NINST-by-1 vector of decimals for an annual rate or a
timetable where the first column is dates and the second column is associated rates. The date
indicates the last day that the coupon rate is valid.

Note If you are creating one or more ConvertibleBond instruments and use a timetable, the
timetable specification applies to all of the ConvertibleBond instruments. CouponRate does not
accept an NINST-by-1 cell array of timetables as input.

Data Types: double | timetable

Maturity — Maturity date for ConvertibleBond object
datetime | serial date number | date character vector | date string | vector of datetimes | vector of
serial date numbers | cell array of date character vectors | date string array

Maturity date for the ConvertibleBond object, specified as the comma-separated pair consisting of
'Maturity' and a scalar datetime, serial date number, date character vector, date string or an
NINST-by-1 vector of datetimes, serial date numbers, cell array of date character vectors, or date
string array.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the Maturity property is stored as a datetime.
Data Types: char | cell | double | string | datetime
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ConversionRatio — Number of shares convertible from one bond
scalar numeric | numeric vector | timetable

Number of shares convertible from one bond, specified as the comma-separated pair consisting of
'ConversionRatio' and a scalar numeric or an NINST-by-1 numeric vector or a timetable where
the first column is dates and the second column is associated ratios. The date in the first column
indicates the last day that the conversion ratio is valid.

Note If you are creating one or more ConvertibleBond instruments and use a timetable, the
timetable specification applies to all of the ConvertibleBond instruments. ConversionRatio does
not accept an NINST-by-1 cell array of timetables as input.

Data Types: double | timetable

Optional ConvertibleBond Name-Value Pair Arguments

Spread — Number of basis points over the reference rate
0 (default) | scalar numeric | numeric vector

Number of basis points over the reference rate, specified as the comma-separated pair consisting of
'Spread' and a scalar numeric or an NINST-by-1 numeric vector.
Data Types: double

CallSchedule — Call schedule
[ ] (default) | timetable

Call schedule, specified as the comma-separated pair consisting of 'CallSchedule' and a timetable
of call dates and strikes.

If you use a date character vector or date string for the dates in this timetable, the format must be
recognizable by datetime because the CallSchedule property is stored as a datetime.

Note For the ConvertibleBond instrument, you can use a CallSchedule with a
CallExerciseStyle and a PutSchedule with a PutExerciseStyle simultaneously.

Data Types: timetable

CallExerciseStyle — Call option exercise style
"European" (default) | string with value "European", "American", or "Bermudan" | string array
with values of "European", "American", or "Bermudan" | character vector with value
'European', 'American', or 'Bermudan' | cell array of character vectors with values of
'European', 'American', or 'Bermudan'

Call option exercise style, specified as the comma-separated pair consisting of
'CallExerciseStyle' and a scalar string or character vector or an NINST-by-1 cell array of
character vectors or string array.
Data Types: string | char | cell

PutSchedule — Put schedule
[ ] (default) | timetable
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Put schedule, specified as the comma-separated pair consisting of 'PutSchedule' and a timetable
of call dates and strikes.

If you use a date character vector or date string for dates in this timetable, the format must be
recognizable by datetime because the PutSchedule property is stored as a datetime.

Note For he ConvertibleBond instrument, you can use a CallSchedule with a
CallExerciseStyle and a PutSchedule with a PutExerciseStyle simultaneously.

Data Types: timetable

PutExerciseStyle — Put option exercise style
"European" (default) | string with value "European", "American", or "Bermudan" | string array
with values of "European", "American", or "Bermudan" | character vector with value
'European', 'American', or 'Bermudan' | cell array of character vectors with values of
'European', 'American', or 'Bermudan'

Put option exercise style, specified as the comma-separated pair consisting of 'PutExerciseStyle'
and a scalar string or character vector or an NINST-by-1 cell array of character vectors or string
array.
Data Types: string | cell | char

Period — Frequency of payments per year
2 (default) | integer | vector of integers

Frequency of payments per year, specified as the comma-separated pair consisting of 'Period' and
a scalar integer or an NINST-by-1 vector of integers. Possible values for Period are 1, 2, 3, 4, 6, and
12.
Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13 | vector of integers from 0 to 13

Day count basis, specified as the comma-separated pair consisting of 'Basis' and scalar integer or
an NINST-by-1 vector of integers using the following values:

• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
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• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amount or principal value schedule
100 (default) | scalar numeric | numeric vector | timetable

Notional principal amount or principal value schedule, specified as the comma-separated pair
consisting of 'Principal' and a scalar numeric or NINST-by-1 numeric vector or a timetable.

Principal accepts a timetable, where the first column is dates and the second column is the
associated notional principal value. The date indicates the last day that the principal value is valid.
Data Types: double | timetable

DaycountAdjustedCashFlow — Flag indicating whether cash flow adjusts for day count
convention
false (default) | value of true or false

Flag indicating whether cash flow adjusts for the day count convention, specified as the comma-
separated pair consisting of 'DaycountAdjustedCashFlow' and a scalar logical or an NINST-by-1
vector of logicals with values of true or false.
Data Types: logical

BusinessDayConvention — Business day conventions
"actual" (default) | string | string array | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a scalar string or character vector or an NINST-by-1 cell array of
character vectors or string array. The selection for business day convention determines how
nonbusiness days are treated. Nonbusiness days are defined as weekends plus any other date that
businesses are not open (for example, statutory holidays). Possible values are:

• "actual" — Nonbusiness days are effectively ignored. Cash flows that fall on non-business days
are assumed to be distributed on the actual date.

• "follow" — Cash flows that fall on a nonbusiness day are assumed to be distributed on the
following business day.

• "modifiedfollow" — Cash flows that fall on a nonbusiness day are assumed to be distributed
on the following business day. However if the following business day is in a different month, the
previous business day is adopted instead.

• "previous" — Cash flows that fall on a nonbusiness day are assumed to be distributed on the
previous business day.

• "modifiedprevious" — Cash flows that fall on a nonbusiness day are assumed to be distributed
on the previous business day. However if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell | string
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Holidays — Holidays used in computing business days
NaT (default) | vector of datetimes | cell array of date character vectors | date string array | vector of
serial date numbers

Holidays used in computing business days, specified as the comma-separated pair consisting of
'Holidays' and dates using an NINST-by-1 vector of datetimes, serial date numbers, cell array of
date character vectors, or date string array. An example follows.

H = holidays(datetime('today'),datetime(2025,12,15));
ConvertibleBondObj = fininstrument("ConvertibleBond",'CouponRate',0.34,'Maturity',datetime(2025,12,15),...
'ConversionRatio',ConvRatio,'CallSchedule',schedule,'CallExerciseStyle',"american",'Holidays',H)

Data Types: double | cell | datetime | string

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month with 30 or fewer days
true (in effect) (default) | value of true or false

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month with
30 or fewer days, specified as the comma-separated pair consisting of 'EndMonthRule' and a scalar
logical value or an NINST-by-1 vector of logical values of true or false.

• If you set EndMonthRule to false, the software ignores the rule, meaning that a payment date is
always the same numerical day of the month.

• If you set EndMonthRule to true, the software sets the rule on, meaning that a payment date is
always the last actual day of the month.

Data Types: logical

IssueDate — Bond issue date
NaT (default) | datetime | serial date number | date character vector | date string | vector of datetimes
| vector of serial date numbers | cell array of date character vectors | date string array

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a scalar
datetime, serial date number, date character vector, date string or an NINST-by-1 vector of datetimes,
serial date numbers, cell array of date character vectors, or date string array.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the IssueDate property is stored as a datetime.
Data Types: double | char | cell | string | datetime

FirstCouponDate — Irregular first coupon date
NaT (default) | datetime | serial date number | date character vector | date string | vector of datetimes
| vector of serial date numbers | cell array of date character vectors | date string array

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a scalar datetime, serial date number, date character vector, date string or
an NINST-by-1 vector of datetimes, serial date numbers, cell array of date character vectors, or date
string array.

When you specify both FirstCouponDate and LastCouponDate, FirstCouponDate takes
precedence in determining the coupon payment structure. If you do not specify FirstCouponDate,
the cash flow payment dates are determined from other inputs.
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If you use date character vectors or date strings, the format must be recognizable by datetime
because the FirstCouponDate property is stored as a datetime.
Data Types: double | char | cell | string | datetime

LastCouponDate — Irregular last coupon date
NaT (default) | datetime | serial date number | date character vector | date string | vector of datetimes
| vector of serial date numbers | cell array of date character vectors | date string array

Irregular last coupon date, specified as the comma-separated pair consisting of 'LastCouponDate'
and a scalar datetime, serial date number, date character vector, date string or an NINST-by-1 vector
of datetimes, serial date numbers, cell array of date character vectors, or date string array.

If you specify LastCouponDate but not FirstCouponDate, LastCouponDate determines the
coupon structure of the bond. The coupon structure of a bond is truncated at LastCouponDate,
regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not
specify LastCouponDate, the cash flow payment dates are determined from other inputs.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the LastCouponDate property is stored as a datetime.
Data Types: double | char | cell | string | datetime

StartDate — Forward starting date of payments
NaT (default) | datetime | serial date number | date character vector | date string | vector of datetimes
| vector of serial date numbers | cell array of date character vectors | date string array

Forward starting date of payments, specified as the comma-separated pair consisting of
'StartDate' and a scalar datetime, serial date number, date character vector, date string or an
NINST-by-1 vector of datetimes, serial date numbers, cell array of date character vectors, or date
string array.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the StartDate property is stored as a datetime.
Data Types: char | cell | double | string | datetime

Name — User-defined name for instrument
" " (default) | string | character vector

User-defined name for one of more instruments, specified as the comma-separated pair consisting of
'Name' and a scalar string or character vector or an NINST-by-1 cell array of character vectors or
string array.
Data Types: char | cell | string

Properties
CouponRate — Coupon annual rate
scalar decimal | decimal vector | timetable

Coupon annual rate, returned as a scalar decimal or an NINST-by-1 or timetable.
Data Types: double | timetable

Maturity — Maturity date
datetime | vector of datetimes
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Maturity date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

ConversionRatio — Number of shares convertible from one bond
scalar numeric | numeric vector | timetable

Number of shares convertible from one bond, returned as a scalar numeric or an NINST-by-1 numeric
vector an a timetable.
Data Types: double | timetable

Spread — Number of basis points over the reference rate
scalar numeric | numeric vector

Number of basis points over the reference rate, returned as a scalar numeric or an NINST-by-1
numeric vector.
Data Types: double

CallSchedule — Call schedule
timetable

Call schedule, returned as a timetable.
Data Types: timetable

PutSchedule — Put schedule
timetable

Put schedule, returned as a timetable.
Data Types: timetable

Period — Coupons per year
2 (default) | integer | vector of integers

Coupons per year, returned as a scalar integer or an NINST-by-1 vector of integers.
Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13 | vector of integers from 0 to 13

Day count basis, returned as a scalar integer or an NINST-by-1 vector of integers.
Data Types: double

Principal — Notional principal amount or principal value schedule
100 (default) | scalar numeric | numeric vector | timetable

Notional principal amount or principal value schedule, returned as a scalar numeric or an NINST-by-1
numeric vector or a timetable.
Data Types: timetable | double

DaycountAdjustedCashFlow — Flag indicating whether cash flow adjusts for day count
convention
false (default) | value of true or false
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Flag indicating whether cash flow adjusted for day count convention, returned as scalar logical or an
NINST-by-1 vector of logicals with values of true or false.
Data Types: logical

BusinessDayConvention — Business day conventions
"actual" (default) | string | string array

Business day conventions, returned as a scalar string or an NINST-by-1 string array.
Data Types: string

Holidays — Holidays used in computing business days
NaT (default) | datetime | vector of datetimes

Holidays used in computing business days, returned as datetimes or an NINST-by-1 vector of
datetimes.
Data Types: datetime

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month with 30 or fewer days
true (in effect) (default) | value of true or false

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month with
30 or fewer days, returned as a scalar logical or an NINST-by-1 vector of logicals.
Data Types: logical

IssueDate — Bond issue date
NaT (default) | datetime | vector of datetimes

Bond issue date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

FirstCouponDate — Irregular first coupon date
NaT (default) | datetime | vector of datetimes

Irregular first coupon date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

LastCouponDate — Irregular last coupon date
NaT (default) | datetime | vector of datetimes

Irregular last coupon date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

StartDate — Forward starting date of payments
NaT (default) | datetime | vector of datetimes

Forward starting date of payments, returned as a scalar datetime or an NINST-by-1 vector of
datetimes.
Data Types: datetime
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CallExerciseStyle — Call option exercise style
"European" (default) | string with value "European", "American", or "Bermuda" | string array
with values of "European", "American", or "Bermuda"

This property is read-only.

Call option exercise style, returned as a scalar string or NINST-by-1 string array with values of
"European", "American", or "Bermuda".
Data Types: string

PutExerciseStyle — Put option exercise style
"European" (default) | string with value "European", "American", or "Bermuda" | string array
with values of "European", "American", or "Bermuda"

This property is read-only.

Put option exercise style, returned as a scalar string or an NINST-by-1 string array with values of
"European", "American", or "Bermuda".
Data Types: string

Name — User-defined name for instrument
" " (default) | string | string array

User-defined name for the instrument, returned as a scalar string or an NINST-by-1 string array.
Data Types: string

Object Functions
setCallExercisePolicy Set call exercise policy for OptionEmbeddedFixedBond,

OptionEmbeddedFloatBond, or ConvertibleBond instrument
setPutExercisePolicy Set put exercise policy for OptionEmbeddedFixedBond,

OptionEmbeddedFloatBond, or ConvertibleBond instrument

Examples

Price Convertible Bond Instrument Using Black-Scholes Model and Finite Difference Pricer

This example shows the workflow to price a ConvertibleBond instrument when you use a
BlackScholes model and a FiniteDifference pricing method.

Create ConvertibleBond Instrument Object

Use fininstrument to create a ConvertibleBond instrument object.

CouponRate = 0;
Maturity = datetime(2014,10,1);
ConvRatio = 2;
Period = 1;
Spread = 0.05;

CallExDates = datetime(2014,10,1);
CallStrike = 115;
CallSchedule = timetable(CallExDates, CallStrike);
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ConvBond = fininstrument("ConvertibleBond",'CouponRate',CouponRate,'Maturity',Maturity,'ConversionRatio',ConvRatio,'Period',Period,'Spread',Spread,'CallSchedule',CallSchedule,'CallExercisestyle',"american",'Name',"Convertible_Bond")

ConvBond = 
  ConvertibleBond with properties:

                  CouponRate: 0
             ConversionRatio: 2
                      Spread: 0.0500
                      Period: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                    Maturity: 01-Oct-2014
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                CallSchedule: [1x1 timetable]
                 PutSchedule: [0x0 timetable]
           CallExerciseStyle: "american"
            PutExerciseStyle: [0x0 string]
                        Name: "Convertible_Bond"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

AssetPrice = 50;
Volatility = 0.3;

BSModel = finmodel("BlackScholes",'Volatility',Volatility)

BSModel = 
  BlackScholes with properties:

     Volatility: 0.3000
    Correlation: 1

Create ratecurve Object

Create a ratecurve object using ratecurve.

StartDate = datetime(2014,1,1);
EndDate = datetime(2015,1,1);
Rate = 0.1;

ZeroCurve = ratecurve('zero',StartDate,EndDate,Rate,'Compounding',-1,'Basis',1)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
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                Basis: 1
                Dates: 01-Jan-2015
                Rates: 0.1000
               Settle: 01-Jan-2014
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create FiniteDifference Pricer Object

Use finpricer to create a FiniteDifference pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("FiniteDifference",'Model',BSModel,'SpotPrice',AssetPrice,'DiscountCurve',ZeroCurve)

outPricer = 
  FiniteDifference with properties:

     DiscountCurve: [1x1 ratecurve]
             Model: [1x1 finmodel.BlackScholes]
         SpotPrice: 50
    GridProperties: [1x1 struct]
      DividendType: "continuous"
     DividendValue: 0

Price ConvertibleBond Instrument

Use price to compute the price and sensitivities for the ConvertibleBond instrument.

[Price, outPR] = price(outPricer,ConvBond,"all")

Price = 104.3812

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×7 table
    Price     Delta      Gamma     Lambda      Theta       Rho       Vega 
    ______    ______    _______    _______    _______    _______    ______

    104.38    1.3012    0.04195    0.62329    0.72984    -21.883    17.947

Price Multiple Convertible Bond Instruments Using Black-Scholes Model and Finite
Difference Pricer

This example shows the workflow to price multiple ConvertibleBond instruments when you use a
BlackScholes model and a FiniteDifference pricing method.
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Create ConvertibleBond Instrument Object

Use fininstrument to create a ConvertibleBond instrument object for three Convertible Bond
instruments.

ConvRatio = 2;
Period = 1;
Spread = 0.05;

CallExDates = datetime(2014,10,1);
CallStrike = 115;
CallSchedule = timetable(CallExDates, CallStrike);

ConvBond = fininstrument("ConvertibleBond",'CouponRate',[0 ; 0.1 ; 0.2],'Maturity',datetime([2014,10,1 ; 2014,11,1 ; 2014,12,1]),'ConversionRatio',[2 ; 4 ; 6],'Period',Period,'Spread',Spread,'CallSchedule',CallSchedule,'CallExercisestyle',"american",'Name',"Convertible_Bond")

ConvBond=3×1 object
  3x1 ConvertibleBond array with properties:

    CouponRate
    ConversionRatio
    Spread
    Period
    Basis
    EndMonthRule
    Principal
    DaycountAdjustedCashFlow
    BusinessDayConvention
    Holidays
    Maturity
    IssueDate
    FirstCouponDate
    LastCouponDate
    StartDate
    CallSchedule
    PutSchedule
    CallExerciseStyle
    PutExerciseStyle
    Name

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

AssetPrice = 50;
Volatility = 0.3;

BSModel = finmodel("BlackScholes",'Volatility',Volatility)

BSModel = 
  BlackScholes with properties:

     Volatility: 0.3000
    Correlation: 1

Create ratecurve Object

Create a ratecurve object using ratecurve.
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StartDate = datetime(2014,1,1);
EndDate = datetime(2015,1,1);
Rate = 0.1;

ZeroCurve = ratecurve('zero',StartDate,EndDate,Rate,'Compounding',-1,'Basis',1)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 1
                Dates: 01-Jan-2015
                Rates: 0.1000
               Settle: 01-Jan-2014
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create FiniteDifference Pricer Object

Use finpricer to create a FiniteDifference pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("FiniteDifference",'Model',BSModel,'SpotPrice',AssetPrice,'DiscountCurve',ZeroCurve)

outPricer = 
  FiniteDifference with properties:

     DiscountCurve: [1x1 ratecurve]
             Model: [1x1 finmodel.BlackScholes]
         SpotPrice: 50
    GridProperties: [1x1 struct]
      DividendType: "continuous"
     DividendValue: 0

Price ConvertibleBond Instruments

Use price to compute the prices and sensitivities for the ConvertibleBond instruments.

[Price, outPR] = price(outPricer,ConvBond,"all")

Price = 3×1

  104.3812
  198.3288
  298.3014

outPR=3×1 object
  3x1 priceresult array with properties:

    Results
    PricerData

outPR.Results
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ans=1×7 table
    Price     Delta      Gamma     Lambda      Theta       Rho       Vega 
    ______    ______    _______    _______    _______    _______    ______

    104.38    1.3012    0.04195    0.62329    0.72984    -21.883    17.947

ans=1×7 table
    Price     Delta      Gamma       Lambda    Theta        Rho           Vega   
    ______    _____    __________    ______    ______    __________    __________

    198.33      4      1.7053e-13    1.0084    300.82    2.8422e-10    2.8422e-10

ans=1×7 table
    Price    Delta       Gamma       Lambda    Theta         Rho           Vega    
    _____    _____    ___________    ______    ______    ___________    ___________

    298.3      6      -1.7053e-13    1.0057    277.96    -1.7053e-09    -5.6843e-10

More About
Convertible Bond

A convertible bond is a financial instrument that combines equity and debt features.

A convertible bond is a bond with the embedded option to turn it into a fixed number of shares. The
holder of a convertible bond has the right, but not the obligation, to exchange the convertible security
for a predetermined number of equity shares at a preset price. The debt component is derived from
the coupon payments and the principal. The equity component is provided by the conversion feature.

Convertible bonds have several defining features:

• Coupon — Coupons in convertible bonds are typically lower than coupons in vanilla bonds since
investors are willing to take the lower coupon for the opportunity to participate in the company
stock via the conversion.

• Maturity — Most convertible bonds are issued with long-stated maturities. Short-term maturity
convertible bonds usually do not have call or put provisions.

• Conversion ratio — Conversion ratio is the number of shares that the holder of the convertible
bond receives from exercising the call option of the convertible bond. The conversion ratio is the
par value of the convertible bond divided by the conversion price of equity.

For example, a conversion ratio of 25 means a bond can be exchanged for 25 shares of stock. This
also implies a conversion price of $40 (1000/25). This, $40, is the price at which the owner would
buy the shares. This can be expressed as a ratio or as the conversion price and is specified in the
contract along with other provisions.

• Option type:

• Callable convertible: Convertible bond that is callable by the issuer. The issuer of the bond
forces conversion, removing the advantage that conversion is at the discretion of the
bondholder. Upon call, the bondholder can either convert the bond or redeem the bond at the
call price. This option enables the issuer to control the price of the convertible bond and if
necessary refinance the debt with a new, cheaper bond.
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• Puttable convertible: Convertible bond with a put feature that allows the bondholder to sell
back the bond at a premium on a specific date. This option protects the holder against rising
interest rates by reducing the year to maturity.

Tips
After creating a ConvertibleBond object, you can modify the CallSchedule and
CallExerciseStyle using setCallExercisePolicy. You can modify the PutSchedule and
PutExerciseStyle values using setPutExercisePolicy.

See Also
Functions
finmodel | finpricer | timetable

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53
“Supported Exercise Styles” on page 1-62

Introduced in R2021a

 ConvertibleBond

11-2415



InflationBond
InflationBond instrument object

Description
Create and price an InflationBond instrument object for one or more Inflation Bond instruments
using this workflow:

1 Use fininstrument to create an InflationBond instrument object for one or more Inflation
Bond instruments.

2 Use ratecurve to specify an interest-rate model for the InflationBond instrument object.
3 Use inflationcurve to specify an inflation curve model for the InflationBond instrument

object.
4 Use finpricer to specify an Inflation pricing method for one or more InflationBond

instruments.
5 Use inflationCashflows to compute cash flows for each one of the InflationBond

instruments.

For more detailed information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available models and pricing methods for an InflationBond
instrument, see “Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
InflationBond = fininstrument(InstrumentType,'CouponRate',couponrate_value,'
Maturity',maturity_date)
InflationBond = fininstrument( ___ ,Name,Value)

Description

InflationBond = fininstrument(InstrumentType,'CouponRate',couponrate_value,'
Maturity',maturity_date) creates an InflationBond object for one or more Inflation Bond
instruments by specifying InstrumentType and sets the properties on page 11-2421 for the
required name-value pair arguments CouponRate and Maturity.

InflationBond = fininstrument( ___ ,Name,Value) sets optional properties on page 11-2421
using additional name-value pairs in addition to the required arguments in the previous syntax. For
example, InflationBond =
fininstrument("InflationBond",'Maturity',Maturity,'CouponRate',CouponRate,'Is
sueDate',IssueDate) creates a InflationBond option.
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Input Arguments

InstrumentType — Instrument type
string with value "InflationBond" | string array with values of "InflationBond" | character
vector with value 'InflationBond' | cell array of character vectors with values of
'InflationBond'

Instrument type, specified as a string with the value of "InflationBond", a character vector with
the value of 'InflationBond', an NINST-by-1 string array with values of "InflationBond", or an
NINST-by-1 cell array of character vectors with values of 'InflationBond'.
Data Types: char | cell | string

InflationBond Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: InflationBond =
fininstrument("InflationBond",'Maturity',Maturity,'CouponRate',CouponRate,'Is
sueDate',IssueDate)

Required InflationBond Name-Value Pair Arguments

CouponRate — InflationBond coupon rate
scalar decimal | vector of decimals

InflationBond coupon rate, specified as the comma-separated pair consisting of 'CouponRate'
and a scalar decimal or an NINST-by-1 vector of decimals for an annual rate.
Data Types: double

Maturity — InflationBond maturity date
datetime | serial date number | date character vector | date string | vector of datetimes | vector of
serial date numbers | cell array of date character vectors | date string array

InflationBond maturity date, specified as the comma-separated pair consisting of 'Maturity'
and a scalar datetime, serial date number, date character vector, date string or an NINST-by-1 vector
of datetimes, serial date numbers, cell array of date character vectors, or date string array.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the Maturity property is stored as a datetime.
Data Types: char | cell | double | string | datetime

Optional InflationBond Name-Value Pair Arguments

Period — Frequency of payments per year
2 (default) | scalar numeric with value of 0, 1, 2, 3, 4, 6, or 12 | numeric vector with values of 0, 1, 2,
3, 4, 6, or 12

Frequency of payments, specified as the comma-separated pair consisting of 'Period' and a scalar
integer or an NINST-by-1 vector of integers. Values for Period are 1, 2, 3, 4, 6, or 12.
Data Types: double
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Basis — Day count basis
0 (actual/actual) (default) | scalar integer from 0 to 13 | vector of integers from 0 to 13

Day count basis, specified as the comma-separated pair consisting of 'Basis' and scalar integer or
an NINST-by-1 vector of integers using the following values:

• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Initial principal amount
100 (default) | scalar numeric | numeric vector

Initial principal amount, specified as the comma-separated pair consisting of 'Principal' and a
scalar numeric or an NINST-by-1 numeric vector.
Data Types: double

DaycountAdjustedCashFlow — Flag indicating whether cash flow adjusts for day count
convention
false (default) | scalar logical value of true or false | vector of logical values of true or false

Flag indicating whether cash flow is adjusted by day count convention, specified as the comma-
separated pair consisting of 'DaycountAdjustedCashFlow' and a scalar logical or an NINST-by-1
vector of logicals with values of true or false.
Data Types: logical

IssueDate — Bond issue date
NaT (default) | datetime | serial date number | date character vector | date string | vector of datetimes
| vector of serial date numbers | cell array of date character vectors | date string array

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a scalar
datetime, serial date number, date character vector, date string or an NINST-by-1 vector of datetimes,
serial date numbers, cell array of date character vectors, or date string array.
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If you use date character vectors or date strings, the format must be recognizable by datetime
because the IssueDate property is stored as a datetime.
Data Types: double | char | cell | string | datetime

Lag — Indexation lag in months
3 (default) | scalar numeric | numeric vector

Indexation lag in months, specified as the comma-separated pair consisting of 'Lag' and a scalar
numeric or an NINST-by-1 numeric vector.
Data Types: double

BusinessDayConvention — Business day conventions for cash flow dates
"actual" (default) | string | string array | character vector | cell array of character vectors

Business day conventions for cash flow dates, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a scalar string or character vector or an NINST-by-1 cell array of
character vectors or string array. The selection for business day convention determines how
nonbusiness days are treated. Nonbusiness days are defined as weekends plus any other date that
businesses are not open (for example, statutory holidays). Values are:

• "actual" — Nonbusiness days are effectively ignored. Cash flows that fall on nonbusiness days
are assumed to be distributed on the actual date.

• "follow" — Cash flows that fall on a nonbusiness day are assumed to be distributed on the
following business day.

• "modifiedfollow" — Cash flows that fall on a nonbusiness day are assumed to be distributed
on the following business day. However, if the following business day is in a different month, the
previous business day is adopted instead.

• "previous" — Cash flows that fall on a nonbusiness day are assumed to be distributed on the
previous business day.

• "modifiedprevious" — Cash flows that fall on a nonbusiness day are assumed to be distributed
on the previous business day. However, if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell | string

Holidays — Holidays used in computing business days
NaT (default) | datetimes | cell array of character vectors | date string array | serial date numbers

Holidays used in computing business days, specified as the comma-separated pair consisting of
'Holidays' and dates using an NINST-by-1 vector of datetimes, serial date numbers, cell array of
date character vectors, or date string array. For example:

H = holidays(datetime('today'),datetime(2025,12,15));
InflationBondObj = fininstrument("InflationBond",'CouponRate',0.34,'Maturity',datetime(2025,12,15),'Holidays',H)

Data Types: double | cell | datetime | string

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month with 30 or fewer days
true (in effect) (default) | scalar logical values of true or false | vector of logical values with true
or false
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End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month with
30 or fewer days, specified as the comma-separated pair consisting of 'EndMonthRule' and a scalar
logical value or an NINST-by-1 vector of logical values of true or false.

• If you set EndMonthRule to false, the software ignores the rule, meaning that a payment date is
always the same numerical day of the month.

• If you set EndMonthRule to true, the software sets the rule on, meaning that a payment date is
always the last actual day of the month.

Data Types: logical

FirstCouponDate — Irregular first coupon date
NaT (default) | datetime | serial date number | date character vector | date string | vector of datetimes
| vector of serial date numbers | cell array of date character vectors | date string array

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a scalar datetime, serial date number, date character vector, date string or
an NINST-by-1 vector of datetimes, serial date numbers, cell array of date character vectors, date
string array or an NINST-by-1 vector of datetimes, serial date numbers, cell array of date character
vectors, or date string array.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes
precedence in determining the coupon payment structure. If you do not specify FirstCouponDate,
the cash flow payment dates are determined from other inputs.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the FirstCouponDate property is stored as a datetime.
Data Types: double | char | cell | string | datetime

LastCouponDate — Irregular last coupon date
NaT (default) | datetime | serial date number | date character vector | date string | vector of datetimes
| vector of serial date numbers | cell array of date character vectors | date string array

Irregular last coupon date, specified as the comma-separated pair consisting of 'LastCouponDate'
and a scalar datetime, serial date number, date character vector, date string or an NINST-by-1 vector
of datetimes, serial date numbers, cell array of date character vectors, date string array or an NINST-
by-1 vector of datetimes, serial date numbers, cell array of date character vectors, or date string
array.

If you specify LastCouponDate but not FirstCouponDate, LastCouponDate determines the
coupon structure of the bond. The coupon structure of a bond is truncated at LastCouponDate,
regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not
specify LastCouponDate, the cash flow payment dates are determined from other inputs.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the LastCouponDate property is stored as a datetime.
Data Types: double | char | cell | string | datetime

Name — User-defined name for instrument
" " (default) | string | string array | character vector | cell array of character vectors

User-defined name for one of more instruments, specified as the comma-separated pair consisting of
'Name' and a scalar string or character vector or an NINST-by-1 cell array of character vectors or
string array.
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Data Types: char | cell | string

Properties
CouponRate — InflationBond coupon annual rate
scalar decimal | vector of decimals

InflationBond coupon annual rate, returned as a scalar decimal or an NINST-by-1 vector of
decimals.
Data Types: double

Maturity — InflationBond maturity date
datetime | vector of datetimes

InflationBond maturity date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

Period — Frequency of payments per year
2 (default) | scalar integer | vector of integers

Frequency of payments per year, returned as a scalar integer or an NINST-by-1 vector of integers.
Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | scalar integer from 0 to 13 | vector of integers from 0 to 13

Day count basis, returned as a scalar integer or an NINST-by-1 vector of integers.
Data Types: double

Principal — Initial principal amount
100 (default) | scalar numeric | numeric vector

Initial principal amount, returned as a scalar numeric or an NINST-by-1 numeric vector.
Data Types: double

DaycountAdjustedCashFlow — Flag indicating whether cash flow adjusts for day count
convention
false (default) | scalar logical value of true or false | vector of logical values with true or false

Flag indicating whether cash flow adjusts for day count convention, returned as scalar logical or an
NINST-by-1 vector of logicals with values of true or false.
Data Types: logical

IssueDate — Bond issue date
NaT (default) | datetime | vector of datetimes

Bond issue date, returned as a datetime or an NINST-by-1 datetime vector.
Data Types: datetime

Lag — Indexation lag in months
3 (default) | scalar numeric | numeric vector
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Indexation lag in months, returned as a scalar numeric or an NINST-by-1 numeric vector.
Data Types: double

BusinessDayConvention — Business day conventions
"actual" (default) | string | string array

Business day conventions, returned as a scalar string or an NINST-by-1 string array.
Data Types: string

Holidays — Holidays used in computing business days
NaT (default) | datetimes

Holidays used in computing business days, returned as an NINST-by-1 vector of datetimes.
Data Types: datetime

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month with 30 or fewer days
true (in effect) (default) | scalar logical value of true or false | vector of logicals with value of
true or false

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month
having 30 or fewer days, returned as a scalar logical or an NINST-by-1 vector of logicals.
Data Types: logical

FirstCouponDate — Irregular first coupon date
NaT (default) | datetime | vector of datetimes

Irregular first coupon date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

LastCouponDate — Irregular last coupon date
NaT (default) | datetime | vector of datetimes

Irregular last coupon date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

Name — User-defined name for instrument
" " (default) | string | string array

User-defined name for the instrument, returned as a scalar string or an NINST-by-1 string array.
Data Types: string

Object Functions
inflationCashflows Compute cash flows for InflationBond instrument

Examples
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Price Inflation Bond Instrument Using inflationcurve and Inflation Pricer

This example shows the workflow to price an InflationBond instrument when you use an
inflationcurve and an Inflation pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2021,1,15);
Type = "zero";
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
ZeroCurve = ratecurve('zero',Settle,ZeroDates,ZeroRates)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Jan-2021
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create inflationcurve Object

Create an inflationcurve object using inflationcurve.

BaseDate = datetime(2020,10,1);
InflationTimes = [0 calyears([1 2 3 4 5 7 10 20 30])]';
InflationIndexValues = [100 102 103.5 105 106.8 108.2 111.3 120.1 130.4 150.2]';
InflationDates = BaseDate + InflationTimes;
myInflationCurve = inflationcurve(InflationDates,InflationIndexValues)

myInflationCurve = 
  inflationcurve with properties:

                    Basis: 0
                    Dates: [10x1 datetime]
     InflationIndexValues: [10x1 double]
    ForwardInflationRates: [9x1 double]
              Seasonality: [12x1 double]

Create InflationBond Instrument Object

Use fininstrument to create an InflationBond instrument object.

IssueDate = datetime(2021,1,1);
Maturity = datetime(2026,1,1);
CouponRate = 0.02;

InflationBond = fininstrument("InflationBond", 'IssueDate', IssueDate, 'Maturity', Maturity, 'CouponRate', CouponRate,'Name',"inflation_bond_instrument")
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InflationBond = 
  InflationBond with properties:

                  CouponRate: 0.0200
                      Period: 2
                       Basis: 0
                   Principal: 100
    DaycountAdjustedCashFlow: 0
                         Lag: 3
       BusinessDayConvention: "actual"
                    Holidays: NaT
                EndMonthRule: 1
                   IssueDate: 01-Jan-2021
             FirstCouponDate: NaT
              LastCouponDate: NaT
                    Maturity: 01-Jan-2026
                        Name: "inflation_bond_instrument"

Create Inflation Pricer Object

Use finpricer to create an Inflation pricer object and use the ratecurve object with the
'DiscountCurve' name-value pair argument and the inflationcurve object with the
'InflationCurve' name-value pair argument.

outPricer = finpricer("Inflation",'DiscountCurve',ZeroCurve,'InflationCurve',myInflationCurve)

outPricer = 
  Inflation with properties:

     DiscountCurve: [1x1 ratecurve]
    InflationCurve: [1x1 inflationcurve]

Price InflationBond Instrument

Use price to compute the price and sensitivities for the InflationBond instrument.

[Price, outPR] = price(outPricer, InflationBond)

Price = 112.1856

outPR = 
  priceresult with properties:

       Results: [1x1 table]
    PricerData: []

outPR.Results

ans=table
    Price 
    ______

    112.19
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Price Multiple Inflation Bond Instruments Using inflationcurve and Inflation Pricer

This example shows the workflow to price multiple InflationBond instruments when you use an
inflationcurve and an Inflation pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2020,1,15);
Type = "zero";
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
ZeroCurve = ratecurve('zero',Settle,ZeroDates,ZeroRates)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Jan-2020
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create inflationcurve Object

Create an inflationcurve object using inflationcurve.

BaseDate = datetime(2019,8,1);
InflationTimes = [0 calyears([1 2 3 4 5 7 10 20 30])]';
InflationIndexValues = [100 102 103.5 105 106.8 108.2 111.3 120.1 130.4 150.2]';
InflationDates = BaseDate + InflationTimes;
myInflationCurve = inflationcurve(InflationDates,InflationIndexValues)

myInflationCurve = 
  inflationcurve with properties:

                    Basis: 0
                    Dates: [10x1 datetime]
     InflationIndexValues: [10x1 double]
    ForwardInflationRates: [9x1 double]
              Seasonality: [12x1 double]

Create InflationBond Instrument Object

Use fininstrument to create an InflationBond instrument object for three Inflation Bond
instruments.

IssueDate = datetime([2020,1,1 ; 2019,12,1 ; 2019,11,1]);
Maturity = datetime([2026,1,1 ; 2026,2,1 ; 2026,3,1]);
CouponRate = 0.02;
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InflationBond = fininstrument("InflationBond", 'IssueDate', IssueDate, 'Maturity', Maturity, 'CouponRate', CouponRate,'Name',"inflation_bond_instrument")

InflationBond=3×1 object
  3x1 InflationBond array with properties:

    CouponRate
    Period
    Basis
    Principal
    DaycountAdjustedCashFlow
    Lag
    BusinessDayConvention
    Holidays
    EndMonthRule
    IssueDate
    FirstCouponDate
    LastCouponDate
    Maturity
    Name

Create Inflation Pricer Object

Use finpricer to create an Inflation pricer object and use the ratecurve object with the
'DiscountCurve' name-value pair argument and the inflationcurve object with the
'InflationCurve' name-value pair argument.

outPricer = finpricer("Inflation",'DiscountCurve',ZeroCurve,'InflationCurve',myInflationCurve)

outPricer = 
  Inflation with properties:

     DiscountCurve: [1x1 ratecurve]
    InflationCurve: [1x1 inflationcurve]

Price InflationBond Instruments

Use price to compute the prices and sensitivities for the InflationBond instruments.

[Price, outPR] = price(outPricer, InflationBond)

Price = 3×1

  112.8769
  113.1022
  113.3434

outPR=1×3 object
  1x3 priceresult array with properties:

    Results
    PricerData

outPR.Results
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ans=table
    Price 
    ______

    112.88

ans=table
    Price
    _____

    113.1

ans=table
    Price 
    ______

    113.34

More About
Inflation-Indexed Bond

An inflation-indexed bond is a security that guarantees a return higher than the rate of inflation if it is
held to maturity. Inflation-indexed securities link their capital appreciation, or coupon payments, to
inflation rates

Algorithms
To price an inflation-indexed bond, use an inflation curve and a nominal discount curve (model-free
approach), where the cash flows are discounted using the nominal discount curve.

I(0, T)Pn(0, T) = I(0)Pr(0, T)

BTIPS(0, TM) = 1
I(T0) ∑i = 1

M
cI(0)Pr(0, Ti) + FI(0)Pr(0, TM)

                   = 1
I(T0) ∑i = 1

M
cI(0, Ti)Pn(0, Ti) + FI(0, TM)Pn(0, TM)

where

• Pn is the nominal zero-coupon bond price.
• Pr is the real zero-coupon bond price.
• k is the fixed inflation rate.
• I(0,T) is the breakeven inflation index for period (0,T).
• I(0) is the inflation index at (t = 0).
• I(T0) is the base inflation index at the issue date (t = T0).
• BTIPS(0,TM) is the inflation-indexed bond price.
• I(Ti-1) is the inflation index at the start date with some lag (for example, three months).
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• C is the coupon.
• F is the face value.

References
[1] Brody, D. C., Crosby, J., and Li, H. "Convexity Adjustments in Inflation-Linked Derivatives." Risk

Magazine. November 2008, pp. 124–129.

[2] Kerkhof, J. "Inflation Derivatives Explained: Markets, Products, and Pricing." Fixed Income
Quantitative Research, Lehman Brothers, July 2005.

[3] Zhang, J. X. "Limited Price Indexation (LPI) Swap Valuation Ideas." Wilmott Magazine. no. 57,
January 2012, pp. 58–69.

See Also
Functions
YearYearInflationSwap | ZeroCouponInflationSwap | finpricer

Topics
“Analyze Inflation-Indexed Instruments” on page 2-133
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2021a
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YearYearInflationSwap
YearYearInflationSwap instrument object

Description
Create and price a YearYearInflationSwap instrument object for one or more Year-on-Year
Inflation-Indexed Swap instruments using this workflow:

1 Use fininstrument to create a YearYearInflationSwap instrument object for one or more
Year-on-Year Inflation-Indexed Swap instruments.

2 Use ratecurve to specify an interest-rate model for the YearYearInflationSwap instrument
object.

3 Use inflationcurve to specify an inflation curve model.
4 Use finpricer to specify an Inflation pricing method for one or more

YearYearInflationSwap instruments.
5 Use inflationCashflows to compute cash flows for each one of the

YearYearInflationSwap instruments.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available models and pricing methods for a YearYearInflationSwap
instrument, see “Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
YYInflationSwap = fininstrument(InstrumentType,'Maturity',maturity_date,'
Notional',notional_value,'FixedInflationRate',inflation_rate)
YYInflationSwap = fininstrument( ___ ,Name,Value)

Description

YYInflationSwap = fininstrument(InstrumentType,'Maturity',maturity_date,'
Notional',notional_value,'FixedInflationRate',inflation_rate) creates a
YearYearInflationSwap object for one or more Year-on-Year Inflation-Indexed Swap instruments
by specifying InstrumentType and sets the properties on page 11-2431 for the required name-value
pair arguments Maturity, Notional, and FixedInflationRate.

YYInflationSwap = fininstrument( ___ ,Name,Value) sets optional properties on page 11-
2431 using additional name-value pairs in addition to the required arguments in the previous syntax.
For example, YYInflationSwap =
fininstrument("YearYearInflationSwap",'Maturity',Maturity,'FixedInflationRate
',FixedInflationRate,'Notional',Notional,'Basis',4,'Lag',4) creates a
YearYearInflationSwap option. You can specify multiple name-value pair arguments.
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Input Arguments

InstrumentType — Instrument type
string with value "YearYearInflationSwap" | string array with values of
"YearYearInflationSwap" | character vector with value 'YearYearInflationSwap' | cell array
of character vectors with values of 'YearYearInflationSwap'

Instrument type, specified as a string with the value of "YearYearInflationSwap", a character
vector with the value of 'YearYearInflationSwap', an NINST-by-1 string array with values of
"YearYearInflationSwap", or an NINST-by-1 cell array of character vectors with values of
'YearYearInflationSwap'.
Data Types: char | cell | string

YearYearInflationSwap Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: YYInflationSwap =
fininstrument("YearYearInflationSwap",'Maturity',Maturity,'FixedInflationRate
',FixedInflationRate,'Notional',Notional,'Basis',4,'Lag',4)

Required YearYearInflationSwap Name-Value Pair Arguments

Maturity — Swap maturity date
datetime | serial date number | date character vector | date string | vector of datetimes | vector of
serial date numbers | cell array of date character vectors | date string array

Swap maturity date, specified as the comma-separated pair consisting of 'Maturity' and a scalar
datetime, serial date number, date character vector, date string or an NINST-by-1 vector of datetimes,
serial date numbers, cell array of date character vectors, or date string array.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the Maturity property is stored as a datetime.
Data Types: char | cell | double | string | datetime

Notional — Notional amount
scalar numeric | numeric decimal

Notional amount, specified as the comma-separated pair consisting of 'Notional' and a scalar
numeric or an NINST-by-1 numeric vector.
Data Types: double

FixedInflationRate — Inflation rate
scalar decimal | vector of decimals

Inflation rate, specified as the comma-separated pair consisting of 'FixedInflationRate' and a
scalar decimal or an NINST-by-1 vector of decimals.
Data Types: double
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Optional YearYearInflationSwap Name-Value Pair Arguments

Basis — Day count basis for the fixed leg
0 (actual/actual) (default) | scalar integer from 0 to 13 | vector of integers from 0 to 13

Day count basis for the fixed leg, specified as the comma-separated pair consisting of 'Basis' and a
scalar integer or an NINST-by-1 vector of integers for the following:

• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Lag — Indexation lag in months
3 (default) | scalar numeric | numeric vector

Indexation lag in months, specified as the comma-separated pair consisting of 'Lag' and a scalar
numeric or an NINST-by-1 numeric vector.
Data Types: double

Name — User-defined name for instrument
" " (default) | string | character vector

User-defined name for the instrument, specified as the comma-separated pair consisting of 'Name'
and a scalar string or character vector or an NINST-by-1 cell array of character vectors or string
array.
Data Types: char | cell | string

Properties
Maturity — Swap maturity date
scalar datetime | vector of datetimes

Swap maturity date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
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Data Types: datetime

Notional — Notional amount
scalar numeric | numeric vector

Notional amount, returned as a scalar numeric or an NINST-by-1 numeric vector.
Data Types: double

FixedInflationRate — Inflation rate
scalar decimal | vector of decimals

Inflation rate, returned as a scalar decimal or an NINST-by-1 vector of decimals.
Data Types: double

Basis — Day count basis for fixed leg
0 (actual/actual) (default) | scalar integer from 0 to 13 | vector of integers from 0 to 13

Day count basis for fixed leg, returned as a scalar integer or an NINST-by-1 vector of integers.
Data Types: double

Lag — Indexation lag in months
3 (default) | scalar numeric | numeric vector

Indexation lag in months, returned as a scalar numeric or an NINST-by-1 numeric vector.
Data Types: double

Name — User-defined name for instrument
" " (default) | scalar string | string array

User-defined name for the instrument, returned as a scalar string or an NINST-by-1 string array.
Data Types: string

Object Functions
inflationCashflows Compute cash flows for YearYearInflationSwap instrument

Examples

Price Year-on-Year Inflation-Indexed Swap Instrument Using inflationcurve and Inflation
Pricer

This example shows the workflow to price a YearYearInflationSwap instrument when you use an
inflationcurve object and an Inflation pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2021,1,15);
Type = "zero";
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';

11 Functions

11-2432



ZeroDates = Settle + ZeroTimes;
ZeroCurve = ratecurve('zero',Settle,ZeroDates,ZeroRates)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Jan-2021
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create inflationcurve Object

Create an inflationcurve object using inflationcurve.

BaseDate = datetime(2020,10,1);
InflationTimes = [0 calyears([1 2 3 4 5 7 10 20 30])]';
InflationIndexValues = [100 102 103.5 105 106.8 108.2 111.3 120.1 130.4 150.2]';
InflationDates = BaseDate + InflationTimes;
myInflationCurve = inflationcurve(InflationDates,InflationIndexValues)

myInflationCurve = 
  inflationcurve with properties:

                    Basis: 0
                    Dates: [10x1 datetime]
     InflationIndexValues: [10x1 double]
    ForwardInflationRates: [9x1 double]
              Seasonality: [12x1 double]

Create YearYearInflationSwap Instrument Object

Use fininstrument to create a YearYearInflationSwap instrument object.

Maturity = datetime(2025,1,1);
FixedInflationRate = 0.015;
Notional = 2000;

YYInflationSwap = fininstrument("YearYearInflationSwap",'Maturity',Maturity,'FixedInflationRate',FixedInflationRate,'Notional',Notional,'Name',"YYInflationSwap_instrument")

YYInflationSwap = 
  YearYearInflationSwap with properties:

              Notional: 2000
    FixedInflationRate: 0.0150
                 Basis: 0
                   Lag: 3
              Maturity: 01-Jan-2025
                  Name: "YYInflationSwap_instrument"
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Create Inflation Pricer Object

Use finpricer to create an Inflation pricer object and use the ratecurve object with the
'DiscountCurve' name-value pair argument and the inflationcurve object with the
'InflationCurve' name-value pair argument.

outPricer = finpricer("Inflation",'DiscountCurve',ZeroCurve,'InflationCurve',myInflationCurve)

outPricer = 
  Inflation with properties:

     DiscountCurve: [1x1 ratecurve]
    InflationCurve: [1x1 inflationcurve]

Price YearYearInflationSwap Instrument

Use price to compute the price and sensitivities for the YearYearInflationSwap instrument.

[Price,outPR] = price(outPricer,YYInflationSwap,"all")

Price = 12.5035

outPR = 
  priceresult with properties:

       Results: [1x1 table]
    PricerData: []

outPR.Results

ans=table
    Price 
    ______

    12.504

Price Multiple Year-on-Year Inflation-Indexed Swap Instruments Using inflationcurve and
Inflation Pricer

This example shows the workflow to price multiple YearYearInflationSwap instruments when you
use an inflationcurve object and an Inflation pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2021,1,15);
Type = "zero";
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
ZeroCurve = ratecurve('zero',Settle,ZeroDates,ZeroRates)

ZeroCurve = 
  ratecurve with properties:
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                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Jan-2021
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create inflationcurve Object

Create an inflationcurve object using inflationcurve.

BaseDate = datetime(2019,10,1);
InflationTimes = [0 calyears([1 2 3 4 5 7 10 20 30])]';
InflationIndexValues = [100 102 103.5 105 106.8 108.2 111.3 120.1 130.4 150.2]';
InflationDates = BaseDate + InflationTimes;
myInflationCurve = inflationcurve(InflationDates,InflationIndexValues)

myInflationCurve = 
  inflationcurve with properties:

                    Basis: 0
                    Dates: [10x1 datetime]
     InflationIndexValues: [10x1 double]
    ForwardInflationRates: [9x1 double]
              Seasonality: [12x1 double]

Create YearYearInflationSwap Instrument Object

Use fininstrument to create a YearYearInflationSwap instrument object for three Year-on-Year
Inflation-Indexed Swap instruments.

Maturity = datetime([2024,1,1 ; 2024,11,1 ; 2024,12,1]);
FixedInflationRate = 0.015;
Notional = [20000 ; 30000 ; 40000];

YYInflationSwap = fininstrument("YearYearInflationSwap",'Maturity',Maturity,'FixedInflationRate',FixedInflationRate,'Notional',Notional,'Name',"YYInflationSwap_instrument")

YYInflationSwap=3×1 object
  3x1 YearYearInflationSwap array with properties:

    Notional
    FixedInflationRate
    Basis
    Lag
    Maturity
    Name

Create Inflation Pricer Object

Use finpricer to create an Inflation pricer object and use the ratecurve object with the
'DiscountCurve' name-value pair argument and the inflationcurve object with the
'InflationCurve' name-value pair argument.
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outPricer = finpricer("Inflation",'DiscountCurve',ZeroCurve,'InflationCurve',myInflationCurve)

outPricer = 
  Inflation with properties:

     DiscountCurve: [1x1 ratecurve]
    InflationCurve: [1x1 inflationcurve]

Price YearYearInflationSwap Instruments

Use price to compute the prices and sensitivities for the YearYearInflationSwap instruments.

[Price,outPR] = price(outPricer,YYInflationSwap,"all")

Price = 3×1

   26.0701
   18.1540
    1.3201

outPR=1×3 object
  1x3 priceresult array with properties:

    Results
    PricerData

outPR.Results

ans=table
    Price
    _____

    26.07

ans=table
    Price 
    ______

    18.154

ans=table
    Price 
    ______

    1.3201

More About
Year-on-Year Inflation-Indexed Swap

A year-on-year inflation-indexed swap is a financial contract where, at the end of each accrual period,
one party (the inflation receiver) pays a fixed-rate coupon and receives a floating payment linked to a
specific inflation index from the other party (the inflation payer).
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Algorithms
To price a year-on-year inflation-indexed swap (YYIIS), use an inflation curve and a nominal discount
curve (model-free approach), where the cash flows are discounted using the nominal discount curve.

Cash flows for each year t = T1,...,Ti,...,TM}:
FixedLeg = N × k × Δtf ixed

Inf lationLeg = N ×
I(Ti)

I(Ti− 1) − 1 × Δtinf lation

where

• N is the reference notional of the swap.
• k is the fixed inflation rate.
• Δtfixed is the fixed leg fraction for the period.
• Δtinflation is the inflation leg fraction for the period.
• I(Ti) is the inflation index at the period end date with some lag (for example, three months).
• I(Ti-1) is the inflation index at the start date with some lag (for example, three months).

References
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ZeroCouponInflationSwap
ZeroCouponInflationSwap instrument object

Description
Create and price a ZeroCouponInflationSwap instrument object for one or more Zero-Coupon
Inflation Swap instruments using this workflow:

1 Use fininstrument to create a ZeroCouponInflationSwap instrument object for one or
more Zero-Coupon Inflation Swap instruments.

2 Use ratecurve to specify an interest-rate model for the ZeroCouponInflationSwap
instrument object.

3 Use inflationcurve to specify an inflation curve model.
4 Use finpricer to specify an Inflation pricing method for one or more

ZeroCouponInflationSwap instruments.
5 Use inflationCashflows to compute cash flows for each one of the

ZeroCouponInflationSwap instruments.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available models and pricing methods for a
ZeroCouponInflationSwap instrument, see “Choose Instruments, Models, and Pricers” on page 1-
53.

Creation
Syntax
ZCInflationSwap = fininstrument(InstrumentType,'Maturity',maturity_date,'
Notional',notional_value,'FixedInflationRate',inflation_rate)
ZCInflationSwap = fininstrument( ___ ,Name,Value)

Description

ZCInflationSwap = fininstrument(InstrumentType,'Maturity',maturity_date,'
Notional',notional_value,'FixedInflationRate',inflation_rate) creates a
ZeroCouponInflationSwap object for one or more Zero-Coupon Inflation Swap instruments by
specifying InstrumentType and sets the properties on page 11-2441 for the required name-value
pair arguments Maturity, Notional, and FixedInflationRate.

ZCInflationSwap = fininstrument( ___ ,Name,Value) sets optional properties on page 11-
2441 using name-value pairs in addition to the required arguments in the previous syntax. For
example, ZCInflationSwap = fininstrument("ZeroCouponInflationSwap",
'Maturity',Maturity,'Notional',Notional,'FixedInflationRate',FixedInflationRa
te,'StartDate',StartDate) creates a ZeroCouponInflationSwap instrument. You can specify
multiple name-value pair arguments.

11 Functions

11-2438



Input Arguments

InstrumentType — Instrument type
string with value "ZeroCouponInflationSwap" | string array with values of
"ZeroCouponInflationSwap" | character vector with value 'ZeroCouponInflationSwap' | cell
array of character vectors with values of 'ZeroCouponInflationSwap'

Instrument type, specified as a string with the value of "ZeroCouponInflationSwap", a character
vector with the value of 'ZeroCouponInflationSwap', an NINST-by-1 string array with values of
"ZeroCouponInflationSwap", or an NINST-by-1 cell array of character vectors with values of
'ZeroCouponInflationSwap'.
Data Types: char | cell | string

ZeroCouponInflationSwap Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: ZCInflationSwap = fininstrument("ZeroCouponInflationSwap",
'Maturity',Maturity,'Notional',Notional,'FixedInflationRate',FixedInflationRa
te,'StartDate',StartDate)

Required ZeroCouponInflationSwap Name-Value Pair Arguments

Maturity — Swap maturity date
datetime | serial date number | date character vector | date string | vector of datetimes | vector of
serial date numbers | cell array of date character vectors | date string array

Swap maturity date, specified as the comma-separated pair consisting of 'Maturity' and a scalar
datetime, serial date number, date character vector, date string or an NINST-by-1 vector of datetimes,
serial date numbers, cell array of date character vectors, or date string array.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the Maturity property is stored as a datetime.
Data Types: char | cell | double | string | datetime

Notional — Notional amount
scalar numeric | numeric vector

Notional amount, specified as the comma-separated pair consisting of 'Notional' and a scalar
numeric or an NINST-by-1 numeric vector.
Data Types: double

FixedInflationRate — Inflation rate
decimal | vector of decimals

Inflation rate, specified as the comma-separated pair consisting of 'FixedInflationRate' and a
scalar decimal or an NINST-by-1 vector of decimals.
Data Types: double
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Optional ZeroCouponInflationSwap Name-Value Pair Arguments

StartDate — Date swap starts
Settle date (default) | datetime | serial date number | date character vector | date string | vector of
datetimes | vector of serial date numbers | cell array of date character vectors | date string array

Date swap starts, specified as the comma-separated pair consisting of 'StartDate' and a scalar
datetime, serial date number, date character vector, date string or an NINST-by-1 vector of datetimes,
serial date numbers, cell array of date character vectors, or date string array. If not specified, when
pricing the ZeroCouponInflationSwap instrument, the Inflation pricer uses the Settle date of
the DiscountCurve as the StartDate.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the StartDate property is stored as a datetime.
Data Types: char | cell | double | string | datetime

Basis — Day count basis for the fixed leg
0 (actual/actual) (default) | scalar integer from 0 to 13 | vector of integers from 0 to 13

Day count basis for the fixed leg, specified as the comma-separated pair consisting of 'Basis' and a
scalar integer or an NINST-by-1 vector of integers for the following:

• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Lag — Indexation lag in months
3 (default) | scalar numeric | numeric vector

Indexation lag in months, specified as the comma-separated pair consisting of 'Lag' and a scalar
numeric or an NINST-by-1 numeric vector.
Data Types: double

Name — User-defined name for instrument
" " (default) | string | string array | character vector | cell array of character vectors
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User-defined name for the instrument, specified as the comma-separated pair consisting of 'Name'
and a scalar string or character vector or an NINST-by-1 cell array of character vectors or string
array.
Data Types: char | cell | string

Properties
Maturity — Swap maturity date
scalar datetime | vector of datetimes

Swap maturity date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

Notional — Notional amount
scalar numeric | numeric vector

Notional amount, returned as a scalar numeric or an NINST-by-1 vector of decimals.
Data Types: double

FixedInflationRate — Inflation rate
scalar decimal | vector of decimals

Inflation rate, returned as a scalar decimal or an NINST-by-1 vector of decimals.
Data Types: double

StartDate — Date swap starts
Settle date (default) | scalar datetime | vector of datetimes

Date swap starts, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

Basis — Day count basis for fixed leg
0 (actual/actual) (default) | scalar integer from 0 to 13 | vector of integers from 0 to 13

Day count basis for fixed leg, returned as a scalar integer or an NINST-by-1 vector of integers.
Data Types: double

Lag — Indexation lag in months
3 (default) | scalar numeric | numeric vector

Indexation lag in months, returned as a scalar numeric or an NINST-by-1 numeric vector.
Data Types: double

Name — User-defined name for instrument
" " (default) | string

User-defined name for the instrument, returned as a string or an NINST-by-1 string array.
Data Types: string
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Object Functions
inflationCashflows Compute cash flows for ZeroCouponInflationSwap instrument

Examples

Price Zero Coupon Inflation Swap Instrument Using inflationcurve and Inflation Pricer

This example shows the workflow to price a ZeroCouponInflationSwap instrument when you use
an inflationcurve object and an Inflation pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2021,1,15);
Type = "zero";
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
ZeroCurve = ratecurve('zero',Settle,ZeroDates,ZeroRates)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Jan-2021
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create inflationcurve Object

Create an inflationcurve object using inflationcurve.

BaseDate = datetime(2020, 10, 1);
InflationTimes = [0 calyears([1 2 3 4 5 7 10 20 30])]';
InflationIndexValues = [100 102 103.5 105 106.8 108.2 111.3 120.1 130.4 150.2]';
InflationDates = BaseDate + InflationTimes;
myInflationCurve = inflationcurve(InflationDates,InflationIndexValues)

myInflationCurve = 
  inflationcurve with properties:

                    Basis: 0
                    Dates: [10x1 datetime]
     InflationIndexValues: [10x1 double]
    ForwardInflationRates: [9x1 double]
              Seasonality: [12x1 double]
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Create ZeroCouponInflationSwap Instrument Object

Use fininstrument to create a ZeroCouponInflationSwap instrument object.

StartDate = datetime(2021,1,1);
Maturity = datetime(2022,10,1);
FixedInflationRate = 0.015;
Notional = 2000;

ZCInflationSwap = fininstrument("ZeroCouponInflationSwap",'StartDate',StartDate,'Maturity',Maturity,'FixedInflationRate',FixedInflationRate,'Notional',Notional,'Name',"zero_coupon_inflation_swap_instrument")

ZCInflationSwap = 
  ZeroCouponInflationSwap with properties:

              Notional: 2000
    FixedInflationRate: 0.0150
                 Basis: 0
                   Lag: 3
             StartDate: 01-Jan-2021
              Maturity: 01-Oct-2022
                  Name: "zero_coupon_inflation_swap_instrument"

Create Inflation Pricer Object

Use finpricer to create an Inflation pricer object and use the ratecurve object with the
'DiscountCurve' name-value pair argument and the inflationcurve object with the
'InflationCurve' name-value pair argument.

outPricer = finpricer("Inflation",'DiscountCurve',ZeroCurve,'InflationCurve',myInflationCurve)

outPricer = 
  Inflation with properties:

     DiscountCurve: [1x1 ratecurve]
    InflationCurve: [1x1 inflationcurve]

Price ZeroCouponInflationSwap Instrument

Use price to compute the price and sensitivities for the ZeroCouponInflationSwap instrument.

[Price,outPR] = price(outPricer,ZCInflationSwap,"all")

Price = 9.5675

outPR = 
  priceresult with properties:

       Results: [1x1 table]
    PricerData: []

outPR.Results

ans=table
    Price 
    ______
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    9.5675

Price Multiple Zero Coupon Inflation Swap Instruments Using inflationcurve and Inflation
Pricer

This example shows the workflow to price multiple ZeroCouponInflationSwap instruments when
you use an inflationcurve object and an Inflation pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2021,12,15);
Type = "zero";
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
ZeroCurve = ratecurve('zero',Settle,ZeroDates,ZeroRates)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Dec-2021
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create inflationcurve Object

Create an inflationcurve object using inflationcurve.

BaseDate = datetime(2020, 10, 1);
InflationTimes = [0 calyears([1 2 3 4 5 7 10 20 30])]';
InflationIndexValues = [100 102 103.5 105 106.8 108.2 111.3 120.1 130.4 150.2]';
InflationDates = BaseDate + InflationTimes;
myInflationCurve = inflationcurve(InflationDates,InflationIndexValues)

myInflationCurve = 
  inflationcurve with properties:

                    Basis: 0
                    Dates: [10x1 datetime]
     InflationIndexValues: [10x1 double]
    ForwardInflationRates: [9x1 double]
              Seasonality: [12x1 double]

Create ZeroCouponInflationSwap Instrument Object

Use fininstrument to create a ZeroCouponInflationSwap instrument object.
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StartDate = datetime([2021,5,1 ; 2021,6,1 ; 2021,7,1]);
Maturity = datetime([2022,10,1 ; 2022,11,1 ;2022,12,1]);
FixedInflationRate = 0.015;
Notional = [20000 ; 30000 ; 40000] ;

ZCInflationSwap = fininstrument("ZeroCouponInflationSwap",'StartDate',StartDate,'Maturity',Maturity,'FixedInflationRate',FixedInflationRate,'Notional',Notional,'Name',"zero_coupon_inflation_swap_instrument")

ZCInflationSwap=3×1 object
  3x1 ZeroCouponInflationSwap array with properties:

    Notional
    FixedInflationRate
    Basis
    Lag
    StartDate
    Maturity
    Name

Create Inflation Pricer Object

Use finpricer to create an Inflation pricer object and use the ratecurve object with the
'DiscountCurve' name-value pair argument and the inflationcurve object with the
'InflationCurve' name-value pair argument.

outPricer = finpricer("Inflation",'DiscountCurve',ZeroCurve,'InflationCurve',myInflationCurve)

outPricer = 
  Inflation with properties:

     DiscountCurve: [1x1 ratecurve]
    InflationCurve: [1x1 inflationcurve]

Price ZeroCouponInflationSwap Instruments

Use price to compute the prices and sensitivities for the ZeroCouponInflationSwap instruments.

[Price,outPR] = price(outPricer,ZCInflationSwap,"all")

Price = 3×1

   59.4576
   80.6037
   89.4137

outPR=1×3 object
  1x3 priceresult array with properties:

    Results
    PricerData

outPR.Results

ans=table
    Price 
    ______
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    59.458

ans=table
    Price 
    ______

    80.604

ans=table
    Price 
    ______

    89.414

More About
Zero Coupon Inflation Swap

A zero coupon inflation swap is a type of derivative in which a fixed-rate payment on a notional
amount is exchanged for a payment at the rate of inflation.

Algorithms
To price a zero-coupon inflation-indexed swap (ZCIS), use an inflation curve and a nominal discount
curve (model-free approach), where the cash flows are discounted using the nominal discount curve.

Cash flows at maturity t = TM:

FixedLeg = N × [(1− 1]

Inf lationLeg = N ×
I(TM)

I0
− 1

where

• N is the reference notional of the swap.
• k is the fixed inflation rate.
• M is the number of years for the life of the swap.
• I(TM) is the inflation index at the maturity date with some lag (for example, three months).
• I0 is the inflation index at the start date with some lag (for example, three months).

References
[1] Brody, D. C., Crosby, J., and Li, H. "Convexity Adjustments in Inflation-Linked Derivatives." Risk

Magazine. November 2008, pp. 124–129.

[2] Kerkhof, J. "Inflation Derivatives Explained: Markets, Products, and Pricing." Fixed Income
Quantitative Research, Lehman Brothers, July 2005.
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January 2012, pp. 58–69.

See Also
Functions
InflationBond | YearYearInflationSwap | finpricer

Topics
“Analyze Inflation-Indexed Instruments” on page 2-133
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2021a
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Inflation
Create Inflation pricer object for InflationBond, YearYearInflationSwap, or
ZeroCouponInflationSwap instrument using inflationcurve model

Description
Create and price an InflationBond, YearYearInflationSwap, or ZeroCouponInflationSwap
instrument object with an inflationcurve model and an Inflation pricing method using this
workflow:

1 Use fininstrument to create an InflationBond, YearYearInflationSwap, or
ZeroCouponInflationSwap instrument object.

2 Use inflationcurve to specify an inflation curve object.
3 Create an interest-rate curve object using ratecurve.
4 Use finpricer to specify the Inflation pricer object for the InflationBond,

YearYearInflationSwap, or ZeroCouponInflationSwap instrument object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available instruments, models, and pricing methods for an
InflationBond, YearYearInflationSwap, or ZeroCouponInflationSwap instrument, see
“Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
InflationPricerObj = finpricer(PricerType,'DiscountCurve',ratecurve_obj,'
InflationCurve',inflationcurve_obj)

Description

InflationPricerObj = finpricer(PricerType,'DiscountCurve',ratecurve_obj,'
InflationCurve',inflationcurve_obj) creates an Inflation pricer object by specifying
PricerType and the required name-value pair arguments DiscountCurve and InflationCurve
to set properties on page 11-2449 using name-value pairs. For example, InflationPricerObj =
finpricer("Inflation",'DiscountCurve',ZeroCurve,'InflationCurve',myInflationC
urve) creates an Inflation pricer object.

Input Arguments

PricerType — Pricer type
string with value "Inflation" | character vector with value 'Inflation'

Pricer type, specified as a string with the value of "Inflation" or a character vector with the value
of 'Inflation'.
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Data Types: char | string

Inflation Name-Value Pair Arguments

Specify required pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: InflationPricerObj =
finpricer("Inflation",'DiscountCurve',ZeroCurve,'InflationCurve',myInflationC
urve)

DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, specified as the comma-separated pair consisting of
'DiscountCurve' and the name of a previously created ratecurve object.
Data Types: object

InflationCurve — Inflation curve
inflationcurve object

Inflation curve, specified as the comma-separated pair consisting of 'InflationCurve' and the
name of the previously created inflationcurve.
Data Types: object

Properties
DiscountCurve — ratecurve object for discounting cash flows
object

ratecurve object for discounting cash flows, returned as a ratecurve object.
Data Types: object

InflationCurve — Inflation curve
inflationcurve object

Inflation curve, returned as an inflationcurve object.
Data Types: object

Object Functions
price Compute price for inflation instrument with Inflation pricer

Examples

Use Inflation Pricer and inflationcurve to Price Inflation Bond Instrument

This example shows the workflow to price an InflationBond instrument when you use an
inflationcurve object and an Inflation pricing method.
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Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2021,1,15);
Type = "zero";
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
ZeroCurve = ratecurve('zero',Settle,ZeroDates,ZeroRates)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Jan-2021
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create inflationcurve Object

Create an inflationcurve object using inflationcurve.

BaseDate = datetime(2020,10,1);
InflationTimes = [0 calyears([1 2 3 4 5 7 10 20 30])]';
InflationIndexValues = [100 102 103.5 105 106.8 108.2 111.3 120.1 130.4 150.2]';
InflationDates = BaseDate + InflationTimes;
myInflationCurve = inflationcurve(InflationDates,InflationIndexValues)

myInflationCurve = 
  inflationcurve with properties:

                    Basis: 0
                    Dates: [10x1 datetime]
     InflationIndexValues: [10x1 double]
    ForwardInflationRates: [9x1 double]
              Seasonality: [12x1 double]

Create InflationBond Instrument Object

Use fininstrument to create an InflationBond instrument object.

IssueDate = datetime(2021,1,1);
Maturity = datetime(2026,1,1);
CouponRate = 0.02;

InflationBond = fininstrument("InflationBond",'IssueDate',IssueDate,'Maturity',Maturity,'CouponRate',CouponRate,'Name',"inflation_bond_instrument")

InflationBond = 
  InflationBond with properties:

                  CouponRate: 0.0200
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                      Period: 2
                       Basis: 0
                   Principal: 100
    DaycountAdjustedCashFlow: 0
                         Lag: 3
       BusinessDayConvention: "actual"
                    Holidays: NaT
                EndMonthRule: 1
                   IssueDate: 01-Jan-2021
             FirstCouponDate: NaT
              LastCouponDate: NaT
                    Maturity: 01-Jan-2026
                        Name: "inflation_bond_instrument"

Create Inflation Pricer Object

Use finpricer to create an Inflation pricer object and use the ratecurve object with the
'DiscountCurve' name-value pair argument and the inflationcurve object with the
'InflationCurve' name-value pair argument.

outPricer = finpricer("Inflation",'DiscountCurve',ZeroCurve,'InflationCurve',myInflationCurve)

outPricer = 
  Inflation with properties:

     DiscountCurve: [1x1 ratecurve]
    InflationCurve: [1x1 inflationcurve]

Price InflationBond Instrument

Use price to compute the price and sensitivities for the InflationBond instrument.

[Price,outPR] = price(outPricer,InflationBond)

Price = 112.1856

outPR = 
  priceresult with properties:

       Results: [1x1 table]
    PricerData: []

outPR.Results

ans=table
    Price 
    ______

    112.19

See Also
Functions
fininstrument | ratecurve
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Topics
“Analyze Inflation-Indexed Instruments” on page 2-133
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2021a
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Rubinstein
Create Rubinstein pricer object for Cliquet instrument using BlackScholes model

Description
Create and price a Cliquet instrument object with a BlackScholes model and a Rubinstein
pricing method using this workflow:

1 Use fininstrument to create an Cliquet instrument object.
2 Use finmodel to specify a BlackScholes model for the Cliquet instrument object.
3 Use finpricer to specify a Rubinstein pricer object for the Cliquet instrument object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available instruments, models, and pricing methods for an Cliquet
instrument, see “Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
RubinsteinPricerObj = finpricer(PricerType,DiscountCurve=ratecurve_obj,
Model=model,SpotPrice=spotprice_value)
RubinsteinPricerObj = finpricer( ___ ,Name=Value)

Description

RubinsteinPricerObj = finpricer(PricerType,DiscountCurve=ratecurve_obj,
Model=model,SpotPrice=spotprice_value) creates a Rubinstein pricer object by specifying
PricerType and sets the properties on page 11-2455 for the required name-value arguments
DiscountCurve, Model, and SpotPrice.

RubinsteinPricerObj = finpricer( ___ ,Name=Value) sets optional properties on page 11-
3153 using additional name-value arguments in addition to the required arguments in the previous
syntax. For example, RubinsteinPricerObj =
finpricer("Analytic",DiscountCurve=ratecurve_obj,Model=BSModel,SpotPrice=1000
,DividendType="continuous",DividendValue=100,PricingMethod="Rubinstein")
creates a Cliquet pricer object.

Input Arguments

PricerType — Pricer type
string with value "Analytic" | character vector with value 'Analytic'

Pricer type, specified as a string with the value of "Analytic" or a character vector with the value
of 'Analytic'.
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Data Types: string | char

Rubinstein Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.
Example: RubinsteinPricerObj =
finpricer("Analytic",DiscountCurve=ratecurve_obj,Model=BSModel,SpotPrice=1000
,DividendType="continuous",DividendValue=100,PricingMethod="Rubinstein")

Required Rubinstein Name-Value Arguments

DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, specified as DiscountCurve and the name of a
previously created ratecurve object.

Note Specify a flat ratecurve object for DiscountCurve. If you use a nonflat ratecurve object,
the software uses the rate in the ratecurve object at Maturity and assumes that the value is
constant for the life of the equity option.

Data Types: object

Model — Model
BlackScholes model object

Model, specified as Model and the name of a previously created BlackScholes model object using
finmodel.
Data Types: object

SpotPrice — Current price of underlying asset
nonnegative numeric

Current price of the underlying asset, specified as SpotPrice and a scalar nonnegative numeric.
Data Types: double

Optional Rubinstein Name-Value Arguments

DividendType — Dividend type
"continuous" (default) | string with value of "continuous" | character vector with value of
'continuous'

Dividend type, specified as DividendType and a string or character vector for a continuous dividend
yield.
Data Types: char | string

DividendValue — Dividend yield for underlying stock
0 (default) | scalar numeric

Dividend yield for the underlying stock, specified as DividendValue and a scalar numeric.
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Data Types: double

PricingMethod — Analytic pricing method
default pricer associated with BlackScholes model (default) | string with value "Rubinstein" |
character vector with value 'Rubinstein'

Analytic pricing method, specified as PricingMethod and a character vector or string.

Note The default pricing method for a BlackScholes model is a BlackScholes pricer.

Data Types: double

Properties
DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, returned as a ratecurve object.
Data Types: object

Model — Model
BlackScholes model object

Model, returned as a BlackScholes model object.
Data Types: object

SpotPrice — Current price of underlying asset
nonnegative numeric

Current price of the underlying asset, returned as a scalar nonnegative numeric.
Data Types: double

DividendType — Dividend type
"continuous" (default) | string with value of "continuous"

This property is read-only.

Dividend type, returned as a string.
Data Types: string

DividendValue — Dividend yield for underlying stock
0 (default) | numeric

Dividend yield for the underlying stock, returned as a scalar numeric.
Data Types: double

PricingMethod — Analytic pricing method
default pricer associated with BlackScholes model (default) | string with value "Rubinstein"

Analytic pricing method, returned as a string.
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Data Types: string

Object Functions
price Compute price for interest-rate, equity, or credit derivative instrument with Analytic pricer

Examples

Use Rubinstein Pricer and Black-Scholes Model to Price the Absolure Return for Cliquet
Instruments

This example shows the workflow to price the absolute return for three Cliquet instruments when
you use a BlackScholes model and a Rubinstein pricing method.

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,Basis=12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Cliquet Instrument Object

Use fininstrument to create a Cliquet instrument object for three Cliquet instruments.

ResetDates = Settle + years(0:0.25:1);  
CliquetOpt = fininstrument("Cliquet",ResetDates=ResetDates,InitialStrike=[140;150;160],ExerciseStyle="european",Name="cliquet_option")

CliquetOpt=3×1 object
  3x1 Cliquet array with properties:

    OptionType
    ExerciseStyle
    ResetDates
    LocalCap
    LocalFloor
    GlobalCap
    GlobalFloor
    ReturnType
    InitialStrike
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    Name

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",Volatility=0.28)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.2800
    Correlation: 1

Create Rubinstein Pricer Object

Use finpricer to create a Rubinstein pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",DiscountCurve=myRC,Model=BlackScholesModel,SpotPrice=135,DividendValue=0.025,PricingMethod="Rubinstein")

outPricer = 
  Rubinstein with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 135
    DividendValue: 0.0250
     DividendType: "continuous"

Price Cliquet Instruments

Use price to compute the price and sensitivities for the three Cliquet instruments.

[Price, outPR] = price(outPricer,CliquetOpt,"all")

Price = 3×1

   28.1905
   25.3226
   23.8168

outPR=3×1 object
  3x1 priceresult array with properties:

    Results
    PricerData

outPR.Results 

ans=1×7 table
    Price      Delta      Gamma      Lambda     Vega      Rho      Theta 
    ______    _______    ________    ______    ______    ______    ______
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    28.191    0.59697    0.020662    2.8588    105.38    60.643    -14.62

ans=1×7 table
    Price      Delta      Gamma      Lambda     Vega      Rho       Theta 
    ______    _______    ________    ______    ______    ______    _______

    25.323    0.41949    0.016816    2.2364    100.47    55.367    -11.708

ans=1×7 table
    Price      Delta      Gamma      Lambda     Vega      Rho      Theta 
    ______    _______    ________    ______    ______    ______    ______

    23.817    0.29729    0.011133    1.6851    93.219    51.616    -7.511

See Also
Functions
fininstrument | finmodel | ratecurve

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2021b
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parametercurve
Create parametercurve object for storing interest-rate curve function

Description
Build a parametercurve object using parametercurve.

After creating a parametercurve object, you can use the associated object functions
discountfactors, zerorates, forwardrates, fitNelsonSiegel, and fitSvensson.

For more detailed information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available instruments, models, and pricing methods, see “Choose
Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
parametercurve_obj = parametercurve(Type,Settle,FunctionHandle)
parametercurve_obj = parametercurve( ___ ,Name,Value)

Description

parametercurve_obj = parametercurve(Type,Settle,FunctionHandle) creates a
parametercurve object.

parametercurve_obj = parametercurve( ___ ,Name,Value) sets properties on page 11-2461
using name-value pairs and any of the arguments in the previous syntax. For example,
parametercurve_obj =
parametercurve('zero',datetime(2017,1,30),@(t)polyval([-0.0001 0.003
0.02],t),'Compounding',4,'Basis',5,'Parameters',[-0.0001 0.003 0.02]) creates a
parametercurve object for a zero curve. You can specify multiple name-value pair arguments.

Input Arguments

Type — Type of interest-rate curve
string with value "zero", "forward", or "discount" | character vector with value 'zero',
'forward', or 'discount'

Type of interest-rate curve, specified as a scalar string or character vector for one of the supported
types.
Data Types: char | string

Settle — Settlement date for the curve
datetime | serial date number | date character vector | date string
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Settlement date for the curve, specified as a scalar datetime, serial date number, date character
vector, or date string.
Data Types: double | char | string | datetime

FunctionHandle — Dates corresponding to rate data
function handle

Dates corresponding to the rate data, specified as a function handle. The function handle requires
one numeric input (time-to-maturity) and returns one numeric output (interest rate or discount
factor). For more information on creating a function handle, see “Create Function Handle”.
Data Types: function_handle

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: parametercurve_obj =
parametercurve('zero',datetime(2017,1,30),@(t)polyval([-0.0001 0.003
0.02],t),'Compounding',4,'Basis',5,'Parameters',[-0.0001 0.003 0.02])

Compounding — Compounding frequency for curve
-1 (default) | possible values include: –1, 0, 1, 2, 3, 4, 6, 12.

Compounding frequency for the curve, specified as the comma-separated pair consisting of
'Compounding' and a scalar numeric using the supported values: –1, 0, 1, 2, 3, 4, 6, or 12.
Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13

Day count basis, specified as the comma-separated pair consisting of 'Basis' and a scalar integer.

• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
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• 13 — BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Parameters — Curve parameters
[ ] (default) | numeric

Curve parameters, specified as the comma-separated pair consisting of 'Parameters' and a
numeric value.
Data Types: double

Properties
Type — Type of interest-rate curve
string with value "zero", "forward", or "discount"

Instrument type, returned as a string.
Data Types: string

Settle — Settlement date
datetime

Settlement date, returned as a datetime.
Data Types: datetime

FunctionHandle — Dates corresponding to rate data
function handle

Function handle that defines the interest-rate curve, returned as a scalar function handle.
Data Types: function_handle

Compounding — Compounding frequency for curve
-1 (default) | possible values include: –1, 0, 1, 2, 3, 4, 6, 12.

Compounding frequency for curve, returned as a scalar numeric.
Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13

Day count basis, returned as a scalar integer.
Data Types: double

Parameters — Curve parameters
[ ] (default) | numeric

Curve parameters, returned as a numeric value.
Data Types: double
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Object Functions
discountfactors Calculate discount factors for parametercurve object
zerorates Calculate zero rates for parametercurve object
forwardrates Calculate forward rates for parametercurve object
fitNelsonSiegel Fit Nelson-Siegel model to bond market data
fitSvensson Fit Svensson model to bond market data

Examples

Create parametercurve Object

Create a parametercurve object using parametercurve.

PCobj = parametercurve('zero',datetime(2019,9,15),@(t)polyval([-0.0001 0.003 0.02],t),'Compounding',4,'Basis',5,'Parameters',[-0.0001 0.003 0.02])

PCobj = 
  parametercurve with properties:

              Type: "zero"
            Settle: 15-Sep-2019
       Compounding: 4
             Basis: 5
    FunctionHandle: @(t)polyval([-0.0001,0.003,0.02],t)
        Parameters: [-1.0000e-04 0.0030 0.0200]

See Also
Functions
ratecurve

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Workflow for Creating and Analyzing a ratecurve and parametercurve” on page 1-46
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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Asian
Asian instrument object

Description
Create and price an Asian instrument object for one ore more Asian instruments using this
workflow:

1 Use fininstrument to create an Asian instrument object for one or more Asian instruments.
2 Use finmodel to specify a BlackScholes, Heston, Bates, or Merton model for the Asian

instrument object.
3 Choose a pricing method.

• When using a BlackScholes model, use finpricer to specify a Levy, KemnaVorst,
AssetTree, or TurnbullWakeman pricing method for one or more Asian instruments.

• When using a BlackScholes, Heston, Bates, or Merton model, use finpricer to specify
an AssetMonteCarlo pricing method for one or more Asian instruments.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available models and pricing methods for an Asian instrument, see
“Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
AsianOpt = fininstrument(InstrumentType,'Strike',strike_price,'
ExerciseDate',exercise_date)
AsianOpt = fininstrument( ___ ,Name,Value)

Description

AsianOpt = fininstrument(InstrumentType,'Strike',strike_price,'
ExerciseDate',exercise_date) creates an Asian instrument object for one or more Asian
instruments by specifying InstrumentType and sets the properties on page 11-2466 for the
required name-value pair arguments Strike and ExerciseDate.

The Asian instrument supports arithmetic and geometric, fixed-strike, and floating-strike Asian
options.

AsianOpt = fininstrument( ___ ,Name,Value) sets optional properties on page 11-2466 using
additional name-value pairs in addition to the required arguments in the previous syntax. For
example, AsianOpt =
fininstrument("Asian",'Strike',100,'ExerciseDate',datetime(2019,1,30),'Option
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Type',"put",'ExerciseStyle',"European",'Name',"asian_option") creates an Asian
put option with an European exercise. You can specify multiple name-value pair arguments.

Input Arguments

InstrumentType — Instrument type
string with value "Asian" | string array with values of "Asian" | character vector with value
'Asian' | cell array of character vectors with values of 'Asian'

Instrument type, specified as a string with the value of "Asian", a character vector with the value of
'Asian', an NINST-by-1 string array with values of "Asian", or an NINST-by-1 cell array of
character vectors with values of 'Asian'.
Data Types: string | char | cell

Asian Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: AsianOpt =
fininstrument("Asian",'Strike',100,'ExerciseDate',datetime(2019,1,30),'Option
Type',"put",'ExerciseStyle',"European",'Name',"asian_option")

Required Asian Name-Value Pair Arguments

Strike — Option strike price value
nonnegative value | vector of nonnegative values

Option strike price value, specified as the comma-separated pair consisting of 'Strike' and a scalar
nonnegative value or an NINST-by-1 vector of nonnegative values.
Data Types: double

ExerciseDate — Option exercise dates
datetime | serial date number | date character vector | date string | vector of datetimes | vector of
serial date numbers | cell array of date character vectors | date string array

Option exercise date, specified as the comma-separated pair consisting of 'ExerciseDate' and a
scalar datetime, serial date number, date character vector, date string or an NINST-by-1 vector of
datetimes, serial date numbers, cell array of date character vectors, or date string array.

Note For an Asian European option, there is only one ExerciseDate on the option expiry date.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the ExerciseDate property is stored as a datetime.
Data Types: double | char | cell | string | datetime
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Optional Asian Name-Value Pair Arguments

OptionType — Option type
"call" (default) | string with value "call" or "put" | string array with values "call" or "put" |
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'

Option type, specified as the comma-separated pair consisting of 'OptionType' and a scalar
character vector or string or an NINST-by-1 cell array of character vectors or string array.
Data Types: char | string | cell

ExerciseStyle — Option exercise style
"European" (default) | string with value "European" | string array with a value "European" |
character vector with value 'European' | cell array of character vectors with a value 'European'

Option exercise style, specified as the comma-separated pair consisting of 'ExerciseStyle' and a
scalar string or character vector or an NINST-by-1 cell array of character vectors or string array.
Data Types: string | char | cell

AverageType — Average type
"arithmetic" (default) | string with value "arithmetic" or "geometric" | string array with
values "arithmetic" or "geometric" | character vector with value 'arithmetic' or
'geometric' | cell array of character vectors with values 'arithmetic' or 'geometric'

Average types, specified as the comma-separated pair consisting of 'AverageType' and a scalar
string or character vector or an NINST-by-1 cell array of character vectors or string array. Use
"arithmetic" for an arithmetic average, or "geometric" for a geometric average.

Note When you use a RollGeskeWhaley pricer, the AverageType must be "geometric".

Data Types: char | cell | string

AveragePrice — Average price of underlying asset
0 (default) | scalar numeric | numeric vector

Average price of the underlying asset, specified as the comma-separated pair consisting of
'AveragePrice' and a scalar numeric or an NINST-by-1 numeric vector.
Data Types: double

AverageStartDate — Start date of averaging period
datetime | serial date number | date character vector | date string | vector of datetimes | vector of
serial date numbers | cell array of date character vectors | date string array

Start date of averaging period, specified as the comma-separated pair consisting of
'AverageStartDate' and a scalar datetime, serial date number, date character vector, date string
or an NINST-by-1 vector of datetimes, serial date numbers, cell array of date character vectors, or
date string array.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the AverageStartDate property is stored as a datetime.
Data Types: char | cell | double | datetime | string
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Name — User-defined name for instrument
" " (default) | string | string array | character vector | cell array of character vectors

User-defined name for one of more instruments, specified as the comma-separated pair consisting of
'Name' and a scalar string or character vector or an NINST-by-1 cell array of character vectors or
string array.
Data Types: char | cell | string

Properties
Strike — Option strike price value
nonnegative value | vector of nonnegative values

Option strike price value, returned as a scalar nonnegative value or an NINST-by-1 vector of
nonnegative values.
Data Types: double

ExerciseDate — Option exercise date
datetime | vector of datetimes

Option exercise date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

OptionType — Option type
"call" (default) | scalar string with value "call" or "put" | string array with values "call" or
"put"

Option type, returned as a scalar string or an NINST-by-1 string array with the values of "call" or
"put" .
Data Types: string

ExerciseStyle — Option exercise style
"European" (default) | scalar string with value "European" | string array with values "European"

Option exercise style, returned as a scalar string with the value "European" or NINST-by-1 string
array.
Data Types: string

AverageType — Average type
"arithmetic" (default) | scalar string with value "arithmetic" or "geometric" | string array
with value "arithmetic" or "geometric"

Average types, returned as a scalar string with the value "arithmetic" for arithmetic average or
"geometric" for geometric average or an NINST-by-1 string array.
Data Types: string

AveragePrice — Average price of underlying asset at Settle
0 (default) | scalar numeric | numeric vector

Average price of underlying asset at Settle, returned as a scalar numeric or an NINST-by-1 numeric
vector.
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Data Types: double

AverageStartDate — Start date of averaging period
NaT (default) | datetime | vector of datetimes

Start date of averaging period, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

Name — User-defined name for instrument
" " (default) | string | string array

User-defined name for the instrument, returned as a string or an NINST-by-1 string array.
Data Types: string

Examples

Price Asian Instrument Using a Black-Scholes Model and Turnbull-Wakeman Pricer

This example shows the workflow to price a fixed-strike Asian instrument when you use a
BlackScholes model and a TurnbullWakeman pricing method.

Create Asian Instrument Object

Use fininstrument to create an Asian instrument object.

AsianOpt = fininstrument("Asian",'ExerciseDate',datetime(2022,9,15),'Strike',1000,'OptionType',"put",'Name',"asian_option")

AsianOpt = 
  Asian with properties:

          OptionType: "put"
              Strike: 1000
         AverageType: "arithmetic"
        AveragePrice: 0
    AverageStartDate: NaT
       ExerciseStyle: "european"
        ExerciseDate: 15-Sep-2022
                Name: "asian_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',.2)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.2000
    Correlation: 1
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Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create TurnbullWakeman Pricer Object

Use finpricer to create a TurnbullWakeman pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'DiscountCurve',myRC,'Model',BlackScholesModel,'SpotPrice',1000,'PricingMethod',"TurnbullWakeman")

outPricer = 
  TurnbullWakeman with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 1000
    DividendValue: 0
     DividendType: "continuous"

Price Asian Instrument

Use price to compute the price and sensitivities for the Asian instrument.

[Price, outPR] = price(outPricer,AsianOpt,["all"])

Price = 56.7068

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []

outPR.Results 

ans=1×7 table
    Price      Delta       Gamma      Lambda      Vega      Theta       Rho  
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    ______    _______    _________    _______    ______    _______    _______

    56.707    -0.3155    0.0014381    -5.5637    408.85    -2.9341    -832.53

Price Multiple Asian Instruments Using a Black-Scholes Model and Turnbull-Wakeman Pricer

This example shows the workflow to price multiple fixed-strike Asian instruments when you use a
BlackScholes model and a TurnbullWakeman pricing method.

Create Asian Instrument Object

Use fininstrument to create an Asian instrument object for three Asian instruments.

AsianOpt = fininstrument("Asian",'ExerciseDate',datetime([2022,9,15; 2022,10,15; 2022,11,15]),'Strike',[1000 ; 2000 ; 3000],'OptionType',"put",'Name',"asian_option")

AsianOpt=3×1 object
  3x1 Asian array with properties:

    OptionType
    Strike
    AverageType
    AveragePrice
    AverageStartDate
    ExerciseStyle
    ExerciseDate
    Name

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',.2)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.2000
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
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                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create TurnbullWakeman Pricer Object

Use finpricer to create a TurnbullWakeman pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'DiscountCurve',myRC,'Model',BlackScholesModel,'SpotPrice',1000,'PricingMethod',"TurnbullWakeman")

outPricer = 
  TurnbullWakeman with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 1000
    DividendValue: 0
     DividendType: "continuous"

Price Asian Instruments

Use price to compute the prices and sensitivities for the Asian instruments.

[Price, outPR] = price(outPricer,AsianOpt,["all"])

Price = 3×1
103 ×

    0.0567
    0.8023
    1.6624

outPR=3×1 object
  3x1 priceresult array with properties:

    Results
    PricerData

outPR.Results 

ans=1×7 table
    Price      Delta       Gamma      Lambda      Vega      Theta       Rho  
    ______    _______    _________    _______    ______    _______    _______

    56.707    -0.3155    0.0014381    -5.5637    408.85    -2.9341    -832.53

ans=1×7 table
    Price      Delta        Gamma       Lambda      Vega     Theta       Rho  
    ______    ________    __________    _______    ______    ______    _______
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    802.32    -0.92568    7.9581e-05    -1.1537    20.935    44.139    -5206.3

ans=1×7 table
    Price      Delta        Gamma        Lambda       Vega      Theta       Rho  
    ______    ________    __________    ________    ________    ______    _______

    1662.4    -0.93048    4.5475e-05    -0.55973    0.093861    74.863    -8911.1

Price Asian Instrument Using a Black-Scholes Model and Asset Tree Pricer for CRR Binomial
Tree

This example shows the workflow to price a fixed-strike Asian instrument when you use a
BlackScholes model and an AssetTree pricing method for a Cox-Ross-Rubinstein (CRR) binomial
tree.

Create Asian Instrument Object

Use fininstrument to create an Asian instrument object.

AsianOpt = fininstrument("Asian",'ExerciseDate',datetime(2022,9,15),'Strike',1000,'OptionType',"put",'Name',"asian_option")

AsianOpt = 
  Asian with properties:

          OptionType: "put"
              Strike: 1000
         AverageType: "arithmetic"
        AveragePrice: 0
    AverageStartDate: NaT
       ExerciseStyle: "european"
        ExerciseDate: 15-Sep-2022
                Name: "asian_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',0.2)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.2000
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)
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myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetTree Pricer Object

Use finpricer to create an AssetTree pricer object for a CRR equity tree and use the ratecurve
object for the 'DiscountCurve' name-value pair argument.

NumPeriods = 15;
CRRPricer = finpricer("AssetTree",'DiscountCurve',myRC,'Model',BlackScholesModel,'SpotPrice',1000,'PricingMethod',"CoxRossRubinstein",'Maturity',datetime(2022,9,15),'NumPeriods',NumPeriods)

CRRPricer = 
  CRRTree with properties:

             Tree: [1x1 struct]
       NumPeriods: 15
            Model: [1x1 finmodel.BlackScholes]
    DiscountCurve: [1x1 ratecurve]
        SpotPrice: 1000
     DividendType: "continuous"
    DividendValue: 0
        TreeDates: [21-Dec-2018 09:36:00    28-Mar-2019 19:12:00    ...    ]

CRRPricer.Tree

ans = struct with fields:
    Probs: [2x15 double]
    ATree: {1x16 cell}
     dObs: [15-Sep-2018 00:00:00    21-Dec-2018 09:36:00    ...    ]
     tObs: [0 0.2667 0.5333 0.8000 1.0667 1.3333 1.6000 1.8667 2.1333 ... ]

Price Asian Instrument

Use price to compute the price and sensitivities for the Asian instrument.

[Price, outPR] = price(CRRPricer,AsianOpt,["all"])

Price = 54.9225

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []

outPR.Results 
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ans=1×7 table
    Price      Delta      Gamma      Vega     Lambda       Rho       Theta 
    ______    ________    ______    ______    _______    _______    _______

    54.922    -0.32119    0.0581    393.85    -5.8481    -846.57    -2.4325

Price Asian Instrument Using a Black-Scholes Model and Asset Tree Pricer for Standard
Trinomial Tree

This example shows the workflow to price a fixed-strike Asian instrument when you use a
BlackScholes model and an AssetTree pricing method for a Standard Trinomial (STT) tree.

Create Asian Instrument Object

Use fininstrument to create an Asian instrument object.

AsianOpt = fininstrument("Asian",'ExerciseDate',datetime(2022,9,15),'Strike',1000,'OptionType',"put",'Name',"asian_option")

AsianOpt = 
  Asian with properties:

          OptionType: "put"
              Strike: 1000
         AverageType: "arithmetic"
        AveragePrice: 0
    AverageStartDate: NaT
       ExerciseStyle: "european"
        ExerciseDate: 15-Sep-2022
                Name: "asian_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',0.2)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.2000
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:
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                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetTree Pricer Object

Use finpricer to create an AssetTree pricer object for a Standard Trinomial tree and use the
ratecurve object for the 'DiscountCurve' name-value pair argument.

NumPeriods = 15;
STTPricer = finpricer("AssetTree",'DiscountCurve',myRC,'Model',BlackScholesModel,'SpotPrice',1000,'PricingMethod',"StandardTrinomial",'Maturity',datetime(2022,9,15),'NumPeriods',NumPeriods)

STTPricer = 
  STTree with properties:

             Tree: [1x1 struct]
       NumPeriods: 15
            Model: [1x1 finmodel.BlackScholes]
    DiscountCurve: [1x1 ratecurve]
        SpotPrice: 1000
     DividendType: "continuous"
    DividendValue: 0
        TreeDates: [21-Dec-2018 09:36:00    28-Mar-2019 19:12:00    ...    ]

STTPricer.Tree

ans = struct with fields:
    ATree: {1x16 cell}
    Probs: {1x15 cell}
     dObs: [15-Sep-2018 00:00:00    21-Dec-2018 09:36:00    ...    ]
     tObs: [0 0.2667 0.5333 0.8000 1.0667 1.3333 1.6000 1.8667 2.1333 ... ]

Price Asian Instrument

Use price to compute the price and sensitivities for the Asian instrument.

[Price, outPR] = price(STTPricer,AsianOpt,["all"])

Price = 54.2450

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []

outPR.Results 

ans=1×7 table
    Price      Delta       Gamma       Vega     Lambda       Rho       Theta 
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    ______    ________    ________    ______    _______    _______    _______

    54.245    -0.32307    0.075269    390.55    -5.9558    -839.02    -2.4161

Price Asian Instrument for Foreign Exchange Using Black-Scholes Model and Levy Pricer

This example shows the workflow to price an Asian instrument for an arithmetic average currency
option when you use a BlackScholes model and a Levy pricing method. Assume that the current
exchange rate is $0.52 and has a volatility of 12% per annum. The annualized continuously
compounded foreign risk-free rate is 8% per annum.

Create Asian Instrument Object

Use fininstrument to create an Asian instrument object.

AsianOpt = fininstrument("Asian",'ExerciseDate',datetime(2022,9,15),'Strike',0.65,'OptionType',"put",'ExerciseStyle',"european",'Name',"asian_fx_option")

AsianOpt = 
  Asian with properties:

          OptionType: "put"
              Strike: 0.6500
         AverageType: "arithmetic"
        AveragePrice: 0
    AverageStartDate: NaT
       ExerciseStyle: "european"
        ExerciseDate: 15-Sep-2022
                Name: "asian_fx_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

Sigma = .12;
BlackScholesModel = finmodel("BlackScholes",'Volatility',Sigma)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.1200
    Correlation: 1

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:
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                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Levy Pricer Object

Use finpricer to create a Levy pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument. When you price currencies using an Asian instrument
for an arithmetic average currency option, the DividendType must be 'continuous' and
DividendValue is the annualized risk-free interest rate in the foreign country.

ForeignRate = 0.08;
outPricer = finpricer("analytic",'DiscountCurve',myRC,'Model',BlackScholesModel,'SpotPrice',.52,'DividendType',"continuous",'DividendValue',ForeignRate,'PricingMethod',"Levy")

outPricer = 
  Levy with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 0.5200
    DividendValue: 0.0800
     DividendType: "continuous"

Price Asian FX Instrument

Use price to compute the price and sensitivities for the Asian FX instrument.

[Price, outPR] = price(outPricer,AsianOpt,["all"])

Price = 0.1516

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []

outPR.Results 

ans=1×7 table
     Price      Delta       Gamma     Lambda       Vega        Theta         Rho  
    _______    ________    _______    _______    ________    __________    _______

    0.15161    -0.78532    0.37534    -2.6935    0.015668    -0.0038317    -1.3974
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Price Asian Instrument Using a Black-Scholes Model and Asset Monte-Carlo Pricer

This example shows the workflow to price a fixed-strike Asian instrument when you use a
BlackScholes model and an AssetMonteCarlo pricing method.

Create Asian Instrument Object

Use fininstrument to create an Asian instrument object.

AsianOpt = fininstrument("Asian",'ExerciseDate',datetime(2022,9,15),'Strike',1000,'OptionType',"put",'Name',"asian_option")

AsianOpt = 
  Asian with properties:

          OptionType: "put"
              Strike: 1000
         AverageType: "arithmetic"
        AveragePrice: 0
    AverageStartDate: NaT
       ExerciseStyle: "european"
        ExerciseDate: 15-Sep-2022
                Name: "asian_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',0.2)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.2000
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"
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Create AssetMonteCarlo Pricer Object

Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("AssetMonteCarlo",'DiscountCurve',myRC,"Model",BlackScholesModel,'SpotPrice',200,'simulationDates',datetime(2022,9,15))

outPricer = 
  GBMMonteCarlo with properties:

      DiscountCurve: [1x1 ratecurve]
          SpotPrice: 200
    SimulationDates: 15-Sep-2022
          NumTrials: 1000
      RandomNumbers: []
              Model: [1x1 finmodel.BlackScholes]
       DividendType: "continuous"
      DividendValue: 0

Price Asian Instrument

Use price to compute the price and sensitivities for the Asian instrument.

[Price, outPR] = price(outPricer,AsianOpt,["all"])

Price = 682.3365

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: [1x1 struct]

outPR.Results 

ans=1×7 table
    Price      Delta         Gamma        Lambda       Rho      Theta      Vega  
    ______    ________    ___________    ________    _______    ______    _______

    682.34    -0.93511    -5.6843e-14    -0.27409    -3129.1    27.433    -1.2121

Price Asian Instrument Using a Merton Model and Asset Monte-Carlo Pricer

This example shows the workflow to price a fixed-strike Asian instrument when you use a Merton
model and an AssetMonteCarlo pricing method.

Create Asian Instrument Object

Use fininstrument to create an Asian instrument object.

AsianOpt = fininstrument("Asian",'ExerciseDate',datetime(2022,9,15),'Strike',1000,'OptionType',"put",'Name',"asian_option")

AsianOpt = 
  Asian with properties:
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          OptionType: "put"
              Strike: 1000
         AverageType: "arithmetic"
        AveragePrice: 0
    AverageStartDate: NaT
       ExerciseStyle: "european"
        ExerciseDate: 15-Sep-2022
                Name: "asian_option"

Create Merton Model Object

Use finmodel to create a Merton model object.

MertonModel = finmodel("Merton",'Volatility',0.45,'MeanJ',0.02,'JumpVol',0.07,'JumpFreq',0.09)

MertonModel = 
  Merton with properties:

    Volatility: 0.4500
         MeanJ: 0.0200
       JumpVol: 0.0700
      JumpFreq: 0.0900

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetMonteCarlo Pricer Object

Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("AssetMonteCarlo",'DiscountCurve',myRC,"Model",MertonModel,'SpotPrice',200,'simulationDates',datetime(2022,9,15))

outPricer = 
  MertonMonteCarlo with properties:

 Asian

11-2479



      DiscountCurve: [1x1 ratecurve]
          SpotPrice: 200
    SimulationDates: 15-Sep-2022
          NumTrials: 1000
      RandomNumbers: []
              Model: [1x1 finmodel.Merton]
       DividendType: "continuous"
      DividendValue: 0

Price Asian Instrument

Use price to compute the price and sensitivities for the Asian instrument.

[Price, outPR] = price(outPricer,AsianOpt,["all"])

Price = 682.8127

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: [1x1 struct]

outPR.Results 

ans=1×7 table
    Price      Delta      Gamma     Lambda       Rho      Theta     Vega 
    ______    ________    _____    ________    _______    _____    ______

    682.81    -0.90665      0      -0.26556    -3110.3    25.98    19.316

More About
Asian Option

An Asian option is a path-dependent option with a payoff linked to the average value of the underlying
asset during the life (or some part of the life) of the option.

Asian options are similar to lookback options in that there are two types of Asian options: fixed
(average price option) and floating (average strike option). Fixed Asian options have a specified
strike, while floating Asian options have a strike equal to the average value of the underlying asset
over the life of the option. For more information, see “Asian Option” on page 3-34.

See Also
Functions
finmodel | finpricer

Topics
“Use Black-Scholes Model to Price Asian Options with Several Equity Pricers” on page 3-135
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53
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“Supported Exercise Styles” on page 1-62

Introduced in R2020a
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11-2481



Barrier
Barrier instrument object

Description
Create and price a Barrier instrument object for one or more Barrier instruments using this
workflow:

1 Use fininstrument to create a Barrier instrument object for one or more Barrier
instruments.

2 Use finmodel to specify a BlackScholes, Heston, Bates, or Merton model for the Barrier
instrument object.

3 Choose a pricing method.

• When using a BlackScholes model, use finpricer to specify a BlackScholes,
AssetTree, or VannaVolga pricing method for one or more Barrier instruments.

• When using a BlackScholes, Heston, Bates, or Merton model, use finpricer to specify
an AssetMonteCarlo or FiniteDifference pricing method for one ore more Barrier
instruments.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available models and pricing methods for a Barrier instrument, see
“Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
BarrierOpt = fininstrument(InstrumentType,'Strike',strike_value,'
ExerciseDate',exercise_date,'BarrierValue',barrier_value)
BarrierOpt = fininstrument( ___ ,Name,Value)

Description

BarrierOpt = fininstrument(InstrumentType,'Strike',strike_value,'
ExerciseDate',exercise_date,'BarrierValue',barrier_value) creates a Barrier
instrument object for one or more Barrier instruments by specifying InstrumentType and sets the
properties on page 11-2485 for the required name-value pair arguments Strike, ExerciseDate,
and BarrierValue.

BarrierOpt = fininstrument( ___ ,Name,Value) sets optional properties on page 11-2485
using additional name-value pairs in addition to the required arguments in the previous syntax. For
example, BarrierOpt =
fininstrument("Barrier",'Strike',100,'ExerciseDate',datetime(2019,1,30),'Barr
ierValue',110,'OptionType',"put",'ExerciseStyle',"European",'BarrierType',"DO
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",'Name',"barrier_option") creates a Barrier put option with an European exercise. You can
specify multiple name-value pair arguments.

Input Arguments

InstrumentType — Instrument type
string with value "Barrier" | string with value "Barrier" | string array with values of "Barrier"
| character vector with value 'Barrier' | cell array of character vectors with values of 'Barrier'

Instrument type, specified as a string with the value of "Barrier", a character vector with the value
of 'Barrier', an NINST-by-1 string array with values "Barrier", or an NINST-by-1 cell array of
character vectors with values of 'Barrier'.
Data Types: char | string | cell

Barrier Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: BarrierOpt =
fininstrument("Barrier",'Strike',100,'ExerciseDate',datetime(2019,1,30),'Barr
ierValue',110,'OptionType',"put",'ExerciseStyle',"European",'BarrierType',"DO
",'Name',"barrier_option")

Required Barrier Name-Value Pair Arguments

Strike — Option strike value
nonnegative value | vector of nonnegative values

Option strike value, specified as the comma-separated pair consisting of 'Strike' and a scalar
nonnegative value or an NINST-by-1 vector of nonnegative values.
Data Types: double

ExerciseDate — Option exercise date
datetime | serial date number | date character vector | date string | vector of datetimes | vector of
serial date numbers | cell array of date character vectors | date string array

Option exercise date, specified as the comma-separated pair consisting of 'ExerciseDate' and a
scalar datetime, serial date number, date character vector, date string or an NINST-by-1 vector of
datetimes, serial date numbers, cell array of date character vectors, or date string array.

Note For a European option, there is only one ExerciseDate on the option expiry date.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the ExerciseDate property is stored as a datetime.
Data Types: double | char | cell | string | datetime

BarrierValue — Barrier level
scalar numeric | numeric vector
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Barrier level, specified as the comma-separated pair consisting of 'BarrierLevel' and a scalar
numeric or an NINST-by-1 numeric vector.
Data Types: double

Optional Barrier Name-Value Pair Arguments

OptionType — Option type
"call" (default) | string with value "call" or "put" | string array with values "call" or "put" |
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'

Option type, specified as the comma-separated pair consisting of 'OptionType' and a scalar
character vector or string or an NINST-by-1 cell array of character vectors or string array.
Data Types: char | cell | string

ExerciseStyle — Option exercise style
"European" (default) | string with value "European" or "American" | string array with values
"European" or "American" | character vector with value 'European' or 'American' | cell array
of character vectors with values 'European' or 'American'

Option exercise style, specified as the comma-separated pair consisting of 'ExerciseStyle' and a
scalar string or character vector or an NINST-by-1 cell array of character vectors or string array.

Note For a Barrier option, the BlackScholes pricer supports only "European" exercise and the
FiniteDifference pricer supports an "American" or "European" exercise.

Data Types: string | char | cell

BarrierType — Barrier option type
"UO" (default) | string with value "UI", "UO", "DI", or "DO" | string array with values "UI", "UO",
"DI", or "DO" | character vector with value 'UI', 'UO', 'DI', or 'DO' | cell array of character
vectors with values 'UI', 'UO', 'DI', or 'DO'

Barrier option type, specified as the comma-separated pair consisting of 'BarrierType' and a
scalar string or character vector or an NINST-by-1 cell array of character vectors or string array with
one of the following values:

• "UI" — Up knock-in

This option becomes effective when the price of the underlying asset passes above the barrier
level. If the underlying asset goes above the barrier level during the life of the option, the option
holder has the right, but not the obligation, to buy or sell (call or put) the underlying security at
the strike price.

• "UO" — Up knock-out

This option gives the option holder the right, but not the obligation, to buy or sell (call or put) the
underlying security at the strike price as long as the underlying asset does not go above the
barrier level during the life of the option. This option terminates when the price of the underlying
security passes above the barrier level. If the spot price of the underlying asset reaches or
exceeds the barrier level with an up-and-out option, the rebate is paid.

• "DI" — Down knock-in
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This option becomes effective when the price of the underlying stock passes below the barrier
level. If the underlying security goes below the barrier level during the life of the option, the
option holder has the right, but not the obligation, to buy or sell (call or put) the underlying
security at the strike price. With a down-and-in option, the rebate is paid if the spot price of the
underlying does not reach the barrier level during the life of the option. Note that a Barrier
instrument using the FiniteDifference pricer does not support American knock-in barrier
options.

• "DO" — Down knock-up

This option gives the option holder the right, but not the obligation, to buy or sell (call or put) the
underlying asset at the strike price as long as the underlying asset does not go below the barrier
level during the life of the option. This option terminates when the price of the underlying security
passes below the barrier level. If the option is worthless when it expires, the option holder
receives a rebate amount.

Option Barrier Type Payoff If Barrier Crossed Payoff If Barrier Not
Crossed

Call or Put Down knock-out Worthless Standard Call or Put
Call or Put Down knock-in Call or Put Worthless
Call or Put Up knock-out Worthless Standard Call or Put
Call or Put Up knock-in Standard Call or Put Worthless

Data Types: char | cell | string

Rebate — Rebate value
0 (default) | scalar numeric | numeric vector

Rebate value, specified as the comma-separated pair consisting of 'Rebate' and a scalar numeric or
an NINST-by-1 numeric vector.

• For knock-in options, the Rebate is paid at expiry.
• For knock-out options, the Rebate is paid when BarrierValue is reached.

Data Types: double

Name — User-defined name for instrument
" " (default) | string | string array | character vector | cell array of character vectors

User-defined name for the instrument, specified as the comma-separated pair consisting of 'Name'
and a scalar string or character vector or an NINST-by-1 cell array of character vectors or string
array.
Data Types: char | cell | string

Properties
Strike — Option strike value
nonnegative value | vector of nonnegative values

Option strike value, returned as a scalar nonnegative value or an NINST-by-1 vector of nonnegative
values.
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Data Types: double

ExerciseDate — Option exercise date
datetime | vector of datetimes

Option exercise date, returned as a datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

OptionType — Option type
"call" (default) | string with value "call" or "put" | string array with values "call" or "put"

Option type, returned as a scalar string or an NINST-by-1 string array with the values of "call" or
"put".
Data Types: string

ExerciseStyle — Option exercise style
"European" (default) | string with value "European" or "American" | string array with values
"European" or "American"

Option exercise style, returned as a scalar string or NINST-by-1 string array with the values of
"European" or "American".
Data Types: string

BarrierSpec — Barrier option type
"UO" European (default) | string with value "UI", "UO", "DI", or "DO" | string array with values
"UI", "UO", "DI", or "DO"

Barrier option type, returned as a scalar string or NINST-by-1 string array with the values of "UI",
"UO", "DI", or "DO".
Data Types: string

BarrierValue — Barrier level
scalar numeric | numeric vector

Barrier level, returned as a scalar numeric or an NINST-by-1 numeric vector.
Data Types: double

Rebate — Rebate value
0 (default) | scalar numeric | numeric vector

Rebate value, returned as a scalar numeric or an NINST-by-1 numeric vector.
Data Types: double

Name — User-defined name for instrument
" " (default) | string | string array

User-defined name for the instrument, returned as a string or an NINST-by-1 string array.
Data Types: string

Examples
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Price Barrier Instrument Using Black-Scholes Model and Finite Difference Pricer

This example shows the workflow to price an Barrier instrument when you use a BlackScholes
model and a FiniteDifference pricing method.

Create Barrier Instrument Object

Use fininstrument to create an Barrier instrument object.

BarrierOpt = fininstrument("Barrier",'Strike',45,'ExerciseDate',datetime(2019,1,1),'OptionType',"call",'ExerciseStyle',"american",'BarrierType',"DO",'BarrierValue',40,'Name',"barrier_option")

BarrierOpt = 
  Barrier with properties:

       OptionType: "call"
           Strike: 45
      BarrierType: "do"
     BarrierValue: 40
           Rebate: 0
    ExerciseStyle: "american"
     ExerciseDate: 01-Jan-2019
             Name: "barrier_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',0.30)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.3000
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,1,1);
Maturity = datetime(2023,1,1);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',1)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 1
                Dates: 01-Jan-2023
                Rates: 0.0350
               Settle: 01-Jan-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"
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Create FiniteDifference Pricer Object

Use finpricer to create a FiniteDifference pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("FiniteDifference",'Model',BlackScholesModel,'DiscountCurve',myRC,'SpotPrice',50)

outPricer = 
  FiniteDifference with properties:

     DiscountCurve: [1x1 ratecurve]
             Model: [1x1 finmodel.BlackScholes]
         SpotPrice: 50
    GridProperties: [1x1 struct]
      DividendType: "continuous"
     DividendValue: 0

Price Barrier Instrument

Use price to compute the price and sensitivities for the Barrier instrument.

[Price, outPR] = price(outPricer,BarrierOpt,["all"])

Price = 8.5014

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×7 table
    Price      Delta       Gamma      Lambda     Theta      Rho       Vega 
    ______    _______    _________    ______    _______    ______    ______

    8.5014    0.85673    0.0057199    5.0388    -1.8461    26.238    6.1837

Price Multiple Barrier Instruments Using Black-Scholes Model and Finite Difference Pricer

This example shows the workflow to price multiple Barrier instruments when you use a
BlackScholes model and a FiniteDifference pricing method.

Create Barrier Instrument Object

Use fininstrument to create an Barrier instrument object for three Barrier instruments.

BarrierOpt = fininstrument("Barrier",'Strike',45,'ExerciseDate',datetime([2019,1,1; 2019,2,1 ; 2019,3,1]),'OptionType',"call",'ExerciseStyle',"american",'BarrierType',"DO",'BarrierValue', [40; 30; 20],'Name',"barrier_option")

BarrierOpt=3×1 object
  3x1 Barrier array with properties:

    OptionType
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    Strike
    BarrierType
    BarrierValue
    Rebate
    ExerciseStyle
    ExerciseDate
    Name

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',0.30)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.3000
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,1,1);
Maturity = datetime(2023,1,1);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',1)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 1
                Dates: 01-Jan-2023
                Rates: 0.0350
               Settle: 01-Jan-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create FiniteDifference Pricer Object

Use finpricer to create a FiniteDifference pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("FiniteDifference",'Model',BlackScholesModel,'DiscountCurve',myRC,'SpotPrice',50)

outPricer = 
  FiniteDifference with properties:

     DiscountCurve: [1x1 ratecurve]
             Model: [1x1 finmodel.BlackScholes]
         SpotPrice: 50
    GridProperties: [1x1 struct]
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      DividendType: "continuous"
     DividendValue: 0

Price Barrier Instruments

Use price to compute the prices and sensitivities for the Barrier instruments.

[Price, outPR] = price(outPricer,BarrierOpt,["all"])

Price = 3×1

    8.5014
    9.7112
    9.9901

outPR=3×1 object
  3x1 priceresult array with properties:

    Results
    PricerData

outPR.Results

ans=1×7 table
    Price      Delta       Gamma      Lambda     Theta      Rho       Vega 
    ______    _______    _________    ______    _______    ______    ______

    8.5014    0.85673    0.0057199    5.0388    -1.8461    26.238    6.1837

ans=1×7 table
    Price      Delta      Gamma      Lambda     Theta      Rho       Vega 
    ______    _______    ________    ______    _______    ______    ______

    9.7112    0.73186    0.020793    3.7681    -3.2754    29.014    16.885

ans=1×7 table
    Price     Delta      Gamma      Lambda     Theta      Rho       Vega 
    ______    ______    ________    ______    _______    ______    ______

    9.9901    0.7296    0.020326    3.6516    -3.2151    30.872    17.803

Price Barrier Instrument Using Black-Scholes Model and Asset Tree Pricer for EQP Binomial
Tree

This example shows the workflow to price an Barrier instrument when you use a BlackScholes
model and an AssetTree pricing method using an Equal Probability (EQP) tree.

Create Barrier Instrument Object

Use fininstrument to create an Barrier instrument object.

BarrierOpt = fininstrument("Barrier",'Strike',45,'ExerciseDate',datetime(2019,1,1),'OptionType',"call",'ExerciseStyle',"american",'BarrierType',"DO",'BarrierValue',40,'Name',"barrier_option")
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BarrierOpt = 
  Barrier with properties:

       OptionType: "call"
           Strike: 45
      BarrierType: "do"
     BarrierValue: 40
           Rebate: 0
    ExerciseStyle: "american"
     ExerciseDate: 01-Jan-2019
             Name: "barrier_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',0.30)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.3000
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,1,1);
Maturity = datetime(2023,1,1);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',1)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 1
                Dates: 01-Jan-2023
                Rates: 0.0350
               Settle: 01-Jan-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetTree Pricer Object

Use finpricer to create an AssetTree pricer object with an EQP equity tree and use the
ratecurve object for the 'DiscountCurve' name-value pair argument.

NumPeriods = 15;
EQPPricer = finpricer("AssetTree",'DiscountCurve',myRC,'Model',BlackScholesModel,'SpotPrice',1000,'PricingMethod',"EqualProbability",'Maturity',datetime(2019,1,1),'NumPeriods',NumPeriods)

EQPPricer = 
  EQPTree with properties:
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             Tree: [1x1 struct]
       NumPeriods: 15
            Model: [1x1 finmodel.BlackScholes]
    DiscountCurve: [1x1 ratecurve]
        SpotPrice: 1000
     DividendType: "continuous"
    DividendValue: 0
        TreeDates: [25-Jan-2018 08:00:00    18-Feb-2018 16:00:00    ...    ]

EQPPricer.Tree

ans = struct with fields:
    Probs: [2x15 double]
    ATree: {1x16 cell}
     dObs: [01-Jan-2018 00:00:00    25-Jan-2018 08:00:00    ...    ]
     tObs: [0 0.0667 0.1333 0.2000 0.2667 0.3333 0.4000 0.4667 0.5333 ... ]

Price Barrier Instrument

Use price to compute the price and sensitivities for the Barrier instrument.

[Price, outPR] = price(EQPPricer,BarrierOpt,["all"])

Price = 956.5478

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×7 table
    Price     Delta      Gamma          Vega        Lambda     Rho      Theta 
    ______    _____    __________    ___________    ______    _____    _______

    956.55      1      9.3133e-18    -6.8212e-09    1.0454    43.45    -1.5208

outPR.PricerData.PriceTree

ans = struct with fields:
     PTree: {1x16 cell}
    ExTree: {1x16 cell}
      tObs: [0 0.0667 0.1333 0.2000 0.2667 0.3333 0.4000 0.4667 0.5333 ... ]
      dObs: [01-Jan-2018    25-Jan-2018    18-Feb-2018    ...    ]
     Probs: [2x15 double]
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Price Barrier Instrument Using Black-Scholes Model and Asset Tree Pricer for Standard
Trinomial Tree

This example shows the workflow to price an Barrier instrument when you use a BlackScholes
model and an AssetTree pricing method using a Standard Trinomial (STT) tree.

Create Barrier Instrument Object

Use fininstrument to create an Barrier instrument object.

BarrierOpt = fininstrument("Barrier",'Strike',45,'ExerciseDate',datetime(2019,1,1),'OptionType',"call",'ExerciseStyle',"american",'BarrierType',"DO",'BarrierValue',40,'Name',"barrier_option")

BarrierOpt = 
  Barrier with properties:

       OptionType: "call"
           Strike: 45
      BarrierType: "do"
     BarrierValue: 40
           Rebate: 0
    ExerciseStyle: "american"
     ExerciseDate: 01-Jan-2019
             Name: "barrier_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',0.30)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.3000
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,1,1);
Maturity = datetime(2023,1,1);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',1)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 1
                Dates: 01-Jan-2023
                Rates: 0.0350
               Settle: 01-Jan-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
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     LongExtrapMethod: "previous"

Create AssetTree Pricer Object

Use finpricer to create an AssetTree pricer object with a Standard Trinomial (STT) equity tree
and use the ratecurve object for the 'DiscountCurve' name-value pair argument.

NumPeriods = 15;
STTPricer = finpricer("AssetTree",'DiscountCurve',myRC,'Model',BlackScholesModel,'SpotPrice',1000,'PricingMethod',"StandardTrinomial",'Maturity',datetime(2019,1,1),'NumPeriods',NumPeriods)

STTPricer = 
  STTree with properties:

             Tree: [1x1 struct]
       NumPeriods: 15
            Model: [1x1 finmodel.BlackScholes]
    DiscountCurve: [1x1 ratecurve]
        SpotPrice: 1000
     DividendType: "continuous"
    DividendValue: 0
        TreeDates: [25-Jan-2018 08:00:00    18-Feb-2018 16:00:00    ...    ]

STTPricer.Tree

ans = struct with fields:
    ATree: {1x16 cell}
    Probs: {1x15 cell}
     dObs: [01-Jan-2018 00:00:00    25-Jan-2018 08:00:00    ...    ]
     tObs: [0 0.0667 0.1333 0.2000 0.2667 0.3333 0.4000 0.4667 0.5333 ... ]

Price Barrier Instrument

Use price to compute the price and sensitivities for the Barrier instrument.

[Price, outPR] = price(STTPricer,BarrierOpt,["all"])

Price = 956.5444

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×7 table
    Price     Delta       Gamma         Vega      Lambda     Rho      Theta 
    ______    _____    ___________    ________    ______    ______    ______

    956.54      1      -1.9331e-17    -0.20023    1.0454    44.112    -1.514

outPR.PricerData.PriceTree

ans = struct with fields:
     PTree: {1x16 cell}
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    ExTree: {1x16 cell}
      tObs: [0 0.0667 0.1333 0.2000 0.2667 0.3333 0.4000 0.4667 0.5333 ... ]
      dObs: [01-Jan-2018    25-Jan-2018    18-Feb-2018    ...    ]
     Probs: {1x15 cell}

Price Barrier Instrument Using Black-Scholes Model and Asset Monte-Carlo Pricer

This example shows the workflow to price an Barrier instrument when you use a BlackScholes
model and a AssetMonteCarlo pricing method.

Create Barrier Instrument Object

Use fininstrument to create an Barrier instrument object.

BarrierOpt = fininstrument("Barrier",'Strike',45,'ExerciseDate',datetime(2019,1,1),'OptionType',"call",'ExerciseStyle',"american",'BarrierType',"DO",'BarrierValue',40,'Name',"barrier_option")

BarrierOpt = 
  Barrier with properties:

       OptionType: "call"
           Strike: 45
      BarrierType: "do"
     BarrierValue: 40
           Rebate: 0
    ExerciseStyle: "american"
     ExerciseDate: 01-Jan-2019
             Name: "barrier_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',0.30)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.3000
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,1,1);
Maturity = datetime(2023,1,1);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',1)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
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                Basis: 1
                Dates: 01-Jan-2023
                Rates: 0.0350
               Settle: 01-Jan-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetMonteCarlo Pricer Object

Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("AssetMonteCarlo",'DiscountCurve',myRC,"Model",BlackScholesModel,'SpotPrice',200,'simulationDates',datetime(2019,1,1))

outPricer = 
  GBMMonteCarlo with properties:

      DiscountCurve: [1x1 ratecurve]
          SpotPrice: 200
    SimulationDates: 01-Jan-2019
          NumTrials: 1000
      RandomNumbers: []
              Model: [1x1 finmodel.BlackScholes]
       DividendType: "continuous"
      DividendValue: 0

Price Barrier Instrument

Use price to compute the price and sensitivities for the Barrier instrument.

[Price, outPR] = price(outPricer,BarrierOpt,["all"])

Price = 156.6270

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×7 table
    Price     Delta        Gamma       Lambda     Rho     Theta     Vega  
    ______    ______    ___________    ______    _____    _____    _______

    156.63    1.0004    -7.6028e-12    1.2774    43.45      0      0.67904

Price Barrier Instrument Using Heston Model and Asset Monte-Carlo Pricer

This example shows the workflow to price an Barrier instrument when you use a Heston model and
an AssetMonteCarlo pricing method.
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Create Barrier Instrument Object

Use fininstrument to create an Barrier instrument object.

BarrierOpt = fininstrument("Barrier",'Strike',45,'ExerciseDate',datetime(2019,1,1),'OptionType',"call",'ExerciseStyle',"american",'BarrierType',"DO",'BarrierValue',40,'Name',"barrier_option")

BarrierOpt = 
  Barrier with properties:

       OptionType: "call"
           Strike: 45
      BarrierType: "do"
     BarrierValue: 40
           Rebate: 0
    ExerciseStyle: "american"
     ExerciseDate: 01-Jan-2019
             Name: "barrier_option"

Create Heston Model Object

Use finmodel to create a Heston model object.

HestonModel = finmodel("Heston",'V0',0.032,'ThetaV',0.1,'Kappa',0.003,'SigmaV',0.2,'RhoSV',0.9)

HestonModel = 
  Heston with properties:

        V0: 0.0320
    ThetaV: 0.1000
     Kappa: 0.0030
    SigmaV: 0.2000
     RhoSV: 0.9000

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,1,1);
Maturity = datetime(2023,1,1);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',1)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 1
                Dates: 01-Jan-2023
                Rates: 0.0350
               Settle: 01-Jan-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"
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Create AssetMonteCarlo Pricer Object

Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("AssetMonteCarlo",'DiscountCurve',myRC,"Model",HestonModel,'SpotPrice',200,'simulationDates',datetime(2019,1,1))

outPricer = 
  HestonMonteCarlo with properties:

      DiscountCurve: [1x1 ratecurve]
          SpotPrice: 200
    SimulationDates: 01-Jan-2019
          NumTrials: 1000
      RandomNumbers: []
              Model: [1x1 finmodel.Heston]
       DividendType: "continuous"
      DividendValue: 0

Price Barrier Instrument

Use price to compute the price and sensitivities for the Barrier instrument.

[Price, outPR] = price(outPricer,BarrierOpt,["all"])

Price = 156.9962

outPR = 
  priceresult with properties:

       Results: [1x8 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×8 table
    Price    Delta       Gamma      Lambda     Rho     Theta     Vega      VegaLT  
    _____    ______    _________    ______    _____    _____    ______    _________

     157     1.0022    -1.08e-12    1.2768    43.45      0      2.7882    0.0013677

More About
Barrier Option

A barrier option has not only a strike price but also a barrier level and sometimes a rebate.

The payoff for this type of option depends on whether the underlying asset crosses the predetermined
trigger value (barrier level), indicated by BarrierValue, during the life of the option. If the option
cannot be exercised because the barrier level either has or has not been reached, a fixed rebate
amount is paid. For more information, see “Barrier Option” on page 3-20.
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See Also
Functions
DoubleBarrier | finmodel | finpricer

Topics
“Use Deep Learning to Approximate Barrier Option Prices with Heston Model” on page 3-149
“Calibrate Option Pricing Model Using Heston Model” on page 3-143
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53
“Supported Exercise Styles” on page 1-62

Introduced in R2020a
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DoubleBarrier
DoubleBarrier instrument object

Description
Create and price a DoubleBarrier instrument object for one of more Double Barrier instruments
using this workflow:

1 Use fininstrument to create a DoubleBarrier instrument object for one of more Double
Barrier instruments.

2 Use finmodel to specify a BlackScholes, Heston, Bates, or Merton model for the
DoubleBarrier instrument object.

3 Choose a pricing method.

• When using a BlackScholes model, use finpricer to specify an IkedaKunitomo or
VannaVolga pricing method for one or more DoubleBarrier instruments.

• When using a BlackScholes, Heston, Bates, or Merton model, use finpricer to specify
a FiniteDifference or an AssetMonteCarlo pricing method for one or more
DoubleBarrier instruments.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available models and pricing methods for a DoubleBarrier instrument,
see “Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
DoubleBarrierOpt = fininstrument(InstrumentType,'Strike',strike_value,'
ExerciseDate',exercise_date,'BarrierValue',barrier_value)
DoubleBarrierOpt = fininstrument( ___ ,Name,Value)

Description

DoubleBarrierOpt = fininstrument(InstrumentType,'Strike',strike_value,'
ExerciseDate',exercise_date,'BarrierValue',barrier_value) creates a
DoubleBarrier instrument object for one of more Double Barrier instruments by specifying
InstrumentType and sets properties on page 11-2503 using the required name-value pair
arguments Strike, ExerciseDate, and BarrierValue.

DoubleBarrierOpt = fininstrument( ___ ,Name,Value) sets optional properties on page 11-
2503 using additional name-value pair arguments in addition to the required arguments in the
previous syntax. For example, DoubleBarrierOpt =
fininstrument("DoubleBarrier",'Strike',100,'ExerciseDate',datetime(2019,1,30)
,'BarrierValue',110,'OptionType',"put",'ExerciseStyle',"European",'BarrierTyp
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e',"DKI",'Name',"doublebarrier_option") creates a DoubleBarrier put option with a
European exercise. You can specify multiple name-value pair arguments.

Input Arguments

InstrumentType — Instrument type
string with value "DoubleBarrier" | string array with values of "DoubleBarrier" | character
vector with value 'DoubleBarrier' | cell array of character vectors with values of
'DoubleBarrier'

Instrument type, specified as a string with the value of "DoubleBarrier", a character vector with
the value of 'DoubleBarrier', an NINST-by-1 string array with values of "DoubleBarrier", or an
NINST-by-1 cell array of character vectors with values of 'DoubleBarrier'.
Data Types: char | cell | string

DoubleBarrier Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: DoubleBarrierOpt =
fininstrument("DoubleBarrier",'Strike',100,'ExerciseDate',datetime(2019,1,30)
,'BarrierValue',110,'OptionType',"put",'ExerciseStyle',"European",'BarrierTyp
e',"DKI",'Name',"doublebarrier_option")

Required DoubleBarrier Name-Value Pair Arguments

Strike — Option strike value
nonnegative value | vector of nonnegative values

Option strike price value, specified as the comma-separated pair consisting of 'Strike' and a scalar
nonnegative value or an NINST-by-1 vector of nonnegative values.
Data Types: double

ExerciseDate — Option exercise date
datetime | serial date number | date character vector | date string | vector of datetimes | vector of
serial date numbers | cell array of date character vectors | date string array

Option exercise date, specified as the comma-separated pair consisting of 'ExerciseDate' and a
scalar datetime, serial date number, date character vector, date string or an NINST-by-1 vector of
datetimes, serial date numbers, cell array of date character vectors, or date string array.

Note For a European option, there is only one ExerciseDate value on the option expiry date.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the ExerciseDate property is stored as a datetime.
Data Types: double | char | cell | string | datetime

BarrierValue — Double barrier value
numeric
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Double barrier value, specified as the comma-separated pair consisting of 'BarrierValue' and an
NINST-by-1 matrix of numeric values, where each element is a 1-by-2 vector where the first column is
Barrier(1)(UB) and the second column is Barrier(2)(LB). Barrier(1) must be greater than Barrier(2).
Data Types: double

Optional DoubleBarrier Name-Value Pair Arguments

OptionType — Option type
"call" (default) | string with value "call" or "put" | string array with values "call" or "put" |
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'

Option type, specified as the comma-separated pair consisting of 'OptionType' and a scalar string
or character vector or an NINST-by-1 cell array of character vectors or string array.
Data Types: char | cell | string

ExerciseStyle — Option exercise style
"European" (default) | string with value "European" or "American" | string array with values
"European" or "American" | character vector with value 'European' or 'American' | cell array
of character vectors with values 'European' or 'American'

Option exercise style, specified as the comma-separated pair consisting of 'ExerciseStyle' and a
scalar string or character vector or an NINST-by-1 cell array of character vectors or string array.

Note For a DoubleBarrier option, the IkedaKunitomo pricer supports only a "European"
exercise and the FiniteDifference pricer supports an "American" or "European" exercise.

Data Types: string | cell | char

BarrierType — Double barrier type
"DKO" (default) | string with value of "DKI" or "DKO" | string array with values of "DKI" or "DKO" |
character vector with value of 'DKI' or 'DKO' | cell array of character vectors with values of 'DKI'
or 'DKO'

Double barrier type, specified as the comma-separated pair consisting of 'BarrierType' and a
scalar character vector or string or an NINST-by-1 cell array of character vectors or string array with
one of the following values:

• 'DKI' — Double knock-in

The 'DKI' option becomes effective when the price of the underlying asset reaches one of the
barriers. It gives the option holder the right but not the obligation to buy or sell the underlying
security at the strike price, if the underlying asset goes above or below the barrier levels during
the life of the option.

• 'DKO' — Double knock-out

The 'DKO' option gives the option holder the right but not the obligation to buy or sell the
underlying security at the strike price, as long as the underlying asset remains between the
barrier levels during the life of the option. This option terminates when the price of the underlying
asset passes one of the barriers.
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Option Barrier Type Payoff If Any Barrier
Crossed

Payoff If Barriers Not
Crossed

Call/Put Double Knock-in Standard Call/Put Worthless
Call/Put Double Knock-out Worthless Standard Call/Put

Data Types: char | cell | string

Rebate — Barrier rebate
[0 0] (default) | numeric

Barrier rebate, specified as the comma-separated pair consisting of 'Rebate' and a numeric matrix.

• For knock-in options, the Rebate is paid at expiry.
• For knock-out options, the Rebate is paid if the Upper Barrier(1)(UB) is hit and the second value

is paid if the Lower Barrier(2)(LB) is hit.

Data Types: double

Name — User-defined name for instrument
" " (default) | string | string array | character vector | cell array of character vectors

User-defined name for the instrument, specified as the comma-separated pair consisting of 'Name'
and a scalar string or character vector or an NINST-by-1 cell array of character vectors or string
array.
Data Types: char | cell | string

Properties
Strike — Option strike price value
nonnegative value | vector of nonnegative values

Option strike price value, returned as a scalar nonnegative value or an NINST-by-1 vector of
nonnegative values.
Data Types: double

ExerciseDate — Option exercise date
datetime | vector of datetimes

Option exercise date, returned as a datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

BarrierValue — Double barrier value
numeric

Double barrier value, returned as a numeric matrix.
Data Types: double

OptionType — Option type
"call" (default) | string with value "call" or "put" | string array with values "call" or "put"
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Option type, returned as a scalar string or an NINST-by-1 string array with the values "call" or
"put".
Data Types: string

ExerciseStyle — Option exercise style
"European" (default) | string with value "European" or "American" | string array with values
"European" or "American"

Option exercise style, returned as a scalar string or an NINST-by-1 string array with the values of
"European" or "American".
Data Types: string

BarrierType — Double barrier type
"DKO" (default) | string with value of "DKI" or "DKO" | string array with values of "DKI" or "DKO"

Double barrier type, returned as a scalar string or an NINST-by-1 string array with the values of
"DKI" or "DKO".
Data Types: string

Rebate — Barrier rebate
[0 0] (default) | numeric

Barrier rebate, returned as a numeric matrix.
Data Types: double

Name — User-defined name for instrument
" " (default) | string | string array

User-defined name for the instrument, returned as a scalar string or an NINST-by-1 string array.
Data Types: string

Examples

Price Double Barrier Instrument Using Black-Scholes Model and Finite Difference Pricer

This example shows the workflow to price an DoubleBarrier instrument when you use a
BlackScholes model and a FiniteDifference pricing method.

Create DoubleBarrier Instrument Object

Use fininstrument to create a DoubleBarrier instrument object.

DoubleBarrierOpt = fininstrument("DoubleBarrier",'Strike',75,'ExerciseDate',datetime(2019,1,1),'OptionType',"call",'ExerciseStyle',"american",'BarrierType',"DKO",'BarrierValue',[110 80],'Name',"doublebarrier_option")

DoubleBarrierOpt = 
  DoubleBarrier with properties:

       OptionType: "call"
           Strike: 75
     BarrierValue: [110 80]
    ExerciseStyle: "american"
     ExerciseDate: 01-Jan-2019
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      BarrierType: "dko"
           Rebate: [0 0]
             Name: "doublebarrier_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',0.30)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.3000
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,1,1);
Maturity = datetime(2023,1,1);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',1)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 1
                Dates: 01-Jan-2023
                Rates: 0.0350
               Settle: 01-Jan-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create FiniteDifference Pricer Object

Use finpricer to create a FiniteDifference pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("FiniteDifference",'Model',BlackScholesModel,'DiscountCurve',myRC,'SpotPrice',100)

outPricer = 
  FiniteDifference with properties:

     DiscountCurve: [1x1 ratecurve]
             Model: [1x1 finmodel.BlackScholes]
         SpotPrice: 100
    GridProperties: [1x1 struct]
      DividendType: "continuous"
     DividendValue: 0
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Price DoubleBarrier Instrument

Use price to compute the price and sensitivities for the DoubleBarrier instrument.

[Price, outPR] = price(outPricer,DoubleBarrierOpt,["all"])

Price = 25

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×7 table
    Price    Delta    Gamma    Lambda      Theta       Rho    Vega
    _____    _____    _____    ______    __________    ___    ____

     25        1        0        4       2.2737e-13     0      0  

Price Multiple Double Barrier Instruments Using Black-Scholes Model and Finite Difference
Pricer

This example shows the workflow to price multiple DoubleBarrier instruments when you use a
BlackScholes model and a FiniteDifference pricing method.

Create DoubleBarrier Instrument Object

Use fininstrument to create a DoubleBarrier instrument object for three Double Barrier
instruments.

DoubleBarrierOpt = fininstrument("DoubleBarrier",'Strike',[75 ; 85 ; 95],'ExerciseDate',datetime([2019,1,1 ; 2019,1,2 ; 2019,1,3]),'OptionType',"call",'ExerciseStyle',"american",'BarrierType',"DKO",'BarrierValue',[110 80],'Name',"doublebarrier_option")

DoubleBarrierOpt=3×1 object
  3x1 DoubleBarrier array with properties:

    OptionType
    Strike
    BarrierValue
    ExerciseStyle
    ExerciseDate
    BarrierType
    Rebate
    Name

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',0.30)

BlackScholesModel = 
  BlackScholes with properties:
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     Volatility: 0.3000
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,1,1);
Maturity = datetime(2023,1,1);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',1)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 1
                Dates: 01-Jan-2023
                Rates: 0.0350
               Settle: 01-Jan-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create FiniteDifference Pricer Object

Use finpricer to create a FiniteDifference pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("FiniteDifference",'Model',BlackScholesModel,'DiscountCurve',myRC,'SpotPrice',100)

outPricer = 
  FiniteDifference with properties:

     DiscountCurve: [1x1 ratecurve]
             Model: [1x1 finmodel.BlackScholes]
         SpotPrice: 100
    GridProperties: [1x1 struct]
      DividendType: "continuous"
     DividendValue: 0

Price DoubleBarrier Instruments

Use price to compute the prices and sensitivities for the DoubleBarrier instruments.

[Price, outPR] = price(outPricer,DoubleBarrierOpt,["all"])

Price = 3×1

   25.0000
   15.6821
    7.8957
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outPR=3×1 object
  3x1 priceresult array with properties:

    Results
    PricerData

outPR.Results

ans=1×7 table
    Price    Delta    Gamma    Lambda      Theta       Rho    Vega
    _____    _____    _____    ______    __________    ___    ____

     25        1        0        4       2.2737e-13     0      0  

ans=1×7 table
    Price     Delta      Gamma     Lambda     Theta      Rho      Vega  
    ______    ______    _______    ______    _______    _____    _______

    15.682    0.7196    0.28626    4.5887    0.88484    6.467    -6.3778

ans=1×7 table
    Price      Delta       Gamma       Lambda      Theta       Rho       Vega  
    ______    _______    __________    ______    _________    ______    _______

    7.8957    0.36913    -0.0020435    4.675     -0.057311    4.3022    -6.9367

Price Double Barrier Instrument Using a Heston Model and Asset Monte Carlo Pricer

This example shows the workflow to price a DoubleBarrier instrument when you use a Heston
model and an AssetMonteCarlo pricing method.

Create DoubleBarrier Instrument Object

Use fininstrument to create a DoubleBarrier instrument object.

DoubleBarrierOpt = fininstrument("DoubleBarrier",'Strike',75,'ExerciseDate',datetime(2020,9,15),'OptionType',"call",'ExerciseStyle',"american",'BarrierType',"DKO",'BarrierValue',[110 80],'Name',"doublebarrier_option")

DoubleBarrierOpt = 
  DoubleBarrier with properties:

       OptionType: "call"
           Strike: 75
     BarrierValue: [110 80]
    ExerciseStyle: "american"
     ExerciseDate: 15-Sep-2020
      BarrierType: "dko"
           Rebate: [0 0]
             Name: "doublebarrier_option"

Create Heston Model Object

Use finmodel to create a Heston model object.
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HestonModel = finmodel("Heston",'V0',0.032,'ThetaV',0.1,'Kappa',0.003,'SigmaV',0.2,'RhoSV',0.9)

HestonModel = 
  Heston with properties:

        V0: 0.0320
    ThetaV: 0.1000
     Kappa: 0.0030
    SigmaV: 0.2000
     RhoSV: 0.9000

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetMonteCarlo Pricer Object

Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("AssetMonteCarlo",'DiscountCurve',myRC,"Model",HestonModel,'SpotPrice',102,'simulationDates',datetime(2020,9,15))

outPricer = 
  HestonMonteCarlo with properties:

      DiscountCurve: [1x1 ratecurve]
          SpotPrice: 102
    SimulationDates: 15-Sep-2020
          NumTrials: 1000
      RandomNumbers: []
              Model: [1x1 finmodel.Heston]
       DividendType: "continuous"
      DividendValue: 0

Price DoubleBarrier Instrument

Use price to compute the price and sensitivities for the DoubleBarrier instrument.

 DoubleBarrier

11-2509



[Price, outPR] = price(outPricer,DoubleBarrierOpt,["all"])

Price = 32.6351

outPR = 
  priceresult with properties:

       Results: [1x8 table]
    PricerData: [1x1 struct]

outPR.Results 

ans=1×8 table
    Price        Delta         Gamma         Lambda        Rho      Theta      Vega       VegaLT  
    ______    ___________    __________    __________    _______    ______    _______    _________

    32.635    -0.00089196    -0.0025511    -0.0027878    -76.828    1.1334    -0.2616    -0.002986

Price Double Barrier Instrument Using a Black-Scholes Model and Asset Monte Carlo Pricer

This example shows the workflow to price a DoubleBarrier instrument when you use a
BlackScholes model and an AssetMonteCarlo pricing method.

Create DoubleBarrier Instrument Object

Use fininstrument to create a DoubleBarrier instrument object.

DoubleBarrierOpt = fininstrument("DoubleBarrier",'Strike',100,'ExerciseDate',datetime(2020,8,15),'OptionType',"call",'ExerciseStyle',"american",'BarrierType',"DKO",'BarrierValue',[110 80],'Name',"doublebarrier_option")

DoubleBarrierOpt = 
  DoubleBarrier with properties:

       OptionType: "call"
           Strike: 100
     BarrierValue: [110 80]
    ExerciseStyle: "american"
     ExerciseDate: 15-Aug-2020
      BarrierType: "dko"
           Rebate: [0 0]
             Name: "doublebarrier_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes","Volatility",.3)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.3000
    Correlation: 1
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Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2017,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2017
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetMonteCarlo Pricer Object

Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

ExerciseDate = datetime(2020,08,15);
Settle = datetime(2017,09,15);
outPricer = finpricer("AssetMonteCarlo","DiscountCurve",myRC,"Model",BlackScholesModel,'SpotPrice',100,'simulationDates', Settle+days(1):days(1):ExerciseDate);

Price DoubleBarrier Instrument

Use price to compute the price and sensitivities for the DoubleBarrier instrument.

[Price, outPR] = price(outPricer,DoubleBarrierOpt,["all"])

Price = 6.9667

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: [1x1 struct]

outPR.Results 

ans=1×7 table
    Price      Delta       Gamma      Lambda      Rho      Theta      Vega  
    ______    _______    _________    ______    _______    ______    _______

    6.9667    0.26875    -0.096337    3.8576    0.39855    9.5406    -1.2907
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Price DoubleBarrier Instrument Using Black-Scholes Model and IkedaKunitomo Pricer

This example shows the workflow to price a DoubleBarrier instrument when you use a
BlackScholes model and an IkedaKunitomo pricing method.

Create DoubleBarrier Instrument Object

Use fininstrument to create a DoubleBarrier instrument object.

DoubleBarrierOpt = fininstrument("DoubleBarrier",'Strike',100,'ExerciseDate',datetime(2020,8,15),'OptionType',"call",'ExerciseStyle',"European",'BarrierType',"DKO",'BarrierValue',[110 80],'Name',"doublebarrier_option")

DoubleBarrierOpt = 
  DoubleBarrier with properties:

       OptionType: "call"
           Strike: 100
     BarrierValue: [110 80]
    ExerciseStyle: "european"
     ExerciseDate: 15-Aug-2020
      BarrierType: "dko"
           Rebate: [0 0]
             Name: "doublebarrier_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes","Volatility",.3)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.3000
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2017,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2017
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"
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Create IkedaKunitomo Pricer Object

Use finpricer to create an IkedaKunitomo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("Analytic","DiscountCurve",myRC,"Model",BlackScholesModel,'SpotPrice',100,'Curvature',[0.03 -0.03],'DividendValue',0.029,"PricingMethod","IkedaKunitomo")

outPricer = 
  IkedaKunitomo with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 100
    DividendValue: 0.0290
     DividendType: "continuous"
        Curvature: [0.0300 -0.0300]

Price DoubleBarrier Instrument

Use price to compute the price and sensitivities for the DoubleBarrier instrument.

[Price, outPR] = price(outPricer,DoubleBarrierOpt,["all"])

Price = 5.6848e-04

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []

outPR.Results 

ans=1×7 table
      Price          Delta          Gamma       Lambda       Vega         Theta          Rho    
    __________    ___________    ___________    _______    _________    _________    ___________

    0.00056848    -3.7713e-05    -4.2071e-06    -6.6339    -0.031332    0.0008912    -0.00035113

Price Double Barrier Instrument Using Black-Scholes Model and Vanna Volga Pricer

This example shows the workflow to price a DoubleBarrier instrument when you use a
BlackScholes model and a VannaVolga pricing method.

Create DoubleBarrier Instrument Object

Use fininstrument to create a DoubleBarrier instrument object.

DoubleBarrierOpt = fininstrument("DoubleBarrier",'Strike',100,'ExerciseDate',datetime(2020,8,15),'OptionType',"call",'ExerciseStyle',"European",'BarrierType',"DKO",'BarrierValue',[110 80],'Name',"doublebarrier_option")

DoubleBarrierOpt = 
  DoubleBarrier with properties:

       OptionType: "call"
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           Strike: 100
     BarrierValue: [110 80]
    ExerciseStyle: "european"
     ExerciseDate: 15-Aug-2020
      BarrierType: "dko"
           Rebate: [0 0]
             Name: "doublebarrier_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes","Volatility",0.02)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.0200
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2019,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create VannaVolga Pricer Object

Use finpricer to create a VannaVolga pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

VolRR = -0.0045;
VolBF = 0.0037;
RateF = 0.0210;
outPricer = finpricer("VannaVolga","DiscountCurve",myRC,"Model",BlackScholesModel,'SpotPrice',100,'DividendValue',RateF,'VolatilityRR',VolRR,'VolatilityBF',VolBF)

outPricer = 
  VannaVolga with properties:

    DiscountCurve: [1x1 ratecurve]
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            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 100
     DividendType: "continuous"
    DividendValue: 0.0210
     VolatilityRR: -0.0045
     VolatilityBF: 0.0037

Price DoubleBarrier Instrument

Use price to compute the price and sensitivities for the DoubleBarrier instrument.

[Price, outPR] = price(outPricer,DoubleBarrierOpt,["all"])

Price = 1.6450

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: [1x1 struct]

outPR.Results 

ans=1×7 table
    Price     Delta     Gamma     Lambda     Vega      Theta      Rho  
    _____    _______    ______    ______    ______    _______    ______

    1.645    0.82818    75.662    50.346    14.697    -1.3145    74.666

More About
Double Barrier Option

A double barrier option is similar to the standard single barrier option except that they have two
barrier levels: a lower barrier (LB) and an upper barrier (UB).

The payoff for a double barrier option depends on whether the underlying asset remains between the
barrier levels during the life of the option. Double barrier options are less expensive than single
barrier options as the probability of being knocked out is higher. Because of this, double barrier
options allow investors to achieve reduction in the option premiums and match an investor’s belief
about the future movement of the underlying price process.

There are two types of double barrier options:

• Double knock-in

This option becomes effective when the price of the underlying asset reaches one of the barriers.
It gives the option holder the right but not the obligation to buy or sell the underlying security at
the strike price, if the underlying asset goes above or below the barrier levels during the life of
the option.

• Double knock-out

This option gives the option holder the right but not the obligation to buy or sell the underlying
security at the strike price, as long as the underlying asset remains between the barrier levels
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during the life of the option. This option terminates when the price of the underlying asset passes
one of the barriers.

The payoff for this type of option depends on whether the underlying asset crosses the predetermined
trigger value (barrier level), indicated by BarrierValue, during the life of the option. If the option
cannot be exercised because the barrier level either has or has not been reached, a fixed rebate
amount is paid. For more information, see “Double Barrier Option” on page 3-21.

Tips
After creating an DoubleBarrier instrument object with an ExerciseStyle set to "American",
you can modify the ExerciseStyle property to change it to "European" using dot notation.

DoubleBarrier.ExerciseStyle = "European"

Because a European option has a scalar Strike and ExerciseDate value and an American option
has a 2-element vector for Strike and ExerciseDate values, when you change to ExerciseStyle
from "American" to "European", the Strike and ExerciseDate values become the last element
in the 2-element vector for the Strike and ExerciseDate values.

See Also
Functions
Barrier | finmodel | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53
“Supported Exercise Styles” on page 1-62

Introduced in R2020b
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Touch
Touch instrument object

Description
Create and price a Touch instrument object for one or more Touch instruments using this workflow:

1 Use fininstrument to create a Touch instrument object for one or more Touch instruments.
2 Use finmodel to specify a BlackScholes, Bates, Merton, or Heston model for the Touch

instrument object.
3 Choose a pricing method.

• When using a BlackScholes model, use finpricer to specify a BlackScholes or a
VannaVolga pricing method for one or more Barrier instruments.

• When using a BlackScholes, Heston, Bates, or Merton model, use finpricer to specify
an AssetMonteCarlo pricing method for one or more Touch instruments.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available models and pricing methods for a Touch instrument, see
“Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
TouchOpt = fininstrument(InstrumentType,'ExerciseDate',exercise_date,'
BarrierValue',barrier_value,'PayoffValue',payoff_value)
TouchOpt = fininstrument( ___ ,Name,Value)

Description

TouchOpt = fininstrument(InstrumentType,'ExerciseDate',exercise_date,'
BarrierValue',barrier_value,'PayoffValue',payoff_value) creates a Touch instrument
object for one or more Touch instruments by specifying InstrumentType and sets properties on
page 11-2519 using the required name-value pair arguments ExerciseDate, BarrierValue, and
PayoffValue.

TouchOpt = fininstrument( ___ ,Name,Value) sets optional properties on page 11-2519 using
additional name-value pair arguments in addition to the required arguments in the previous syntax.
For example, TouchOpt =
fininstrument("Touch",'ExerciseDate',datetime(2019,1,30),'BarrierValue',110,'
PayoffValue',130,'BarrierType',"OT",'PayoffType',"Expiry",'Name',"Touch_optio
n") creates a Touch option with an expiry payoff type. You can specify multiple name-value pair
arguments.
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Input Arguments

InstrumentType — Instrument type
string with value "Touch" | string array with values of "Touch" | character vector with value
'Touch' | cell array of character vectors with values of 'Touch'

Instrument type, specified as a string with the value of "Touch", a character vector with the value of
'Touch', an NINST-by-1 string array with values of "Touch", or an NINST-by-1 cell array of
character vectors with values of 'Touch'.
Data Types: char | cell | string

Touch Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: TouchOpt =
fininstrument("Touch",'ExerciseDate',datetime(2019,1,30),'BarrierValue',110,'
PayoffValue',130,'BarrierType',"OT",'PayoffType',"Expiry",'Name',"Touch_optio
n")

Required Touch Name-Value Pair Arguments

ExerciseDate — Option exercise date
datetime | serial date number | date character vector | date string | vector of datetimes | vector of
serial date numbers | cell array of date character vectors | date string array

Option exercise date, specified as the comma-separated pair consisting of 'ExerciseDate' and a
scalar datetime, serial date number, date character vector, date string or an NINST-by-1 vector of
datetimes, serial date numbers, cell array of date character vectors, or date string array.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the ExerciseDate property is stored as a datetime.
Data Types: double | char | cell | string | datetime

BarrierValue — Barrier level
scalar numeric | numeric vector

Barrier level, specified as the comma-separated pair consisting of 'BarrierValue' and a scalar
numeric or an NINST-by-1 numeric vector.
Data Types: double

PayoffValue — Option payoff value
scalar numeric | numeric vector

Option payoff value, specified as the comma-separated pair consisting of 'PayoffValue' and a
scalar numeric or an NINST-by-1 numeric vector.
Data Types: double
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Optional Touch Name-Value Pair Arguments

BarrierType — Barrier type
"OT" (default) | string with value "OT" or "NT" | string array with values "OT" or "NT" | character
vector with value 'OT' or 'NT' | cell array of character vectors with values 'OT' or 'NT'

Barrier type, specified as the comma-separated pair consisting of 'BarrierType' and a scalar
string or character vector or an NINST-by-1 cell array of character vectors or string array with one of
the following values:

• 'OT' — One-touch

The one-touch option provides a payoff if the underlying asset ever trades at or beyond the
BarrierValue. Otherwise, the PayoffValue is zero.

• 'NT' — No-touch

The no-touch option provides a payoff if the underlying asset never trades at or beyond the
BarrierValue. Otherwise, the PayoffValue is zero.

Data Types: char | cell | string

PayoffType — Payoff type
"Hit" (default) | string with value "Hit" or "Expiry" | string array with values "Hit" or
"Expiry" | character vector with value 'Hit' or 'Expiry' | cell array of character vectors with
values 'Hit' or 'Expiry'

Payoff type, specified as the comma-separated pair consisting of 'PayoffType' and a scalar string
or character vector or an NINST-by-1 cell array of character vectors or string array. You can specify
"Expiry" only when you specify 'OT' as the BarrierType.

Note When you use a BlackScholes pricer, only the "Hit" PayoffType is supported.

Data Types: char | cell | string

Name — User-defined name for instrument
" " (default) | string | string array | character vector | cell array of character vectors

User-defined name for one of more instruments, specified as the comma-separated pair consisting of
'Name' and a scalar string or character vector or an NINST-by-1 cell array of character vectors or
string array.
Data Types: char | cell | string

Properties
ExerciseDate — Option exercise date
datetime | vector of datetimes

Option exercise date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

BarrierValue — Barrier level
scalar numeric | numeric vector
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Barrier level, returned as a scalar numeric or an NINST-by-1 numeric vector.
Data Types: double

PayoffValue — Option payoff
scalar numeric | numeric vector

Option payoff, returned as a scalar numeric or an NINST-by-1 numeric vector.
Data Types: double

BarrierType — Barrier type
"OT" (default) | string with value "OT" or "NT" | string array with values "OT" or "NT"

Barrier type, returned as a scalar string or an NINST-by-1 string array.
Data Types: string

PayoffType — Payoff type
"Hit" (default) | string with value "Hit" or "Expiry" | string array with values "Hit" or
"Expiry"

Option type, returned as a scalar string or an NINST-by-1 string array.
Data Types: string

Name — User-defined name for instrument
" " (default) | string | string array

User-defined name for the instrument, returned as a scalar string or an NINST-by-1 string array.
Data Types: string

Examples

Price Touch Instrument Using a Black-Scholes Model and Asset Monte Carlo Pricer

This example shows the workflow to price a Touch instrument when you use a BlackScholes model
and an AssetMonteCarlo pricing method.

Create Touch Instrument Object

Use fininstrument to create a Touch instrument object.

TouchOpt = fininstrument("Touch",'ExerciseDate',datetime(2022,9,15),'BarrierValue',100,'PayoffValue',110,'BarrierType',"OT",'Name',"touch_option")

TouchOpt = 
  Touch with properties:

    ExerciseDate: 15-Sep-2022
    BarrierValue: 100
     PayoffValue: 110
     BarrierType: "ot"
      PayoffType: "expiry"
            Name: "touch_option"
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Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',.2)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.2000
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetMonteCarlo Pricer Object

Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("AssetMonteCarlo",'DiscountCurve',myRC,"Model",BlackScholesModel,'SpotPrice',102,'simulationDates',datetime(2022,9,15))

outPricer = 
  GBMMonteCarlo with properties:

      DiscountCurve: [1x1 ratecurve]
          SpotPrice: 102
    SimulationDates: 15-Sep-2022
          NumTrials: 1000
      RandomNumbers: []
              Model: [1x1 finmodel.BlackScholes]
       DividendType: "continuous"
      DividendValue: 0

Price Touch Instrument

Use price to compute the price and sensitivities for the Touch instrument.
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[Price, outPR] = price(outPricer,TouchOpt,["all"])

Price = 91.1862

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: [1x1 struct]

outPR.Results 

ans=1×7 table
    Price      Delta      Gamma      Lambda       Rho      Theta      Vega 
    ______    _______    ________    _______    _______    ______    ______

    91.186    -2.1825    0.038281    -2.4413    -415.45    2.7374    35.998

Price Multiple Touch Instruments Using Black-Scholes Model and Black-Scholes Pricer

This example shows the workflow to price multiple Touch instruments when you use a
BlackScholes model and a BlackScholes pricing method.

Create Touch Instrument Object

Use fininstrument to create a Touch instrument object for three Touch instruments.

TouchOpt = fininstrument("Touch",'ExerciseDate',datetime([2022,9,15 ; 2022,10,15 ; 2022,11,15]),'BarrierValue',[140 ; 160 ; 190],'PayoffValue',170,'BarrierType',"OT",'Name',"touch_option")

TouchOpt=3×1 object
  3x1 Touch array with properties:

    ExerciseDate
    BarrierValue
    PayoffValue
    BarrierType
    PayoffType
    Name

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',0.28)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.2800
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.
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Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create BlackScholes Pricer Object

Use finpricer to create a BlackScholes pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'DiscountCurve',myRC,'Model',BlackScholesModel,'SpotPrice',135,'DividendValue',0.045)

outPricer = 
  BlackScholes with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 135
    DividendValue: 0.0450
     DividendType: "continuous"

Price Touch Instruments

Use price to compute the prices and sensitivities for the Touch instruments.

[Price, outPR] = price(outPricer,TouchOpt,["all"])

Price = 3×1

  136.5553
   99.8742
   63.6835

outPR=3×1 object
  3x1 priceresult array with properties:

    Results
    PricerData

outPR.Results 

ans=1×7 table
    Price     Delta      Gamma      Lambda     Vega     Theta       Rho  
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    ______    ______    ________    ______    ______    ______    _______

    136.56    2.2346    0.005457    2.2092    30.812    3.9013    -465.89

ans=1×7 table
    Price     Delta      Gamma      Lambda     Vega       Theta        Rho  
    ______    ______    ________    ______    ______    _________    _______

    99.874    1.8197    0.008319    2.4597    120.98    0.0043188    -138.47

ans=1×7 table
    Price     Delta       Gamma      Lambda     Vega      Theta      Rho  
    ______    ______    _________    ______    ______    _______    ______

    63.683    1.3221    0.0099462    2.8028    182.58    -3.0963    72.793

Price Touch Instrument Using Heston Model and Asset Monte Carlo Pricer

This example shows the workflow to price a Touch instrument when you use a Heston model and an
AssetMonteCarlo pricing method.

Create Touch Instrument Object

Use fininstrument to create a Touch instrument object.

TouchOpt = fininstrument("Touch",'ExerciseDate',datetime(2022,9,15),'BarrierValue',110,'PayoffValue',140,'BarrierType',"OT",'Name',"touch_option")

TouchOpt = 
  Touch with properties:

    ExerciseDate: 15-Sep-2022
    BarrierValue: 110
     PayoffValue: 140
     BarrierType: "ot"
      PayoffType: "expiry"
            Name: "touch_option"

Create Heston Model Object

Use finmodel to create a Heston model object.

HestonModel = finmodel("Heston",'V0',0.032,'ThetaV',0.1,'Kappa',0.003,'SigmaV',0.2,'RhoSV',0.9)

HestonModel = 
  Heston with properties:

        V0: 0.0320
    ThetaV: 0.1000
     Kappa: 0.0030
    SigmaV: 0.2000
     RhoSV: 0.9000
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Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetMonteCarlo Pricer Object

Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("AssetMonteCarlo",'DiscountCurve',myRC,"Model",HestonModel,'SpotPrice',112,'simulationDates',datetime(2022,9,15))

outPricer = 
  HestonMonteCarlo with properties:

      DiscountCurve: [1x1 ratecurve]
          SpotPrice: 112
    SimulationDates: 15-Sep-2022
          NumTrials: 1000
      RandomNumbers: []
              Model: [1x1 finmodel.Heston]
       DividendType: "continuous"
      DividendValue: 0

Price Touch Instrument

Use price to compute the price and sensitivities for the Touch instrument.

[Price, outPR] = price(outPricer,TouchOpt,["all"])

Price = 63.5247

outPR = 
  priceresult with properties:

       Results: [1x8 table]
    PricerData: [1x1 struct]

outPR.Results 
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ans=1×8 table
    Price      Delta     Gamma     Lambda       Rho      Theta      Vega     VegaLT
    ______    _______    ______    _______    _______    ______    ______    ______

    63.525    -7.2363    1.0541    -12.758    -320.21    3.5527    418.94    8.1498

Price Touch Instrument Using Black-Scholes Model and Black-Scholes Pricer

This example shows the workflow to price a Touch instrument when you use a BlackScholes model
and a BlackScholes pricing method.

Create Touch Instrument Object

Use fininstrument to create a Touch instrument object.

TouchOpt = fininstrument("Touch",'ExerciseDate',datetime(2022,9,15),'BarrierValue',140,'PayoffValue',170,'BarrierType',"OT",'Name',"touch_option")

TouchOpt = 
  Touch with properties:

    ExerciseDate: 15-Sep-2022
    BarrierValue: 140
     PayoffValue: 170
     BarrierType: "ot"
      PayoffType: "expiry"
            Name: "touch_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',0.28)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.2800
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
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                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create BlackScholes Pricer Object

Use finpricer to create a BlackScholes pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'DiscountCurve',myRC,'Model',BlackScholesModel,'SpotPrice',135,'DividendValue',0.045)

outPricer = 
  BlackScholes with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 135
    DividendValue: 0.0450
     DividendType: "continuous"

Price Touch Instrument

Use price to compute the price and sensitivities for the Touch instrument.

[Price, outPR] = price(outPricer,TouchOpt,["all"])

Price = 136.5553

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []

outPR.Results 

ans=1×7 table
    Price     Delta      Gamma      Lambda     Vega     Theta       Rho  
    ______    ______    ________    ______    ______    ______    _______

    136.56    2.2346    0.005457    2.2092    30.812    3.9013    -465.89

More About
Touch Option

A touch option (also known as a binary barrier option or American digital) is a path-dependent option
in which the existence and payment of the options depend on the movement of the underlying spot
through their option life.
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The one-touch (no-touch) option provides a payoff if the underlying spot ever (never) trades at or
beyond the barrier level and otherwise it is zero. For more information, see “One-Touch and Double
One-Touch Options” on page 3-30.

See Also
Functions
DoubleTouch | finmodel | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53
“Supported Exercise Styles” on page 1-62

Introduced in R2020b
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DoubleTouch
DoubleTouch instrument object

Description
Create and price a DoubleTouch instrument object for one of more Double Touch instruments using
this workflow:

1 Use fininstrument to create a DoubleTouch instrument object for one of more Double Touch
instruments.

2 Use finmodel to specify a BlackScholes, Bates, Merton, or Heston model for the
DoubleTouch instrument object.

3 Choose a pricing method.

• When using a BlackScholes model, use finpricer to specify a BlackScholes or
VannaVolga pricing method for one or more DoubleTouch instruments.

• When using a BlackScholes, Heston, Bates, or Merton model, use finpricer to specify
an AssetMonteCarlo pricing method for one or more DoubleTouch instruments.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available models and pricing methods for a DoubleTouch instrument,
see “Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
DoubleTouchOpt = fininstrument(InstrumentType,'ExerciseDate',exercise_date,'
BarrierValue',barrier_value,'PayoffValue',payoff_value)
DoubleTouchOpt = fininstrument( ___ ,Name,Value)

Description

DoubleTouchOpt = fininstrument(InstrumentType,'ExerciseDate',exercise_date,'
BarrierValue',barrier_value,'PayoffValue',payoff_value) creates a DoubleTouch
object for one of more Double Touch instruments by specifying InstrumentType and sets properties
on page 11-2532 using the required name-value pair arguments ExerciseDate, BarrierValue,
and PayoffValue.

DoubleTouchOpt = fininstrument( ___ ,Name,Value) sets optional properties on page 11-
2532 using additional name-value pair arguments in addition to the required arguments in the
previous syntax. For example, DoubleTouchOpt =
fininstrument("DoubleTouch",'Strike',100,'ExerciseDate',datetime(2019,1,30),'
BarrierValue',110,'PayoffValue',150,'BarrierType',"DOT",'PayoffType',"Expiry"
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,'Name',"DoubleTouch_option") creates a DoubleTouch option with a payoff type of Expiry.
You can specify multiple name-value pair arguments.

Input Arguments

InstrumentType — Instrument type
string with value "DoubleTouch" | string array with values of "DoubleTouch" | character vector
with value 'DoubleTouch' | cell array of character vectors with values of 'DoubleTouch'

Instrument type, specified as a string with the value of "DoubleTouch", a character vector with the
value of 'DoubleTouch', an NINST-by-1 string array with values of "DoubleTouch", or an NINST-
by-1 cell array of character vectors with values of 'DoubleTouch'.
Data Types: char | cell | string

DoubleTouch Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: DoubleTouchOpt =
fininstrument("DoubleTouch",'Strike',100,'ExerciseDate',datetime(2019,1,30),'
BarrierValue',110,'OptionType',"put",'ExerciseStyle',"European",'BarrierType'
,"DO",'Name',"DoubleTouch_option")

Required DoubleTouch Name-Value Pair Arguments

ExerciseDate — Option exercise date
datetime | serial date number | date character vector | date string | vector of datetimes | vector of
serial date numbers | cell array of date character vectors | date string array

Option exercise date, specified as the comma-separated pair consisting of 'ExerciseDate' and a
scalar datetime, serial date number, date character vector, date string or an NINST-by-1 vector of
datetimes, serial date numbers, cell array of date character vectors, or date string array.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the ExerciseDate property is stored as a datetime.
Data Types: double | char | string | datetime

BarrierValue — Option barrier levels
numeric

Option barrier levels, specified as the comma-separated pair consisting of 'BarrierValue' and an
NINST-by-2 matrix of numeric values, where the first column is Upper Barrier(1)(UB) and the second
column is Lower Barrier(2)(LB). Barrier(1) must be greater than Barrier(2).
Data Types: double

PayoffValue — Payoff value
numeric
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Payoff value, specified as the comma-separated pair consisting of 'PayoffValue' and an NINST-
by-1 matrix of numeric values, where each element is a 1-by-2 vector in which the first column is
Barrier(1)(UB) and the second column is Barrier(2)(LB). Barrier(1) must be greater than Barrier(2).

Note The payoff value is calculated for the point in time that the BarrierValue is reached. The
payoff is either cash or nothing. If you specify a double no-touch option using BarrierType, the
payoff is at the maturity of the option.

Data Types: double

Optional DoubleTouch Name-Value Pair Arguments

BarrierType — Double barrier type
"DOT" (default) | string with value "DOT", "DNT", "UNT-LOT", or "UOT-LNT" | string array with
values "DOT", "DNT", "UNT-LOT", or "UOT-LNT" | character vector with value 'DOT', 'DNT',
'UNT-LOT', or 'UOT-LNT' | cell array of character vectors with values 'DOT', 'DNT', 'UNT-LOT',
or 'UOT-LNT'

Double barrier type, specified as the comma-separated pair consisting of 'BarrierType' and a
string or character vector or an NINST-by-1 cell array of character vectors or string array with one of
the following values:

• 'DOT' — Double one-touch. The double one-touch option defines two BarrierValue values. A
double one-touch option provides a PayoffValue if the underlying asset ever touches either the
upper or lower BarrierValue values.

• 'DNT' — Double no-touch. The double no-touch option defines two BarrierValue values. A
double no-touch option provides a PayoffValue if the underlying asset ever never touches either
the upper or lower BarrierValue values.

• 'UNT-LOT' — Upper BarrierValue is No Touch and Lower BarrierValue is one Touch.
• 'UOT-LNT' — Upper BarrierValue is One Touch and Lower BarrierValue is No Touch.

Data Types: char | cell | string

PayoffType — Payoff type
"Hit" (default) | string with value "Hit" or "Expiry" | string arrays with values "Hit" or
"Expiry" | character vector with value 'Hit' or 'Expiry' | cell array of character vectors with
values 'Hit' or 'Expiry'

Payoff type, specified as the comma-separated pair consisting of 'PayoffType' and a scalar string
or character vector or an NINST-by-1 cell array of character vectors or string array. You cannot use
specify "Expiry" when using a BarrierType of 'DNT'.

Note When you use a BlackScholes pricer, only the "Expiry" PayoffType is supported.

Data Types: char | cell | string

Name — User-defined name for instrument
" " (default) | string | string array | character vector | cell array of character vectors
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User-defined name for the instrument, specified as the comma-separated pair consisting of 'Name'
and a scalar string or character vector or an NINST-by-1 cell array of character vectors or string
array.
Data Types: char | cell | string

Properties
ExerciseDate — Option exercise date
datetime | vector of datetimes

Option exercise date, returned as a datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

BarrierValue — Barrier level
numeric

Barrier level, returned as a numeric matrix.
Data Types: double

PayoffValue — Option payoff
numeric

Option payoff, returned as a numeric matrix.
Data Types: double

BarrierType — Double barrier type
"DOT" (default) | string with value "DOT", "DNT", "UNT-LOT", or "UOT-LNT" | string array with
values "DOT", "DNT", "UNT-LOT", or "UOT-LNT"

Double barrier type, returned as a scalar string or an NINST-by-1 string array.
Data Types: string

PayoffType — Payoff type
"Hit" (default) | string with value "Hit" or "Expiry" | string array with values "Hit" or
"Expiry"

Option type, returned as a string or an NINST-by-1 string array.
Data Types: string

Name — User-defined name for instrument
" " (default) | string | string array

User-defined name for the instrument, returned as a string or an NINST-by-1 string array.
Data Types: string

Examples
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Price Double Touch Instrument Using a Black-Scholes Model and Asset Monte Carlo Pricer

This example shows the workflow to price a DoubleTouch instrument when you use a
BlackScholes model and an AssetMonteCarlo pricing method.

Create DoubleTouch Instrument Object

Use fininstrument to create a DoubleTouch instrument object.

DoubleTouchOpt = fininstrument("DoubleTouch",'ExerciseDate',datetime(2022,9,15),'BarrierValue',[110 90],'PayoffValue',50,'BarrierType',"DOT",'Name',"doubletouch_option")

DoubleTouchOpt = 
  DoubleTouch with properties:

    ExerciseDate: 15-Sep-2022
    BarrierValue: [110 90]
     PayoffValue: 50
     BarrierType: "dot"
      PayoffType: "expiry"
            Name: "doubletouch_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',.2)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.2000
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"
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Create AssetMonteCarlo Pricer Object

Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("AssetMonteCarlo",'DiscountCurve',myRC,"Model",BlackScholesModel,'SpotPrice',102,'simulationDates',datetime(2022,9,15))

outPricer = 
  GBMMonteCarlo with properties:

      DiscountCurve: [1x1 ratecurve]
          SpotPrice: 102
    SimulationDates: 15-Sep-2022
          NumTrials: 1000
      RandomNumbers: []
              Model: [1x1 finmodel.BlackScholes]
       DividendType: "continuous"
      DividendValue: 0

Price DoubleTouch Instrument

Use price to compute the price and sensitivities for the DoubleTouch instrument.

[Price, outPR] = price(outPricer,DoubleTouchOpt,["all"])

Price = 43.3860

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: [1x1 struct]

outPR.Results 

ans=1×7 table
    Price       Delta        Gamma       Lambda       Rho      Theta      Vega 
    ______    _________    _________    ________    _______    ______    ______

    43.386    0.0043916    0.0018346    0.010325    -173.28    1.4722    1.8176

Price Multiple Double Touch Instruments Using a Black-Scholes Model and Black-Scholes
Pricer

This example shows the workflow to price multiple DoubleTouch instruments when you use a
BlackScholes model and a BlackScholes pricing method.

Create DoubleTouch Instrument Object

Use fininstrument to create a DoubleTouch instrument object for three Double Touch
instruments.

DoubleTouchOpt = fininstrument("DoubleTouch",'ExerciseDate',datetime([2022,9,15 ; 2022,10,15 ; 2022,11,15]),'BarrierValue',[115 95],'PayoffValue',[70 ; 89 ; 90],'BarrierType',"UNT-LOT",'Name',"doubletouch_option")
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DoubleTouchOpt=3×1 object
  3x1 DoubleTouch array with properties:

    ExerciseDate
    BarrierValue
    PayoffValue
    BarrierType
    PayoffType
    Name

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',0.28)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.2800
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create BlackScholes Pricer Object

Use finpricer to create a BlackScholes pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'DiscountCurve',myRC,'Model',BlackScholesModel,'SpotPrice',100,'DividendValue',0.045)

outPricer = 
  BlackScholes with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
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        SpotPrice: 100
    DividendValue: 0.0450
     DividendType: "continuous"

Price DoubleTouch Instruments

Use price to compute the prices and sensitivities for the DoubleTouch instruments.

[Price, outPR] = price(outPricer,DoubleTouchOpt,["all"])

Price = 3×1

   52.6903
   66.9920
   67.7447

outPR=3×1 object
  3x1 priceresult array with properties:

    Results
    PricerData

outPR.Results 

ans=1×7 table
    Price     Delta       Gamma       Lambda      Vega      Theta      Rho  
    _____    _______    __________    _______    _______    _____    _______

    52.69    -3.4708    -0.0041339    -6.5871    -1.3469      0      -35.883

ans=1×7 table
    Price      Delta       Gamma      Lambda      Vega      Theta      Rho  
    ______    _______    _________    _______    _______    _____    _______

    66.992    -4.4128    -0.005258    -6.5871    -1.7125      0      -45.623

ans=1×7 table
    Price      Delta       Gamma       Lambda      Vega      Theta      Rho  
    ______    _______    __________    _______    _______    _____    _______

    67.745    -4.4624    -0.0053149    -6.5871    -1.7318      0      -46.135

Price Double Touch Instrument Using a Bates Model and Asset Monte Carlo Pricer

This example shows the workflow to price a DoubleTouch instrument when you use a Bates model
and an AssetMonteCarlo pricing method.

Create DoubleTouch Instrument Object

Use fininstrument to create a DoubleTouch instrument object.

DoubleTouchOpt = fininstrument("DoubleTouch",'ExerciseDate',datetime(2022,9,15),'BarrierValue',[115 95],'PayoffValue',40,'BarrierType',"DOT",'Name',"doubletouch_option")
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DoubleTouchOpt = 
  DoubleTouch with properties:

    ExerciseDate: 15-Sep-2022
    BarrierValue: [115 95]
     PayoffValue: 40
     BarrierType: "dot"
      PayoffType: "expiry"
            Name: "doubletouch_option"

Create Bates Model Object

Use finmodel to create a Bates model object.

BatesModel = finmodel("Bates",'V0',0.032,'ThetaV',0.1,'Kappa',0.003,'SigmaV',0.2,'RhoSV',0.9,'MeanJ',0.11,'JumpVol',.023,'JumpFreq',0.02)

BatesModel = 
  Bates with properties:

          V0: 0.0320
      ThetaV: 0.1000
       Kappa: 0.0030
      SigmaV: 0.2000
       RhoSV: 0.9000
       MeanJ: 0.1100
     JumpVol: 0.0230
    JumpFreq: 0.0200

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetMonteCarlo Pricer Object

Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("AssetMonteCarlo",'DiscountCurve',myRC,"Model",BatesModel,'SpotPrice',102,'simulationDates',datetime(2022,9,15))
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outPricer = 
  BatesMonteCarlo with properties:

      DiscountCurve: [1x1 ratecurve]
          SpotPrice: 102
    SimulationDates: 15-Sep-2022
          NumTrials: 1000
      RandomNumbers: []
              Model: [1x1 finmodel.Bates]
       DividendType: "continuous"
      DividendValue: 0

Price DoubleTouch Instrument

Use price to compute the price and sensitivities for the DoubleTouch instrument.

[Price, outPR] = price(outPricer,DoubleTouchOpt,["all"])

Price = 34.7743

outPR = 
  priceresult with properties:

       Results: [1x8 table]
    PricerData: [1x1 struct]

outPR.Results 

ans=1×8 table
    Price     Delta    Gamma    Lambda      Rho      Theta     Vega    VegaLT
    ______    _____    _____    ______    _______    ______    ____    ______

    34.774      0        0        0       -139.07    1.2179     0        0   

Price Double Touch Instrument Using a Black-Scholes Model and Black-Scholes Pricer

This example shows the workflow to price a DoubleTouch instrument when you use a
BlackScholes model and a BlackScholes pricing method.

Create DoubleTouch Instrument Object

Use fininstrument to create a DoubleTouch instrument object.

DoubleTouchOpt = fininstrument("DoubleTouch",'ExerciseDate',datetime(2022,9,15),'BarrierValue',[115 95],'PayoffValue',70,'BarrierType',"UNT-LOT",'Name',"doubletouch_option")

DoubleTouchOpt = 
  DoubleTouch with properties:

    ExerciseDate: 15-Sep-2022
    BarrierValue: [115 95]
     PayoffValue: 70
     BarrierType: "unt-lot"
      PayoffType: "expiry"
            Name: "doubletouch_option"
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Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',0.28)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.2800
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create BlackScholes Pricer Object

Use finpricer to create a BlackScholes pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'DiscountCurve',myRC,'Model',BlackScholesModel,'SpotPrice',100,'DividendValue',0.045)

outPricer = 
  BlackScholes with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 100
    DividendValue: 0.0450
     DividendType: "continuous"

Price DoubleTouch Instrument

Use price to compute the price and sensitivities for the DoubleTouch instrument.

[Price, outPR] = price(outPricer,DoubleTouchOpt,["all"])

Price = 52.6903
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outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []

outPR.Results 

ans=1×7 table
    Price     Delta       Gamma       Lambda      Vega      Theta      Rho  
    _____    _______    __________    _______    _______    _____    _______

    52.69    -3.4708    -0.0041339    -6.5871    -1.3469      0      -35.883

More About
Double Touch Option

Double touch and double no-touch options work the same way as a Touch option, but have two
barriers.

Double touch and double no-touch option provides a payoff if the underlying spot ever (never)
touches either the upper or lower barriers levels. For more information, see “One-Touch and Double
One-Touch Options” on page 3-30.

See Also
Functions
Touch | finmodel | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53
“Supported Exercise Styles” on page 1-62

Introduced in R2020b
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Binary
Binary instrument object

Description
Create and price a Binary instrument object for one or more Binary instruments using this
workflow:

1 Use fininstrument to create a Binary instrument object for one or more Binary instruments.
2 Use finmodel to specify a BlackScholes or Bachelier model for the Binary instrument

object.
3 Choose a pricing method.

• When using a BlackScholes model, use finpricer to specify a BlackScholes or
AssetMonteCarlo pricing method for one or more Binary instruments.

• When using a Bachelier model, use finpricer to specify an AssetMonteCarlo pricing
method for one or more Binary instruments.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available models and pricing methods for a Binary instrument, see
“Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
BinaryOpt = fininstrument(InstrumentType,'Strike',strike_value,'
ExerciseDate',exercise_date,'PayoffValue',payoff_value)
BinaryOpt = fininstrument( ___ ,Name,Value)

Description

BinaryOpt = fininstrument(InstrumentType,'Strike',strike_value,'
ExerciseDate',exercise_date,'PayoffValue',payoff_value) creates a Binary instrument
object for one or more Binary instruments by specifying InstrumentType and sets properties on
page 11-2543 using the required name-value pair arguments Strike, ExerciseDate, and
PayoffValue.

BinaryOpt = fininstrument( ___ ,Name,Value) sets optional properties on page 11-2543
using additional name-value pair arguments in addition to the required arguments in the previous
syntax. For example, BinaryOpt =
fininstrument("Binary",'Strike',100,'ExerciseDate',datetime(2019,1,30),'Payof
fValue',110,'OptionType',"put",'Name',"binary_option") creates a Binary put option
with a PayoffValue of 110. You can specify multiple name-value pair arguments.

 Binary

11-2541



Input Arguments

InstrumentType — Instrument type
string with value "Binary" | string array with values of "Binary" | character vector with value
'Binary' | cell array of character vectors with values of 'Binary'

Instrument type, specified as a string with the value of "Binary", a character vector with the value
of 'Binary', an NINST-by-1 string array with values of "Binary", or an NINST-by-1 cell array of
character vectors with values of 'Binary'.
Data Types: char | cell | string

Binary Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: BinaryOpt =
fininstrument("Binary",'Strike',100,'ExerciseDate',datetime(2019,1,30),'Payof
fValue',110,'OptionType',"put",'Name',"binary_option")

Required Binary Name-Value Pair Arguments

Strike — Option strike price value
nonnegative value | vector of nonnegative values

Option strike price value, specified as the comma-separated pair consisting of 'Strike' and a scalar
nonnegative value or an NINST-by-1 vector of nonnegative values.
Data Types: double

ExerciseDate — Option exercise date
datetime | serial date number | date character vector | date string | vector of datetimes | vector of
serial date numbers | cell array of date character vectors | date string array

Option exercise date, specified as the comma-separated pair consisting of 'ExerciseDate' and a
scalar datetime, serial date number, date character vector, date string or an NINST-by-1 vector of
datetimes, serial date numbers, cell array of date character vectors, or date string array.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the ExerciseDate property is stored as a datetime.
Data Types: double | char | cell | string | datetime

PayoffValue — Option payoff value
scalar numeric | numeric vector

Option payoff value, specified as the comma-separated pair consisting of 'PayoffValue' and a
scalar numeric value or an NINST-by-1 numeric vector.
Data Types: double
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Optional Binary Name-Value Pair Arguments

OptionType — Option type
"call" (default) | string with value "call" or "put" | string array with values "call" or "put" |
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'

Option type, specified as the comma-separated pair consisting of 'OptionType' and a scalar string
or character vector or an NINST-by-1 cell array of character vectors or string array.
Data Types: char | cell | string

ExerciseStyle — Option exercise style
"European" (default) | string with value "European" | string array with a value "European" |
character vector with value 'European' | cell array of character vectors with a value 'European'

Option exercise style, specified as the comma-separated pair consisting of 'ExerciseStyle' and a
scalar string or character vector or an NINST-by-1 cell array of character vectors or string array.
Data Types: string | char | cell

Name — User-defined name for instrument
" " (default) | string | string array | character vector | cell array of character vectors

User-defined name for the instrument, specified as the comma-separated pair consisting of 'Name'
and a scalar string or character vector or an NINST-by-1 cell array of character vectors or string
array.
Data Types: char | cell | string

Properties
Strike — Option strike price value
nonnegative value | nonnegative value | vector of nonnegative values

Option strike price value, returned as a scalar nonnegative value or an NINST-by-1 vector of
nonnegative values.
Data Types: double

ExerciseDate — Option exercise date
datetime | vector of datetimes

Option exercise date, returned as a datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

PayoffValue — Option payoff value
scalar numeric | numeric vector

Option payoff value, returned as a scalar numeric value or an NINST-by-1 vector of numeric values.
Data Types: double

OptionType — Option type
"call" (default) | string with value "call" or "put" | string array with values "call" or "put"
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Option type, returned as a scalar string or an NINST-by-1 string array with the values of "call" or
"put".
Data Types: string

ExerciseStyle — Option exercise style
"European" (default) | string with value "European" | string array with values "European"

This property is read-only.

Option exercise style, returned as a scalar string or an NINST-by-1 string array with the value of
"European".
Data Types: string

Name — User-defined name for instrument
" " (default) | string | string array

User-defined name for the instrument, returned as a scalar string or an NINST-by-1 string array.
Data Types: string

Examples

Price Binary Instrument Using Black-Scholes Model and Asset Monte Carlo Pricer

This example shows the workflow to price a Binary instrument when you use a BlackScholes
model and an AssetMonteCarlo pricing method.

Create Binary Instrument Object

Use fininstrument to create a Binary instrument object.

BinaryOpt = fininstrument("Binary",'ExerciseDate',datetime(2022,9,15),'Strike',1000,'PayoffValue',130,'OptionType',"put",'Name',"binary_option")

BinaryOpt = 
  Binary with properties:

       OptionType: "put"
     ExerciseDate: 15-Sep-2022
           Strike: 1000
      PayoffValue: 130
    ExerciseStyle: "european"
             Name: "binary_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',.2)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.2000
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    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetMonteCarlo Pricer Object

Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("AssetMonteCarlo",'DiscountCurve',myRC,"Model",BlackScholesModel,'SpotPrice',102,'simulationDates',datetime(2022,9,15))

outPricer = 
  GBMMonteCarlo with properties:

      DiscountCurve: [1x1 ratecurve]
          SpotPrice: 102
    SimulationDates: 15-Sep-2022
          NumTrials: 1000
      RandomNumbers: []
              Model: [1x1 finmodel.BlackScholes]
       DividendType: "continuous"
      DividendValue: 0

Price Binary Instrument

Use price to compute the price and sensitivities for the Binary instrument.

[Price, outPR] = price(outPricer,BinaryOpt,["all"])

Price = 113.0166

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: [1x1 struct]
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outPR.Results 

ans=1×7 table
    Price     Delta    Gamma    Lambda      Rho      Theta     Vega
    ______    _____    _____    ______    _______    ______    ____

    113.02      0        0        0       -451.98    3.9582     0  

Price Multiple Binary Instruments Using Black-Scholes Model and Black-Scholes Pricer

This example shows the workflow to price multiple Binary instruments when you use a
BlackScholes model and a BlackScholes pricing method.

Create Binary Instrument Object

Use fininstrument to create a Binary instrument object with three Binary instruments.

BinaryOpt = fininstrument("Binary",'ExerciseDate',datetime([2022,9,15 ; 2022,10,15 ; 2022,11,15]),'Strike',[1000 ; 2000 ; 3000],'PayoffValue',130,'OptionType',"put",'Name',"binary_option")

BinaryOpt=3×1 object
  3x1 Binary array with properties:

    OptionType
    ExerciseDate
    Strike
    PayoffValue
    ExerciseStyle
    Name

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',0.28)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.2800
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
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          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create BlackScholes Pricer Object

Use finpricer to create a BlackScholes pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'DiscountCurve',myRC,'Model',BlackScholesModel,'SpotPrice',800,'DividendValue',0.045)

outPricer = 
  BlackScholes with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 800
    DividendValue: 0.0450
     DividendType: "continuous"

Price Binary Instruments

Use price to compute the prices and sensitivities for the Binary instruments.

[Price, outPR] = price(outPricer,BinaryOpt,["all"])

Price = 3×1

   87.4005
  109.9703
  111.9328

outPR=3×1 object
  3x1 priceresult array with properties:

    Results
    PricerData

outPR.Results 

ans=1×7 table
    Price      Delta         Gamma       Lambda      Vega      Theta       Rho  
    _____    _________    ___________    _______    _______    ______    _______

    87.4     -0.075973    -3.1264e-05    -0.6954    -23.084    3.2599    -592.61

ans=1×7 table
    Price       Delta         Gamma        Lambda      Vega      Theta       Rho  
    ______    _________    ___________    ________    _______    ______    _______
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    109.97    -0.014137    -4.4054e-05    -0.10284    -32.196    4.8405    -495.01

ans=1×7 table
    Price       Delta         Gamma        Lambda       Vega      Theta       Rho  
    ______    __________    __________    _________    _______    ______    _______

    111.93    -0.0027668    -1.279e-05    -0.019775    -9.4868    4.2144    -475.57

Price Binary Instrument Using Merton Model and Asset Monte Carlo Pricer

This example shows the workflow to price a Binary instrument when you use a Merton model and
an AssetMonteCarlo pricing method.

Create Binary Instrument Object

Use fininstrument to create a Binary instrument object.

BinaryOpt = fininstrument("Binary",'ExerciseDate',datetime(2022,9,15),'Strike',1000,'PayoffValue',130,'OptionType',"put",'Name',"binary_option")

BinaryOpt = 
  Binary with properties:

       OptionType: "put"
     ExerciseDate: 15-Sep-2022
           Strike: 1000
      PayoffValue: 130
    ExerciseStyle: "european"
             Name: "binary_option"

Create Merton Model Object

Use finmodel to create a Merton model object.

MertonModel = finmodel("Merton",'Volatility',0.45,'MeanJ',0.02,'JumpVol',0.07,'JumpFreq',0.09)

MertonModel = 
  Merton with properties:

    Volatility: 0.4500
         MeanJ: 0.0200
       JumpVol: 0.0700
      JumpFreq: 0.0900

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)
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myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetMonteCarlo Pricer Object

Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("AssetMonteCarlo",'DiscountCurve',myRC,"Model",MertonModel,'SpotPrice',102,'simulationDates',datetime(2022,9,15))

outPricer = 
  MertonMonteCarlo with properties:

      DiscountCurve: [1x1 ratecurve]
          SpotPrice: 102
    SimulationDates: 15-Sep-2022
          NumTrials: 1000
      RandomNumbers: []
              Model: [1x1 finmodel.Merton]
       DividendType: "continuous"
      DividendValue: 0

Price Binary Instrument

Use price to compute the price and sensitivities for the Binary instrument.

[Price, outPR] = price(outPricer,BinaryOpt,["all"])

Price = 112.4515

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: [1x1 struct]

outPR.Results 

ans=1×7 table
    Price     Delta    Gamma    Lambda      Rho      Theta     Vega
    ______    _____    _____    ______    _______    ______    ____

    112.45      0        0        0       -449.72    3.9384     0  
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Price Binary Instrument Using Bachelier Model and Asset Monte Carlo Pricer

This example shows the workflow to price a Binary instrument when you use a Bachelier model
and an AssetMonteCarlo pricing method.

Create Binary Instrument Object

Use fininstrument to create a Binary instrument object.

BinaryOpt = fininstrument("Binary",'ExerciseDate',datetime(2022,9,15),'Strike',1000,'PayoffValue',130,'OptionType',"put",'Name',"binary_option")

BinaryOpt = 
  Binary with properties:

       OptionType: "put"
     ExerciseDate: 15-Sep-2022
           Strike: 1000
      PayoffValue: 130
    ExerciseStyle: "european"
             Name: "binary_option"

Create Bachelier Model Object

Use finmodel to create a Bachelier model object.

BachelierModel = finmodel("Bachelier",'Volatility',.2)

BachelierModel = 
  Bachelier with properties:

     Volatility: 0.2000
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"
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Create AssetMonteCarlo Pricer Object

Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("AssetMonteCarlo",'DiscountCurve',myRC,"Model",BachelierModel,'SpotPrice',102,'simulationDates',datetime(2022,9,15))

outPricer = 
  BachelierMonteCarlo with properties:

      DiscountCurve: [1x1 ratecurve]
          SpotPrice: 102
    SimulationDates: 15-Sep-2022
          NumTrials: 1000
      RandomNumbers: []
              Model: [1x1 finmodel.Bachelier]
       DividendType: "continuous"
      DividendValue: 0

Price Binary Instrument

Use price to compute the price and sensitivities for the Binary instrument.

[Price, outPR] = price(outPricer,BinaryOpt,["all"])

Price = 113.0166

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: [1x1 struct]

outPR.Results 

ans=1×7 table
    Price     Delta    Gamma    Lambda      Rho      Theta     Vega
    ______    _____    _____    ______    _______    ______    ____

    113.02      0        0        0       -451.98    3.9582     0  

Price Binary Instrument Using Black-Scholes Model and Black-Scholes Pricer

This example shows the workflow to price a Binary instrument when you use a BlackScholes
model and a BlackScholes pricing method.

Create Binary Instrument Object

Use fininstrument to create a Binary instrument object.

BinaryOpt = fininstrument("Binary",'ExerciseDate',datetime(2022,9,15),'Strike',1000,'PayoffValue',130,'OptionType',"put",'Name',"binary_option")

BinaryOpt = 
  Binary with properties:
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       OptionType: "put"
     ExerciseDate: 15-Sep-2022
           Strike: 1000
      PayoffValue: 130
    ExerciseStyle: "european"
             Name: "binary_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',0.28)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.2800
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create BlackScholes Pricer Object

Use finpricer to create a BlackScholes pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'DiscountCurve',myRC,'Model',BlackScholesModel,'SpotPrice',800,'DividendValue',0.045)

outPricer = 
  BlackScholes with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 800
    DividendValue: 0.0450
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     DividendType: "continuous"

Price Binary Instrument

Use price to compute the price and sensitivities for the Binary instrument.

[Price, outPR] = price(outPricer,BinaryOpt,["all"])

Price = 87.4005

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []

outPR.Results 

ans=1×7 table
    Price      Delta         Gamma       Lambda      Vega      Theta       Rho  
    _____    _________    ___________    _______    _______    ______    _______

    87.4     -0.075973    -3.1264e-05    -0.6954    -23.084    3.2599    -592.61

More About
Binary Option

A binary option is where the buyer receives a payout or loses their investment, depending on whether
the option expires in the money.

Binary options depend on the outcome of a "yes or no" proposition, hence the name "binary." Binary
options have an expiry date and/or time. At the time of expiry, the price of the underlying asset must
be on the correct side of the strike price (based on the trade taken) for the trader to make a profit.

A binary option automatically exercises, meaning the gain or loss on the trade is automatically
credited or debited to the trader's account when the option expires.

See Also
Functions
finmodel | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53
“Supported Exercise Styles” on page 1-62

Introduced in R2020b
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Cap
Cap instrument object

Description
Create and price a Cap instrument object for one or more Cap instruments using this workflow:

1 Use fininstrument to create a Cap instrument object for one or more Cap instruments.
2 Use finmodel to specify a HullWhite, BlackKarasinski, Black, Normal,

BraceGatarekMusiela, SABRBraceGatarekMusiela, or LinearGaussian2F model for the
Cap instrument object.

3 Choose a pricing method.

• When using a HullWhite, BlackKarasinski, Black, or Normal model, use finpricer to
specify a Normal, Black, HullWhite, or IRTree pricing method for one or more Cap
instruments.

• When using a HullWhite, BraceGatarekMusiela, SABRBraceGatarekMusiela, or
LinearGaussian2F model, use finpricer to specify an IRMonteCarlo pricing method for
one or more Cap instruments.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available models and pricing methods for a Cap instrument, see “Choose
Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
CapOpt = fininstrument(InstrumentType,'Strike',strike_value,'
Maturity',maturity_date)
CapOpt = fininstrument( ___ ,Name,Value)

Description

CapOpt = fininstrument(InstrumentType,'Strike',strike_value,'
Maturity',maturity_date) creates a Cap object for one or more Cap instruments by specifying
InstrumentType and sets the properties on page 11-2558 for the required name-value pair
arguments Strike and Maturity.

The Cap instrument supports vanilla and amortizing caps.

CapOpt = fininstrument( ___ ,Name,Value) sets optional properties on page 11-2558 using
additional name-value pairs in addition to the required arguments in the previous syntax. For
example, CapOpt =
fininstrument("Cap",'Strike',0.65,'Maturity',datetime(2019,1,30),'Reset',4,'P
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rincipal',100,'ResetOffset',1,'Basis',1,'DaycountAdjustedCashFlow',true,'Busi
nessDayConvention',"follow",'ProjectionCurve',ratecurve_object,'Name',"cap_op
tion") creates a Cap option with a strike of 0.65. You can specify multiple name-value pair
arguments.

Input Arguments

InstrumentType — Instrument type
string with value "Cap" | string array with values of "Cap" | character vector with value 'Cap' | cell
array of character vectors with values of 'Cap'

Instrument type, specified as a string with the value of "Cap", a character vector with the value of
'Cap', an NINST-by-1 string array with values of "Cap", or an NINST-by-1 cell array of character
vectors with values of 'Cap'.
Data Types: char | cell | string

Cap Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: CapOpt =
fininstrument("Cap",'Strike',0.65,'Maturity',datetime(2019,1,30),'Reset',4,'P
rincipal',100,'ResetOffset',1,'Basis',1,'DaycountAdjustedCashFlow',true,'Busi
nessDayConvention',"follow",'ProjectionCurve',ratecurve_object,'Name',"cap_op
tion")

Required Cap Name-Value Pair Arguments

Strike — Cap strike price
nonnegative decimal | vector of nonnegative decimals

Cap strike price, specified as the comma-separated pair consisting of 'Strike' and a scalar
nonnegative decimal value or an NINST-by-1 nonnegative numeric vector.
Data Types: double

Maturity — Cap maturity date
datetime | serial date number | date character vector | date string | vector of datetimes | vector of
serial date numbers | cell array of date character vectors | date string array

Cap maturity date, specified as the comma-separated pair consisting of 'ExerciseDate' and a
scalar datetime, serial date number, date character vector, date string or an NINST-by-1 vector of
datetimes, serial date numbers, cell array of date character vectors, or date string array.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the Maturity property is stored as a datetime.
Data Types: double | char | cell | string | datetime
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Optional Cap Name-Value Pair Arguments

Reset — Reset frequency payments per year
1 (default) | numeric with value of 0, 1, 2, 3, 4, 6, or 12 | numeric vector with values of 0, 1, 2, 3, 4,
6, or 12

Reset frequency payments per year, specified as the comma-separated pair consisting of 'Reset'
and a scalar numeric or an NINST-by-1 numeric vector.
Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13 | vector of integers from 0 to 13

Day count basis, specified as the comma-separated pair consisting of 'Basis' and a scalar integer or
an NINST-by-1 vector of integers with the following values:

• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Principal amount or principal value schedule
100 (default) | scalar numeric | numeric vector | timetable

Principal amount or principal value schedule, specified as the comma-separated pair consisting of
'Principal' and a scalar numeric or an NINST-by-1 numeric vector or a timetable.

Principal accepts a timetable, where the first column is dates and the second column is its
associated principal value. The date indicates the last day that the principal value is valid.

Note If you are creating one or more Cap instruments and use a timetable, the timetable
specification applies to all of the Cap instruments. Principal does not accept an NINST-by-1 cell
array of timetables as input.

Data Types: double | timetable
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ResetOffset — Lag in rate setting
0 (default) | scalar numeric | numeric vector

Lag in rate setting, specified as the comma-separated pair consisting of 'ResetOffset' and a scalar
numeric or an NINST-by-1 numeric vector.
Data Types: double

DaycountAdjustedCashFlow — Flag to adjust cash flows based on actual period day count
false (default) | value of true or false | vector of values of true or false

Flag to adjust cash flows based on the actual period day count, specified as the comma-separated pair
consisting of 'DaycountAdjustedCashFlow' and a scalar or an NINST-by-1 vector with values of
true or false.
Data Types: logical

BusinessDayConvention — Business day conventions
"actual" (default) | string | string array | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a scalar string or character vector or an NINST-by-1 cell array of
character vectors or string array for a business day convention. The selection for business day
convention determines how nonbusiness days are treated. Nonbusiness days are defined as weekends
plus any other date that businesses are not open (for example, statutory holidays). Values are:

• "actual" — Nonbusiness days are effectively ignored. Cash flows that fall on non-business days
are assumed to be distributed on the actual date.

• "follow" — Cash flows that fall on a nonbusiness day are assumed to be distributed on the
following business day.

• "modifiedfollow" — Cash flows that fall on a nonbusiness day are assumed to be distributed
on the following business day. However, if the following business day is in a different month, the
previous business day is adopted instead.

• "previous" — Cash flows that fall on a nonbusiness day are assumed to be distributed on the
previous business day.

• "modifiedprevious" — Cash flows that fall on a nonbusiness day are assumed to be distributed
on the previous business day. However, if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell | string

Holidays — Holidays used in computing business days
NaT (default) | datetimes | cell array of character vectors | date string array | serial date numbers

Holidays used in computing business days, specified as the comma-separated pair consisting of
'Holidays' and dates using an NINST-by-1 vector of datetimes, serial date numbers, cell array of
date character vectors, or date string array. For example:

H = holidays(datetime('today'),datetime(2025,12,15));
CapOpt = fininstrument("Cap",'Strike',100,'Maturity',datetime(2025,12,15),'Holidays',H)

Data Types: double | cell | datetime | string

ProjectionCurve — Rate curve used in generating future cash flows
ratecurve.empty (default) | ratecurve object | vector of ratecurve objects
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Rate curve used in projecting the future cash flows, specified as the comma-separated pair consisting
of 'ProjectionCurve' and a scalar ratecurve object or an NINST-by-1 vector of ratecurve
objects. These objects must be created using ratecurve. Use this optional input if the forward curve
is different from the discount curve.
Data Types: object

Name — User-defined name for instrument
" " (default) | string | string array | character vector | cell array of character vectors

User-defined name for one of more instruments, specified as the comma-separated pair consisting of
'Name' and a scalar string or character vector or an NINST-by-1 cell array of character vectors or
string array.
Data Types: char | cell | string

Properties
Strike — Option strike price value
nonnegative value | vector of nonnegative values

Option strike price value, returned as a scalar nonnegative value or an NINST-by-1 vector of
nonnegative values.
Data Types: double

Maturity — Cap maturity date
datetime | vector of datetimes

Cap maturity date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

Reset — Reset frequency payments per year
1 (default) | scalar numeric | numeric vector

Reset frequency payments per year, returned as a scalar numeric or an NINST-by-1 numeric vector.
Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13 | vector of integers from 0 to 13

Day count basis, returned as a scalar integer or an NINST-by-1 vector of integers.
Data Types: double

Principal — Principal amount or principal value schedule
100 (default) | scalar numeric | numeric vector | timetable

Principal amount or principal value schedule, returned as a scalar numeric or an NINST-by-1 numeric
vector for principal amounts or a timetable for a principal value schedule.
Data Types: double | timetable

ResetOffset — Lag in rate setting
0 (default) | scalar numeric | numeric vector

11 Functions

11-2558



Lag in rate setting, returned as a scalar numeric or an NINST-by-1 numeric vector.
Data Types: double

DaycountAdjustedCashFlow — Flag to adjust cash flows based on actual period day count
false (default) | value of true or false | vector of values of true or false

Flag to adjust cash flows based on the actual period day count, returned as a scalar logical or an
NINST-by-1 vector with values of true or false.
Data Types: logical

BusinessDayConvention — Business day conventions
"actual" (default) | string | string array

Business day conventions, returned as a scalar string or an NINST-by-1 string array.
Data Types: string

Holidays — Holidays used in computing business days
NaT (default) | vector of datetimes

Holidays used in computing business days, returned as an NINST-by-1 vector of datetimes.
Data Types: datetime

ProjectionCurve — Rate curve used in generating future cash flows
ratecurve.empty (default) | ratecurve object | vector of ratecurve objects

Rate curve used in projecting the future cash flows, returned as a scalar ratecurve object or an
NINST-by-1 vector of ratecurve objects.
Data Types: object

Name — User-defined name for instrument
" " (default) | string | string array

User-defined name for the instrument, returned as a scalar string or an NINST-by-1 string array.
Data Types: string

Examples

Price Vanilla Cap Instrument Using Hull-White Model and Hull-White Pricer

This example shows the workflow to price a vanilla Cap instrument when using a HullWhite model
and a HullWhite pricing method.

Create Cap Instrument Object

Use fininstrument to create a Cap instrument object.

CapOpt = fininstrument("Cap",'Strike',0.02,'Maturity',datetime(2019,1,30),'Reset',4,'Principal',100,'Basis',8,'Name',"cap_option")

CapOpt = 
  Cap with properties:

 Cap

11-2559



                      Strike: 0.0200
                    Maturity: 30-Jan-2019
                 ResetOffset: 0
                       Reset: 4
                       Basis: 8
                   Principal: 100
             ProjectionCurve: [0x0 ratecurve]
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                        Name: "cap_option"

Create HullWhite Model Object

Use finmodel to create a HullWhite model object.

HullWhiteModel = finmodel("HullWhite",'Alpha',0.62,'Sigma',0.99)

HullWhiteModel = 
  HullWhite with properties:

    Alpha: 0.6200
    Sigma: 0.9900

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create HullWhite Pricer Object

Use finpricer to create a HullWhite pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'Model',HullWhiteModel,'DiscountCurve',myRC)
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outPricer = 
  HullWhite with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.HullWhite]

Price Cap Instrument

Use price to compute the price for the Cap instrument.

Price = price(outPricer,CapOpt)

Price = 2.9366

Price Multiple Vanilla Cap Instruments Using Hull-White Model and Hull-White Pricer

This example shows the workflow to price multiple vanilla Cap instruments when using a HullWhite
model and a HullWhite pricing method.

Create Cap Instrument Object

Use fininstrument to create a Cap instrument object for three Cap instruments.

CapOpt = fininstrument("Cap",'Strike',0.02,'Maturity',datetime([2019,1,30 ; 2019,2,30 ; 2019,3,30]),'Reset',4,'Principal',[100 ; 200 ; 300],'Basis',8,'Name',"cap_option")

CapOpt=3×1 object
  3x1 Cap array with properties:

    Strike
    Maturity
    ResetOffset
    Reset
    Basis
    Principal
    ProjectionCurve
    DaycountAdjustedCashFlow
    BusinessDayConvention
    Holidays
    Name

Create HullWhite Model Object

Use finmodel to create a HullWhite model object.

HullWhiteModel = finmodel("HullWhite",'Alpha',0.62,'Sigma',0.99)

HullWhiteModel = 
  HullWhite with properties:

    Alpha: 0.6200
    Sigma: 0.9900

Create ratecurve Object

Create a ratecurve object using ratecurve.
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Settle = datetime(2018,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create HullWhite Pricer Object

Use finpricer to create a HullWhite pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'Model',HullWhiteModel,'DiscountCurve',myRC)

outPricer = 
  HullWhite with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.HullWhite]

Price Cap Instruments

Use price to compute the prices for the Cap instruments.

Price = price(outPricer,CapOpt)

Price = 3×1

    2.9366
    7.4694
   17.7915

Price Vanilla Cap Instrument Using Normal Model and Normal Pricer

This example shows the workflow to price a vanilla Cap instrument when you use a Normal model
and a Normal pricing method.
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Create ratecurve Object

Create a ratecurve object using ratecurve for the underlying interest-rate curve for the cap
instrument.

Settle = datetime(2018,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Cap Instrument Object

Use fininstrument to create a Cap instrument object.

CapOpt = fininstrument("Cap",'Maturity',datetime(2022,9,15),'Strike',0.04,'ProjectionCurve',myRC)

CapOpt = 
  Cap with properties:

                      Strike: 0.0400
                    Maturity: 15-Sep-2022
                 ResetOffset: 0
                       Reset: 1
                       Basis: 0
                   Principal: 100
             ProjectionCurve: [1x1 ratecurve]
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                        Name: ""

Create Normal Model Object

Use finmodel to create a Normal model object.

NormalModel = finmodel("Normal",'Volatility',0.01)

NormalModel = 
  Normal with properties:
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    Volatility: 0.0100

Create Normal Pricer Object

Use finpricer to create a Normal pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'DiscountCurve',myRC,'Model',NormalModel)

outPricer = 
  Normal with properties:

    DiscountCurve: [1x1 ratecurve]
            Shift: 0
            Model: [1x1 finmodel.Normal]

Price Cap Instrument

Use price to compute the price for the Cap instrument.

[Price, outPR] = price(outPricer, CapOpt)

Price = 0.0701

outPR = 
  priceresult with properties:

       Results: [1x1 table]
    PricerData: []

Price Amortizing Cap Instrument Using Black Model and Black Pricer

This example shows the workflow to price an amortizing Cap instrument when you use a Black
model and a Black pricing method.

Create Cap Instrument Object

Use fininstrument to create an amortizing Cap instrument object.

CADates = [datetime(2020,9,1) ; datetime(2023,9,1)];
CAPrincipal = [100; 85];
Principal = timetable(CADates,CAPrincipal);

CapOpt = fininstrument("Cap",'Maturity',datetime(2023,9,1),'Strike',0.015,'Principal',Principal,'Name',"cap_amortizing_option")

CapOpt = 
  Cap with properties:

                      Strike: 0.0150
                    Maturity: 01-Sep-2023
                 ResetOffset: 0
                       Reset: 1
                       Basis: 0
                   Principal: [2x1 timetable]
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             ProjectionCurve: [0x0 ratecurve]
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                        Name: "cap_amortizing_option"

Create Black Model Object

Use finmodel to create a Black model object.

BlackModel = finmodel("Black",'Volatility',0.2)

BlackModel = 
  Black with properties:

    Volatility: 0.2000
         Shift: 0

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,1);
Type = 'zero';
ZeroTimes = [calyears([1 2 3 4 5 7 10])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168]';
ZeroDates = Settle + ZeroTimes;
            
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates);

Create Black Pricer Object

Use finpricer to create a Black pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'Model',BlackModel,'DiscountCurve',myRC)

outPricer = 
  Black with properties:

            Model: [1x1 finmodel.Black]
    DiscountCurve: [1x1 ratecurve]

Price Cap Instrument

Use price to compute the price for the Cap instrument.

Price = price(outPricer,CapOpt)

Price = 0.3897

Price Vanilla Cap Instrument Using Hull-White Model and IRTree Pricer

This example shows the workflow to price a vanilla Cap instrument when using a HullWhite model
and an IRTree pricing method.
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Create Cap Instrument Object

Use fininstrument to create a Cap instrument object.

CapOpt = fininstrument("Cap",'Strike',0.02,'Maturity',datetime(2020,1,30),'Reset',4,'Principal',100,'Basis',8,'Name',"cap_option")

CapOpt = 
  Cap with properties:

                      Strike: 0.0200
                    Maturity: 30-Jan-2020
                 ResetOffset: 0
                       Reset: 4
                       Basis: 8
                   Principal: 100
             ProjectionCurve: [0x0 ratecurve]
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                        Name: "cap_option"

Create HullWhite Model Object

Use finmodel to create a HullWhite model object.

HullWhiteModel = finmodel("HullWhite",'Alpha',0.01,'Sigma',0.10)

HullWhiteModel = 
  HullWhite with properties:

    Alpha: 0.0100
    Sigma: 0.1000

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
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     LongExtrapMethod: "previous"

Create IRTree Pricer Object

Use finpricer to create an IRTree pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

CFdates = cfdates(Settle, CapOpt.Maturity, CapOpt.Reset, CapOpt.Basis);
outPricer = finpricer("IRTree",'Model',HullWhiteModel,'DiscountCurve',myRC,'TreeDates',CFdates')

outPricer = 
  HWBKTree with properties:

             Tree: [1x1 struct]
        TreeDates: [6x1 datetime]
            Model: [1x1 finmodel.HullWhite]
    DiscountCurve: [1x1 ratecurve]

Price Cap Instrument

Use price to compute the price and sensitivities for the Cap instrument.

[Price, outPR] = price(outPricer,CapOpt,["all"])

Price = 2.7733

outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×4 table
    Price      Vega      Gamma     Delta 
    ______    ______    _______    ______

    2.7733    31.655    -49.227    28.932

Price Cap Instrument Using LinearGaussian2F Model and IRMonteCarlo Pricer

This example shows the workflow to price a Cap instrument when using a LinearGaussian2F model
and an IRMonteCarlo pricing method.

Create Cap Instrument Object

Use fininstrument to create a Cap instrument object.

CapOpt = fininstrument("Cap","Maturity",datetime(2022,9,15),'Strike',0.01,'Reset',2,'Name',"cap_option")

CapOpt = 
  Cap with properties:
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                      Strike: 0.0100
                    Maturity: 15-Sep-2022
                 ResetOffset: 0
                       Reset: 2
                       Basis: 0
                   Principal: 100
             ProjectionCurve: [0x0 ratecurve]
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                        Name: "cap_option"

Create LinearGaussian2F Model Object

Use finmodel to create a LinearGaussian2F model object.

LinearGaussian2FModel = finmodel("LinearGaussian2F",'Alpha1',0.07,'Sigma1',0.01,'Alpha2',0.5,'Sigma2',0.006,'Correlation',-0.7)

LinearGaussian2FModel = 
  LinearGaussian2F with properties:

         Alpha1: 0.0700
         Sigma1: 0.0100
         Alpha2: 0.5000
         Sigma2: 0.0060
    Correlation: -0.7000

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2019,1,1);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 01-Jan-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"
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Create IRMonteCarlo Pricer Object

Use finpricer to create an IRMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("IRMonteCarlo",'Model',LinearGaussian2FModel,'DiscountCurve',myRC,'SimulationDates',ZeroDates)

outPricer = 
  G2PPMonteCarlo with properties:

          NumTrials: 1000
      RandomNumbers: []
      DiscountCurve: [1x1 ratecurve]
    SimulationDates: [01-Jul-2019    01-Jan-2020    01-Jan-2021    ...    ]
              Model: [1x1 finmodel.LinearGaussian2F]

Price Cap Instrument

Use price to compute the price and sensitivities for the Cap instrument.

[Price,outPR] = price(outPricer,CapOpt,["all"])

Price = 1.2156

outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×4 table
    Price     Delta     Gamma          Vega      
    ______    ______    _____    ________________

    1.2156    131.37    11048    126.5    -157.38

More About
Cap

A cap is a contract that includes a guarantee that sets the maximum interest rate the holder pays,
based on an otherwise floating interest rate.

The payoff for a cap is: max(CurrentRate− CapRate, 0)

For more information, see “Cap” on page 2-12.

See Also
Functions
Floor | finmodel | finpricer
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Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53
“Work with Negative Interest Rates Using Objects” on page 2-22

Introduced in R2020a
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CDS
CDS instrument object

Description
Create and price a CDS instrument object for one or more CDS instruments using this workflow:

1 Use fininstrument to create a CDS instrument object for one or more CDS instruments.
2 Use defprobcurve to specify a default probability curve for the CDS instrument object.
3 Use finpricer to specify a Credit pricing method for one or more CDS instruments.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available models and pricing methods for a CDS instrument, see “Choose
Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
CDSobj = fininstrument(InstrumentType,'Maturity',maturity_date,'
ContractSpread',contractspread_value)
CDSobj = fininstrument( ___ ,Name,Value)

Description

CDSobj = fininstrument(InstrumentType,'Maturity',maturity_date,'
ContractSpread',contractspread_value) creates a CDS object for one or more CDS
instruments by specifying InstrumentType and sets the properties on page 11-2574 for the
required name-value pair arguments Maturity and ContractSpread.

CDSobj = fininstrument( ___ ,Name,Value) sets optional properties on page 11-2574 using
additional name-value pairs in addition to the required arguments in the previous syntax. For
example, CDSobj =
fininstrument("CDS",'Maturity',datetime(2019,1,30),'ContractSpread',200,'Peri
od',4,'Basis',5,'BusinessDayConvention','follow','Name',"cds_instrument")
creates a CDS instrument with contract spread of 200. You can specify multiple name-value pair
arguments.

Input Arguments

InstrumentType — Instrument type
string with value "CDS" | string array with values of "CDS" | character vector with value 'CDS' | cell
array of character vectors with values of 'CDS'
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Instrument type, specified as a string with the value of "CDS", a character vector with the value of
'CDS', an NINST-by-1 string array with values of "CDS", or an NINST-by-1 cell array of character
vectors with values of 'CDS'.
Data Types: char | cell | string

CDS Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: CDSobj =
fininstrument("CDS",'Maturity',datetime(2019,1,30),'ContractSpread',200,'Peri
od',4,'Basis',5,'BusinessDayConvention',"follow",'Name',"cds_instrument")

Required CDS Name-Value Pair Arguments

Maturity — Maturity date
datetime | serial date number | character vector | date string | vector of datetimes | vector of serial
date numbers | cell array of date character vectors | date string array

Maturity date, specified as the comma-separated pair consisting of 'Maturity' and a scalar
datetime, serial date number, date character vector, date string or an NINST-by-1 vector of datetimes,
serial date numbers, cell array of date character vectors, or date string array.

If you use date characters vector or date strings, the format must be recognizable by datetime
because the Maturity property is stored as a datetime.
Data Types: char | cell | double | string | datetime

ContractSpread — Contract spreads expressed in basis points
scalar numeric | numeric vector

Contract spreads expressed in basis points, specified as the comma-separated pair consisting of
'ContractSpread' and a scalar numeric or an NINST-by-1 numeric vector.
Data Types: double

Optional CDS Name-Value Pair Argument

Period — Premium payments per year
4 (default) | scalar numeric with value of 1, 2, 3, 4, 6, 12 | numeric vector with values of 1, 2, 3, 4, 6,
12

Premium payments per year, specified as the comma-separated pair consisting of 'Period' and a
scalar numeric or an NINST-by-1 numeric vector with values of 1, 2, 3, 4, 6, or 12.
Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | scalar of positive integers of the set [1...13] | vector of positive
integers of the set [1...13]

Day count basis, specified as the comma-separated pair consisting of 'Basis' and a scalar positive
integer or an NINST-by-1vector of positive integers using the following values:
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• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

BusinessDayConvention — Business day convention for cash flow dates
"actual" (default) | string | string array | character vector | cell array of character vectors

Business day conventions for cash flow dates, specified as the comma-separated pair consisting of
'BusDayConvention' and a scalar string or character vector or an NINST-by-1 cell array of
character vectors or string array. The selection for business day convention determines how
nonbusiness days are treated. Nonbusiness days are defined as weekends plus any other date that
businesses are not open (for example, statutory holidays). Values are:

• "actual" — Nonbusiness days are effectively ignored. Cash flows that fall on nonbusiness days
are assumed to be distributed on the actual date.

• "follow" — Cash flows that fall on a nonbusiness day are assumed to be distributed on the
following business day.

• "modifiedfollow" — Cash flows that fall on a nonbusiness day are assumed to be distributed
on the following business day. However, if the following business day is in a different month, the
previous business day is adopted instead.

• "previous" — Cash flows that fall on a nonbusiness day are assumed to be distributed on the
previous business day.

• "modifiedprevious" — Cash flows that fall on a nonbusiness day are assumed to be distributed
on the previous business day. However, if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell | string

PayAccruedPremium — Flag for accrued premiums
true (default) | scalar value of true or false | vector with values of true or false

Flag for accrued premiums, specified as the comma-separated pair consisting of
'PayAccruedPremium' and a scalar Boolean flag or an NINST-by-1 vector of Boolean flags that are
true if accrued premiums are paid upon default and false otherwise.
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Data Types: logical

RecoveryRate — Recovery rate
0.4 (default) | scalar decimal | vector of decimals

Recovery rate, specified as the comma-separated pair consisting of 'RecoveryRate' and a scalar
decimal or an NINST-by-1 vector of decimals from 0 to 1.
Data Types: double

Notional — Contract notional value
100 (default) | scalar positive integer | vector of positive integers

Contract notional value, specified as the comma-separated pair consisting of 'Notional' and a
scalar positive integer or an NINST-by-1 vector of positive integers.
Data Types: double

Holidays — Holidays used in computing business days
NaT (default) | datetimes | cell array of character vectors | date string array | serial date numbers

Holidays used in computing business days, specified as the comma-separated pair consisting of
'Holidays' and dates using an NINST-by-1 vector of datetimes, serial date numbers, cell array of
date character vectors, or date string array. For example:

H = holidays(datetime('today'),datetime(2025,12,15));
CDSobj = fininstrument("CDS",'Maturity',datetime(2025,12,15),'ContractSpread',200,'Holidays',H)

Data Types: double | cell | datetime | string

Name — User-defined name for instrument
" " (default) | string | string array | character vector | cell array of character vectors

User-defined name for one of more instruments, specified as the comma-separated pair consisting of
'Name' and a scalar string or character vector or an NINST-by-1 cell array of character vectors or
string array.
Data Types: char | cell | string

Properties
Maturity — Maturity date
datetime | vector of datetimes

Maturity date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

ContractSpread — Contract spreads expressed in basis points
scalar numeric | numeric vector

Contract spreads expressed in basis points, returned as a scalar numeric or an NINST-by-1 numeric
vector.
Data Types: double
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Period — Premium payments per year
4 (default) | scalar numeric with value of 1, 2, 3, 4, 6 or 12 | numeric vector with values of 1, 2, 3, 4,
6 or 12

Premium payments per year, returned as a scalar numeric or an NINST-by-1 numeric vector.
Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | scalar positive integers of the set [1...13] | vector of positive integers
of the set [1...13]

Day count basis, returned as a scalar positive integer or an NINST-by-1 vector of positive integers.
Data Types: double

BusinessDayConvention — Business day convention for cash flow dates
"actual" (default) | string | string array

Business day conventions for cash flow dates, returned as a scalar string or an NINST-by-1 string
array.
Data Types: string

PayAccruedPremium — Flag for accrued premiums
true (default) | scalar value true or false | vector of values true or false

Flag for accrued premiums, returned as a scalar Boolean flag or an NINST-by-1 vector of Boolean
flags.
Data Types: logical

RecoveryRate — Recovery rate
0.4 (default) | scalar decimal | vector of decimals

Recovery rate, returned as a scalar decimal or an NINST-by-1 vector of decimals.
Data Types: double

Notional — Contract notional value
100 (default) | scalar positive integer | vector of positive integers

Contract notional value, returned as a scalar positive integer or an NINST-by-1 vector of positive
integers.
Data Types: double

Holidays — Holidays used in computing business days
NaT (default) | datetimes

Holidays used in computing business days, returned as an NINST-by-1 vector of datetimes.
Data Types: datetime

Name — User-defined name for instrument
" " (default) | string | string array

User-defined name for the instrument, returned as a string or an NINST-by-1 string array.
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Data Types: string

Examples

Price CDS Instrument Using Default Probability Curve and Credit Pricer

This example shows the workflow to price a CDS instrument when you use a defprobcurve model
and a Credit pricing method.

Create CDS Instrument Object

Use fininstrument to create a CDS instrument object.

CDS = fininstrument("CDS",'Maturity',datetime(2021,9,15),'ContractSpread',15,'Notional',20000,'Period',4,'Basis',3,'BusinessDayConvention',"follow",'Name',"CDS_instrument")

CDS = 
  CDS with properties:

           ContractSpread: 15
                 Maturity: 15-Sep-2021
                   Period: 4
                    Basis: 3
             RecoveryRate: 0.4000
    BusinessDayConvention: "follow"
                 Holidays: NaT
        PayAccruedPremium: 1
                 Notional: 20000
                     Name: "CDS_instrument"

Create defprobcurve Object

Create a defprobcurve object using defprobcurve.

Settle = datetime(2020,9,20);
DefProbTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])];
DefaultProbabilities = [0.005 0.007 0.01 0.015 0.026 0.04 0.077 0.093 0.15 0.20]';
ProbDates = Settle + DefProbTimes;
DefaultProbCurve = defprobcurve(Settle,ProbDates,DefaultProbabilities,'Basis',5)

DefaultProbCurve = 
  defprobcurve with properties:

                  Settle: 20-Sep-2020
                   Basis: 5
                   Dates: [10x1 datetime]
    DefaultProbabilities: [10x1 double]

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2020,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
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ZeroDates = Settle + ZeroTimes;
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2020
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Credit Pricer Object

Use finpricer to create a Credit pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("credit",'DefaultProbabilityCurve',DefaultProbCurve,'DiscountCurve',myRC)

outPricer = 
  Credit with properties:

              DiscountCurve: [1x1 ratecurve]
                   TimeStep: 10
    DefaultProbabilityCurve: [1x1 defprobcurve]

Price CDS Instrument

Use price to compute the price for the CDS instrument.

Price = price(outPricer,CDS)

Price = 52.7426

Price Multiple CDS Instruments Using Default Probability Curve and Credit Pricer

This example shows the workflow to price multiple CDS instruments when you use a defprobcurve
model and a Credit pricing method.

Create CDS Instrument Object

Use fininstrument to create a CDS instrument object for three CDS instruments.

CDS = fininstrument("CDS",'Maturity',datetime([2021,9,15 ; 2021,10,15 ; 2021,11,15]),'ContractSpread',15,'Notional',[20000 ; 30000 ; 40000],'Period',4,'Basis',3,'BusinessDayConvention',"follow",'Name',"CDS_instrument")

CDS=3×1 object
  3x1 CDS array with properties:

    ContractSpread
    Maturity
    Period
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    Basis
    RecoveryRate
    BusinessDayConvention
    Holidays
    PayAccruedPremium
    Notional
    Name

Create defprobcurve Object

Create a defprobcurve object using defprobcurve.

Settle = datetime(2020,9,20);
DefProbTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])];
DefaultProbabilities = [0.005 0.007 0.01 0.015 0.026 0.04 0.077 0.093 0.15 0.20]';
ProbDates = Settle + DefProbTimes;
DefaultProbCurve = defprobcurve(Settle,ProbDates,DefaultProbabilities,'Basis',5)

DefaultProbCurve = 
  defprobcurve with properties:

                  Settle: 20-Sep-2020
                   Basis: 5
                   Dates: [10x1 datetime]
    DefaultProbabilities: [10x1 double]

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2020,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2020
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Credit Pricer Object

Use finpricer to create a Credit pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("credit",'DefaultProbabilityCurve',DefaultProbCurve,'DiscountCurve',myRC)
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outPricer = 
  Credit with properties:

              DiscountCurve: [1x1 ratecurve]
                   TimeStep: 10
    DefaultProbabilityCurve: [1x1 defprobcurve]

Price CDS Instruments

Use price to compute the prices for the CDS instruments.

Price = price(outPricer,CDS)

Price = 3×1

   52.7426
   80.2945
  108.0357

See Also
Functions
CDSOption | finmodel | finpricer

Topics
“Bootstrapping a Default Probability Curve from Credit Default Swaps” on page 8-42
“Price Multiple CDS Option Instruments Using CDS Black Model and CDS Black Pricer” on page 8-46
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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CDSOption
CDSOption instrument object

Description
Create and price a CDSOption instrument object for one or more CDS Option instruments using this
workflow:

1 Use fininstrument to create a CDSOption instrument object for one or more CDS Option
instruments. By default, this creates a single-name CDS option. You can create a CDS index
option by specifying the optional name-value argument AdjustedForwardSpread.

2 Use finmodel to specify a CDSBlack model for the CDSoption instrument object.
3 Use finpricer to specify a CDSBlack pricing method for one or more CDSoption instruments.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available models and pricing methods using a CDSoption instrument,
see “Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
CDSOptionObj = fininstrument(InstrumentType,'ExerciseDate',exercise_date,'
Strike',strike_value,'CDS',cds_obj)
CDSOptionObj = fininstrument( ___ ,Name,Value)

Description

CDSOptionObj = fininstrument(InstrumentType,'ExerciseDate',exercise_date,'
Strike',strike_value,'CDS',cds_obj) creates a CDSOption object for one or more CDS
Option instruments by specifying InstrumentType and sets the properties on page 11-2582 for the
required name-value pair arguments ExerciseDate, Strike, and CDS.

CDSOptionObj = fininstrument( ___ ,Name,Value) sets optional properties on page 11-2582
using additional name-value pairs in addition to the required arguments in the previous syntax. For
example, CDSOptionObj =
fininstrument("CDSoption",'ExerciseDate',datetime(2019,1,30),'Strike',500,'CD
S',cds_object,'Name',"cdsoption_instrument") creates a CDSOption instrument for a
single-name CDS option with a strike of 500. You can specify multiple name-value pair arguments.

Input Arguments

InstrumentType — Instrument type
string with value "CDSoption" | string array with values of "CDSoption" | character vector with
value 'CDSoption' | cell array of character vectors with values of 'CDSoption'
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Instrument type, specified as a string with the value of "CDSoption", a character vector with the
value of 'CDSoption', an NINST-by-1 string array with values of "CDSoption", or an NINST-by-1
cell array of character vectors with values of 'CDSoption'.
Data Types: char | cell | string

CDSOption Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: CDSOptionObj =
fininstrument("CDSoption",'ExerciseDate',datetime(2019,1,30),'Strike',500,'CD
S',cds_object,'Name',"cdsoption_instrument")

Required CDSOption Name-Value Pair Arguments

ExerciseDate — Option exercise date
datetime | serial date number | date character vector | date string | vector of datetimes | vector of
serial date numbers | cell array of date character vectors | date string array

Option exercise date, specified as the comma-separated pair consisting of 'ExerciseDate' and a
scalar datetime, serial date number, date character vector, date string or an NINST-by-1 vector of
datetimes, serial date numbers, cell array of date character vectors, or date string array.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the ExerciseDate property is stored as a datetime.
Data Types: double | char | cell | string | datetime

Strike — Option strike price
scalar nonnegative numeric | vector of nonnegative numeric

Option strike price, specified as the comma-separated pair consisting of 'Strike' and a scalar
nonnegative numeric or an NINST-by-1 vector of nonnegative numeric.
Data Types: double

CDS — CDS object
CDS object | vector of CDS objects

CDS object, specified as the comma-separated pair consisting of 'CDS' and a scalar CDS object or an
NINST-by-1 vector of CDS objects.
Data Types: object

Optional CDSOption Name-Value Pair Argument

OptionType — Option type
"call" (default) | string with value "call" or "put" | string array with values of "call" or "put"
| character vector with value 'call' or 'put' | cell array of character vectors with values of
'call' or 'put'

Option type, specified as the comma-separated pair consisting of 'OptionType' and a scalar string
or character vector or an NINST-by-1 cell array of character vectors or string array.
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Data Types: char | cell | string

Knockout — Flag indicating if option is knockout type
false (default) | scalar logical with value true or false | vector of logicals with values of true or
false

Flag indicating if option is knockout type, specified as the comma-separated pair consisting of
'Knockout' and a scalar logical or an NINST-by-1 vector of logical values.
Data Types: logical

AdjustedForwardSpread — Adjusted forward spread (in basis points) for pricing CDS index
option
NaN (single-name CDS option) (default) | scalar numeric | numeric vector

Adjusted forward spread (in basis points) for pricing a CDS index option, specified as the comma-
separated pair consisting of 'AdjustedForwardSpread' and a scalar numeric or an NINST-by-1
numeric vector. For more information on using 'AdjustedForwardSpread' when pricing a CDS
index option, see “Price CDS Index Options Using CDS Black Model and CDS Black Pricer” on page
11-2587.
Data Types: double

Name — User-defined name for instrument
" " (default) | string | string array | character vector | cell array of character vectors

User-defined name for one of more instruments, specified as the comma-separated pair consisting of
'Name' and a scalar string or character vector or an NINST-by-1 cell array of character vectors or
string array.
Data Types: char | cell | string

Properties
ExerciseDate — Option exercise date
datetime | vector of datetimes

Option exercise date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

Strike — Option strike price
scalar nonnegative numeric | vector of nonnegative numeric

Option strike price, returned as a scalar nonnegative numeric or an NINST-by-1 vector of nonnegative
numeric values.
Data Types: double

CDS — CDS object
CDS object | vector of CDS objects

CDS object, returned as a scalar CDS object or an NINST-by-1 vector of CDS objects.
Data Types: object
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OptionType — Definition of option
"call" (default) | string with value "call" or "put" | string array with values of "call" or "put"

Definition of option, returned as a scalar string or an NINST-by-1 string array with values of "call"
or "put".
Data Types: string

Knockout — Flag indicating if option is knockout type
false (default) | scalar logical with value true or false | vector of logicals with values of true or
false

Flag indicating if option is knockout type, returned as a scalar logical or an NINST-by-1 vector of
logicals.
Data Types: logical

AdjustedForwardSpread — Adjusted forward spread (in basis points) for pricing CDS index
option
NaN (single-name CDS option) (default) | scalar numeric | numeric vector

Adjusted forward spread (in basis points) for pricing a CDS index option, returned as a scalar
numeric or an NINST-by-1 numeric vector.
Data Types: double

Name — User-defined name for instrument
" " (default) | string | string array

User-defined name for the instrument, returned as a scalar string or an NINST-by-1 string array.
Data Types: string

Examples

Price CDS Option Instrument Using CDS Black Model and CDS Black Pricer

This example shows the workflow to price a CDSOption instrument for a single-name CDS option
when you use a CDSBlack model and a CDSBlack pricing method.

Create CDS Instrument Object

Use fininstrument to create the underlying CDS instrument object.

CDSOpt = fininstrument("CDS",'Maturity',datetime(2021,9,15),'ContractSpread',150,'Notional',100,'Name',"CDS_option")

CDSOpt = 
  CDS with properties:

           ContractSpread: 150
                 Maturity: 15-Sep-2021
                   Period: 4
                    Basis: 2
             RecoveryRate: 0.4000
    BusinessDayConvention: "actual"
                 Holidays: NaT
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        PayAccruedPremium: 1
                 Notional: 100
                     Name: "CDS_option"

Create defprobcurve Object

Create a defprobcurve object using defprobcurve.

Settle = datetime(2020,9,20);
DefProbTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])];
DefaultProbabilities = [0.005 0.007 0.01 0.015 0.026 0.04 0.077 0.093 0.15 0.20]';
ProbDates = Settle + DefProbTimes;
DefaultProbCurve = defprobcurve(Settle,ProbDates,DefaultProbabilities,'Basis',5)

DefaultProbCurve = 
  defprobcurve with properties:

                  Settle: 20-Sep-2020
                   Basis: 5
                   Dates: [10x1 datetime]
    DefaultProbabilities: [10x1 double]

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2020,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2020
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create CDSOption Instrument Object

Use fininstrument to create a CDSOption instrument object for a single-name CDS option.

CDSOptionInst = fininstrument("CDSOption",'ExerciseDate',datetime(2021,8,15),'Strike',20,'CDS',CDSOpt,'OptionType',"put",'Knockout',true,'Name',"CDSOption_option")

CDSOptionInst = 
  CDSOption with properties:

               OptionType: "put"
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                   Strike: 20
                 Knockout: 1
    AdjustedForwardSpread: NaN
             ExerciseDate: 15-Aug-2021
                      CDS: [1x1 fininstrument.CDS]
                     Name: "CDSOption_option"

Create CDSBlack Model Object

Use finmodel to create a CDSBlack model object.

CDSBlackModel = finmodel("CDSBlack",'SpreadVolatility',.2)

CDSBlackModel = 
  CDSBlack with properties:

    SpreadVolatility: 0.2000

Create CDSBlack Pricer Object

Use finpricer to create a CDSBlack pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'Model',CDSBlackModel,'DefaultProbabilityCurve',DefaultProbCurve,'DiscountCurve',myRC)

outPricer = 
  CDSBlack with properties:

                      Model: [1x1 finmodel.CDSBlack]
              DiscountCurve: [1x1 ratecurve]
    DefaultProbabilityCurve: [1x1 defprobcurve]

Price CDSOption Instrument

Use price to compute the price for the CDSOption instrument for a single-name CDS option.

Price = price(outPricer,CDSOptionInst)

Price = 3.3016e-04

Price Multiple CDS Option Instruments Using CDS Black Model and CDS Black Pricer

This example shows the workflow to price multiple CDSOption instruments when you use a
CDSBlack model and a CDSBlack pricing method.

Create CDS Instrument Object

Use fininstrument to create the underlying CDS instrument object for three CDS Option
instruments.

CDSOpt = fininstrument("CDS",'Maturity',datetime([2021,9,15 ; 2021,10,15 ; 2021,11,15]),'ContractSpread',150,'Notional',[10000 ; 20000 ; 30000],'Name',"CDS_option")

CDSOpt=3×1 object
  3x1 CDS array with properties:
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    ContractSpread
    Maturity
    Period
    Basis
    RecoveryRate
    BusinessDayConvention
    Holidays
    PayAccruedPremium
    Notional
    Name

Create defprobcurve Object

Create a defprobcurve object using defprobcurve.

Settle = datetime(2020,9,20);
DefProbTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])];
DefaultProbabilities = [0.005 0.007 0.01 0.015 0.026 0.04 0.077 0.093 0.15 0.20]';
ProbDates = Settle + DefProbTimes;
DefaultProbCurve = defprobcurve(Settle,ProbDates,DefaultProbabilities,'Basis',5)

DefaultProbCurve = 
  defprobcurve with properties:

                  Settle: 20-Sep-2020
                   Basis: 5
                   Dates: [10x1 datetime]
    DefaultProbabilities: [10x1 double]

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2020,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2020
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"
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Create CDSOption Instrument Object

Use fininstrument to create a CDSOption instrument object for three single-name CDS options.

CDSOptionInst = fininstrument("CDSOption",'ExerciseDate',datetime(2021,8,15),'Strike',20,'CDS',CDSOpt,'OptionType',"put",'Knockout',true,'Name',"CDSOption_option")

CDSOptionInst=3×1 object
  3x1 CDSOption array with properties:

    OptionType
    Strike
    Knockout
    AdjustedForwardSpread
    ExerciseDate
    CDS
    Name

Create CDSBlack Model Object

Use finmodel to create a CDSBlack model object.

CDSBlackModel = finmodel("CDSBlack",'SpreadVolatility',.2)

CDSBlackModel = 
  CDSBlack with properties:

    SpreadVolatility: 0.2000

Create CDSBlack Pricer Object

Use finpricer to create a CDSBlack pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'Model',CDSBlackModel,'DefaultProbabilityCurve',DefaultProbCurve,'DiscountCurve',myRC)

outPricer = 
  CDSBlack with properties:

                      Model: [1x1 finmodel.CDSBlack]
              DiscountCurve: [1x1 ratecurve]
    DefaultProbabilityCurve: [1x1 defprobcurve]

Price CDSOption Instruments

Use price to compute the prices for the three CDSOption instruments.

Price = price(outPricer,CDSOptionInst)

Price = 3×1

    0.0003
    0.0384
    0.5941
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Price CDS Index Options Using CDS Black Model and CDS Black Pricer

This example shows the workflow to use a CDSOption instrument to price CDS index options when
you use a CDSBlack model and a CDSBlack pricing method.

Set Up Data for CDS Index

% CDS index and option data
Recovery = .4;
Basis = 2;
Period = 4;
CDSMaturity = datetime(2017, 6, 20);
ContractSpread = 100;
IndexSpread = 140;
BusDayConvention = 'follow';
Settle = datetime(2012, 4, 13);
OptionMaturity = datetime(2012, 6, 20);
OptionStrike = 140;
SpreadVolatility = .69;

Create ratecurve Object for Zero Curve Using irbootstrap

Create ratecurve object for a zero curve using irbootstrap.

% Zero curve data
DepRates = [0.004111 0.00563 0.00757 0.01053]';
DepTimes = calmonths([1 2 3 6]');
DepDates = Settle + DepTimes;
nDeposits = length(DepTimes);

SwapRates = [0.01387 0.01035 0.01145 0.01318 0.01508 0.01700 0.01868 ...
    0.02012 0.02132 0.02237 0.02408 0.02564 0.02612 0.02524]';
SwapTimes = calyears([1 2 3 4 5 6 7 8 9 10 12 15 20 30]');
SwapDates = Settle + SwapTimes;
nSwaps = length(SwapTimes);

nInst = nDeposits + nSwaps;

BootInstruments(nInst,1) = fininstrument.FinInstrument;
for ii=1:length(DepDates)
    BootInstruments(ii) = fininstrument("deposit","Maturity",DepDates(ii),"Rate",DepRates(ii));
end

for ii=1:length(SwapDates)
    BootInstruments(ii+nDeposits) = fininstrument("swap","Maturity",SwapDates(ii),"LegRate",[SwapRates(ii) 0]);
end

ZeroCurve = irbootstrap(BootInstruments,Settle)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [18x1 datetime]
                Rates: [18x1 double]
               Settle: 13-Apr-2012
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         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Bootstrap Default Probability Curve

Use defprobstrip to bootstrap default probability curve assuming a flat index spread.

ProbDates = datemnth(OptionMaturity,(0:5*12)');
MarketCDSInstruments = fininstrument("cds", ...
    'ContractSpread', ContractSpread, 'Maturity', CDSMaturity);
DefaultProbCurve = defprobstrip(ZeroCurve, MarketCDSInstruments, IndexSpread, 'ProbDates', ProbDates)

DefaultProbCurve = 
  defprobcurve with properties:

                  Settle: 13-Apr-2012
                   Basis: 2
                   Dates: [61x1 datetime]
    DefaultProbabilities: [61x1 double]

Compute Spot and Forward RPV01s

Compute the spot and forward RPV01s using cdsrpv01.

ProbData = [datenum(DefaultProbCurve.Dates) DefaultProbCurve.DefaultProbabilities];

% RPV01(t,T)
RPV01_CDSMaturity = cdsrpv01(ZeroCurve,ProbData,Settle,CDSMaturity)

RPV01_CDSMaturity = 4.7853

% RPV01(t,t_E,T)
RPV01_OptionExpiryForward = cdsrpv01(ZeroCurve,ProbData,Settle,CDSMaturity,...
    'StartDate',OptionMaturity)

RPV01_OptionExpiryForward = 4.5972

% RPV01(t,t_E) = RPV01(t,T) - RPV01(t,t_E,T)
RPV01_OptionExpiry = RPV01_CDSMaturity - RPV01_OptionExpiryForward

RPV01_OptionExpiry = 0.1882

Compute Spot Spreads

Compute the spot spreads using cdsspread.

% S(t,t_E)
Spread_OptionExpiry = cdsspread(ZeroCurve,ProbData,Settle,OptionMaturity,...
    'Period',Period,'Basis',Basis,'BusDayConvention',BusDayConvention,...
    'PayAccruedPremium',true,'recoveryrate',Recovery)

Spread_OptionExpiry = 139.8995

% S(t,T)
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Spread_CDSMaturity = cdsspread(ZeroCurve,ProbData,Settle,CDSMaturity,...
    'Period',Period,'Basis',Basis,'BusDayConvention',BusDayConvention,...
    'PayAccruedPremium',true,'recoveryrate',Recovery)

Spread_CDSMaturity = 139.9999

Compute Forward Spread

Compute the forward spread using the spot spreads and RPV01s.

% F = S(t,t_E,T)
ForwardSpread = (Spread_CDSMaturity.*RPV01_CDSMaturity - Spread_OptionExpiry.*RPV01_OptionExpiry)./RPV01_OptionExpiryForward

ForwardSpread = 140.0040

Compute Front-End Protection

Compute the front-end protection (FEP).

FEP = 10000*(1-Recovery)*ZeroCurve.discountfactors(OptionMaturity)*DefaultProbCurve.DefaultProbabilities(1)

FEP = 26.3108

Compute Adjusted Forward Spread

Compute the adjusted forward spread to use when creating an CDSOption instrument.

AdjustedForwardSpread = ForwardSpread + FEP./RPV01_OptionExpiryForward

AdjustedForwardSpread = 145.7273

Compute CDS Option Prices with Adjusted Forward Spread

Use fininstrument to create the underlying CDS instrument object for the two CDS Option
instruments.

CDS = fininstrument("cds",'ContractSpread', ContractSpread, 'Maturity', CDSMaturity)

CDS = 
  CDS with properties:

           ContractSpread: 100
                 Maturity: 20-Jun-2017
                   Period: 4
                    Basis: 2
             RecoveryRate: 0.4000
    BusinessDayConvention: "actual"
                 Holidays: NaT
        PayAccruedPremium: 1
                 Notional: 10000000
                     Name: ""

Use fininstrument to create a CDSOption instrument for two CDS index option instruments.

CDSCallOption = fininstrument("cdsoption", 'Strike', OptionStrike, ...
    'ExerciseDate', OptionMaturity, 'OptionType', 'call', 'CDS', CDS, ...
    'Knockout',true, 'AdjustedForwardSpread', AdjustedForwardSpread)

CDSCallOption = 
  CDSOption with properties:
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               OptionType: "call"
                   Strike: 140
                 Knockout: 1
    AdjustedForwardSpread: 145.7273
             ExerciseDate: 20-Jun-2012
                      CDS: [1x1 fininstrument.CDS]
                     Name: ""

CDSPutOption = fininstrument("cdsoption", 'Strike', OptionStrike, ...
    'ExerciseDate', OptionMaturity, 'OptionType', 'put', 'CDS', CDS, ...
    'Knockout',true, 'AdjustedForwardSpread', AdjustedForwardSpread)

CDSPutOption = 
  CDSOption with properties:

               OptionType: "put"
                   Strike: 140
                 Knockout: 1
    AdjustedForwardSpread: 145.7273
             ExerciseDate: 20-Jun-2012
                      CDS: [1x1 fininstrument.CDS]
                     Name: ""

Create CDSBlack Model Object

Use finmodel to create a CDSBlack model object.

CDSOptionModel = finmodel("cdsblack",'SpreadVolatility',SpreadVolatility)

CDSOptionModel = 
  CDSBlack with properties:

    SpreadVolatility: 0.6900

Create CDSBlack Pricer Object

Use finpricer to create a CDSBlack pricer object and use the ratecurve object for the zero curve
for the 'DiscountCurve' name-value pair argument.

CDSOptionpricer = finpricer("analytic",'Model',CDSOptionModel,'DiscountCurve',ZeroCurve,'DefaultProbabilityCurve',DefaultProbCurve)

CDSOptionpricer = 
  CDSBlack with properties:

                      Model: [1x1 finmodel.CDSBlack]
              DiscountCurve: [1x1 ratecurve]
    DefaultProbabilityCurve: [1x1 defprobcurve]

Price CDS Index Options

Use price to compute the price for the two CDS index options.

outPrice = price(CDSOptionpricer, [CDSCallOption;CDSPutOption]);
fprintf('    Payer: %.0f   Receiver: %.0f  \n',outPrice(1),outPrice(2));
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    Payer: 92   Receiver: 66  

More About
Credit Default Swap Option

A credit default swap (CDS) option, or credit default swaption, is a contract that provides the option
holder with the right, but not the obligation, to enter into a credit default swap in the future.

CDS options can be either payer swaptions or receiver swaptions. In a payer swaption, the option
holder has the right to enter into a CDS in which they are paying premiums, and in a receiver
swaption, the option holder is receiving premiums.

A CDS option can be a single-name CDS option or CDS index option. When pricing a CDS index
option , use the optional name-value argument AdjustedForwardSpread. Unlike a single-name
CDS, a CDS portfolio index contains multiple credits. When one or more of the credits default, the
corresponding contingent payments are made to the protection buyer but the contract still continues
with reduced coupon payments. Considering the fact that the CDS index option does not cancel when
some of the underlying credits default before expiry, one might attempt to price CDS index options
using the Black's model for non-knockout single-name CDS option. However, Black's model in this
form is not appropriate for pricing CDS index options because it does not capture the exercise
decision correctly when the strike spread (K) is very high, nor does it ensure put-call parity when (K)
is not equal to the contractual spread (O'Kane, 2008).

However, with the appropriate modifications, Black's model for single-name CDS options used with a
CDSOption instrument and CDSBlack pricer can provide a good approximation for CDS index
options. While there are some variations in the way the Black's model is modified for CDS index
options, they usually involve adjusting the forward spread F, the strike spread K, or both. Here we
describe the approach of adjusting the forward spread only. In the Black's model for single-name CDS
options, the forward spread F is defined as:

F = S(t, tE, T) =
S(t, T)RPV01(t, T)− S(t, tE)RPV01(t, tE)

RPV01(t, tE, T)

where

S is the spread.

RPV01 is the risky present value of a basis point (see cdsrpv01).

t is the valuation date.

tE is the option expiry date.

T is the CDS maturity date.

To capture the exercise decision correctly for CDS index options, we use the knockout form of the
Black's model and adjust the forward spread to incorporate the FEP (front end protection) as follows:

FAd j = F + FEP
RPV01(t, tE, T)

with FEP defined as

FEP = (1− R)Z(t, tE)(1− Q(t, tE))
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where

R is the recovery rate.

Z is the discount factor.

Q is the survival probability.

In the CDSOption object, forward spread adjustment can be made with the
AdjustedForwardSpread name-value argument. When computing the adjusted forward spread, you
can compute the spreads using cdsspread and the RPV01s using cdsrpv01.

References
[1] O'Kane, D. Modelling Single-name and Multi-name Credit Derivatives. Wiley, 2008, pp. 156–169.

See Also
Functions
CDS | finmodel | finpricer

Topics
“Price Multiple CDS Option Instruments Using CDS Black Model and CDS Black Pricer” on page 8-46
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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FixedBond
FixedBond instrument object

Description
Create and price a FixedBond instrument object for one of more Fixed Bond instruments using this
workflow:

1 Use fininstrument to create a FixedBond instrument object for one of more Fixed Bond
instruments.

2 Use ratecurve to specify a curve model for the FixedBond instrument object or use a
HullWhite, BraceGatarekMusiela, SABRBraceGatarekMusiela, or LinearGaussian2F
model.

3 Choose a pricing method.

• When using a ratecurve use finpricer to specify a Discount pricing method for one or
more FixedBond instruments.

• When using a HullWhite, BraceGatarekMusiela, SABRBraceGatarekMusiela, or
LinearGaussian2F model, use finpricer to specify an IRMonteCarlo pricing method for
one or more FixedBond instruments.

For more detailed information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available models and pricing methods for a FixedBond instrument, see
“Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
FixedBondObj = fininstrument(InstrumentType,'CouponRate',couponrate_value,'
Maturity',maturity_date)
FixedBondObj = fininstrument( ___ ,Name,Value)

Description

FixedBondObj = fininstrument(InstrumentType,'CouponRate',couponrate_value,'
Maturity',maturity_date) creates a FixedBond object for one of more Fixed Bond instruments
by specifying InstrumentType and sets the properties on page 11-2599 for the required name-value
pair arguments CouponRate and Maturity.

The FixedBond instrument supports a vanilla bond, a stepped coupon bond, and an amortizing bond.
For more information, see “More About” on page 11-2612.

FixedBondObj = fininstrument( ___ ,Name,Value) sets optional properties on page 11-2599
using additional name-value pairs in addition to the required arguments in the previous syntax. For
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example, FixedBondObj =
fininstrument("FixedBond",'CouponRate',0.034,'Maturity',datetime(2019,1,30),'
Period',4,'Basis',1,'Principal',100,'FirstCouponDate',datetime(2016,1,30),'En
dMonthRule',true,'Name',"fixedbond_instrument") creates a FixedBond option with a
coupon rate of 0.34 and a maturity of January 30, 2019. You can specify multiple name-value pair
arguments.

Input Arguments

InstrumentType — Instrument type
string with value "Fixedbond" | string array with values of "Fixedbond" | character vector with
value 'FixedBond' | cell array of character vectors with values of 'FixedBond'

Instrument type, specified as a string with the value of "FixedBond", a character vector with the
value of 'FixedBond', an NINST-by-1 string array with values of "FixedBond", or an NINST-by-1
cell array of character vectors with values of 'FixedBond'.
Data Types: char | cell | string

FixedBond Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: FixedBondObj =
fininstrument("FixedBond",'CouponRate',0.034,'Maturity',datetime(2019,1,30),'
Period',4,'Basis',1,'Principal',100,'FirstCouponDate',datetime(2016,1,30),'En
dMonthRule',true,'Name',"fixedbond_instrument")

Required FixedBond Name-Value Pair Arguments

CouponRate — FixedBond coupon rate
scalar decimal | vector of decimals | timetable

FixedBond coupon rate, specified as the comma-separated pair consisting of 'CouponRate' and a
scalar decimal or an NINST-by-1 vector of decimals for an annual rate or a timetable where the first
column is dates and the second column is associated rates. The date indicates the last day that the
coupon rate is valid.

Note If you are creating one or more FixedBond instruments and use a timetable, the timetable
specification applies to all of the FixedBond instruments. CouponRate does not accept an NINST-
by-1 cell array of timetables as input.

Data Types: double | timetable

Maturity — FixedBond maturity date
datetime | serial date number | date character vector | date string | vector of datetimes | vector of
serial date numbers | cell array of date character vectors | date string array
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FixedBond maturity date, specified as the comma-separated pair consisting of 'Maturity' and a
scalar datetime, serial date number, date character vector, date string or an NINST-by-1 vector of
datetimes, serial date numbers, cell array of date character vectors, or date string array.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the Maturity property is stored as a datetime.
Data Types: char | cell | double | string | datetime

Optional FixedBond Name-Value Pair Arguments

Period — Frequency of payments per year
2 (default) | scalar numeric value of 0, 1, 2, 3, 4, 6, or 12 | numeric vector with values of 0, 1, 2, 3, 4,
6, or 12

Frequency of payments, specified as the comma-separated pair consisting of 'Period' and a scalar
integer or an NINST-by-1 vector of integers. Values for Period are 1, 2, 3, 4, 6, or 12.
Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | scalar integer from 0 to 13 | vector of integers from 0 to 13

Day count basis, specified as the comma-separated pair consisting of 'Basis' and scalar integer or
an NINST-by-1 vector of integers using the following values:

• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Principal amount or principal value schedule
100 (default) | scalar numeric | numeric vector | timetable

Principal amount or principal value schedule, specified as the comma-separated pair consisting of
'Principal' and a scalar numeric or an NINST-by-1 numeric vector or a timetable.
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Principal accepts a timetable, where the first column is dates and the second column is the
associated notional principal value. The date indicates the last day that the principal value is valid.

Note If you are creating one or more FixedBond instruments and use a timetable, the timetable
specification applies to all of the FixedBond instruments. Principal does not accept an NINST-by-1
cell array of timetables as input.

Data Types: double | timetable

DaycountAdjustedCashFlow — Flag indicating whether cash flow adjusts for day count
convention
false (default) | scalar logical value of true or false | vector of logical values of true or false

Flag indicating whether cash flow is adjusted by day count convention, specified as the comma-
separated pair consisting of 'DaycountAdjustedCashFlow' and a scalar logical or an NINST-by-1
vector of logicals with values of true or false.
Data Types: logical

BusinessDayConvention — Business day conventions for cash flow dates
"actual" (default) | string | string array | character vector | cell array of character vectors

Business day conventions for cash flow dates, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a scalar string or character vector or an NINST-by-1 cell array of
character vectors or string array. The selection for business day convention determines how
nonbusiness days are treated. Nonbusiness days are defined as weekends plus any other date that
businesses are not open (for example, statutory holidays). Values are:

• "actual" — Nonbusiness days are effectively ignored. Cash flows that fall on nonbusiness days
are assumed to be distributed on the actual date.

• "follow" — Cash flows that fall on a nonbusiness day are assumed to be distributed on the
following business day.

• "modifiedfollow" — Cash flows that fall on a nonbusiness day are assumed to be distributed
on the following business day. However, if the following business day is in a different month, the
previous business day is adopted instead.

• "previous" — Cash flows that fall on a nonbusiness day are assumed to be distributed on the
previous business day.

• "modifiedprevious" — Cash flows that fall on a nonbusiness day are assumed to be distributed
on the previous business day. However, if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell | string

Holidays — Holidays used in computing business days
NaT (default) | datetimes | cell array of character vectors | date string array | serial date numbers

Holidays used in computing business days, specified as the comma-separated pair consisting of
'Holidays' and dates using an NINST-by-1 vector of datetimes, serial date numbers, cell array of
date character vectors, or date string array. For example:

H = holidays(datetime('today'),datetime(2025,12,15));
FixedBondObj = fininstrument("FixedBond",'CouponRate',0.34,'Maturity',datetime(2025,12,15),'Holidays',H)
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Data Types: double | cell | datetime | string

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month with 30 or fewer days
true (in effect) (default) | scalar logical value of true or false | vector of logical values of true or
false

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month with
30 or fewer days, specified as the comma-separated pair consisting of 'EndMonthRule' and a scalar
logical value or an NINST-by-1 vector of logicals with values of true or false.

• If you set EndMonthRule to false, the software ignores the rule, meaning that a payment date is
always the same numerical day of the month.

• If you set EndMonthRule to true, the software sets the rule on, meaning that a payment date is
always the last actual day of the month.

Data Types: logical

IssueDate — Bond issue date
NaT (default) | datetime | serial date number | date character vector | date string | vector of datetimes
| vector of serial date numbers | cell array of date character vectors | date string array

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a scalar
datetime, serial date number, date character vector, date string or an NINST-by-1 vector of datetimes,
serial date numbers, cell array of date character vectors, or date string array.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the IssueDate property is stored as a datetime.
Data Types: double | char | cell | string | datetime

FirstCouponDate — Irregular first coupon date
NaT (default) | datetime | serial date number | date character vector | date string | vector of datetimes
| vector of serial date numbers | cell array of date character vectors | date string array

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a scalar datetime, serial date number, date character vector, date string or
an NINST-by-1 vector of datetimes, serial date numbers, cell array of date character vectors, or date
string array.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes
precedence in determining the coupon payment structure. If you do not specify FirstCouponDate,
the cash flow payment dates are determined from other inputs.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the FirstCouponDate property is stored as a datetime.
Data Types: double | cell | char | string | datetime

LastCouponDate — Irregular last coupon date
NaT (default) | datetime | serial date number | date character vector | date string | vector of datetimes
| vector of serial date numbers | cell array of date character vectors | date string array

Irregular last coupon date, specified as the comma-separated pair consisting of 'LastCouponDate'
and a scalar datetime, serial date number, date character vector, date string or an NINST-by-1 vector
of datetimes, serial date numbers, cell array of date character vectors, or date string array.
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If you specify LastCouponDate but not FirstCouponDate, LastCouponDate determines the
coupon structure of the bond. The coupon structure of a bond is truncated at LastCouponDate,
regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not
specify LastCouponDate, the cash flow payment dates are determined from other inputs.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the LastCouponDate property is stored as a datetime.
Data Types: double | cell | char | string | datetime

StartDate — Forward starting date of payments
NaT (default) | datetime | serial date number | date character vector | date string | vector of datetimes
| vector of serial date numbers | cell array of date character vectors | date string array

Forward starting date of payments, specified as the comma-separated pair consisting of
'StartDate' and a scalar datetime, serial date number, date character vector, date string or an
NINST-by-1 vector of datetimes, serial date numbers, cell array of date character vectors, or date
string array.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the StartDate property is stored as a datetime.
Data Types: char | cell | double | string | datetime

Name — User-defined name for instrument
" " (default) | string | string array | character vector | cell array of character vectors

User-defined name for one of more instruments, specified as the comma-separated pair consisting of
'Name' and a scalar string or character vector or an NINST-by-1 cell array of character vectors or
string array.
Data Types: char | cell | string

Properties
CouponRate — FixedBond coupon annual rate
scalar decimal | vector of decimals | timetable

FixedBond coupon annual rate, returned as a scalar decimal or an NINST-by-1 vector of decimals or
a timetable.
Data Types: double | timetable

Maturity — FixedBond maturity date
scalar datetime | vector of datetimes

FixedBond maturity date, returned as a scalar datetime or NINST-by-1 vector of datetimes.
Data Types: datetime

Period — Frequency of payments per year
2 (default) | scalar integer | vector of integers

Frequency of payments per year, returned as a scalar integer or an NINST-by-1 vector of integers.
Data Types: double
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Basis — Day count basis
0 (actual/actual) (default) | scalar integer from 0 to 13 | vector of integers from 0 to 13

Day count basis, returned as a scalar integer or an NINST-by-1 vector of integers.
Data Types: double

Principal — Principal amount or principal value schedules
100 (default) | scalar numeric | numeric vector | timetable

Principal amount or principal value schedules, returned as a scalar numeric or an NINST-by-1
numeric vector or a timetable.
Data Types: double

DaycountAdjustedCashFlow — Flag indicating whether cash flow adjusts for day count
convention
false (default) | scalar logical value of true or false | vector of logicals with values of true or
false

Flag indicating whether cash flow adjusts for day count convention, returned as scalar logical or an
NINST-by-1 vector of logicals with values of true or false.
Data Types: logical

BusinessDayConvention — Business day conventions
"actual" (default) | string | string array

Business day conventions, returned as a scalar string or an NINST-by-1 string array.
Data Types: string

Holidays — Holidays used in computing business days
NaT (default) | datetimes

Holidays used in computing business days, returned as an NINST-by-1 vector of datetimes.
Data Types: datetime

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month with 30 or fewer days
true (in effect) (default) | scalar logical value of true or false | vector of logicals with values of
true or false

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month
having 30 or fewer days, returned as a scalar logical or an NINST-by-1 vector of logical values.
Data Types: logical

IssueDate — Bond issue date
NaT (default) | datetime | vector of datetimes

Bond issue date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

FirstCouponDate — Irregular first coupon date
NaT (default) | datetime | vector of datetimes

11 Functions

11-2600



Irregular first coupon date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

LastCouponDate — Irregular last coupon date
NaT (default) | datetime | vector of datetimes

Irregular last coupon date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

StartDate — Forward starting date of payments
NaT (default) | datetime | vector of datetimes

Forward starting date of payments, returned as a scalar datetime or an NINST-by-1 vector of
datetimes.
Data Types: datetime

Name — User-defined name for instrument
" " (default) | string | string array

User-defined name for the instrument, returned as a scalar string or an NINST-by-1 string array.
Data Types: string

Object Functions
cashflows Compute cash flow for FixedBond, FloatBond, Swap, FRA, STIRFuture, OISFuture,

OvernightIndexedSwap, or Deposit instrument

Examples

Price Vanilla Fixed Bond Instrument Using ratecurve and Discount Pricer

This example shows the workflow to price a vanilla FixedBond instrument when you use a
ratecurve and a Discount pricing method.

Create FixedBond Instrument Object

Use fininstrument to create a FixedBond instrument object.

FixB = fininstrument("FixedBond",'Maturity',datetime(2022,9,15),'CouponRate',0.021,'Period',2,'Basis',1,'Principal',100,'Name',"fixed_bond_instrument")

FixB = 
  FixedBond with properties:

                  CouponRate: 0.0210
                      Period: 2
                       Basis: 1
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
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              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 15-Sep-2022
                        Name: "fixed_bond_instrument"

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Discount Pricer Object

Use finpricer to create a Discount pricer object and use the ratecurve object with the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("Discount",'DiscountCurve',myRC)

outPricer = 
  Discount with properties:

    DiscountCurve: [1x1 ratecurve]

Price FixedBond Instrument

Use price to compute the price and sensitivities for the FixedBond instrument.

[Price, outPR] = price(outPricer, FixB,["all"])

Price = 104.5679

outPR = 
  priceresult with properties:

       Results: [1x2 table]
    PricerData: []
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outPR.Results

ans=1×2 table
    Price       DV01  
    ______    ________

    104.57    0.040397

Price Multiple Vanilla Fixed Bond Instruments Using ratecurve and Discount Pricer

This example shows the workflow to price multiple vanilla FixedBond instruments when you use a
ratecurve and a Discount pricing method.

Create FixedBond Instrument Object

Use fininstrument to create a FixedBond instrument object for three Fixed Bond instruments.

FixB = fininstrument("FixedBond",'Maturity',datetime([2022,9,15 ; 2022,10,15 ; 2022,11,15]),'CouponRate',0.021,'Period',2,'Basis',1,'Principal',[100 ; 250 ; 500],'Name',"fixed_bond_instrument")

FixB=3×1 object
  3x1 FixedBond array with properties:

    CouponRate
    Period
    Basis
    EndMonthRule
    Principal
    DaycountAdjustedCashFlow
    BusinessDayConvention
    Holidays
    IssueDate
    FirstCouponDate
    LastCouponDate
    StartDate
    Maturity
    Name

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
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                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Discount Pricer Object

Use finpricer to create a Discount pricer object and use the ratecurve object with the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("Discount",'DiscountCurve',myRC)

outPricer = 
  Discount with properties:

    DiscountCurve: [1x1 ratecurve]

Price FixedBond Instruments

Use price to compute the prices and sensitivities for the FixedBond instruments.

[Price, outPR] = price(outPricer, FixB,["all"])

Price = 3×1

  104.5679
  261.4498
  522.9174

outPR=1×3 object
  1x3 priceresult array with properties:

    Results
    PricerData

outPR.Results

ans=1×2 table
    Price       DV01  
    ______    ________

    104.57    0.040397

ans=1×2 table
    Price     DV01 
    ______    _____

    261.45    0.103

ans=1×2 table
    Price      DV01  
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    ______    _______

    522.92    0.21013

Price Stepped Fixed Bond Instrument Using ratecurve and Discount Pricer

This example shows the workflow to price a stepped FixedBond instrument when you use a
ratecurve and a Discount pricing method.

Create FixedBond Instrument Object

Use fininstrument to create a stepped FixedBond instrument object.

Maturity = datetime(2024,1,1);
Period = 1;
CDates = datetime([2020,1,1 ; 2024,1,1]);
CRates = [.025; .03];
CouponRate = timetable(CDates,CRates);

SBond = fininstrument("FixedBond",'Maturity',Maturity,'CouponRate',CouponRate,'Period',Period) 

SBond = 
  FixedBond with properties:

                  CouponRate: [2x1 timetable]
                      Period: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 01-Jan-2024
                        Name: ""

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,1,1);
ZeroTimes = calyears(1:10)';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
Compounding = 1;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates, "Compounding",Compounding)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: 1
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                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 01-Jan-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Discount Pricer Object

Use finpricer to create a Discount pricer object and use the ratecurve object with the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("Discount",'DiscountCurve',ZeroCurve)

outPricer = 
  Discount with properties:

    DiscountCurve: [1x1 ratecurve]

Price FixedBond Instrument

Use price to compute the price and sensitivities for the vanilla FixedBond instrument.

[Price, outPR] = price(outPricer, SBond,["all"])

Price = 109.6218

outPR = 
  priceresult with properties:

       Results: [1x2 table]
    PricerData: []

outPR.Results

ans=1×2 table
    Price       DV01  
    ______    ________

    109.62    0.061108

Price Amortizing Fixed Bond Instrument Using ratecurve and Discount Pricer

This example shows the workflow to price a amortizing FixedBond instrument when you use a
ratecurve and a Discount pricing method.

Create FixedBond Instrument Object

Use fininstrument to create a amortizing FixedBond instrument object.

Maturity = datetime(2024,1,1);
Period = 1;

11 Functions

11-2606



ADates = datetime([2020,1,1 ; 2024,1,1]);
APrincipal = [100; 85];
Principal = timetable(ADates,APrincipal);
Bondamort = fininstrument("FixedBond",'Maturity',Maturity,'CouponRate',0.025,'Period',Period,'Principal',Principal)  

Bondamort = 
  FixedBond with properties:

                  CouponRate: 0.0250
                      Period: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: [2x1 timetable]
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 01-Jan-2024
                        Name: ""

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,1,1);
ZeroTimes = calyears(1:10)';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
Compounding = 1;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates, "Compounding",Compounding);

Create Discount Pricer Object

Use finpricer to create a Discount pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("Discount",'DiscountCurve',ZeroCurve)

outPricer = 
  Discount with properties:

    DiscountCurve: [1x1 ratecurve]

Price FixedBond Instrument

Use price to compute the price and sensitivities for the vanilla FixedBond instrument.

[Price, outPR] = price(outPricer,Bondamort,["all"])

Price = 107.1273

outPR = 
  priceresult with properties:
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       Results: [1x2 table]
    PricerData: []

outPR.Results

ans=1×2 table
    Price       DV01  
    ______    ________

    107.13    0.054279

Price Fixed Bond Instrument Using Hull-White Model and IRMonteCarlo Pricer

This example shows the workflow to price a FixedBond instrument when using a HullWhite model
and an IRMonteCarlo pricing method.

Create FixedBond Instrument Object

Use fininstrument to create a FixedBond instrument object.

FixB = fininstrument("FixedBond","Maturity",datetime(2022,9,15),"CouponRate",0.05,'Name',"fixed_bond")

FixB = 
  FixedBond with properties:

                  CouponRate: 0.0500
                      Period: 2
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 15-Sep-2022
                        Name: "fixed_bond"

Create HullWhite Model Object

Use finmodel to create a HullWhite model object.

HullWhiteModel = finmodel("HullWhite",'Alpha',0.32,'Sigma',0.49)

HullWhiteModel = 
  HullWhite with properties:

    Alpha: 0.3200
    Sigma: 0.4900
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Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2019,1,1);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 01-Jan-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create IRMonteCarlo Pricer Object

Use finpricer to create an IRMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("IRMonteCarlo",'Model',HullWhiteModel,'DiscountCurve',myRC,'SimulationDates',ZeroDates)

outPricer = 
  HWMonteCarlo with properties:

          NumTrials: 1000
      RandomNumbers: []
      DiscountCurve: [1x1 ratecurve]
    SimulationDates: [01-Jul-2019    01-Jan-2020    01-Jan-2021    ...    ]
              Model: [1x1 finmodel.HullWhite]

Price FixedBond Instrument

Use price to compute the price and sensitivities for the FixedBond instrument.

[Price,outPR] = price(outPricer,FixB,["all"])

Price = 115.0303

outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: [1x1 struct]

outPR.Results

 FixedBond

11-2609



ans=1×4 table
    Price      Delta     Gamma     Vega
    ______    _______    ______    ____

    115.03    -397.13    1430.4     0  

Price FixedBond Instrument Using a Hull-White Model and IRTree Pricer

This example shows the workflow to price a FixedBond instrument when using a HullWhite model
and a IRTree pricing method.

Create FixedBond Instrument Object

Use fininstrument to create a FixedBond instrument object.

FixB = fininstrument("FixedBond","Maturity",datetime(2029,9,15),"CouponRate",.05,"Period",1,"Name","fixed_bond_instrument")

FixB = 
  FixedBond with properties:

                  CouponRate: 0.0500
                      Period: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 15-Sep-2029
                        Name: "fixed_bond_instrument"

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2019,9,15);
Type = "zero";
ZeroTimes = [calyears([1:10])]';
ZeroRates = [0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307 0.0310]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
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               Settle: 15-Sep-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create HullWhite Model Object

Use finmodel to create a HullWhite model object.

HullWhiteModel = finmodel("hullwhite",'Alpha',0.052,'Sigma',0.34)

HullWhiteModel = 
  HullWhite with properties:

    Alpha: 0.0520
    Sigma: 0.3400

Create IRTree Pricer Object

Use finpricer to create an IRTree pricer object and use the ratecurve object with the
'DiscountCurve' name-value pair argument.

HWTreePricer = finpricer("irtree","model",HullWhiteModel,"DiscountCurve",myRC,"TreeDates",ZeroDates)

HWTreePricer = 
  HWBKTree with properties:

             Tree: [1x1 struct]
        TreeDates: [10x1 datetime]
            Model: [1x1 finmodel.HullWhite]
    DiscountCurve: [1x1 ratecurve]

HWTreePricer.Tree

ans = struct with fields:
        tObs: [0 1 1.9973 2.9945 3.9918 4.9918 5.9891 6.9863 7.9836 8.9836]
        dObs: [15-Sep-2019    15-Sep-2020    15-Sep-2021    ...    ]
      CFlowT: {1x10 cell}
       Probs: {1x9 cell}
     Connect: {1x9 cell}
     FwdTree: {1x10 cell}
    RateTree: {1x10 cell}

Price FixedBond Instrument

Use price to compute the price and sensitivities for the FixedBond instrument.

[Price, outPR] = price(HWTreePricer, FixB,["all"])

Price = 117.9440

outPR = 
  priceresult with properties:

       Results: [1x4 table]
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    PricerData: [1x1 struct]

outPR.Results

ans=1×4 table
    Price        Vega        Gamma      Delta 
    ______    ___________    ______    _______

    117.94    -4.2633e-10    8868.6    -964.01

More About
Fixed-Rate Note

A fixed-rate note is a long-term debt security with a preset interest rate and maturity, by which the
interest must be paid.

The principal might or might not be paid at maturity. In Financial Instruments Toolbox, the principal
is always paid at maturity. For more information, see “Fixed-Rate Note” on page 2-9.

Vanilla Bond

A vanilla coupon bond is a security representing an obligation to repay a borrowed amount at a
designated time and to make periodic interest payments until that time.

The issuer of a bond makes the periodic interest payments until the bond matures. At maturity, the
issuer pays to the holder of the bond the principal amount owed (face value) and the last interest
payment.

Stepped Coupon Bond

A step-up bond and a step-down bond are debt securities with a predetermined coupon structure over
time.

With these instruments, coupons increase (step up) or decrease (step down) at specific times during
the life of the bond.

Bond with an Amortization Schedule

An amortized bond is treated as an asset, with the discount amount being amortized to interest
expense over the life of the bond.

See Also
Functions
FixedBondOption | finmodel | finpricer | timetable

Topics
“Price Portfolio of Bond and Bond Option Instruments” on page 2-173
“Bond Portfolio Optimization Using Portfolio Object”
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53
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FixedBondOption
FixedBondOption instrument object

Description
Create and price a FixedBondOption instrument object for one or more Fixed Bond Option
instruments using this workflow:

1 Use fininstrument to create a FixedBondOption instrument object for one or more Fixed
Bond Option instruments.

2 Use finmodel to specify a HullWhite, BlackKarasinski, BraceGatarekMusiela,
SABRBraceGatarekMusiela, or LinearGaussian2F model for the FixedBondOption
instrument object.

3 Choose a pricing method.

• When using a HullWhite or BlackKarasinski model, use finpricer to specify an
IRTree pricing method for one or more FixedBondOption instruments.

• When using a HullWhite, BraceGatarekMusiela, SABRBraceGatarekMusiela, or
LinearGaussian2F model, use finpricer to specify an IRMonteCarlo pricing method for
one or more FixedBondOption instruments.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available models and pricing methods for a FixedBondOption
instrument, see “Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
FixedBondOptionObj = fininstrument(InstrumentType,'Strike',strike_value,'
ExerciseDate',exercise_date,'Bond',bond_obj)
FixedBondOptionObj = fininstrument( ___ ,Name,Value)

Description

FixedBondOptionObj = fininstrument(InstrumentType,'Strike',strike_value,'
ExerciseDate',exercise_date,'Bond',bond_obj) creates a FixedBondOption object for
one or more Fixed Bond Option instruments by specifying InstrumentType and sets the properties
on page 11-2616 for the required name-value pair arguments Strike, ExerciseDate, and Bond.

The FixedBondOption instrument supports a European or American option. For more information,
see “More About” on page 11-2628.

FixedBondOptionObj = fininstrument( ___ ,Name,Value) sets optional properties on page
11-2616 using additional name-value pairs in addition to the required arguments in the previous
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syntax. For example, FixedBondOptionObj =
fininstrument("FixedBondOption",'Strike',100,'ExerciseDate',datetime(2019,1,3
0),'Bond',bond_obj,'OptionType','put','ExerciseStyle',"American",'Name',"fixe
d_bond_option") creates a FixedBondOption instrument with a strike of 100 and an American
exercise. You can specify multiple name-value pair arguments.

Input Arguments

InstrumentType — Instrument type
string with value "FixedBondOption" | string array with values of "FixedBondOption" |
character vector with value 'FixedBondOption' | cell array of character vectors with values of
'FixedBondOption'

Instrument type, specified as a string with the value of "FixedBondOption", a character vector with
the value of 'FixedBondOption', an NINST-by-1 string array with values of "FixedBondOption",
or an NINST-by-1 cell array of character vectors with values of 'FixedBondOption'.
Data Types: char | cell | string

FixedBondOption Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: FixedBondOptionObj =
fininstrument("FixedBondOption",'Strike',100,'ExerciseDate',datetime(2019,1,3
0),'Bond',bond_obj,'OptionType','put','ExerciseStyle',"American",'Name',"fixe
d_bond_option")

Required FixedBondOption Name-Value Pair Arguments

Strike — Option strike value
scalar nonnegative numeric | nonnegative numeric vector

Option strike value, specified as the comma-separated pair consisting of 'Strike' and a scalar
nonnegative numeric or an NINST-by-1 nonnegative numeric vector.
Data Types: double

ExerciseDate — Option exercise date
datetime | serial date number | date character vector | date string | datetime | vector of datetimes |
vector of serial date numbers | cell array of date character vectors | date string array

Option exercise date, specified as the comma-separated pair consisting of 'ExerciseDate' and a
scalar datetime, serial date number, date character vector, date string or an NINST-by-1 vector of
datetimes, serial date numbers, cell array of date character vectors, or date string array.

• For a European option, there is only one ExerciseDate on the option expiry date.
• For a Bermudan option, there is a 1-by-NSTRIKES vector of exercise dates.
• For an American option, the option can be exercised between Settle of the ratecurve and the

single listed ExerciseDate.
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If you use date character vectors or date strings, the format must be recognizable by datetime
because the ExerciseDate property is stored as a datetime.
Data Types: double | char | cell | string | datetime

Bond — Underlying FixedBond instrument
FixedBond object | vector of FixedBond objects

Underlying FixedBond instrument, specified as the comma-separated pair consisting of 'Bond' and
a scalar FixedBond object or an NINST-by-1 vector of FixedBond objects.
Data Types: object

Optional FixedBondOption Name-Value Pair Arguments

OptionType — Option type
"call" (default) | string with value "call" or "put" | string array with values of "call" or "put"
| character vector with value 'call' or 'put' | cell array of character vectors with values of
'call' or 'put'

Option type, specified as the comma-separated pair consisting of 'OptionType' and a scalar string
or character vector or an NINST-by-1 cell array of character vectors or string array.
Data Types: char | cell | string

ExerciseStyle — Option exercise style
"European" (default) | string with value "European", "American", or "Bermudan" | string array
with values of "European", "American", or "Bermudan" | character vector with value
'European', 'American', or 'Bermudan' | cell array of character vectors with values of
'European', 'American', or 'Bermudan'

Option exercise style, specified as the comma-separated pair consisting of 'ExerciseStyle' and a
scalar string or character vector or an NINST-by-1 cell array of character vectors or string array with
values of "European", "American", or "Bermudan".
Data Types: string | cell | char

Name — User-defined name for instrument
" " (default) | string | string array | character vector | cell array of character vectors

User-defined name for one of more instruments, specified as the comma-separated pair consisting of
'Name' and a scalar string or character vector or an NINST-by-1 cell array of character vectors or
string array.
Data Types: char | cell | string

Properties
Strike — Option strike value
scalar nonnegative numeric | vector of nonnegative numeric

Option strike value, returned as a scalar nonnegative numeric or an NINST-by-1 numeric vector of
nonnegative values.
Data Types: double
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ExerciseDate — Option exercise date
scalar datetime | vector of datetimes

Option exercise date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

OptionType — Option type
"call" (default) | scalar string with value "call" or "put" | string array with values of "call" or
"put"

Option type, returned as a scalar string or an NINST-by-1 string array with values of "call" or
"put".
Data Types: string

ExerciseStyle — Option exercise style
"European" (default) | scalar string with value "European", "American" | string array with values
of "European", "American"

Option exercise style, returned as a scalar string or an NINST-by-1 string array with values of
"European" or "American".
Data Types: string

Bond — Underlying FixedBond instrument
scalar FixedBond object | vector of FixedBond objects

Underlying FixedBond instrument, returned as a scalar FixedBond object or an NINST-by-1 vector
of FixedBond objects.
Data Types: object

Name — User-defined name for instrument
" " (default) | scalar string | string array

User-defined name for the instrument, returned as a scalar string or an NINST-by-1 string array.
Data Types: string

Object Functions
setExercisePolicy Set exercise policy for FixedBondOption, FloatBondOption, or Vanilla instrument

Examples

Price a FixedBondOption Instrument Using Hull-White Model and Hull-White Tree Pricer

This example shows the workflow to price a FixedBondOption instrument when you use a
HullWhite model and an IRTree pricing method.

Create FixedBond Instrument Object

Use fininstrument to create a FixedBond instrument object as the underlying bond.

BondInst = fininstrument("FixedBond",'Maturity',datetime(2029,9,15),'CouponRate',.021,'Period',1,'Name',"bond_instrument")
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BondInst = 
  FixedBond with properties:

                  CouponRate: 0.0210
                      Period: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 15-Sep-2029
                        Name: "bond_instrument"

Create FixedBondOption Instrument Objects

Use fininstrument to create three callable FixedBondOption instrument objects with European,
American, and Bermudan exercise.

FixedBOptionEuro = fininstrument("FixedBondOption",'ExerciseDate',datetime(2025,9,15),'Strike',98,'Bond',BondInst,'OptionType',"call",'ExerciseStyle',"european",'Name',"fixed_bond_option_european")

FixedBOptionEuro = 
  FixedBondOption with properties:

       OptionType: "call"
    ExerciseStyle: "european"
     ExerciseDate: 15-Sep-2025
           Strike: 98
             Bond: [1x1 fininstrument.FixedBond]
             Name: "fixed_bond_option_european"

FixedBOptionAmerican = fininstrument("FixedBondOption",'ExerciseDate',datetime(2025,9,15),'Strike',98,'Bond',BondInst,'OptionType',"call",'ExerciseStyle',"american",'Name',"fixed_bond_option_american")

FixedBOptionAmerican = 
  FixedBondOption with properties:

       OptionType: "call"
    ExerciseStyle: "american"
     ExerciseDate: 15-Sep-2025
           Strike: 98
             Bond: [1x1 fininstrument.FixedBond]
             Name: "fixed_bond_option_american"

FixedBOptionBermudan = fininstrument("FixedBondOption",'ExerciseDate',[datetime(2025,9,15) , datetime(2025,11,15)],'Strike',[98,1000],'Bond',BondInst,'OptionType',"call",'ExerciseStyle',"bermudan",'Name',"fixed_bond_option_bermudan")

FixedBOptionBermudan = 
  FixedBondOption with properties:

       OptionType: "call"
    ExerciseStyle: "bermudan"
     ExerciseDate: [15-Sep-2025    15-Nov-2025]
           Strike: [98 1000]
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             Bond: [1x1 fininstrument.FixedBond]
             Name: "fixed_bond_option_bermudan"

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2019,9,15);
Type = 'zero';
ZeroTimes = [calyears([1:10])]';
ZeroRates = [0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307 0.0310]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create a HullWhite Model Object

Use finmodel to create a HullWhite model object.

HullWhiteModel = finmodel("HullWhite",'Alpha',0.01,'Sigma',0.05)

HullWhiteModel = 
  HullWhite with properties:

    Alpha: 0.0100
    Sigma: 0.0500

Create IRTree Pricer Object

Use finpricer to create an IRTree pricer object and use the ratecurve object with the
'DiscountCurve' name-value pair argument.

HWTreePricer = finpricer("IRTree",'Model',HullWhiteModel,'DiscountCurve',myRC,'TreeDates',ZeroDates)

HWTreePricer = 
  HWBKTree with properties:

             Tree: [1x1 struct]
        TreeDates: [10x1 datetime]
            Model: [1x1 finmodel.HullWhite]
    DiscountCurve: [1x1 ratecurve]

HWTreePricer.Tree
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ans = struct with fields:
        tObs: [0 1 1.9973 2.9945 3.9918 4.9918 5.9891 6.9863 7.9836 8.9836]
        dObs: [15-Sep-2019    15-Sep-2020    15-Sep-2021    ...    ]
      CFlowT: {1x10 cell}
       Probs: {1x9 cell}
     Connect: {1x9 cell}
     FwdTree: {1x10 cell}
    RateTree: {1x10 cell}

Price FixedBondOption Instruments

Use price to compute the price and sensitivities for the two FixedBondOption instruments.

[Price, outPR] = price(HWTreePricer,FixedBOptionEuro,["all"])

Price = 10.7571

outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×4 table
    Price      Vega     Gamma      Delta 
    ______    ______    ______    _______

    10.757    308.87    2207.3    -178.78

[Price, outPR] = price(HWTreePricer,FixedBOptionAmerican,["all"])

Price = 19.2984

outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×4 table
    Price      Vega     Gamma      Delta 
    ______    ______    ______    _______

    19.298    437.32    4977.1    -459.06

[Price, outPR] = price(HWTreePricer,FixedBOptionBermudan,["all"])

Price = 11.1241

outPR = 
  priceresult with properties:
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       Results: [1x4 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×4 table
    Price      Vega     Gamma      Delta 
    ______    ______    ______    _______

    11.124    322.94    2243.7    -182.44

Price Multiple Fixed Bond Option Instruments Using Hull-White Model and Hull-White Tree
Pricer

This example shows the workflow to price multiple FixedBondOption instruments when you use a
HullWhite model and an IRTree pricing method.

Create FixedBond Instrument Object

Use fininstrument to create a FixedBond instrument object as the underlying bond.

BondInst = fininstrument("FixedBond",'Maturity',datetime(2029,9,15),'CouponRate',.021,'Period',1,'Name',"bond_instrument")

BondInst = 
  FixedBond with properties:

                  CouponRate: 0.0210
                      Period: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 15-Sep-2029
                        Name: "bond_instrument"

Create FixedBondOption Instrument Objects

Use fininstrument to create a FixedBondOption instrument object with European exercise for
three Fixed Bond Option instruments.

FixedBOptionEuro = fininstrument("FixedBondOption",'ExerciseDate',datetime([2025,9,15 ; 2025,10,15 ; 2025,11,15]),'Strike',[98 ; 100 ; 102],'Bond',BondInst,'OptionType',"call",'ExerciseStyle',"european",'Name',"fixed_bond_option_european")

FixedBOptionEuro=3×1 object
  3x1 FixedBondOption array with properties:

    OptionType
    ExerciseStyle
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    ExerciseDate
    Strike
    Bond
    Name

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2019,9,15);
Type = 'zero';
ZeroTimes = [calyears([1:10])]';
ZeroRates = [0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307 0.0310]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create a HullWhite Model Object

Use finmodel to create a HullWhite model object.

HullWhiteModel = finmodel("HullWhite",'Alpha',0.01,'Sigma',0.05)

HullWhiteModel = 
  HullWhite with properties:

    Alpha: 0.0100
    Sigma: 0.0500

Create IRTree Pricer Object

Use finpricer to create an IRTree pricer object and use the ratecurve object with the
'DiscountCurve' name-value pair argument.

HWTreePricer = finpricer("IRTree",'Model',HullWhiteModel,'DiscountCurve',myRC,'TreeDates',ZeroDates)

HWTreePricer = 
  HWBKTree with properties:

             Tree: [1x1 struct]
        TreeDates: [10x1 datetime]
            Model: [1x1 finmodel.HullWhite]
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    DiscountCurve: [1x1 ratecurve]

HWTreePricer.Tree

ans = struct with fields:
        tObs: [0 1 1.9973 2.9945 3.9918 4.9918 5.9891 6.9863 7.9836 8.9836]
        dObs: [15-Sep-2019    15-Sep-2020    15-Sep-2021    ...    ]
      CFlowT: {1x10 cell}
       Probs: {1x9 cell}
     Connect: {1x9 cell}
     FwdTree: {1x10 cell}
    RateTree: {1x10 cell}

Price FixedBondOption Instruments

Use price to compute the prices and sensitivities for the FixedBondOption instruments.

[Price, outPR] = price(HWTreePricer,FixedBOptionEuro,["all"])

Price = 3×1

   10.7571
   10.5781
   10.0178

outPR=3×1 object
  3x1 priceresult array with properties:

    Results
    PricerData

outPR.Results

ans=1×4 table
    Price      Vega     Gamma      Delta 
    ______    ______    ______    _______

    10.757    308.87    2207.3    -178.78

ans=1×4 table
    Price      Vega     Gamma     Delta 
    ______    ______    ______    ______

    10.578    314.43    2205.2    -177.6

ans=1×4 table
    Price      Vega     Gamma      Delta 
    ______    ______    ______    _______

    10.018    305.41    2164.2    -172.53
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Price a FixedBondOption Instrument on a Stepped FixedBond Using Hull-White Model and
Hull-White Tree Pricer

This example shows the workflow to price a FixedBondOption instrument on a stepped FixedBond
instrument when you use a HullWhite model and an IRTree pricing method.

Create Stepped FixedBond Instrument Object

Use fininstrument to create a stepped FixedBond instrument object as the underlying bond.

Maturity = datetime(2027,1,1);
Period = 1;
CDates = datetime([2022,1,1 ; 2027,1,1]);
CRates = [.022; .027];
CouponRate = timetable(CDates,CRates);

SBond = fininstrument("FixedBond",'Maturity',Maturity,'CouponRate',CouponRate,'Period',Period,'Name',"stepped_bond_instrument") 

SBond = 
  FixedBond with properties:

                  CouponRate: [2x1 timetable]
                      Period: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 01-Jan-2027
                        Name: "stepped_bond_instrument"

Create FixedBondOption Instrument Object

Use fininstrument to create a FixedBondOption instrument object with European exercise.

FixedBOption = fininstrument("FixedBondOption",'ExerciseDate',datetime(2026,1,1),'Strike',90,'Bond',SBond,'OptionType',"call",'ExerciseStyle',"european",'Name',"fixed_bond_option_european")

FixedBOption = 
  FixedBondOption with properties:

       OptionType: "call"
    ExerciseStyle: "european"
     ExerciseDate: 01-Jan-2026
           Strike: 90
             Bond: [1x1 fininstrument.FixedBond]
             Name: "fixed_bond_option_european"

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,1,1);
ZeroTimes = calyears(1:10)';
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ZeroRates = [0.0055 0.0063 0.0071 0.0083 0.0099 0.0131 0.0178 0.0262 0.0343 0.0387]';
ZeroDates = Settle + ZeroTimes;
Compounding = 1;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates, "Compounding",Compounding);

Create HullWhite Model Object

Use finmodel to create a HullWhite model object.

VolCurve = 0.15;
AlphaCurve = 0.03;

HWModel = finmodel("HullWhite",'Alpha',AlphaCurve,'Sigma',VolCurve)

HWModel = 
  HullWhite with properties:

    Alpha: 0.0300
    Sigma: 0.1500

Create IRTree Pricer Object

Use finpricer to create an IRTree pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

HWTreePricer = finpricer("IRTree",'Model',HWModel,'DiscountCurve',ZeroCurve,'TreeDates',ZeroDates)

HWTreePricer = 
  HWBKTree with properties:

             Tree: [1x1 struct]
        TreeDates: [10x1 datetime]
            Model: [1x1 finmodel.HullWhite]
    DiscountCurve: [1x1 ratecurve]

HWTreePricer.Tree

ans = struct with fields:
        tObs: [0 1 2 3.0027 4.0027 5.0027 6.0027 7.0055 8.0055 9.0055]
        dObs: [01-Jan-2018    01-Jan-2019    01-Jan-2020    ...    ]
      CFlowT: {1x10 cell}
       Probs: {1x9 cell}
     Connect: {1x9 cell}
     FwdTree: {1x10 cell}
    RateTree: {1x10 cell}

Price FixedBondOption Instrument

Use price to compute the price and sensitivities for the FixedBondOption instrument.

[Price, outPR] = price(HWTreePricer,FixedBOption,"all")

Price = 12.2717

outPR = 
  priceresult with properties:
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       Results: [1x4 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×4 table
    Price      Vega     Gamma     Delta 
    ______    ______    ______    ______

    12.272    100.91    1438.4    -130.1

Price Fixed Bond Option Instrument Using Hull-White Model and IRMonteCarlo Pricer

This example shows the workflow to price a FixedBondOption instrument when using a HullWhite
model and an IRMonteCarlo pricing method.

Create FixedBond Instrument Object

Use fininstrument to create a FixedBond instrument object as the underlying bond.

BondInst = fininstrument("FixedBond",'Maturity',datetime(2022,9,15),'CouponRate',.021,'Period',1,'Name',"bond_instrument")

BondInst = 
  FixedBond with properties:

                  CouponRate: 0.0210
                      Period: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 15-Sep-2022
                        Name: "bond_instrument"

Create FixedBondOption Instrument Object

Use fininstrument to create a FixedBondOption instrument object.

FixedBOptionEuro = fininstrument("FixedBondOption",'ExerciseDate',datetime(2020,3,15),'Strike',98,'Bond',BondInst,'OptionType',"call",'ExerciseStyle',"european",'Name',"fixed_bond_option_european")

FixedBOptionEuro = 
  FixedBondOption with properties:

       OptionType: "call"
    ExerciseStyle: "european"
     ExerciseDate: 15-Mar-2020
           Strike: 98
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             Bond: [1x1 fininstrument.FixedBond]
             Name: "fixed_bond_option_european"

Create HullWhite Model Object

Use finmodel to create a HullWhite model object.

HullWhiteModel = finmodel("HullWhite",'Alpha',0.32,'Sigma',0.49)

HullWhiteModel = 
  HullWhite with properties:

    Alpha: 0.3200
    Sigma: 0.4900

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2019,1,1);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 01-Jan-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create IRMonteCarlo Pricer Object

Use finpricer to create an IRMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("IRMonteCarlo",'Model',HullWhiteModel,'DiscountCurve',myRC,'SimulationDates',datetime(2019,3,15)+calmonths(0:6:48)')

outPricer = 
  HWMonteCarlo with properties:

          NumTrials: 1000
      RandomNumbers: []
      DiscountCurve: [1x1 ratecurve]
    SimulationDates: [15-Mar-2019    15-Sep-2019    15-Mar-2020    ...    ]
              Model: [1x1 finmodel.HullWhite]
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Price FixedBondOption Instrument

Use price to compute the price and sensitivities for the FixedBondOption instrument.

[Price,outPR] = price(outPricer,FixedBOptionEuro,["all"])

Price = 24.0750

outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×4 table
    Price      Delta     Gamma      Vega 
    ______    _______    ______    ______

    24.075    -166.42    1456.2    20.329

More About
Bond Option

A bond option gives the holder the right to sell a bond back to the issuer (put) or to redeem a bond
from its current owner (call) at a specific price and on a specific date.

The FixedBondOption instrument supports two types of put and call options on bonds:

• American option — An option that you exercise any time until its expiration date.
• European option — An option that you exercise only on its expiration date.

For more information, see “Bond Options” on page 2-6.

Tips
After creating a FixedBondOption instrument object, you can use setExercisePolicy to change
the size of the options. For example, if you have the following instrument:

FixedBOption = fininstrument("FixedBondOption",'ExerciseDate',datetime(2022,9,15),'Strike',98,'Bond',BondInst,'OptionType',"call",'ExerciseStyle',"European")

To modify the FixedBondOption instrument's size by changing the ExerciseStyle from
"European" to "American", use setExercisePolicy:

FixedBOption = setExercisePolicy(FixedBOption,[datetime(2021,1,1) datetime(2022,1,1)],100,'American')

See Also
Functions
FixedBond | finmodel | finpricer
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Topics
“Price Portfolio of Bond and Bond Option Instruments” on page 2-173
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53
“Supported Exercise Styles” on page 1-62

Introduced in R2020a
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FloatBond
FloatBond instrument object

Description
Create and price a FloatBond instrument object using this workflow:

1 Use fininstrument to create a FloatBond instrument object.
2 Use ratecurve to specify a curve model for the FloatBond instrument or use a HullWhite,

BraceGatarekMusiela, SABRBraceGatarekMusiela, or LinearGaussian2F model.
3 Choose a pricing method.

• When using a ratecurve, use finpricer to specify a Discount pricing method for one or
more FloatBond instruments.

• When using a HullWhite, BraceGatarekMusiela, SABRBraceGatarekMusiela, or
LinearGaussian2F model, use finpricer to specify an IRMonteCarlo pricing method for
one or more FloatBond instruments.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available models and pricing methods for a FloatBond instrument, see
“Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
FloatBondObj = fininstrument(InstrumentType,'Spread',spread_value,'
Maturity',maturity_date)
FloatBondObj = fininstrument( ___ ,Name,Value)

Description

FloatBondObj = fininstrument(InstrumentType,'Spread',spread_value,'
Maturity',maturity_date) creates a FloatBond object by specifying InstrumentType and sets
the properties on page 11-2635 for the required name-value pair arguments Spread and Maturity.

The FloatBond instrument supports a vanilla floating rate note and an amortizing floating rate note.
For more information, see “Floating-Rate Note” on page 11-2646.

FloatBondObj = fininstrument( ___ ,Name,Value) sets optional properties on page 11-2635
using additional name-value pairs in addition to the required arguments in the previous syntax. For
example, FloatBondObj =
fininstrument("FloatBond",'Spread',0.6,'Maturity',datetime(2019,1,30),'Basis'
,1,'Principal',100,'FirstCouponDate',datetime(2016,1,30),'EndMonthRule',true,
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'Name',"float_bond_instrument") creates a FloatBond instrument with a spread of 0.6 and a
maturity of January 30, 2019. You can specify multiple name-value pair arguments.

Input Arguments

InstrumentType — Instrument type
string with value "FloatBond" | string array with values of "FloatBond" | character vector with
value 'FloatBond' | cell array of character vectors with values of 'FloatBond'

Instrument type, specified as a string with the value of "FloatBond", a character vector with the
value of 'FloatBond', an NINST-by-1 string array with values of "FloatBond", or an NINST-by-1
cell array of character vectors with values of 'FloatBond'.
Data Types: char | cell | string

FloatBond Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: FloatBondObj =
fininstrument("FloatBond",'Spread',0.6,'Maturity',datetime(2019,1,30),'Basis'
,1,'Principal',100,'FirstCouponDate',datetime(2016,1,30),'EndMonthRule',true,
'Name',"float_bond_instrument")

Required FloatBond Name-Value Pair Arguments

Spread — Decimal value over the reference rate
scalar nonnegative decimal | vector of nonnegative decimals

Decimal value over the reference rate, specified as the comma-separated pair consisting of 'Spread'
and a scalar nonnegative decimal or an NINST-by-1 vector of nonnegative decimals.
Data Types: double

Maturity — Maturity date
datetime | serial date number | data character vector | date string | vector of datetimes | vector of
serial date numbers | cell array of date character vectors | date string array

Maturity date, specified as the comma-separated pair consisting of 'Maturity' and a scalar
datetime, serial date number, date character vector, date string or an NINST-by-1 vector of datetimes,
serial date numbers, cell array of date character vectors, or date string array.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the Maturity property is stored as a datetime.
Data Types: char | cell | double | string | datetime

Optional FloatBond Name-Value Pair Arguments

Reset — Frequency of payments per year
2 (default) | scalar integer | vector of integers

Frequency of payments per year, specified as the comma-separated pair consisting of 'Reset' and a
scalar integer or an NINST-by-1 vector of integers. Values for Reset are: 1, 2, 3, 4, 6, or 12.
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Data Types: double

Basis — Day count basis
[0 0] (actual/actual) (default) | scalar integer from 0 to 13 | vector of integers from 0 to 13

Day count basis, specified as the comma-separated pair consisting of 'Basis' and a scalar integer or
an NINST-by-1 using the following values:

• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Principal amount or principal value schedule
100 (default) | scalar numeric | numeric vector | timetable

Notional principal amount or principal value schedule, specified as the comma-separated pair
consisting of 'Principal' and a scalar numeric or an NINST-by-1 numeric vector or a timetable.

Principal accepts a timetable, where the first column is dates and the second column is the
associated notional principal value. The date indicates the last day that the principal value is valid.

Note If you are creating one or more FloatBond instruments and use a timetable, the timetable
specification applies to all of the FloatBond instruments. Principal does not accept an NINST-by-1
cell array of timetables as input.

Data Types: double | timetable

ProjectionCurve — Rate curve for projecting floating cash flows
ratecurve.empty (default) | scalar ratecurve object | vector of ratecurve objects

Rate curve for projecting floating cash flows, specified as the comma-separated pair consisting of
'ProjectionCurve' and a scalar ratecurve object or an NINST-by-1 vector of ratecurve
objects. You must create this object using ratecurve.
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Data Types: object

ResetOffset — Lag in rate setting
0 (default) | scalar numeric | numeric vector

Lag in rate setting, specified as the comma-separated pair consisting of 'ResetOffset' and a scalar
numeric or an NINST-by-1 numeric vector.
Data Types: double

LatestFloatingRate — Latest floating rate
[] (default) | scalar decimal | vector of decimals

Latest floating rate for the FloatBond object, specified as the comma-separated pair consisting of
'LatestFloatingRate' and a scalar decimal or an NINST-by-1 vector of decimals.
Data Types: double

DaycountAdjustedCashFlow — Flag to adjust cash flows based on actual period day count
false (default) | scalar logical value of true or false | vector of logical values with true or false

Flag to adjust cash flows based on actual period day count, specified as the comma-separated pair
consisting of 'DaycountAdjustedCashFlow' and a scalar logical or an NINST-by-1 vector of
logicals with values of true or false.
Data Types: logical

BusinessDayConvention — Business day conventions
"actual" (default) | string | string array | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a scalar string or character vector or an NINST-by-1 cell array of
character vectors or string array. The selection for business day convention determines how
nonbusiness days are treated. Nonbusiness days are defined as weekends plus any other date that
businesses are not open (for example, statutory holidays). Values are:

• "actual" — Nonbusiness days are effectively ignored. Cash flows that fall on nonbusiness days
are assumed to be distributed on the actual date.

• "follow" — Cash flows that fall on a nonbusiness day are assumed to be distributed on the
following business day.

• "modifiedfollow" — Cash flows that fall on a nonbusiness day are assumed to be distributed
on the following business day. However if the following business day is in a different month, the
previous business day is adopted instead.

• "previous" — Cash flows that fall on a nonbusiness day are assumed to be distributed on the
previous business day.

• "modifiedprevious" — Cash flows that fall on a nonbusiness day are assumed to be distributed
on the previous business day. However if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell | string

Holidays — Holidays used in computing business days
NaT (default) | datetimes | cell array of date character vectors | date string array | serial date
numbers
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Holidays used in computing business days, specified as the comma-separated pair consisting of
'Holidays' and dates using an NINST-by-1 vector of datetimes, serial date numbers, cell array of
date character vectors, or date string array. For example:

H = holidays(datetime('today'),datetime(2025,12,15));
FloatBondObj = fininstrument("floatbond",'Spread',100,'Maturity',datetime(2025,12,15),'Holidays',H)

Data Types: double | cell | datetime | string

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month with 30 or fewer days
true (in effect) (default) | scalar logical with value of true or false | vector of logicals with values
of true or false

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month with
30 or fewer days, specified as the comma-separated pair consisting of 'EndMonthRule' and a scalar
logical or an NINST-by-1 vector of logicals with values of true or false.

• If you set EndMonthRule to false, the software ignores the rule, meaning that a payment date is
always the same numerical day of the month.

• If you set EndMonthRule to true, the software sets the rule on, meaning that a payment date is
always the last actual day of the month.

Data Types: logical

IssueDate — Bond issue date
NaT (default) | datetime | serial date number | date character vector | date string | vector of datetimes
| vector of serial date numbers | cell array of date character vectors | date string array

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a scalar
datetime, serial date number, date character vector, date string or an NINST-by-1 vector of datetimes,
serial date numbers, cell array of date character vectors, or date string array.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the IssueDate property is stored as a datetime.
Data Types: double | char | cell | string | datetime

FirstCouponDate — Irregular first coupon date
NaT (default) | datetime | serial date number | date character vector | date string | vector of datetimes
| vector of serial date numbers | cell array of date character vectors | date string array

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a scalar datetime, serial date number, date character vector, date string or
an NINST-by-1 vector of datetimes, serial date numbers, cell array of date character vectors, or date
string array.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes
precedence in determining the coupon payment structure. If you do not specify FirstCouponDate,
the cash flow payment dates are determined from other inputs.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the FirstCouponDate property is stored as a datetime.
Data Types: double | char | cell | string | datetime
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LastCouponDate — Irregular last coupon date
NaT (default) | datetime | serial date number | date character vector | date string | vector of datetimes
| vector of serial date numbers | cell array of date character vectors | date string array

Irregular last coupon date, specified as the comma-separated pair consisting of 'LastCouponDate'
and a scalar datetime, serial date number, date character vector, date string or an NINST-by-1 vector
of datetimes, serial date numbers, cell array of date character vectors, or date string array.

If you specify LastCouponDate but not FirstCouponDate, LastCouponDate determines the
coupon structure of the bond. The coupon structure of a bond is truncated at LastCouponDate,
regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not
specify LastCouponDate, the cash flow payment dates are determined from other inputs.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the LastCouponDate property is stored as a datetime.
Data Types: double | cell | char | string | datetime

StartDate — Forward starting date of payments
NaT (default) | datetime | serial date number | character vector | date string | vector of datetimes |
vector of serial date numbers | cell array of date character vectors | date string array

Forward starting date of payments, specified as the comma-separated pair consisting of
'StartDate' and a scalar datetime, serial date number, character vector, date string or an NINST-
by-1 vector of datetimes, serial date numbers, cell array of date character vectors, or date string
array.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the StartDate property is stored as a datetime.
Data Types: char | cell | double | string | datetime

Name — User-defined name for instrument
" " (default) | string | string array | character vector | cell array of character vectors

User-defined name for one of more instruments, specified as the comma-separated pair consisting of
'Name' and a scalar string or character vector or an NINST-by-1 cell array of character vectors or
string array.
Data Types: char | cell | string

Properties
Spread — Number of basis points over the reference rate
scalar nonnegative numeric | nonnegative numeric vector

Number of basis points over the reference rate, returned as a scalar nonnegative numeric or an
NINST-by-1 nonnegative numeric vector.
Data Types: double

Maturity — Maturity date
datetime | vector of datetimes

Maturity date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
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Data Types: datetime

Reset — Frequency of payment per year
1 (default) | scalar integer | vector of integers

Coupons per year, returned as a scalar integer or an NINST-by-1 vector of integers.
Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | scalar integer from 0 to 13 | vector of integers from 0 to 13

Day count basis, returned as a scalar integer or an NINST-by-1 vector of integers.
Data Types: double

Principal — Notional principal amount or principal value schedules
100 (default) | scalar numeric | numeric vector | timetable

Notional principal amount or principal value schedules, returned as a scalar numeric or an NINST-
by-1 numeric vector or a timetable.
Data Types: timetable | double

ProjectionCurve — Rate curve used in generating future cash flows
ratecurve.empty (default) | scalar ratecurve object | vector of ratecurve objects

Rate curve to be used in projecting the future cash flows, returned as a scalar ratecurve object or
an NINST-by-1 vector of ratecurve objects.
Data Types: object

ResetOffset — Lag in rate setting
0 (default) | scalar numeric | numeric vector

Lag in rate setting, returned as a scalar numeric or an NINST-by-1 numeric vector.
Data Types: double

LatestFloatingRate — Latest floating rate for FloatBond
[ ] (default) | scalar decimal | vector of decimals

Latest floating rate for FloatBond, returned as a scalar decimal or an NINST-by-1 vector of
decimals.
Data Types: double

DaycountAdjustedCashFlow — Flag to adjust cash flows based on actual period day count
false (default) | scalar logical value of true or false | vector of logical values with true or false

Flag to adjust cash flows based on actual period day count, returned as scalar logical or an NINST-
by-1 vector of logicals with values of true or false.
Data Types: logical

BusinessDayConvention — Business day conventions
"actual" (default) | scalar string | string array

Business day conventions, returned as a scalar string or an NINST-by-1 string array.
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Data Types: string

Holidays — Holidays used in computing business days
NaT (default) | datetimes

Holidays used in computing business days, returned as an NINST-by-1 vector of datetimes.
Data Types: datetime

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month with 30 or fewer days
true (in effect) (default) | scalar logical with value of true or false | vector of logicals with values
of true or false

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month with
30 or fewer days, returned as a scalar logical or an NINST-by-1 vector of logical values.
Data Types: logical

IssueDate — Bond issue date
NaT (default) | datetime | vector of datetimes

Bond issue date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

FirstCouponDate — Irregular first coupon date
NaT (default) | datetime | vector of datetimes

Irregular first coupon date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

LastCouponDate — Irregular last coupon date
NaT (default) | datetime | vector of datetimes

Irregular last coupon date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

StartDate — Forward starting date of payments
NaT (default) | datetime | vector of datetimes

Forward starting date of payments, returned as a scalar datetime or an NINST-by-1 vector of
datetimes.
Data Types: datetime

Name — User-defined name for instrument
" " (default) | string | string array

User-defined name for the instrument, returned as a string or an NINST-by-1 string array.
Data Types: string
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Object Functions
cashflows Compute cash flow for FixedBond, FloatBond, Swap, FRA, STIRFuture, OISFuture,

OvernightIndexedSwap, or Deposit instrument

Examples

Price Vanilla Float Bond Instrument Using ratecurve and Discount Pricer

This example shows the workflow to price a vanilla FloatBond instrument when you use a
ratecurve and a Discount pricing method.

Create FloatBond Instrument Object

Use fininstrument to create a vanilla FloatBond instrument object.

FloatB = fininstrument("FloatBond",'Maturity',datetime(2022,9,15),'Spread',0.025,'Reset',2,'Basis',1,'Principal',100,'EndMonthRule',false,'Name',"float_bond_instrument")

FloatB = 
  FloatBond with properties:

                      Spread: 0.0250
             ProjectionCurve: [0x0 ratecurve]
                 ResetOffset: 0
                       Reset: 2
                       Basis: 1
                EndMonthRule: 0
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
          LatestFloatingRate: NaN
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 15-Sep-2022
                        Name: "float_bond_instrument"

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
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                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Discount Pricer Object

Use finpricer to create a Discount pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("Discount",'DiscountCurve',myRC)

outPricer = 
  Discount with properties:

    DiscountCurve: [1x1 ratecurve]

Price FloatBond Instrument

Use price to compute the price and sensitivities for the vanilla FloatBond instrument.

[Price, outPR] = price(outPricer, FloatB,["all"])

Price = 109.8322

outPR = 
  priceresult with properties:

       Results: [1x2 table]
    PricerData: []

outPR.Results

ans=1×2 table
    Price       DV01   
    ______    _________

    109.83    0.0021981

Price Multiple Vanilla Float Bond Instruments Using ratecurve and Discount Pricer

This example shows the workflow to price multiple vanilla FloatBond instruments when you use a
ratecurve and a Discount pricing method.

Create FloatBond Instrument Object

Use fininstrument to create a vanilla FloatBond instrument object for three Float Bond
instruments.

FloatB = fininstrument("FloatBond",'Maturity',datetime([2022,9,15 ; 2022,9,15 ; 2022,9,15]),'Spread',0.025,'Reset',2,'Basis',1,'Principal',[100 ; 200 ; 300],'EndMonthRule',false,'Name',"float_bond_instrument")
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FloatB=3×1 object
  3x1 FloatBond array with properties:

    Spread
    ProjectionCurve
    ResetOffset
    Reset
    Basis
    EndMonthRule
    Principal
    DaycountAdjustedCashFlow
    BusinessDayConvention
    LatestFloatingRate
    Holidays
    IssueDate
    FirstCouponDate
    LastCouponDate
    StartDate
    Maturity
    Name

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Discount Pricer Object

Use finpricer to create a Discount pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("Discount",'DiscountCurve',myRC)

outPricer = 
  Discount with properties:
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    DiscountCurve: [1x1 ratecurve]

Price FloatBond Instruments

Use price to compute the prices and sensitivities for the vanilla FloatBond instruments.

[Price, outPR] = price(outPricer, FloatB,["all"])

Price = 3×1

  109.8322
  219.6644
  329.4965

outPR=1×3 object
  1x3 priceresult array with properties:

    Results
    PricerData

outPR.Results

ans=1×2 table
    Price       DV01   
    ______    _________

    109.83    0.0021981

ans=1×2 table
    Price       DV01   
    ______    _________

    219.66    0.0043961

ans=1×2 table
    Price      DV01   
    _____    _________

    329.5    0.0065942

Price Amortizing Float Bond Instrument Using ratecurve and Discount Pricer

This example shows the workflow to price an amortizing FloatBond instrument when you use a
ratecurve and a Discount pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,1,1);
ZeroTimes = calyears(1:10)';
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ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
Compounding = 1;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates, "Compounding",Compounding);

Create FloatBond Instrument Object

Use fininstrument to create an amortizing FloatBond instrument object.

Maturity = datetime(2024,1,1);
Spread = 0.02;
Reset = 1;
ADates = datetime([2020,1,1 ; 2024,1,1]);
APrincipal = [100; 80];
Principal = timetable(ADates,APrincipal);
Floatamort = fininstrument("FloatBond",'Maturity',Maturity,'Spread',Spread,'Reset',Reset,'ProjectionCurve',ZeroCurve,'Principal',Principal)

Floatamort = 
  FloatBond with properties:

                      Spread: 0.0200
             ProjectionCurve: [1x1 ratecurve]
                 ResetOffset: 0
                       Reset: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: [2x1 timetable]
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
          LatestFloatingRate: NaN
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 01-Jan-2024
                        Name: ""

Create Discount Pricer Object

Use finpricer to create an Discount pricer object and use the ratecurve object with the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("Discount",'DiscountCurve',ZeroCurve)

outPricer = 
  Discount with properties:

    DiscountCurve: [1x1 ratecurve]

Price FloatBond Instrument

Use price to compute the price and sensitivities for the vanilla FloatBond instrument.

[Price, outPR] = price(outPricer,Floatamort,["all"])

Price = 110.1101
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outPR = 
  priceresult with properties:

       Results: [1x2 table]
    PricerData: []

outPR.Results

ans=1×2 table
    Price       DV01   
    ______    _________

    110.11    0.0033187

Price Float Bond Instrument Using Hull-White Model and IRMonteCarlo Pricer

This example shows the workflow to price a FloatBond instrument when using a HullWhite model
and an IRMonteCarlo pricing method.

Create FloatBond Instrument Object

Use fininstrument to create a FloatBond instrument object.

FloatB = fininstrument("FloatBond",'Maturity',datetime(2022,9,15),'Spread',0.025,'Reset',2,'Basis',1,'Principal',100,'EndMonthRule',false,'Name',"float_bond_instrument")

FloatB = 
  FloatBond with properties:

                      Spread: 0.0250
             ProjectionCurve: [0x0 ratecurve]
                 ResetOffset: 0
                       Reset: 2
                       Basis: 1
                EndMonthRule: 0
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
          LatestFloatingRate: NaN
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 15-Sep-2022
                        Name: "float_bond_instrument"

Create HullWhite Model Object

Use finmodel to create a HullWhite model object.

HullWhiteModel = finmodel("HullWhite",'Alpha',0.32,'Sigma',0.49)

HullWhiteModel = 
  HullWhite with properties:
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    Alpha: 0.3200
    Sigma: 0.4900

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2019,1,1);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 01-Jan-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create IRMonteCarlo Pricer Object

Use finpricer to create an IRMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("IRMonteCarlo",'Model',HullWhiteModel,'DiscountCurve',myRC,'SimulationDates',ZeroDates)

outPricer = 
  HWMonteCarlo with properties:

          NumTrials: 1000
      RandomNumbers: []
      DiscountCurve: [1x1 ratecurve]
    SimulationDates: [01-Jul-2019    01-Jan-2020    01-Jan-2021    ...    ]
              Model: [1x1 finmodel.HullWhite]

Price FloatBond Instrument

Use price to compute the price and sensitivities for the FloatBond instrument.

[Price,outPR] = price(outPricer,FloatB,["all"])

Price = 109.1227

outPR = 
  priceresult with properties:
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       Results: [1x4 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×4 table
    Price      Delta     Gamma     Vega
    ______    _______    ______    ____

    109.12    -19.033    50.224     0  

Price Vanilla FloatBond Instrument Using a Hull-White Model and IRTree Pricer

This example shows the workflow to price a vanilla FloatBond instrument when using a HullWhite
model and an IRTree pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,1,1);
ZeroTimes = calyears(1:10)';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
Compounding = 1;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates, "Compounding",Compounding);

Create FloatBond Instrument Object

Use fininstrument to create a vanilla FloatdBond instrument object.

Spread = 0.03;
Reset = 1;
Maturity = datetime(2024,1,1);
Period = 1;
Float = fininstrument("FloatBond",'Maturity',Maturity,'Spread',Spread,'Reset',Reset,'ProjectionCurve',ZeroCurve)

Float = 
  FloatBond with properties:

                      Spread: 0.0300
             ProjectionCurve: [1x1 ratecurve]
                 ResetOffset: 0
                       Reset: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
          LatestFloatingRate: NaN
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
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                    Maturity: 01-Jan-2024
                        Name: ""

Create HullWhite Model Object

Use finmodel to create a HullWhite model object.

VolCurve = 0.01;
AlphaCurve = 0.1;

HWModel = finmodel("HullWhite",'alpha',AlphaCurve,'sigma',VolCurve);

Create IRTree Pricer Object

Use finpricer to create an IRTree pricer object and use the ratecurve object with the
'DiscountCurve' name-value pair argument.

HWTreePricer = finpricer("IRTree",'Model',HWModel,'DiscountCurve',ZeroCurve,'TreeDates',ZeroDates)

HWTreePricer = 
  HWBKTree with properties:

             Tree: [1x1 struct]
        TreeDates: [10x1 datetime]
            Model: [1x1 finmodel.HullWhite]
    DiscountCurve: [1x1 ratecurve]

Price FloatBond Instrument

Use price to compute the price and sensitivities for the vanilla FloatBond instrument.

[Price, outPR] = price(HWTreePricer,Float,["all"])

Price = 117.4686

outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×4 table
    Price     Vega    Gamma      Delta 
    ______    ____    ______    _______

    117.47     0      315.09    -60.007

More About
Floating-Rate Note

A floating-rate note is a security like a bond, but the interest rate of the note is reset periodically,
relative to a reference index rate, to reflect fluctuations in market interest rates.
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See Also
Functions
FloatBondOption | finmodel | finpricer | timetable

Topics
“Price Portfolio of Bond and Bond Option Instruments” on page 2-173
“Compute LIBOR Fallback” on page 2-193
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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FloatBondOption
FloatBondOption instrument object

Description
Create and price a FloatBondOption instrument object for one or more Float Bond Option
instruments using this workflow:

1 Use fininstrument to create an FloatBondOption instrument object for one or more Float
Bond Option instruments.

2 Use finmodel to specify a HullWhite, BlackKarasinski, BraceGatarekMusiela,
SABRBraceGatarekMusiela, or LinearGaussian2F model for the FloatBondOption
instrument object.

3 Choose a pricing method.

• When using a HullWhite or BlackKarasinski model, use finpricer to specify an
IRTree pricing method for one or more FloatBondOption instruments.

• When using a HullWhite, BraceGatarekMusiela, SABRBraceGatarekMusiela, or
LinearGaussian2F model, use finpricer to specify an IRMonteCarlo pricing method for
one or more FloatBondOption instruments.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available models and pricing methods FloatBondOption instrument,
see “Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
FloatBondOptionObj = fininstrument(InstrumentType,'Strike',strike_value,'
ExerciseDate',exercise_date,'Bond',bond_obj)
FloatBondOptionObj = fininstrument( ___ ,Name,Value)

Description

FloatBondOptionObj = fininstrument(InstrumentType,'Strike',strike_value,'
ExerciseDate',exercise_date,'Bond',bond_obj) creates a FloatBond object for one or
more Float Bond Option instruments by specifying InstrumentType and sets properties on page 11-
2650 using the required name-value pair arguments Strike, ExerciseDate, and Bond.

FloatBondOptionObj = fininstrument( ___ ,Name,Value) sets optional properties on page
11-2650 using additional name-value pair arguments in addition to the required arguments in the
previous syntax. For example, FloatBondOptionObj =
fininstrument("FloatBondOption",'Strike',100,'ExerciseDate',datetime(2019,1,3
0),'Bond',bond_obj,'OptionType','put','ExerciseStyle',"american",'Name',"floa
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t_bond_option") creates a FloatBondOption instrument with a strike of 100 and an American
exercise. You can specify multiple name-value pair arguments.

Input Arguments

InstrumentType — Instrument type
string with value "FloatBondOption" | string array with values of "FloatBondOption" |
character vector with value 'FloatBondOption' | cell array of character vectors with values of
'FloatBondOption'

Instrument type, specified as a string with the value of "FloatBondOption", a character vector with
the value of 'FloatBondOption', an NINST-by-1 string array with values of "FloatBondOption",
or an NINST-by-1 cell array of character vectors with values of 'FloatBondOption'.
Data Types: char | cell | string

FloatBondOption Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: FloatBondOptionObj =
fininstrument("FloatBondOption",'Strike',100,'ExerciseDate',datetime(2019,1,3
0),'Bond',bond_obj,'OptionType','put','ExerciseStyle',"american",'Name',"floa
t_bond_option")

Required FloatBondOption Name-Value Pair Arguments

Strike — Option strike value
nonnegative value | vector of nonnegative values

Option strike value, specified as the comma-separated pair consisting of 'Strike' and a scalar
nonnegative value or an NINST-by-1 vector of nonnegative values.
Data Types: double

ExerciseDate — Option exercise dates
serial date number | date character vector | date string | datetime | vector of datetimes | vector of
serial date numbers | cell array of date character vectors | date string array

Option exercise date, specified as the comma-separated pair consisting of 'ExerciseDate' and a
scalar serial date number, date character vector, date string, datetime or an NINST-by-1 vector of
datetimes, serial date numbers, cell array of date character vectors, or date string array.

• For a European option, there is only one ExerciseDate on the option expiry date.
• For a Bermudan option, there is a 1-by-NSTRIKES vector of exercise dates.
• For an American option, the option can be exercised between ValuationDate of the stock tree

and the single listed ExerciseDate.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the Maturity property is stored as a datetime.
Data Types: double | cell | char | string | datetime
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Bond — Underlying float bond
FloatBond object | vector of FloatBond objects

Underlying float bond, specified as the comma-separated pair consisting of 'Bond' and the name of a
FloatBond object or an NINST-by-1 vector of FloatBond objects.
Data Types: object

Optional FloatBondOption Name-Value Pair Arguments

OptionType — Definition of option
"call" (default) | string with value "call" or "put" | string array with values of "call" or "put"
| character vector with value 'call' or 'put' | cell array of character vectors with values of
'call' or 'put'

Definition of option, specified as the comma-separated pair consisting of 'OptionType' and a scalar
character vector or a string or an NINST-by-1 cell array of character vectors or string array using
'call' or 'put'.
Data Types: char | cell | string

ExerciseStyle — Option type
"European" (default) | string with value "European", "American", or "Bermudan" | string array
with values of "European", "American", or "Bermudan" | character vector with value
'European', 'American', or 'Bermudan' | cell array of character vectors with values of
'European', 'American', or 'Bermudan'

Option type, specified as the comma-separated pair consisting of 'ExerciseStyle' and a scalar
character vector or string or an NINST-by-1 cell array of character vectors or string array.
Data Types: string | cell | char

Name — User-defined name for instrument
" " (default) | string | string array | character vector | cell array of character vectors

User-defined name for one of more instruments, specified as the comma-separated pair consisting of
'Name' and a scalar string or character vector or an NINST-by-1 cell array of character vectors or
string array.
Data Types: char | cell | string

Properties
InstrumentType — Instrument type
string with value "FloatBondOption" | string array with values of "FloatBondOption"

Instrument type, returned as a scalar string or an NINST-by-1 string array.
Data Types: string

Strike — Option strike value
nonnegative value | nonnegative value

Option strike value, returned as a scalar nonnegative value or an NINST-by-1 vector of nonnegative
values.
Data Types: double
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ExerciseDate — Option exercise date
datetime | vector of datetimes

Option exercise date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

OptionType — Definition of option
"call" (default) | string with value "call" or "put" | string array with values of "call" or "put"

Definition of option, returned as a scalar string or an NINST-by-1 string array.
Data Types: string

ExerciseStyle — Option type
"European" (default) | string with value "European", "American", or "Bermudan" | string array
with values of "European", "American", or "Bermudan"

Option type, returned as a scalar string or an NINST-by-1 string array.
Data Types: string

Bond — Underlying float bond
FloatBond object | vector of FloatBond objects

Underlying float bond, returned as a scalar FloatBond object or an NINST-by-1 vector of FloatBond
objects.
Data Types: object

Name — User-defined name for instrument
" " (default) | string | string array

User-defined name for the instrument, returned as a scalar string or an NINST-by-1 string array.
Data Types: string

Object Functions
setExercisePolicy Set exercise policy for FixedBondOption, FloatBondOption, or Vanilla instrument

Examples

Price a Float Bond Option Instrument Using Hull-White Model and IRTree Pricer

This example shows the workflow to price a FloatBondOption instrument when you use a
HullWhite model and an IRTree pricing method.

Create FloatBond Instrument Object

Use fininstrument to create a FloatBond instrument object as the underlying bond.

BondInst = fininstrument("FloatBond",'Maturity',datetime(2030,9,15),'Spread',0.021,'Name',"bond_instrument")

BondInst = 
  FloatBond with properties:
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                      Spread: 0.0210
             ProjectionCurve: [0x0 ratecurve]
                 ResetOffset: 0
                       Reset: 2
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
          LatestFloatingRate: NaN
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 15-Sep-2030
                        Name: "bond_instrument"

Create FloatBondOption Instrument Objects

Use fininstrument to create three callable FloatBondOption instrument objects with European,
American, and Bermudan exercise.

FloatBOptionEuro = fininstrument("FloatBondOption",'ExerciseDate',datetime(2029,9,15),'Strike',98,'Bond',BondInst,'OptionType',"call",'ExerciseStyle',"european",'Name',"float_bond_option_european")

FloatBOptionEuro = 
  FloatBondOption with properties:

       OptionType: "call"
    ExerciseStyle: "european"
     ExerciseDate: 15-Sep-2029
           Strike: 98
             Bond: [1x1 fininstrument.FloatBond]
             Name: "float_bond_option_european"

FloatBOptionAmerican = fininstrument("FloatBondOption",'ExerciseDate',datetime(2029,9,15),'Strike',98,'Bond',BondInst,'OptionType',"call",'ExerciseStyle',"american",'Name',"float_bond_option_american")

FloatBOptionAmerican = 
  FloatBondOption with properties:

       OptionType: "call"
    ExerciseStyle: "american"
     ExerciseDate: 15-Sep-2029
           Strike: 98
             Bond: [1x1 fininstrument.FloatBond]
             Name: "float_bond_option_american"

FloatBOptionBermudan = fininstrument("FloatBondOption",'ExerciseDate',[datetime(2025,9,15) , datetime(2029,09,15)],'Strike',[98,100],'Bond',BondInst,'OptionType',"call",'ExerciseStyle',"bermudan",'Name',"float_bond_option_bermudan")

FloatBOptionBermudan = 
  FloatBondOption with properties:

       OptionType: "call"
    ExerciseStyle: "bermudan"
     ExerciseDate: [15-Sep-2025    15-Sep-2029]
           Strike: [98 100]
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             Bond: [1x1 fininstrument.FloatBond]
             Name: "float_bond_option_bermudan"

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2024,9,15);
Type = 'zero';
ZeroTimes = [calyears([1:10])]';
ZeroRates = [0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307 0.0310]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2024
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create a HullWhite Model Object

Use finmodel to create a HullWhite model object.

HullWhiteModel = finmodel("HullWhite",'Alpha',0.01,'Sigma',0.05)

HullWhiteModel = 
  HullWhite with properties:

    Alpha: 0.0100
    Sigma: 0.0500

Create IRTree Pricer Object

Use finpricer to create an IRTree pricer object and use the ratecurve object with the
'DiscountCurve' name-value pair argument.

CFdates = cfdates(Settle, BondInst.Maturity, BondInst.Reset, BondInst.Basis);
HWTreePricer = finpricer("IRTree",'Model',HullWhiteModel,'DiscountCurve',myRC,'TreeDates',CFdates')

HWTreePricer = 
  HWBKTree with properties:

             Tree: [1x1 struct]
        TreeDates: [12x1 datetime]
            Model: [1x1 finmodel.HullWhite]
    DiscountCurve: [1x1 ratecurve]
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HWTreePricer.Tree

ans = struct with fields:
        tObs: [0 0.4959 1 1.4959 2 2.4959 3 3.4986 4.0027 4.4986 5.0027 ... ]
        dObs: [15-Sep-2024    15-Mar-2025    15-Sep-2025    ...    ]
      CFlowT: {1x12 cell}
       Probs: {1x11 cell}
     Connect: {1x11 cell}
     FwdTree: {1x12 cell}
    RateTree: {1x12 cell}

Price FixedBondOption Instruments

Use price to compute the price and sensitivities for the two FixedBondOption instruments.

[Price, outPR] = price(HWTreePricer,FloatBOptionEuro,["all"])

Price = 3.8040

outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×4 table
    Price       Vega        Gamma      Delta 
    _____    ___________    ______    _______

    3.804    -2.6645e-11    110.75    -20.465

[Price, outPR] = price(HWTreePricer,FloatBOptionAmerican,["all"])

Price = 14.1700

outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×4 table
    Price    Vega    Gamma      Delta 
    _____    ____    ______    _______

    14.17     0      160.87    -38.981

[Price, outPR] = price(HWTreePricer,FloatBOptionBermudan,["all"])

Price = 12.0676
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outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×4 table
    Price        Vega        Gamma      Delta 
    ______    ___________    ______    _______

    12.068    -2.8422e-10    161.55    -39.402

Price Multiple Float Bond Option Instruments Using Hull-White Model and IRTree Pricer

This example shows the workflow to price multiple FloatBondOption instruments when you use a
HullWhite model and an IRTree pricing method.

Create FloatBond Instrument Object

Use fininstrument to create a FloatBond instrument object as the underlying bond.

BondInst = fininstrument("FloatBond",'Maturity',datetime(2030,9,15),'Spread',0.021,'Name',"bond_instrument")

BondInst = 
  FloatBond with properties:

                      Spread: 0.0210
             ProjectionCurve: [0x0 ratecurve]
                 ResetOffset: 0
                       Reset: 2
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
          LatestFloatingRate: NaN
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 15-Sep-2030
                        Name: "bond_instrument"

Create FloatBondOption Instrument Objects

Use fininstrument to create a FloatBondOption instrument object with European exercise for
three Float Bond Option instruments.

FloatBOptionEuro = fininstrument("FloatBondOption",'ExerciseDate',datetime([2030,9,15 ; 2029,09,15 ; 2028,09,15]),'Strike',[98 ; 99 ; 100],'Bond',BondInst,'OptionType',"call",'ExerciseStyle',"european",'Name',"float_bond_option_european")

FloatBOptionEuro=3×1 object
  3x1 FloatBondOption array with properties:
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    OptionType
    ExerciseStyle
    ExerciseDate
    Strike
    Bond
    Name

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2024,9,15);
Type = 'zero';
ZeroTimes = [calyears([1:10])]';
ZeroRates = [0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307 0.0310]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2024
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create a HullWhite Model Object

Use finmodel to create a HullWhite model object.

HullWhiteModel = finmodel("HullWhite",'Alpha',0.01,'Sigma',0.05)

HullWhiteModel = 
  HullWhite with properties:

    Alpha: 0.0100
    Sigma: 0.0500

Create IRTree Pricer Object

Use finpricer to create an IRTree pricer object and use the ratecurve object with the
'DiscountCurve' name-value pair argument.

CFdates = cfdates(Settle, BondInst.Maturity, BondInst.Reset, BondInst.Basis);
HWTreePricer = finpricer("IRTree",'Model',HullWhiteModel,'DiscountCurve',myRC,'TreeDates',CFdates')

HWTreePricer = 
  HWBKTree with properties:
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             Tree: [1x1 struct]
        TreeDates: [12x1 datetime]
            Model: [1x1 finmodel.HullWhite]
    DiscountCurve: [1x1 ratecurve]

HWTreePricer.Tree

ans = struct with fields:
        tObs: [0 0.4959 1 1.4959 2 2.4959 3 3.4986 4.0027 4.4986 5.0027 ... ]
        dObs: [15-Sep-2024    15-Mar-2025    15-Sep-2025    ...    ]
      CFlowT: {1x12 cell}
       Probs: {1x11 cell}
     Connect: {1x11 cell}
     FwdTree: {1x12 cell}
    RateTree: {1x12 cell}

Price FixedBondOption Instruments

Use price to compute the prices and sensitivities for the FixedBondOption instruments.

[Price, outPR] = price(HWTreePricer,FloatBOptionEuro,["all"])

Price = 3×1

    1.8081
    2.8617
    3.9097

outPR=3×1 object
  3x1 priceresult array with properties:

    Results
    PricerData

outPR.Results

ans=1×4 table
    Price        Vega       Gamma      Delta 
    ______    __________    ______    _______

    1.8081    4.4409e-12    65.153    -10.854

ans=1×4 table
    Price        Vega        Gamma      Delta 
    ______    ___________    ______    _______

    2.8617    -1.7764e-11    87.167    -15.751

ans=1×4 table
    Price        Vega        Gamma      Delta 
    ______    ___________    ______    _______
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    3.9097    -7.1054e-11    108.64    -20.493

Price Float Bond Option Instrument Using Hull-White Model and IRMonteCarlo Pricer

This example shows the workflow to price a FloatdBondOption instrument when using a
HullWhite model and an IRMonteCarlo pricing method.

Create FloatBond Instrument Object

Use fininstrument to create a FloatBond instrument object as the underlying bond.

BondInst = fininstrument("FloatBond",'Maturity',datetime(2030,9,15),'Spread',0.021,'Name',"bond_instrument")

BondInst = 
  FloatBond with properties:

                      Spread: 0.0210
             ProjectionCurve: [0x0 ratecurve]
                 ResetOffset: 0
                       Reset: 2
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
          LatestFloatingRate: NaN
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 15-Sep-2030
                        Name: "bond_instrument"

Create FloatBondOption Instrument Object

Use fininstrument to create a FloatBondOption instrument object.

FloatBOptionEuro = fininstrument("FloatBondOption",'ExerciseDate',datetime(2020,3,15),'Strike',98,'Bond',BondInst,'OptionType',"call",'ExerciseStyle',"european",'Name',"float_bond_option_european")

FloatBOptionEuro = 
  FloatBondOption with properties:

       OptionType: "call"
    ExerciseStyle: "european"
     ExerciseDate: 15-Mar-2020
           Strike: 98
             Bond: [1x1 fininstrument.FloatBond]
             Name: "float_bond_option_european"

Create HullWhite Model Object

Use finmodel to create a HullWhite model object.
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HullWhiteModel = finmodel("HullWhite",'Alpha',0.32,'Sigma',0.49)

HullWhiteModel = 
  HullWhite with properties:

    Alpha: 0.3200
    Sigma: 0.4900

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2019,1,1);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 01-Jan-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create IRMonteCarlo Pricer Object

Use finpricer to create an IRMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("IRMonteCarlo",'Model',HullWhiteModel,'DiscountCurve',myRC,'SimulationDates',datetime(2019,3,15)+calmonths(0:6:48)')

outPricer = 
  HWMonteCarlo with properties:

          NumTrials: 1000
      RandomNumbers: []
      DiscountCurve: [1x1 ratecurve]
    SimulationDates: [15-Mar-2019    15-Sep-2019    15-Mar-2020    ...    ]
              Model: [1x1 finmodel.HullWhite]

Price FloatBondOption Instrument

Use price to compute the price and sensitivities for the FloatBondOption instrument.

[Price,outPR] = price(outPricer,FloatBOptionEuro,["all"])

Price = 18.2369
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outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×4 table
    Price      Delta     Gamma     Vega  
    ______    _______    _____    _______

    18.237    -104.22    788.7    -13.949

More About
Floating-Rate Note Option

A floating-rate note option gives the option holder the right to sell the option back to the issuer (put)
or to redeem an option (call) at a specific price and on a specific date.

Financial Instruments Toolbox supports three types of put and call options on bonds:

• American option — An option that you exercise any time until its expiration date
• European option — An option that you exercise only on its expiration date
• Bermuda option — A Bermuda option resembles a hybrid of American and European options; you

can only exercise it on predetermined dates, usually monthly

For more information, see “Bond Options” on page 2-6.

Tips
After creating a FloatBondOption instrument object, you can use setExercisePolicy to change
the size of the options. For example, consider the following instrument:

FloatBOption = fininstrument("FloatBondOption",'ExerciseDate',datetime(2029,9,15),'Strike',98,'Bond',BondInst,'OptionType',"call",'ExerciseStyle',"European")

To modify the size of the FloatBondOption instrument object by changing the ExerciseStyle
from "European" to "American", use setExercisePolicy:

FloatBOption = setExercisePolicy(FloatBOption,[datetime(2021,1,1) datetime(2022,1,1)],100,'American')

See Also
Functions
FloatBond | finmodel | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53
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Floor
Floor instrument object

Description
Create and price a Floor instrument object for one of more Floor instruments using this workflow:

1 Use fininstrument to create a Floor instrument object for one of more Floor instruments.
2 Use finmodel to specify a HullWhite, BlackKarasinski, Black, Normal,

BraceGatarekMusiela, SABRBraceGatarekMusiela, or LinearGaussian2F model for the
Floor instrument object.

3 Choose a pricing method.

• When using a HullWhite, BlackKarasinski, Black, or Normal model, use finpricer to
specify a Normal, Black, HullWhite, or IRTree pricing method for one or more Floor
instruments.

• When using a HullWhite, BraceGatarekMusiela, SABRBraceGatarekMusiela, or
LinearGaussian2F model, use finpricer to specify an IRMonteCarlo pricing method for
one or more Floor instruments.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available models and pricing methods for a Floor instrument, see
“Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
FloorOpt = fininstrument(InstrumentType,'Strike',strike_value,'
Maturity',maturity_date)
FloorOpt = fininstrument( ___ ,Name,Value)

Description

FloorOpt = fininstrument(InstrumentType,'Strike',strike_value,'
Maturity',maturity_date) creates a Floor object for one of more Floor instruments by
specifying InstrumentType and sets the properties on page 11-2666 for the required name-value
pair argumentsStrike and Maturity.

The Floor instrument supports vanilla and amortizing floors.

FloorOpt = fininstrument( ___ ,Name,Value) sets optional properties on page 11-2666 using
additional name-value pairs in addition to the required arguments in the previous syntax. For
example, FloorOpt =
fininstrument("floor",'Strike',100,'Maturity',datetime(2019,1,30),'Reset',4,'
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Principal',100,'ResetOffset',1,'Basis',4,'DaycountAdjustedCashFlow',true,'Bus
inessDayConvention',"follow",'ProjectionCurve',ratecurve_object,'Name',"floor
_option") creates a Floor instrument with a strike of 100 and a maturity of January 30, 2019. You
can specify multiple name-value pair arguments.

Input Arguments

InstrumentType — Instrument type
string with value "Floor" | string array with values of "Floor" | character vector with value
'Floor' | cell array of character vectors with values of 'Floor'

Instrument type, specified as a string with the value of "Floor", a character vector with the value of
'Floor', an NINST-by-1 string array with values of "Floor", or an NINST-by-1 cell array of
character vectors with values of 'Floor'.
Data Types: char | cell | string

Floor Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: FloorOpt =
fininstrument("floor",'Strike',100,'Maturity',datetime(2019,1,30),'Reset',4,'
Principal',100,'ResetOffset',1,'Basis',4,'DaycountAdjustedCashFlow',true,'Bus
inessDayConvention',"follow",'ProjectionCurve',ratecurve_object,'Name',"floor
_option")

Required Floor Name-Value Pair Arguments

Strike — Option strike price value
scalar nonnegative decimal | vector of nonnegative decimals

Option strike price value, specified as the comma-separated pair consisting of 'Strike' and a scalar
nonnegative decimal or an NINST-by-1 vector of nonnegative decimals.
Data Types: double

Maturity — Cap maturity date
datetime | serial date number | date character vector | date string | vector of datetimes | vector of
serial date numbers | cell array of date character vectors | date string array

Cap maturity date, specified as the comma-separated pair consisting of 'ExerciseDate' and a
scalar datetime, serial date number, date character vector, date string or an NINST-by-1 vector of
datetimes, serial date numbers, cell array of date character vectors, or date string array.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the Maturity property is stored as a datetime.
Data Types: double | char | cell | string | datetime
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Optional Floor Name-Value Pair Arguments

Reset — Reset frequency payments per year
1 (default) | scalar numeric with value of 0, 1, 2, 3, 4, 6, or 12 | numeric vector with values of 0, 1, 2,
3, 4, 6, or 12

Reset frequency payments per year, specified as the comma-separated pair consisting of 'Reset'
and a scalar numeric or an NINST-by-1 numeric vector.
Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | scalar integer from 0 to 13 | vector of integers from 0 to 13

Day count basis, specified as the comma-separated pair consisting of 'Basis' and a scalar integer or
an NINST-by-1 vector of integers with the following values:

• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Principal amount or principal value schedule
100 (default) | scalar numeric | numeric vector | timetable

Principal amount or principal value schedule, specified as the comma-separated pair consisting of
'Principal' and a scalar numeric or an NINST-by-1 numeric vector or a timetable.

Principal accepts a timetable, where the first column is dates and the second column is its
associated principal value. The date indicates the last day that the principal value is valid.

Note If you are creating one or more Floor instruments and use a timetable, the timetable
specification applies to all of the Floor instruments. Principal does not accept an NINST-by-1 cell
array of timetables as input.

Data Types: double | timetable
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ResetOffset — Lag in rate setting
0 (default) | scalar numeric | numeric vector

Lag in rate setting, specified as the comma-separated pair consisting of 'ResetOffset' and a scalar
numeric or an NINST-by-1 numeric vector.
Data Types: double

DaycountAdjustedCashFlow — Flag to adjust cash flows based on actual period day count
false (default) | scalar logical value of true or false | vector of logical values of true or false

Flag to adjust cash flows based on actual period day count, specified as the comma-separated pair
consisting of 'DaycountAdjustedCashFlow' and a scalar logical or an NINST-by-1 vector of
logicals with values of true or false.
Data Types: logical

BusinessDayConvention — Business day conventions
"actual" (default) | string | string array | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a scalar string or character vector or an NINST-by-1 cell array of
character vector or string array for a business day convention. The selection for business day
convention determines how nonbusiness days are treated. Nonbusiness days are defined as weekends
plus any other date that businesses are not open (for example, statutory holidays). Values are:

• "actual" — Nonbusiness days are effectively ignored. Cash flows that fall on non-business days
are assumed to be distributed on the actual date.

• "follow" — Cash flows that fall on a nonbusiness day are assumed to be distributed on the
following business day.

• "modifiedfollow" — Cash flows that fall on a nonbusiness day are assumed to be distributed
on the following business day. However, if the following business day is in a different month, the
previous business day is adopted instead.

• "previous" — Cash flows that fall on a nonbusiness day are assumed to be distributed on the
previous business day.

• "modifiedprevious" — Cash flows that fall on a nonbusiness day are assumed to be distributed
on the previous business day. However, if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell | string

Holidays — Holidays used in computing business days
NaT (default) | datetimes | cell array of character vectors | date string array | serial date numbers

Holidays used in computing business days, specified as the comma-separated pair consisting of
'Holidays' and dates using an NINST-by-1 vector of datetimes, serial date numbers, cell array of
date character vectors, or date string array. For example:

H = holidays(datetime('today'),datetime(2025,12,15));
FloorOpt = fininstrument("floor",'Strike',100,'Maturity',datetime(2025,12,15),'Holidays',H)

Data Types: double | cell | datetime | string

ProjectionCurve — Rate curve used in generating future cash flows
ratecurve.empty (default) | ratecurve object | vector of ratecurve objects
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Rate curve used in projecting the future cash flows, specified as the comma-separated pair consisting
of 'ProjectionCurve' and a scalar ratecurve object or an NINST-by-1 vector of ratecurve
objects. This object is created using ratecurve. Use this optional input if the forward curve is
different from the discount curve.
Data Types: object

Name — User-defined name for instrument
" " (default) | string | string array | character vector | cell array of character vectors

User-defined name for one of more instruments, specified as the comma-separated pair consisting of
'Name' and a scalar string or character vector or an NINST-by-1 cell array of character vectors or
string array.
Data Types: char | cell | string

Properties
Strike — Option strike price value
scalar nonnegative | vector of nonnegative values

Option strike price value, returned as a scalar nonnegative numeric or an NINST-by-1 vector of
nonnegative values.
Data Types: double

Maturity — Floor maturity date
scalar datetime | vector of datetimes

Floor maturity date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

Reset — Reset frequency payments per year
1 (default) | scalar numeric | numeric vector

Reset frequency payments per year, returned as a scalar numeric or an NINST-by-1 numeric vector.
Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | scalar integer from 0 to 13 | vector of integers from 0 to 13

Day count basis, returned as a scalar integer or an NINST-by-1 vector of integers.
Data Types: double

Principal — Principal amount or principal value schedule
100 (default) | scalar numeric | numeric vector | timetable

Principal amount or principal value schedule, returned as a scalar numeric or an NINST-by-1 numeric
vector for principal amount or a timetable for a principal value schedule.
Data Types: double | timetable

ResetOffset — Lag in rate setting
0 (default) | scalar numeric | numeric vector
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Lag in rate setting, returned as a scalar numeric or an NINST-by-1 numeric vector.
Data Types: double

DaycountAdjustedCashFlow — Flag to adjust cash flows based on actual period day count
false (default) | scalar logical value of true or false | vector of logical values of true or false

Flag to adjust cash flows based on actual period day count, returned as a scalar logical or an NINST-
by-1 vector of logical values with values of true or false.
Data Types: logical

BusinessDayConvention — Business day conventions
"actual" (default) | string | string array

Business day conventions, returned as a scalar string or an NINST-by-1 string array.
Data Types: string

Holidays — Holidays used in computing business days
NaT (default) | datetimes

Holidays used in computing business days, returned as an NINST-by-1 vector of datetimes.
Data Types: datetime

ProjectionCurve — Rate curve used in generating future cash flows
ratecurve.empty (default) | scalar ratecurve object | vector of ratecurve objects

Rate curve used in projecting the future cash flows, returned as a scalar ratecurve object or an
NINST-by-1 vector of ratecurve objects.
Data Types: object

Name — User-defined name for instrument
" " (default) | string | string array

User-defined name for the instrument, returned as a scalar string or an NINST-by-1 string array.
Data Types: string

Examples

Price Vanilla Floor Instrument Using Black Model and Black Pricer

This example shows the workflow to price a vanilla Floor instrument when you use a Black model
and a Black pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve for the underlying interest-rate curve for the floor
instrument.

Settle = datetime(2018,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
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ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Floor Instrument Object

Use fininstrument to create a Floor instrument object.

FloorOpt = fininstrument("Floor",'Maturity',datetime(2022,9,15),'Strike',0.03,'ProjectionCurve',myRC)

FloorOpt = 
  Floor with properties:

                      Strike: 0.0300
                    Maturity: 15-Sep-2022
                 ResetOffset: 0
                       Reset: 1
                       Basis: 0
                   Principal: 100
             ProjectionCurve: [1x1 ratecurve]
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                        Name: ""

Create Black Model Object

Use finmodel to create a Black model object.

BlackModel = finmodel("Black",'Volatility',0.2)

BlackModel = 
  Black with properties:

    Volatility: 0.2000
         Shift: 0

Create Black Pricer Object

Use finpricer to create a Black pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

 outPricer = finpricer("analytic",'DiscountCurve',myRC,'Model',BlackModel)
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outPricer = 
  Black with properties:

            Model: [1x1 finmodel.Black]
    DiscountCurve: [1x1 ratecurve]

Price Floor Instrument

Use price to compute the price for the Floor instrument.

[Price, outPR] = price(outPricer,FloorOpt)

Price = 8.0878

outPR = 
  priceresult with properties:

       Results: [1x1 table]
    PricerData: []

Price Multiple Vanilla Floor Instruments Using Black Model and Black Pricer

This example shows the workflow to price multiple vanilla Floor instruments when you use a Black
model and a Black pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve for the underlying interest-rate curve for the floor
instrument.

Settle = datetime(2018,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Floor Instrument Object

Use fininstrument to create a Floor instrument object for three Florr instruments.
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FloorOpt = fininstrument("Floor",'Maturity',datetime([2022,9,15 ; 2022,9,15 ; 2022,9,15]),'Strike',[0.03 ; 0.04 ; 0.05],'ProjectionCurve',myRC)

FloorOpt=3×1 object
  3x1 Floor array with properties:

    Strike
    Maturity
    ResetOffset
    Reset
    Basis
    Principal
    ProjectionCurve
    DaycountAdjustedCashFlow
    BusinessDayConvention
    Holidays
    Name

Create Black Model Object

Use finmodel to create a Black model object.

BlackModel = finmodel("Black",'Volatility',0.2)

BlackModel = 
  Black with properties:

    Volatility: 0.2000
         Shift: 0

Create Black Pricer Object

Use finpricer to create a Black pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

 outPricer = finpricer("analytic",'DiscountCurve',myRC,'Model',BlackModel)

outPricer = 
  Black with properties:

            Model: [1x1 finmodel.Black]
    DiscountCurve: [1x1 ratecurve]

Price Floor Instruments

Use price to compute the prices for the Floor instruments.

[Price, outPR] = price(outPricer,FloorOpt)

Price = 3×1

    8.0878
   12.0033
   15.9263

outPR=3×1 object
  3x1 priceresult array with properties:
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    Results
    PricerData

Price Vanilla Floor Instrument Using Hull-White Model and Hull-White Pricer

This example shows the workflow to price a vanilla Floor instrument when you use a HullWhite
model and a HullWhite pricing method.

Create Floor Instrument Object

Use fininstrument to create a Floor instrument object.

FloorOpt = fininstrument("Floor",'Strike',0.039,'Maturity',datetime(2019,1,30),'Reset',4,'Principal',100,'Basis',12,'Name',"floor_option")

FloorOpt = 
  Floor with properties:

                      Strike: 0.0390
                    Maturity: 30-Jan-2019
                 ResetOffset: 0
                       Reset: 4
                       Basis: 12
                   Principal: 100
             ProjectionCurve: [0x0 ratecurve]
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                        Name: "floor_option"

Create HullWhite Model Object

Use finmodel to create a HullWhite model object.

HullWhiteModel = finmodel("HullWhite",'Alpha',0.032,'Sigma',0.04)

HullWhiteModel = 
  HullWhite with properties:

    Alpha: 0.0320
    Sigma: 0.0400

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)
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myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create HullWhite Pricer Object

Use finpricer to create a HullWhite pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'Model',HullWhiteModel,'DiscountCurve',myRC)

outPricer = 
  HullWhite with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.HullWhite]

Price Floor Instrument

Use price to compute the price for the Floor instrument.

Price = price(outPricer,FloorOpt)

Price = 1.2676

Price Amortizing Floor Instrument Using Black Model and Black Pricer

This example shows the workflow to price an amortizing Floor instrument when you use a Black
model and a Black pricing method.

Create Floor Instrument Object

Use fininstrument to create an amortizing Floor instrument object.

CADates = datetime([2020,9,1 ; 2023,9,1]);
CAPrincipal = [100; 85];
Principal = timetable(CADates,CAPrincipal);

FloorOpt = fininstrument("Floor",'Maturity',datetime(2023,9,1),'Strike',0.015,'Principal',Principal,'Name',"floor_amortizing_option")

FloorOpt = 
  Floor with properties:

                      Strike: 0.0150
                    Maturity: 01-Sep-2023
                 ResetOffset: 0
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                       Reset: 1
                       Basis: 0
                   Principal: [2x1 timetable]
             ProjectionCurve: [0x0 ratecurve]
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                        Name: "floor_amortizing_option"

Create Black Model Object

Use finmodel to create a Black model object.

BlackModel = finmodel("Black",'Volatility',0.2)

BlackModel = 
  Black with properties:

    Volatility: 0.2000
         Shift: 0

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,1);
Type = 'zero';
ZeroTimes = [calyears([1 2 3 4 5 7 10])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168]';
ZeroDates = Settle + ZeroTimes;
            
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates);

Create Black Pricer Object

Use finpricer to create a Black pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'Model',BlackModel,'DiscountCurve',myRC)

outPricer = 
  Black with properties:

            Model: [1x1 finmodel.Black]
    DiscountCurve: [1x1 ratecurve]

Price Floor Instrument

Use price to compute the price for the Floor instrument.

Price = price(outPricer,FloorOpt)

Price = 3.0030
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Price Vanilla Floor Instrument Using Hull-White Model and IRTree Pricer

This example shows the workflow to price a vanilla Floor instrument when using a HullWhite
model and an IRTree pricing method.

Create Floor Instrument Object

Use fininstrument to create a Floor instrument object.

FloorOpt = fininstrument("Floor",'Strike',0.03,'Maturity',datetime(2020,1,30),'Reset',4,'Principal',100,'Basis',8,'Name',"floor_option")

FloorOpt = 
  Floor with properties:

                      Strike: 0.0300
                    Maturity: 30-Jan-2020
                 ResetOffset: 0
                       Reset: 4
                       Basis: 8
                   Principal: 100
             ProjectionCurve: [0x0 ratecurve]
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                        Name: "floor_option"

Create HullWhite Model Object

Use finmodel to create a HullWhite model object.

HullWhiteModel = finmodel("HullWhite",'Alpha',0.01,'Sigma',0.10)

HullWhiteModel = 
  HullWhite with properties:

    Alpha: 0.0100
    Sigma: 0.1000

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
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                Rates: [10x1 double]
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create IRTree Pricer Object

Use finpricer to create an IRTree pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

CFdates = cfdates(Settle, FloorOpt.Maturity, FloorOpt.Reset, FloorOpt.Basis);
outPricer = finpricer("IRTree",'Model',HullWhiteModel,'DiscountCurve',myRC,'TreeDates',CFdates')

outPricer = 
  HWBKTree with properties:

             Tree: [1x1 struct]
        TreeDates: [6x1 datetime]
            Model: [1x1 finmodel.HullWhite]
    DiscountCurve: [1x1 ratecurve]

Price Floor Instrument

Use price to compute the price and sensitivities for the Floor instrument.

[Price, outPR] = price(outPricer,FloorOpt,["all"])

Price = 5.7821

outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×4 table
    Price      Vega     Gamma      Delta 
    ______    ______    ______    _______

    5.7821    31.821    141.45    -110.54

Price Floor Instrument Using BraceGatarekMusiela Model and IRMonteCarlo Pricer

This example shows the workflow to price a Floor instrument when using a BraceGatarekMusiela
model and an IRMonteCarlo pricing method.

Create Floor Instrument Object

Use fininstrument to create a Floor instrument object.

FloorOpt = fininstrument("Floor","Maturity",datetime(2022,9,15),'Strike',0.05,'Reset',1,'Name',"floor_option")
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FloorOpt = 
  Floor with properties:

                      Strike: 0.0500
                    Maturity: 15-Sep-2022
                 ResetOffset: 0
                       Reset: 1
                       Basis: 0
                   Principal: 100
             ProjectionCurve: [0x0 ratecurve]
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                        Name: "floor_option"

Create BraceGatarekMusiela Model Object

Use finmodel to create a BraceGatarekMusiela model object.

BGMVolFunc = @(a,t) (a(1)*t + a(2)).*exp(-a(3)*t) + a(4);
BGMVolParams = [.3 -.02 .7 .14];
numRates = 20;
VolFunc(1:numRates-1) = {@(t) BGMVolFunc(BGMVolParams,t)};
Beta = .08;
CorrFunc = @(i,j,Beta) exp(-Beta*abs(i-j));
Correlation = CorrFunc(meshgrid(1:numRates-1)',meshgrid(1:numRates-1),Beta);
BGM = finmodel("BraceGatarekMusiela",'Volatility',VolFunc,'Correlation',Correlation,'Period',1);

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2019,1,1);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [9x1 datetime]
                Rates: [9x1 double]
               Settle: 01-Jan-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create IRMonteCarlo Pricer Object

Use finpricer to create an IRMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.
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outPricer = finpricer("IRMonteCarlo",'Model',BGM,'DiscountCurve',myRC,'SimulationDates',ZeroDates)

outPricer = 
  BGMMonteCarlo with properties:

          NumTrials: 1000
      RandomNumbers: []
      DiscountCurve: [1x1 ratecurve]
    SimulationDates: [01-Jul-2019    01-Jan-2020    01-Jan-2021    ...    ]
              Model: [1x1 finmodel.BraceGatarekMusiela]

Price Floor Instrument

Use price to compute the price and sensitivities for the Floor instrument.

[Price,outPR] = price(outPricer,FloorOpt,["all"])

Price = 14.7975

outPR = 
  priceresult with properties:

       Results: [1x3 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×3 table
    Price      Delta     Gamma 
    ______    _______    ______

    14.797    -398.43    1399.5

More About
Floor

A floor is a contract that includes a guarantee setting the minimum interest rate received by the
holder, based on an otherwise floating interest rate.

The payoff for a floor is: max(FloorRate− CurrentRate, 0)

See Also
Functions
Cap | finmodel | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53
“Work with Negative Interest Rates Using Objects” on page 2-22
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Introduced in R2020a
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FRA
FRA instrument object

Description
Create and price a FRA (forward rate agreement) instrument object for one or more FRA instruments
using this workflow:

1 Use fininstrument to create a FRA instrument object for one or more FRA instruments.
2 Use ratecurve to specify an interest-rate model for the FRA instrument object.
3 Use finpricer to specify a Discount pricing method for one or more FRA instruments.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available models and pricing methods for a FRA instrument, see “Choose
Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
FRAObj = fininstrument(InstrumentType,'StartDate',start_date,'
Maturity',maturity_date,'Rate',rate_value)
FRAObj = fininstrument( ___ ,Name,Value)

Description

FRAObj = fininstrument(InstrumentType,'StartDate',start_date,'
Maturity',maturity_date,'Rate',rate_value) creates a FRA object for one or more FRA
instruments by specifying InstrumentType and sets the properties on page 11-2682 for the
required name-value pair arguments StartDate, Maturity, and Rate. For more information on a
FRA instrument, see “More About” on page 11-2687.

FRAObj = fininstrument( ___ ,Name,Value) sets optional properties on page 11-2682 using
additional name-value pairs in addition to the required arguments in the previous syntax. For
example, FRAObj =
fininstrument("FRA",'StartDate',datetime(2016,1,30),'Maturity',datetime(2019,
1,30),'Rate',0.025,'Principal',100,'Basis',1,'BusinessDayConvention',"follow"
,'Name',"FRA_instrument") creates a FRA instrument with a principal of 100 and a maturity of
January 30, 2019. You can specify multiple name-value pair arguments.

Input Arguments

InstrumentType — Instrument type
string with value "FRA" | string array with values of "FRA" | character vector with value 'FRA' | cell
array of character vectors with values of 'FRA'
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Instrument type, specified as a string with the value of "FRA", a character vector with the value of
'FRA', an NINST-by-1 string array with values of "FRA", or an NINST-by-1 cell array of character
vectors with values of 'FRA'.
Data Types: char | cell | string

FRA Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: FRAObj =
fininstrument("FRA",'StartDate',datetime(2016,1,30),'Maturity',datetime(2019,
1,30),'Rate',0.025,'Principal',100,'Basis',1,'BusinessDayConvention',"follow"
,'Name',"FRA_instrument")

Required FRA Name-Value Pair Arguments

StartDate — FRA start date
datetime | serial date number | date character vector | date string | vector of datetimes | vector of
serial date numbers | cell array of date character vectors | date string array

FRA start date, specified as the comma-separated pair consisting of 'StartDate' and a scalar
datetime, serial date number, date character vector, date string or an NINST-by-1 vector of datetimes,
serial date numbers, cell array of date character vectors, or date string array.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the StartDate property is stored as a datetime.
Data Types: char | cell | double | string | datetime

Maturity — FRA maturity date
datetime | serial date number | date character vector | date string | vector of datetimes | vector of
serial date numbers | cell array of date character vectors | date string array

FRA maturity date, specified as the comma-separated pair consisting of 'Maturity' and a scalar
datetime, serial date number, date character vector, date string or an NINST-by-1 vector of datetimes,
serial date numbers, cell array of date character vectors, or date string array.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the Maturity property is stored as a datetime.
Data Types: char | cell | double | string | datetime

Rate — FRA coupon rate
scalar decimal | vector of decimals

FRA coupon rate, specified as the comma-separated pair consisting of 'Rate' and a scalar decimal
or an NINST-by-1 vector of decimals.
Data Types: double
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Optional FRA Name-Value Pair Arguments

Basis — Day count basis
0 (actual/actual) (default) | scalar integer from 0 to 13 | vector of integers from 0 to 13

Day count basis, specified as the comma-separated pair consisting of 'Basis' and scalar value or an
NINST-by-1 vector of integers from the following:

• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Principal amount
100 (default) | scalar numeric | numeric vector

Principal amount, specified as the comma-separated pair consisting of 'Principal' and a scalar
numeric or an NINST-by-1 numeric vector.
Data Types: double

BusinessDayConvention — Business day convention
"actual" (default) | string | string array | character vector | cell array of character vectors

Business day convention, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a scalar string or character vector or an NINST-by-1 cell array of
character vectors or string array. The selection for business day convention determines how
nonbusiness days are treated. Nonbusiness days are defined as weekends plus any other date that
businesses are not open (for example, statutory holidays). Values are:

• "actual" — Nonbusiness days are effectively ignored. Cash flows that fall on non-business days
are assumed to be distributed on the actual date.

• "follow" — Cash flows that fall on a nonbusiness day are assumed to be distributed on the
following business day.
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• "modifiedfollow" — Cash flows that fall on a nonbusiness day are assumed to be distributed
on the following business day. However if the following business day is in a different month, the
previous business day is adopted instead.

• "previous" — Cash flows that fall on a nonbusiness day are assumed to be distributed on the
previous business day.

• "modifiedprevious" — Cash flows that fall on a nonbusiness day are assumed to be distributed
on the previous business day. However if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell | string

Holidays — Holidays used in computing business days
NaT (default) | datetimes | cell array of character vectors | date string array | serial date numbers

Holidays used in computing business days, specified as the comma-separated pair consisting of
'Holidays' and dates using an NINST-by-1 vector of datetimes, serial date numbers, cell array of
date character vectors, or date string array. For example:

H = holidays(datetime('today'),datetime(2025,12,15));
FRAObj = fininstrument("FRA",'StartDate',datetime(2016,1,30),'Maturity',datetime(2025,12,15),'Rate',0.025,'Holidays',H)

Data Types: double | cell | datetime | string

Name — User-defined name for instrument
" " (default) | string | string array | character vector | cell array of character vectors

User-defined name for one of more instruments, specified as the comma-separated pair consisting of
'Name' and a scalar string or character vector or an NINST-by-1 cell array of character vectors or
string array.
Data Types: char | cell | string

Properties
StartDate — FRA start date
scalar datetime | vector of datetimes

FRA start date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

Maturity — FRA maturity date
scalar datetime | vector of datetimes

FRA maturity date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

Rate — FRA coupon rate
scalar decimal | vector of decimals

FRA coupon rate, returned as a scalar decimal or an NINST-by-1 vector of decimals.
Data Types: double

11 Functions

11-2682



Basis — Day count basis
[0 0] (actual/actual) (default) | scalar integer from 0 to 13 | vector of integers from 0 to 13

Day count basis, returned as a scalar integer or an NINST-by-1 vector of integers.
Data Types: double

Principal — Principal amount
100 (default) | scalar numeric | numeric vector

Principal amount, returned as a scalar numeric or an NINST-by-1 numeric vector.
Data Types: double

BusinessDayConvention — Business day convention
"actual" (default) | scalar string | string array

Business day convention, returned as a scalar string or an NINST-by-1 string array.
Data Types: string

Holidays — Holidays used in computing business days
NaT (default) | datetimes

Holidays used in computing business days, returned as an NINST-by-1 vector of datetimes.
Data Types: datetime

Name — User-defined name for instrument
" " (default) | scalar string | string array

User-defined name for the instrument, returned as a scalar string or an NINST-by-1 string array.
Data Types: string

Object Functions
cashflows Compute cash flow for FixedBond, FloatBond, Swap, FRA, STIRFuture, OISFuture,

OvernightIndexedSwap, or Deposit instrument

Examples

Price FRA Instrument Using ratecurve and Discount Pricer

This example shows the workflow to price a FRA (forward rate agreement) instrument when you use a
ratecurve and a Discount pricing method.

Create FRA Instrument Object

Use fininstrument to create a FRA instrument object.

FRAObj = fininstrument("FRA",'StartDate',datetime(2020,9,15),'Maturity',datetime(2022,9,15),'Rate',0.0175)

FRAObj = 
  FRA with properties:

                     Rate: 0.0175
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                    Basis: 2
                StartDate: 15-Sep-2020
                 Maturity: 15-Sep-2022
                Principal: 100
    BusinessDayConvention: "actual"
                 Holidays: NaT
                     Name: ""

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Discount Pricer Object

Use finpricer to create a Discount pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("Discount",'DiscountCurve',myRC)

outPricer = 
  Discount with properties:

    DiscountCurve: [1x1 ratecurve]

Price FRA Instrument

Use price to compute the price and sensitivities for the FRA instrument.

[Price, outPR] = price(outPricer, FRAObj,["all"])

Price = 3.4176

outPR = 
  priceresult with properties:
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       Results: [1x2 table]
    PricerData: []

outPR.Results

ans=1×2 table
    Price       DV01  
    ______    ________

    3.4176    0.001368

Price Multiple FRA Instruments Using ratecurve and Discount Pricer

This example shows the workflow to price multiple FRA (forward rate agreement) instruments when
you use a ratecurve and a Discount pricing method.

Create FRA Instrument Object

Use fininstrument to create a FRA instrument object for three FRA instruments.

FRAObj = fininstrument("FRA",'StartDate',datetime([2020,9,15 ; 2020,10,15 ; 2020,11,15]),'Maturity',datetime([2022,9,15 ; 2022,10,15 ; 2022,11,15]),'Rate',0.0175)

FRAObj=3×1 object
  3x1 FRA array with properties:

    Rate
    Basis
    StartDate
    Maturity
    Principal
    BusinessDayConvention
    Holidays
    Name

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
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               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Discount Pricer Object

Use finpricer to create a Discount pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("Discount",'DiscountCurve',myRC)

outPricer = 
  Discount with properties:

    DiscountCurve: [1x1 ratecurve]

Price FRA Instruments

Use price to compute the prices and sensitivities for the FRA instruments.

[Price, outPR] = price(outPricer, FRAObj,["all"])

Price = 3×1

    3.4176
    3.4121
    3.4063

outPR=1×3 object
  1x3 priceresult array with properties:

    Results
    PricerData

outPR.Results

ans=1×2 table
    Price       DV01  
    ______    ________

    3.4176    0.001368

ans=1×2 table
    Price       DV01   
    ______    _________

    3.4121    0.0013938

ans=1×2 table
    Price       DV01   
    ______    _________
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    3.4063    0.0014204

More About
FRA Instrument

A FRA (forward rate agreement) instrument is an over-the-counter contract between parties that
determines the rate of interest to be paid on an agreed upon date in the future.

The FRA determines the rates to be used along with the termination date and notional value. FRAs
are cash-settled with the payment based on the net difference between the interest rate of the
contract and the floating rate in the market, called the reference rate. The notional amount is not
exchanged, but is rather a cash amount based on the rate differentials and the notional value of the
contract.

See Also
Functions
finmodel | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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Lookback
Lookback instrument

Description
Create and price a Lookback instrument object for one or more Lookback instruments using this
workflow:

1 Use fininstrument to create a Lookback instrument object for one or more Lookback
instruments.

2 Use finmodel to specify a BlackScholes, Heston, Bates, or Merton model for the Lookback
instrument object.

3 Choose a pricing method.

• When using a BlackScholes model, use finpricer to specify a ConzeViswanathan,
AssetTree, or GoldmanSosinGatto pricing method for one or more Lookback
instruments.

• When using a BlackScholes, Heston, Bates, or Merton model, use finpricer to specify
an AssetMonteCarlo pricing method for one or more Lookback instruments.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available models and pricing methods for a Lookback instrument, see
“Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
LookbackObj = fininstrument(InstrumentType,'Strike',strike_value,'
ExerciseDate',exercise_date)
LookbackObj = fininstrument( ___ ,Name,Value)

Description

LookbackObj = fininstrument(InstrumentType,'Strike',strike_value,'
ExerciseDate',exercise_date) creates a Lookback object for one or more Lookback
instruments by specifying InstrumentType and sets the properties on page 11-2690 for the
required name-value pair arguments Strike and ExerciseDate.

The Lookback instrument supports fixed-strike and floating-strike lookback options. For more
information on a Lookback instrument, see “More About” on page 11-2703.

LookbackObj = fininstrument( ___ ,Name,Value) sets optional properties on page 11-2690
using additional name-value pairs in addition to the required arguments in the previous syntax. For
example, LookbackObj =
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fininstrument("Lookback",'Strike',100,'ExerciseDate',datetime(2019,1,30),'Opt
ionType',"put",'ExerciseStyle',"European",'Name',"lookback_option") creates a
Lookback put option with an European exercise. You can specify multiple name-value pair
arguments.

Input Arguments

InstrumentType — Instrument type
string with value "Lookback" | string array with values of "Lookback" | character vector with value
'Lookback' | cell array of character vectors with values of 'Lookback'

Instrument type, specified as a string with the value of "Lookback", a character vector with the
value of 'Lookback', an NINST-by-1 string array with values "Lookback", or an NINST-by-1 cell
array of character vectors with values of 'Lookback'.
Data Types: char | cell | string

Lookback Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: LookbackObj =
fininstrument("Lookback",'Strike',100,'ExerciseDate',datetime(2019,1,30),'Opt
ionType',"put",'ExerciseStyle',"European",'Name',"lookback_option")

Required Lookback Name-Value Pair Arguments

Strike — Option strike price value
nonnegative numeric | vector of nonnegative values | NaN

Option strike price value, specified as the comma-separated pair consisting of 'Strike' and a scalar
nonnegative numeric value or an NINST-by-1 vector of nonnegative values for a fixed-strike
Lookback option. For a floating-strike Lookback option, specify 'Strike' as a NaN or an NINST-
by-1 vector of NaNs.

Note Use the ConzeViswanathan pricer for a fixed strike Lookback option and use the
GoldmanSosinGatto pricer for a floating strike Lookback option.

Data Types: double

ExerciseDate — Option exercise date
datetime | serial date number | date character vector | date string | vector of datetimes | vector of
serial date numbers | cell array of date character vectors | date string array

Option exercise date, specified as the comma-separated pair consisting of 'ExerciseDate' and a
scalar datetime, serial date number, date character vector, date string or an NINST-by-1 vector of
datetimes, serial date numbers, cell array of date character vectors, or date string array.

Note For a European option, there is only one ExerciseDate on the option expiry date.
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If you use date character vectors or date strings, the format must be recognizable by datetime
because the ExerciseDate property is stored as a datetime.
Data Types: double | char | cell | string | datetime

Optional Lookback Name-Value Pair Arguments

OptionType — Option type
"call" (default) | string with value "call" or "put" | string array with values "call" or "put" |
character vector with value 'call' or 'put' | cell array of character vectors with values 'call' or
'put'

Option type, specified as the comma-separated pair consisting of 'OptionType' and a scalar string
or character vector or an NINST-by-1 cell array of character vectors or string array.
Data Types: char | cell | string

ExerciseStyle — Option exercise style
"European" (default) | string with value "European" or "American" | string array with values
"European" or "American" | character vector with value 'European' or 'American' | cell array
of character vectors with values 'European' or 'American'

Option exercise style, specified as the comma-separated pair consisting of 'ExerciseStyle' and a
scalar string or character vector or an NINST-by-1 cell array of character vectors or string array.
Data Types: string | cell | char

AssetMinMax — Maximum or minimum underlying asset price
NaN where SpotPrice of the underlying asset is used (default) | scalar numeric | numeric vector

Maximum or minimum underlying asset price, specified as the comma-separated pair consisting of
'AssetMinMax' and a scalar numeric or an NINST-by-1 numeric vector.
Data Types: double

Name — User-defined name for instrument
" " (default) | string | string array | character vector | cell array of character vectors

User-defined name for one of more instruments, specified as the comma-separated pair consisting of
'Name' and a scalar string or character vector or an NINST-by-1 cell array of character vectors or
string array.
Data Types: char | cell | string

Properties
Strike — Option strike price value
nonnegative numeric | vector of nonnegative values

Option strike price value, returned as a scalar nonnegative numeric or an NINST-by-1 vector of
nonnegative values.
Data Types: double

ExerciseDate — Option exercise date
datetime | vector of datetimes
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Option exercise date, returned as a datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

OptionType — Option type
"call" (default) | string with value "call" or "put" | string array with values "call" or "put"

Option type, returned as a scalar string or an NINST-by-1 string array with the values of "call" or
"put".
Data Types: string

ExerciseStyle — Option exercise style
"European" (default) | string with value "European" or "American" | string array with values
"European" or "American"

Option exercise style, returned as a scalar string or an NINST-by-1 string array with values of
"European" or "American".
Data Types: string

AssetMinMax — Maximum or minimum underlying asset price
NaN where SpotPrice of the underlying asset is used (default) | scalar numeric | numeric vector

Maximum or minimum underlying asset price, returned as a scalar numeric or an NINST-by-1
numeric vector.
Data Types: double

Name — User-defined name for instrument
" " (default) | string | string array

User-defined name for the instrument, returned as a string or an NINST-by-1 string array.
Data Types: string

Examples

Price Lookback Instrument Using a Black-Scholes Model and Conze-Viswanathan Pricer

This example shows the workflow to price a LookBack instrument when you use a BlackScholes
model and a ConzeViswanathan pricing method.

Create Lookback Instrument Object

Use fininstrument to create a Lookback instrument object.

LookbackOpt = fininstrument("Lookback",'Strike',105,'ExerciseDate',datetime(2022,9,15),'OptionType',"put",'ExerciseStyle',"european",'Name',"lookback_option")

LookbackOpt = 
  Lookback with properties:

       OptionType: "put"
           Strike: 105
      AssetMinMax: NaN
    ExerciseStyle: "european"
     ExerciseDate: 15-Sep-2022
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             Name: "lookback_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',0.2)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.2000
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create ConzeViswanathan Pricer Object

Use finpricer to create a ConzeViswanathan pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic","Model",BlackScholesModel,"DiscountCurve",myRC,"SpotPrice",100,"DividendValue",0.25,"DividendType","continuous","PricingMethod","ConzeViswanathan")

outPricer = 
  ConzeViswanathan with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 100
    DividendValue: 0.2500
     DividendType: "continuous"

Price Lookback Instrument

Use price to compute the price and sensitivities for the Lookback instrument.
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[Price, outPR] = price(outPricer,LookbackOpt,["all"])

Price = 57.8786

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []

outPR.Results

ans=1×7 table
    Price      Delta      Gamma     Lambda      Vega      Theta       Rho  
    ______    ________    _____    ________    ______    _______    _______

    57.879    -0.33404      0      -0.57714    32.587    -5.1863    -350.41

Price Multiple Lookback Instruments Using a Black-Scholes Model and Conze-Viswanathan
Pricer

This example shows the workflow to price multiple LookBack instrument when you use a
BlackScholes model and a ConzeViswanathan pricing method.

Create Lookback Instrument Object

Use fininstrument to create a Lookback instrument object for three Lookback instruments.

LookbackOpt = fininstrument("Lookback",'Strike',[105 ; 120; 140],'ExerciseDate',datetime([2022,9,15 ; 2022,10,15 ; 2022,11,15]),'OptionType',"put",'ExerciseStyle',"european",'Name',"lookback_option")

LookbackOpt=3×1 object
  3x1 Lookback array with properties:

    OptionType
    Strike
    AssetMinMax
    ExerciseStyle
    ExerciseDate
    Name

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',0.2)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.2000
    Correlation: 1
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Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create ConzeViswanathan Pricer Object

Use finpricer to create a ConzeViswanathan pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic","Model",BlackScholesModel,"DiscountCurve",myRC,"SpotPrice",100,"DividendValue",0.25,"DividendType","continuous","PricingMethod","ConzeViswanathan")

outPricer = 
  ConzeViswanathan with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 100
    DividendValue: 0.2500
     DividendType: "continuous"

Price Lookback Instruments

Use price to compute the prices and sensitivities for the Lookback instruments.

[Price, outPR] = price(outPricer,LookbackOpt,["all"])

Price = 3×1

   57.8786
   71.3008
   88.9673

outPR=3×1 object
  3x1 priceresult array with properties:

    Results
    PricerData
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outPR.Results

ans=1×7 table
    Price      Delta      Gamma     Lambda      Vega      Theta       Rho  
    ______    ________    _____    ________    ______    _______    _______

    57.879    -0.33404      0      -0.57714    32.587    -5.1863    -350.41

ans=1×7 table
    Price      Delta        Gamma        Lambda      Vega      Theta       Rho  
    ______    ________    __________    ________    ______    _______    _______

    71.301    -0.32722    2.8422e-06    -0.45894    31.997    -4.5677    -410.15

ans=1×7 table
    Price      Delta        Gamma        Lambda      Vega      Theta       Rho  
    ______    ________    __________    ________    ______    _______    _______

    88.967    -0.32033    1.4211e-06    -0.36005    31.395    -3.7989    -489.96

Price Lookback Instrument Using a Black-Scholes Model and Asset Tree Pricer for LR
Binomial Tree

This example shows the workflow to price a LookBack instrument when you use an BlackScholes
model and an AssetTree pricing method using a Leisen-Reimer (LR) binomial tree.

Create Lookback Instrument Object

Use fininstrument to create a Lookback instrument object.

LookbackOpt = fininstrument("Lookback",'Strike',105,'ExerciseDate',datetime(2022,9,15),'OptionType',"put",'ExerciseStyle',"european",'Name',"lookback_option")

LookbackOpt = 
  Lookback with properties:

       OptionType: "put"
           Strike: 105
      AssetMinMax: NaN
    ExerciseStyle: "european"
     ExerciseDate: 15-Sep-2022
             Name: "lookback_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',0.2)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.2000
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    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetTree Pricer Object

Use finpricer to create an AssetTree pricer object for a LR equity tree and use the ratecurve
object for the 'DiscountCurve' name-value pair argument.

NumPeriods = 15;
LRPricer = finpricer("AssetTree",'DiscountCurve',myRC,'Model',BlackScholesModel,'SpotPrice',150,'PricingMethod',"LeisenReimer",'Maturity',datetime(2022,9,15),'NumPeriods',NumPeriods)

LRPricer = 
  LRTree with properties:

    InversionMethod: PP1
             Strike: 150
               Tree: [1x1 struct]
         NumPeriods: 15
              Model: [1x1 finmodel.BlackScholes]
      DiscountCurve: [1x1 ratecurve]
          SpotPrice: 150
       DividendType: "continuous"
      DividendValue: 0
          TreeDates: [21-Dec-2018 09:36:00    28-Mar-2019 19:12:00    ...    ]

LRPricer.Tree

ans = struct with fields:
    Probs: [2x15 double]
    ATree: {1x16 cell}
     dObs: [15-Sep-2018 00:00:00    21-Dec-2018 09:36:00    ...    ]
     tObs: [0 0.2667 0.5333 0.8000 1.0667 1.3333 1.6000 1.8667 2.1333 ... ]
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Price Lookback Instrument

Use price to compute the price and sensitivities for the Lookback instrument.

[Price, outPR] = price(LRPricer,LookbackOpt,["all"])

Price = 3.9412

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []

outPR.Results

ans=1×7 table
    Price      Delta        Gamma       Vega     Lambda       Rho       Theta 
    ______    ________    _________    ______    _______    _______    _______

    3.9412    -0.13312    -0.011131    67.684    -5.0757    -73.857    -1.0383

Price Lookback Instrument Using a Black-Scholes Model and Asset Tree Pricer for Standard
Trinomial Tree

This example shows the workflow to price a LookBack instrument when you use an BlackScholes
model and an AssetTree pricing method using a Standard Trinomial (STT) tree.

Create Lookback Instrument Object

Use fininstrument to create a Lookback instrument object.

LookbackOpt = fininstrument("Lookback",'Strike',105,'ExerciseDate',datetime(2022,9,15),'OptionType',"put",'ExerciseStyle',"european",'Name',"lookback_option")

LookbackOpt = 
  Lookback with properties:

       OptionType: "put"
           Strike: 105
      AssetMinMax: NaN
    ExerciseStyle: "european"
     ExerciseDate: 15-Sep-2022
             Name: "lookback_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',0.2)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.2000

 Lookback

11-2697



    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetTree Pricer Object

Use finpricer to create an AssetTree pricer object for a Standard Trinomial (STT) equity tree and
use the ratecurve object for the 'DiscountCurve' name-value pair argument.

NumPeriods = 15;
STTPricer = finpricer("AssetTree",'DiscountCurve',myRC,'Model',BlackScholesModel,'SpotPrice',150,'PricingMethod',"StandardTrinomial",'Maturity',datetime(2022,9,15),'NumPeriods',NumPeriods)

STTPricer = 
  STTree with properties:

             Tree: [1x1 struct]
       NumPeriods: 15
            Model: [1x1 finmodel.BlackScholes]
    DiscountCurve: [1x1 ratecurve]
        SpotPrice: 150
     DividendType: "continuous"
    DividendValue: 0
        TreeDates: [21-Dec-2018 09:36:00    28-Mar-2019 19:12:00    ...    ]

STTPricer.Tree

ans = struct with fields:
    ATree: {1x16 cell}
    Probs: {1x15 cell}
     dObs: [15-Sep-2018 00:00:00    21-Dec-2018 09:36:00    ...    ]
     tObs: [0 0.2667 0.5333 0.8000 1.0667 1.3333 1.6000 1.8667 2.1333 ... ]

Price Lookback Instrument

Use price to compute the price and sensitivities for the Lookback instrument.
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[Price, outPR] = price(STTPricer,LookbackOpt,["all"])

Price = 3.3392

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []

outPR.Results

ans=1×7 table
    Price      Delta         Gamma        Vega     Lambda       Rho       Theta 
    ______    ________    ___________    ______    _______    _______    _______

    3.3392    -0.15942    -1.0596e-11    63.886    -7.1613    -68.263    -1.0254

Price Lookback Instrument Using a Black-Scholes Model and Asset Monte-Carlo Pricer

This example shows the workflow to price a LookBack instrument when you use a BlackScholes
model and an AssetMonetCarlo pricing method.

Create Lookback Instrument Object

Use fininstrument to create a Lookback instrument object.

LookbackOpt = fininstrument("Lookback",'Strike',105,'ExerciseDate',datetime(2022,9,15),'OptionType',"put",'ExerciseStyle',"european",'Name',"lookback_option")

LookbackOpt = 
  Lookback with properties:

       OptionType: "put"
           Strike: 105
      AssetMinMax: NaN
    ExerciseStyle: "european"
     ExerciseDate: 15-Sep-2022
             Name: "lookback_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',0.2)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.2000
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.
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Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetMonteCarlo Pricer Object

Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("AssetMonteCarlo",'DiscountCurve',myRC,"Model",BlackScholesModel,'SpotPrice',200,'simulationDates',datetime(2022,9,15))

outPricer = 
  GBMMonteCarlo with properties:

      DiscountCurve: [1x1 ratecurve]
          SpotPrice: 200
    SimulationDates: 15-Sep-2022
          NumTrials: 1000
      RandomNumbers: []
              Model: [1x1 finmodel.BlackScholes]
       DividendType: "continuous"
      DividendValue: 0

Price Lookback Instrument

Use price to compute the price and sensitivities for the Lookback instrument.

[Price, outPR] = price(outPricer,LookbackOpt,["all"])

Price = 1.8553

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×7 table
    Price       Delta        Gamma       Lambda       Rho       Theta       Vega 
    ______    _________    __________    _______    _______    ________    ______
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    1.8553    -0.040442    0.00062792    -4.3596    -39.426    -0.71345    42.311

Price Lookback Instrument Using a Bates Model and Asset Monte-Carlo Pricer

This example shows the workflow to price a LookBack instrument when you use a Bates model and
an AssetMonetCarlo pricing method.

Create Lookback Instrument Object

Use fininstrument to create a Lookback instrument object.

LookbackOpt = fininstrument("Lookback",'Strike',105,'ExerciseDate',datetime(2022,9,15),'OptionType',"put",'ExerciseStyle',"european",'Name',"lookback_option")

LookbackOpt = 
  Lookback with properties:

       OptionType: "put"
           Strike: 105
      AssetMinMax: NaN
    ExerciseStyle: "european"
     ExerciseDate: 15-Sep-2022
             Name: "lookback_option"

Create Bates Model Object

Use finmodel to create a Bates model object.

BatesModel = finmodel("Bates",'V0',0.032,'ThetaV',0.1,'Kappa',0.003,'SigmaV',0.2,'RhoSV',0.9,'MeanJ',0.11,'JumpVol',.023,'JumpFreq',0.02)

BatesModel = 
  Bates with properties:

          V0: 0.0320
      ThetaV: 0.1000
       Kappa: 0.0030
      SigmaV: 0.2000
       RhoSV: 0.9000
       MeanJ: 0.1100
     JumpVol: 0.0230
    JumpFreq: 0.0200

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:
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                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetMonteCarlo Pricer Object

Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("AssetMonteCarlo",'DiscountCurve',myRC,"Model",BatesModel,'SpotPrice',100,'simulationDates',datetime(2022,9,15))

outPricer = 
  BatesMonteCarlo with properties:

      DiscountCurve: [1x1 ratecurve]
          SpotPrice: 100
    SimulationDates: 15-Sep-2022
          NumTrials: 1000
      RandomNumbers: []
              Model: [1x1 finmodel.Bates]
       DividendType: "continuous"
      DividendValue: 0

Price Lookback Instrument

Use price to compute the price and sensitivities for the Lookback instrument.

[Price, outPR] = price(outPricer,LookbackOpt,["all"])

Price = 7.2577

outPR = 
  priceresult with properties:

       Results: [1x8 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×8 table
    Price      Delta      Gamma    Lambda       Rho        Theta       Vega     VegaLT 
    ______    ________    _____    _______    _______    _________    ______    _______
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    7.2577    -0.84025      0      -11.577    -29.025    -0.027666    30.748    0.68416

More About
Lookback Option

A lookback option is a path-dependent option based on the maximum or minimum value the
underlying asset achieves during the entire life of the option.

Financial Instruments Toolbox software supports two types of lookback options: fixed and floating.
Fixed lookback options have a specified strike price, while floating lookback options have a strike
price determined by the asset path. For more information, see “Lookback Option” on page 3-39.

See Also
Functions
PartialLookback | finmodel | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53
“Supported Exercise Styles” on page 1-62

Introduced in R2020a
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OptionEmbeddedFixedBond
OptionEmbeddedFixedBond instrument object

Description
Create and price a OptionEmbeddedFixedBond instrument object for one or more Option
Embedded Fixed Bond instruments using this workflow:

1 Use fininstrument to create an OptionEmbeddedFixedBond instrument object for one or
more Option Embedded Fixed Bond instruments.

2 use finmodel to specify a HullWhite, BlackKarasinski, BraceGatarekMusiela,
SABRBraceGatarekMusiela, or LinearGaussian2F model for the
OptionEmbeddedFixedBond instrument object.

3 Choose a pricing method.

• When using a HullWhite or BlackKarasinski model, use finpricer to specify an
IRTree pricing method for one or more OptionEmbeddedFixedBond instruments.

• When using a HullWhite, BraceGatarekMusiela, SABRBraceGatarekMusiela, or
LinearGaussian2F model, use finpricer to specify an IRMonteCarlo pricing method for
one or more OptionEmbeddedFixedBond instruments.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available models and pricing methods for an
OptionEmbeddedFixedBond instrument, see “Choose Instruments, Models, and Pricers” on page 1-
53.

Creation

Syntax
OptionEmbeddedFixedBondObj = fininstrument(InstrumentType,'
CouponRate',couponrate_value,'Maturity',maturity_date,'
CallSchedule',call_schedule_value)
OptionEmbeddedFixedBondObj = fininstrument(InstrumentType,'
CouponRate',couponrate_value,'Maturity',maturity_date,'
PutSchedule',put_schedule_value)
OptionEmbeddedFixedBondObj = fininstrument( ___ ,Name,Value)

Description

OptionEmbeddedFixedBondObj = fininstrument(InstrumentType,'
CouponRate',couponrate_value,'Maturity',maturity_date,'
CallSchedule',call_schedule_value) creates a OptionEmbeddedFixedBond object for one
or more Option Embedded Fixed Bond instruments by specifying InstrumentType and sets the
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properties on page 11-2711 for the required name-value pair arguments CouponRate, Maturity,
and CallSchedule.

The OptionEmbeddedFixedBond instrument supports a vanilla bond with embedded option, stepped
coupon bond with embedded option, and an amortizing bond with embedded option. For more
information, see “More About” on page 11-2726.

OptionEmbeddedFixedBondObj = fininstrument(InstrumentType,'
CouponRate',couponrate_value,'Maturity',maturity_date,'
PutSchedule',put_schedule_value) creates a OptionEmbeddedFixedBond object for one or
more Option Embedded Fixed Bond instruments by specifying InstrumentType and sets the
properties on page 11-2711 for the required name-value pair arguments CouponRate, Maturity,
and PutSchedule.

OptionEmbeddedFixedBondObj = fininstrument( ___ ,Name,Value) sets optional properties
on page 11-2711 using additional name-value pairs in addition to the required arguments in the
previous syntax. For example, OptionEmbeddedFixedBondObj =
fininstrument("OptionEmbeddedFixedBond",'CouponRate',0.034,'Maturity',datetim
e(2019,1,30),'Period',2,'Basis',1,'Principal',100,'CallSchedule',schedule,'Ca
llExerciseStyle',"American",'Name',"optionembeddedfixedbond_instrument")
creates an OptionEmbeddedFixedBond instrument with an American exercise and a call schedule.
You can specify multiple name-value pair arguments.

Input Arguments

InstrumentType — Instrument type
string with value "OptionEmbeddedFixedBond" | string array with values of
"OptionEmbeddedFixedBond" | character vector with value 'OptionEmbeddedFixedBond' | cell
array of character vectors with values of 'OptionEmbeddedFixedBond'

Instrument type, specified as a string with the value of "OptionEmbeddedFixedBond", a character
vector with the value of 'OptionEmbeddedFixedBond', an NINST-by-1 string array with values of
"OptionEmbeddedFixedBond", or an NINST-by-1 cell array of character vectors with values of
'OptionEmbeddedFixedBond'.
Data Types: char | cell | string

OptionEmbeddedFixedBond Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: OptionEmbeddedFixedBondObj =
fininstrument("OptionEmbeddedFixedBond",'CouponRate',0.034,'Maturity',datetim
e(2019,1,30),'Period',2,'Basis',1,'Principal',100,'CallSchedule',schedule,'Ca
llExerciseStyle',"American",'Name',"optionembeddedfixedbond_instrument")

Required OptionEmbeddedFixedBond Name-Value Pair Arguments

CouponRate — Coupon rate for OptionEmbeddedFixedBond
scalar decimal | vector of decimals | timetable

Coupon rate for OptionEmbeddedFixedBond, specified as the comma-separated pair consisting of
'CouponRate' as a scalar decimal or an NINST-by-1 vector of decimals for an annual rate or a
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timetable where the first column is dates and the second column is associated rates. The date
indicates the last day that the coupon rate is valid.

Note If you are creating one or more OptionEmbeddedFixedBond instruments and use a timetable,
the timetable specification applies to all of the OptionEmbeddedFixedBond instruments.
CouponRate does not accept an NINST-by-1 cell array of timetables as input.

Data Types: double | timetable

Maturity — Maturity date for OptionEmbeddedFixedBond
datetime | serial date number | date character vector | date string | vector of datetimes | vector of
serial date numbers | cell array of date character vectors | date string array

Maturity date for OptionEmbeddedFixedBond, specified as the comma-separated pair consisting of
'Maturity' and a scalar datetime, serial date number, date character vector, date string or an
NINST-by-1 vector of datetimes, serial date numbers, cell array of date character vectors, or date
string array.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the Maturity property is stored as a datetime.
Data Types: char | cell | double | string | datetime

CallSchedule — Call schedule
timetable

Call schedule, specified as the comma-separated pair consisting of 'CallSchedule' and a timetable
of call dates and strikes.

If you use a date character vector or date string for the dates in this timetable, the format must be
recognizable by datetime because the CallSchedule property is stored as a datetime.

Note The OptionEmbeddedFixedBond instrument supports either CallSchedule and
CallExerciseStyle or PutSchedule and PutExerciseStyle, but not both.

If you are creating one or more OptionEmbeddedFixedBond instruments and use a timetable, the
timetable specification applies to all of the OptionEmbeddedFixedBond instruments.
CallSchedule does not accept an NINST-by-1 cell array of timetables as input.

Data Types: timetable

PutSchedule — Call schedule
timetable

Put schedule, specified as the comma-separated pair consisting of 'PutSchedule' and a timetable
of call dates and strikes.

If you use a date character vector or date string for dates in this timetable, the format must be
recognizable by datetime because the PutSchedule property is stored as a datetime.

11 Functions

11-2706



Note The OptionEmbeddedFixedBond instrument supports either CallSchedule and
CallExerciseStyle or PutSchedule and PutExerciseStyle, but not both.

If you are creating one or more OptionEmbeddedFixedBond instruments and use a timetable, the
timetable specification applies to all of the OptionEmbeddedFixedBond instruments. PutSchedule
does not accept an NINST-by-1 cell array of timetables as input.

Data Types: timetable

Optional OptionEmbeddedFixedBond Name-Value Pair Arguments

Period — Frequency of payments per year
2 (default) | scalar integer | vector of integers

Frequency of payments per year, specified as the comma-separated pair consisting of 'Period' and
a scalar integer or an NINST-by-1 vector of integers. Values for Period are: 1, 2, 3, 4, 6, and 12.
Data Types: double

CallExerciseStyle — Call option exercise style
"European" (default) | string with value "European", "American", or "Bermudan" | string array
with value "European", "American", or "Bermudan" | character vector with value 'European',
'American', or 'Bermudan' | cell array of character vectors with values of 'European',
'American', or 'Bermudan'

Call option exercise style, specified as the comma-separated pair consisting of
'CallExerciseStyle' and a scalar string or character vector or an NINST-by-1 cell array of
character vectors or string array.

Note The CallSchedule is a timetable of call dates and strikes. If you do not specify a
CallExerciseStyle, then based on the CallSchedule specification, a default value of
CallExerciseStyle is assigned as follows:

• If there is one exercise date in the CallSchedule, then the CallExerciseStyle is an
"European".

• If there are two exercise dates in the CallSchedule, then the CallExerciseStyle is an
"American" with a start date and maturity.

• If there are more than two exercise dates in the CallSchedule, then the CallExerciseStyle
is an "Bermudan".

If the you define a CallExerciseStyle and this is not consistent with what you have specified in
the CallSchedule, you receive an error message.

Data Types: string | cell | char

PutExerciseStyle — Put option exercise style
"European" (default) | string with value "European", "American", or "Bermudan" | string array
with value "European", "American", or "Bermudan" | character vector with value 'European',
'American', or 'Bermudan' | cell array of character vectors with values of 'European',
'American', or 'Bermudan'
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Put option exercise style, specified as the comma-separated pair consisting of 'PutExerciseStyle'
and a scalar string or character vector or an NINST-by-1 cell array of character vectors or string
array.

Note The PutSchedule is a timetable of call dates and strikes. If you do not specify a
PutExerciseStyle, then based on the PutSchedule specification, a default value of
PutExerciseStyle is assigned as follows:

• If there is one exercise date in the PutSchedule, then the PutExerciseStyle is an
"European".

• If there are two exercise dates in the PutSchedule, then the PutExerciseStyle is an
"American" with a start date and maturity.

• If there are more than two exercise dates in the PutSchedule, then the PutExerciseStyle is
an "Bermudan".

If the you define a PutExerciseStyle and this is not consistent with what you have specified in the
PutSchedule, you receive an error message.

Data Types: string | cell | char

Basis — Day count basis
0 (actual/actual) (default) | scalar integer from 0 to 13 | vector of integers from 0 to 13

Day count basis, specified as the comma-separated pair consisting of 'Basis' and scalar integer or
an NINST-by-1 vector of integers using the following values:

• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amount or principal value schedule
100 (default) | scalar numeric | numeric vector | timetable

11 Functions

11-2708



Notional principal amount or principal value schedule, specified as the comma-separated pair
consisting of 'Principal' and a scalar numeric or an NINST-by-1 numeric vector or a timetable.

Principal accepts a timetable, where the first column is dates and the second column is the
associated notional principal value. The date indicates the last day that the principal value is valid.

Note If you are creating one or more OptionEmbeddedFixedBond instruments and use a timetable,
the timetable specification applies to all of the OptionEmbeddedFixedBond instruments.
Principal does not accept an NINST-by-1 cell array of timetables as input.

Data Types: double | timetable

DaycountAdjustedCashFlow — Flag indicating whether cash flow adjusts for day count
convention
false (default) | scalar logical value of true or false | vector of logicals with values of true or
false

Flag indicating whether cash flow adjusts for day count convention, specified as the comma-
separated pair consisting of 'DaycountAdjustedCashFlow' and a scalar logical or an NINST-by-1
vector of logicals with values of true or false.
Data Types: logical

BusinessDayConvention — Business day conventions
"actual" (default) | string | string array | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a scalar string or character vector or an NINST-by-1 cell array of
character vectors or string array. The selection for business day convention determines how
nonbusiness days are treated. Nonbusiness days are defined as weekends plus any other date that
businesses are not open (for example, statutory holidays). Values are:

• "actual" — Nonbusiness days are effectively ignored. Cash flows that fall on non-business days
are assumed to be distributed on the actual date.

• "follow" — Cash flows that fall on a nonbusiness day are assumed to be distributed on the
following business day.

• "modifiedfollow" — Cash flows that fall on a nonbusiness day are assumed to be distributed
on the following business day. However if the following business day is in a different month, the
previous business day is adopted instead.

• "previous" — Cash flows that fall on a nonbusiness day are assumed to be distributed on the
previous business day.

• "modifiedprevious" — Cash flows that fall on a nonbusiness day are assumed to be distributed
on the previous business day. However if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell | string

Holidays — Holidays used in computing business days
NaT (default) | datetime | cell array of date character vectors | date string array | serial date numbers
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Holidays used in computing business days, specified as the comma-separated pair consisting of
'Holidays' and dates using an NINST-by-1 vector of datetimes, serial date numbers, cell array of
date character vectors, or date string array.. For example:

H = holidays(datetime('today'),datetime(2025,12,15));
OptionEmbeddedFixedBondObj = fininstrument("OptionEmbeddedFixedBond",'CouponRate',0.34,'Maturity',datetime(2025,12,15),...
'CallSchedule',schedule,'CallExerciseStyle',"american",'Holidays',H)

Data Types: double | cell | datetime | string

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month with 30 or fewer days
true (in effect) (default) | scalar logical value of true or false | vector of logicals with values of
true or false

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month with
30 or fewer days, specified as the comma-separated pair consisting of 'EndMonthRule' and a scalar
logical or an NINST-by-1 vector of logicals with values of true or false.

• If you set EndMonthRule to false, the software ignores the rule, meaning that a payment date is
always the same numerical day of the month.

• If you set EndMonthRule to true, the software sets the rule on, meaning that a payment date is
always the last actual day of the month.

Data Types: logical

IssueDate — Bond issue date
NaT (default) | datetime | serial date number | date character vector | date string | vector of datetimes
| vector of serial date numbers | cell array of date character vectors | date string array

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a scalar
datetime, serial date number, date character vector, date string or an NINST-by-1 vector of datetimes,
serial date numbers, cell array of date character vectors, or date string array.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the IssueDate property is stored as a datetime.
Data Types: double | char | cell | string | datetime

FirstCouponDate — Irregular first coupon date
NaT (default) | datetime | serial date number | date character vector | date string | vector of datetimes
| vector of serial date numbers | cell array of date character vectors | date string array

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a scalar datetime, serial date number, date character vector, date string or
an NINST-by-1 vector of datetimes, serial date numbers, cell array of date character vectors, or date
string array.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes
precedence in determining the coupon payment structure. If you do not specify FirstCouponDate,
the cash flow payment dates are determined from other inputs.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the FirstCouponDate property is stored as a datetime.
Data Types: double | char | cell | string | datetime
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LastCouponDate — Irregular last coupon date
NaT (default) | datetime | serial date number | date character vector | date string | vector of datetimes
| vector of serial date numbers | cell array of date character vectors | date string array

Irregular last coupon date, specified as the comma-separated pair consisting of 'LastCouponDate'
and a scalar datetime, serial date number, date character vector, date string or an NINST-by-1 vector
of datetimes, serial date numbers, cell array of date character vectors, or date string array.

If you specify LastCouponDate but not FirstCouponDate, LastCouponDate determines the
coupon structure of the bond. The coupon structure of a bond is truncated at LastCouponDate,
regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not
specify LastCouponDate, the cash flow payment dates are determined from other inputs.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the LastCouponDate property is stored as a datetime.
Data Types: double | char | cell | string | datetime

StartDate — Forward starting date of payments
NaT (default) | datetime | serial date number | date character vector | date string | vector of datetimes
| vector of serial date numbers | cell array of date character vectors | date string array

Forward starting date of payments, specified as the comma-separated pair consisting of
'StartDate' and a scalar datetime, serial date number, date character vector, date string or an
NINST-by-1 vector of datetimes, serial date numbers, cell array of date character vectors, or date
string array.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the StartDate property is stored as a datetime.
Data Types: char | cell | double | string | datetime

Name — User-defined name for instrument
" " (default) | string | string array | character vector | cell array of character vectors

User-defined name for the instrument, specified as the comma-separated pair consisting of 'Name'
and a scalar string or character vector or an NINST-by-1 cell array of character vectors or string
array.
Data Types: char | cell | string

Properties
CouponRate — Coupon annual rate
scalar decimal | timetable | vector of decimals

Coupon annual rate, returned as a scalar decimal or an NINST-by-1 vector of decimals or a timetable.
Data Types: double | timetable

Maturity — Maturity date
scalar datetime | vector of datetimes

Maturity date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

 OptionEmbeddedFixedBond

11-2711



CallSchedule — Call schedule
timetable

Call schedule, returned as a timetable.
Data Types: datetime

PutSchedule — Call schedule
timetable

Put schedule, returned as a timetable.
Data Types: datetime

Period — Coupons per year
2 (default) | scalar integer | vector of integers

Coupons per year, returned as a scalar integer or an NINST-by-1 vector of integers.
Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | scalar integer from 0 to 13 | vector of integers from 0 to 13

Day count basis, returned as a scalar integer or an NINST-by-1 vector of integers.
Data Types: double

Principal — Notional principal amount or principal value schedule
100 (default) | scalar numeric | numeric vector | timetable

Notional principal amount or principal value schedule, returned as a scalar numeric or an NINST-by-1
numeric vector or a timetable.
Data Types: timetable | double

DaycountAdjustedCashFlow — Flag indicating whether cash flow adjusts for day count
convention
false (default) | scalar logical value of true or false | vector of logical values of true or false

Flag indicating whether cash flow adjusted for day count convention, returned as scalar logical or an
NINST-by-1 vector of logicals with values of true or false.
Data Types: logical

BusinessDayConvention — Business day conventions
"actual" (default) | string | string array

Business day conventions, returned as a string or an NINST-by-1 string array.
Data Types: string

Holidays — Holidays used in computing business days
NaT (default) | datetimes

Holidays used in computing business days, returned as an NINST-by-1 vector of datetimes.
Data Types: datetime
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EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month with 30 or fewer days
true (in effect) (default) | scalar logical value of true or false | vector of logical values of true or
false

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month with
30 or fewer days, returned as a scalar logical or an NINST-by-1 vector of logicals.
Data Types: logical

IssueDate — Bond issue date
NaT (default) | scalar datetime | vector of datetimes

Bond issue date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

FirstCouponDate — Irregular first coupon date
NaT (default) | datetime | vector of datetimes

Irregular first coupon date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

LastCouponDate — Irregular last coupon date
NaT (default) | scalar datetime | vector of datetimes

Irregular last coupon date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

StartDate — Forward starting date of payments
NaT (default) | scalar datetime | vector of datetimes

Forward starting date of payments, returned as a scalar datetime or an NINST-by-1 vector of
datetimes.
Data Types: datetime

CallExerciseStyle — Call option exercise style
"European" (default) | string with value "European", "American", or "Bermuda" | string array
with values of "European", "American", or "Bermuda"

This property is read-only.

Call option exercise style, returned as a scalar string or an NINST-by-1 string array with values of
"European", "American", or "Bermuda".
Data Types: string

PutExerciseStyle — Put option exercise style
"European" (default) | string with value "European", "American", or "Bermuda" | string array
with values of "European", "American", or "Bermuda"

This property is read-only.

Put option exercise style, returned as a scalar string or an NINST-by-1 string array with values of
"European", "American", or "Bermuda".
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Data Types: string

Name — User-defined name for instrument
" " (default) | string | string array

User-defined name for the instrument, returned as a string or an NINST-by-1 string array.
Data Types: string

Object Functions
setCallExercisePolicy Set call exercise policy for OptionEmbeddedFixedBond,

OptionEmbeddedFloatBond, or ConvertibleBond instrument
setPutExercisePolicy Set put exercise policy for OptionEmbeddedFixedBond,

OptionEmbeddedFloatBond, or ConvertibleBond instrument

Examples

Price Option Embedded Fixed Bond Instruments Using Hull-White Model and IRTree Pricer

This example shows the workflow to price American, European, and Bermudan exercise styles for
three callable OptionEmbeddedFixedBond instruments when you use a HullWhite model and an
IRTree pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,1,1);
ZeroTimes = calyears(1:10)';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
Compounding = 1;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates, "Compounding",Compounding);

Create OptionEmbeddedFixedBond Instrument Objects

Use fininstrument to create three OptionEmbeddedFixedBond instrument objects with the
different exercise styles.

Maturity = datetime(2024,1,1);

% Option embedded bond (Bermudan callable bond)
Strike = [100; 100];
ExerciseDates = [datetime(2020,1,1); datetime(2024,1,1)];
Period = 1;
CallSchedule =  timetable(ExerciseDates,Strike,'VariableNames',{'Strike Schedule'}); 

CallableBondBermudan = fininstrument("OptionEmbeddedFixedBond",'Maturity',Maturity,...
                              'CouponRate',0.025,'Period',Period, ...
                              'CallSchedule',CallSchedule,'CallExerciseStyle', "bermudan")

CallableBondBermudan = 
  OptionEmbeddedFixedBond with properties:

                  CouponRate: 0.0250
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                      Period: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 01-Jan-2024
                   CallDates: [2x1 datetime]
                    PutDates: [0x1 datetime]
                CallSchedule: [2x1 timetable]
                 PutSchedule: [0x0 timetable]
           CallExerciseStyle: "bermudan"
            PutExerciseStyle: [0x0 string]
                        Name: ""

% Option embedded bond (American callable bond)
Strike = 100;
ExerciseDates = datetime(2024,1,1);
CallSchedule =  timetable(ExerciseDates,Strike,'VariableNames',{'Strike Schedule'}); 
Period = 1;

CallableBondAmerican = fininstrument("OptionEmbeddedFixedBond",'Maturity',Maturity,...
                              'CouponRate',0.025,'Period', Period, ...
                              'CallSchedule',CallSchedule,'CallExerciseStyle',"american")

CallableBondAmerican = 
  OptionEmbeddedFixedBond with properties:

                  CouponRate: 0.0250
                      Period: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 01-Jan-2024
                   CallDates: 01-Jan-2024
                    PutDates: [0x1 datetime]
                CallSchedule: [1x1 timetable]
                 PutSchedule: [0x0 timetable]
           CallExerciseStyle: "american"
            PutExerciseStyle: [0x0 string]
                        Name: ""

% Option embedded bond (European callable bond)
Strike = 100;
ExerciseDates = datetime(2024,1,1);
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CallSchedule =  timetable(ExerciseDates,Strike,'VariableNames',{'Strike Schedule'}); 
Period = 1;

CallableBondEuropean = fininstrument("OptionEmbeddedFixedBond",'Maturity',Maturity,...
                              'CouponRate',0.025,'Period',Period, ...
                              'CallSchedule',CallSchedule)                          

CallableBondEuropean = 
  OptionEmbeddedFixedBond with properties:

                  CouponRate: 0.0250
                      Period: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 01-Jan-2024
                   CallDates: 01-Jan-2024
                    PutDates: [0x1 datetime]
                CallSchedule: [1x1 timetable]
                 PutSchedule: [0x0 timetable]
           CallExerciseStyle: "european"
            PutExerciseStyle: [0x0 string]
                        Name: ""

Create HullWhite Model Object

Use finmodel to create a HullWhite model object.

VolCurve = 0.01;
AlphaCurve = 0.1;

HWModel = finmodel("HullWhite",'alpha',AlphaCurve,'sigma',VolCurve);

Create IRTree Pricer Object

Use finpricer to create an IRTree pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

HWTreePricer = finpricer("IRTree",'Model',HWModel,'DiscountCurve',ZeroCurve,'TreeDates',ZeroDates)

HWTreePricer = 
  HWBKTree with properties:

             Tree: [1x1 struct]
        TreeDates: [10x1 datetime]
            Model: [1x1 finmodel.HullWhite]
    DiscountCurve: [1x1 ratecurve]
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Price OptionEmbeddedFixedBond Instruments

Use price to compute the price and sensitivities for the three OptionEmbeddedFixedBond
instruments.

[Price, outPR] = price(HWTreePricer,CallableBondBermudan,["all"])

Price = 103.2729

outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×4 table
    Price      Vega      Gamma      Delta 
    ______    _______    ______    _______

    103.27    -148.28    1375.9    -290.33

[Price, outPR] = price(HWTreePricer,CallableBondAmerican,["all"])

Price = 100

outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×4 table
    Price    Vega    Gamma    Delta
    _____    ____    _____    _____

     100      0        0        0  

[Price, outPR] = price(HWTreePricer,CallableBondEuropean,["all"])

Price = 107.7023

outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×4 table
    Price    Vega    Gamma      Delta 

 OptionEmbeddedFixedBond

11-2717



    _____    ____    ______    _______

    107.7     0      4086.4    -602.56

Price Multiple Option Embedded Fixed Bond Instruments Using Hull-White Model and IRTree
Pricer

This example shows the workflow to price multiple callable OptionEmbeddedFixedBond
instruments with Bermudan exercise styles when you use a HullWhite model and an IRTree pricing
method.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,1,1);
ZeroTimes = calyears(1:10)';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
Compounding = 1;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates, "Compounding",Compounding);

Create OptionEmbeddedFixedBond Instrument Objects

Use fininstrument to create an OptionEmbeddedFixedBond instrument object for three Option
Embedded Fixed Bond instuments.

Maturity = datetime([2025,1,1 ; 2026,1,1 ; 2027,1,1]);

% Option embedded bond (Bermudan callable bond)
Strike = [100 ; 200 ; 300]; 
ExerciseDates = datetime([2022,1,1 ; 2023,1,1 ; 2024,1,1]); 
CallSchedule =  timetable(ExerciseDates,Strike,'VariableNames',{'Strike Schedule'}); 
Period = 1;

CallableBondBermudan = fininstrument("OptionEmbeddedFixedBond",'Maturity',Maturity,...
                              'CouponRate',0.025,'Period', Period, ...
                              'CallSchedule',CallSchedule,'CallExerciseStyle',"Bermudan")  

CallableBondBermudan=3×1 object
  3x1 OptionEmbeddedFixedBond array with properties:

    CouponRate
    Period
    Basis
    EndMonthRule
    Principal
    DaycountAdjustedCashFlow
    BusinessDayConvention
    Holidays
    IssueDate
    FirstCouponDate
    LastCouponDate
    StartDate
    Maturity
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    CallDates
    PutDates
    CallSchedule
    PutSchedule
    CallExerciseStyle
    PutExerciseStyle
    Name

When you create multiple OptionEmbeddedFixedBond instruments and use a timetable for
CallSchedule, the timetable specification applies to all of the OptionEmbeddedFixedBond
instruments. The CallSchedule input argument does not accept an NINST-by-1 cell array of
timetables as input.

Create HullWhite Model Object

Use finmodel to create a HullWhite model object.

VolCurve = 0.01;
AlphaCurve = 0.1;

HWModel = finmodel("HullWhite",'alpha',AlphaCurve,'sigma',VolCurve);

Create IRTree Pricer Object

Use finpricer to create an IRTree pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

HWTreePricer = finpricer("IRTree",'Model',HWModel,'DiscountCurve',ZeroCurve,'TreeDates',ZeroDates)

HWTreePricer = 
  HWBKTree with properties:

             Tree: [1x1 struct]
        TreeDates: [10x1 datetime]
            Model: [1x1 finmodel.HullWhite]
    DiscountCurve: [1x1 ratecurve]

Price OptionEmbeddedFixedBond Instruments

Use price to compute the prices and sensitivities for the OptionEmbeddedFixedBond instruments.

[Price, outPR] = price(HWTreePricer,CallableBondBermudan,["all"])

Price = 3×1

  104.5001
  102.0649
   97.6664

outPR=3×1 object
  3x1 priceresult array with properties:

    Results
    PricerData
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outPR.Results

ans=1×4 table
    Price     Vega      Gamma      Delta 
    _____    _______    ______    _______

    104.5    -166.73    4134.2    -584.34

ans=1×4 table
    Price      Vega      Gamma      Delta 
    ______    _______    ______    _______

    102.06    -201.07    4850.3    -621.72

ans=1×4 table
    Price      Vega      Gamma      Delta 
    ______    _______    ______    _______

    97.666    -84.933    6857.7    -743.76

Price Option Embedded Fixed Bond Option Instrument Using Hull-White Model and
IRMonteCarlo Pricer

This example shows the workflow to price an OptionEmbeddedFixedBondOption instrument when
using a HullWhite model and an IRMonteCarlo pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2019,1,1);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;

myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 01-Jan-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"
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Create OptionEmbeddedFixedBondOption Instrument Object

Use fininstrument to create an OptionEmbeddedFixedBondOption instrument object.

% Option embedded bond (European callable bond)
Maturity = datetime(2022,9,15);
Strike = 100;
ExerciseDates = datetime(2024,1,1);
CallSchedule = timetable(datetime(2020,3,15), 50);
Period = 1;

CallableBondEuropean = fininstrument("OptionEmbeddedFixedBond",'Maturity',Maturity,...
                              'CouponRate',0.025,'Period',Period, ...
                              'CallSchedule',CallSchedule)      

CallableBondEuropean = 
  OptionEmbeddedFixedBond with properties:

                  CouponRate: 0.0250
                      Period: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 15-Sep-2022
                   CallDates: 15-Mar-2020
                    PutDates: [0x1 datetime]
                CallSchedule: [1x1 timetable]
                 PutSchedule: [0x0 timetable]
           CallExerciseStyle: "european"
            PutExerciseStyle: [0x0 string]
                        Name: ""

Create HullWhite Model Object

Use finmodel to create a HullWhite model object.

HullWhiteModel = finmodel("HullWhite",'Alpha',0.32,'Sigma',0.49)

HullWhiteModel = 
  HullWhite with properties:

    Alpha: 0.3200
    Sigma: 0.4900

Create IRMonteCarlo Pricer Object

Use finpricer to create an IRMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("IRMonteCarlo",'Model',HullWhiteModel,'DiscountCurve',myRC,'SimulationDates',datetime(2019,3,15)+calmonths(0:6:48)')
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outPricer = 
  HWMonteCarlo with properties:

          NumTrials: 1000
      RandomNumbers: []
      DiscountCurve: [1x1 ratecurve]
    SimulationDates: [15-Mar-2019    15-Sep-2019    15-Mar-2020    ...    ]
              Model: [1x1 finmodel.HullWhite]

Price OptionEmbeddedFixedBondOption Instrument

Use price to compute the price and sensitivities for the OptionEmbeddedFixedBondOption
instrument.

[Price,outPR] = price(outPricer,CallableBondEuropean,["all"])

Price = 58.1882

outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×4 table
    Price      Delta     Gamma     Vega 
    ______    _______    ______    _____

    58.188    -125.43    356.04    18.24

Price OptionEmbeddedFixedBond Instrument and Obtain Exercise Probabilities Using Black-
Karasinski Model and IRTree Pricer

This example shows the workflow to price a callable OptionEmbeddedFixedBond instrument and
obtain the exercise probabilities when you use a BlackKarasinski model and an IRTree pricing
method.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018, 1, 1);
ZeroTimes = calyears(1:4)';
ZeroRates = [0.035; 0.042147; 0.047345; 0.052707];
ZeroDates = Settle + ZeroTimes;
Compounding = 1;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates, "Compounding",Compounding)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
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          Compounding: 1
                Basis: 0
                Dates: [4x1 datetime]
                Rates: [4x1 double]
               Settle: 01-Jan-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create OptionEmbeddedFixedBond Instrument Object

Use fininstrument to create an OptionEmbeddedFixedBond instrument object with an American
exercise style.

CouponRate = 0.0425;
Strike = [95; 98];
ExerciseDates = [datetime(2021,1,1); datetime(2022,1,1)];
Maturity = datetime(2022,1,1);
Period = 1;
CallSchedule =  timetable(ExerciseDates,Strike,'VariableNames',{'Strike Schedule'}); 
CallableBond = fininstrument("OptionEmbeddedFixedBond", 'Maturity',Maturity,...
                              'CouponRate',CouponRate,'Period', Period, ...
                              'CallSchedule',CallSchedule,...
                              'CallExerciseStyle', "American",...
                              'Name',"MyCallableBond")                

CallableBond = 
  OptionEmbeddedFixedBond with properties:

                  CouponRate: 0.0425
                      Period: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 01-Jan-2022
                   CallDates: [2x1 datetime]
                    PutDates: [0x1 datetime]
                CallSchedule: [2x1 timetable]
                 PutSchedule: [0x0 timetable]
           CallExerciseStyle: "american"
            PutExerciseStyle: [0x0 string]
                        Name: "MyCallableBond"

Create BlackKarasinski Model Object

Use finmodel to create a BlackKarasinski model object.

VolCurve = 0.01;
AlphaCurve = 0.1;
BKModel = finmodel("BlackKarasinski",'alpha',AlphaCurve,'sigma',VolCurve)
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BKModel = 
  BlackKarasinski with properties:

    Alpha: 0.1000
    Sigma: 0.0100

Create IRTree Pricer Object

Use finpricer to create an IRTree pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

BKTreePricer = finpricer("IRTree",'Model',BKModel,'DiscountCurve',ZeroCurve,'TreeDates',ZeroDates)

BKTreePricer = 
  HWBKTree with properties:

             Tree: [1x1 struct]
        TreeDates: [4x1 datetime]
            Model: [1x1 finmodel.BlackKarasinski]
    DiscountCurve: [1x1 ratecurve]

Price OptionEmbeddedFixedBond Instrument

Use price to compute the price and sensitivities for the OptionEmbeddedFixedBond instrument.

[Price,  PriceResults]= price(BKTreePricer, CallableBond)

Price = 92.5235

PriceResults = 
  priceresult with properties:

       Results: [1x1 table]
    PricerData: [1x1 struct]

Examine the output PriceResults.PricerData.PriceTree.ExTree, which contains the exercise
indicator arrays. In the cell array, a 1 indicates an exercised option and a 0 indicates an unexercised
option.

PriceResults.PricerData.PriceTree.ExTree{5} 

ans = 1x7 logical array

   1   1   1   1   1   1   1

No options are exercised.

PriceResults.PricerData.PriceTree.ExTree{4} 

ans = 1x7 logical array

   0   0   0   0   0   0   0

The instrument is exercised at all nodes.
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PriceResults.PricerData.PriceTree.ExTree{3} 

ans = 1x5 logical array

   0   0   0   0   0

No options are exercised.

PriceResults.PricerData.PriceTree.ExTree{2} 

ans = 1x3 logical array

   0   0   0

No options are exercised.

View the probability of reaching each node from the root node using
PriceResults.PricerData.PriceTree.ProbTree.

PriceResults.PricerData.PriceTree.ProbTree{2}

ans = 1×3

    0.1667    0.6667    0.1667

PriceResults.PricerData.PriceTree.ProbTree{3}

ans = 1×5

    0.0203    0.2206    0.5183    0.2206    0.0203

PriceResults.PricerData.PriceTree.ProbTree{4}

ans = 1×7

    0.0018    0.0395    0.2370    0.4433    0.2370    0.0395    0.0018

PriceResults.PricerData.PriceTree.ProbTree{5}

ans = 1×7

    0.0018    0.0395    0.2370    0.4433    0.2370    0.0395    0.0018

View the exercise probabilities using PriceResults.PricerData.PriceTree.ExProbTree.
PriceResults.PricerData.PriceTree.ExProbTree contains the exercise probabilities. Each
element in the cell array is an array containing 0's where there is no exercise, or the probability of
reaching that node where exercise happens.

PriceResults.PricerData.PriceTree.ExProbTree{5}

ans = 1×7

    0.0018    0.0395    0.2370    0.4433    0.2370    0.0395    0.0018
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PriceResults.PricerData.PriceTree.ExProbTree{4}

ans = 1×7

     0     0     0     0     0     0     0

PriceResults.PricerData.PriceTree.ExProbTree{3}

ans = 1×5

     0     0     0     0     0

PriceResults.PricerData.PriceTree.ExProbTree{2}

ans = 1×3

     0     0     0

View the exercise probabilities at each tree level using
PriceResults.PricerData.PriceTree.ExProbsByTreeLevel.
PriceResults.PricerData.PriceTree.ExProbsByTreeLevel is an array in which each row
holds the exercise probability for a given option at each tree observation time.

PriceResults.PricerData.PriceTree.ExProbsByTreeLevel

ans = 1×5

         0         0         0         0    1.0000

More About
Vanilla Bond with Embedded Option

A vanilla coupon bond is a security representing an obligation to repay a borrowed amount at a
designated time and to make periodic interest payments until that time.

The issuer of a bond makes the periodic interest payments until the bond matures. At maturity, the
issuer pays to the holder of the bond the principal amount owed (face value) and the last interest
payment. A vanilla bond with an embedded option is where an option contract has an underlying
asset of a vanilla bond.

Stepped Coupon Bond with Callable and Puttable Features

A step-up bond and step-down bond is a debt security with a predetermined coupon structure over
time.

With these instruments, coupons increase (step up) or decrease (step down) at specific times during
the life of the bond. Stepped coupon bonds can have options features (call and puts).

Amortizing Callable and Puttable Bond

An amortizing callable bond or amortizing puttable bond work under a scheduled Principal.
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An amortizing callable bond gives the issuer the right to call back the bond, but instead of paying the
Principal amount at maturity, it repays part of the principal along with the coupon payments. An
amortizing puttable bond, repays part of the principal along with the coupon payments and gives the
bondholder the right to sell the bond back to the issuer.

Tips
After creating an OptionEmbeddedFixedBond object, you can modify the CallSchedule and
CallExerciseStyle using setCallExercisePolicy. Or, you can modify the PutSchedule and
PutExerciseStyle values using setPutExercisePolicy.

See Also
Functions
OptionEmbeddedFloatBond | finmodel | finpricer | timetable

Topics
“Price Portfolio of Bond and Bond Option Instruments” on page 2-173
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53
“Supported Exercise Styles” on page 1-62

Introduced in R2020a
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OptionEmbeddedFloatBond
OptionEmbeddedFloatBond instrument object

Description
Create and price a OptionEmbeddedFloatBond instrument object for one or more Option
Embedded Float Bond instruments using this workflow:

1 Use fininstrument to create an OptionEmbeddedFloatBond instrument object for one or
more Option Embedded Float Bond instruments.

2 Use finmodel to specify a HullWhite, BlackKarasinski, BraceGatarekMusiela,
SABRBraceGatarekMusiela, or LinearGaussian2F model for the
OptionEmbeddedFloatBond instrument object.

3 Choose a pricing method.

• When using a HullWhite or BlackKarasinski model, use finpricer to specify an
IRTree pricing method for one or more OptionEmbeddedFloatBond instruments.

• When using a HullWhite, BraceGatarekMusiela, SABRBraceGatarekMusiela, or
LinearGaussian2F model, use finpricer to specify an IRMonteCarlo pricing method for
one or more OptionEmbeddedFloatBond instruments.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available models and pricing methods for an
OptionEmbeddedFloatBond instrument, see “Choose Instruments, Models, and Pricers” on page 1-
53.

Creation

Syntax
OptionEmbeddedFloatBondObj = fininstrument(InstrumentType,'
Spread',spread_value,'Maturity',maturity_date,'
CallSchedule',call_schedule_value)
OptionEmbeddedFloatBondObj = fininstrument(InstrumentType,'
Spread',spread_value,'Maturity',maturity_date,'
PutSchedule',put_schedule_value)
OptionEmbeddedFloatBondObj = fininstrument( ___ ,Name,Value)

Description

OptionEmbeddedFloatBondObj = fininstrument(InstrumentType,'
Spread',spread_value,'Maturity',maturity_date,'
CallSchedule',call_schedule_value) creates a OptionEmbeddedFloatBond object for one
or more Option Embedded Float Bond instruments by specifying InstrumentType and the required
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name-value pair arguments Spread, Maturity, and CallSchedule sets the properties on page 11-
2735 using required name-value pair arguments.

OptionEmbeddedFloatBond supports vanilla bonds with embedded options, stepped coupon bonds
with embedded options and amortizing bonds with embedded options.

OptionEmbeddedFloatBondObj = fininstrument(InstrumentType,'
Spread',spread_value,'Maturity',maturity_date,'
PutSchedule',put_schedule_value) creates a OptionEmbeddedFloatBond object for one or
more Option Embedded Float Bond instruments by specifying InstrumentType and the required
name-value pair arguments Spread, Maturity, and PutSchedule sets the properties on page 11-
2735 using required name-value pair arguments.

OptionEmbeddedFloatBondObj = fininstrument( ___ ,Name,Value) sets optional properties
on page 11-2735 using additional name-value pairs in addition to the required arguments in the
previous syntax. For example, OptionEmbeddedFloatBondObj =
fininstrument("OptionEmbeddedFloatBond",'Spread',0.01,'Maturity',datetime(201
9,1,30),'Period',4,'Basis',5,'Principal',1000,'FirstCouponDate',datetime(2016
,1,30),'EndMonthRule',1,'CallSchedule',schedule,'CallExerciseStyle',"american
",'ProjectionCurve',ratecurve_obj,'Name',"optionembeddedfloatbond"). You can
specify multiple name-value pairs.

Input Arguments

InstrumentType — Instrument type
string with value "OptionEmbeddedFloatBond" | string array with values of
"OptionEmbeddedFloatBond" | character vector with value 'OptionEmbeddedFloatBond' | cell
array of character vectors with values of 'OptionEmbeddedFloatBond'

Instrument type, specified as a string with the value of "OptionEmbeddedFloatBond", a character
vector with the value of 'OptionEmbeddedFloatBond', an NINST-by-1 string array with values of
"OptionEmbeddedFloatBond", or an NINST-by-1 cell array of character vectors with values of
'OptionEmbeddedFloatBond'.
Data Types: char | cell | string

OptionEmbeddedFloatBond Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: OptionEmbeddedFloatBondObj =
fininstrument("OptionEmbeddedFloatBond",'Spread',0.01,'Maturity',datetime(201
9,1,30),'Period',4,'Basis',5,'Principal',1000,'FirstCouponDate',datetime(2016
,1,30),'EndMonthRule',1,'CallSchedule',schedule,'CallExerciseStyle',"american
",'ProjectionCurve',ratecurve_obj,'Name',"optionembeddedfloatbond")

Required OptionEmbeddedFloatBond Name-Value Pair Arguments

Spread — Number of basis points over the reference rate
nonnegative numeric | vector of nonnegative numeric
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Number of basis points over the reference rate, specified as the comma-separated pair consisting of
'Spread' and a scalar nonnegative numeric or an NINST-by-1 vector of nonnegative numeric.
Data Types: double

Maturity — Maturity date
serial date number | character vector | datetime | date string | vector of datetimes | vector of serial
date numbers | cell array of date character vectors | date string array

Maturity date, specified as the comma-separated pair consisting of 'Maturity' and a serial date
number, date character vector, date string, datetime or an NINST-by-1 vector of datetimes, serial date
numbers, cell array of date character vectors, or date string array.
Data Types: char | cell | double | string | datetime

CallSchedule — Call schedule
timetable

Call schedule, specified as the comma-separated pair consisting of 'CallSchedule' and a timetable
of call dates and strikes.

If you use a date character vector or date string for the dates in this timetable, the format must be
recognizable by datetime because the CallSchedule property is stored as a datetime.

Note The OptionEmbeddedFloatBond instrument supports either CallSchedule and
CallExerciseStyle or PutSchedule and PutExerciseStyle, but not both.

If you are creating one or more OptionEmbeddedFloatBond instruments and use a timetable, the
timetable specification applies to all of the OptionEmbeddedFloatBond instruments.
CallSchedule does not accept an NINST-by-1 cell array of timetables as input.

Data Types: timetable

PutSchedule — Call schedule
timetable

Put schedule, specified as the comma-separated pair consisting of 'PutSchedule' and a timetable
of call dates and strikes.

If you use a date character vector or date string for dates in this timetable, the format must be
recognizable by datetime because the PutSchedule property is stored as a datetime.

Note The OptionEmbeddedFloatBond instrument supports either CallSchedule and
CallExerciseStyle or PutSchedule and PutExerciseStyle, but not both.

If you are creating one or more OptionEmbeddedFloatBond instruments and use a timetable, the
timetable specification applies to all of the OptionEmbeddedFloatBond instruments. PutSchedule
does not accept an NINST-by-1 cell array of timetables as input.

Data Types: timetable
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Optional OptionEmbeddedFloatBond Name-Value Pair Arguments

Reset — Frequency of payments per year
2 (default) | scalar integer | vector of integers

Frequency of payments per year, specified as the comma-separated pair consisting of 'Reset' and a
scalar integer or an NINST-by-1 vector of integers. Values for Reset are: 1, 2, 3, 4, 6, and 12.
Data Types: double

CallExerciseStyle — Call option exercise style
"European" (default) | string with value "European", "American", or "Bermudan" | string array
with values of "European", "American", or "Bermudan" | character vector with value
'European', 'American', or 'Bermudan' | cell array of character vectors with values of
'European', 'American', or 'Bermudan'

Call option exercise style, specified as the comma-separated pair consisting of
'CallExerciseStyle' and a scalar string or character vector or an NINST-by-1 cell array of
character vectors or string array.

Note The CallSchedule is a timetable of call dates and strikes. If you do not specify a
CallExerciseStyle, then based on the CallSchedule specification, a default value of
CallExerciseStyle is assigned as follows:

• If there is one exercise date in the CallSchedule, then the CallExerciseStyle is an
"European".

• If there are two exercise dates in the CallSchedule, then the CallExerciseStyle is an
"American" with a start date and maturity.

• If there are more than two exercise dates in the CallSchedule, then the CallExerciseStyle
is an "Bermudan".

If the you define a CallExerciseStyle and this is not consistent with what you have specified in
the CallSchedule, you receive an error message.

Data Types: string | cell | char

PutExerciseStyle — Put option exercise style
"European" (default) | string with value "European", "American", or "Bermudan" | string array
with values of "European", "American", or "Bermudan" | character vector with value
'European', 'American', or 'Bermudan' | cell array of character vectors with values of
'European', 'American', or 'Bermudan'

Put option exercise style, specified as the comma-separated pair consisting of 'PutExerciseStyle'
and a scalar string or character vector or an NINST-by-1 cell array of character vectors or string
array.

Note The PutSchedule is a timetable of call dates and strikes. If you do not specify a
PutExerciseStyle, then based on the PutSchedule specification, a default value of
PutExerciseStyle is assigned as follows:

• If there is one exercise date in the PutSchedule, then the PutExerciseStyle is an
"European".
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• If there are two exercise dates in the PutSchedule, then the PutExerciseStyle is an
"American" with a start date and maturity.

• If there are more than two exercise dates in the PutSchedule, then the PutExerciseStyle is
an "Bermudan".

If the you define a PutExerciseStyle and this is not consistent with what you have specified in the
PutSchedule, you receive an error message.

Data Types: string | cell | char

Basis — Day count basis
0 (actual/actual) (default) | scalar integer from 0 to 13 | vector of integers from 0 to 13

Day count basis, specified as the comma-separated pair consisting of 'Basis' and scalar integer or
an NINST-by-1 vector of integers using the following values:

• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Notional principal amount or principal value schedule
100 (default) | scalar numeric | numeric vector | timetable

Notional principal amount or principal value schedule, specified as the comma-separated pair
consisting of 'Principal' and a scalar numeric or an NINST-by-1 numeric vector or a timetable.

Principal accepts a timetable, where the first column is dates and the second column is the
associated notional principal value. The date indicates the last day that the principal value is valid.

Note If you are creating one or more OptionEmbeddedFloatBond instruments and use a timetable,
the timetable specification applies to all of the OptionEmbeddedFloatBond instruments.
Principal does not accept an NINST-by-1 cell array of timetables as input.
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Data Types: double | timetable

DaycountAdjustedCashFlow — Flag indicating whether cash flow adjusts for day count
convention
false (default) | scalar logical value of true or false | vector of logicals with values of true or
false

Flag indicating whether cash flow adjusts for day count convention, specified as the comma-
separated pair consisting of 'DaycountAdjustedCashFlow' and a scalar logical or an NINST-by-1
vector of logicals with values of true or false.
Data Types: logical

BusinessDayConvention — Business day conventions
"actual" (default) | string | string array | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a scalar string or character vector or an NINST-by-1 cell array of
character vectors or string array. The selection for business day convention determines how
nonbusiness days are treated. Nonbusiness days are defined as weekends plus any other date that
businesses are not open (for example, statutory holidays). Values are:

• "actual" — Nonbusiness days are effectively ignored. Cash flows that fall on non-business days
are assumed to be distributed on the actual date.

• "follow" — Cash flows that fall on a nonbusiness day are assumed to be distributed on the
following business day.

• "modifiedfollow" — Cash flows that fall on a nonbusiness day are assumed to be distributed
on the following business day. However if the following business day is in a different month, the
previous business day is adopted instead.

• "previous" — Cash flows that fall on a nonbusiness day are assumed to be distributed on the
previous business day.

• "modifiedprevious" — Cash flows that fall on a nonbusiness day are assumed to be distributed
on the previous business day. However if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell | string

Holidays — Holidays used in computing business days
NaT (default) | datetime | cell array of date character vectors | date string array | serial date numbers

Holidays used in computing business days, specified as the comma-separated pair consisting of
'Holidays' and dates using an NINST-by-1 vector of datetimes, serial date numbers, cell array of
date character vectors, or date string array. For example:

H = holidays(datetime('today'),datetime(2025,12,15));
OptionEmbeddedFixedBondObj = fininstrument("OptionEmbeddedFixedBond",'CouponRate',0.34,'Maturity',datetime(2025,12,15),...
'CallSchedule',schedule,'CallExerciseStyle',"american",'Holidays',H)

Data Types: double | cell | datetime | string

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month with 30 or fewer days
true (in effect) (default) | scalar logical value of true or false | vector of logicals with values of
true or false

 OptionEmbeddedFloatBond

11-2733



End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month with
30 or fewer days, specified as the comma-separated pair consisting of 'EndMonthRule' and a scalar
logical or an NINST-by-1 vector of logicals values of true or false.

• If you set EndMonthRule to false, the software ignores the rule, meaning that a payment date is
always the same numerical day of the month.

• If you set EndMonthRule to true, the software sets the rule on, meaning that a payment date is
always the last actual day of the month.

Data Types: logical

IssueDate — Bond issue date
NaT (default) | datetime | serial date number | date character vector | date string | vector of datetimes
| vector of serial date numbers | cell array of date character vectors | date string array

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a scalar
datetime, serial date number, date character vector, date string or an NINST-by-1 vector of datetimes,
serial date numbers, cell array of date character vectors, or date string array.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the IssueDate property is stored as a datetime.
Data Types: double | char | cell | string | datetime

FirstCouponDate — Irregular first coupon date
NaT (default) | datetime | serial date number | date character vector | date string | vector of datetimes
| vector of serial date numbers | cell array of date character vectors | date string array

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a scalar datetime, serial date number, date character vector, date string or
an NINST-by-1 vector of datetimes, serial date numbers, cell array of date character vectors, or date
string array.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes
precedence in determining the coupon payment structure. If you do not specify FirstCouponDate,
the cash flow payment dates are determined from other inputs.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the FirstCouponDate property is stored as a datetime.
Data Types: double | char | cell | string | datetime

LastCouponDate — Irregular last coupon date
NaT (default) | datetime | serial date number | date character vector | date string | vector of datetimes
| vector of serial date numbers | cell array of date character vectors | date string array

Irregular last coupon date, specified as the comma-separated pair consisting of 'LastCouponDate'
and a scalar datetime, serial date number, date character vector, date string or an NINST-by-1 vector
of datetimes, serial date numbers, cell array of date character vectors, or date string array.

If you specify LastCouponDate but not FirstCouponDate, LastCouponDate determines the
coupon structure of the bond. The coupon structure of a bond is truncated at LastCouponDate,
regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not
specify LastCouponDate, the cash flow payment dates are determined from other inputs.
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If you use date character vectors or date strings, the format must be recognizable by datetime
because the LastCouponDate property is stored as a datetime.
Data Types: double | char | cell | string | datetime

StartDate — Forward starting date of payments
NaT (default) | datetime | serial date number | date character vector | date string | vector of datetimes
| vector of serial date numbers | cell array of date character vectors | date string array

Forward starting date of payments, specified as the comma-separated pair consisting of
'StartDate' and a scalar datetime, serial date number, date character vector, date string or an
NINST-by-1 vector of datetimes, serial date numbers, cell array of date character vectors, or date
string array.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the StartDate property is stored as a datetime.
Data Types: char | cell | double | string | datetime

Name — User-defined name for instrument
" " (default) | string | string array | character vector | cell array of character vectors

User-defined name for the instrument, specified as the comma-separated pair consisting of 'Name'
and a scalar string or character vector or an NINST-by-1 cell array of character vectors or string
array.
Data Types: char | cell | string

Properties
Spread — Number of basis points over the reference rate
scalar nonnegative numeric | vector of nonnegative numeric

Number of basis points over the reference rate, returned as a scalar nonnegative numeric or an
NINST-by-1 vector of nonnegative numeric values.
Data Types: double

Maturity — Maturity date
scalar datetime | vector of datetimes

Maturity date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

CallSchedule — Call schedule
timetable

Call schedule, returned as a timetable.
Data Types: cell | datetime

PutSchedule — Call schedule
timetable

Put schedule, returned as a timetable.
Data Types: cell | datetime
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Reset — Frequency of payments per year
2 (default) | scalar integer | vector of integers

Frequency of payments per year, returned as a scalar integer or an NINST-by-1 vector of integers.
Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | scalar integer from 0 to 13 | vector of integers from 0 to 13

Day count basis, returned as a scalar integer or an NINST-by-1 vector of integers.
Data Types: double

Principal — Notional principal amount or principal value schedule
100 (default) | scalar numeric | numeric vector | timetable

Notional principal amount or principal value schedule, returned as a scalar numeric or an NINST-by-1
numeric vector or a timetable.
Data Types: timetable | double

DaycountAdjustedCashFlow — Flag indicating whether cash flow adjusts for day count
convention
false (default) | scalar logical value of true or false | vector of logicals with values of true or
false

Flag indicating whether cash flow adjusted for day count convention, returned as scalar logical or an
NINST-by-1 vector of logicals with values of true or false.
Data Types: logical

BusinessDayConvention — Business day conventions
"actual" (default) | string | string array

Business day conventions, returned as a string or an NINST-by-1 string array.
Data Types: string

Holidays — Holidays used in computing business days
NaT (default) | datetimes

Holidays used in computing business days, returned as an NINST-by-1 vector of datetimes.
Data Types: datetime

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month with 30 or fewer days
true (in effect) (default) | scalar logical value of true or false | vector of logicals with values of
true or false

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month with
30 or fewer days, returned as a scalar logical or an NINST-by-1 vector of logicals.
Data Types: logical

IssueDate — Bond issue date
NaT (default) | scalar datetime | vector of datetimes
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Bond issue date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

FirstCouponDate — Irregular first coupon date
NaT (default) | scalar datetime | vector of datetimes

Irregular first coupon date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

LastCouponDate — Irregular last coupon date
NaT (default) | scalar datetime | vector of datetimes

Irregular last coupon date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

StartDate — Forward starting date of payments
NaT (default) | scalar datetime

Forward starting date of payments, returned as a scalar datetime or an NINST-by-1 vector of
datetimes.
Data Types: datetime

CallExerciseStyle — Call option exercise style
"European" (default) | string with value "European", "American", or "Bermudan" | string array
with values of "European", "American", or "Bermudan"

This property is read-only.

Call option exercise style, returned as a string or an NINST-by-1 string array with values of
"European", "American", or "Bermudan".
Data Types: string

PutExerciseStyle — Put option exercise style
"European" (default) | string with value "European", "American", or "Bermudan" | string array
with values of "European", "American", or "Bermudan"

This property is read-only.

Put option exercise style, returned as a string or an NINST-by-1 string array with values of
"European", "American", or "Bermudan".
Data Types: string

Name — User-defined name for instrument
" " (default) | string | string array

User-defined name for the instrument, returned as a string or an NINST-by-1 string array.
Data Types: string
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Object Functions
setCallExercisePolicy Set call exercise policy for OptionEmbeddedFixedBond,

OptionEmbeddedFloatBond, or ConvertibleBond instrument
setPutExercisePolicy Set put exercise policy for OptionEmbeddedFixedBond,

OptionEmbeddedFloatBond, or ConvertibleBond instrument

Examples

Price Option Embedded Float Bond Instruments Using Hull-White Model and IRTree Pricer

This example shows the workflow to price American, European, and Bermudan exercise styles for
three callable OptionEmbeddedFloatBond instruments when you use a HullWhite model and an
IRTree pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,1,1);
ZeroTimes = calyears(1:10)';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
Compounding = 1;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates, "Compounding",Compounding);

Create OptionEmbeddedFloatBond Instrument Objects

Use fininstrument to create three OptionEmbeddedFloatBond instrument objects with different
exercise styles.

Maturity = datetime(2024,1,1);

% Option embedded float bond (Bermudan callable bond)
Strike = [100; 100];
ExerciseDates = [datetime(2020,1,1); datetime(2024,1,1)];
Reset = 1;
CallSchedule =  timetable(ExerciseDates,Strike,'VariableNames',{'Strike Schedule'}); 

CallableBondBermudan = fininstrument("OptionEmbeddedFloatBond",'Maturity',Maturity,...
                              'Spread',0.025,'Reset',Reset, ...
                              'CallSchedule',CallSchedule,'CallExerciseStyle', "bermudan")

CallableBondBermudan = 
  OptionEmbeddedFloatBond with properties:

                      Spread: 0.0250
             ProjectionCurve: [0x0 ratecurve]
                 ResetOffset: 0
                       Reset: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
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                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 01-Jan-2024
                   CallDates: [2x1 datetime]
                    PutDates: [0x1 datetime]
                CallSchedule: [2x1 timetable]
                 PutSchedule: [0x0 timetable]
           CallExerciseStyle: "bermudan"
            PutExerciseStyle: [0x0 string]
                        Name: ""

% Option embedded float bond (American callable bond)
Strike = 100;
ExerciseDates = datetime(2024,1,1);
CallSchedule =  timetable(ExerciseDates,Strike,'VariableNames',{'Strike Schedule'}); 
Reset = 1;

CallableBondAmerican = fininstrument("OptionEmbeddedFloatBond",'Maturity',Maturity,...
                              'Spread',0.025,'Reset', Reset, ...
                              'CallSchedule',CallSchedule,'CallExerciseStyle',"american")

CallableBondAmerican = 
  OptionEmbeddedFloatBond with properties:

                      Spread: 0.0250
             ProjectionCurve: [0x0 ratecurve]
                 ResetOffset: 0
                       Reset: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 01-Jan-2024
                   CallDates: 01-Jan-2024
                    PutDates: [0x1 datetime]
                CallSchedule: [1x1 timetable]
                 PutSchedule: [0x0 timetable]
           CallExerciseStyle: "american"
            PutExerciseStyle: [0x0 string]
                        Name: ""

% Option embedded float bond (European callable bond)
Strike = 100;
ExerciseDates = datetime(2024,1,1);
CallSchedule =  timetable(ExerciseDates,Strike,'VariableNames',{'Strike Schedule'}); 
Reset = 1;

CallableBondEuropean = fininstrument("OptionEmbeddedFloatBond",'Maturity',Maturity,...
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                              'Spread',0.025,'Reset',Reset, ...
                              'CallSchedule',CallSchedule)                          

CallableBondEuropean = 
  OptionEmbeddedFloatBond with properties:

                      Spread: 0.0250
             ProjectionCurve: [0x0 ratecurve]
                 ResetOffset: 0
                       Reset: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 01-Jan-2024
                   CallDates: 01-Jan-2024
                    PutDates: [0x1 datetime]
                CallSchedule: [1x1 timetable]
                 PutSchedule: [0x0 timetable]
           CallExerciseStyle: "european"
            PutExerciseStyle: [0x0 string]
                        Name: ""

Create HullWhite Model Object

Use finmodel to create a HullWhite model object.

VolCurve = 0.01;
AlphaCurve = 0.1;

HWModel = finmodel("HullWhite",'alpha',AlphaCurve,'sigma',VolCurve);

Create IRTree Pricer Object

Use finpricer to create an IRTree pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

HWTreePricer = finpricer("IRTree",'Model',HWModel,'DiscountCurve',ZeroCurve,'TreeDates',ZeroDates)

HWTreePricer = 
  HWBKTree with properties:

             Tree: [1x1 struct]
        TreeDates: [10x1 datetime]
            Model: [1x1 finmodel.HullWhite]
    DiscountCurve: [1x1 ratecurve]

Price OptionEmbeddedFixedBond Instruments

Use price to compute the price and sensitivities for the three OptionEmbeddedFixedBond
instruments.
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[Price, outPR] = price(HWTreePricer,CallableBondBermudan,["all"])

Price = 104.9598

outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×4 table
    Price     Vega    Gamma      Delta 
    ______    ____    ______    _______

    104.96     0      19.597    -7.3926

[Price, outPR] = price(HWTreePricer,CallableBondAmerican,["all"])

Price = 100

outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×4 table
    Price    Vega    Gamma    Delta
    _____    ____    _____    _____

     100      0        0        0  

[Price, outPR] = price(HWTreePricer,CallableBondEuropean,["all"])

Price = 114.5571

outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×4 table
    Price        Vega        Gamma      Delta 
    ______    ___________    ______    _______

    114.56    -2.8422e-10    262.58    -50.006
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Price Option Embedded Float Bond Option Instrument Using Hull-White Model and
IRMonteCarlo Pricer

This example shows the workflow to price an OptionEmbeddedFloatBondOption instrument when
using a HullWhite model and an IRMonteCarlo pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2019,1,1);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 01-Jan-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create OptionEmbeddedFloatBondOption Instrument Object

Use fininstrument to create an OptionEmbeddedFloatBondOption instrument object.

% Option embedded float bond (European callable bond)
Maturity = datetime(2022,9,15);
Strike = 100;
ExerciseDates = datetime(2024,1,1);
CallSchedule = timetable(datetime(2020,3,15), 50);
Reset = 1;

CallableBondEuropean = fininstrument("OptionEmbeddedFloatBond",'Maturity',Maturity,...
                              'Spread',0.025,'Reset',Reset, ...
                              'CallSchedule',CallSchedule)    

CallableBondEuropean = 
  OptionEmbeddedFloatBond with properties:

                      Spread: 0.0250
             ProjectionCurve: [0x0 ratecurve]
                 ResetOffset: 0
                       Reset: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
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       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 15-Sep-2022
                   CallDates: 15-Mar-2020
                    PutDates: [0x1 datetime]
                CallSchedule: [1x1 timetable]
                 PutSchedule: [0x0 timetable]
           CallExerciseStyle: "european"
            PutExerciseStyle: [0x0 string]
                        Name: ""

Create HullWhite Model Object

Use finmodel to create a HullWhite model object.

HullWhiteModel = finmodel("HullWhite",'Alpha',0.32,'Sigma',0.49)

HullWhiteModel = 
  HullWhite with properties:

    Alpha: 0.3200
    Sigma: 0.4900

Create IRMonteCarlo Pricer Object

Use finpricer to create an IRMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("IRMonteCarlo",'Model',HullWhiteModel,'DiscountCurve',myRC,'SimulationDates',datetime(2019,3,15)+calmonths(0:6:48)')

outPricer = 
  HWMonteCarlo with properties:

          NumTrials: 1000
      RandomNumbers: []
      DiscountCurve: [1x1 ratecurve]
    SimulationDates: [15-Mar-2019    15-Sep-2019    15-Mar-2020    ...    ]
              Model: [1x1 finmodel.HullWhite]

Price OptionEmbeddedFloatBondOption Instrument

Use price to compute the price and sensitivities for the OptionEmbeddedFloatBondOption
instrument.

[Price,outPR] = price(outPricer,CallableBondEuropean,["all"])

Price = 51.3788

outPR = 
  priceresult with properties:

       Results: [1x4 table]
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    PricerData: [1x1 struct]

outPR.Results

ans=1×4 table
    Price     Delta      Gamma      Vega  
    ______    ______    _______    _______

    51.379    61.634    -81.051    -7.0508

Price Multiple Option Embedded Float Bond Instruments Using Hull-White Model and IRTree
Pricer

This example shows the workflow to price multiple OptionEmbeddedFloatBond instruments with
Bermudan exercise styles when you use a HullWhite model and an IRTree pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,1,1);
ZeroTimes = calyears(1:10)';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
Compounding = 1;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates, "Compounding",Compounding);

Create OptionEmbeddedFloatBond Instrument Objects

Use fininstrument to create an OptionEmbeddedFloatBond instrument object for three Option
Embedded Float Bond instruments with a Bermudan exercise style.

Maturity = datetime([2025,1,1 ; 2026,1,1 ; 2027,1,1]);

% Option embedded float bond (Bermudan callable bond) 
Strike = [101 ; 102 ; 103]; 
ExerciseDates = datetime([2022,1,1 ; 2023,1,1 ; 2024,1,1]); 
CallSchedule =  timetable(ExerciseDates,Strike,'VariableNames',{'Strike Schedule'}); 
Reset = 1;

CallableBondBermudan = fininstrument("OptionEmbeddedFloatBond",'Maturity',Maturity,...
                              'Spread',[0.001; 0.0015; 0.002],'Reset', Reset, ...
                              'CallSchedule',CallSchedule,'CallExerciseStyle',"bermudan")    

CallableBondBermudan=3×1 object
  3x1 OptionEmbeddedFloatBond array with properties:

    Spread
    ProjectionCurve
    ResetOffset
    Reset
    Basis
    EndMonthRule
    Principal
    DaycountAdjustedCashFlow
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    BusinessDayConvention
    Holidays
    IssueDate
    FirstCouponDate
    LastCouponDate
    StartDate
    Maturity
    CallDates
    PutDates
    CallSchedule
    PutSchedule
    CallExerciseStyle
    PutExerciseStyle
    Name

When you create multiple OptionEmbeddedFloatBond instruments and use a timetable for
CallSchedule, the timetable specification applies to all of the OptionEmbeddedFloatBond
instruments. The CallSchedule input argument does not accept an NINST-by-1 cell array of
timetables as input.

              

Create HullWhite Model Object

Use finmodel to create a HullWhite model object.

VolCurve = 0.01;
AlphaCurve = 0.1;

HWModel = finmodel("HullWhite",'alpha',AlphaCurve,'sigma',VolCurve);

Create IRTree Pricer Object

Use finpricer to create an IRTree pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

HWTreePricer = finpricer("IRTree",'Model',HWModel,'DiscountCurve',ZeroCurve,'TreeDates',ZeroDates)

HWTreePricer = 
  HWBKTree with properties:

             Tree: [1x1 struct]
        TreeDates: [10x1 datetime]
            Model: [1x1 finmodel.HullWhite]
    DiscountCurve: [1x1 ratecurve]

Price OptionEmbeddedFixedBond Instruments

Use price to compute the prices and sensitivities for the three OptionEmbeddedFixedBond
instruments.

[Price, outPR] = price(HWTreePricer,CallableBondBermudan,"all")

Price = 3×1

  100.6713
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  101.1327
  101.6643

outPR=3×1 object
  3x1 priceresult array with properties:

    Results
    PricerData

outPR.Results

ans=1×4 table
    Price        Vega        Gamma     Delta 
    ______    ___________    _____    _______

    100.67    -4.2633e-10    15.33    -2.6133

ans=1×4 table
    Price        Vega        Gamma      Delta 
    ______    ___________    ______    _______

    101.13    -5.6843e-10    31.676    -4.9053

ans=1×4 table
    Price       Vega       Gamma      Delta 
    ______    _________    ______    _______

    101.66    -0.066246    55.171    -7.8748

More About
Floating-Rate Note with Embedded Options

A floating-rate note with an embedded option enables floating-rate notes to have early redemption
features.

A floating-rate note with an embedded option gives investors or issuers the option to retire the
outstanding principal prior to maturity. An embedded call option gives the right to retire the note
prior to the maturity date (callable floater), and an embedded put option gives the right to sell the
note back at a specific price (puttable floater).

For more information, see “Floating-Rate Note with Embedded Options” on page 2-11.

Tips
After creating an OptionEmbeddedFixedBond object, you can modify the CallSchedule and
CallExerciseStyle using setCallExercisePolicy. Or, you can modify the PutSchedule and
PutExerciseStyle values using setPutExercisePolicy.
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See Also
Functions
OptionEmbeddedFixedBond | finmodel | finpricer | timetable

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22

Introduced in R2020a
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Spread
Spread instrument object

Description
Create and price a Spread instrument object for one or more Spread instruments using this
workflow:

1 Use fininstrument to create a Spread instrument object for one or more Spread instruments.
2 Use finmodel to specify a BlackScholes or Bachelier model for the Spread instrument

object.
3 Choose a pricing method.

• When using a BlackScholes model, use finpricer to specify a Kirk,
BjerksundStensland, or AssetMonteCarlo pricing method for one or more Spread
instruments.

• When using a Bachelier model, use finpricer to specify an AssetMonteCarlo pricing
method for one or more Spread instruments.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available models and pricing methods for a Spread instrument, see
“Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
SpreadObj = fininstrument(InstrumentType,'Strike',strike_value,'
ExerciseDate',exercise_date)
SpreadObj = fininstrument( ___ ,Name,Value)

Description

SpreadObj = fininstrument(InstrumentType,'Strike',strike_value,'
ExerciseDate',exercise_date) creates a Spread object for one or more Spread instruments by
specifying InstrumentType and sets the properties on page 11-2750 for the required name-value
pair arguments Strike and ExerciseDate.

SpreadObj = fininstrument( ___ ,Name,Value) sets optional properties on page 11-2750
using additional name-value pairs in addition to the required arguments in the previous syntax. For
example, SpreadObj =
fininstrument("Spread",'Strike',100,'ExerciseDate',datetime(2019,1,30),'Optio
nType',"put",'ExerciseStyle',"American",'Name',"spread_instrument") creates a
Spread put option with an American exercise. You can specify multiple name-value pair arguments.
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Input Arguments

InstrumentType — Instrument type
string with value "Spread" | string array with values of "Spread" | character vector with value
'Spread' | cell array of character vectors with values of 'Spread'

Instrument type, specified as a string with the value of "Spread", a character vector with the value
of 'Spread', an NINST-by-1 string array with values of "Spread", or an NINST-by-1 cell array of
character vectors with values of 'Spread'.
Data Types: char | cell | string

Spread Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: SpreadObj =
fininstrument("Spread",'Strike',100,'ExerciseDate',datetime(2019,1,30),'Optio
nType',"put",'ExerciseStyle',"American",'Name',"spread_instrument")

Required Spread Name-Value Pair Arguments

Strike — Option strike price value
nonnegative numeric | nonnegative numeric vector

Option strike price value, specified as the comma-separated pair consisting of 'Strike' and a scalar
nonnegative numeric or an NINST-by-1 nonnegative numeric vector.
Data Types: double

ExerciseDate — Option exercise date
datetime | serial date number | date character vector | date string | vector of datetimes | vector of
serial date numbers | cell array of date character vectors | date string array

Option exercise date, specified as the comma-separated pair consisting of 'ExerciseDate' and a
scalar datetime, serial date number, date character vector, date string or an NINST-by-1 vector of
datetimes, serial date numbers, cell array of date character vectors, or date string array.

Note For a European option, there is only one ExerciseDate on the option expiry date.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the ExerciseDate property is stored as a datetime.
Data Types: double | char | string | datetime

Optional Spread Name-Value Pair Arguments

OptionType — Option type
"call" (default) | string with value "call" or "put" | string array with values of "call" or "put"
| character vector with value 'call' or 'put' | cell array of character vectors with values of
'call' or 'put'
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Option type, specified as the comma-separated pair consisting of 'OptionType' and a scalar string
or character vector or an NINST-by-1 cell array of character vectors or string array.
Data Types: char | cell | string

ExerciseStyle — Option exercise style
"European" (default) | string with value "European" | string array with values of "European" |
character vector with value 'European' | cell array of character vectors with values of 'European'

Option exercise style, specified as the comma-separated pair consisting of 'ExerciseStyle' and a
scalar string or character vector or an NINST-by-1 cell array of character vectors or string array.
Data Types: string | cell | char

Name — User-defined name for instrument
" " (default) | string | string array | character vector | cell array of character vectors

User-defined name for one of more instruments, specified as the comma-separated pair consisting of
'Name' and a scalar string or character vector or an NINST-by-1 cell array of character vectors or
string array.
Data Types: char | cell | string

Properties
Strike — Option strike price value
nonnegative numeric | nonnegative numeric vector

Option strike price value, returned as a scalar nonnegative numeric or an NINST-by-1 nonnegative
numeric vector.
Data Types: double

ExerciseDate — Option exercise date
datetime | vector of datetimes

Option exercise date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

OptionType — Option type
"call" (default) | string with value "call" or "put" | string array with value "call" or "put"

Option type, returned as a scalar string or an NINST-by-1 string array with values of "call" or
"put".
Data Types: string

ExerciseStyle — Option exercise style
"European" (default) | string with value "European" | string array with values of "European"

Option exercise style, returned as a string or an NINST-by-1 string array with values of "European".
Data Types: string

Name — User-defined name for instrument
" " (default) | string | string array
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User-defined name for the instrument, returned as a scalar string or an NINST-by-1 string array.
Data Types: string

Examples

Price Spread Instrument with European Option Using Black-Scholes Model and Bjerksund-
Stensland Pricer

This example shows the workflow to price a Spread instrument with a European option when using a
BlackScholes model and a BjerksundStensland pricing method.

Create Spread Instrument Object

Use fininstrument to create a Spread instrument object.

SpreadOpt = fininstrument("Spread",'Strike',105,'ExerciseDate',datetime(2021,9,15),'OptionType',"put",'ExerciseStyle',"european",'Name',"spread_option")

SpreadOpt = 
  Spread with properties:

       OptionType: "put"
           Strike: 105
    ExerciseStyle: "european"
     ExerciseDate: 15-Sep-2021
             Name: "spread_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',[0.2,0.1])

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: [0.2000 0.1000]
    Correlation: [2x2 double]

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
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                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create BjerksundStensland Pricer Object

Use finpricer to create a BjerksundStensland pricer object and use the ratecurve object for
the 'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'Model',BlackScholesModel,'DiscountCurve',myRC,'SpotPrice',[103 105],'DividendValue',[0.025 , 0.028],'PricingMethod',"BjerksundStensland")

outPricer = 
  BjerksundStensland with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: [103 105]
    DividendValue: [0.0250 0.0280]
     DividendType: "continuous"

Price Spread Instrument

Use price to compute the price and sensitivities for the Spread instrument.

[Price, outPR] = price(outPricer,SpreadOpt,["all"])

Price = 95.9884

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []

outPR.Results

ans=1×7 table
    Price           Delta                    Gamma                    Lambda                 Vega          Theta      Rho  
    ______    __________________    _______________________    ____________________    ________________    _____    _______

    95.988    -0.8916    0.90457    0.0021316    0.00048175    -0.95673     0.97064    13.582    1.5785    3.135    -278.49

Price Multiple Spread Instruments with European Option Using Black-Scholes Model and
Bjerksund-Stensland Pricer

This example shows the workflow to price multiple Spread instruments with a European option when
using a BlackScholes model and a BjerksundStensland pricing method.

Create Spread Instrument Object

Use fininstrument to create a Spread instrument object for three Spread instruments.
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SpreadOpt = fininstrument("Spread",'Strike',[105 ; 120 ; 150],'ExerciseDate',datetime([2021,9,15 ; 2021,10,15 ; 2021,11,15]),'OptionType',"put",'ExerciseStyle',"european",'Name',"spread_option")

SpreadOpt=3×1 object
  3x1 Spread array with properties:

    OptionType
    Strike
    ExerciseStyle
    ExerciseDate
    Name

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',[0.2,0.1])

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: [0.2000 0.1000]
    Correlation: [2x2 double]

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create BjerksundStensland Pricer Object

Use finpricer to create a BjerksundStensland pricer object and use the ratecurve object for
the 'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'Model',BlackScholesModel,'DiscountCurve',myRC,'SpotPrice',[103 160],'DividendValue',[0.025 , 0.028],'PricingMethod',"BjerksundStensland")

outPricer = 
  BjerksundStensland with properties:

    DiscountCurve: [1x1 ratecurve]
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            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: [103 160]
    DividendValue: [0.0250 0.0280]
     DividendType: "continuous"

Price Spread Instruments

Use price to compute the prices and sensitivities for the Spread instruments.

[Price, outPR] = price(outPricer,SpreadOpt,["all"])

Price = 3×1

  146.1732
  159.1989
  185.5513

outPR=3×1 object
  3x1 priceresult array with properties:

    Results
    PricerData

outPR.Results

ans=1×7 table
    Price            Delta                     Gamma                     Lambda                 Vega           Theta       Rho  
    ______    ____________________    ________________________    ____________________    _________________    ______    _______

    146.17    -0.91985     0.91683    0.00057696    7.9581e-05    -0.64817     0.64604    3.6848    0.60671    4.9043    -282.63

ans=1×7 table
    Price           Delta                     Gamma                     Lambda                 Vega           Theta       Rho  
    _____    ____________________    ________________________    ____________________    _________________    ______    _______

    159.2    -0.92024     0.91557    0.00042064    5.4001e-05    -0.59539     0.59237    2.7723    0.40502    5.3984    -331.26

ans=1×7 table
    Price            Delta                    Gamma                    Lambda                 Vega           Theta       Rho  
    ______    ____________________    ______________________    ____________________    _________________    ______    _______

    185.55    -0.92123     0.91439    0.000216    1.9895e-05    -0.51138     0.50758    1.4478    0.16988    6.3711    -424.75

Price Spread Instrument for a Commodity Using Black-Scholes Model and Analytic Pricers

This example shows the workflow to price a commodity Spread instrument when you use a
BlackScholes model and Kirk and BjerksundStensland analytic pricing methods.

Understanding Crack Spread Options

In the petroleum industry, refiners are concerned about the difference between their input costs
(crude oil) and output prices (refined products — gasoline, heating oil, diesel fuel, and so on). The
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differential between these two underlying commodities is referred to as a crack spread. It represents
the profit margin between crude oil and the refined products.

A spread option is an option on the spread where the holder has the right, but not the obligation, to
enter into a spot or forward spread contract. Crack spread options are often used to protect against
declines in the crack spread or to monetize volatility or price expectations on the spread.

Define the Commodity

Assume that current gasoline prices are strong, and you want to model a crack spread option strategy
to protect the gasoline margin. A crack spread option strategy is used to maintain profits for the
following season. The WTI crude oil futures are at $93.20 per barrel and RBOB gasoline futures
contract are at $2.85 per gallon.

Strike = 20;
Rate = 0.05;

Settle = datetime(2020,1,1);
Maturity = datemnth(Settle,3);

% Price and volatility of RBOB gasoline
PriceGallon1 = 2.85;          % Dollars per gallon
Price1 = PriceGallon1 * 42;   % Dollars per barrel
Vol1 = 0.29;

% Price and volatility of WTI crude oil
Price2 = 93.20;         % Dollars per barrel
Vol2 = 0.36;

% Correlation between the prices of the commodities
Corr = 0.42;

Create Spread Instrument Object

Use fininstrument to create a Spread instrument object.

SpreadOpt = fininstrument("Spread", 'ExerciseDate', Maturity, 'Strike', Strike,'ExerciseStyle',"european",'Name',"spread_instrument")

SpreadOpt = 
  Spread with properties:

       OptionType: "call"
           Strike: 20
    ExerciseStyle: "european"
     ExerciseDate: 01-Apr-2020
             Name: "spread_instrument"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes", 'Volatility', [Vol1,Vol2], 'Correlation', [1 Corr; Corr 1]);

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

ZeroCurve = ratecurve('zero', Settle, Maturity, Rate, 'Basis', 1);
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Create BjerksundStensland Pricer Object

Use finpricer to create a BjerksundStensland pricer object and use the ratecurve object for
the 'DiscountCurve' name-value pair argument.

BJSPricer = finpricer("Analytic", 'Model', BlackScholesModel, 'SpotPrice', [Price1 , Price2], 'DiscountCurve', ZeroCurve,'PricingMethod', "BjerksundStensland");

Create Kirk Pricer Object

Use finpricer to create a Kirk pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

KirkPricer = finpricer("Analytic", 'Model', BlackScholesModel,'SpotPrice', [Price1 , Price2], 'DiscountCurve', ZeroCurve,'PricingMethod', "Kirk");

Price Spread Instrument Using BjerksundStensland and Kirk Analytic Pricing Methods

Use price to compute the price and sensitivities for the commodity Spread instrument.

[PriceKirk, outPR_Kirk] = price(KirkPricer, SpreadOpt, "all");
[PriceBJS,  outPR_BJS]  = price(BJSPricer,  SpreadOpt, "all");

[outPR_Kirk.Results; outPR_BJS.Results]

ans=2×7 table
    Price           Delta                  Gamma                 Lambda                Vega           Theta      Rho  
    _____    ___________________    ____________________    _________________    ________________    _______    ______

    11.19    0.67224    -0.60665    0.019081    0.021662    7.1907    -6.4891    11.299    9.8869    -14.539    3.1841
     11.2    0.67371    -0.60816    0.018992    0.021572    7.2003    -6.4997    11.198    9.9878    -14.555    3.1906

Price Spread Instrument with American Option Using Black-Scholes Model and Asset
Monte-Carlo Pricer

This example shows the workflow to price a Spread instrument with an American option when using
a BlackScholes model and an AssetMonteCarlo pricing method.

Create Spread Instrument Object

Use fininstrument to create a Spread instrument object.

SpreadOpt = fininstrument("Spread",'Strike',100,'ExerciseDate',datetime(2021,9,15),'OptionType',"put",'ExerciseStyle',"American",'Name',"spread_option")

SpreadOpt = 
  Spread with properties:

       OptionType: "put"
           Strike: 100
    ExerciseStyle: "american"
     ExerciseDate: 15-Sep-2021
             Name: "spread_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.
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Corr = 0.42;
BlackScholesModel = finmodel("BlackScholes","Volatility",[0.3,0.1],"Correlation", [1 Corr;Corr 1])

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: [0.3000 0.1000]
    Correlation: [2x2 double]

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetMonteCarlo Pricer Object

Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("AssetMonteCarlo","DiscountCurve",myRC,"Model",BlackScholesModel,'SpotPrice',[100,95],'simulationDates',datetime(2021,9,15),'dividendType',["continuous","continuous"],'dividendvalue',[0,0.01])

outPricer = 
  GBMMonteCarlo with properties:

      DiscountCurve: [1x1 ratecurve]
          SpotPrice: [100 95]
    SimulationDates: 15-Sep-2021
          NumTrials: 1000
      RandomNumbers: []
              Model: [1x1 finmodel.BlackScholes]
       DividendType: ["continuous"    "continuous"]
      DividendValue: [0 0.0100]

Price Spread Instrument

Use price to compute the price and sensitivities for the Spread instrument.

[Price, outPR] = price(outPricer,SpreadOpt,["all"])
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Price = 95

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×7 table
    Price     Delta           Gamma               Lambda          Rho    Theta     Vega 
    _____    ________    _______________    __________________    ___    _____    ______

     95      -1     1    0    3.1492e-14    -1.0526          1     0       0      0    0

Price Spread Instrument with American Option Using Bachelier Model and Asset Monte-
Carlo Pricer

This example shows the workflow to price a Spread instrument with an American option when using
a Bachelier model and an AssetMonteCarlo pricing method.

Create Spread Instrument Object

Use fininstrument to create a Spread instrument object.

SpreadOpt = fininstrument("Spread",'Strike',100,'ExerciseDate',datetime(2021,9,15),'OptionType',"put",'ExerciseStyle',"American",'Name',"spread_option")

SpreadOpt = 
  Spread with properties:

       OptionType: "put"
           Strike: 100
    ExerciseStyle: "american"
     ExerciseDate: 15-Sep-2021
             Name: "spread_option"

Create Bachelier Model Object

Use finmodel to create a Bachelier model object.

Corr = 0.42;
BachelierModel = finmodel("BlackScholes","Volatility",[0.3,0.1],"Correlation", [1 Corr;Corr 1])

BachelierModel = 
  BlackScholes with properties:

     Volatility: [0.3000 0.1000]
    Correlation: [2x2 double]

Create ratecurve Object

Create a flat ratecurve object using ratecurve.
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Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetMonteCarlo Pricer Object

Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("AssetMonteCarlo","DiscountCurve",myRC,"Model",BachelierModel,'SpotPrice',[100,95],'simulationDates',datetime(2021,9,15),'dividendType',["continuous","continuous"],'dividendvalue',[0,0.01])

outPricer = 
  GBMMonteCarlo with properties:

      DiscountCurve: [1x1 ratecurve]
          SpotPrice: [100 95]
    SimulationDates: 15-Sep-2021
          NumTrials: 1000
      RandomNumbers: []
              Model: [1x1 finmodel.BlackScholes]
       DividendType: ["continuous"    "continuous"]
      DividendValue: [0 0.0100]

Price Spread Instrument

Use price to compute the price and sensitivities for the Spread instrument.

[Price, outPR] = price(outPricer,SpreadOpt,["all"])

Price = 95

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×7 table
    Price     Delta           Gamma               Lambda          Rho    Theta     Vega 
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    _____    ________    _______________    __________________    ___    _____    ______

     95      -1     1    0    3.1492e-14    -1.0526          1     0       0      0    0

More About
Spread Option

A spread option is written on the difference of two underlying assets.

For example, a European call on the difference of two assets X1 and X2 has the following pay off at
maturity:

max(X1− X2− K, 0)

K is the strike price.

For more information, see “Spread Option” on page 3-30.

See Also
Functions
finmodel | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53
“Supported Exercise Styles” on page 1-62

Introduced in R2020a
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Swap
Swap instrument object

Description
Create and price a Swap instrument object for one or more Swap instruments using this workflow:

1 Use fininstrument to create a Swap instrument object for one or more Swap instruments.
2 Use ratecurve to specify a curve model for the Swap instrument object or use finmodel to

specify a HullWhite, BlackKarasinski, or LinearGaussian2F model.
3 Choose a pricing method.

• When using a ratecurve, use finpricer to specify a Discount pricing method
• When using a HullWhite or BlackKarasinski model , use an IRTree pricing method for

one or more Swap instruments.
• When using a HullWhite or LinearGaussian2F model, use finpricer to specify an

IRMonteCarlo pricing method for one or more Swap instruments.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available models and pricing methods for a Swap instrument, see
“Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
SwapInstrument = fininstrument(InstrumentType,'Maturity',maturity_date,'
LegRate',leg_rate)
SwapInstrument = fininstrument( ___ ,Name,Value)

Description

SwapInstrument = fininstrument(InstrumentType,'Maturity',maturity_date,'
LegRate',leg_rate) creates a Swap object for one or more Swap instruments by specifying
InstrumentType and sets the properties on page 11-2766 for the required name-value pair
arguments Maturity and LegRate.

The Swap instrument supports vanilla swaps, amortizing swaps and forward swaps. You can use the
Swap instrument for a single currency swap but not a cross-currency swap. For more information on
a Swap instrument, see “More About” on page 11-2778.

SwapInstrument = fininstrument( ___ ,Name,Value) sets optional properties on page 11-
2766 using additional name-value pairs in addition to the required arguments in the previous syntax.
For example, SwapInstrument =
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fininstrument("Swap",'Maturity',datetime(2019,1,30),'LegRate',[0.06
0.12],'LegType',
["fixed","fixed"],'Basis',1,'Notional',100,'StartDate',datetime(2016,1,30),'D
aycountAdjustedCashFlow',true,'BusinessDayConvention',"follow",'ProjectionCur
ve',ratecurve,'Name',"swap_instrument") creates a Swap option with a maturity of January
30, 2019. You can specify multiple name-value pair arguments.

Input Arguments

InstrumentType — Instrument type
string with value "Swap" | string array with values of "Swap" | character vector with value 'Swap' |
cell array of character vectors with values of 'Swap'

Instrument type, specified as a string with the value of "Swap", a character vector with the value of
'Swap', an NINST-by-1 string array with values of "Swap", or an NINST-by-1 cell array of character
vectors with values of 'Swap'.
Data Types: char | cell | string

Swap Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: SwapInstrument =
fininstrument("Swap",'Maturity',datetime(2019,1,30),'LegRate',[0.06
0.12],'LegType',
["fixed","fixed"],'Basis',1,'Notional',100,'StartDate',datetime(2016,1,30),'D
aycountAdjustedCashFlow',true,'BusinessDayConvention',"follow",'ProjectionCur
ve',ratecurve,'Name',"swap_instrument")

Required Swap Name-Value Pair Arguments

Maturity — Swap maturity date
datetime | serial date number | date character vector | date string | vector of datetimes | vector of
serial date numbers | cell array of date character vectors | date string array

Swap maturity date, specified as the comma-separated pair consisting of 'Maturity' and a scalar
datetime, serial date number, date character vector, date string or an NINST-by-1 vector of datetimes,
serial date numbers, cell array of date character vectors, or date string array.

If you use a date character vector or date string, the format must be recognizable by datetime
because the Maturity property is stored as a datetime.
Data Types: char | cell | double | string | datetime

LegRate — Leg rate in decimal values
matrix

Leg rate in decimal values, specified as the comma-separated pair consisting of 'LegRate' and a
NINST-by-2 matrix. Each row can be defined as one of the following:

• [CouponRate Spread] (fixed-float)
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• [Spread CouponRate] (float-fixed)
• [CouponRate CouponRate] (fixed-fixed)
• [Spread Spread] (float-float)

CouponRate is the decimal annual rate. Spread is the number of basis points in decimals over the
reference rate. The first column represents the receiving leg, while the second column represents the
paying leg.
Data Types: double

Optional Swap Name-Value Pair Arguments

LegType — Leg type
["fixed","float"] for each instrument (default) | cell array of character vectors with values
{'fixed','fixed'}, {'fixed','float'}, {'float','fixed'}, or {'float','float'} |
string array with values ["fixed","fixed"], ["fixed","float"], ["float","fixed"], or
["float","float"]

Leg type, specified as the comma-separated pair consisting of 'LegType' and a cell array of
character vectors or a string array with the supported values. The LegType defines the interpretation
of the values entered in LegRate.

Note When you specify a Swap instrument as the underlying asset for a Swaption instrument while
using a Normal, SABR, Black, or HullWhite pricer, the Swap LegType must be
["fixed","float"] or ["float","fixed"]. You must also set the ExerciseStyle name-value
pair argument of the associated Swaption instrument to 'European'.

Data Types: cell | string

ProjectionCurve — Rate curve for projecting floating cash flows
ratecurve.empty (default) | scalar ratecurve object | vector of ratecurve objects

Rate curve for projecting floating cash flows, specified as the comma-separated pair consisting of
'ProjectionCurve' and a scalar ratecurve object or an NINST-by-1 vector of ratecurve
objects. You must create this object using ratecurve. Use this optional input if the forward curve is
different from the discount curve.
Data Types: object

Reset — Frequency of payments per year
[2 2] (default) | numeric value of 0, 1, 2, 3, 4, 6, or 12 | matrix

Frequency of payments per year, specified as the comma-separated pair consisting of 'Reset' and
scalar or a NINST-by-2 matrix if Reset is different for each leg) with one of the following values: 0, 1,
2, 3, 4, 6, or 12.
Data Types: double

Basis — Day count basis representing the basis for each leg
[0 0] (actual/actual) (default) | integer from 0 to 13

Day count basis representing the basis for each leg, specified as the comma-separated pair consisting
of 'Basis' and a NINST-by-1 matrix (or NINST-by-2 matrix if Basis is different for each leg).
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• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Notional — Notional principal amount or principal value schedule
100 (default) | scalar numeric | numeric vector | timetable

Notional principal amount or principal value schedule, specified as the comma-separated pair
consisting of 'Notional' and a scalar numeric or an NINST-by-1 numeric vector or a timetable. Use
a scalar or vector for a vanilla Swap instrument and a timetable for an amortizing Swap instrument.

Notional accepts a scalar for a principal amount (or a 1-by-2 matrix if Notional is different for
each leg) or a timetable for principal value schedules. For schedules, the first column of the
timetable is dates and the second column is the associated notional principal value. The date
indicates the last day that the principal value is valid.

Note If you are creating one or more Swap instruments and use a timetable, the timetable
specification applies to all of the Swap instruments. Notional does not accept an NINST-by-1 cell
array of timetables as input.

Data Types: timetable | double

LatestFloatingRate — Latest floating rate for float legs
if not specified, then ratecurve must contain this information (default) | scalar numeric | vector

Latest floating rate for float legs, specified as the comma-separated pair consisting of
'LatestFloatingRate' and a scalar numeric or an NINST-by-1 numeric vector.

LatestFloatingRate is a NINST-by-1 matrix (or NINST-by-2 matrix if LatestFloatingRate is
different for each leg).
Data Types: double
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ResetOffset — Lag in rate setting
[0 0] (default) | vector

Lag in rate setting, specified as the comma-separated pair consisting of 'ResetOffset' and a
NINST-by-2 matrix.
Data Types: double

DaycountAdjustedCashFlow — Flag to adjust cash flows based on actual period day count
false (default) | logical value of true or false | vector of logical values of true or false

Flag to adjust cash flows based on actual period day count, specified as the comma-separated pair
consisting of 'DaycountAdjustedCashFlow' and a NINST-by-1 matrix (or NINST-by-2 matrix if
AdjustCashFlowsBasis is different for each leg) of logicals with values of true or false.
Data Types: logical

BusinessDayConvention — Business day conventions
"actual" (default) | string | string array | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and string (or NINST-by-2 string array if BusinessDayConvention is
different for each leg) or a character vector (or NINST-by-2 cell array of character vectors if
BusinessDayConvention is different for each leg). The selection for business day convention
determines how nonbusiness days are treated. Nonbusiness days are defined as weekends plus any
other date that businesses are not open (for example, statutory holidays). Values are:

• "actual" — Nonbusiness days are effectively ignored. Cash flows that fall on non-business days
are assumed to be distributed on the actual date.

• "follow" — Cash flows that fall on a nonbusiness day are assumed to be distributed on the
following business day.

• "modifiedfollow" — Cash flows that fall on a nonbusiness day are assumed to be distributed
on the following business day. However, if the following business day is in a different month, the
previous business day is adopted instead.

• "previous" — Cash flows that fall on a nonbusiness day are assumed to be distributed on the
previous business day.

• "modifiedprevious" — Cash flows that fall on a nonbusiness day are assumed to be distributed
on the previous business day. However, if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell | string

Holidays — Holidays used in computing business days
NaT (default) | datetime | cell array of date character vectors | date string array | serial date numbers

Holidays used in computing business days, specified as the comma-separated pair consisting of
'Holidays' and dates using an NINST-by-1 vector of datetimes, serial date numbers, cell array of
date character vectors, or date string array. For example:

H = holidays(datetime('today'),datetime(2025,12,15));
Swap = fininstrument("Swap",'Maturity',datetime(2025,12,15),'LegRate',[0.06 20],'Holidays',H)

Data Types: double | cell | datetime | string
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EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month with 30 or fewer days
[true true] (in effect) (default) | logical with value of true or false | vector of logicals with
values of true or false

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month with
30 or fewer days, specified as the comma-separated pair consisting of 'EndMonthRule' and a logical
value of true or false using a NINST-by-1 matrix (or NINST-by-2 matrix if EndMonthRule is
different for each leg).

• If you set EndMonthRule to false, the software ignores the rule, meaning that a payment date is
always the same numerical day of the month.

• If you set EndMonthRule to true, the software sets the rule on, meaning that a payment date is
always the last actual day of the month.

Data Types: logical

StartDate — Date swap starts
Settle date (default) | datetime | serial date number | date character vector | date string | vector of
datetimes | vector of serial date numbers | cell array of date character vectors | date string array

Date swap starts, specified as the comma-separated pair consisting of 'StartDate' and a scalar
datetime, serial date number, date character vector, date string or an NINST-by-1 vector of datetimes,
serial date numbers, cell array of date character vectors, or date string array.

Use StartDate to price a forward swap, that is, a swap that starts at a future date.

If you use a date character vector or date string, the format must be recognizable by datetime
because the StartDate property is stored as a datetime.
Data Types: char | double | string | datetime

Name — User-defined name for instrument
" " (default) | string | string array | character vector | cell array of character vectors

User-defined name for the instrument, specified as the comma-separated pair consisting of 'Name'
and a scalar string or character vector or an NINST-by-1 cell array of character vectors or string
array.
Data Types: char | cell | string

Properties
Maturity — Maturity date
scalar datetime | vector of datetimes

Maturity date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

LegRate — Leg rate
matrix

Leg rate, returned as a NINST-by-2 matrix of decimal values, with each row defined as one of the
following:
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• [CouponRate Spread] (fixed-float)
• [Spread CouponRate] (float-fixed)
• [CouponRate CouponRate] (fixed-fixed)
• [Spread Spread] (float-float)

Data Types: double

LegType — Leg type
["fixed","float"] for each instrument (default) | string array with values ["fixed","fixed"],
["fixed","float"], ["float","fixed"], or ["float","float"]

Leg type, returned as a string array with the values ["fixed","fixed"], ["fixed","float"],
["float","fixed"], or ["float","float"].
Data Types: string

ProjectionCurve — Rate curve used in generating future cash flows
ratecurve.empty (default) | scalar ratecurve object | vector of ratecurve objects

Rate curve used in projecting the future cash flows, returned as a ratecurve object or an NINST-
by-1 vector of ratecurve objects.
Data Types: object

Reset — Reset frequency per year for each swap
[2 2] (default) | vector

Reset frequency per year for each swap, returned as a scalar or an NINST-by-2 matrix.
Data Types: double

Basis — Day count basis
[0 0] (actual/actual) (default) | integer from 0 to 13

Day count basis, returned as an NINST-by-1 or an NINST-by-2 matrix.
Data Types: double

ResetOffset — Lag in rate setting
[0 0] (default) | matrix

Lag in rate setting, returned as an NINST-by-2 or an NINST-by-2 matrix.
Data Types: double

Notional — Notional principal amount or principal value schedules
100 (default) | scalar numeric | numeric vector | timetable

Notional principal amount, returned as a scalar numeric or an NINST-by-1 numeric vector or a
timetable.
Data Types: double | timetable

LatestFloatingRate — Rate for the next floating payment
if not specified, then ratecurve must contain this information (default) | scalar numeric | numeric
vector
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Rate for the next floating payment, set at the last reset date, returned as a scalar numeric or an
NINST-by-1 numeric vector or NINST-by-2 if LatestFloatingRate is different for each leg.
Data Types: double

DaycountAdjustedCashFlow — Flag to adjust cash flows based on actual period day count
false (default) | logical value of true or false | vector of logical values of true or false

Flag to adjust cash flows based on actual period day count, returned as an NINST-by-1 matrix (or an
NINST-by-2 matrix if AdjustCashFlowsBasis is different for each leg) of logicals with values of
true or false.
Data Types: logical

BusinessDayConvention — Business day conventions
"actual" (default) | string | string array

Business day conventions, returned as a string or a NINST-by-2 string array if
BusinessDayConvention is different for each leg.
Data Types: char | cell | string

Holidays — Holidays used in computing business days
NaT (default) | datetimes

Holidays used in computing business days, returned as an NINST-by-1 vector of datetimes.
Data Types: datetime

EndMonthRule — End-of-month rule flag for generating dates when Maturity is end-of-
month date for month with 30 or fewer days
[true true] (in effect) (default) | logical with value of true or false | vector of logicals with
values of true or false

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month with
30 or fewer days, returned as an NINST-by-1 matrix (or NINST-by-2 matrix if EndMonthRule is
different for each leg.
Data Types: logical

StartDate — Date swap starts
Settle date (default) | scalar datetime | vector of datetimes

Date swap starts, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

Name — User-defined name for instrument
" " (default) | string | string array

User-defined name for the instrument, returned as a scalar string or an NINST-by-1 string array.
Data Types: string

Object Functions
cashflows Compute cash flow for FixedBond, FloatBond, Swap, FRA, STIRFuture, OISFuture,

OvernightIndexedSwap, or Deposit instrument
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parswaprate Compute par swap rate for Swap instrument

Examples

Price Vanilla Swap Instrument Using ratecurve and Discount Pricer

This example shows the workflow to price a vanilla Swap instrument when you use a ratecurve and
a Discount pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve for the underlying interest-rate curve for the Swap
instrument.

Settle = datetime(2019,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Swap Instrument Object

Use fininstrument to create a vanilla Swap instrument object.

Swap = fininstrument("Swap",'Maturity',datetime(2024,9,15),'LegRate',[0.022 0.019 ],'LegType',["float","fixed"],'ProjectionCurve',myRC,'Name',"swap_instrument")

Swap = 
  Swap with properties:

                     LegRate: [0.0220 0.0190]
                     LegType: ["float"    "fixed"]
                       Reset: [2 2]
                       Basis: [0 0]
                    Notional: 100
          LatestFloatingRate: [NaN NaN]
                 ResetOffset: [0 0]
    DaycountAdjustedCashFlow: [0 0]
             ProjectionCurve: [1x2 ratecurve]
       BusinessDayConvention: ["actual"    "actual"]
                    Holidays: NaT
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                EndMonthRule: [1 1]
                   StartDate: NaT
                    Maturity: 15-Sep-2024
                        Name: "swap_instrument"

Create Discount Pricer Object

Use finpricer to create a Discount pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("Discount", 'DiscountCurve',myRC)

outPricer = 
  Discount with properties:

    DiscountCurve: [1x1 ratecurve]

Price Swap Instrument

Use price to compute the price and sensitivities for the vanilla Swap instrument.

[Price, outPR] = price(outPricer, Swap,["all"])

Price = 7.2279

outPR = 
  priceresult with properties:

       Results: [1x2 table]
    PricerData: []

outPR.Results

ans=1×2 table
    Price       DV01   
    ______    _________

    7.2279    -0.046631

Price Multiple Vanilla Swap Instruments Using ratecurve and Discount Pricer

This example shows the workflow to price multiple vanilla Swap instruments when you use a
ratecurve and a Discount pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve for the underlying interest-rate curve for the Swap
instrument.

Settle = datetime(2019,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
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ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Swap Instrument Object

Use fininstrument to create a vanilla Swap instrument object for three Swap instruments.

Swap = fininstrument("Swap",'Maturity',datetime([2024,9,15 ; 2025,9,15 ; 2026,9,15]),'LegRate',[0.022 0.019 ],'LegType',["float","fixed"],'ProjectionCurve',myRC,'Name',"swap_instrument")

Swap=3×1 object
  3x1 Swap array with properties:

    LegRate
    LegType
    Reset
    Basis
    Notional
    LatestFloatingRate
    ResetOffset
    DaycountAdjustedCashFlow
    ProjectionCurve
    BusinessDayConvention
    Holidays
    EndMonthRule
    StartDate
    Maturity
    Name

Create Discount Pricer Object

Use finpricer to create a Discount pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("Discount", 'DiscountCurve',myRC)

outPricer = 
  Discount with properties:

    DiscountCurve: [1x1 ratecurve]
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Price Swap Instruments

Use price to compute the prices and sensitivities for the vanilla Swap instruments.

[Price, outPR] = price(outPricer, Swap,["all"])

Price = 3×1

    7.2279
    9.9725
   13.0798

outPR=1×3 object
  1x3 priceresult array with properties:

    Results
    PricerData

outPR.Results

ans=1×2 table
    Price       DV01   
    ______    _________

    7.2279    -0.046631

ans=1×2 table
    Price       DV01   
    ______    _________

    9.9725    -0.054393

ans=1×2 table
    Price      DV01   
    _____    _________

    13.08    -0.061381

Price Amortizing Swap Instrument Using ratecurve and Discount Pricer

This example shows the workflow to price an amortizing Swap instrument when you use a
ratecurve and a Discount pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve for the underlying interest-rate curve for the Swap
instrument.

Settle = datetime(2019,1,1);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';

11 Functions

11-2772



ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 01-Jan-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Swap Instrument Object

Use fininstrument to create an amortizing Swap instrument object.

Maturity = datetime(2024,1,1);
ADates = datetime([2020,1,1 ; 2024,1,1]);
APrincipal = [100; 85];
Notional = timetable(ADates,APrincipal);
Swap = fininstrument("Swap",'Maturity',Maturity,'LegRate',[0.035,0.01],'Reset',[1 1],'Notional',Notional,'Name',"swap_instrument")

Swap = 
  Swap with properties:

                     LegRate: [0.0350 0.0100]
                     LegType: ["fixed"    "float"]
                       Reset: [1 1]
                       Basis: [0 0]
                    Notional: [2x1 timetable]
          LatestFloatingRate: [NaN NaN]
                 ResetOffset: [0 0]
    DaycountAdjustedCashFlow: [0 0]
             ProjectionCurve: [0x0 ratecurve]
       BusinessDayConvention: ["actual"    "actual"]
                    Holidays: NaT
                EndMonthRule: [1 1]
                   StartDate: NaT
                    Maturity: 01-Jan-2024
                        Name: "swap_instrument"

Create Discount Pricer Object

Use finpricer to create a Discount pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("Discount", 'DiscountCurve',myRC)

outPricer = 
  Discount with properties:
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    DiscountCurve: [1x1 ratecurve]

Price Swap Instrument

Use price to compute the price and sensitivities for the amortizing Swap instrument.

[Price, outPR] = price(outPricer, Swap,["all"])

Price = 5.7183

outPR = 
  priceresult with properties:

       Results: [1x2 table]
    PricerData: []

outPR.Results

ans=1×2 table
    Price       DV01  
    ______    ________

    5.7183    0.044672

Price Vanilla Swap Instrument Using Hull-White Model and IRTree Pricer

This example shows the workflow to price a vanilla Swap instrument when you use a HullWhite
model and an IRTree pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve for the underlying interest-rate curve for the Swap
instrument.

Settle = datetime(2020,1,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Jan-2020
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
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     LongExtrapMethod: "previous"

Create Swap Instrument Object

Use fininstrument to create a vanilla Swap instrument object.

LegType = ["float","fixed"];
Swap = fininstrument("Swap",'Maturity',datetime(2030,9,15),'LegRate',[0.022 0.019],'LegType',LegType,'ProjectionCurve',myRC,'Name',"swap_instrument")

Swap = 
  Swap with properties:

                     LegRate: [0.0220 0.0190]
                     LegType: ["float"    "fixed"]
                       Reset: [2 2]
                       Basis: [0 0]
                    Notional: 100
          LatestFloatingRate: [NaN NaN]
                 ResetOffset: [0 0]
    DaycountAdjustedCashFlow: [0 0]
             ProjectionCurve: [1x2 ratecurve]
       BusinessDayConvention: ["actual"    "actual"]
                    Holidays: NaT
                EndMonthRule: [1 1]
                   StartDate: NaT
                    Maturity: 15-Sep-2030
                        Name: "swap_instrument"

Create HullWhite Model Object

Use finmodel to create a HullWhite model object.

HullWhiteModel = finmodel("HullWhite",'Alpha',0.032,'Sigma',0.04)

HullWhiteModel = 
  HullWhite with properties:

    Alpha: 0.0320
    Sigma: 0.0400

Compute Swap Instrument Cash Flow Dates

Use cfdates to compute the cash flows.

CFdates = cfdates(Settle, Swap.Maturity, Swap.Reset(1), Swap.Basis(1))

CFdates = 1x22 datetime
Columns 1 through 5

   15-Mar-2020   15-Sep-2020   15-Mar-2021   15-Sep-2021   15-Mar-2022

Columns 6 through 10

   15-Sep-2022   15-Mar-2023   15-Sep-2023   15-Mar-2024   15-Sep-2024

Columns 11 through 15
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   15-Mar-2025   15-Sep-2025   15-Mar-2026   15-Sep-2026   15-Mar-2027

Columns 16 through 20

   15-Sep-2027   15-Mar-2028   15-Sep-2028   15-Mar-2029   15-Sep-2029

Columns 21 through 22

   15-Mar-2030   15-Sep-2030

Create IRTree Pricer Object

Use finpricer to create an IRTree pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

HWTreePricer = finpricer("IRTree",'Model',HullWhiteModel,'DiscountCurve',myRC,'TreeDates',CFdates')

HWTreePricer = 
  HWBKTree with properties:

             Tree: [1x1 struct]
        TreeDates: [22x1 datetime]
            Model: [1x1 finmodel.HullWhite]
    DiscountCurve: [1x1 ratecurve]

Price Swap Instrument

Use price to compute the price and sensitivities for the vanilla Swap instrument.

[Price, outPR] = price(HWTreePricer, Swap,"all")

Price = 24.3727

outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×4 table
    Price        Vega        Gamma     Delta 
    ______    __________    _______    ______

    24.373    8.5265e-10    -8790.5    820.67

Price Vanilla Swap Instrument Using LinearGaussian2F Model and IRMonteCarlo Pricer

This example shows the workflow to price a vanilla Swap instrument when using a
LinearGaussian2F model and an IRMonteCarlo pricing method.
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Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2020,1,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Jan-2020
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Swap Instrument Object

Use fininstrument to create a Swap instrument object.

LegType = ["float","fixed"];
Swap = fininstrument("Swap",'Maturity',datetime(2030,9,15),'LegRate',[0.022 0.019],'LegType',LegType,'ProjectionCurve',myRC,'Name',"swap_instrument")

Swap = 
  Swap with properties:

                     LegRate: [0.0220 0.0190]
                     LegType: ["float"    "fixed"]
                       Reset: [2 2]
                       Basis: [0 0]
                    Notional: 100
          LatestFloatingRate: [NaN NaN]
                 ResetOffset: [0 0]
    DaycountAdjustedCashFlow: [0 0]
             ProjectionCurve: [1x2 ratecurve]
       BusinessDayConvention: ["actual"    "actual"]
                    Holidays: NaT
                EndMonthRule: [1 1]
                   StartDate: NaT
                    Maturity: 15-Sep-2030
                        Name: "swap_instrument"

Create LinearGaussian2F Model Object

Use finmodel to create a LinearGaussian2F model object.

LinearGaussian2FModel = finmodel("LinearGaussian2F",'Alpha1',0.07,'Sigma1',0.01,'Alpha2',0.5,'Sigma2',0.006,'Correlation',-0.7)
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LinearGaussian2FModel = 
  LinearGaussian2F with properties:

         Alpha1: 0.0700
         Sigma1: 0.0100
         Alpha2: 0.5000
         Sigma2: 0.0060
    Correlation: -0.7000

Create IRMonteCarlo Pricer Object

Use finpricer to create an IRMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("IRMonteCarlo",'Model',LinearGaussian2FModel,'DiscountCurve',myRC,'SimulationDates',ZeroDates)

outPricer = 
  G2PPMonteCarlo with properties:

          NumTrials: 1000
      RandomNumbers: []
      DiscountCurve: [1x1 ratecurve]
    SimulationDates: [15-Jul-2020    15-Jan-2021    15-Jan-2022    ...    ]
              Model: [1x1 finmodel.LinearGaussian2F]

Price Swap Instrument

Use price to compute the price and sensitivities for the Swap instrument.

[Price,outPR] = price(outPricer,Swap,["all"])

Price = 23.6657

outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×4 table
    Price     Delta      Gamma      Vega 
    ______    ______    _______    ______

    23.666    819.11    -8748.9    0    0

More About
Swap

A swap is contract between two parties obligating the parties to exchange future cash flows.

A vanilla swap is composed of a floating-rate leg and a fixed-rate leg.
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Swap with Amortization

A swap with an amortization schedule repays part of the principal (face value) along with the coupon
payments.

A swap with an amortization schedule is used to manage interest-rate risk and serve as a cash flow
management tool. For this particular type of swap, the notional amount decreases over time. This
means that interest payments decrease not only on the floating leg but also on the fixed leg. Use the
Notional name-value pair argument to support an amortization schedule.

Forward Swap

In a forward interest-rate swap, a fixed interest-rate loan is exchanged for a floating interest-rate loan
at a future specified date.

The StartDate name-value pair argument supports the future date for the forward swap.

See Also
Functions
Swaption | finmodel | finpricer | timetable

Topics
“Price a Swaption Using SABR Model and Analytic Pricer” on page 2-186
“Calibrate Shifted SABR Model Parameters for Swaption Instrument” on page 2-168
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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VarianceSwap
VarianceSwap instrument object

Description
Create and price a VarianceSwap instrument object for one or more Variance Swap instruments
using this workflow:

1 Use fininstrument to create a VarianceSwap instrument object for one or more Variance
Swap instruments.

2 Use ratecurve to specify a curve model or use finmodel to specify a Heston model.
3 Choose a pricing method.

• When using a curve model, use finpricer to specify a ReplicatingVarianceSwap pricing
method for one or more VarianceSwap instruments.

• When using a Heston model, use finpricer to specify a Heston pricing method for one or
more VarianceSwap instruments.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available models and pricing methods for a VarianceSwap instrument,
see “Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
VarianceSwapInstrument = fininstrument(InstrumentType,'
Maturity',maturity_date,'Notional',notional_value)
VarianceSwapInstrument = fininstrument( ___ ,Name,Value)

Description

VarianceSwapInstrument = fininstrument(InstrumentType,'
Maturity',maturity_date,'Notional',notional_value) creates a VarianceSwap object for
one or more Variance Swap instruments by specifying InstrumentType and sets properties on page
11-2782 using the required name-value pair arguments Maturity and Notional.

The VarianceSwap instrument supports the ReplicatingVarianceSwap and Heston pricing
methods. For more information on the VarianceSwap instrument, see “More About” on page 11-
2788.

VarianceSwapInstrument = fininstrument( ___ ,Name,Value) sets optional properties on
page 11-2766 using additional name-value pair arguments in addition to the required arguments in
the previous syntax. For example, VarianceSwapInstrument =
fininstrument("VarianceSwap",'Maturity',datetime(2019,1,30),'Notional',100,'S
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tartDate',datetime(2016,1,30),'RealizedVariance',0.02,'Strike',110,'Name',"va
rianceswap_instrument") creates a VarianceSwap option with a maturity date of January 30,
2019. You can specify multiple name-value pair arguments.

Input Arguments

InstrumentType — Instrument type
string with value "VarianceSwap" | string array with values of "VarianceSwap" | character vector
with value 'VarianceSwap' | cell array of character vectors with values of 'VarianceSwap'

Instrument type, specified as a string with the value of "VarianceSwap", a character vector with the
value of 'VarianceSwap', an NINST-by-1 string array with values of "VarianceSwap", or an
NINST-by-1 cell array of character vectors with values of 'VarianceSwap'.
Data Types: char | cell | string

VarianceSwap Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: VarianceSwapInstrument =
fininstrument("VarianceSwap",'Maturity',datetime(2019,1,30),'Notional',100,'S
tartDate',datetime(2016,1,30),'RealizedVariance',0.02,'Strike',110,'Name',"va
rianceswap_instrument")

Required VarianceSwap Name-Value Pair Arguments

Maturity — Variance swap maturity date
datetime | serial date number | date character vector | date string | vector of datetimes | vector of
serial date numbers | cell array of date character vectors | date string array

Variance swap maturity date, specified as the comma-separated pair consisting of 'Maturity' and a
scalar datetime, serial date number, date character vector, date string or an NINST-by-1 vector of
datetimes, serial date numbers, cell array of date character vectors, or date string array.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the Maturity property is stored as a datetime.
Data Types: char | cell | double | string | datetime

Notional — Notional amount
scalar numeric | numeric vector

Notional amount, specified as the comma-separated pair consisting of 'Notional' and a scalar
numeric or an NINST-by-1 numeric vector.
Data Types: double

Optional VarianceSwap Name-Value Pair Arguments

StartDate — Start date
Settle date of the ratecurve (default) | datetime | serial date number | date character vector | date
string | vector of datetimes | vector of serial date numbers | cell array of date character vectors | date
string array
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Start date, specified as the comma-separated pair consisting of 'StartDate' and a scalar datetime,
serial date number, date character vector, date string or an NINST-by-1 vector of datetimes, serial
date numbers, cell array of date character vectors, or date string array.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the ExerciseDate property is stored as a datetime.
Data Types: double | char | cell | string | datetime

RealizedVariance — Realized variance
0 (default) | scalar decimal | decimal vector

Realized variance, specified as the comma-separated pair consisting of 'RealizedVariance' and a
scalar decimal or an NINST-by-1 vector of decimals.
Data Types: double

Strike — Strike variance
fair variance computed by pricer (default) | scalar decimal | decimal vector

Strike variance, specified as the comma-separated pair consisting of 'Strike' and a scalar decimal
or an NINST-by-1 vector of decimals.
Data Types: double

Name — User-defined name for instrument
" " (default) | string | string array | character vector | cell array of character vectors

User-defined name for one of more instruments, specified as the comma-separated pair consisting of
'Name' and a scalar string or character vector or an NINST-by-1 cell array of character vectors or
string array.
Data Types: char | cell | string

Properties
Maturity — Maturity date
datetime | vector of datetimes

Maturity date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

Notional — Notional amount
scalar numeric | numeric vector

Notional amount, returned as a scalar numeric or an NINST-by-1 numeric vector.
Data Types: double

StartDate — Start date
Settle date of the ratecurve (default) | datetime | vector of datetimes

Start date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime
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RealizedVariance — Realized variance
0 (default) | scalar decimal | decimal vector

Realized variance, returned as a scalar decimal or an NINST-by-1 decimal vector.
Data Types: double

Strike — Strike variance
fair variance computed by pricer (default) | scalar decimal | decimal vector

Strike variance, returned as a scalar decimal or an NINST-by-1 decimal vector.
Data Types: double

Name — User-defined name for instrument
" " (default) | string | string array

User-defined name for the instrument, returned as a scalar string or an NINST-by-1 string array.
Data Types: string

Object Functions

Examples

Price Variance Swap Instrument Using Heston Model and Heston Pricer

This example shows the workflow to price a VarianceSwap instrument when you use a Heston
model and a Heston pricing method.

Create VarianceSwap Instrument Object

Use fininstrument to create a VarianceSwap instrument object.

VarianceSwapInst = fininstrument("VarianceSwap",'Maturity',datetime(2020,9,15),'Notional',100,'StartDate',datetime(2020,6,15),'RealizedVariance',0.02,'Strike',0.05,'Name',"variance_swap_instrument")

VarianceSwapInst = 
  VarianceSwap with properties:

            Notional: 100
    RealizedVariance: 0.0200
              Strike: 0.0500
           StartDate: 15-Jun-2020
            Maturity: 15-Sep-2020
                Name: "variance_swap_instrument"

Create Heston Model Object

Use finmodel to create a Heston model object.

HestonModel = finmodel("Heston",'V0',0.06,'ThetaV',0.1,'Kappa',0.9,'SigmaV',0.7,'RhoSV',-.3)

HestonModel = 
  Heston with properties:
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        V0: 0.0600
    ThetaV: 0.1000
     Kappa: 0.9000
    SigmaV: 0.7000
     RhoSV: -0.3000

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2020, 1, 1);
ZeroTimes = calmonths(3);
ZeroRates = 0.05;
ZeroDates = Settle + ZeroTimes;
Basis = 1;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates,'Basis',Basis)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 1
                Dates: 01-Apr-2020
                Rates: 0.0500
               Settle: 01-Jan-2020
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Heston Pricer Object

Use finpricer to create a Heston pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("Analytic",'DiscountCurve',ZeroCurve,'Model',HestonModel)

outPricer = 
  Heston with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.Heston]

Price VarianceSwap Instrument

Use price to compute the price and fair variance for the VarianceSwap instrument.

[Price, outPR] = price(outPricer,VarianceSwapInst,["all"])

Price = 10.8321

outPR = 
  priceresult with properties:

       Results: [1x2 table]
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    PricerData: []

outPR.Results

ans=1×2 table
    Price     FairVariance
    ______    ____________

    10.832      0.07039   

Price Multiple Variance Swap Instruments Using Heston Model and Heston Pricer

This example shows the workflow to price multiple VarianceSwap instrument when you use a
Heston model and a Heston pricing method.

Create VarianceSwap Instrument Object

Use fininstrument to create a VarianceSwap instrument object for three Variance Swap
instruments.

VarianceSwapInst = fininstrument("VarianceSwap",'Maturity',datetime([2020,9,15 ; 2020,9,15 ; 2020,9,15]),'Notional',100,'StartDate',datetime(2020,6,15),'RealizedVariance',0.02,'Strike',0.05,'Name',"variance_swap_instrument")

VarianceSwapInst=3×1 object
  3x1 VarianceSwap array with properties:

    Notional
    RealizedVariance
    Strike
    StartDate
    Maturity
    Name

Create Heston Model Object

Use finmodel to create a Heston model object.

HestonModel = finmodel("Heston",'V0',0.06,'ThetaV',0.1,'Kappa',0.9,'SigmaV',0.7,'RhoSV',-.3)

HestonModel = 
  Heston with properties:

        V0: 0.0600
    ThetaV: 0.1000
     Kappa: 0.9000
    SigmaV: 0.7000
     RhoSV: -0.3000

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2020, 1, 1);
ZeroTimes = calmonths(3);
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ZeroRates = 0.05;
ZeroDates = Settle + ZeroTimes;
Basis = 1;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates,'Basis',Basis)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 1
                Dates: 01-Apr-2020
                Rates: 0.0500
               Settle: 01-Jan-2020
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Heston Pricer Object

Use finpricer to create a Heston pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("Analytic",'DiscountCurve',ZeroCurve,'Model',HestonModel)

outPricer = 
  Heston with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.Heston]

Price VarianceSwap Instruments

Use price to compute the prices and fair variance for the three VarianceSwap instruments.

% [Price, outPR] = price(outPricer,VarianceSwapInst,["all"])
% outPR.Results

Price Variance Swap Instrument Using ratecurve and Replicating Variance Swap Pricer

This example shows the workflow to price a VarianceSwap instrument when you use a ratecurve
object and a ReplicatingVarianceSwap pricing method.

Create VarianceSwap Instrument Object

Use fininstrument to create a VarianceSwap instrument object.

VarianceSwapInst = fininstrument("VarianceSwap",'Maturity',datetime(2021,5,1),'Notional',150,'StartDate',datetime(2020,5,1),'RealizedVariance',0.05,'Strike',0.1,'Name',"variance_swap_instrument")

VarianceSwapInst = 
  VarianceSwap with properties:

            Notional: 150
    RealizedVariance: 0.0500
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              Strike: 0.1000
           StartDate: 01-May-2020
            Maturity: 01-May-2021
                Name: "variance_swap_instrument"

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2020, 9, 15);
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])];
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
Basis = 1;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates,'Basis',Basis)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 1
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2020
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create ReplicatingVarianceSwap Pricer Object

Use finpricer to create a ReplicatingVarianceSwap pricer object and use the ratecurve
object for the 'DiscountCurve' name-value pair argument.

Strike = (50:5:135)';
Volatility = [.49;.45;.42;.38;.34;.31;.28;.25;.23;.21;.2;.21;.21;.22;.23;.24;.25;.26];
VolatilitySmile = table(Strike, Volatility);
SpotPrice = 100;
CallPutBoundary = 100;

outPricer =  finpricer("ReplicatingVarianceSwap",'DiscountCurve', ZeroCurve, 'VolatilitySmile', VolatilitySmile, ...
'SpotPrice', SpotPrice, 'CallPutBoundary', CallPutBoundary)

outPricer = 
  ReplicatingVarianceSwap with properties:

      DiscountCurve: [1x1 ratecurve]
       InterpMethod: "linear"
    VolatilitySmile: [18x2 table]
          SpotPrice: 100
    CallPutBoundary: 100

Price VarianceSwap Instrument

Use price to compute the price and fair variance for the VarianceSwap instrument.
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[Price, outPR] = price(outPricer,VarianceSwapInst,["all"])

Price = 8.1997

outPR = 
  priceresult with properties:

       Results: [1x2 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×2 table
    Price     FairVariance
    ______    ____________

    8.1997      0.21701   

More About
Variance Swap

A variance swap is a forward contract on the realized variance over time.

At expiration, the payoff of a variance swap is (σR
2 − Kvar) × N

Here:

σ2
R is the realized variance of the underlying asset (for example a stock or equity index) over the life

of the contract.

Kvar is the strike (contractual) variance that is set at the beginning of the contract to make the
starting value equal to zero.

N is the notional amount.

See Also
Functions
finmodel | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020b

11 Functions

11-2788



Swaption
Swaption instrument object

Description
Create and price a Swaption instrument object for one or more Swaption instruments using this
workflow:

1 Use fininstrument to create a Swaption instrument object for one or more Swaption
instruments.

2 Use finmodel to specify a HullWhite, BlackKarasinski, Black, Normal, SABR, or
LinearGaussian2F model for the Swaption instrument object.

3 Choose a pricing method.

• When using a HullWhite, BlackKarasinski, Black, Normal, or SABR model, use
finpricer to specify a Normal, SABR, Black, HullWhite, or IRTree pricing method for
one or more Swaption instruments.

• When using a HullWhite or LinearGaussian2F model, use finpricer to specify an
IRMonteCarlo pricing method for one or more Swaption instruments.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available models and pricing methods for a Swaption instrument, see
“Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
SwaptionInstrument = fininstrument(InstrumentType,'Strike',strike_value,'
ExerciseDate',exercice_date)
SwaptionInstrument = fininstrument( ___ ,Name,Value)

Description

SwaptionInstrument = fininstrument(InstrumentType,'Strike',strike_value,'
ExerciseDate',exercice_date) creates a Swaption object for one or more Swaption
instruments by specifying InstrumentType and sets the properties on page 11-2791 for the
required name-value pair arguments Strike and ExerciseDate. For more information on a
Swaption instrument, see “More About” on page 11-2807.

SwaptionInstrument = fininstrument( ___ ,Name,Value) sets optional properties on page
11-2791 using additional name-value pairs in addition to the required arguments in the previous
syntax. For example, SwaptionInstrument =
fininstrument("Swaption",'Strike',0.67,'ExerciseDate',datetime(2019,1,30),'Sw
ap',Swap_obj,'OptionType',"put",'ExerciseStyle',"European",'Name',"swaption_i

 Swaption

11-2789



nstrument") creates a Swaption put instrument with a strike of 0.67 and an European exercise.
You can specify multiple name-value pair arguments.

Input Arguments

InstrumentType — Instrument type
string with value "Swaption" | string array with values of "Swaption" | character vector with value
'Swaption' | cell array of character vectors with values of 'Swaption'

Instrument type, specified as a string with the value of "Swaption", a character vector with the
value of 'Swaption', an NINST-by-1 string array with values of "Swaption", or an NINST-by-1 cell
array of character vectors with values of 'Swaption'.
Data Types: char | cell | string

Swaption Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: SwaptionInstrument =
fininstrument("Swaption",'Strike',.67,'ExerciseDate',datetime(2019,1,30),'Swa
p',Swap_obj,'OptionType',"put",'ExerciseStyle',"European",'Name',"swaption_in
strument")

Required Swaption Name-Value Pair Arguments

Strike — Option strike value
scalar nonnegative decimal | vector of nonnegative decimals

Option strike value, specified as the comma-separated pair consisting of 'Strike' and a scalar
nonnegative decimal or an NINST-by-1 vector of nonnegative decimals.
Data Types: double

ExerciseDate — Option exercise date
datetime | serial date number | date character vector | date string | vector of datetimes | vector of
serial date numbers | cell array of date character vectors | date string array

Option exercise date, specified as the comma-separated pair consisting of 'ExerciseDate' and a
scalar datetime, serial date number, date character vector, date string or an NINST-by-1 vector of
datetimes, serial date numbers, cell array of date character vectors, or date string array.

Note For a European option, there is only one ExerciseDate on the option expiry date.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the ExerciseDate property is stored as a datetime.
Data Types: double | char | cell | string | datetime

Swap — Underlying Swap object
scalar Swap object | vector of Swap objects
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Underlying Swap object, specified as the comma-separated pair consisting of 'Swap' and a scalar
Swap object or an NINST-by-1 vector of Swap objects.
Data Types: object

Optional Swaption Name-Value Pair Arguments

OptionType — Option type
"call" (default) | string with values "call" or "put" | string array with values of "call" or "put"
| character vector with value 'call' or 'put' | cell array of character vectors with values of
'call' or 'put'

Option type, specified as the comma-separated pair consisting of 'OptionType' and a scalar string
or character vector or an NINST-by-1 cell array of character vectors or string array.
Data Types: char | cell | string

ExerciseStyle — Option exercise style
"European" (default) | string with value "European" | string array with values of "European" |
character vector with value 'European' | cell array of character vectors with values of "European"

Option exercise style, specified as the comma-separated pair consisting of 'ExerciseStyle' and a
scalar string or character vector or an NINST-by-1 cell array of character vectors or string array.

Note When you specify a Swap instrument as the underlying asset for a Swaption instrument and
use a Normal, SABR, Black, or HullWhite pricer, the Swap instrument LegType must be
["fixed","float"] or ["float","fixed"] and the Swaption instrument ExerciseStyle
must be "European".

Data Types: string | cell | char

Name — User-defined name for instrument
" " (default) | string | string array | character vector | cell array of character vectors

User-defined name for the instrument, specified as the comma-separated pair consisting of 'Name'
and a scalar string or character vector or an NINST-by-1 cell array of character vectors or string
array.
Data Types: char | cell | string

Properties
Strike — Option strike value
scalar nonnegative decimal | vector of nonnegative decimals

Option strike value, returned as a scalar nonnegative decimal or an NINST-by-1 vector of nonnegative
decimals.
Data Types: double

ExerciseDate — Option exercise date
datetime | vector of datetimes

Option exercise date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
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Data Types: datetime

Swap — Underlying Swap object
scalar Swap object | vector of Swap objects

Swap object, returned as a scalar Swap object or an NINST-by-1 vector of Swap objects.
Data Types: object

OptionType — Option type
"call" (default) | string with value "call" or "put" | string array with values of "call" or "put"

Option type, returned as a scalar string or an NINST-by-1 string array with a value of "call" or
"put".
Data Types: string

ExerciseStyle — Option exercise style
"European" (default) | string with value "European" | string array with values of "European"

Option exercise style, returned as a scalar string or an NINST-by-1 string array with a value of
"European".
Data Types: string

Name — User-defined name for instrument
" " (default) | string | string array

User-defined name for the instrument, returned as a string or an NINST-by-1 string array.
Data Types: string

Examples

Price Swaption Instrument Using SABR Model and SABR Pricer

This example shows the workflow to price a Swaption instrument when you use a SABR model and a
SABR pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
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                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Swap Instrument Object

Use fininstrument to create the underlying Swap instrument object.

Swap = fininstrument("Swap",'Maturity',datetime(2027,3,15),'LegRate',[0 0],'LegType',...
    ["float","fixed"],'Notional',100,'StartDate',datetime(2022,3,15),'Name',"swap_instrument")

Swap = 
  Swap with properties:

                     LegRate: [0 0]
                     LegType: ["float"    "fixed"]
                       Reset: [2 2]
                       Basis: [0 0]
                    Notional: 100
          LatestFloatingRate: [NaN NaN]
                 ResetOffset: [0 0]
    DaycountAdjustedCashFlow: [0 0]
             ProjectionCurve: [0x0 ratecurve]
       BusinessDayConvention: ["actual"    "actual"]
                    Holidays: NaT
                EndMonthRule: [1 1]
                   StartDate: 15-Mar-2022
                    Maturity: 15-Mar-2027
                        Name: "swap_instrument"

Create Swaption Instrument Object

Use fininstrument to create a Swaption instrument object.

Swaption = fininstrument("Swaption",'Strike',0.02,'ExerciseDate',datetime(2022,3,15),'Swap',Swap,'Name',"swaption_option")

Swaption = 
  Swaption with properties:

       OptionType: "call"
    ExerciseStyle: "european"
     ExerciseDate: 15-Mar-2022
           Strike: 0.0200
             Swap: [1x1 fininstrument.Swap]
             Name: "swaption_option"

Create SABR Model Object

Use finmodel to create a SABR model object.

SabrModel = finmodel("SABR",'Alpha',0.032,'Beta',0.04,'Rho',.08,'Nu',0.49,'Shift',0.002)
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SabrModel = 
  SABR with properties:

             Alpha: 0.0320
              Beta: 0.0400
               Rho: 0.0800
                Nu: 0.4900
             Shift: 0.0020
    VolatilityType: "black"

Create SABR Pricer Object

Use finpricer to create a SABR pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'Model',SabrModel,'DiscountCurve',myRC)

outPricer = 
  SABR with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.SABR]

Price Swaption Instrument

Use price to compute the price for the Swaption instrument.

Price = price(outPricer,Swaption)

Price = 10.8558

Price Multiple Swaption Instruments Using SABR Model and SABR Pricer

This example shows the workflow to price multiple Swaption instrument when you use a SABR model
and a SABR pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
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                Rates: [10x1 double]
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Swap Instrument Object

Use fininstrument to create the underlying Swap instrument object.

Swap = fininstrument("Swap",'Maturity',datetime(2027,3,15),'LegRate',[0 0],'LegType',...
    ["float","fixed"],'Notional',100,'StartDate',datetime(2022,3,15),'Name',"swap_instrument")

Swap = 
  Swap with properties:

                     LegRate: [0 0]
                     LegType: ["float"    "fixed"]
                       Reset: [2 2]
                       Basis: [0 0]
                    Notional: 100
          LatestFloatingRate: [NaN NaN]
                 ResetOffset: [0 0]
    DaycountAdjustedCashFlow: [0 0]
             ProjectionCurve: [0x0 ratecurve]
       BusinessDayConvention: ["actual"    "actual"]
                    Holidays: NaT
                EndMonthRule: [1 1]
                   StartDate: 15-Mar-2022
                    Maturity: 15-Mar-2027
                        Name: "swap_instrument"

Create Swaption Instrument Object

Use fininstrument to create a Swaption instrument object for three Swaption instruments.

Swaption = fininstrument("Swaption",'Strike',[0.02 ; 0.03 ; 0.04],'ExerciseDate',datetime([2022,3,15 ; 2022,4,15 ; 2022,5,15]),'Swap',Swap,'Name',"swaption_option")

Swaption=3×1 object
  3x1 Swaption array with properties:

    OptionType
    ExerciseStyle
    ExerciseDate
    Strike
    Swap
    Name

Create SABR Model Object

Use finmodel to create a SABR model object.

SabrModel = finmodel("SABR",'Alpha',0.032,'Beta',0.04,'Rho',.08,'Nu',0.49,'Shift',0.002)

SabrModel = 
  SABR with properties:
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             Alpha: 0.0320
              Beta: 0.0400
               Rho: 0.0800
                Nu: 0.4900
             Shift: 0.0020
    VolatilityType: "black"

Create SABR Pricer Object

Use finpricer to create a SABR pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'Model',SabrModel,'DiscountCurve',myRC)

outPricer = 
  SABR with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.SABR]

Price Swaption Instruments

Use price to compute the prices for the Swaption instruments.

Price = price(outPricer,Swaption)

Price = 3×1

   10.8558
    9.0442
    7.4883

Price Swaption Instrument Using Black Model and Black Pricer

This example shows the workflow to price a Swaption instrument when you use a Black model and
a Black pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
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          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Swap Instrument Object

Use fininstrument to create the underlying Swap instrument object.

Swap = fininstrument("Swap",'Maturity',datetime(2027,3,15),'LegRate',[0 0],'LegType',...
    ["float","fixed"],'Notional',100,'StartDate',datetime(2022,3,15),'Name',"swap_instrument")

Swap = 
  Swap with properties:

                     LegRate: [0 0]
                     LegType: ["float"    "fixed"]
                       Reset: [2 2]
                       Basis: [0 0]
                    Notional: 100
          LatestFloatingRate: [NaN NaN]
                 ResetOffset: [0 0]
    DaycountAdjustedCashFlow: [0 0]
             ProjectionCurve: [0x0 ratecurve]
       BusinessDayConvention: ["actual"    "actual"]
                    Holidays: NaT
                EndMonthRule: [1 1]
                   StartDate: 15-Mar-2022
                    Maturity: 15-Mar-2027
                        Name: "swap_instrument"

Create Swaption Instrument Object

Use fininstrument to create a Swaption instrument object.

Swaption = fininstrument("Swaption",'Strike',0.02,'ExerciseDate',datetime(2022,3,15),'Swap',Swap,'Name',"swaption_option")

Swaption = 
  Swaption with properties:

       OptionType: "call"
    ExerciseStyle: "european"
     ExerciseDate: 15-Mar-2022
           Strike: 0.0200
             Swap: [1x1 fininstrument.Swap]
             Name: "swaption_option"

Create Black Model Object

Use finmodel to create a Black model object.

BlackModel = finmodel("Black",'Volatility',0.032,'Shift',0.002)
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BlackModel = 
  Black with properties:

    Volatility: 0.0320
         Shift: 0.0020

Create Black Pricer Object

Use finpricer to create a Black pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'Model',BlackModel,'DiscountCurve',myRC)

outPricer = 
  Black with properties:

            Model: [1x1 finmodel.Black]
    DiscountCurve: [1x1 ratecurve]

Price Swaption Instrument

Use price to compute the price for the Swaption instrument.

Price = price(outPricer,Swaption)

Price = 3.3116

Price Swaption Instrument Using Hull-White Model and IRTree Pricer

This example shows the workflow to price a Swaption instrument when you use a HullWhite model
and an IRTree pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
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     LongExtrapMethod: "previous"

Create Swap Instrument Object

Use fininstrument to create the underlying Swap instrument object.

Swap = fininstrument("Swap",'Maturity',datetime(2027,3,15),'LegRate',[0 0],'LegType',...
    ["float","fixed"],'Notional',100,'StartDate',datetime(2022,3,15),'Name',"swap_instrument")

Swap = 
  Swap with properties:

                     LegRate: [0 0]
                     LegType: ["float"    "fixed"]
                       Reset: [2 2]
                       Basis: [0 0]
                    Notional: 100
          LatestFloatingRate: [NaN NaN]
                 ResetOffset: [0 0]
    DaycountAdjustedCashFlow: [0 0]
             ProjectionCurve: [0x0 ratecurve]
       BusinessDayConvention: ["actual"    "actual"]
                    Holidays: NaT
                EndMonthRule: [1 1]
                   StartDate: 15-Mar-2022
                    Maturity: 15-Mar-2027
                        Name: "swap_instrument"

Create Swaption Instrument Object

Use fininstrument to create a Swaption instrument object.

Swaption = fininstrument("Swaption",'Strike',0.02,'ExerciseDate',datetime(2022,3,15),'Swap',Swap,'Name',"swaption_option")

Swaption = 
  Swaption with properties:

       OptionType: "call"
    ExerciseStyle: "european"
     ExerciseDate: 15-Mar-2022
           Strike: 0.0200
             Swap: [1x1 fininstrument.Swap]
             Name: "swaption_option"

Create HullWhite Model Object

Use finmodel to create a HullWhite model object.

HullWhiteModel = finmodel("HullWhite",'Alpha',0.032,'Sigma',0.04)

HullWhiteModel = 
  HullWhite with properties:

    Alpha: 0.0320
    Sigma: 0.0400
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Create IRTree Pricer Object

Use finpricer to create an IRTree pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("IRTree",'Model',HullWhiteModel,'DiscountCurve',myRC,'TreeDates',ZeroDates)

outPricer = 
  HWBKTree with properties:

             Tree: [1x1 struct]
        TreeDates: [10x1 datetime]
            Model: [1x1 finmodel.HullWhite]
    DiscountCurve: [1x1 ratecurve]

Price Swaption Instrument

Use price to compute the price and sensitivities for the Swaption instrument.

[Price, outPR] = price(outPricer,Swaption,["all"])

Price = 14.6581

outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×4 table
    Price      Vega      Gamma     Delta
    ______    ______    _______    _____

    14.658    321.44    -2261.6    142.2

Price Swaption Instrument Using LinearGaussian2F Model and IRMonteCarlo Pricer

This example shows the workflow to price a Swaption instrument when using a LinearGaussian2F
model and an IRMonteCarlo pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2019,1,1);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)
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myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 01-Jan-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Swap Instrument Object

Use fininstrument to create the underlying Swap instrument object.

Swap = fininstrument("Swap",'Maturity',datetime(2022,1,1),'LegRate',[0.05,0.04],'Name',"swap_instrument")

Swap = 
  Swap with properties:

                     LegRate: [0.0500 0.0400]
                     LegType: ["fixed"    "float"]
                       Reset: [2 2]
                       Basis: [0 0]
                    Notional: 100
          LatestFloatingRate: [NaN NaN]
                 ResetOffset: [0 0]
    DaycountAdjustedCashFlow: [0 0]
             ProjectionCurve: [0x0 ratecurve]
       BusinessDayConvention: ["actual"    "actual"]
                    Holidays: NaT
                EndMonthRule: [1 1]
                   StartDate: NaT
                    Maturity: 01-Jan-2022
                        Name: "swap_instrument"

Create Swaption Instrument Object

Use fininstrument to create a Swaption instrument object.

Swaption = fininstrument("Swaption",'Strike',0.02,'ExerciseDate',datetime(2021,7,1),'Swap',Swap,'Name',"swaption_option")

Swaption = 
  Swaption with properties:

       OptionType: "call"
    ExerciseStyle: "european"
     ExerciseDate: 01-Jul-2021
           Strike: 0.0200
             Swap: [1x1 fininstrument.Swap]
             Name: "swaption_option"
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Create LinearGaussian2F Model Object

Use finmodel to create a LinearGaussian2F model object.

LinearGaussian2FModel = finmodel("LinearGaussian2F",'Alpha1',0.07,'Sigma1',0.01,'Alpha2',0.5,'Sigma2',0.006,'Correlation',-0.7)

LinearGaussian2FModel = 
  LinearGaussian2F with properties:

         Alpha1: 0.0700
         Sigma1: 0.0100
         Alpha2: 0.5000
         Sigma2: 0.0060
    Correlation: -0.7000

Create IRMonteCarlo Pricer Object

Use finpricer to create an IRMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

simDates = datetime(2019,7,1)+calmonths(0:6:30);
outPricer = finpricer("IRMonteCarlo",'Model',LinearGaussian2FModel,'DiscountCurve',myRC,'SimulationDates',simDates)

outPricer = 
  G2PPMonteCarlo with properties:

          NumTrials: 1000
      RandomNumbers: []
      DiscountCurve: [1x1 ratecurve]
    SimulationDates: [01-Jul-2019    01-Jan-2020    01-Jul-2020    ...    ]
              Model: [1x1 finmodel.LinearGaussian2F]

Price Swaption Instrument

Use price to compute the price and sensitivities for the Swaption instrument.

[Price,outPR] = price(outPricer,Swaption,["all"])

Price = 1.5065

outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×4 table
    Price     Delta     Gamma           Vega       
    ______    ______    ______    _________________

    1.5065    44.746    -257.2    1.6729    -2.0015
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Calibrate Shifted SABR Model Parameters for Swaption Instrument

This example shows how to calibrate the shifted SABR model parameters for a Swaption instrument
when you use a SABR pricing method.

Load Market Data

% Zero curve
ValuationDate = datetime("5-Mar-2016", 'Locale', 'en_US');
ZeroDates = datemnth(ValuationDate,[1 2 3 6 9 12*[1 2 3 4 5 6 7 8 9 10 12]])';
ZeroRates = [-0.33 -0.28 -0.24 -0.12 -0.08 -0.03 0.015 0.028 ...
    0.033 0.042 0.056 0.095 0.194 0.299 0.415 0.525]'/100;
Compounding = 1;
ZeroCurve = ratecurve("zero",ValuationDate,ZeroDates,ZeroRates,'Compounding',Compounding)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: 1
                Basis: 0
                Dates: [16x1 datetime]
                Rates: [16x1 double]
               Settle: 05-Mar-2016
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

% Define the swaptions
SwaptionSettle = datetime("5-Mar-2016", 'Locale', 'en_US');
SwaptionExerciseDate = datetime("5-Mar-2017", 'Locale', 'en_US');
SwaptionStrikes = (-0.6:0.01:1.6)'/100; % Include negative strikes
SwapMaturity = datetime("5-Mar-2022", 'Locale', 'en_US'); % Maturity of underlying swap
OptSpec = 'call';

Compute Forward Swap Rate by Creating Swap Instrument

Use fininstrument to create a Swap instrument object.

LegRate = [0 0];
Swap = fininstrument("Swap", 'Maturity', SwapMaturity, 'LegRate', LegRate, "LegType",["fixed" "float"],...
    "ProjectionCurve", ZeroCurve, "StartDate", SwaptionExerciseDate)

Swap = 
  Swap with properties:

                     LegRate: [0 0]
                     LegType: ["fixed"    "float"]
                       Reset: [2 2]
                       Basis: [0 0]
                    Notional: 100
          LatestFloatingRate: [NaN NaN]
                 ResetOffset: [0 0]
    DaycountAdjustedCashFlow: [0 0]
             ProjectionCurve: [1x2 ratecurve]
       BusinessDayConvention: ["actual"    "actual"]
                    Holidays: NaT
                EndMonthRule: [1 1]

 Swaption

11-2803



                   StartDate: 05-Mar-2017
                    Maturity: 05-Mar-2022
                        Name: ""

ForwardValue = parswaprate(Swap,ZeroCurve)

ForwardValue = 7.3271e-04

Load the Market Implied Volatility Data

The market swaption volatilities are quoted in terms of shifted Black volatilities with a 0.8 percent
shift.

StrikeGrid = [-0.5; -0.25; -0.125; 0; 0.125; 0.25; 0.5; 1.0; 1.5]/100;
MarketStrikes = ForwardValue + StrikeGrid;
Shift = 0.008;  % 0.8 percent shift
MarketShiftedBlackVolatilities = [21.1; 15.3; 14.0; 14.6; 16.0; 17.7; 19.8; 23.9; 26.2]/100;
ATMShiftedBlackVolatility = MarketShiftedBlackVolatilities(StrikeGrid==0);

Calibrate Shifted SABR Model Parameters

The Beta parameter is predetermined at 0.5. Use volatilities to compute the implied volatility.

Beta = 0.5;

% Calibrate Alpha, Rho, and Nu
objFun = @(X) MarketShiftedBlackVolatilities - volatilities(finpricer("Analytic", 'Model', ...
    finmodel("SABR", 'Alpha', X(1), 'Beta', Beta, 'Rho', X(2), 'Nu', X(3), 'Shift', Shift), ...
    'DiscountCurve', ZeroCurve), SwaptionExerciseDate, ForwardValue, MarketStrikes);

X = lsqnonlin(objFun, [0.5 0 0.5], [0 -1 0], [Inf 1 Inf]);

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to 
its initial value is less than the value of the function tolerance.

Alpha = X(1);
Rho = X(2);
Nu = X(3);

Create SABR Model Using the Calibrated Parameters

Use finmodel to create a SABR model object.

SABRModel = finmodel("SABR",'Alpha',Alpha,'Beta',Beta,'Rho',Rho,'Nu',Nu,'Shift',Shift)

SABRModel = 
  SABR with properties:

             Alpha: 0.0135
              Beta: 0.5000
               Rho: 0.4654
                Nu: 0.4957
             Shift: 0.0080
    VolatilityType: "black"
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Create SABR Pricer Using Calibrated SABR Model and Compute Volatilities

Use finpricer to create a SABR pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

SABRPricer = finpricer("Analytic", 'Model', SABRModel, 'DiscountCurve', ZeroCurve)

SABRPricer = 
  SABR with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.SABR]

SABRShiftedBlackVolatilities = volatilities(SABRPricer, SwaptionExerciseDate, ForwardValue, SwaptionStrikes)

SABRShiftedBlackVolatilities = 221×1

    0.2978
    0.2911
    0.2848
    0.2787
    0.2729
    0.2673
    0.2620
    0.2568
    0.2518
    0.2470
      ⋮

figure;
plot(MarketStrikes, MarketShiftedBlackVolatilities, 'o', ...
    SwaptionStrikes, SABRShiftedBlackVolatilities);
h = gca;
line([0,0],[min(h.YLim),max(h.YLim)],'LineStyle','--');
ylim([0.13 0.31])
xlabel('Strike');
legend('Market quotes','Shifted SABR', 'location', 'southeast');
title (['Shifted Black Volatility (',num2str(Shift*100),' percent shift)']);
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Price Swaption Instruments Using Calibrated SABR Model and SABR Pricer

% Create swaption instruments
NumInst = length(SwaptionStrikes);
Swaptions(NumInst, 1) = fininstrument("Swaption", ...
    'Strike', SwaptionStrikes(1), 'ExerciseDate', SwaptionExerciseDate(1), 'Swap', Swap);
for k = 1:NumInst
    Swaptions(k) = fininstrument("Swaption", 'Strike', SwaptionStrikes(k), ...
        'ExerciseDate', SwaptionExerciseDate, 'Swap', Swap, 'OptionType', OptSpec);
end
Swaptions

Swaptions=221×1 object
  16x1 Swaption array with properties:

    OptionType
    ExerciseStyle
    ExerciseDate
    Strike
    Swap
    Name
      ⋮

% Price swaptions using the SABR pricer
SwaptionPrices = price(SABRPricer,Swaptions);

figure;
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plot(SwaptionStrikes, SwaptionPrices, 'r');
h = gca;
line([0,0],[min(h.YLim),max(h.YLim)],'LineStyle','--');
xlabel('Strike');
title ('Swaption Price');

More About
Call Swaption

A call swaption or payer swaption allows the option buyer to enter into an interest-rate swap in which
the buyer of the option pays the fixed rate and receives the floating rate.

Put Swaption

A put swaption or receiver swaption allows the option buyer to enter into an interest-rate swap in
which the buyer of the option receives the fixed rate and pays the floating rate.

See Also
Functions
Swap | finmodel | finpricer | volatilities

Topics
“Calibrate Shifted SABR Model Parameters for Swaption Instrument” on page 2-168
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“Price a Swaption Using SABR Model and Analytic Pricer” on page 2-186
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53
“Supported Exercise Styles” on page 1-62
“Work with Negative Interest Rates Using Objects” on page 2-22

Introduced in R2020a
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Vanilla
Vanilla instrument object

Description
Create and price a Vanilla instrument object for one or more Vanilla instruments using this
workflow:

1 Use fininstrument to create a Vanilla instrument object for one or more Vanilla instruments.
2 Use finmodel to specify a BlackScholes, Bachelier, Heston, Bates, Merton, or Dupire

model for the Vanilla instrument object.
3 Choose a pricing method.

• When using a BlackScholes model, use finpricer to specify a FiniteDifference,
BlackScholes, BjerksundStensland, RollGeskeWhaley, VannaVolga, AssetTree, or
AssetMonteCarlo pricing method for one or more Vanilla instruments.

• When using a Heston, Bates, or Merton model, use finpricer to specify a
FiniteDifference, NumericalIntegration, FFT, or AssetMonteCarlo pricing method
for one or more Vanilla instruments.

• When using a Dupire model, use finpricer to specify a FiniteDifference pricing
method for one or more Vanilla instruments.

• When using a Bachelier model, use finpricer to specify an AssetMonteCarlo pricing
method for one or more Vanilla instruments.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available models and pricing methods for a Vanilla instrument, see
“Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
VanillaObj = fininstrument(InstrumentType,'Strike',strike_value,'
ExerciseDate',exercise_date)
VanillaObj = fininstrument( ___ ,Name,Value)

Description

VanillaObj = fininstrument(InstrumentType,'Strike',strike_value,'
ExerciseDate',exercise_date) creates a Vanilla object for one or more Vanilla instruments
by specifying InstrumentType and sets the properties on page 11-2812 for the required name-value
pair arguments Strike and ExerciseDate. For more information on a Vanilla instrument, see
“More About” on page 11-2835.
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VanillaObj = fininstrument( ___ ,Name,Value) sets optional properties on page 11-2812
using additional name-value pairs in addition to the required arguments in the previous syntax. For
example, VanillaObj =
fininstrument("Vanilla",'Strike',100,'ExerciseDate',datetime(2019,1,30),'Opti
onType',"put",'ExerciseStyle',"American",'Name',"vanilla_instrument") creates a
Vanilla put option with an American exercise. You can specify multiple name-value pair arguments.

Input Arguments

InstrumentType — Instrument type
string with value "Vanilla" | string array with values of "Vanilla" | character vector with value
'Vanilla' | cell array of character vectors with values of 'Vanilla'

Instrument type, specified as a string with the value of "Vanilla", a character vector with the value
of 'Vanilla', an NINST-by-1 string array with values of "Vanilla", or an NINST-by-1 cell array of
character vectors with values of 'Vanilla'.
Data Types: char | cell | string

Vanilla Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: VanillaObj =
fininstrument("Vanilla",'Strike',100,'ExerciseDate',datetime(2019,1,30),'Opti
onType',"put",'ExerciseStyle',"American",'Name',"vanilla_instrument")

Required Vanilla Name-Value Pair Arguments

Strike — Option strike price value
nonnegative numeric | nonnegative numeric vector

Option strike price value, specified as the comma-separated pair consisting of 'Strike' and a scalar
nonnegative numeric value or an NINST-by-1 nonnegative numeric vector.

Note When using a "Bermudan" ExerciseStyle with a FiniteDifference pricer, the Strike is
a vector.

Data Types: double

ExerciseDate — Option exercise date
datetime | serial date number | date character vector | date string | vector of datetimes | vector of
serial date numbers | cell array of date character vectors | date string array

Option exercise date, specified as the comma-separated pair consisting of 'ExerciseDate' and a
scalar datetime, serial date number, date character vector, date string or an NINST-by-1 vector of
datetimes, serial date numbers, cell array of date character vectors, or date string array.

Note For a European option, there is only one ExerciseDate on the option expiry date.
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When using a "Bermudan" ExerciseStyle with a FiniteDifference pricer, the ExerciseDate
is a vector.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the ExerciseDate property is stored as a datetime.
Data Types: double | char | cell | string | datetime

Optional Vanilla Name-Value Pair Arguments

OptionType — Option type
"call" (default) | string with value "call" or "put" | string array with values of "call" or "put"
| character vector with value 'call' or 'put' | cell array of character vectors with values of
'call' or 'put'

Option type, specified as the comma-separated pair consisting of 'OptionType' and a scalar string
or character vector or an NINST-by-1 cell array of character vectors or string array.

Note When you use a RollGeskeWhaley pricer with a Vanilla option, OptionType must be
'call'.

Data Types: char | cell | string

ExerciseStyle — Option exercise style
"European" (default) | string with value "European", "American", or "Bermudan" | string array
with values of "European", "American", or "Bermudan" | character vector with value
'European', 'American', or 'Bermudan' | cell array of character vectors with values of
'European', 'American', or 'Bermudan'

Option exercise style, specified as the comma-separated pair consisting of 'ExerciseStyle' and a
scalar string or character vector or an NINST-by-1 cell array of character vectors or string array.

Note

• When you use a BlackScholes pricer with a Vanilla option, the 'American' option type is not
supported.

• When you use a RollGeskeWhaley or a BjerksundStensland pricer with a Vanilla option,
you must specify an 'American' option.

• When you use a NumericalIntegration pricer with a Bates, Merton, or Heston model for a
Vanilla option, the ExerciseStyle must be 'European'.

• When you use a FFT pricer with a Bates, Merton, or Heston model for a Vanilla option, the
ExerciseStyle must be 'European'.

• When you use an AssetMonteCarlo pricer with a BlackScholes, Bates, Merton, or Heston
model for a Vanilla option, the ExerciseStyle can be 'American', 'European', or
'Bermudan'.

• When you use a FiniteDifference pricer with a BlackScholes, Bachelier, Dupire, Bates,
Merton, or Heston model for a Vanilla option, the ExerciseStyle can be 'American',
'European', or 'Bermudan'.

For more information on ExerciseStyle, see “Supported Exercise Styles” on page 1-62.
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Data Types: string | cell | char

Name — User-defined name for instrument
" " (default) | string | string array | character vector | cell array of character vectors

User-defined name for one of more instruments, specified as the comma-separated pair consisting of
'Name' and a scalar string or character vector or an NINST-by-1 cell array of character vectors or
string array.
Data Types: char | cell | string

Properties
Strike — Option strike price value
nonnegative numeric | nonnegative numeric vector

Option strike price value, returned as a scalar nonnegative numeric or an NINST-by-1 nonnegative
numeric vector.
Data Types: double

ExerciseDate — Option exercise date
datetime | vector of datetimes

Option exercise date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

OptionType — Option type
"call" (default) | string with value "call" or "put" | string array with values of "call" or "put"

Option type, returned as a scalar string or an NINST-by-1 string array with values of "call" or
"put".
Data Types: string

ExerciseStyle — Option type
"European" (default) | string with value "European", "American", or "Bermudan" | string array
with values of "European", "American", or "Bermudan"

Option exercise style, returned as a scalar string or an NINST-by-1 string array with values of
"European", "American", or "Bermudan".
Data Types: string

Name — User-defined name for instrument
" " (default) | string | string array

User-defined name for the instrument, returned as a scalar string or an NINST-by-1 string array.
Data Types: string

Object Functions
setExercisePolicy Set exercise policy for FixedBondOption, FloatBondOption, or Vanilla instrument
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Examples

Price Vanilla Instrument Using Black-Scholes Model and Black-Scholes Pricer

This example shows the workflow to price a Vanilla instrument when you use a BlackScholes
model and a BlackScholes pricing method.

Create Vanilla Instrument Object

Use fininstrument to create a Vanilla instrument object.

VanillaOpt = fininstrument("Vanilla",'ExerciseDate',datetime(2018,5,1),'Strike',29,'OptionType',"put",'ExerciseStyle',"european",'Name',"vanilla_option")

VanillaOpt = 
  Vanilla with properties:

       OptionType: "put"
    ExerciseStyle: "european"
     ExerciseDate: 01-May-2018
           Strike: 29
             Name: "vanilla_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',0.25)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.2500
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,1,1);
Maturity = datetime(2019,1,1);
Rate = 0.05;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',1)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 1
                Dates: 01-Jan-2019
                Rates: 0.0500
               Settle: 01-Jan-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"
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Create BlackScholes Pricer Object

Use finpricer to create a BlackScholes pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'DiscountCurve',myRC,'Model',BlackScholesModel,'SpotPrice',30,'DividendValue',0.045)

outPricer = 
  BlackScholes with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 30
    DividendValue: 0.0450
     DividendType: "continuous"

Price Vanilla Instrument

Use price to compute the price and sensitivities for the Vanilla instrument.

[Price, outPR] = price(outPricer,VanillaOpt,["all"])

Price = 1.2046

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []

outPR.Results

ans=1×7 table
    Price      Delta       Gamma      Lambda      Vega       Rho       Theta 
    ______    ________    ________    _______    ______    _______    _______

    1.2046    -0.36943    0.086269    -9.3396    6.4702    -4.0959    -2.3107

Price Multiple Vanilla Instruments Using Black-Scholes Model and Black-Scholes Pricer

This example shows the workflow to price multiple Vanilla instrument when you use a
BlackScholes model and a BlackScholes pricing method.

Create Vanilla Instrument Object

Use fininstrument to create a Vanilla instrument object for three Vanilla instruments.

VanillaOpt = fininstrument("Vanilla",'ExerciseDate',datetime([2018,5,1 ; 2018,6,1 ; 2018,7,1]),'Strike',[29 ; 38 ; 70],'OptionType',"put",'ExerciseStyle',"european",'Name',"vanilla_option")

VanillaOpt=3×1 object
  3x1 Vanilla array with properties:

    OptionType
    ExerciseStyle
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    ExerciseDate
    Strike
    Name

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',0.25)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.2500
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,1,1);
Maturity = datetime(2019,1,1);
Rate = 0.05;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',1)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 1
                Dates: 01-Jan-2019
                Rates: 0.0500
               Settle: 01-Jan-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create BlackScholes Pricer Object

Use finpricer to create a BlackScholes pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'DiscountCurve',myRC,'Model',BlackScholesModel,'SpotPrice',30,'DividendValue',0.045)

outPricer = 
  BlackScholes with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 30
    DividendValue: 0.0450
     DividendType: "continuous"
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Price Vanilla Instruments

Use price to compute the prices and sensitivities for the Vanilla instruments.

[Price, outPR] = price(outPricer,VanillaOpt,["all"])

Price = 3×1

    1.2046
    7.9479
   38.9392

outPR=3×1 object
  3x1 priceresult array with properties:

    Results
    PricerData

outPR.Results

ans=1×7 table
    Price      Delta       Gamma      Lambda      Vega       Rho       Theta 
    ______    ________    ________    _______    ______    _______    _______

    1.2046    -0.36943    0.086269    -9.3396    6.4702    -4.0959    -2.3107

ans=1×7 table
    Price      Delta       Gamma      Lambda      Vega       Rho       Theta 
    ______    ________    ________    _______    ______    _______    _______

    7.9479    -0.89786    0.031587    -3.4532    2.9612    -14.535    -0.3563

ans=1×7 table
    Price      Delta        Gamma        Lambda        Vega         Rho      Theta 
    ______    ________    __________    ________    __________    _______    ______

    38.939    -0.97775    1.2279e-06    -0.77043    0.00013814    -34.136    2.0936

Price Vanilla Instrument Using Black-Scholes Model and Asset Tree Pricer for LR Binomial
Tree

This example shows the workflow to price a Vanilla instrument when you use a BlackScholes
model and an AssetTree pricing method using a Leisen-Reimer (LR) binomial tree.

Create Vanilla Instrument Object

Use fininstrument to create a Vanilla instrument object.

VanillaOpt = fininstrument("Vanilla",'ExerciseDate',datetime(2018,5,1),'Strike',29,'OptionType',"put",'ExerciseStyle',"european",'Name',"vanilla_option")

VanillaOpt = 
  Vanilla with properties:
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       OptionType: "put"
    ExerciseStyle: "european"
     ExerciseDate: 01-May-2018
           Strike: 29
             Name: "vanilla_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',0.25)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.2500
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,1,1);
Maturity = datetime(2019,1,1);
Rate = 0.05;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',1)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 1
                Dates: 01-Jan-2019
                Rates: 0.0500
               Settle: 01-Jan-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetTree Pricer Object

Use finpricer to create an AssetTree pricer object for a LR equity tree and use the ratecurve
object for the 'DiscountCurve' name-value pair argument.

NumPeriods = 15;
LRPricer = finpricer("AssetTree",'DiscountCurve',myRC,'Model',BlackScholesModel,'SpotPrice',50,'PricingMethod',"LeisenReimer",'Maturity',datetime(2018,5,1),'NumPeriods',NumPeriods)

LRPricer = 
  LRTree with properties:

    InversionMethod: PP1
             Strike: 50
               Tree: [1x1 struct]
         NumPeriods: 15
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              Model: [1x1 finmodel.BlackScholes]
      DiscountCurve: [1x1 ratecurve]
          SpotPrice: 50
       DividendType: "continuous"
      DividendValue: 0
          TreeDates: [09-Jan-2018    17-Jan-2018    25-Jan-2018    ...    ]

LRPricer.Tree

ans = struct with fields:
    Probs: [2x15 double]
    ATree: {1x16 cell}
     dObs: [01-Jan-2018    09-Jan-2018    17-Jan-2018    ...    ]
     tObs: [0 0.0222 0.0444 0.0667 0.0889 0.1111 0.1333 0.1556 0.1778 ... ]

Price Vanilla Instrument

Use price to compute the price and sensitivities for the Vanilla instrument.

[Price, outPR] = price(LRPricer,VanillaOpt,["all"])

Price = 3.5022e-06

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×7 table
      Price          Delta         Gamma         Vega       Lambda         Rho           Theta   
    __________    ___________    __________    _________    _______    ___________    ___________

    3.5022e-06    -1.9331e-06    1.1068e-06    0.0016243    -30.496    -3.6747e-05    -0.00060106

outPR.PricerData.PriceTree

ans = struct with fields:
     PTree: {1x16 cell}
    ExTree: {1x16 cell}
      tObs: [0 0.0222 0.0444 0.0667 0.0889 0.1111 0.1333 0.1556 0.1778 ... ]
      dObs: [01-Jan-2018    09-Jan-2018    17-Jan-2018    ...    ]
     Probs: [2x15 double]

outPR.PricerData.PriceTree.ExTree

ans=1×16 cell array
  Columns 1 through 5

    {[0]}    {[0 0]}    {[0 0 0]}    {[0 0 0 0]}    {[0 0 0 0 0]}

  Columns 6 through 8

11 Functions

11-2818



    {[0 0 0 0 0 0]}    {[0 0 0 0 0 0 0]}    {[0 0 0 0 0 0 0 0]}

  Columns 9 through 11

    {[0 0 0 0 0 0 0 0 0]}    {[0 0 0 0 0 0 ... ]}    {[0 0 0 0 0 0 ... ]}

  Columns 12 through 14

    {[0 0 0 0 0 0 ... ]}    {[0 0 0 0 0 0 ... ]}    {[0 0 0 0 0 0 ... ]}

  Columns 15 through 16

    {[0 0 0 0 0 0 ... ]}    {[0 0 0 0 0 0 ... ]}

Price Vanilla Instrument Using Black-Scholes Model and Asset Tree Pricer for Standard
Trinomial Tree

This example shows the workflow to price a Vanilla instrument when you use a BlackScholes
model and an AssetTree pricing method using a Standard Trinomial (STT) tree.

Create Vanilla Instrument Object

Use fininstrument to create a Vanilla instrument object.

VanillaOpt = fininstrument("Vanilla",'ExerciseDate',datetime(2018,5,1),'Strike',29,'OptionType',"put",'ExerciseStyle',"european",'Name',"vanilla_option")

VanillaOpt = 
  Vanilla with properties:

       OptionType: "put"
    ExerciseStyle: "european"
     ExerciseDate: 01-May-2018
           Strike: 29
             Name: "vanilla_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',0.25)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.2500
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,1,1);
Maturity = datetime(2019,1,1);
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Rate = 0.05;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',1)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 1
                Dates: 01-Jan-2019
                Rates: 0.0500
               Settle: 01-Jan-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetTree Pricer Object

Use finpricer to create an AssetTree pricer object for a Standard Trinomial (STT) equity tree and
use the ratecurve object for the 'DiscountCurve' name-value pair argument.

NumPeriods = 15;
STTPricer = finpricer("AssetTree",'DiscountCurve',myRC,'Model',BlackScholesModel,'SpotPrice',50,'PricingMethod',"StandardTrinomial",'Maturity',datetime(2018,5,1),'NumPeriods',NumPeriods)

STTPricer = 
  STTree with properties:

             Tree: [1x1 struct]
       NumPeriods: 15
            Model: [1x1 finmodel.BlackScholes]
    DiscountCurve: [1x1 ratecurve]
        SpotPrice: 50
     DividendType: "continuous"
    DividendValue: 0
        TreeDates: [09-Jan-2018    17-Jan-2018    25-Jan-2018    ...    ]

STTPricer.Tree

ans = struct with fields:
    ATree: {1x16 cell}
    Probs: {1x15 cell}
     dObs: [01-Jan-2018    09-Jan-2018    17-Jan-2018    ...    ]
     tObs: [0 0.0222 0.0444 0.0667 0.0889 0.1111 0.1333 0.1556 0.1778 ... ]

Price Vanilla Instrument

Use price to compute the price and sensitivities for the Vanilla instrument.

[Price, outPR] = price(STTPricer,VanillaOpt,["all"])

Price = 6.3773e-05

outPR = 
  priceresult with properties:

       Results: [1x7 table]
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    PricerData: [1x1 struct]

outPR.Results

ans=1×7 table
      Price          Delta         Gamma         Vega       Lambda         Rho          Theta  
    __________    ___________    __________    _________    _______    ___________    _________

    6.3773e-05    -9.1432e-06    1.2388e-06    0.0034421    -21.514    -0.00064994    -0.001188

outPR.PricerData.PriceTree

ans = struct with fields:
     PTree: {1x16 cell}
    ExTree: {1x16 cell}
      tObs: [0 0.0222 0.0444 0.0667 0.0889 0.1111 0.1333 0.1556 0.1778 ... ]
      dObs: [01-Jan-2018    09-Jan-2018    17-Jan-2018    ...    ]
     Probs: {1x15 cell}

outPR.PricerData.PriceTree.ExTree

ans=1×16 cell array
  Columns 1 through 4

    {[0]}    {[0 0 0]}    {[0 0 0 0 0]}    {[0 0 0 0 0 0 0]}

  Columns 5 through 7

    {[0 0 0 0 0 0 0 0 0]}    {[0 0 0 0 0 0 ... ]}    {[0 0 0 0 0 0 ... ]}

  Columns 8 through 10

    {[0 0 0 0 0 0 ... ]}    {[0 0 0 0 0 0 ... ]}    {[0 0 0 0 0 0 ... ]}

  Columns 11 through 13

    {[0 0 0 0 0 0 ... ]}    {[0 0 0 0 0 0 ... ]}    {[0 0 0 0 0 0 ... ]}

  Columns 14 through 16

    {[0 0 0 0 0 0 ... ]}    {[0 0 0 0 0 0 ... ]}    {[0 0 0 0 0 0 ... ]}

Price American Option for Vanilla Instrument Using Black-Scholes Model and Roll-Geske-
Whaley Pricer

This example shows the workflow to price an American option for a Vanilla instrument when you
use a BlackScholes model and a RollGeskeWhaley pricing method.

Create Vanilla Instrument Object

Use fininstrument to create a Vanilla instrument object.

VanillaOpt = fininstrument("Vanilla",'Strike',105,'ExerciseDate',datetime(2022,9,15),'OptionType',"call",'ExerciseStyle',"american",'Name',"vanilla_option")
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VanillaOpt = 
  Vanilla with properties:

       OptionType: "call"
    ExerciseStyle: "american"
     ExerciseDate: 15-Sep-2022
           Strike: 105
             Name: "vanilla_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes","Volatility",0.2)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.2000
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create RollGeskeWhaley Pricer Object

Use finpricer to create a RollGeskeWhaley pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'Model',BlackScholesModel,'DiscountCurve',myRC,'SpotPrice',100,'DividendValue',timetable(datetime(2021,6,15),0.25),'PricingMethod',"RollGeskeWhaley")

outPricer = 
  RollGeskeWhaley with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 100
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    DividendValue: [1x1 timetable]
     DividendType: "cash"

Price Vanilla Instrument

Use price to compute the price and sensitivities for the Vanilla instrument.

[Price, outPR] = price(outPricer,VanillaOpt,["all"])

Price = 19.9066

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []

outPR.Results

ans=1×7 table
    Price      Delta       Gamma      Lambda     Vega      Theta      Rho  
    ______    _______    _________    ______    ______    _______    ______

    19.907    0.66568    0.0090971    3.344     72.804    -3.4537    186.68

Price a Vanilla Instrument for Foreign Exchange Using Black-Scholes Model and Black-
Scholes Pricer

This example shows the workflow to price a Vanilla instrument for foreign exchange (FX) when you
use a BlackScholes model and a BlackScholes pricing method. Assume that the current
exchange rate is $0.52 and has a volatility of 12% per annum. The annualized continuously
compounded foreign risk-free rate is 8% per annum.

Create Vanilla Instrument Object

Use fininstrument to create a Vanilla instrument object.

VanillaOpt = fininstrument("Vanilla",'ExerciseDate',datetime(2022,9,15),'Strike',.50,'OptionType',"put",'ExerciseStyle',"european",'Name',"vanilla_fx_option")

VanillaOpt = 
  Vanilla with properties:

       OptionType: "put"
    ExerciseStyle: "european"
     ExerciseDate: 15-Sep-2022
           Strike: 0.5000
             Name: "vanilla_fx_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.
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Sigma = .12;
BlackScholesModel = finmodel("BlackScholes","Volatility",Sigma)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.1200
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create BlackScholes Pricer Object

Use finpricer to create a BlackScholes pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument. When pricing currencies using a Vanilla
instrument, the DividendType must be 'continuous' and DividendValue is the annualized risk-
free interest rate in the foreign country.

ForeignRate = 0.08;
outPricer = finpricer("analytic",'DiscountCurve',myRC,'Model',BlackScholesModel,'SpotPrice',.52,'DividendType',"continuous",'DividendValue',ForeignRate)

outPricer = 
  BlackScholes with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 0.5200
    DividendValue: 0.0800
     DividendType: "continuous"

Price Vanilla FX Instrument

Use price to compute the price and sensitivities for the Vanilla FX instrument.

[Price, outPR] = price(outPricer,VanillaOpt,["all"])
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Price = 0.0738

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []

outPR.Results

ans=1×7 table
     Price       Delta      Gamma     Lambda      Vega        Rho        Theta  
    ________    ________    ______    _______    _______    _______    _________

    0.073778    -0.49349    2.0818    -4.7899    0.27021    -1.3216    -0.013019

Price American Option for Vanilla Instrument Using Black-Scholes Model and Asset Monte-
Carlo Pricer

This example shows the workflow to price an American option for a Vanilla instrument when you
use a BlackScholes model and an AssetMonteCarlo pricing method.

Create Vanilla Instrument Object

Use fininstrument to create a Vanilla instrument object.

VanillaOpt = fininstrument("Vanilla",'Strike',105,'ExerciseDate',datetime(2022,9,15),'OptionType',"call",'ExerciseStyle',"american",'Name',"vanilla_option")

VanillaOpt = 
  Vanilla with properties:

       OptionType: "call"
    ExerciseStyle: "american"
     ExerciseDate: 15-Sep-2022
           Strike: 105
             Name: "vanilla_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes","Volatility",0.2)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.2000
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.
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Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetMonteCarlo Pricer Object

Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("AssetMonteCarlo",'DiscountCurve',myRC,"Model",BlackScholesModel,'SpotPrice',150,'simulationDates',datetime(2022,9,15))

outPricer = 
  GBMMonteCarlo with properties:

      DiscountCurve: [1x1 ratecurve]
          SpotPrice: 150
    SimulationDates: 15-Sep-2022
          NumTrials: 1000
      RandomNumbers: []
              Model: [1x1 finmodel.BlackScholes]
       DividendType: "continuous"
      DividendValue: 0

Price Vanilla Instrument

Use price to compute the price and sensitivities for the Vanilla instrument.

[Price, outPR] = price(outPricer,VanillaOpt,["all"])

Price = 61.2010

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×7 table
    Price      Delta       Gamma      Lambda     Rho       Theta      Vega 
    ______    _______    _________    ______    ______    _______    ______
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    61.201    0.93074    0.0027813    2.2812    313.95    -3.7909    41.626

Price American Option for Vanilla Instrument Using Heston Model and Asset Monte-Carlo
Pricer

This example shows the workflow to price an American option for a Vanilla instrument when you
use a Heston model and an AssetMonteCarlo pricing method.

Create Vanilla Instrument Object

Use fininstrument to create a Vanilla instrument object.

VanillaOpt = fininstrument("Vanilla",'Strike',105,'ExerciseDate',datetime(2022,9,15),'OptionType',"call",'ExerciseStyle',"american",'Name',"vanilla_option")

VanillaOpt = 
  Vanilla with properties:

       OptionType: "call"
    ExerciseStyle: "american"
     ExerciseDate: 15-Sep-2022
           Strike: 105
             Name: "vanilla_option"

Create Heston Model Object

Use finmodel to create a Heston model object.

HestonModel = finmodel("Heston",'V0',0.032,'ThetaV',0.07,'Kappa',0.003,'SigmaV',0.02,'RhoSV',0.09)

HestonModel = 
  Heston with properties:

        V0: 0.0320
    ThetaV: 0.0700
     Kappa: 0.0030
    SigmaV: 0.0200
     RhoSV: 0.0900

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12

 Vanilla

11-2827



                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetMonteCarlo Pricer Object

Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("AssetMonteCarlo",'DiscountCurve',myRC,"Model",HestonModel,'SpotPrice',150,'simulationDates',datetime(2022,9,15))

outPricer = 
  HestonMonteCarlo with properties:

      DiscountCurve: [1x1 ratecurve]
          SpotPrice: 150
    SimulationDates: 15-Sep-2022
          NumTrials: 1000
      RandomNumbers: []
              Model: [1x1 finmodel.Heston]
       DividendType: "continuous"
      DividendValue: 0

Price Vanilla Instrument

Use price to compute the price and sensitivities for the Vanilla instrument.

[Price, outPR] = price(outPricer,VanillaOpt,["all"])

Price = 60.5637

outPR = 
  priceresult with properties:

       Results: [1x8 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×8 table
    Price      Delta       Gamma      Lambda     Rho       Theta      Vega     VegaLT 
    ______    _______    _________    ______    ______    _______    ______    _______

    60.564    0.94774    0.0011954    2.3473    326.36    -3.7126    35.272    0.31155

Price Bermudan Option for Vanilla Instrument Using Black-Scholes Model and Finite
Difference Pricer

This example shows the workflow to price a Bermudan option for a Vanilla instrument when you
use a BlackScholes model and a FiniteDifference pricing method.
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Create Vanilla Instrument Object

Use fininstrument to create a Vanilla instrument object.

VanillaOpt = fininstrument("Vanilla",'Strike',[110,120],'ExerciseDate',[datetime(2022,9,15) , datetime(2023,9,15)],'OptionType',"call",'ExerciseStyle',"Bermudan",'Name',"vanilla_option")

VanillaOpt = 
  Vanilla with properties:

       OptionType: "call"
    ExerciseStyle: "bermudan"
     ExerciseDate: [15-Sep-2022    15-Sep-2023]
           Strike: [110 120]
             Name: "vanilla_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes","Volatility",0.2)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.2000
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create FiniteDifference Pricer Object

Use finpricer to create a FiniteDifference pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("FiniteDifference",'Model',BlackScholesModel,'DiscountCurve',myRC,'SpotPrice',100)
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outPricer = 
  FiniteDifference with properties:

     DiscountCurve: [1x1 ratecurve]
             Model: [1x1 finmodel.BlackScholes]
         SpotPrice: 100
    GridProperties: [1x1 struct]
      DividendType: "continuous"
     DividendValue: 0

Price Vanilla Instrument

Use price to compute the price and sensitivities for the Vanilla instrument.

[Price, outPR] = price(outPricer,VanillaOpt,["all"])

Price = 18.6797

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×7 table
    Price     Delta       Gamma      Lambda     Theta      Rho       Vega 
    _____    _______    _________    ______    _______    ______    ______

    18.68    0.62163    0.0091406    3.3278    -3.3154    184.31    83.162

Price Vanilla Instrument Using Heston Model and Multiple Different Pricers

This example shows the workflow to price a Vanilla instrument when you use a Heston model and
various pricing methods.

Create Vanilla Instrument Object

Use fininstrument to create a Vanilla instrument object.

Settle = datetime(2017,6,29);
Maturity = datemnth(Settle,6);
Strike = 80;
VanillaOpt = fininstrument('Vanilla','ExerciseDate',Maturity,'Strike',Strike,'Name',"vanilla_option")

VanillaOpt = 
  Vanilla with properties:

       OptionType: "call"
    ExerciseStyle: "european"
     ExerciseDate: 29-Dec-2017
           Strike: 80
             Name: "vanilla_option"
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Create Heston Model Object

Use finmodel to create a Heston model object.

V0 = 0.04;
ThetaV = 0.05;
Kappa = 1.0;
SigmaV = 0.2;
RhoSV = -0.7;

HestonModel = finmodel("Heston",'V0',V0,'ThetaV',ThetaV,'Kappa',Kappa,'SigmaV',SigmaV,'RhoSV',RhoSV)

HestonModel = 
  Heston with properties:

        V0: 0.0400
    ThetaV: 0.0500
     Kappa: 1
    SigmaV: 0.2000
     RhoSV: -0.7000

Create ratecurve object

Create a ratecurve object using ratecurve.

Rate = 0.03;
ZeroCurve = ratecurve('zero',Settle,Maturity,Rate);

Create NumericalIntegration, FFT, and FiniteDifference Pricer Objects

Use finpricer to create a NumericalIntegration, FFT, and FiniteDifference pricer objects
and use the ratecurve object for the 'DiscountCurve' name-value pair argument.

SpotPrice = 80;
Strike = 80;
DividendYield = 0.02;

NIPricer = finpricer("NumericalIntegration",'Model', HestonModel,'SpotPrice',SpotPrice,'DiscountCurve',ZeroCurve,'DividendValue',DividendYield)

NIPricer = 
  NumericalIntegration with properties:

                Model: [1x1 finmodel.Heston]
        DiscountCurve: [1x1 ratecurve]
            SpotPrice: 80
         DividendType: "continuous"
        DividendValue: 0.0200
               AbsTol: 1.0000e-10
               RelTol: 1.0000e-10
     IntegrationRange: [1.0000e-09 Inf]
    CharacteristicFcn: @characteristicFcnHeston
            Framework: "heston1993"
       VolRiskPremium: 0
           LittleTrap: 1
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FFTPricer = finpricer("FFT",'Model',HestonModel, ...
    'SpotPrice',SpotPrice,'DiscountCurve',ZeroCurve, ...
    'DividendValue',DividendYield,'NumFFT',8192)

FFTPricer = 
  FFT with properties:

                    Model: [1x1 finmodel.Heston]
            DiscountCurve: [1x1 ratecurve]
                SpotPrice: 80
             DividendType: "continuous"
            DividendValue: 0.0200
                   NumFFT: 8192
    CharacteristicFcnStep: 0.0100
            LogStrikeStep: 0.0767
        CharacteristicFcn: @characteristicFcnHeston
            DampingFactor: 1.5000
               Quadrature: "simpson"
           VolRiskPremium: 0
               LittleTrap: 1

FDPricer = finpricer("FiniteDifference",'Model',HestonModel,'SpotPrice',SpotPrice,'DiscountCurve',ZeroCurve,'DividendValue',DividendYield)

FDPricer = 
  FiniteDifference with properties:

     DiscountCurve: [1x1 ratecurve]
             Model: [1x1 finmodel.Heston]
         SpotPrice: 80
    GridProperties: [1x1 struct]
      DividendType: "continuous"
     DividendValue: 0.0200

Price Vanilla Instrument

Use the following sensitivities when pricing the Vanilla instrument.

InpSensitivity = ["delta", "gamma", "theta", "rho", "vega", "vegalt"];

Use price to compute the price and sensitivities for the Vanilla instrument that uses the
NumericalIntegration pricer.

[PriceNI,  outPR_NI]  = price(NIPricer,VanillaOpt,InpSensitivity)

PriceNI = 4.7007

outPR_NI = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []

Use price to compute the price and sensitivities for the Vanilla instrument that uses the FFT
pricer.

[PriceFFT, outPR_FFT] = price(FFTPricer,VanillaOpt,InpSensitivity)
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PriceFFT = 4.7007

outPR_FFT = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []

Use price to compute the price and sensitivities for the Vanilla instrument that uses the
FiniteDifference pricer.

[PriceFD,  outPR_FD]  = price(FDPricer,VanillaOpt,InpSensitivity)

PriceFD = 4.7003

outPR_FD = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: [1x1 struct]

Aggregate the price results.

[outPR_NI.Results;outPR_FFT.Results;outPR_FD.Results]

ans=3×7 table
    Price      Delta      Gamma       Theta      Rho       Vega     VegaLT
    ______    _______    ________    _______    ______    ______    ______

    4.7007    0.57747     0.03392    -4.8474    20.805    17.028    5.2394
    4.7007    0.57747     0.03392    -4.8474    20.805    17.028    5.2394
    4.7003    0.57722    0.035254    -4.8483    20.801    17.046    5.2422

Compute Option Price Surfaces

Use the price function for the NumericalIntegration pricer and the price function for the FFT
pricer to compute the prices for a range of Vanilla instruments.

Maturities = datemnth(Settle,(3:3:24)');
NumMaturities = length(Maturities);
Strikes = (20:10:160)';
NumStrikes = length(Strikes);

[Maturities_Full,Strikes_Full] = meshgrid(Maturities,Strikes);

NumInst = numel(Strikes_Full);
VanillaOptions(NumInst, 1) = fininstrument("vanilla",...
    "ExerciseDate", Maturities_Full(1), "Strike", Strikes_Full(1));
for instidx=1:NumInst
    VanillaOptions(instidx) = fininstrument("vanilla",...
        "ExerciseDate", Maturities_Full(instidx), "Strike", Strikes_Full(instidx));
end

Prices_NI = price(NIPricer, VanillaOptions);
Prices_FFT = price(FFTPricer, VanillaOptions);
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figure;
surf(Maturities_Full,Strikes_Full,reshape(Prices_NI,[NumStrikes,NumMaturities]));
title('Price (Numerical Integration)');
view(-112,34);
xlabel('Maturity')
ylabel('Strike')

figure;
surf(Maturities_Full,Strikes_Full,reshape(Prices_FFT,[NumStrikes,NumMaturities]));
title('Price (FFT)');
view(-112,34);
xlabel('Maturity')
ylabel('Strike')
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More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

where:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.
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Tips
After creating a Vanilla instrument object, you can use setExercisePolicy to change the size of
the options. For example, if you have the following instrument:

VanillaOpt = fininstrument("Vanilla",'ExerciseDate',datetime(2021,5,1),'Strike',29,'OptionType',"put",'ExerciseStyle',"European")

To modify the Vanilla instrument's size by changing the ExerciseStyle from "European" to
"American", use setExercisePolicy:

VanillaOpt = setExercisePolicy(VanillaOpt,[datetime(2021,1,1) datetime(2022,1,1)],100,'American')

See Also
Functions
finmodel | finpricer

Topics
“Price European Vanilla Call Options Using Black-Scholes Model and Different Equity Pricers” on
page 1-95
“Use Black-Scholes Model to Price Asian Options with Several Equity Pricers” on page 3-135
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53
“Supported Exercise Styles” on page 1-62

Introduced in R2020a
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Deposit
Deposit instrument object

Description
Create and price a Deposit instrument object for one or more Deposit instruments using this
workflow:

1 Use fininstrument to create a Deposit instrument object for one or more Deposit
instruments.

2 Use ratecurve to specify an interest-rate model for the Deposit instrument object.
3 Use finpricer to specify a Discount pricing method for one or more Deposit instruments.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available models and pricing methods for a Deposit instrument, see
“Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
DepositObj = fininstrument(InstrumentType,'Maturity',maturity_date,'
Rate',rate_value)
DepositObj = fininstrument( ___ ,Name,Value)

Description

DepositObj = fininstrument(InstrumentType,'Maturity',maturity_date,'
Rate',rate_value) creates a Deposit object for one or more Deposit instruments by specifying
InstrumentType and sets the properties on page 11-2840 for the required name-value pair
arguments Maturity and Rate.

DepositObj = fininstrument( ___ ,Name,Value) sets optional properties on page 11-2840
using additional name-value pairs in addition to the required arguments in the previous syntax. For
example, DepositObj =
fininstrument("Deposit",'Maturity',datetime(2019,1,30),'Rate',0.027,'Period',
2,'Basis',1,'Principal',100,'BusinessDayConvention',"follow",'Name',"deposit_
instrument") creates a Deposit instrument with an interest rate of .027 and a maturity of January
30, 2019. You can specify multiple name-value pair arguments.

Input Arguments

InstrumentType — Instrument type
string with value "Deposit" | string array with values of "Deposit" | character vector with value
'Deposit' | cell array of character vectors with values of 'Deposit'
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Instrument type, specified as a string with the value of "Deposit", a character vector with the value
of 'Deposit', an NINST-by-1 string array with values of "Deposit", or an NINST-by-1 cell array of
character vectors with values of 'Deposit'.
Data Types: char | string

Deposit Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: DepositObj =
fininstrument("Deposit",'Maturity',datetime(2019,1,30),'Rate',0.027,'Period',
2,'Basis',1,'Principal',100,'BusinessDayConvention',"follow",'Name',"deposit_
instrument")

Required Deposit Name-Value Pair Arguments

Maturity — Maturity date
datetime | serial date number | date character vector | date string | vector of datetimes | vector of
serial date numbers | cell array of date character vectors | date string array

Maturity date, specified as the comma-separated pair consisting of 'Maturity' and a datetime,
serial date number, date character vector, date string or an NINST-by-1 vector of datetimes, serial
date numbers, cell array of date character vectors, or date string array.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the Maturity property is stored as a datetime.
Data Types: char | cell | double | string | datetime

Rate — Deposit interest rate
scalar decimal | vector of decimals

Deposit interest rate, specified as the comma-separated pair consisting of 'Rate' and a scalar
decimal or an NINST-by-1 vector of decimals.
Data Types: double

Optional Deposit Name-Value Pair Arguments

Period — Frequency of payments per year
1 (default) | scalar numeric value of 0, 1, 2, 3, 4, 6, or 12 | vector of numeric values of 0, 1, 2, 3, 4, 6,
or 12

Frequency of payments per year, specified as the comma-separated pair consisting of 'Period' and
scalar integer or an NINST-by-1 vector of integers. Values for Period are: 0, 1, 2, 3, 4, 6, or 12.
Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | scalar integer from 0 to 13 | vector of integers from 0 to 13

Day count basis, specified as the comma-separated pair consisting of 'Basis' and a scalar integer or
an NINST-by-1 vector of integers using the following values:
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• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Principal — Principal amount
100 (default) | scalar numeric | numeric vector

Principal amount, specified as the comma-separated pair consisting of 'Principal' and a scalar
numeric or an NINST-by-1 numeric vector.
Data Types: double

BusinessDayConvention — Business day convention
"actual" (default) | string | string array | character vector | cell array of character vectors

Business day convention, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a string or character vector or an NINST-by-1 cell array of
character vectors or string array. The selection for business day convention determines how
nonbusiness days are treated. Nonbusiness days are defined as weekends plus any other date that
businesses are not open (for example, statutory holidays). Values are:

• "actual" — Nonbusiness days are effectively ignored. Cash flows that fall on nonbusiness days
are assumed to be distributed on the actual date.

• "follow" — Cash flows that fall on a nonbusiness day are assumed to be distributed on the
following business day.

• "modifiedfollow" — Cash flows that fall on a nonbusiness day are assumed to be distributed
on the following business day. However if the following business day is in a different month, the
previous business day is adopted instead.

• "previous" — Cash flows that fall on a nonbusiness day are assumed to be distributed on the
previous business day.

• "modifiedprevious" — Cash flows that fall on a nonbusiness day are assumed to be distributed
on the previous business day. However if the previous business day is in a different month, the
following business day is adopted instead.

 Deposit

11-2839



Data Types: char | cell | string

Holidays — Holidays used in computing business days
NaT (default) | datetimes | cell array of character vectors | date string array | serial date numbers

Holidays used in computing business days, specified as the comma-separated pair consisting of
'Holidays' and dates using an NINST-by-1 vector of datetimes, serial date numbers, cell array of
date character vectors, or date string array. For example:

H = holidays(datetime('today'),datetime(2025,12,15));
DepositObj = fininstrument("deposit",'Maturity',datetime(2025,12,15),'Rate',0.027,'Holidays',H)

Data Types: double | cell | datetime | string

Name — User-defined name for instrument
" " (default) | string | string array | character vector | cell array of character vectors

User-defined name for one of more instruments, specified as the comma-separated pair consisting of
'Name' and a scalar string or character vector or an NINST-by-1 cell array of character vectors or
string array.
Data Types: char | cell | string

Properties
Maturity — Maturity date
datetime | vector of datetimes

Maturity date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.
Data Types: datetime

Rate — Deposit interest rate
scalar decimal | vector of decimals

Deposit interest rate, returned as a scalar decimal or an NINST-by-1 vector of decimals.
Data Types: double

Period — Frequency of payments per year
1 (default) | scalar integer | vector of integers

Frequency of payments per year, returned as a scalar integer or an NINST-by-1 vector of integers.
Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | scalar integer from 0 to 13 | vector of integers from 0 to 13

Day count basis, returned as a scalar integer or an NINST-by-1 vector of integers.
Data Types: double

Principal — Principal amount
100 (default) | scalar numeric | numeric vector

Principal amount, returned as a scalar numeric or an NINST-by-1 numeric vector.
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Data Types: double

BusinessDayConvention — Business day convention
"actual" (default) | scalar string | string array

Business day convention, returned as a scalar string or an NINST-by-1 string array.
Data Types: string

Holidays — Holidays used in computing business days
NaT (default) | datetimes

Holidays used in computing business days, returned as an NINST-by-1 vector of datetimes.
Data Types: datetime

Name — User-defined name for instrument
" " (default) | string | string array

User-defined name for the instrument, returned as a scalar string or an NINST-by-1 string array.
Data Types: string

Object Functions
cashflows Compute cash flow for FixedBond, FloatBond, Swap, FRA, STIRFuture, OISFuture,

OvernightIndexedSwap, or Deposit instrument

Examples

Price Deposit Instrument Using ratecurve and Discount Pricer

This example shows the workflow to price a Deposit instrument when using a ratecurve and a
Discount pricing method.

Create Deposit Instrument Object

Use fininstrument to create a Deposit instrument object.

DepositObj = fininstrument("Deposit",'Maturity',datetime(2019,3,15),'Rate',0.0195,'Period',2,'Basis',1,'Principal',100,'Name',"deposit_instrument")

DepositObj = 
  Deposit with properties:

                     Rate: 0.0195
                   Period: 2
                    Basis: 1
                 Maturity: 15-Mar-2019
                Principal: 100
    BusinessDayConvention: "actual"
                 Holidays: NaT
                     Name: "deposit_instrument"

Create ratecurve Object

Create a ratecurve object using ratecurve.
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Settle = datetime(2018,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Discount Pricer Object

Use finpricer to create a Discount pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("Discount", 'DiscountCurve',myRC)

outPricer = 
  Discount with properties:

    DiscountCurve: [1x1 ratecurve]

Price Deposit Instrument

Use price to compute the price and sensitivities for the Deposit instrument.

[Price, outPR] = price(outPricer, DepositObj,["all"])

Price = 0.9725

outPR = 
  priceresult with properties:

       Results: [1x2 table]
    PricerData: []

outPR.Results

ans=1×2 table
     Price        DV01   
    _______    __________

    0.97249    4.8225e-05
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Price Multiple Deposit Instruments Using ratecurve and Discount Pricer

This example shows the workflow to price multiple Deposit instruments when using a ratecurve
and a Discount pricing method.

Create Deposit Instrument Object

Use fininstrument to create a Deposit instrument object for three Deposit instruments.

DepositObj = fininstrument("Deposit",'Maturity',datetime([2019,3,15 ; 2019,4,15 ; 2019,5,15]),'Rate',0.0195,'Period',2,'Basis',1,'Principal',[1000 ; 2000 ; 3000],'Name',"deposit_instrument")

DepositObj=3×1 object
  3x1 Deposit array with properties:

    Rate
    Period
    Basis
    Maturity
    Principal
    BusinessDayConvention
    Holidays
    Name

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Discount Pricer Object

Use finpricer to create a Discount pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("Discount", 'DiscountCurve',myRC)

outPricer = 
  Discount with properties:
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    DiscountCurve: [1x1 ratecurve]

Price Deposit Instruments

Use price to compute the prices and sensitivities for the Deposit instruments.

[Price, outPR] = price(outPricer, DepositObj,["all"])

Price = 3×1

    9.7249
   22.6807
   38.8632

outPR=1×3 object
  1x3 priceresult array with properties:

    Results
    PricerData

outPR.Results

ans=1×2 table
    Price        DV01   
    ______    __________

    9.7249    0.00048225

ans=1×2 table
    Price       DV01   
    ______    _________

    22.681    0.0013173

ans=1×2 table
    Price       DV01   
    ______    _________

    38.863    0.0025767

More About
Deposit Instrument

A deposit instrument is an over-the-counter contract between banks for interbank lending.

See Also
Functions
finmodel | finpricer
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Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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BondFuture
BondFuture instrument object

Description
Create and price a BondFuture instrument object for one or more Bond Future instruments using
this workflow:

1 Use fininstrument to create a BondFuture instrument object for one or more Bond Future
instruments.

2 Use ratecurve to specify a curve model for the BondFuture instrument object.
3 Use finpricer to specify a Future pricing method for one or more BondFuture instruments.
4 Use cashsettle to compute the cash settlement for the BondFuture instrument and

fairdelivery to compute the fair delivery price for the underlying asset for the BondFuture
instrument.

For more detailed information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available models and pricing methods for a BondFuture instrument, see
“Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
BondFutureObj = fininstrument(InstrumentType,Maturity=maturity_value,
QuotedPrice=quoted_price,Bond=underlying_bond,
ConversionFactor=conversion_factor)
BondFutureObj = fininstrument( ___ ,Name=Value)

Description

BondFutureObj = fininstrument(InstrumentType,Maturity=maturity_value,
QuotedPrice=quoted_price,Bond=underlying_bond,
ConversionFactor=conversion_factor) creates a BondFuture object for one or more Bond
Future instruments by specifying InstrumentType and sets the properties on page 11-2848 for the
required name-value pair arguments Maturity, QuotedPrice, Bond, and ConversionFactor.

The BondFuture instrument supports bond futures such as Treasury bond futures, Eurobond
futures, Japanese Government Bond (JGB) futures. For more information, see “Bond Futures” on page
11-2853

You can use bond futures for interest-rate futures and forwards. The main difference between forward
and futures contracts:
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• Forward contracts are private contracts between two parties, while futures contracts are more
standardized and are traded on an exchange.

• Futures contracts are marked-to-market with corresponding settlement cash flows occurring on
every trading day, while forward contract cash flows and deliveries do not occur until the maturity
of the forward contract.

BondFutureObj = fininstrument( ___ ,Name=Value) sets optional properties on page 11-2848
using additional name-value arguments in addition to the required arguments in the previous syntax.
For example, BondFutureObj =
fininstrument("BondFuture",Maturity=datetime(2022,9,1),QuotedPrice=86,Bond=my
FixedBond,ConversionFactor=1.43,Name="bondfuture_instrument") creates a
BondFuture instrument. You can specify multiple name-value arguments.

Input Arguments

InstrumentType — Instrument type
string with value "BondFuture" | string array with values of "BondFuture" | character vector with
value 'BondFuture' | cell array of character vectors with values of 'BondFuture'

Instrument type, specified as a string with the value of "BondFuture", a character vector with the
value of 'BondFuture', an NINST-by-1 string array with values of "BondFuture", or an NINST-by-1
cell array of character vectors with values of 'BondFuture'.
Data Types: char | cell | string

BondFuture Name-Value Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.
Example: BondFutureObj =
fininstrument("BondFuture",Maturity=datetime(2022,9,1),QuotedPrice=86,SpotPri
ce=125,Bond=myFixedBond,ConversionFactor=1.43,Name="bondfuture_instrument")

Required BondFuture Name-Value Arguments

Maturity — BondFuture maturity date
datetime | serial date number | date character vector | date string | vector of datetimes | vector of
serial date numbers | cell array of date character vectors | date string array

BondFuture maturity date, specified as Maturity and a scalar datetime, serial date number, date
character vector, date string, or an NINST-by-1 vector of datetimes, serial date numbers, cell array of
date character vectors, or date string array.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the Maturity property is stored as a datetime.
Data Types: char | cell | double | string | datetime

QuotedPrice — BondFuture quoted price
scalar numeric | numeric vector

BondFuture quoted price, specified as QuotedPrice and a scalar numeric or an NINST-by-1
numeric vector.
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Data Types: double

Bond — Underlying FixedBond instrument
FixedBond object | vector of FixedBond objects

Underlying FixedBond instrument, specified as a scalar FixedBond object or an NINST-by-1 vector
of FixedBond objects.
Data Types: object

ConversionFactor — Conversion factor for underlying Bond
scalar numeric | numeric vector

Conversion factor for underlying Bond, specified as a scalar numeric or an NINST-by-1 numeric
vector.
Data Types: double

Optional BondFuture Name-Value Arguments

Notional — Notional value
100000 (default) | scalar numeric | numeric vector

Notional value, specified as a scalar numeric or an NINST-by-1 vector.
Data Types: double

Name — User-defined name for instrument
" " (default) | string | string array | character vector | cell array of character vectors

User-defined name for one or more instruments, specified as Name and a scalar string, character
vector, or an NINST-by-1 cell array of character vectors, or a string array.
Data Types: char | cell | string

Properties
Maturity — BondFuture maturity date
scalar datetime | vector of datetimes

BondFuture maturity date, returned as a scalar datetime or NINST-by-1 vector of datetimes.
Data Types: datetime

QuotedPrice — BondFuture quoted price
scalar numeric | numeric vector

BondFuture quoted price, returned as a scalar numeric or an NINST-by-1 numeric vector.
Data Types: double

Bond — Underlying FixedBond instrument
FixedBond object

Underlying FixedBond instrument, returned as a scalar FixedBond object or an NINST-by-1 vector
of FixedBond objects.
Data Types: object
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ConversionFactor — Conversion factor for underlying Bond
scalar numeric

Conversion factor for underlying Bond, returned as a scalar numeric or an NINST-by-1 numeric
vector.
Data Types: double

Notional — Notional value
100000 (default) | scalar numeric | numeric vector

Notional value, returned as a scalar numeric or an NINST-by-1 vector.
Data Types: double

Name — User-defined name for instrument
"" (default) | string | string array

User-defined name for the instrument, returned as a scalar string or an NINST-by-1 string array.
Data Types: string

Object Functions
cashsettle Compute cash settlement for BondFuture, CommodityFuture, EquityIndexFuture, or

FXFuture instrument
fairdelivery Compute fair delivery price of underlying asset for BondFuture, CommodityFuture,

EquityIndexFuture, or FXFuture instrument

Examples

Price BondFuture Instrument Using ratecurve and Future Pricer

This example shows the workflow to price a BondFuture instrument when you use a ratecurve
object and a Future pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2022,3,1);
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])];
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates,Compounding=2);

Create Underlying FixedBond Instrument Object

Use fininstrument to create a FixedBond instrument object.

FixB = fininstrument("FixedBond",Maturity=datetime(2032,9,1),CouponRate=0.05,Name="fixed_bond_instrument")

FixB = 
  FixedBond with properties:

                  CouponRate: 0.0500
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                      Period: 2
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 01-Sep-2032
                        Name: "fixed_bond_instrument"

Create BondFuture Instrument Object

Use fininstrument to create a BondFuture instrument object.

BondFut = fininstrument("BondFuture",Maturity=datetime(2022,9,1),QuotedPrice=86,Bond=FixB,ConversionFactor=1.43,Name="bondfuture_instrument")

BondFut = 
  BondFuture with properties:

            Maturity: 01-Sep-2022
         QuotedPrice: 86
                Bond: [1x1 fininstrument.FixedBond]
    ConversionFactor: 1.4300
            Notional: 100000
                Name: "bondfuture_instrument"

Create Future Pricer Object

Use finpricer to create a Future pricer object and use the ratecurve object with the
DiscountCurve name-value argument.

outPricer = finpricer("Future",DiscountCurve=ZeroCurve,SpotPrice=125)

outPricer = 
  Future with properties:

    DiscountCurve: [1x1 ratecurve]
        SpotPrice: 125

Price BondFuture Instrument

Use price to compute the price and price result for the BondFuture instrument.

[Price,outPR] = price(outPricer,BondFut)

Price = -151.9270

outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: []
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outPR.Results

ans=1×4 table
     Price     FairDeliveryPrice    FairFuturePrice    AccruedInterest
    _______    _________________    _______________    _______________

    -151.93       1.2283e+05            85.893                0       

Price Multiple BondFuture Instruments Using ratecurve and Future Pricer

This example shows the workflow to price multiple BondFuture instruments when you use a
ratecurve object and a Future pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2022,3,1);
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])];
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates,Compounding=2);

Create Underlying FixedBond Instrument Object

Use fininstrument to create a FixedBond instrument object.

FixB = fininstrument("FixedBond",Maturity=datetime(2032,9,1),CouponRate=0.05,Name="fixed_bond_instrument")

FixB = 
  FixedBond with properties:

                  CouponRate: 0.0500
                      Period: 2
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 01-Sep-2032
                        Name: "fixed_bond_instrument"

Create BondFuture Instrument Object

Use fininstrument to create a BondFuture instrument object for three Bond Future instruments.

BondFut = fininstrument("BondFuture",Maturity=datetime([2022,9,1 ; 2022,10,1 ; 2022,11,1]),QuotedPrice=[86 ; 88 ; 90],Bond=FixB,ConversionFactor=1.43,Name="bondfuture_instrument")

BondFut=3×1 object
  3x1 BondFuture array with properties:
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    Maturity
    QuotedPrice
    Bond
    ConversionFactor
    Notional
    Name

Create Future Pricer Object

Use finpricer to create a Future pricer object and use the ratecurve object with the
DiscountCurve name-value argument.

outPricer = finpricer("Future",DiscountCurve=ZeroCurve,SpotPrice=125)

outPricer = 
  Future with properties:

    DiscountCurve: [1x1 ratecurve]
        SpotPrice: 125

Price BondFuture Instruments

Use price to compute the prices and price results for the BondFuture instruments.

[Price,outPR] = price(outPricer,BondFut)

Price = 3×1
103 ×

   -0.1519
   -3.3603
   -6.5765

outPR=1×3 object
  1x3 priceresult array with properties:

    Results
    PricerData

outPR.Results

ans=1×4 table
     Price     FairDeliveryPrice    FairFuturePrice    AccruedInterest
    _______    _________________    _______________    _______________

    -151.93       1.2283e+05            85.893                0       

ans=1×4 table
     Price     FairDeliveryPrice    FairFuturePrice    AccruedInterest
    _______    _________________    _______________    _______________

    -3360.3       1.2288e+05            85.643             0.41436    
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ans=1×4 table
     Price     FairDeliveryPrice    FairFuturePrice    AccruedInterest
    _______    _________________    _______________    _______________

    -6576.5       1.2294e+05            85.385             0.84254    

More About
Bond Futures

A bond future is a financial derivatives that obligates the contract holder to purchase or sell a bond
on a specified date at a predetermined price.

B0 = (S0− I)/DiscountFactor

• B0 — Full fair future cash price for $100 face value of deliverable bond
• S0 — Full spot cash price for $100 face value of deliverable bond
• I — Present value of interest income for $100 face value for the life of the contract
• DiscountFactor — Discount factor to maturity of contract

FairFuturePrice = F0 = (B0− AccruedInterest)/ConversionFactor
FairDeliveryPrice = B0/100 × Size

• F0 — Clean fair future cash price for $100 face value
• B0 — Full fair future cash price for $100 face value of the deliverable bond
• ConversionFactor — Conversion factor of the deliverable bond
• AccruedInterest — Accrued interest at delivery
• Size — Futures contract size

There are two workflows:

• The first workflow is to compute the discounted present value of the futures contract using
cashsettle assuming it is held until maturity like a forward contract.

f = (B0− K) × DiscountFactor /100 × Size

• B0 — Full fair future cash price for $100 face value of the delivery bond
• K0 — Full contractual delivery bond price for $100 face value of the deliverable bond
• DiscountFactor — Discount factor to the maturity of the contract
• Size — Futures contract size

• Since futures contracts are settled on every trading day, the second workflow is to use
fairdelivery to compute the current fair delivery bond price B0 of the futures contract, fair
future price F0, and the accrued interest to support marking to market.

DelieveryBondPrice(B0) = FairFuturePrice(F0) × ConversionFactor + AccruedInterest
MarkToMarket = (ChangeinFuturePrice) × (ContractSize)

• B0 — Full fair future cash price for $100 face value of the deliverable bond
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• F0 — Clean fair future price for $100 face value
• ConversionFactor — Conversion factor of the deliverable bond
• AccruedInterest — Accrued interest at delivery for $100 fave value

See Also
Functions
finmodel | finpricer

Topics
“Select Cheapest-to-Deliver Bond Using BondFuture Instrument” on page 2-213
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2022a
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CommodityFuture
CommodityFuture instrument object

Description
Create and price a CommodityFuture instrument object for one or more Commodity Future
instruments using this workflow:

1 Use fininstrument to create a CommodityFuture instrument object for one or more
Commodity Future instruments.

2 Use ratecurve to specify a curve model for the CommodityFuture instrument object.
3 Use finpricer to specify a Future pricing method for one or more CommodityFuture

instruments.
4 Use cashsettle to compute the cash settlement for the CommodityFuture instrument and

fairdelivery to compute the fair delivery price for the underlying asset for the
CommodityFuture instrument.

For more detailed information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available models and pricing methods for a CommodityFuture
instrument, see “Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
CommodityFutureObj = fininstrument(InstrumentType,Maturity=maturity_value,
QuotedPrice=quoted_price)
CommodityFutureObj = fininstrument( ___ ,Name=Value)

Description

CommodityFutureObj = fininstrument(InstrumentType,Maturity=maturity_value,
QuotedPrice=quoted_price) creates a CommodityFuture object for one of more Commodity
Future instruments by specifying InstrumentType and sets the properties on page 11-2859 for the
required name-value arguments Maturity and QuotedPrice.

You can use commodity futures for commodity futures and forwards. The main difference between
forward and futures contracts:

• Forward contracts are private contracts between two parties, while futures contracts are more
standardized and are traded on an exchange.

• Futures contracts are marked-to-market with corresponding settlement cash flows occurring on
every trading day, while forward contract cash flows and deliveries do not occur until the maturity
of the forward contract.
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The CommodityFuture instrument supports oil, natural gas, gold, silver, and wheat, and other
commodities. For more information, see “Commodity Future” on page 11-2863.

CommodityFutureObj = fininstrument( ___ ,Name=Value) sets optional properties on page
11-2859 using additional name-value arguments in addition to the required arguments in the previous
syntax. For example, CommodityFutureObj =
fininstrument("CommodityFuture",Maturity=datetime(2022,9,1),QuotedPrice=68,St
orageCost=1000,Income=500,PercentStorageCost=0.03,Name="commodity_future_inst
rument") creates a CommodityFuture. You can specify multiple name-value arguments.

Input Arguments

InstrumentType — Instrument type
string with value "CommodityFuture" | string array with values of "CommodityFuture" |
character vector with value 'CommodityFuture' | cell array of character vectors with values of
'CommodityFuture'

Instrument type, specified as a string with the value of "CommodityFuture", a character vector with
the value of 'CommodityFuture', an NINST-by-1 string array with values of "CommodityFuture",
or an NINST-by-1 cell array of character vectors with values of 'CommodityFuture'.
Data Types: char | cell | string

CommodityFuture Name-Value Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.
Example: CommodityFutureObj =
fininstrument("CommodityFuture",Maturity=datetime(2022,9,1),
QuotedPrice=68,StorageCost=1000,Income=500,PercentStorageCost=0.03,Name="comm
odity_future_instrument")

Required CommodityFuture Name-Value Arguments

Maturity — CommodityFuture maturity date
datetime | serial date number | date character vector | date string | vector of datetimes | vector of
serial date numbers | cell array of date character vectors | date string array

CommodityFuture maturity date, specified as Maturity and a scalar datetime, serial date number,
date character vector, date string, NINST-by-1 vector of datetimes, serial date numbers, cell array of
date character vectors, or date string array.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the Maturity property is stored as a datetime.
Data Types: char | cell | double | string | datetime

QuotedPrice — CommodityFuture quoted price
scalar numeric | numeric vector

CommodityFuture quoted price, specified as QuotedPrice and a scalar numeric or an NINST-by-1
numeric vector.
Data Types: double
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Optional CommodityFuture Name-Value Arguments

StorageCost — Present value of storage cost for life of contract
0 (default) | scalar numeric | numeric vector

Present value of storage cost for the life of the contract, specified as StorageCost and a scalar
numeric or an NINST-by-1 numeric vector.
Data Types: double

Income — Present value of income for life of contract
0 (default) | scalar numeric | numeric vector

Present value of income for the life of the contract, specified as Income and a scalar numeric or an
NINST-by-1 numeric vector.
Data Types: double

PercentStorageCost — Annualized percentage storage cost
0 (default) | scalar decimal | vector of decimals

Annualized percentage storage cost, specified as PercentStorageCost and a scalar decimal or an
NINST-by-1 vector of decimals.
Data Types: double

PercentStorageCostCompounding — Compounding frequency for PercentageStorageCost
-1 (continuous compounding) (default) | scalar integer with value of -1, 0, 1, 2, 4, 6, or 12 | vector of
integers with values -1, 0, 1, 2, 4, 6, or 12

Compounding frequency for PercentageStorageCost, specified as
PercentStorageCostCompounding and a scalar integer or an NINST-by-1 vector of integers.
Data Types: double

PercentageStorageCostBasis — Day count basis for PercentStorageCost
0 (actual/actual) (default) | scalar integer from 0 to 13 | vector of integers from 0 to 13

Day count basis for PercentageStorageCost, specified as PercentageStorageCostBasis and
scalar integer or an NINST-by-1 vector of integers using the following values:

• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
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• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

ConvenienceYield — Annualized convenience yield
0 (default) | scalar decimal | vector of decimals

Annualized convenience yield, specified as ConvenienceYield and a scalar decimal or an NINST-
by-1 vector of decimals.
Data Types: double

ConvenienceYieldCompounding — Compounding frequency for ConvenienceYield
1 (continuous compounding) (default) | scalar integer with value of -1, 0, 1, 2, 4, 6, or 12 | vector of
integers with values -1, 0, 1, 2, 4, 6, or 12

Compounding frequency for ConvenienceYield, specified as ConvenienceYieldCompounding
and a scalar integer or an NINST-by-1 vector of integers.
Data Types: double

ConvenienceYieldBasis — Day count basis for ConvenienceYield
0 (actual/actual) (default) | scalar integer from 0 to 13 | vector of integers from 0 to 13

Day count basis for ConvenienceYield, specified as ConvenienceYieldBasis and scalar integer
or an NINST-by-1 vector of integers using the following values:

• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double
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Name — User-defined name for instrument
"" (default) | string | string array | character vector | cell array of character vectors

User-defined name for one or more instruments, specified as Name and a scalar string or character
vector or an NINST-by-1 cell array of character vectors or string array.
Data Types: char | cell | string

Properties
Maturity — CommodityFuture maturity date
scalar datetime | vector of datetimes

CommodityFuture maturity date, returned as a scalar datetime or NINST-by-1 vector of datetimes.
Data Types: datetime

QuotedPrice — CommodityFuture quoted price
scalar numeric | numeric vector

CommodityFuture quoted price, returned as a scalar numeric or an NINST-by-1 numeric vector.
Data Types: double

StorageCost — Present value of storage cost for life of contract
0 (default) | scalar numeric | numeric vector

Present value of storage cost for the life of the contract, returned as a scalar numeric or an NINST-
by-1 numeric vector.
Data Types: double

Income — Present value of income for life of contract
0 (default) | scalar numeric | numeric vector

Present value of income for the life of the contract, returned as an NINST-by-1 numeric vector.
Data Types: double

PercentStorageCost — Annualized percentage storage cost
0 (default) | scalar decimal | vector of decimals

Annualized percentage storage cost, returned as a scalar decimal or an NINST-by-1 vector of
decimals.
Data Types: double

PercentStorageCostCompounding — Compounding frequency for PercentageStorageCost
-1 (continuous compounding) (default) | scalar integer with value of -1, 0, 1, 2, 4, 6, or 12 | vector of
integers with values -1, 0, 1, 2, 4, 6, or 12

Compounding frequency for PercentageStorageCost, returned as a scalar integer or an NINST-
by-1 vector of integers.
Data Types: double

PercentageStorageCostBasis — Day count basis for PercentStorageCost
0 (actual/actual) (default) | scalar integer from 0 to 13 | vector of integers from 0 to 13
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Day count basis for PercentageStorageCost, returned as a scalar integer or an NINST-by-1 vector
of integers.
Data Types: double

ConvenienceYield — Annualized convenience yield
0 (default) | scalar decimal | vector of decimals

Annualized convenience yield, returned as a scalar decimal or an NINST-by-1 vector of decimals.
Data Types: double

ConvenienceYieldCompounding — Compounding frequency for ConvenienceYield
1 (continuous compounding) (default) | scalar integer with value of -1, 0, 1, 2, 4, 6, or 12 | vector of
integers with values -1, 0, 1, 2, 4, 6, or 12

Compounding frequency for ConvenienceYield, returned as a scalar integer or an NINST-by-1
vector of integers.
Data Types: double

ConvenienceYieldBasis — Day count basis for ConvenienceYield
0 (actual/actual) (default) | scalar integer from 0 to 13 | vector of integers from 0 to 13

Day count basis for ConvenienceYield, returned as a scalar integer or an NINST-by-1 vector of
integers.
Data Types: double

Name — User-defined name for instrument
"" (default) | string | string array

User-defined name for the instrument, returned as a scalar string or an NINST-by-1 string array.
Data Types: string

Object Functions
cashsettle Compute cash settlement for BondFuture, CommodityFuture, EquityIndexFuture, or

FXFuture instrument
fairdelivery Compute fair delivery price of underlying asset for BondFuture, CommodityFuture,

EquityIndexFuture, or FXFuture instrument

Examples

Price CommodityFuture Instrument Using ratecurve and Future Pricer

This example shows the workflow to price a CommodityFuture instrument when you use a
ratecurve object and a Future pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2022,3,1);
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])];
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ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates,Compounding=2);

Create CommodityFuture Instrument Object

Use fininstrument to create a CommodityFuture instrument object.

CommodityFut = fininstrument("CommodityFuture",Maturity=datetime(2022,9,1),QuotedPrice=68,StorageCost=25,Name="commodityfuture_instrument")

CommodityFut = 
  CommodityFuture with properties:

                         Maturity: 01-Sep-2022
                      QuotedPrice: 68
                      StorageCost: 25
                           Income: 0
               PercentStorageCost: 0
    PercentStorageCostCompounding: -1
          PercentStorageCostBasis: 0
                 ConvenienceYield: 0
      ConvenienceYieldCompounding: -1
            ConvenienceYieldBasis: 0
                             Name: "commodityfuture_instrument"

Create Future Pricer Object

Use finpricer to create a Future pricer object and use the ratecurve object with the
DiscountCurve name-value argument.

outPricer = finpricer("Future",DiscountCurve=ZeroCurve,SpotPrice=66)

outPricer = 
  Future with properties:

    DiscountCurve: [1x1 ratecurve]
        SpotPrice: 66

Price CommodityFuture Instrument

Use price to compute the price and price result for the CommodityFuture instrument.

[Price,outPR] = price(outPricer,CommodityFut)

Price = 23.1778

outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: []

outPR.Results

ans=1×4 table
    Price     FairDeliveryPrice    FairFuturePrice    AccruedInterest
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    ______    _________________    _______________    _______________

    23.178         91.239              91.239                0       

Price Multiple CommodityFuture Instruments Using ratecurve and Future Pricer

This example shows the workflow to price multiple CommodityFuture instruments when you use a
ratecurve object and a Future pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2022,3,1);
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])];
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates,Compounding=2);

Create CommodityFuture Instrument Object

Use fininstrument to create a CommodityFuture instrument object for three Commodity Future
instruments.

CommodityFut = fininstrument("CommodityFuture",Maturity=datetime([2022,9,1 ; 2022,10,1 ; 2022,11,1]),QuotedPrice=[68 ; 70 ; 72],StorageCost=25,PercentStorageCost=.02,PercentStorageCostCompounding=4,Name="commodityfuture_instrument")

CommodityFut=3×1 object
  3x1 CommodityFuture array with properties:

    Maturity
    QuotedPrice
    StorageCost
    Income
    PercentStorageCost
    PercentStorageCostCompounding
    PercentStorageCostBasis
    ConvenienceYield
    ConvenienceYieldCompounding
    ConvenienceYieldBasis
    Name

Create Future Pricer Object

Use finpricer to create a Future pricer object and use the ratecurve object with the
DiscountCurve name-value argument.

outPricer = finpricer("Future",DiscountCurve=ZeroCurve,SpotPrice=66)

outPricer = 
  Future with properties:

    DiscountCurve: [1x1 ratecurve]
        SpotPrice: 66
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Price CommodityFuture Instruments

Use price to compute the prices and price results for the CommodityFuture instruments.

[Price,outPR] = price(outPricer,CommodityFut)

Price = 3×1

   24.0976
   22.2855
   20.4822

outPR=1×3 object
  1x3 priceresult array with properties:

    Results
    PricerData

outPR.Results

ans=1×4 table
    Price     FairDeliveryPrice    FairFuturePrice    AccruedInterest
    ______    _________________    _______________    _______________

    24.098         92.161              92.161                0       

ans=1×4 table
    Price     FairDeliveryPrice    FairFuturePrice    AccruedInterest
    ______    _________________    _______________    _______________

    22.286         92.354              92.354                0       

ans=1×4 table
    Price     FairDeliveryPrice    FairFuturePrice    AccruedInterest
    ______    _________________    _______________    _______________

    20.482         92.555              92.555                0       

More About
Commodity Future

A commodity future contract is an agreement to buy or sell a predetermined amount of a commodity
at a specific price on a specific date in the future.

In the commodity futures market, the underlying commodity has a standardized size and quality in
the contract specification (for example, 1000 barrels of light sweet crude oil for WTI Crude Oil
futures). During the life of the contract, the underlying commodity may have unit storage cost or unit
income that occurs at specific times. It may also have percentage storage cost or convenience yield
that is proportional to the price of the commodity.

F0 = (S0 + U − I)exp(r + w− y)T
FairDeliveryPrice = F0
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• F0 — Fair future price of commodity
• S0 — Spot price of commodity
• U — Present value of storage cost for the life of the contract
• I — Present value of interest income for the life of the contract
• r — Continuously compounded zero rate
• w — Continuously compounded annualized percent storage cost
• y — Continuously compounded annualized convenience yield
• T — Time to maturity of contract

There are two workflows:

• The first workflow is to compute the discounted present value of the futures contract using
cashsettle assuming it is held until maturity like a forward contract.

f = (F0− K)exp(− rT)Size = (F0− K) × DiscountFactor × Size

• F0 — Fair future price
• K — Contractual price
• r — Continuously compounded zero rate
• T — Time to maturity of contract

• Since futures contracts are settled on every trading day, the second workflow is to use
fairdelivery to compute the current fair delivery price of the futures contract to support
marking to market.

MarkToMarket = (ChangeinFuturePrice) × (ContractSize)

See Also
Functions
FXFuture | EquityIndexFuture | finmodel | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2022a
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EquityIndexFuture
EquityIndexFuture instrument object

Description
Create and price an EquityIndexFuture instrument object for one or more Equity Index Future
instruments using this workflow:

1 Use fininstrument to create an EquityIndexFuture instrument object for one or more
Equity Index Future instruments.

2 Use ratecurve to specify a curve model for the EquityIndexFuture instrument object.
3 Use finpricer to specify a Future pricing method for one or more EquityIndexFuture

instruments.
4 Use cashsettle to compute the cash settlement for the EquityIndexFuture instrument and

fairdelivery to compute the fair delivery price for the underlying asset for the
EquityIndexFuture instrument.

For more detailed information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available models and pricing methods for an EquityIndexFuture
instrument, see “Choose Instruments, Models, and Pricers” on page 1-53.

Creation
Syntax
EquityIndexFutureObj = fininstrument(InstrumentType,Maturity=maturity_value,
QuotedPrice=quoted_price)
EquityIndexFutureObj = fininstrument( ___ ,Name=Value)

Description

EquityIndexFutureObj = fininstrument(InstrumentType,Maturity=maturity_value,
QuotedPrice=quoted_price) creates an EquityIndexFuture object for one or more Equity
Index Future instruments by specifying InstrumentType and sets the properties on page 11-2867
for the required name-value arguments Maturity and QuotedPrice.

The EquityIndexFuture instrument supports stock index futures such as NASDAQ 100 and Dow
Jones index futures. For more information, see “Equity Index Futures” on page 11-2871.

EquityIndexFutureObj = fininstrument( ___ ,Name=Value) sets optional properties on page
11-2867 using additional name-value arguments in addition to the required arguments in the previous
syntax. For example, EquityIndexFutureObj =
fininstrument("EquityIndexFuture",Maturity=datetime(2022,9,1),QuotedPrice=480
0,Size=500,Name="equityindexfuture_instrument") creates an EquityIndexFuture
instrument. You can specify multiple name-value arguments.
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Input Arguments

InstrumentType — Instrument type
string with value "EquityIndexFuture" | string array with values of "EquityIndexFuture" |
character vector with value 'EquityIndexFuture' | cell array of character vectors with values of
'EquityIndexFuture'

Instrument type, specified as a string with the value of "EquityIndexFuture", a character vector
with the value of 'EquityIndexFuture', an NINST-by-1 string array with values of
"EquityIndexFuture", or an NINST-by-1 cell array of character vectors with values of
'EquityIndexFuture'.
Data Types: char | cell | string

EquityIndexFuture Name-Value Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.
Example: EquityIndexFutureObj =
fininstrument("EquityIndexFuture",Maturity=datetime(2022,9,1),QuotedPrice=480
0,Size=500,Name="equityindexfuture_instrument")

Required EquityIndexFuture Name-Value Arguments

Maturity — EquityIndexFuture maturity date
datetime | serial date number | date character vector | date string | vector of datetimes | vector of
serial date numbers | cell array of date character vectors | date string array

EquityIndexFuture maturity date, specified as Maturity and a scalar datetime, serial date
number, date character vector, date string or an NINST-by-1 vector of datetimes, serial date numbers,
cell array of date character vectors, or date string array.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the Maturity property is stored as a datetime.
Data Types: char | cell | double | string | datetime

QuotedPrice — EquityIndexFuture quoted delivery index price
scalar numeric | numeric vector

EquityIndexFuture quoted delivery index price, specified as QuotedPrice and a scalar numeric
or an NINST-by-1 numeric vector.
Data Types: double

Optional EquityIndexFuture Name-Value Arguments

Size — Contract size multiplier
250 (default) | scalar numeric | numeric vector

Contract size multiplier, specified as Size and a scalar numeric or an NINST-by-1 numeric vector.
Data Types: double

DividendYield — Annualized dividend yield for life of contract
0 (default) | scalar numeric | numeric vector
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Annualized dividend yield for the life of the contract, specified as DividendYield and a scalar
numeric or an NINST-by-1 numeric vector.
Data Types: double

DividendYieldCompounding — Compounding frequency for DividendYield
-1 (continuous compounding) (default) | scalar integer with value of -1, 0, 1, 2, 4, 6, or 12 | vector of
integers with values -1, 0, 1, 2, 4, 6, or 12

Compounding frequency for DividendYield, specified as DividendYieldCompounding and a
scalar integer or an NINST-by-1 vector of integers.
Data Types: double

DividendYieldBasis — Day count basis for DividendYield
0 (actual/actual) (default) | scalar integer from 0 to 13 | vector of integers from 0 to 13

Day count basis for DividendYield, specified as DividendYieldBasis and scalar integer or an
NINST-by-1 vector of integers using the following values:

• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double

Name — User-defined name for instrument
"" (default) | string | string array | character vector | cell array of character vectors

User-defined name for one rf more instruments, specified as Name and a scalar string or character
vector or an NINST-by-1 cell array of character vectors or string array.
Data Types: char | cell | string

Properties
Maturity — EquityIndexFuture maturity date
scalar datetime | vector of datetimes
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EquityIndexFuture maturity date, returned as a scalar datetime or NINST-by-1 vector of
datetimes.
Data Types: datetime

QuotedPrice — EquityIndexFuture quoted price
scalar numeric | numeric vector

EquityIndexFuture quoted price, returned as a scalar numeric or an NINST-by-1 numeric vector.
Data Types: double

Size — Contract size multiplier
250 (default) | scalar numeric | numeric vector

Contract size multiplier, returned as a scalar numeric or an NINST-by-1 numeric vector.
Data Types: double

DividendYield — Annualized dividend yield for life of contract
0 (default) | scalar numeric | numeric vector

Annualized dividend yield for the life of the contract, returned as a scalar numeric or an NINST-by-1
numeric vector.
Data Types: double

DividendYieldCompounding — Compounding frequency for DividendYield
-1 (continuous compounding) (default) | scalar integer with value of -1, 0, 1, 2, 4, 6, or 12 | vector of
integers with values -1, 0, 1, 2, 4, 6, or 12

Compounding frequency for DividendYield, returned as a scalar integer or an NINST-by-1 vector
of integers.
Data Types: double

DividendYieldBasis — Day count basis for DividendYield
0 (actual/actual) (default) | scalar integer from 0 to 13 | vector of integers from 0 to 13

Day count basis for DividendYield, returned as a scalar integer or an NINST-by-1 vector of
integers.
Data Types: double

Name — User-defined name for instrument
"" (default) | string | string array

User-defined name for the instrument, returned as a scalar string or an NINST-by-1 string array.
Data Types: string

Object Functions
cashsettle Compute cash settlement for BondFuture, CommodityFuture, EquityIndexFuture, or

FXFuture instrument
fairdelivery Compute fair delivery price of underlying asset for BondFuture, CommodityFuture,

EquityIndexFuture, or FXFuture instrument
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Examples

Price EquityIndexFuture Instrument Using ratecurve and Future Pricer

This example shows the workflow to price an EquityIndexFuture instrument when you use a
ratecurve object and a Future pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2022,3,1);
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])];
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates,Compounding=2);

Create EquityIndexFuture Instrument Object

Use fininstrument to create an EquityIndexFuture instrument object.

EquityIndexFut = fininstrument("EquityIndexFuture",Maturity=datetime(2022,9,1),QuotedPrice=4800,DividendYield=.03,Name="equityindexfuture_instrument")

EquityIndexFut = 
  EquityIndexFuture with properties:

                    Maturity: 01-Sep-2022
                 QuotedPrice: 4800
                        Size: 250
               DividendYield: 0.0300
    DividendYieldCompounding: -1
          DividendYieldBasis: 0
                        Name: "equityindexfuture_instrument"

Create Future Pricer Object

Use finpricer to create a Future pricer object and use the ratecurve object with the
DiscountCurve name-value argument.

outPricer = finpricer("Future",DiscountCurve=ZeroCurve,SpotPrice=4460)

outPricer = 
  Future with properties:

    DiscountCurve: [1x1 ratecurve]
        SpotPrice: 4460

Price EquityIndexFuture Instrument

Use price to compute the price and price result for the EquityIndexFuture instrument.

[Price,outPR] = price(outPricer,EquityIndexFut)

Price = -9.8598e+04

outPR = 
  priceresult with properties:
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       Results: [1x4 table]
    PricerData: []

outPR.Results

ans=1×4 table
    Price     FairDeliveryPrice    FairFuturePrice    AccruedInterest
    ______    _________________    _______________    _______________

    -98598       1.1011e+06            4404.6                0       

Price Multiple EquityIndexFuture Instruments Using ratecurve and Future Pricer

This example shows the workflow to price multiple EquityIndexFuture instruments when you use
a ratecurve object and a Future pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2022,3,1);
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])];
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates,Compounding=2);

Create EquityIndexFuture Instrument Object

Use fininstrument to create an EquityIndexFuture instrument object for three Equity Index
Future instruments.

EquityIndexFut = fininstrument("EquityIndexFuture",Maturity=datetime([2022,9,1 ; 2022,10,1 ; 2022,11,1]),QuotedPrice=[4800 ; 5000 ; 5200],DividendYield=.03,Name="equityindexfuture_instrument")

EquityIndexFut=3×1 object
  3x1 EquityIndexFuture array with properties:

    Maturity
    QuotedPrice
    Size
    DividendYield
    DividendYieldCompounding
    DividendYieldBasis
    Name

Create Future Pricer Object

Use finpricer to create a Future pricer object and use the ratecurve object with the
DiscountCurve name-value argument.

outPricer = finpricer("Future",DiscountCurve=ZeroCurve,SpotPrice=4460)

outPricer = 
  Future with properties:
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    DiscountCurve: [1x1 ratecurve]
        SpotPrice: 4460

Price EquityIndexFuture Instruments

Use price to compute the prices and price results for the EquityIndexFuture instruments.

[Price,outPR] = price(outPricer,EquityIndexFut)

Price = 3×1
105 ×

   -0.9860
   -1.5060
   -2.0262

outPR=1×3 object
  1x3 priceresult array with properties:

    Results
    PricerData

outPR.Results

ans=1×4 table
    Price     FairDeliveryPrice    FairFuturePrice    AccruedInterest
    ______    _________________    _______________    _______________

    -98598       1.1011e+06            4404.6                0       

ans=1×4 table
      Price       FairDeliveryPrice    FairFuturePrice    AccruedInterest
    __________    _________________    _______________    _______________

    -1.506e+05       1.0989e+06            4395.7                0       

ans=1×4 table
       Price       FairDeliveryPrice    FairFuturePrice    AccruedInterest
    ___________    _________________    _______________    _______________

    -2.0262e+05       1.0967e+06            4386.6                0       

More About
Equity Index Futures

An equity index future is a "futures contract" on an equity index.

Equity index futures are cash settled contracts with the majority having quarterly expiration dates
scheduled for the months of March, June, September, and December. In the equity index futures
market, the underlying asset is an equity index (for example, S&P 500) multiplied by a size multiplier
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that is standardized to each specific type of equity index future (for example, $250 for S&P 500
Future, and $50 for E-Mini S&P 500 Future). If the equity index has dividends, computing the fair
future price requires the dividend yield for the life of the contract in addition to the interest rate.

F0 = S0exp(r − q)T
FairDeliveryPrice = F0 × Size

• F0 — Fair future price of equity index
• S0 — Spot price of equity index
• r — Continuously compounded zero rate
• q — Continuously compounded annualized dividend yield
• T — Time to maturity of contract
• Size — Size multiplier for equity index futures (for example, $250 for S&P 500 Future)

There are two workflows.

• The first workflow is to compute the discounted present value of the futures contract using
cashsettle assuming it is held until maturity like a forward contract.

f = (F0− K)exp(− rT)Size = (F0− K) × DiscountFactor × Size

• F0 — Fair future price
• K — Contractual price
• r — Continuously compounded zero rate
• T — Time to maturity of contract

• Since futures contracts are settled on every trading day, the second workflow is to use
fairdelivery to compute the current fair delivery price of the futures contract to support
marking to market.

MarkToMarket = (ChangeinFuturePrice) × (ContractSize)

See Also
Functions
FXFuture | CommodityFuture | finmodel | finpricer

Topics
“Price Portfolio of Bond and Bond Option Instruments” on page 2-173
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2022a
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FXFuture
FXFuture instrument object

Description
Create and price an FXFuture instrument object for one or more Fixed Bond instruments using this
workflow:

1 Use fininstrument to create an FXFuture instrument object for one or more FX Future
instruments.

2 Use ratecurve to specify a curve model for the FXFuture instrument object.
3 Use finpricer to specify a Discount pricing method for one or more FXFuture instruments.
4 Use cashsettle to compute the cash settlement for the FXFuture instrument and

fairdelivery to compute the fair delivery price for the underlying asset for the FXFuture
instrument.

For more detailed information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available models and pricing methods for an FXFuture instrument, see
“Choose Instruments, Models, and Pricers” on page 1-53.

Creation
Syntax
FXFutureObj = fininstrument(InstrumentType,Maturity=maturity_value,
QuotedPrice=quoted_price,ForeignRateCurve=foreign_rate_curve)
FXFutureObj = fininstrument( ___ ,Name=Value)

Description

FXFutureObj = fininstrument(InstrumentType,Maturity=maturity_value,
QuotedPrice=quoted_price,ForeignRateCurve=foreign_rate_curve) creates an
FXFuture object for one or more FX Future instruments by specifying InstrumentType and sets
the properties on page 11-2875 for the required name-value arguments Maturity, QuotedPrice,
and ForeignRateCurve.

The FXFuture instrument supports currency pairs where the price is quoted in domestic currency
for one unit of foreign currency. For more information, see “FXFuture” on page 11-2879.

FXFutureObj = fininstrument( ___ ,Name=Value) sets optional properties on page 11-2875
using additional name-value arguments in addition to the required arguments in the previous syntax.
For example, FXFutureObj =
fininstrument("FXFuture",Maturity=datetime(2022,9,1),QuotedPrice=0.78,Foreign
RateCurve=ForeignRC,Notional=200000,Name="fxfuture_instrument") creates an
FXFuture. You can specify multiple name-value arguments.
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Input Arguments

InstrumentType — Instrument type
string with value "FXFuture" | string array with values of "FXFuture" | character vector with value
'FXFuture' | cell array of character vectors with values of 'FXFuture'

Instrument type, specified as a string with the value of "FXFuture", a character vector with the
value of 'FXFuture', an NINST-by-1 string array with values of "FXFuture", or an NINST-by-1 cell
array of character vectors with values of 'FXFuture'.
Data Types: char | cell | string

FXFuture Name-Value Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.
Example: FXFutureObj =
fininstrument("FXFuture",Maturity=datetime(2022,9,1),QuotedPrice=0.78,Foreign
RateCurve=ForeignRC,Notional=200000,Name="fxfuture_instrument")

Required FXFuture Name-Value Arguments

Maturity — FXFuture maturity date
datetime | serial date number | date character vector | date string | vector of datetimes | vector of
serial date numbers | cell array of date character vectors | date string array

FXFuture maturity date, specified as Maturity and a scalar datetime, serial date number, date
character vector, date string, NINST-by-1 vector of datetimes, serial date numbers, cell array of date
character vectors, or date string array.

If you use date character vectors or date strings, the format must be recognizable by datetime
because the Maturity property is stored as a datetime.
Data Types: char | cell | double | string | datetime

QuotedPrice — FXFuture delivery price quoted in domestic currency for one unit of foreign
currency
scalar numeric | numeric vector

FXFuture delivery price quoted in domestic currency for one unit of foreign currency, specified as
QuotedPrice and a scalar numeric or an NINST-by-1 numeric vector.
Data Types: double

ForeignRateCurve — Rate curve object for foreign currency
ratecurve object

Rate curve object for foreign currency, specified as a scalar ratecurve object or an NINST-by-1
vector of ratecurve objects.
Data Types: object

Optional FXFuture Name-Value Arguments

Notional — Notional in foreign currency
100000 (default) | scalar numeric | numeric vector
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Notional in foreign currency, specified as Notional and a scalar numeric or an NINST-by-1 numeric
vector.
Data Types: double

Name — User-defined name for instrument
"" (default) | string | string array | character vector | cell array of character vectors

User-defined name for one or more instruments, specified as Name and a scalar string or character
vector or an NINST-by-1 cell array of character vectors or string array.
Data Types: char | cell | string

Properties
Maturity — FXFuture maturity date
scalar datetime | vector of datetimes

FXFuture maturity date, returned as a scalar datetime or NINST-by-1 vector of datetimes.
Data Types: datetime

QuotedPrice — FXFuture quoted price
scalar numeric | numeric vector

FXFuture quoted price, returned as a scalar numeric or an NINST-by-1 numeric vector.
Data Types: double

ForeignRateCurve — Rate curve object for foreign currency
ratecurve object

Rate curve object for foreign currency, returned as a scalar ratecurve object or an NINST-by-1
vector of ratecurve objects.
Data Types: object

Notional — Notional in foreign currency
100000 (default) | scalar numeric | numeric vector

Notional in foreign currency, returned as a scalar numeric or an NINST-by-1 numeric vector.
Data Types: double

Name — User-defined name for instrument
"" (default) | string | string array

User-defined name for the instrument, returned as a scalar string or an NINST-by-1 string array.
Data Types: string

Object Functions
cashsettle Compute cash settlement for BondFuture, CommodityFuture, EquityIndexFuture, or

FXFuture instrument
fairdelivery Compute fair delivery price of underlying asset for BondFuture, CommodityFuture,

EquityIndexFuture, or FXFuture instrument
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Examples

Price FXFuture Instrument Using ratecurve and Future Pricer

This example shows the workflow to price an FXFuture instrument when you use a ratecurve
object and a Future pricing method.

Create ratecurve Objects

Create ratecurve objects using ratecurve for the foreign and domestic zero curves.

% Define Foreign Zero Curve
Settle = datetime(2022, 3, 1);
ForeignZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ForeignZeroRates = [0.0031 0.0035 0.0047 0.0058 0.0062 0.0093 0.0128 0.0182 0.0223 0.0285]';
ForeignZeroDates = Settle + ForeignZeroTimes;
ForeignRC = ratecurve('zero', Settle, ForeignZeroDates, ForeignZeroRates);

% Define Domestic Zero Curve
DomesticZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
DomesticZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
DomesticZeroDates = Settle + DomesticZeroTimes;
DomesticRC = ratecurve('zero', Settle, DomesticZeroDates, DomesticZeroRates);

Create FXFuture Instrument Object

Use fininstrument to create an FXFuture instrument object.

FXFut = fininstrument("FXFuture",Maturity=datetime(2022,9,1),QuotedPrice=0.78,ForeignRateCurve=ForeignRC,Notional=200000,Name="FXfuture_instrument")

FXFut = 
  FXFuture with properties:

            Maturity: 01-Sep-2022
         QuotedPrice: 0.7800
    ForeignRateCurve: [1x1 ratecurve]
            Notional: 200000
                Name: "FXfuture_instrument"

Create Future Pricer Object

Use finpricer to create a Future pricer object and use the ratecurve object with the
DiscountCurve name-value argument.

outPricer = finpricer("Future",DiscountCurve=DomesticRC,SpotPrice=0.79)

outPricer = 
  Future with properties:

    DiscountCurve: [1x1 ratecurve]
        SpotPrice: 0.7900

Price FXFuture Instrument

Use price to compute the price and price result for the FXFuture instrument.
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[Price,outPR] = price(outPricer,FXFut)

Price = 2.1617e+03

outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: []

outPR.Results

ans=1×4 table
    Price     FairDeliveryPrice    FairFuturePrice    AccruedInterest
    ______    _________________    _______________    _______________

    2161.7       1.5817e+05            0.79084               0       

Price Multiple FXFuture Instruments Using ratecurve and Future Pricer

This example shows the workflow to price multiple FXFuture instruments when you use a
ratecurve object and a Future pricing method.

Create ratecurve Objects

Create ratecurve objects using ratecurve for the foreign and domestic zero curves.

% Define Foreign Zero Curve
Settle = datetime(2022, 3, 1);
ForeignZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ForeignZeroRates = [0.0031 0.0035 0.0047 0.0058 0.0062 0.0093 0.0128 0.0182 0.0223 0.0285]';
ForeignZeroDates = Settle + ForeignZeroTimes;
ForeignRC = ratecurve('zero', Settle, ForeignZeroDates, ForeignZeroRates);

% Define Domestic Zero Curve
DomesticZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
DomesticZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
DomesticZeroDates = Settle + DomesticZeroTimes;
DomesticRC = ratecurve('zero', Settle, DomesticZeroDates, DomesticZeroRates);

Create FXFuture Instrument Object

Use fininstrument to create an FXFuture instrument object for three FX Future instruments.

FXFut = fininstrument("FXFuture",Maturity=datetime([2022,9,1 ; 2022,10,1 ; 2022,11,1]),QuotedPrice=[0.78 ; 0.82 ; 0.86],ForeignRateCurve=ForeignRC,Notional=200000,Name=["FXfuture_instrument1";"FXfuture_instrument2";"FXfuture_instrument3"])

FXFut=3×1 object
  3x1 FXFuture array with properties:

    Maturity
    QuotedPrice
    ForeignRateCurve
    Notional
    Name
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Create Future Pricer Object

Use finpricer to create a Future pricer object and use the ratecurve object with the
DiscountCurve name-value argument.

outPricer = finpricer("Future",DiscountCurve=DomesticRC,SpotPrice=0.79)

outPricer = 
  Future with properties:

    DiscountCurve: [1x1 ratecurve]
        SpotPrice: 0.7900

Price FXFuture Instruments

Use price to compute the prices and price results for the FXFuture instrument.

[Price,outPR] = price(outPricer,FXFut)

Price = 3×1
104 ×

    0.2162
   -0.5789
   -1.3732

outPR=1×3 object
  1x3 priceresult array with properties:

    Results
    PricerData

outPR.Results

ans=1×4 table
    Price     FairDeliveryPrice    FairFuturePrice    AccruedInterest
    ______    _________________    _______________    _______________

    2161.7       1.5817e+05            0.79084               0       

ans=1×4 table
    Price    FairDeliveryPrice    FairFuturePrice    AccruedInterest
    _____    _________________    _______________    _______________

    -5789       1.5819e+05            0.79097               0       

ans=1×4 table
    Price     FairDeliveryPrice    FairFuturePrice    AccruedInterest
    ______    _________________    _______________    _______________
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    -13732       1.5822e+05            0.7911                0       

More About
FXFuture

An FXFuture is an exchange-traded currency derivative contract obligating the buyer and seller to
transact at a set price and predetermined time.

In the FX futures market, the underlying asset is a currency pair (for example, price in domestic
currency for one unit of foreign currency). Both the domestic currency interest rate and the foreign
currency interest rate are required to compute the fair delivery price.

F0 = S0exp(rd− rf )T
FairDeliveryPrice = F0 × Notional

• F0 — Fair future price in domestic currency for one unit of foreign currency
• S0 — Spot price in domestic currency for one unit of foreign currency
• rd — Domestic currency continuously compounded zero rate
• rf — Foreign currency continuously compounded zero rate
• T — Time to maturity of contract
• Notional — Notional value of the contract in foreign currency

There are two workflows.

• The first workflow is to compute the discounted present value of the futures contract using
cashsettle assuming it is held until maturity like a forward contract.

f = (F0− K)exp(− rT)Size = (F0− K) × DiscountFactor × Size

• F0 — Fair future price
• K — Contractual price
• r — Continuously compounded zero rate
• T — Time to maturity of contract

• Since futures contracts are settled on every trading day, the second workflow is to use
fairdelivery to compute the current fair delivery price of the futures contract to support
marking to market.

MarkToMarket = (ChangeinFuturePrice) × (ContractSize)

See Also
Functions
finmodel | finpricer

Topics
“Price Portfolio of Bond and Bond Option Instruments” on page 2-173
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
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“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2022a
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Bates
Create Bates model object for Vanilla, Asian, Barrier, DoubleBarrier, Lookback,
PartialLookback, Touch, DoubleTouch, Cliquet, or Binary instrument

Description
Create and price a Vanilla, Asian, Barrier, DoubleBarrier, Lookback, PartialLookback,
Touch, DoubleTouch, Cliquet, or Binary instrument object with a Bates model using this
workflow:

1 Use fininstrument to create a Vanilla, Barrier, Lookback, PartialLookback, Asian,
DoubleBarrier, Cliquet, Binary, Touch, or DoubleTouch instrument object.

2 Use finmodel to specify a Bates model object for the Vanilla, Asian, Barrier,
DoubleBarrier, Lookback, PartialLookback, Touch, DoubleTouch, Cliquet, or Binary
instrument object.

3 Use finpricer to specify a FiniteDifference, NumericalIntegration, or FFT pricing
method for the Vanilla instrument object.

Use finpricer to specify an AssetMonteCarlo pricing method for the Vanilla, Asian,
Barrier, DoubleBarrier, Lookback, PartialLookback, Touch, DoubleTouch, Cliquet, or
Binary instrument object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available pricing methods for a Vanilla, Asian, Barrier,
DoubleBarrier, Lookback, PartialLookback, Touch, DoubleTouch, or Binary instrument, see
“Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
BatesObj = finmodel(ModelType,'V0',V0_value,'ThetaV',thetav_value,'
Kappa',kappa_value,'SigmaV',sigmav_value,'RhoSV',rhosv_value, '
MeanJ',meanj_value, 'JumpVol',jumpvol_value,'JumpFreq',jumpfreq_value)

Description

BatesObj = finmodel(ModelType,'V0',V0_value,'ThetaV',thetav_value,'
Kappa',kappa_value,'SigmaV',sigmav_value,'RhoSV',rhosv_value, '
MeanJ',meanj_value, 'JumpVol',jumpvol_value,'JumpFreq',jumpfreq_value) creates
an Bates object by specifying ModelType and the required name-value pair arguments V0, ThetaV,
Kappa, SigmaV, RhoSV, MeanJ, JumpVol, and JumpFreq. The required name-value pair arguments
set properties on page 11-2883. For example, BatesObj =
finmodel("Bates",'V0',0.032,'ThetaV',0.1,'Kappa',0.003,'SigmaV',0.2,'RhoSV',0
.9,'MeanJ',0.11,'JumpVol',.023,'JumpFreq',0.02) creates a Bates model object.
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Input Arguments

ModelType — Model type
string with value "Bates" | character vector with value 'Bates'

Model type, specified as a string with the value of "Bates" or a character vector with the value of
'Bates'.
Data Types: char | string

Bates Name-Value Pair Arguments

Specify required pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Bates =
finmodel("Bates",'V0',0.032,'ThetaV',0.1,'Kappa',0.003,'SigmaV',0.2,'RhoSV',0
.9,'MeanJ',0.11,'JumpVol',.023,'JumpFreq',0.02)

V0 — Initial variance of underlying asset
numeric

Initial variance of the underlying asset, specified as the comma-separated pair consisting of 'V0' and
a scalar numeric value.
Data Types: double

ThetaV — Long-term variance of underlying asset
numeric

Long-term variance of the underlying asset, specified as the comma-separated pair consisting of
'ThetaV' and a scalar numeric value.
Data Types: double

Kappa — Mean revision speed for the variance of underlying asset
numeric

Mean revision speed for the underlying asset, specified as the comma-separated pair consisting of
'Kappa' and a scalar numeric value.
Data Types: double

SigmaV — Volatility of the variance of underlying asset
numeric

Volatility of the variance of the underlying asset, specified as the comma-separated pair consisting of
'SigmaV' and a scalar numeric value.
Data Types: double

RhoSV — Correlation between Weiner processes for underlying asset and its variance
numeric
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Correlation between the Weiner processes for the underlying asset and its variance, specified as the
comma-separated pair consisting of 'RhoSV' and a scalar numeric value.
Data Types: double

MeanJ — Mean of the random percentage jump size
decimal

Mean of the random percentage jump size (J), specified as the comma-separated pair consisting of
'MeanJ' and a scalar decimal value where log(1+J) is normally distributed with mean
(log(1+MeanJ)-0.5*JumpVol^2) and the standard deviation JumpVol.
Data Types: double

JumpVol — Standard deviation of log(1+J)
decimal

Standard deviation of log(1+J), where J is the random percentage jump size, specified as the
comma-separated pair consisting of 'JumpVol' and a scalar decimal value.
Data Types: double

JumpFreq — Annual frequency of Poisson jump process
numeric

Annual frequency of the Poisson jump process, specified as the comma-separated pair consisting of
'JumpFreq' and a scalar numeric value.
Data Types: double

Properties
V0 — Initial variance of underlying asset
numeric

Initial variance of the underlying asset, returned as a scalar numeric value.
Data Types: double

ThetaV — Long-term variance of underlying asset
numeric

Long-term variance of the underlying asset, returned as a scalar numeric value.
Data Types: double

Kappa — Mean revision speed for the variance of underlying asset
numeric

Mean revision speed for the underlying asset, returned as a scalar numeric value.
Data Types: double

SigmaV — Volatility of the variance of underlying asset
numeric

Volatility of the variance of the underlying asset, returned as a scalar numeric value.
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Data Types: double

RhoSV — Correlation between Weiner processes for underlying asset and its variance
numeric

Correlation between the Weiner processes for the underlying asset and its variance, returned as a
scalar numeric value.
Data Types: double

MeanJ — Mean of the random percentage jump size
decimal

Mean of the random percentage jump size (J), returned as a scalar decimal value.
Data Types: double

JumpVol — Standard deviation of log(1+J)
decimal

Standard deviation of log(1+J), where J is the random percentage jump size, returned as a scalar
decimal value.
Data Types: double

JumpFreq — Annual frequency of Poisson jump process
numeric

Annual frequency of the Poisson jump process, returned as a scalar numeric value.
Data Types: double

Examples

Use a Bates Model and Numerical Integration Pricer to Price Vanilla Instrument

This example shows the workflow to price a Vanilla instrument when you use a Bates model and a
NumericalIntegration pricing method.

Create Vanilla Instrument Object

Use fininstrument to create a Vanilla instrument object.

VanillaOpt = fininstrument("Vanilla",'ExerciseDate',datetime(2022,9,15),'Strike',105,'OptionType',"put",'ExerciseStyle',"european",'Name',"vanilla_option")

VanillaOpt = 
  Vanilla with properties:

       OptionType: "put"
    ExerciseStyle: "european"
     ExerciseDate: 15-Sep-2022
           Strike: 105
             Name: "vanilla_option"
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Create Bates Model Object

Use finmodel to create a Bates model object.

BatesModel = finmodel("Bates",'V0',0.032,'ThetaV',0.1,'Kappa',0.003,'SigmaV',0.2,'RhoSV',0.9,'MeanJ',0.11,'JumpVol',.023,'JumpFreq',0.02)

BatesModel = 
  Bates with properties:

          V0: 0.0320
      ThetaV: 0.1000
       Kappa: 0.0030
      SigmaV: 0.2000
       RhoSV: 0.9000
       MeanJ: 0.1100
     JumpVol: 0.0230
    JumpFreq: 0.0200

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create NumericalIntegration Pricer Object

Use finpricer to create a NumericalIntegration pricer object and use the ratecurve object
for the 'DiscountCurve' name-value pair argument.

outPricer = finpricer("numericalintegration",'DiscountCurve',myRC,'Model',BatesModel,'SpotPrice',100)

outPricer = 
  NumericalIntegration with properties:

                Model: [1x1 finmodel.Bates]
        DiscountCurve: [1x1 ratecurve]
            SpotPrice: 100
         DividendType: "continuous"
        DividendValue: 0
               AbsTol: 1.0000e-10
               RelTol: 1.0000e-10
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     IntegrationRange: [1.0000e-09 Inf]
    CharacteristicFcn: @characteristicFcnBates
            Framework: "heston1993"
       VolRiskPremium: 0
           LittleTrap: 1

Price Vanilla Instrument

Use price to compute the price and sensitivities for the Vanilla instrument.

[Price, outPR] = price(outPricer,VanillaOpt,["all"])

Price = 6.4007

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []

outPR.Results

ans=1×7 table
    Price      Delta       Gamma     Theta      Rho       Vega     VegaLT
    ______    ________    _______    _____    _______    ______    ______

    6.4007    -0.53541    0.02006    1.106    -239.77    94.257    1.3059

Use Bates Model and Asset Monte-Carlo Pricer to Price Asian Instrument

This example shows the workflow to price a fixed-strike Asian instrument when you use a Bates
model and an AssetMonteCarlo pricing method.

Create Asian Instrument Object

Use fininstrument to create an Asian instrument object.

AsianOpt = fininstrument("Asian",'ExerciseDate',datetime(2022,9,15),'Strike',100,'OptionType',"put",'Name',"asian_option")

AsianOpt = 
  Asian with properties:

          OptionType: "put"
              Strike: 100
         AverageType: "arithmetic"
        AveragePrice: 0
    AverageStartDate: NaT
       ExerciseStyle: "european"
        ExerciseDate: 15-Sep-2022
                Name: "asian_option"

Create Bates Model Object

Use finmodel to create a Bates model object.
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BatesModel = finmodel("Bates",'V0',0.032,'ThetaV',0.1,'Kappa',0.003,'SigmaV',0.02,'RhoSV',0.9,'MeanJ',0.11,'JumpVol',.023,'JumpFreq',0.02)

BatesModel = 
  Bates with properties:

          V0: 0.0320
      ThetaV: 0.1000
       Kappa: 0.0030
      SigmaV: 0.0200
       RhoSV: 0.9000
       MeanJ: 0.1100
     JumpVol: 0.0230
    JumpFreq: 0.0200

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetMonteCarlo Pricer Object

Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("AssetMonteCarlo",'DiscountCurve',myRC,"Model",BatesModel,'SpotPrice',80,'simulationDates',datetime(2022,9,15))

outPricer = 
  BatesMonteCarlo with properties:

      DiscountCurve: [1x1 ratecurve]
          SpotPrice: 80
    SimulationDates: 15-Sep-2022
          NumTrials: 1000
      RandomNumbers: []
              Model: [1x1 finmodel.Bates]
       DividendType: "continuous"
      DividendValue: 0
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Price Asian Instrument

Use price to compute the price and sensitivities for the Asian instrument.

[Price, outPR] = price(outPricer,AsianOpt,["all"])

Price = 14.5650

outPR = 
  priceresult with properties:

       Results: [1x8 table]
    PricerData: [1x1 struct]

outPR.Results 

ans=1×8 table
    Price      Delta       Gamma      Lambda       Rho       Theta      Vega     VegaLT 
    ______    ________    ________    _______    _______    _______    ______    _______

    14.565    -0.72501    0.015172    -3.9822    -174.38    0.80043    26.545    0.25296

See Also
Functions
fininstrument | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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Black
Create Black model object for Cap, Floor, or Swaption instrument

Description
Create and price a Cap, Floor, or Swaption instrument object with a Black model using this
workflow:

1 Use fininstrument to create a Cap, Floor, orSwaption instrument object.
2 Use finmodel to specify a Black model object for the Cap, Floor, or Swaption instrument

object.
3 Use finpricer to specify a Black pricing method for the Cap, Floor, or Swaption instrument

object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available pricing methods for a Cap, Floor, or Swaption instrument
when using a Black model, see “Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
BlackModelObj = finmodel(ModelType,'Volatility',volatility_value)
BlackModelObj = finmodel( ___ ,Name,Value)

Description

BlackModelObj = finmodel(ModelType,'Volatility',volatility_value) creates a
Black model object by specifying ModelType and sets the properties on page 11-2890 for the
required name-value pair argument Volatility. For more information on a Black model, see
“More About” on page 11-2892 and “Algorithms” on page 11-2892.

BlackModelObj = finmodel( ___ ,Name,Value) sets optional properties on page 11-2890 using
additional name-value pairs in addition to the required arguments in the previous syntax. For
example, BlackModelObj = finmodel("Black",'Volatility',0.032,'Shift',0.002)
creates a Black model object. You can specify multiple name-value pair arguments.

Input Arguments

ModelType — Model type
string with value "Black" | character vector with value 'Black'

Model type, specified as a string with the value of "Black" or a character vector with the value of
'Black'.
Data Types: char | string
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Black Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: BlackModelObj = finmodel("Black",'Volatility',0.032,'Shift',0.002)

Required Black Name-Value Pair Arguments

Volatility — Volatility value for the underlying asset
nonnegative numeric

Volatility value for the underlying asset, specified as the comma-separated pair consisting of
'Volatility' and a scalar nonnegative numeric.
Data Types: double

Optional Black Name-Value Pair Argument

Shift — Shift in decimals for shifted Black model
0 (no shift) (default) | positive decimal

Shift in decimals for the shifted Black model, specified as the comma-separated pair consisting of
'Shift' and a scalar rate shift in positive decimals. Set this parameter to a positive rate shift in
decimals to add a positive shift to the forward rate and strike, which effectively sets a negative lower
bound for the forward rate. For example, a Shift value of 0.01 is equal to a 1% shift.
Data Types: double

Properties
Volatility — Volatility value
nonnegative numeric

Volatility value, returned as a scalar nonnegative numeric.
Data Types: double

Shift — Shift in decimals for shifted Black model
0 (no shift) (default) | positive decimal

Shift in decimals for the shifted Black model, returned as a scalar rate shift in a positive decimal.
Data Types: double

Examples

Use Black Model and Black Pricer to Price Cap Instrument

This example shows the workflow to price a Cap instrument when you use a Black model and a
Black pricing method.
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Create Cap Instrument Object

Use fininstrument to create a Cap instrument object.

CapOpt = fininstrument("Cap",'Strike',.001,'Maturity',datetime(2019,1,30),'Reset',4,'Principal',100,'Basis',8,'Name',"cap_option")

CapOpt = 
  Cap with properties:

                      Strike: 1.0000e-03
                    Maturity: 30-Jan-2019
                 ResetOffset: 0
                       Reset: 4
                       Basis: 8
                   Principal: 100
             ProjectionCurve: [0x0 ratecurve]
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                        Name: "cap_option"

Create Black Model Object

Use finmodel to create a Black model object.

BlackModel = finmodel("Black",'Volatility',0.032,'Shift',0.002)

BlackModel = 
  Black with properties:

    Volatility: 0.0320
         Shift: 0.0020

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
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     LongExtrapMethod: "previous"

Create Black Pricer Object

Use finpricer to create a Black pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'Model',BlackModel,'DiscountCurve',myRC)

outPricer = 
  Black with properties:

            Model: [1x1 finmodel.Black]
    DiscountCurve: [1x1 ratecurve]

Price Cap Instrument

Use price to compute the price for the Cap instrument.

Price = price(outPricer,CapOpt)

Price = 0.1575

More About
Shifted Black Model

The shifted Black model is the same as the Black model, except that it models the movements of (F +
Shift) as the underlying asset, instead of F (which is the forward rate in the case of caplets).

This model allows negative rates, with a fixed negative lower bound defined by the amount of shift;
that is, the zero lower bound of the Black model is shifted.

Algorithms
Black Model

dF = σBlackFdw

call = e−γT FN(d1)− KN(d2)

put = e−γT KN(− d2)− FN(− d1)

d1 =
ln F

K +
σB2

2 T

σB T ,    d2 = d1− σB T

σB = σBlack

Here, F is the forward value and K is the strike.
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Shifted Black Model

dF = σShif ted_Black F + Shif t dw

call = e−γT F + Shif t N(ds1)− K + Shif t N(ds2)

put = e−γT K + Shif t N(− ds2)− F + Shif t N(− ds1)

ds1 =
ln F + Shif t

K + Shif t +
σsB2

2 T

σsB T ,    ds2 = ds1− σsB T

σsB = σShif ted_Black

Here, F+Shift is the forward value and K+Shift is the strike for the shifted version.

See Also
Functions
fininstrument | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53
“Work with Negative Interest Rates Using Objects” on page 2-22

Introduced in R2020a
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CDSBlack
Create CDSBlack model object for CDSOption instrument

Description
Create and price a CDSOption instrument object with a CDSBlack model using this workflow:

1 Use fininstrument to create a CDSOption instrument object.
2 Use finmodel to specify a CDSBlack model object for the CDSOption instrument object.
3 Use finpricer to specify a CDSBlack pricing method for the CDSOption instrument object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available pricing methods for a CDSOption instrument, see “Choose
Instruments, Models, and Pricers” on page 1-53.

Creation
Syntax
CDSBlackModelObj = finmodel(ModelType,'
SpreadVolatility',spreadvolatility_value)

Description

CDSBlackModelObj = finmodel(ModelType,'
SpreadVolatility',spreadvolatility_value) creates a CDSBlack model object by specifying
ModelType and the required name-value pair argument SpreadVolatility to set the properties on
page 11-2895 using name-value pair arguments. For example, CDSBlackModelObj =
finmodel("CDSBlack",'SpreadVolatility',0.052) creates a CDSBlack model object.

Input Arguments

ModelType — Model type
string with value "CDSBlack" | character vector with value 'CDSBlack'

Model type, specified as a string with the value of "CDSBlack" or a character vector with the value
of 'CDSBlack'.
Data Types: char | string

CDSBlack Name-Value Pair Arguments

Specify required pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
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Example: CDSBlackModelObj = finmodel("CDSBlack",'SpreadVolatility',0.052)

SpreadVolatility — Spread volatility value
nonnegative numeric

Spread volatility value, specified as the comma-separated pair consisting of 'SpreadVolatility'
and a scalar nonnegative numeric.
Data Types: double

Properties
SpreadVolatility — Spread volatility value
nonnegative numeric

Spread volatility value, returned as a scalar nonnegative numeric.
Data Types: double

Examples

Use CDS Black Model and CDS Black Pricer to Price CDS Option Instrument

This example shows the workflow to price a CDSOption instrument when you use a CDSBlack model
and a CDSBlack pricing method.

Create CDS Instrument Object

Use fininstrument to create a CDS instrument object as the underlying instrument.

CDS = fininstrument("CDS",'Maturity',datetime(2021,9,15),'ContractSpread',150,'Notional',100,'Name',"CDS_instrument")

CDS = 
  CDS with properties:

           ContractSpread: 150
                 Maturity: 15-Sep-2021
                   Period: 4
                    Basis: 2
             RecoveryRate: 0.4000
    BusinessDayConvention: "actual"
                 Holidays: NaT
        PayAccruedPremium: 1
                 Notional: 100
                     Name: "CDS_instrument"

Create defprobcurve Object

Create a defprobcurve object using defprobcurve.

Settle = datetime(2020,9,20);
DefProbTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])];
DefaultProbabilities = [0.005 0.007 0.01 0.015 0.026 0.04 0.077 0.093 0.15 0.20]';
ProbDates = Settle + DefProbTimes;
DefaultProbCurve = defprobcurve(Settle,ProbDates,DefaultProbabilities,'Basis',5)
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DefaultProbCurve = 
  defprobcurve with properties:

                  Settle: 20-Sep-2020
                   Basis: 5
                   Dates: [10x1 datetime]
    DefaultProbabilities: [10x1 double]

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2020,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2020
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create CDSOption Instrument Object

Use fininstrument to create a CDSOption instrument object.

CDSOptionInst = fininstrument("CDSOption",'ExerciseDate',datetime(2021,8,15),'Strike',20,'CDS',CDS,'OptionType',"put",'Name',"CDSOption_option")

CDSOptionInst = 
  CDSOption with properties:

               OptionType: "put"
                   Strike: 20
                 Knockout: 0
    AdjustedForwardSpread: NaN
             ExerciseDate: 15-Aug-2021
                      CDS: [1x1 fininstrument.CDS]
                     Name: "CDSOption_option"

Create CDSBlack Model Object

Use finmodel to create a CDSBlack model object.

CDSBlackModel = finmodel("CDSBlack",'SpreadVolatility',.2)

CDSBlackModel = 
  CDSBlack with properties:
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    SpreadVolatility: 0.2000

Create CDSBlack Pricer Object

Use finpricer to create a CDSBlack pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'Model',CDSBlackModel,'DefaultProbabilityCurve',DefaultProbCurve,'DiscountCurve',myRC)

outPricer = 
  CDSBlack with properties:

                      Model: [1x1 finmodel.CDSBlack]
              DiscountCurve: [1x1 ratecurve]
    DefaultProbabilityCurve: [1x1 defprobcurve]

Price CDSOption Instrument

Use price to compute the price for the CDSOption instrument.

Price = price(outPricer,CDSOptionInst)

Price = 3.3016e-04

See Also
Functions
fininstrument | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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BlackScholes
Create BlackScholes model object for an Asian, Barrier, DoubleBarrier, Lookback,
PartialLookback, Spread, Vanilla, Touch, DoubleTouch, Cliquet, or Binary instrument

Description
Create and price a Vanilla, Lookback, PartialLookback, Barrier, DoubleBarrier Asian,
Spread, Touch, DoubleTouch, Cliquet, or Binary instrument object with a BlackScholes model
using this workflow:

1 Use fininstrument to create a Vanilla, Lookback, PartialLookback, Barrier, Asian,
Spread, DoubleBarrier, Cliquet, Binary, Touch, or DoubleTouch instrument object.

2 Use finmodel to specify the BlackScholes model object for a Vanilla, Lookback,
PartialLookback, Barrier, DoubleBarrier, Asian, Spread, Touch, DoubleTouch,
Cliquet, or Binary instrument object.

3 Use finpricer to specify a supported pricing method. For more information on the available
pricing methods for the Vanilla, Lookback, PartialLookback, Barrier, DoubleBarrier,
Asian, Spread, Touch, DoubleTouch, Cliquet, or Binary instrument object when using a
BlackScholes model, see “Choose Instruments, Models, and Pricers” on page 1-53.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available pricing methods for a Vanilla, Lookback,
PartialLookback, Barrier, DoubleBarrier, Asian, Spread, Touch, DoubleTouch, or Binary
instrument when using a BlackScholes model, see “Choose Instruments, Models, and Pricers” on
page 1-53.

Creation

Syntax
BlackScholesModelObj = finmodel(ModelType,'Volatility',volatility_value)
BlackScholesModelObj = finmodel( ___ ,Name,Value)

Description

BlackScholesModelObj = finmodel(ModelType,'Volatility',volatility_value)
creates a BlackScholes model object by specifying ModelType and sets the properties on page 11-
2899 for the required name-value pair argument Volatility.

BlackScholesModelObj = finmodel( ___ ,Name,Value) sets optional properties on page 11-
2899 using additional name-value pairs in addition to the required arguments in the previous syntax.
For example, BlackScholesModelObj =
finmodel("BlackScholes",'Volatility',0.032,'Correlation',Corr) creates a
BlackScholes model object. You can specify multiple name-value pair arguments.
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Input Arguments

ModelType — Model type
string with value "BlackScholes" | character vector with value 'BlackScholes'

Model type, specified as a string with the value of "BlackScholes" or a character vector with the
value of 'BlackScholes'.
Data Types: char | string

BlackScholes Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: BlackScholesModelObj =
finmodel("BlackScholes",'Volatility',0.032,'Correlation',Corr)

Required BlackScholes Name-Value Pair Arguments

Volatility — Volatility value
nonnegative numeric

Volatility value, specified as the comma-separated pair consisting of 'Volatility' and a scalar
nonnegative numeric.
Data Types: double

Optional BlackScholes Name-Value Pair Arguments

Correlation — Correlation between underlying asset prices
1 (default) | semidefinite matrix

Correlation between the underlying asset prices, specified as the comma-separated pair consisting of
'Correlation' and a semidefinite matrix. For more information on creating a positive semidefinite
matrix, see nearcorr.
Data Types: double

Properties
Volatility — Volatility value
nonnegative numeric

Volatility value, returned as a scalar nonnegative numeric.
Data Types: double

Corrrelation — Correlation between underlying assets
1 (default) | semi-definite matrix

Correlation between underlying assets, returned as a semi-definite matrix.
Data Types: double
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Examples

Use Black-Scholes Model and Turnbull-Wakeman Pricer to Price Asian Instrument

This example shows the workflow to price an Asian instrument when you use a BlackScholes
model and a TurnbullWakeman pricing method.

Create Asian Instrument Object

Use fininstrument to create an Asian instrument object.

AsianOpt = fininstrument("Asian",'ExerciseDate',datetime(2022,9,15),'Strike',105,'OptionType',"put",'ExerciseStyle',"european",'Name',"asian_option")

AsianOpt = 
  Asian with properties:

          OptionType: "put"
              Strike: 105
         AverageType: "arithmetic"
        AveragePrice: 0
    AverageStartDate: NaT
       ExerciseStyle: "european"
        ExerciseDate: 15-Sep-2022
                Name: "asian_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',0.28)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.2800
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
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         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create TurnbullWakeman Pricer Object

Use finpricer to create a TurnbulllWakeman pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'Model',BlackScholesModel,'DiscountCurve',myRC,'SpotPrice',100,'PricingMethod',"TurnbullWakeman")

outPricer = 
  TurnbullWakeman with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 100
    DividendValue: 0
     DividendType: "continuous"

Price Asian Instrument

Use price to compute the price and sensitivities for the Asian instrument.

[Price, outPR] = price(outPricer,AsianOpt,["all"])

Price = 11.2249

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []

outPR.Results 

ans=1×7 table
    Price      Delta       Gamma     Lambda      Vega      Theta       Rho  
    ______    ________    _______    _______    ______    _______    _______

    11.225    -0.38072    0.01087    -3.3917    44.242    -0.5256    -116.88

Use Black-Scholes Model and Asset Monte-Carlo Pricer to Price DoubleBarrier Instrument

This example shows the workflow to price a DoubleBarrier instrument when you use a
BlackScholes model and an AssetMonteCarlo pricing method.

Create DoubleBarrier Instrument Object

Use fininstrument to create a DoubleBarrier instrument object.

DoubleBarrierOpt = fininstrument("DoubleBarrier",'Strike',100,'ExerciseDate',datetime(2020,8,15),'OptionType',"call",'ExerciseStyle',"american",'BarrierType',"DKO",'BarrierValue',[110 80],'Name',"doublebarrier_option")
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DoubleBarrierOpt = 
  DoubleBarrier with properties:

       OptionType: "call"
           Strike: 100
     BarrierValue: [110 80]
    ExerciseStyle: "american"
     ExerciseDate: 15-Aug-2020
      BarrierType: "dko"
           Rebate: [0 0]
             Name: "doublebarrier_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes","Volatility",.3)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.3000
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2017,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2017
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetMonetCarlo Pricer Object

Use finpricer to create an AssetMonetCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

ExerciseDate = datetime(2020,08,15);
Settle = datetime(2017,9,15);
outPricer = finpricer("AssetMonteCarlo","DiscountCurve",myRC,"Model",BlackScholesModel,'SpotPrice',100,'simulationDates', Settle+days(1):days(1):ExerciseDate);
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Price DoubleBarrier Instrument

Use price to compute the price and sensitivities for the DoubleBarrier instrument.

[Price, outPR] = price(outPricer,DoubleBarrierOpt,["all"])

Price = 6.9667

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: [1x1 struct]

outPR.Results 

ans=1×7 table
    Price      Delta       Gamma      Lambda      Rho      Theta      Vega  
    ______    _______    _________    ______    _______    ______    _______

    6.9667    0.26875    -0.096337    3.8576    0.39855    9.5406    -1.2907

Use Black-Scholes Model and Asset Tree Pricer to Price Vanilla Instrument

This example shows the workflow to price a Vanilla instrument when you use a BlackScholes
model and an AssetTree pricing method.

Create Vanilla Instrument Object

Use fininstrument to create a Vanilla instrument object.

VanillaOpt = fininstrument("Vanilla",'ExerciseDate',datetime(2019,5,1),'Strike',29,'OptionType',"put",'ExerciseStyle',"european",'Name',"vanilla_option")

VanillaOpt = 
  Vanilla with properties:

       OptionType: "put"
    ExerciseStyle: "european"
     ExerciseDate: 01-May-2019
           Strike: 29
             Name: "vanilla_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',0.25)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.2500
    Correlation: 1

 BlackScholes

11-2903



Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,1,1);
Maturity = datetime(2020,1,1);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',1)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 1
                Dates: 01-Jan-2020
                Rates: 0.0350
               Settle: 01-Jan-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetTree Pricer Object

Use finpricer to create an AssetTree pricer object for a LR equity tree and use the ratecurve
object for the 'DiscountCurve' name-value pair argument.

LRPricer = finpricer("AssetTree",'DiscountCurve',myRC,'Model',BlackScholesModel,'SpotPrice',30,'PricingMethod',"LeisenReimer",'Maturity',datetime(2019,5,1),'NumPeriods',15)

LRPricer = 
  LRTree with properties:

    InversionMethod: PP1
             Strike: 30
               Tree: [1x1 struct]
         NumPeriods: 15
              Model: [1x1 finmodel.BlackScholes]
      DiscountCurve: [1x1 ratecurve]
          SpotPrice: 30
       DividendType: "continuous"
      DividendValue: 0
          TreeDates: [02-Feb-2018 08:00:00    06-Mar-2018 16:00:00    ...    ]

Price Vanilla Instrument

Use price to compute the price and sensitivities for the Vanilla instrument.

[Price, outPR] = price(LRPricer,VanillaOpt,"all")

Price = 2.2542

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: [1x1 struct]
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outPR.Results

ans=1×7 table
    Price      Delta       Gamma       Vega     Lambda      Rho       Theta  
    ______    ________    ________    ______    ______    _______    ________

    2.2542    -0.33628    0.044039    12.724    -4.469    -16.433    -0.76073

See Also
Functions
fininstrument | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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BraceGatarekMusiela
Create BraceGatarekMusiela model object for Cap, Floor, FixedBond, FloatBond,
FloatBondOption, FixedBondOption, OptionEmbeddedFixedBond, or
OptionEmbeddedFloatBond instrument

Description
Create and price a Cap, Floor, FloatBond, FloatBondOption, FixedBond, FixedBondOption,
OptionEmbeddedFixedBond, or OptionEmbeddedFloatBond instrument object with a
BraceGatarekMusiela model using this workflow:

1 Use fininstrument to create a Cap, Floor, FixedBond, FloatBond, FloatBondOption
FixedBondOption, OptionEmbeddedFixedBond, or OptionEmbeddedFloatBond instrument
object.

2 Use finmodel to specify a BraceGatarekMusiela model object for the Cap, Floor,
FixedBond, FloatBond, FloatBondOption, FixedBondOption,
OptionEmbeddedFixedBond, or OptionEmbeddedFloatBond instrument object.

3 Use finpricer to specify an IRMonteCarlo pricing method for a Cap, Floor, FixedBond,
FloatBond, FloatBondOption, FixedBondOption, OptionEmbeddedFixedBond, or
OptionEmbeddedFloatBond instrument object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available pricing methods for a Cap, Floor, FixedBond, FloatBond,
FloatBondOption, FixedBondOption, OptionEmbeddedFixedBond, or
OptionEmbeddedFloatBond instrument, see “Choose Instruments, Models, and Pricers” on page 1-
53.

Creation

Syntax
BraceGatarekMusielaModelObj = finmodel(ModelType,Volatility=volatility_value,
Correlation=correlation_value)
BraceGatarekMusielaModelObj = finmodel( ___ ,Name=Value)

Description

BraceGatarekMusielaModelObj = finmodel(ModelType,Volatility=volatility_value,
Correlation=correlation_value) creates a BraceGatarekMusiela model object by specifying
ModelType and the required name-value arguments Volatility and Correlation to set the
properties on page 11-2908.

BraceGatarekMusielaModelObj = finmodel( ___ ,Name=Value) sets optional properties on
page 11-2908 using additional name-value arguments in addition to the required arguments in the
previous syntax. For example, BraceGatarekMusielaModelObj =
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finmodel("BraceGatarekMusiela",Volatility=VolFunc,Correlation=Correlation,Per
iod=1) creates a BraceGatarekMusiela model object. You can specify multiple name-value
arguments.

Input Arguments

ModelType — Model type
string with value "BraceGatarekMusiela" | character vector with value
'BraceGatarekMusiela'

Model type, specified as a string with the value of "BraceGatarekMusiela" or a character vector
with the value of 'BraceGatarekMusiela'.
Data Types: char | string

BraceGatarekMusiela Name-Value Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.
Example: BraceGatarekMusielaModelObj =
finmodel("BraceGatarekMusiela",Volatility=VolFunc,Correlation=Correlation,Per
iod=1)

Volatility — Volatility
function handle

Volatility, specified as Volatility and an (NumRates-1)-by-1 cell array of function handles. Each
function handle must take time as an input and return a scalar volatility.
Data Types: double | cell

Correlation — Correlation matrix
matrix

Correlation matrix, specified as Correlation and a (NumRates-1)-by-(NumRates-1) correlation
matrix.
Data Types: double

Optional BraceGatarekMusiela Name-Value Arguments

NumFactors — Number of Brownian factors
NaN (default) | numeric

Number of Brownian factors, specified as NumFactors and a scalar numeric. The default is NaN
which means that NumFactors is equal to the number of rates.
Data Types: double

Period — Period of forward rates
2 (default) | numeric

Period of forward rates, specified as Period and a scalar numeric. The default is 2, meaning forward
rates are spaced at 0, .5, 1, 1.5, and so on.
Data Types: double
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Properties
Volatility — Volatility
function handle

Volatility, returned as a (NumRates-1)-by-1 cell array of function handles.
Data Types: double | cell

Correlation — Correlation matrix
matrix

Correlation matrix, returned as a (NumRates-1)-by-(NumRates-1) correlation matrix.
Data Types: double

NumFactors — Number of Brownian factors
NaN (default) | numeric

Number of Brownian factors, returned as a scalar numeric.
Data Types: double

Period — Period of forward rates
2 (default) | numeric

Period of forward rates, returned as a scalar numeric.
Data Types: double

Examples

Use BraceGatarekMusiela Model and IRMonteCarlo Pricer to Price Floor Instrument

This example shows the workflow to price a Floor instrument when using a BraceGatarekMusiela
model and an IRMonteCarlo pricing method.

Create Floor Instrument Object

Use fininstrument to create a Floor instrument object.

FloorOpt = fininstrument("Floor",Maturity=datetime(2022,9,15),Strike=0.05,Reset=1,Name="floor_option")

FloorOpt = 
  Floor with properties:

                      Strike: 0.0500
                    Maturity: 15-Sep-2022
                 ResetOffset: 0
                       Reset: 1
                       Basis: 0
                   Principal: 100
             ProjectionCurve: [0x0 ratecurve]
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
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                        Name: "floor_option"

Create BraceGatarekMusiela Model Object

Use finmodel to create a LinearGaussian2F model object.

BGMVolFunc = @(a,t) (a(1)*t + a(2)).*exp(-a(3)*t) + a(4);
BGMVolParams = [.3 -.02 .7 .14];
numRates = 20;
VolFunc(1:numRates-1) = {@(t) BGMVolFunc(BGMVolParams,t)};
Beta = .08;
CorrFunc = @(i,j,Beta) exp(-Beta*abs(i-j));
Correlation = CorrFunc(meshgrid(1:numRates-1)',meshgrid(1:numRates-1),Beta);
BGM = finmodel("BraceGatarekMusiela",Volatility=VolFunc,Correlation=Correlation,Period=1);

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2019,1,1);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [9x1 datetime]
                Rates: [9x1 double]
               Settle: 01-Jan-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create IRMonteCarlo Pricer Object

Use finpricer to create an IRMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("IRMonteCarlo",Model=BGM,DiscountCurve=myRC,SimulationDates=ZeroDates)

outPricer = 
  BGMMonteCarlo with properties:

          NumTrials: 1000
      RandomNumbers: []
      DiscountCurve: [1x1 ratecurve]
    SimulationDates: [01-Jul-2019    01-Jan-2020    01-Jan-2021    ...    ]
              Model: [1x1 finmodel.BraceGatarekMusiela]
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Price Floor Instrument

Use price to compute the price and sensitivities for the Floor instrument.

[Price,outPR] = price(outPricer,FloorOpt,["all"])

Price = 14.7975

outPR = 
  priceresult with properties:

       Results: [1x3 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×3 table
    Price      Delta     Gamma 
    ______    _______    ______

    14.797    -398.43    1399.5

More About
BraceGatarekMusiela Model

The BraceGatarekMusiela (BGM) model, also known as the LIBOR market model, is a financial model
of interest rates.

The BGM model is based on the Heath-Jarrow-Morton (HJM) forward rate approach, it builds a
process for LIBOR interest rates, assuming a conditional lognormal process for LIBOR. The BGM
model is an interest-rate model that differs from short rate models in that it evolves a set of discrete
forward rates.

Specifically, the lognormal BGM model specifies the following diffusion equation for each forward
rate

dFi(t)
Fi

= − μidt + σi(t)dWi

where:

W is an N-dimensional geometric Brownian motion with

dWi(t)dW j(t) = ρi j

The BGM model relates drifts of the forward rates based on no-arbitrage arguments. Specifically,
under the Spot LIBOR measure, drifts are expressed as

μi(t) = − σi(t) ∑
j = q(t)

i τ jρi, jσ j(t)F j(t)
1 + τ jF j(t)

where:
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ρi, j represents the input argument Correlation.

σ j(t) represents the input argument Volatility.

F j(t) represents the computation of the ZeroCurve.

τi is the time fraction associated with the i th forward rate.

q(t) is an index defined by the relation

Tq(t)− 1 < t < Tq(t)

and the Spot LIBOR numeraire is defined as

B(t) = P(t, Tq(t)) ∏
n = 0

q(t)− 1
(1 + τnFn(Tn))

See Also
Functions
SABRBraceGatarekMusiela | fininstrument | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2021b
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SABRBraceGatarekMusiela
Create SABRBraceGatarekMusiela model object for Cap, Floor, FixedBond, FloatBond,
FloatBondOption, FixedBondOption, OptionEmbeddedFixedBond, or
OptionEmbeddedFloatBond instrument

Description
Create and price a Cap, Floor, FloatBond, FloatBondOption, FixedBond, FixedBondOption,
OptionEmbeddedFixedBond, or OptionEmbeddedFloatBond instrument object with a
SABRBraceGatarekMusiela model using this workflow:

1 Use fininstrument to create a Cap, Floor, FixedBond, FloatBond, FloatBondOption
FixedBondOption, OptionEmbeddedFixedBond, or OptionEmbeddedFloatBond instrument
object.

2 Use finmodel to specify a SABRBraceGatarekMusiela model object for the Cap, Floor,
FixedBond, FloatBond, FloatBondOption, FixedBondOption,
OptionEmbeddedFixedBond, or OptionEmbeddedFloatBond instrument object.

3 Use finpricer to specify an IRMonteCarlo pricing method for a Cap, Floor, FixedBond,
FloatBond, FloatBondOption, FixedBondOption, OptionEmbeddedFixedBond, or
OptionEmbeddedFloatBond instrument object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available pricing methods for a Cap, Floor, FixedBond, FloatBond,
FloatBondOption, FixedBondOption, OptionEmbeddedFixedBond, or
OptionEmbeddedFloatBond instrument, see “Choose Instruments, Models, and Pricers” on page 1-
53.

Creation
Syntax
SABRBraceGatarekMusielaModelObj = finmodel(ModelType,Alpha=alpha_value,
Beta=beta_value,VolatilityofVolatility=volatilityofvolatility_value,
FwdFwdCorrelation=fwdfwdcorrelation_value,
VolVolCorrelation=volvolcorrelation_value)

Description

SABRBraceGatarekMusielaModelObj = finmodel(ModelType,Alpha=alpha_value,
Beta=beta_value,VolatilityofVolatility=volatilityofvolatility_value,
FwdFwdCorrelation=fwdfwdcorrelation_value,
VolVolCorrelation=volvolcorrelation_value) creates a classic
SABRBraceGatarekMusiela model object with null forward to volatility correlation by specifying
ModelType and the required name-value arguments Alpha, Beta, VolatilityofVolatility,
FwdFwdCorrelation, and VolVolCorrelation to set properties on page 11-2915 using name-
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value arguments. For example, SABRBraceGatarekMusielaModelObj =
finmodel("SABRBraceGatarekMusiela",Alpha=Alpha,Beta=Beta,VolatilityofVolatili
ty=VolVolFunc,FwdFwdCorrelation=FwdFwdCorrelation,
VolVolCorrelation=VolVolCorrelation) creates a classic SABRBraceGatarekMusiela model
object with null forward to volatility correlation.

SABRBraceGatarekMusielaModelObj = finmodel( ___ ,Name=Value) sets optional properties
on page 11-2915 using additional name-value arguments in addition to the required arguments in the
previous syntax. You can specify multiple name-value arguments. For example, you can use name-
value arguments to create the following variations of the SABRBraceGatarekMusiela model:

• To create a classic SABRBraceGatarekMusiela model object, use the FwdVolCorrelation
name-value pair argument: SABRBraceGatarekMusielaModelObj =
finmodel("SABRBraceGatarekMusiela",Alpha=Alpha,Beta=Beta,VolatilityofVolati
lity=VolVolFunc,FwdFwdCorrelation=FwdFwdCorrelation,VolVolCorrelation=VolVo
lCorrelation,FwdVolCorrelation=FwdVolCorrelation)

• To create a classic SABRBraceGatarekMusiela model object in Rebonato parametric form with
null forward-to-volatility correlation, use the Volatility name-value pair argument:
SABRBraceGatarekMusielaModelObj =
finmodel("SABRBraceGatarekMusiela",Alpha=Alpha,Beta=Beta,VolatilityofVolati
lity=VolVolFunc,Volatility=VolFunc,FwdFwdCorrelation=FwdFwdCorrelation,VolV
olCorrelation=VolVolCorrelation)

• To create a classic SABRBraceGatarekMusiela model object in Rebonato parametric form with
FwdVolCorrelation =
CorrFunc(meshgrid(1:numRates-1)',meshgrid(1:numRates-1),.02), use the
Volatility and FwdVolCorrelation name-value arguments:
SABRBraceGatarekMusielaModelObj =
finmodel("SABRBraceGatarekMusiela",Alpha=Alpha,Beta=Beta,VolatilityofVolati
lity=VolVolFunc,Volatility=VolFunc,FwdFwdCorrelation=FwdFwdCorrelation,VolV
olCorrelation=VolVolCorrelation)

Input Arguments

ModelType — Model type
string with value "SABRBraceGatarekMusiela" | character vector with value
'SABRBraceGatarekMusiela'

Model type, specified as a string with the value of "SABRBraceGatarekMusiela" or a character
vector with the value of 'SABRBraceGatarekMusiela'.
Data Types: char | string

SABRBraceGatarekMusiela Name-Value Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.
Example: SABRBraceGatarekMusielaModelObj =
finmodel("SABRBraceGatarekMusiela",Alpha=Alpha,Beta=Beta,VolatilityofVolatili
ty=VolVolFunc,FwdFwdCorrelation=FwdFwdCorrelation,
VolVolCorrelation=VolVolCorrelation)

Alpha — Initial SABR volatilities for each forward rate maturity
positive numeric
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Initial SABR volatilities for each forward rate maturity, specified as Alpha and an (NumRates-1)-by-1
vector of positive numeric values.
Data Types: double

Beta — SABR exponent parameters for each forward rate maturity
numeric between 0 and 1

SABR exponent parameters for each forward rate maturity, specified as Beta and an (NumRates-1)-
by-1 vector of numeric values between 0 and 1.
Data Types: double

VolatilityofVolatility — Variation in volatility
function handle

Variation in volatility, specified as VolatilityofVolatility and an (NumRates-1)-by-1 cell array
of function handles. Each function handle must take time as an input and return a scalar volatility of
volatility that must be positive numeric.
Data Types: double | cell

FwdFwdCorrelation — Correlation matrix for forward rates
numeric between -1 and 1

Correlation matrix for forward rates, specified as FwdFwdCorrelation and a (NumRates-1)-by-
(NumRates-1) correlation matrix.
Data Types: double

VolVolCorrelation — Correlation matrix for volatilities
numeric between -1 and 1

Correlation matrix for volatilities, specified as VolVolFwdCorrelation and an (NumRates-1)-by-
(NumRates-1) correlation matrix.
Data Types: double

Optional SABRBraceGatarekMusiela Name-Value Arguments

Volatility — Volatility
simulate stochastic volatilities without volatility functions (default) | function handle

Volatility, specified as Volatility and an (NumRates-1)-by-1 cell array of function handles. Specify
these optional volatility function handles to use the Rebonato (2009) parametric form, which
simulates stochastic volatilities with deterministic volatility functions and stochastic correction terms.
Each function handle must take time as an input and return a scalar volatility that must be positive
numeric.
Data Types: double

FwdVolCorrelation — Correlation matrix between forward rates and volatilities
(NumRates-1)-by-(NumRates-1) matrix of zeros (default) | numeric between -1 and 1

Correlation matrix between forward rates and volatilities, specified as FwdVolCorrelation and an
(NumRates-1)-by-(NumRates-1) correlation matrix. The diagonal elements of the matrix are the
SABR Rho parameters.
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Data Types: double

Period — Period of forward rates
2 (default) | numeric

Period of forward rates, specified as Period and a scalar numeric. The default is 2, meaning forward
rates are spaced at 0, .5, 1, 1.5, and so on.
Data Types: double

Properties
Alpha — Initial SABR volatilities for each forward rate maturity
positive numeric

Initial SABR volatilities for each forward rate maturity, returned as an NumRates-1-by-1 vector of
positive numeric values.
Data Types: double

Beta — SABR exponent parameters for each forward rate maturity
numeric between 0 and 1

SABR exponent parameters for each forward rate maturity, returned as an NumRates-1-by-1 vector
of numeric values between 0 and 1.
Data Types: double

VolatilityofVolatility — Variation in volatility
function handle

Variation in volatility, returned as an NumRates-1-by-1 cell array of function handles.
Data Types: double | cell

FwdFwdCorrelation — Correlation matrix for forward rates
numeric between -1 and 1

Correlation matrix for forward rates, returned as an (NumRates-1)-by-(NumRates-1) correlation
matrix.
Data Types: double

VolVolCorrelation — Correlation matrix for volatilities
numeric between -1 and 1

Correlation matrix for volatilities, returned as an (NumRates-1)-by-(NumRates-1) correlation matrix.
Data Types: double

Volatility — Volatility
simulate stochastic volatilities without volatility functions (default) | function handle

Volatility, returned as an NumRates-1-by-1 cell array of function handles.
Data Types: double
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FwdVolCorrelation — Correlation matrix between forward rates and volatilities
(NumRates-1)-by-(NumRates-1) matrix of zeros (default) | numeric between -1 and 1

Correlation matrix between forward rates and volatilities, returned as an (NumRates-1)-by-
(NumRates-1) correlation matrix.
Data Types: double

Period — Period of forward rates
2 (default) | numeric

Period of forward rates, returned as a scalar numeric.
Data Types: double

Examples

Use SABR-BraceGatarekMusiela Model with Null Forward-Volatility Correlation and
IRMonteCarlo Pricer to Price Cap Instrument

This example shows the workflow to price a Cap instrument when you use a
SABRBraceGatarekMusiela model with null Forward-Volatility correlation and an IRMonteCarlo
pricing method.

Create Cap Instrument Object

Use fininstrument to create a Cap instrument object.

CapOpt = fininstrument("Cap",Maturity=datetime(2021,7,1),Strike=0.035,Name="cap_option")

CapOpt = 
  Cap with properties:

                      Strike: 0.0350
                    Maturity: 01-Jul-2021
                 ResetOffset: 0
                       Reset: 1
                       Basis: 0
                   Principal: 100
             ProjectionCurve: [0x0 ratecurve]
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                        Name: "cap_option"

Create Classic SABRBraceGatarekMusiela Model Object with Null Forward-Volatility
Correlation

Use finmodel to create a SABRBraceGatarekMusiela model object that is a classic SABR-BGM
model with null Forward-Volatility correlation.

Alpha = [0.4;0.34;0.31;0.28];
Beta = [0.5;0.5;0.5;0.5];

SABRBGMVolVolFunc = @(a,t) (a(1)*t + a(2)).*exp(-a(3)*t) + a(4);
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SABRBGMVolVolParams = [.3 -.02 .7 .14];

numRates = 5;
VolVolFunc(1:numRates-1,1) = {@(t) SABRBGMVolVolFunc(SABRBGMVolVolParams,t)};

CorrFunc = @(i,j,B) exp(-B*abs(i-j));
FwdFwdCorrelation = CorrFunc(meshgrid(1:numRates-1)',meshgrid(1:numRates-1),.08);
VolVolCorrelation = CorrFunc(meshgrid(1:numRates-1)',meshgrid(1:numRates-1),.04);

SABRBGM_NF = finmodel("SABRBraceGatarekMusiela",Alpha=Alpha,Beta=Beta,VolatilityofVolatility=VolVolFunc,FwdFwdCorrelation=FwdFwdCorrelation,VolVolCorrelation=VolVolCorrelation)

SABRBGM_NF = 
  SABRBraceGatarekMusiela with properties:

                    Period: 2
                     Alpha: [4x1 double]
                      Beta: [4x1 double]
                Volatility: {4x1 cell}
    VolatilityofVolatility: {4x1 cell}
         FwdFwdCorrelation: [4x4 double]
         VolVolCorrelation: [4x4 double]
         FwdVolCorrelation: [4x4 double]

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2019,1,1);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 01-Jan-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create IRMonteCarlo Pricer Object

Use finpricer to create an IRMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

simDates = datetime(2019,7,1)+calmonths(0:6:24);
outPricer = finpricer("IRMonteCarlo",Model=SABRBGM_NF,DiscountCurve=myRC,SimulationDates=simDates)

outPricer = 
  SABRBGMMonteCarlo with properties:

 SABRBraceGatarekMusiela

11-2917



          NumTrials: 1000
      RandomNumbers: []
      DiscountCurve: [1x1 ratecurve]
    SimulationDates: [01-Jul-2019    01-Jan-2020    01-Jul-2020    ...    ]
              Model: [1x1 finmodel.SABRBraceGatarekMusiela]

Price Cap Instrument

Use price to compute the price and sensitivities for the Cap instrument.

[Price,outPR] = price(outPricer,CapOpt,["all"])

Price = 0.8867

outPR = 
  priceresult with properties:

       Results: [1x3 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×3 table
    Price     Delta      Gamma 
    ______    ______    _______

    0.8867    118.82    -9486.5

You can access the simulated interest-rate Paths in the PricerData output.

outPR.PricerData

ans = struct with fields:
    SimulationTimes: [6x1 timetable]
              Paths: [6x8x1000 double]
      RandomNumbers: [1x1 struct]

Use Classic SABR-BraceGatarekMusiela Model and IRMonteCarlo Pricer to Price Floor
Instrument

This example shows the workflow to price a Floor instrument when you use a classic
SABRBraceGatarekMusiela model and an IRMonteCarlo pricing method.

Create Floor Instrument Object

Use fininstrument to create a Floor instrument object.

FloorOpt = fininstrument("Floor",Maturity=datetime(2021,7,1),Strike=0.05,Reset=1,Name="floor_option")

FloorOpt = 
  Floor with properties:
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                      Strike: 0.0500
                    Maturity: 01-Jul-2021
                 ResetOffset: 0
                       Reset: 1
                       Basis: 0
                   Principal: 100
             ProjectionCurve: [0x0 ratecurve]
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                        Name: "floor_option"

Create Classic SABRBraceGatarekMusiela Model Object

Use finmodel to create a classic SABRBraceGatarekMusiela model object.

Alpha = [0.4;0.34;0.31;0.28];
Beta = [0.5;0.5;0.5;0.5];

SABRBGMVolVolFunc = @(a,t) (a(1)*t + a(2)).*exp(-a(3)*t) + a(4);
SABRBGMVolVolParams = [.3 -.02 .7 .14];

numRates = 5;
VolVolFunc(1:numRates-1,1) = {@(t) SABRBGMVolVolFunc(SABRBGMVolVolParams,t)};

CorrFunc = @(i,j,B) exp(-B*abs(i-j));
FwdFwdCorrelation = CorrFunc(meshgrid(1:numRates-1)',meshgrid(1:numRates-1),.08);
VolVolCorrelation = CorrFunc(meshgrid(1:numRates-1)',meshgrid(1:numRates-1),.04);
SABRRho = [0.0005;0.0006;0.0060;0.0055];
FwdVolCorrelation = diag(SABRRho);

SABRBGM_Classic = finmodel("SABRBraceGatarekMusiela",Alpha=Alpha,Beta=Beta,VolatilityofVolatility=VolVolFunc,FwdFwdCorrelation=FwdFwdCorrelation,VolVolCorrelation=VolVolCorrelation,FwdVolCorrelation=FwdVolCorrelation)

SABRBGM_Classic = 
  SABRBraceGatarekMusiela with properties:

                    Period: 2
                     Alpha: [4x1 double]
                      Beta: [4x1 double]
                Volatility: {4x1 cell}
    VolatilityofVolatility: {4x1 cell}
         FwdFwdCorrelation: [4x4 double]
         VolVolCorrelation: [4x4 double]
         FwdVolCorrelation: [4x4 double]

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2019,1,1);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)
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myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 01-Jan-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create IRMonteCarlo Pricer Object

Use finpricer to create an IRMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

simDates = datetime(2019,7,1)+calmonths(0:6:24);
outPricer = finpricer("IRMonteCarlo",Model=SABRBGM_Classic,DiscountCurve=myRC,SimulationDates=simDates)

outPricer = 
  SABRBGMMonteCarlo with properties:

          NumTrials: 1000
      RandomNumbers: []
      DiscountCurve: [1x1 ratecurve]
    SimulationDates: [01-Jul-2019    01-Jan-2020    01-Jul-2020    ...    ]
              Model: [1x1 finmodel.SABRBraceGatarekMusiela]

Price Floor Instrument

Use price to compute the price and sensitivities for the Floor instrument.

[Price,outPR] = price(outPricer,FloorOpt,["all"])

Price = 11.6086

outPR = 
  priceresult with properties:

       Results: [1x3 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×3 table
    Price      Delta     Gamma
    ______    _______    _____

    11.609    -171.15    13201

You can access the simulated interest-rate Paths in the PricerData output.

outPR.PricerData
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ans = struct with fields:
    SimulationTimes: [6x1 timetable]
              Paths: [6x8x1000 double]
      RandomNumbers: [1x1 struct]

Use SABR-BraceGatarekMusiela Model (Rebonato Parametric Form with Null Forward-
Volatility Correlation) and IRMonteCarlo Pricer to Price Fixed Bond Instrument

This example shows the workflow to price a FixedBond instrument when you use a
SABRBraceGatarekMusiela model in Rebonato parametric form with null Forward-Volatility
correlation and an IRMonteCarlo pricing method.

Create FixedBond Instrument Object

Use fininstrument to create a FixedBond instrument object.

FixB = fininstrument("FixedBond",Maturity=datetime(2021,7,1),CouponRate=0.021,Period=2,Basis=1,Principal=100,Name="fixed_bond_instrument")

FixB = 
  FixedBond with properties:

                  CouponRate: 0.0210
                      Period: 2
                       Basis: 1
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 01-Jul-2021
                        Name: "fixed_bond_instrument"

Create Rebonato Form with Null Forward-Volatility Correlation SABRBraceGatarekMusiela
Model Object

Use finmodel to create a SABRBraceGatarekMusiela model object that is a SABR-BGM model in
Rebonato parametric form with null Forward-Volatility correlation.

Alpha = [0.4;0.34;0.31;0.28];
Beta = [0.5;0.5;0.5;0.5];
numRates = 5;

SABRBGMVolVolFunc = @(a,t) (a(1)*t + a(2)).*exp(-a(3)*t) + a(4);
SABRBGMVolVolParams = [.3 -.02 .7 .14];

SABRBGMVolFunc = @(a,t) (a(1)*t + a(2)).*exp(-a(3)*t) + a(4);
SABRBGMVolParams = [.2 -.01 .8 .16];
VolFunc(1:numRates-1,1) = {@(t) SABRBGMVolFunc(SABRBGMVolParams,t)};

VolVolFunc(1:numRates-1,1) = {@(t) SABRBGMVolVolFunc(SABRBGMVolVolParams,t)};
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CorrFunc = @(i,j,B) exp(-B*abs(i-j));
FwdFwdCorrelation = CorrFunc(meshgrid(1:numRates-1)',meshgrid(1:numRates-1),.08);
VolVolCorrelation = CorrFunc(meshgrid(1:numRates-1)',meshgrid(1:numRates-1),.04);

SABRBGM_Rebonato = finmodel("SABRBraceGatarekMusiela",Alpha=Alpha,Beta=Beta,VolatilityofVolatility=VolVolFunc,Volatility=VolFunc,FwdFwdCorrelation=FwdFwdCorrelation, VolVolCorrelation=VolVolCorrelation)

SABRBGM_Rebonato = 
  SABRBraceGatarekMusiela with properties:

                    Period: 2
                     Alpha: [4x1 double]
                      Beta: [4x1 double]
                Volatility: {4x1 cell}
    VolatilityofVolatility: {4x1 cell}
         FwdFwdCorrelation: [4x4 double]
         VolVolCorrelation: [4x4 double]
         FwdVolCorrelation: [4x4 double]

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2019,1,1);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 01-Jan-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create IRMonteCarlo Pricer Object

Use finpricer to create an IRMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

simDates = datetime(2019,7,1)+calmonths(0:6:24);
outPricer = finpricer("IRMonteCarlo",Model=SABRBGM_Rebonato,DiscountCurve=myRC,SimulationDates=simDates)

outPricer = 
  SABRBGMMonteCarlo with properties:

          NumTrials: 1000
      RandomNumbers: []
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      DiscountCurve: [1x1 ratecurve]
    SimulationDates: [01-Jul-2019    01-Jan-2020    01-Jul-2020    ...    ]
              Model: [1x1 finmodel.SABRBraceGatarekMusiela]

Price FixedBond Instrument

Use price to compute the price and sensitivities for the FixedBond instrument.

[Price,outPR] = price(outPricer,FixB,["all"])

Price = 103.5433

outPR = 
  priceresult with properties:

       Results: [1x3 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×3 table
    Price     Delta     Gamma
    ______    ______    _____

    103.54    -253.5    628.2

You can access the simulated interest-rate Paths in the PricerData output.

outPR.PricerData

ans = struct with fields:
    SimulationTimes: [6x1 timetable]
              Paths: [6x8x1000 double]
      RandomNumbers: [1x1 struct]

Use SABR-BraceGatarekMusiela Model (Rebonato Parameteric Form) and IRMonteCarlo
Pricer to Price Float Bond Instrument

This example shows the workflow to price a FloatBond instrument when you use a
SABRBraceGatarekMusiela model in Rebonato parametric form and an IRMonteCarlo pricing
method.

Create FloatBond Instrument Object

Use fininstrument to create a FloatBond instrument object.

FloatB = fininstrument("FloatBond",Maturity=datetime(2021,7,1),Spread=0.025,Reset=2,Basis=1,Principal=100,EndMonthRule=false,Name="float_bond_instrument")

FloatB = 
  FloatBond with properties:

                      Spread: 0.0250
             ProjectionCurve: [0x0 ratecurve]
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                 ResetOffset: 0
                       Reset: 2
                       Basis: 1
                EndMonthRule: 0
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
          LatestFloatingRate: NaN
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 01-Jul-2021
                        Name: "float_bond_instrument"

Create Rebonato Form SABRBraceGatarekMusiela Model Object

Use finmodel to create a SABRBraceGatarekMusiela model object that is a SABR-BGM model in
Rebonato parametric form.

Alpha = [0.4;0.34;0.31;0.28];
Beta = [0.5;0.5;0.5;0.5];
numRates = 5;

SABRBGMVolVolFunc = @(a,t) (a(1)*t + a(2)).*exp(-a(3)*t) + a(4);
SABRBGMVolVolParams = [.3 -.02 .7 .14];

SABRBGMVolFunc = @(a,t) (a(1)*t + a(2)).*exp(-a(3)*t) + a(4);
SABRBGMVolParams = [.2 -.01 .8 .16];
VolFunc(1:numRates-1,1) = {@(t) SABRBGMVolFunc(SABRBGMVolParams,t)};

VolVolFunc(1:numRates-1,1) = {@(t) SABRBGMVolVolFunc(SABRBGMVolVolParams,t)};

CorrFunc = @(i,j,B) exp(-B*abs(i-j));
FwdFwdCorrelation = CorrFunc(meshgrid(1:numRates-1)',meshgrid(1:numRates-1),.08);
VolVolCorrelation = CorrFunc(meshgrid(1:numRates-1)',meshgrid(1:numRates-1),.04);
SABRRho = [0.0005;0.0006;0.0060;0.0055];
FwdVolCorrelation = diag(SABRRho);

SABRBGM_Rebonato_param = finmodel("SABRBraceGatarekMusiela",Alpha=Alpha,Beta=Beta,VolatilityofVolatility=VolVolFunc,Volatility=VolFunc,FwdFwdCorrelation=FwdFwdCorrelation,VolVolCorrelation=VolVolCorrelation,FwdVolCorrelation=FwdVolCorrelation)

SABRBGM_Rebonato_param = 
  SABRBraceGatarekMusiela with properties:

                    Period: 2
                     Alpha: [4x1 double]
                      Beta: [4x1 double]
                Volatility: {4x1 cell}
    VolatilityofVolatility: {4x1 cell}
         FwdFwdCorrelation: [4x4 double]
         VolVolCorrelation: [4x4 double]
         FwdVolCorrelation: [4x4 double]

Create ratecurve Object

Create a ratecurve object using ratecurve.
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Settle = datetime(2019,1,1);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 01-Jan-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create IRMonteCarlo Pricer Object

Use finpricer to create an IRMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

simDates = datetime(2019,7,1)+calmonths(0:6:24);
outPricer = finpricer("IRMonteCarlo",Model=SABRBGM_Rebonato_param,DiscountCurve=myRC,SimulationDates=simDates)

outPricer = 
  SABRBGMMonteCarlo with properties:

          NumTrials: 1000
      RandomNumbers: []
      DiscountCurve: [1x1 ratecurve]
    SimulationDates: [01-Jul-2019    01-Jan-2020    01-Jul-2020    ...    ]
              Model: [1x1 finmodel.SABRBraceGatarekMusiela]

Price FloatBond Instrument

Use price to compute the price and sensitivities for the FloatBond instrument.

[Price,outPR] = price(outPricer,FloatB,["all"])

Price = 106.1830

outPR = 
  priceresult with properties:

       Results: [1x3 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×3 table
    Price      Delta     Gamma 
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    ______    _______    ______

    106.18    -9.2496    16.927

You can access the simulated interest-rate Paths in the PricerData output.

outPR.PricerData

ans = struct with fields:
    SimulationTimes: [6x1 timetable]
              Paths: [6x8x1000 double]
      RandomNumbers: [1x1 struct]

More About
SABR-BGM Model

The SABR-BGM model combines the BGM model and the SABR model by introducing the SABR βk
exponent and the SABR volatility αk(t) to the BGM forward rate SDE.

SABR-BGM Model

• The volatility-of-volatility function νk(t) is a deterministic function of time.
• The correlation matrix is 2N-by-2N:
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SABR-BGM Correlation Matrix

A special case of null (zero) Forward-Volatility correlations has some advantages:

• Sets the Forward-Volatility correlations φk, 1 and the SABR Rho ρk to zero, which means fewer
parameters to calibrate

• Still fits market data
• Gives lower variance and faster convergence in Monte Carlo simulation

SABR-BGM Model in Rebonato Parametric Form

To facilitate the calibration of the SABR-BGM model using market data, Rebonato et. al. (2009)
introduced the parametric form.

In the parametric form, the SABR volatility αk(t) is decomposed into a product of two components: the
deterministic volatility function g(Tk-1 - t) and the stochastic correction term sk(t).
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SABR-BGM Model in Rebonato Parametric Form

• The volatility function g(Tk-1 - t) is a deterministic function of time.
• The volatility-of-volatility function h(Tk-1 - t) is a deterministic function of time.
• The correlation matrix is 2N-by-2N:
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SABR-BGM Model in Rebonato Parametric Form Correlation Matrix

A special case of null (zero) Forward-Volatility correlations has some advantages:

• Sets the Forward-Volatility correlations φk, 1 and the SABR Rho ρk to zero, which means fewer
parameters to calibrate

• Still fits market data
• Gives lower variance and faster convergence in Monte Carlo simulation
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See Also
Functions
BraceGatarekMusiela | fininstrument | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2021b
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LinearGaussian2F
Create LinearGaussian2F model object for Cap, Floor, Swaption, Swap, FixedBond,
FloatBond, FloatBondOption, FixedBondOption, OptionEmbeddedFixedBond, or
OptionEmbeddedFloatBond instrument

Description
Create and price a Cap, Floor, Swaption, Swap, FloatBond, FloatBondOption, FixedBond,
FixedBondOption, OptionEmbeddedFixedBond, or OptionEmbeddedFloatBond instrument
object with a LinearGaussian2F model using this workflow:

1 Use fininstrument to create a Cap, Floor, Swaption, Swap, FixedBond, FloatBond,
FloatBondOption FixedBondOption, OptionEmbeddedFixedBond, or
OptionEmbeddedFloatBond instrument object.

2 Use finmodel to specify a LinearGaussian2F model object for the Cap, Floor, Swaption,
Swap, FixedBond, FloatBond, FloatBondOption, FixedBondOption,
OptionEmbeddedFixedBond, or OptionEmbeddedFloatBond instrument object.

3 Use finpricer to specify an IRMonteCarlo pricing method for a Cap, Floor, Swaption,
Swap, FixedBond, FloatBond, FloatBondOption, FixedBondOption,
OptionEmbeddedFixedBond, or OptionEmbeddedFloatBond instrument object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available pricing methods for a Cap, Floor, Swaption, Swap,
FixedBond, FloatBond, FloatBondOption, FixedBondOption, OptionEmbeddedFixedBond, or
OptionEmbeddedFloatBond instrument, see “Choose Instruments, Models, and Pricers” on page 1-
53.

Creation
Syntax
LinearGaussian2FModelObj = finmodel(ModelType,Alpha1=alpha1_value,
Sigma1=sigma1_value,Alpha2=alpha2_value,Sigma2=sigma2_value,
Correlation=correlation_value)

Description

LinearGaussian2FModelObj = finmodel(ModelType,Alpha1=alpha1_value,
Sigma1=sigma1_value,Alpha2=alpha2_value,Sigma2=sigma2_value,
Correlation=correlation_value) creates a LinearGaussian2F model object by specifying
ModelType and the required name-value arguments for Alpha1, Sigma1, Alpha2, Sigma2 and
Correlation to set properties on page 11-2933 using name-value pair arguments. For example,
LinearGaussian2FModelObj =
finmodel("LinearGaussian2F",Alpha1=0.07,Sigma1=0.01,Alpha2=0.5,Sigma2=0.006,C
orrelation=-0.7) creates a LinearGaussian2F model object.
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Input Arguments

ModelType — Model type
string with value "LinearGaussian2F" | character vector with value 'LinearGaussian2F'

Model type, specified as a string with the value of "LinearGaussian2F" or a character vector with
the value of 'LinearGaussian2F'.
Data Types: char | string

LinearGaussian2F Name-Value Arguments

Specify required pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: LinearGaussian2FModelObj =
finmodel("LinearGaussian2F",Alpha1=0.07,Sigma1=0.01,Alpha2=0.5,Sigma2=0.006,C
orrelation=-0.7)

Alpha1 — Positive mean reversion value for first factor
scalar numeric | timetable

Positive mean reversion value for first factor, specified as Alpha1 and a scalar numeric or timetable.
Data Types: double | timetable

Sigma1 — Positive volatility for first factor
scalar numeric | timetable

Positive volatility for first factor, specified as Sigma1 and a scalar numeric or timetable.
Data Types: double | timetable

Alpha2 — Positive mean reversion value for second factor
numeric | timetable

Positive mean reversion value for the second factor, specified as Alpha2 and a scalar numeric or
timetable.
Data Types: double | timetable

Sigma2 — Positive volatility for second factor
numeric | timetable

Positive volatility for second factor, specified as Sigma2 and a scalar numeric or timetable.
Data Types: double | timetable

Correlation — Scalar correlation of factors
numeric

Scalar correlation of factors, specified as Correlation and a scalar numeric.
Data Types: double
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Properties
Alpha1 — Positive mean reversion for first factor
numeric | timetable

Positive mean reversion for first factor, returned as a scalar numeric or timetable.
Data Types: double

Sigma1 — Positive volatility for first factor
numeric | timetable

Positive volatility for first factor, returned as a scalar numeric value or timetable.
Data Types: double

Alpha2 — Positive mean reversion value for second factor
numeric | timetable

Positive mean reversion value for second factor, returned as a scalar numeric or timetable.
Data Types: double

Sigma2 — Positive volatility for second factor
numeric | timetable

Positive volatility for second factor, returned as a scalar numeric value or timetable.
Data Types: double | timetable

Correlation — Scalar correlation of factors
numeric

Scalar correlation of factors, returned as a scalar numeric value.
Data Types: double

Examples

Use LinearGaussian2F Model and IRMonteCarlo Pricer to Price Cap Instrument

This example shows the workflow to price a Cap instrument when using a LinearGaussian2F model
and an IRMonteCarlo pricing method.

Create Cap Instrument Object

Use fininstrument to create a Cap instrument object.

CapOpt = fininstrument("Cap",Maturity=datetime(2022,9,15),Strike=0.01,Reset=2,Name="cap_option")

CapOpt = 
  Cap with properties:

                      Strike: 0.0100
                    Maturity: 15-Sep-2022
                 ResetOffset: 0
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                       Reset: 2
                       Basis: 0
                   Principal: 100
             ProjectionCurve: [0x0 ratecurve]
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                        Name: "cap_option"

Create LinearGaussian2F Model Object

Use finmodel to create a LinearGaussian2F model object.

LinearGaussian2FModel = finmodel("LinearGaussian2F",Alpha1=0.07,Sigma1=0.01,Alpha2=0.5,Sigma2=0.006,Correlation=-0.7)

LinearGaussian2FModel = 
  LinearGaussian2F with properties:

         Alpha1: 0.0700
         Sigma1: 0.0100
         Alpha2: 0.5000
         Sigma2: 0.0060
    Correlation: -0.7000

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2019,1,1);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 01-Jan-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create IRMonteCarlo Pricer Object

Use finpricer to create an IRMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("IRMonteCarlo",Model=LinearGaussian2FModel,DiscountCurve=myRC,SimulationDates=ZeroDates)
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outPricer = 
  G2PPMonteCarlo with properties:

          NumTrials: 1000
      RandomNumbers: []
      DiscountCurve: [1x1 ratecurve]
    SimulationDates: [01-Jul-2019    01-Jan-2020    01-Jan-2021    ...    ]
              Model: [1x1 finmodel.LinearGaussian2F]

Price Cap Instrument

Use price to compute the price and sensitivities for the Cap instrument.

[Price,outPR] = price(outPricer,CapOpt,["all"])

Price = 1.2156

outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×4 table
    Price     Delta     Gamma          Vega      
    ______    ______    _____    ________________

    1.2156    131.37    11048    126.5    -157.38

More About
LinearGaussian2F Model

The LinearGaussian2F two-factor additive Gaussian interest-rate model.

Specifically, the LinearGaussian2F model is defined using the following equations:

r(t) = x(t) + y(t) + ϕ(t)

dx(t) = − a(t)x(t)dt + σ(t)dW1(t), x(0) = 0

dy(t) = − b(t)y(t)dt + η(t)dW2(t), y(0) = 0

where dW1(t)dW2(t) = ρdt is a two-dimensional Brownian motion with correlation ρ, and ϕ is a
function chosen to match the initial zero curve.

See Also
Functions
fininstrument | finpricer
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Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2021b
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BlackKarasinski
Create BlackKarasinski model object for a Cap, FloorSwaption, Swap, FloatBond, FixedBond,
FixedBondOption, FloatBondOption, OptionEmbeddedFixedBond, or
OptionEmbeddedFloatBond instrument

Description
Create and price a Cap, Floor, Swaption, Swap, FloatBond, FixedBond, FixedBondOption,
FloatBondOption, OptionEmbeddedFixedBond, or OptionEmbeddedFloatBond instrument
object with a BlackKarasinski model using this workflow:

1 Use fininstrument to create a Cap, Floor, Swaption, Swap, FloatBond, FixedBond,
FixedBondOption, FloatBondOption, OptionEmbeddedFixedBond, or
OptionEmbeddedFloatBond instrument object.

2 Use finmodel to specify a BlackKarasinski model object for the Cap, Floor, Swaption,
Swap, FixedBond, FloatBond, FixedBondOption, FloatBondOption,
OptionEmbeddedFixedBond, or OptionEmbeddedFloatBond instrument object.

3 Use finpricer to specify a IRTree pricing method for the Cap, Floor, Swaption,
SwapFixedBond, FloatBond, FixedBondOption or OptionEmbeddedFixedBond instrument
object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available pricing methods for a Cap, FloorSwaption, Swap,
FixedBond, FloatBond, FixedBondOption, FloatBondOption, OptionEmbeddedFixedBond, or
OptionEmbeddedFloatBond instrument, see “Choose Instruments, Models, and Pricers” on page 1-
53.

Creation

Syntax
BlackKarasinskiModelObj = finmodel(ModelType,'Alpha',alpha_value,'
Sigma',sigma_value)

Description

BlackKarasinskiModelObj = finmodel(ModelType,'Alpha',alpha_value,'
Sigma',sigma_value) creates a BlackKarasinski model object by specifying ModelType and
the required name-value pair arguments Alpha and Sigma to set the properties on page 11-2938. For
example, BlackKarasinskiModelObj =
finmodel("BlackKarasinski",'Alpha',0.052,'Sigma',0.34) creates a BlackKarasinski
model object.
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Input Arguments

ModelType — Model type
string with value "BlackKarasinski" | character vector with value 'BlackKarasinski'

Model type, specified as a string with the value of "BlackKarasinski" or a character vector with
the value of 'BlackKarasinski'.
Data Types: char | string

BlackKarasinski Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: BlackKarasinskiModelObj =
finmodel("BlackKarasinski",'Alpha',0.052,'Sigma',0.34)

Alpha — Mean reversion speed
numeric | timetable

Mean reversion speed, specified as the comma-separated pair consisting of 'Alpha' and a scalar
numeric value or timetable.

Alpha accepts a timetable, where the first column is dates and the second column is the associated
Alpha value.
Data Types: double | timetable

Sigma — Volatility
numeric | timetable

Volatility, specified as the comma-separated pair consisting of 'Sigma' and a scalar numeric value or
timetable.

Sigma accepts a timetable, where the first column is dates and the second column is the associated
Sigma value.
Data Types: double | timetable

Properties
Alpha — Mean reversion speed
numeric

Mean reversion speed, returned as a scalar numeric value or timetable.
Data Types: double | timetable

Sigma — Volatility
numeric

Volatility, returned as a scalar numeric value or timetable.
Data Types: double | timetable
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Examples

Use Black-Karasinski Model and Black-Karasinski Tree Pricer to Price FixedBondOption
Instrument

This example shows the workflow to price a FixedBondOption instrument when you use a
BlackKarasinski model and an IRTree pricing method.

Create FixedBond Instrument Object

Use fininstrument to create a FixedBond instrument object as the underlying bond.

BondInst = fininstrument("FixedBond",'Maturity',datetime(2029,9,15),'CouponRate',.024,'Principal',100,'Basis',1,'Period',1,'Name',"fixed_bond")

BondInst = 
  FixedBond with properties:

                  CouponRate: 0.0240
                      Period: 1
                       Basis: 1
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 15-Sep-2029
                        Name: "fixed_bond"

Create FixedBondOption Instrument Object

Use fininstrument to create a FixedBondOption instrument object.

FixedBOption = fininstrument("FixedBondOption",'ExerciseDate',datetime(2025,9,15),'Strike',800,'Bond',BondInst,'OptionType',"put",'ExerciseStyle',"american",'Name',"fixed_bond_option")

FixedBOption = 
  FixedBondOption with properties:

       OptionType: "put"
    ExerciseStyle: "american"
     ExerciseDate: 15-Sep-2025
           Strike: 800
             Bond: [1x1 fininstrument.FixedBond]
             Name: "fixed_bond_option"

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2019,9,15);
Type = 'zero';
ZeroTimes = [calyears([1:10])]';
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ZeroRates = [0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307 0.0310]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates, 'Basis',5)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 5
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create BlackKarasinski Model Object

Use finmodel to create a BlackKarasinski model object.

BlackKarasinskiModel = finmodel("BlackKarasinski",'Alpha',0.02,'Sigma',0.34)

BlackKarasinskiModel = 
  BlackKarasinski with properties:

    Alpha: 0.0200
    Sigma: 0.3400

Create IRTree Pricer Object

Use finpricer to create an IRTree pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

BKTreePricer = finpricer("IRTree",'Model',BlackKarasinskiModel,'DiscountCurve',myRC,'TreeDates',ZeroDates)

BKTreePricer = 
  HWBKTree with properties:

             Tree: [1x1 struct]
        TreeDates: [10x1 datetime]
            Model: [1x1 finmodel.BlackKarasinski]
    DiscountCurve: [1x1 ratecurve]

BKTreePricer.Tree

ans = struct with fields:
        tObs: [0 1 2 3 4 5 6 7 8 9]
        dObs: [15-Sep-2019    15-Sep-2020    15-Sep-2021    ...    ]
      CFlowT: {1x10 cell}
       Probs: {1x9 cell}
     Connect: {1x9 cell}
     FwdTree: {1x10 cell}
    RateTree: {1x10 cell}
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Price FixedBondOption Instrument

Use price to compute the price and sensitivities for the FixedBondOption instrument.

[Price, outPR] = price(BKTreePricer,FixedBOption,["all"])

Price = 705.2729

outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×4 table
    Price        Vega         Gamma     Delta 
    ______    ___________    _______    ______

    705.27    -1.1369e-09    -8084.8    844.75

See Also
Functions
fininstrument | finpricer | timetable

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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Heston
Create Heston model object for Vanilla, Asian, Barrier, DoubleBarrier, Lookback,
PartialLookback, VarianceSwap, Touch, DoubleTouch, Cliquet, or Binary instrument

Description
Create and price a Vanilla, Asian, Barrier, DoubleBarrier, Lookback, PartialLookback,
VarianceSwap, Touch, DoubleTouch, Cliquet, or Binary instrument object with a Heston model
using this workflow:

1 Use fininstrument to create a Vanilla, Barrier, Lookback, PartialLookback, Asian,
DoubleBarrier, VarianceSwap, Binary, Touch, Cliquet, or DoubleTouch instrument
object.

2 Use finmodel to specify a Heston model object for the Vanilla, Asian, Barrier,
DoubleBarrier, Lookback, PartialLookback, VarianceSwap, Touch, DoubleTouch,
Cliquet, or Binary instrument object.

3 Use finpricer to specify a FiniteDifference, NumericalIntegration, or FFT pricing
method for the Vanilla instrument object.

Use finpricer to specify an AssetMonteCarlo pricing method for the Vanilla, Asian,
BarrierDoubleBarrier, Lookback, PartialLookback, VarianceSwap, Touch,
DoubleTouch, Cliquet, or Binary instrument object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available pricing methods for a Vanilla, AsianBarrier,
DoubleBarrier, Lookback, PartialLookback, VarianceSwap, Touch, DoubleTouch, or
Binary instrument, see “Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
HestonModelObj = finmodel(ModelType,'V0'v0_value,'ThetaV',thetav_value,'
Kappa',kappa_value,'SigmaV',sigmav_value,'RhoSV',rhosv_value)

Description

HestonModelObj = finmodel(ModelType,'V0'v0_value,'ThetaV',thetav_value,'
Kappa',kappa_value,'SigmaV',sigmav_value,'RhoSV',rhosv_value) creates a Black
model object by specifying ModelType and the required name-value pair arguments V0, ThetaV,
Kappa, SigmaV, and RhoSV to set properties on page 11-2944 using required name-value pair
arguments. For example, HestonModelObj =
finmodel("Heston",'V0',0.032,'ThetaV',0.1,'Kappa',0.003,'SigmaV',0.2,'RhoSV',
0.9) creates a Heston model object.
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Input Arguments

ModelType — Model type
string with value "Heston" | character vector with value 'Heston'

Model type, specified as a string with the value of "Heston" or a character vector with the value of
'Heston'.
Data Types: char | string

Heston Name-Value Pair Arguments

Specify required pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: HestonModelObj =
finmodel("Heston",'V0',0.032,'ThetaV',0.1,'Kappa',0.003,'SigmaV',0.2,'RhoSV',
0.9)

V0 — Initial variance of underlying asset
numeric

Initial variance of the underlying asset, specified as the comma-separated pair consisting of 'V0' and
a scalar numeric value.
Data Types: double

ThetaV — Long-term variance of underlying asset
numeric

Long-term variance of the underlying asset, specified as the comma-separated pair consisting of
'ThetaV' and a scalar numeric value.
Data Types: double

Kappa — Mean revision speed for the variance of underlying asset
numeric

Mean revision speed for the underlying asset, specified as the comma-separated pair consisting of
'Kappa' and a scalar numeric value.
Data Types: double

SigmaV — Volatility of the variance of underlying asset
numeric

Volatility of the variance of the underlying asset, specified as the comma-separated pair consisting of
'SigmaV' and a scalar numeric value.
Data Types: double

RhoSV — Correlation between Weiner processes for underlying asset and its variance
numeric
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Correlation between the Weiner processes for the underlying asset and its variance, specified as the
comma-separated pair consisting of 'RhoSV' and a scalar numeric value.
Data Types: double

Properties
V0 — Initial variance of underlying asset
numeric

Initial variance of the underlying asset, returned as a scalar numeric value.
Data Types: double

ThetaV — Long-term variance of underlying asset
numeric

Long-term variance of the underlying asset, returned as a scalar numeric value.
Data Types: double

Kappa — Mean revision speed for the variance of underlying asset
numeric

Mean revision speed for the underlying asset, returned as a scalar numeric value.
Data Types: double

SigmaV — Volatility of the variance of underlying asset
numeric

Volatility of the variance of the underlying asset, returned as a scalar numeric value.
Data Types: double

RhoSV — Correlation between Weiner processes for underlying asset and its variance
numeric

Correlation between the Weiner processes for the underlying asset and its variance, returned as a
scalar numeric value.
Data Types: double

Examples

Use Heston Model and FFT Pricer to Price Vanilla Instrument

This example shows the workflow to price a Vanilla instrument when you use a Heston model and
an FFT pricing method.

Create Vanilla Instrument Object

Use fininstrument to create a Vanilla instrument object.

VanillaOpt = fininstrument("Vanilla",'ExerciseDate',datetime(2022,9,15),'Strike',105,'ExerciseStyle',"european",'Name',"vanilla_option")
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VanillaOpt = 
  Vanilla with properties:

       OptionType: "call"
    ExerciseStyle: "european"
     ExerciseDate: 15-Sep-2022
           Strike: 105
             Name: "vanilla_option"

Create Heston Model Object

Use finmodel to create a Heston model object.

HestonModel = finmodel("Heston",'V0',0.032,'ThetaV',0.1,'Kappa',0.003,'SigmaV',0.2,'RhoSV',0.9)

HestonModel = 
  Heston with properties:

        V0: 0.0320
    ThetaV: 0.1000
     Kappa: 0.0030
    SigmaV: 0.2000
     RhoSV: 0.9000

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create FFT Pricer Object

Use finpricer to create an FFT pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("FFT",'DiscountCurve',myRC,'Model',HestonModel,'SpotPrice',100,'CharacteristicFcnStep', 0.2,'NumFFT',2^13)

outPricer = 
  FFT with properties:
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                    Model: [1x1 finmodel.Heston]
            DiscountCurve: [1x1 ratecurve]
                SpotPrice: 100
             DividendType: "continuous"
            DividendValue: 0
                   NumFFT: 8192
    CharacteristicFcnStep: 0.2000
            LogStrikeStep: 0.0038
        CharacteristicFcn: @characteristicFcnHeston
            DampingFactor: 1.5000
               Quadrature: "simpson"
           VolRiskPremium: 0
               LittleTrap: 1

Price Vanilla Instrument

Use price to compute the price and sensitivities for the Vanilla instrument.

[Price, outPR] = price(outPricer,VanillaOpt,["all"])

Price = 14.7545

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []

outPR.Results

ans=1×7 table
    Price      Delta      Gamma       Theta       Rho       Vega     VegaLT
    ______    _______    ________    ________    ______    ______    ______

    14.754    0.44868    0.021649    -0.20891    120.45    88.192    1.3248

Use Heston Model and Asset Monte-Carlo Pricer to Price Lookback Instrument

This example shows the workflow to price a LookBack instrument when you use a Heston model and
an AssetMonetCarlo pricing method.

Create Lookback Instrument Object

Use fininstrument to create a Lookback instrument object.

LookbackOpt = fininstrument("Lookback",'Strike',105,'ExerciseDate',datetime(2022,9,15),'OptionType',"put",'ExerciseStyle',"american",'Name',"lookback_option")

LookbackOpt = 
  Lookback with properties:

       OptionType: "put"
           Strike: 105
      AssetMinMax: NaN
    ExerciseStyle: "american"

11 Functions

11-2946



     ExerciseDate: 15-Sep-2022
             Name: "lookback_option"

Create Heston Model Object

Use finmodel to create a Heston model object.

HestonModel = finmodel("Heston",'V0',0.032,'ThetaV',0.1,'Kappa',0.003,'SigmaV',0.08,'RhoSV',0.9)

HestonModel = 
  Heston with properties:

        V0: 0.0320
    ThetaV: 0.1000
     Kappa: 0.0030
    SigmaV: 0.0800
     RhoSV: 0.9000

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetMonteCarlo Pricer Object

Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("AssetMonteCarlo",'DiscountCurve',myRC,"Model",HestonModel,'SpotPrice',90,'simulationDates',datetime(2022,9,15))

outPricer = 
  HestonMonteCarlo with properties:

      DiscountCurve: [1x1 ratecurve]
          SpotPrice: 90
    SimulationDates: 15-Sep-2022
          NumTrials: 1000
      RandomNumbers: []
              Model: [1x1 finmodel.Heston]
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       DividendType: "continuous"
      DividendValue: 0

Price Lookback Instrument

Use price to compute the price and sensitivities for the Lookback instrument.

[Price, outPR] = price(outPricer,LookbackOpt,["all"])

Price = 21.9733

outPR = 
  priceresult with properties:

       Results: [1x8 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×8 table
    Price      Delta     Gamma    Lambda       Rho       Theta      Vega     VegaLT
    ______    _______    _____    _______    _______    _______    ______    ______

    21.973    -0.7701      0      -3.1542    -215.94    0.28812    99.825    1.447 

See Also
Functions
fininstrument | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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HullWhite
Create HullWhite model object for Cap, Floor, Swaption, Swap, FixedBond, FloatBond,
FloatBondOption, FixedBondOption, OptionEmbeddedFixedBond, or
OptionEmbeddedFloatBond instrument

Description
Create and price a Cap, Floor, Swaption, Swap, FloatBond, FloatBondOption, FixedBond,
FixedBondOption, OptionEmbeddedFixedBond, or OptionEmbeddedFloatBond instrument
object with a HullWhite model using this workflow:

1 Use fininstrument to create a Cap, Floor, Swaption, Swap, FixedBond, FloatBond,
FloatBondOption FixedBondOption, OptionEmbeddedFixedBond, or
OptionEmbeddedFloatBond instrument object.

2 Use finmodel to specify a HullWhite model object for the Cap, Floor, Swaption, Swap,
FixedBond, FloatBond, FloatBondOption, FixedBondOption,
OptionEmbeddedFixedBond, or OptionEmbeddedFloatBond instrument object.

3 Use finpricer to specify a HullWhite pricing method for a Cap, Floor, or Swaption
instrument object and use an IRTree or IRMonteCarlo pricing method for the Cap, Floor,
Swaption, Swap, FixedBond, FloatBond, FloatBondOption, FixedBondOption,
OptionEmbeddedFixedBond, or OptionEmbeddedFloatBond instrument object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available pricing methods for a Cap, Floor, Swaption, Swap,
FixedBond, FloatBond, FloatBondOption, FixedBondOption, OptionEmbeddedFixedBond, or
OptionEmbeddedFloatBond instrument, see “Choose Instruments, Models, and Pricers” on page 1-
53.

Creation

Syntax
HullWhiteModelObj = finmodel(ModelType,'Alpha'alpha_value,'
Sigma',sigma_value)

Description

HullWhiteModelObj = finmodel(ModelType,'Alpha'alpha_value,'
Sigma',sigma_value) creates a HullWhite model object by specifying ModelType and the
required name-value pair argumentsAlpha and Sigma to set properties on page 11-2950 using name-
value pair arguments. For example, HullWhiteModelObj =
finmodel("HullWhite",'Alpha',0.052,'Sigma',0.34) creates a HullWhite model object.
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Input Arguments

ModelType — Model type
string with value "HullWhite" | character vector with value 'HullWhite'

Model type, specified as a string with the value of "HullWhite" or a character vector with the value
of 'HullWhite'.
Data Types: char | string

HullWhite Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: HullWhiteModelObj = finmodel("HullWhite",'Alpha',0.052,'Sigma',0.34)

Alpha — Mean reversion speed
numeric

Mean reversion speed, specified as the comma-separated pair consisting of 'Alpha' and a scalar
numeric or timetable.

Alpha accepts a timetable, where the first column is dates and the second column is the associated
Alpha value.
Data Types: double | timetable

Sigma — Volatility
numeric | timetable

Volatility, specified as the comma-separated pair consisting of 'Sigma' and a scalar numeric or
timetable.

Sigma accepts a timetable, where the first column is dates and the second column is the associated
Sigma value.
Data Types: double | timetable

Properties
Alpha — Mean reversion speed
numeric

Mean reversion speed, returned as a scalar numeric or timetable.
Data Types: double | timetable

Sigma — Volatility
numeric | timetable

Volatility, returned as a scalar numeric value or timetable.
Data Types: double | timetable
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Examples

Use Hull-White Model and Hull-White Pricer to Price Floor Instrument

This example shows the workflow to price a Floor instrument when you use a HullWhite model and
a HullWhite pricing method.

Create Floor Instrument Object

Use fininstrument to create a Floor instrument object.

FloorOpt = fininstrument("Floor",'Strike',0.045,'Maturity',datetime(2019,1,30),'Reset',4,'Principal',100,'Basis',1,'Name',"floor_option")

FloorOpt = 
  Floor with properties:

                      Strike: 0.0450
                    Maturity: 30-Jan-2019
                 ResetOffset: 0
                       Reset: 4
                       Basis: 1
                   Principal: 100
             ProjectionCurve: [0x0 ratecurve]
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                        Name: "floor_option"

Create HullWhite Model Object

Use finmodel to create a HullWhite model object.

HullWhiteModel = finmodel("HullWhite",'Alpha',0.032,'Sigma',0.04)

HullWhiteModel = 
  HullWhite with properties:

    Alpha: 0.0320
    Sigma: 0.0400

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

 HullWhite

11-2951



                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create HullWhite Pricer Object

Use finpricer to create a HullWhite pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'Model',HullWhiteModel,'DiscountCurve',myRC) 

outPricer = 
  HullWhite with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.HullWhite]

Price Floor Instrument

Use price to compute the price for the Floor instrument.

Price = price(outPricer,FloorOpt)

Price = 1.4917

See Also
Functions
fininstrument | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a

11 Functions

11-2952



Merton
Create Merton model object for Vanilla, Asian, Barrier, DoubleBarrier, Lookback,
PartialLookback, OneTouch, DoubleTouch, Cliquet, or Binary instrument

Description
Create and price a Vanilla, Asian, Barrier, DoubleBarrier, Lookback, PartialLookback,
Touch, DoubleTouch, Cliquet, or Binary instrument object with a Merton model using this
workflow:

1 Use fininstrument to create a Vanilla, Barrier, Lookback, PartialLookback, Asian,
DoubleBarrier, Binary, Touch, Cliquet, or DoubleTouch instrument object.

2 Use finmodel to specify a Merton model object for the Vanilla, Asian, Barrier,
DoubleBarrier, Lookback, PartialLookback, Touch, DoubleTouch, Cliquet, or Binary
instrument object.

3 Use finpricer to specify a FiniteDifference, NumericalIntegration, or FFT pricing
method for the Vanilla instrument object.

Use finpricer to specify an AssetMonteCarlo pricing method for the Vanilla, Asian,
BarrierDoubleBarrier, Lookback, PartialLookback, Touch, DoubleTouch, Cliquet, or
Binary instrument object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available pricing methods for a Vanilla, Asian, Barrier,
DoubleBarrier, Lookback, PartialLookback, Touch, DoubleTouch, or Binary instrument, see
“Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
MertonModelObj = finmodel(ModelType,'Volatility',volatility_value,'
MeanJ',meanj_value,'JumpVol',jumpvol_value,'JumpFreq',jumpfreq_value)

Description

MertonModelObj = finmodel(ModelType,'Volatility',volatility_value,'
MeanJ',meanj_value,'JumpVol',jumpvol_value,'JumpFreq',jumpfreq_value) creates a
Merton model object by specifying ModelType and the required name-value pair arguments MeanJ,
JumpVol, and JumpFreq to set properties on page 11-2955 using name-value pair arguments. For
example, MertonModelObj =
finmodel("Merton",'Volatility',0.03,'MeanJ',0.22,'JumpVol',0.007,'JumpFreq',0
.009) creates a Merton model object.
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Input Arguments

ModelType — Model type
string with value "Merton" | character vector with value 'Merton'

Model type, specified as a string with the value of "Merton" or a character vector with the value of
'Merton'.
Data Types: char | string

Merton Name-Value Pair Arguments

Specify required pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: MertonModelObj =
finmodel("Merton",'Volatility',0.03,'MeanJ',0.22,'JumpVol',0.007,'JumpFreq',0
.009)

Volatility — Volatility value for the underlying asset
nonnegative numeric

Volatility value for the underlying asset, specified as the comma-separated pair consisting of
'Volatility' and a scalar nonnegative numeric.
Data Types: double

MeanJ — Mean of the random percentage jump size
decimal

Mean of the random percentage jump size (J), specified as the comma-separated pair consisting of
'MeanJ' and a scalar decimal value, where log(1+J) is normally distributed with mean
(log(1+MeanJ)-0.5*JumpVol^2) and the standard deviation JumpVol.
Data Types: double

JumpVol — Standard deviation of log(1+J)
decimal

Standard deviation of log(1+J), where J is the random percentage jump size, specified as the
comma-separated pair consisting of 'JumpVol' and a scalar decimal value.
Data Types: double

JumpFreq — Annual frequency of Poisson jump process
numeric

Annual frequency of the Poisson jump process, specified as the comma-separated pair consisting of
'JumpFreq' and a scalar numeric value.
Data Types: double
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Properties
Volatility — Volatility value
nonnegative numeric

Volatility value, returned as a scalar nonnegative numeric.
Data Types: double

MeanJ — Mean of the random percentage jump size
decimal

Mean of the random percentage jump size (J), returned as a scalar decimal value.
Data Types: double

JumpVol — Standard deviation of log(1+J)
decimal

Standard deviation of log(1+J), where J is the random percentage jump size, returned as a scalar
decimal value.
Data Types: double

JumpFreq — Annual frequency of Poisson jump process
numeric

Annual frequency of the Poisson jump process, returned as a scalar numeric value.
Data Types: double

Examples

Use Merton Model and Numerical Integration Pricer to Price Vanilla Instrument

This example shows the workflow to price a Vanilla instrument when you use a Merton model and
a NumericalIntegration pricing method.

Create Vanilla Instrument Object

Use fininstrument to create a Vanilla instrument object.

VanillaOpt = fininstrument("Vanilla",'ExerciseDate',datetime(2022,9,15),'Strike',105,'OptionType',"put",'ExerciseStyle',"european",'Name',"vanilla_option")

VanillaOpt = 
  Vanilla with properties:

       OptionType: "put"
    ExerciseStyle: "european"
     ExerciseDate: 15-Sep-2022
           Strike: 105
             Name: "vanilla_option"

Create Merton Model Object

Use finmodel to create a Merton model object.

 Merton

11-2955



MertonModel = finmodel("Merton",'Volatility',0.45,'MeanJ',0.02,'JumpVol',0.07,'JumpFreq',0.09)

MertonModel = 
  Merton with properties:

    Volatility: 0.4500
         MeanJ: 0.0200
       JumpVol: 0.0700
      JumpFreq: 0.0900

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create NumericalIntegration Pricer Object

Use finpricer to create a NumericalIntegration pricer object and use the ratecurve object
for the 'DiscountCurve' name-value pair argument.

outPricer = finpricer("numericalintegration",'DiscountCurve',myRC,'Model',MertonModel,'SpotPrice',100,'DividendValue',0.45,'VolRiskPremium',0.09,'LittleTrap',false,'AbsTol',0.5,'RelTol',0.04,'Framework','lewis2001')

outPricer = 
  NumericalIntegration with properties:

                Model: [1x1 finmodel.Merton]
        DiscountCurve: [1x1 ratecurve]
            SpotPrice: 100
         DividendType: "continuous"
        DividendValue: 0.4500
               AbsTol: 0.5000
               RelTol: 0.0400
     IntegrationRange: [1.0000e-09 Inf]
    CharacteristicFcn: @characteristicFcnMerton76
            Framework: "lewis2001"
       VolRiskPremium: 0.0900
           LittleTrap: 0
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Price Vanilla Instrument

Use price to compute the price and sensitivities for the Vanilla instrument.

[Price, outPR] = price(outPricer,VanillaOpt,["all"])

Price = 75.1139

outPR = 
  priceresult with properties:

       Results: [1x6 table]
    PricerData: []

outPR.Results

ans=1×6 table
    Price      Delta        Gamma        Theta       Rho       Vega 
    ______    ________    __________    _______    _______    ______

    75.114    -0.15305    0.00025732    -3.9836    -361.67    4.6317

Use Merton Model and Asset Monte-Carlo Pricer to Price Binary Instrument

This example shows the workflow to price a Binary instrument when you use a Merton model and
an AssetMonteCarlo pricing method.

Create Binary Instrument Object

Use fininstrument to create an Binary instrument object.

BinaryOpt = fininstrument("Binary",'ExerciseDate',datetime(2022,9,15),'Strike',100,'PayoffValue',130,'OptionType',"put",'Name',"binary_option")

BinaryOpt = 
  Binary with properties:

       OptionType: "put"
     ExerciseDate: 15-Sep-2022
           Strike: 100
      PayoffValue: 130
    ExerciseStyle: "european"
             Name: "binary_option"

Create Merton Model Object

Use finmodel to create a Merton model object.

MertonModel = finmodel("Merton",'Volatility',0.25,'MeanJ',0.02,'JumpVol',0.07,'JumpFreq',0.09)

MertonModel = 
  Merton with properties:

    Volatility: 0.2500
         MeanJ: 0.0200
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       JumpVol: 0.0700
      JumpFreq: 0.0900

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetMonetCarlo Pricer Object

Use finpricer to create an AssetMonetCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("AssetMonteCarlo",'DiscountCurve',myRC,"Model",MertonModel,'SpotPrice',102,'simulationDates',datetime(2022,9,15))

outPricer = 
  MertonMonteCarlo with properties:

      DiscountCurve: [1x1 ratecurve]
          SpotPrice: 102
    SimulationDates: 15-Sep-2022
          NumTrials: 1000
      RandomNumbers: []
              Model: [1x1 finmodel.Merton]
       DividendType: "continuous"
      DividendValue: 0

Price Binary Instrument

Use price to compute the price and sensitivities for the Binary instrument.

[Price, outPR] = price(outPricer,BinaryOpt,["all"])

Price = 53.1178

outPR = 
  priceresult with properties:

       Results: [1x7 table]
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    PricerData: [1x1 struct]

outPR.Results 

ans=1×7 table
    Price      Delta     Gamma     Lambda       Rho      Theta     Vega
    ______    _______    _____    ________    _______    ______    ____

    53.118    -0.4432      0      -0.85106    -212.43    1.8604     0  

See Also
Functions
fininstrument | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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Normal
Create Normal model object for Cap, Floor, or Swaption instrument

Description
Create and price a Cap, Floor, or Swaption instrument object with a Normal model using this
workflow:

1 Use fininstrument to create a Cap, Floor, or Swaption instrument object.
2 Use finmodel to specify a Normal model object for the Cap, Floor, or Swaption instrument

object.
3 Use finpricer to specify a Normal pricing method for the Cap, Floor, or Swaption

instrument object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available pricing methods for a Cap, Floor, or Swaption instrument,
see “Choose Instruments, Models, and Pricers” on page 1-53.

Creation
Syntax
NormalModelObj = finmodel(ModelType,'Volatility',volatility_value)

Description

NormalModelObj = finmodel(ModelType,'Volatility',volatility_value) creates a
Normal model object by specifying ModelType and the required name-value pair argument
Volatility to set properties on page 11-2961 using name-value pair arguments. For example,
NormalModelObj = finmodel("Normal",'Volatility',0.063) creates a Normal model
object.

Input Arguments

ModelType — Model type
string with value "Normal" | character vector with value 'Normal'

Model type, specified as a string with the value of "Normal" or a character vector with the value of
'Normal'.
Data Types: char | string

Normal Name-Value Pair Arguments

Specify required pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
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Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: NormalModelObj = finmodel("Normal",'Volatility',0.063)

Volatility — Volatility value
nonnegative numeric

Volatility value, specified as the comma-separated pair consisting of 'Volatility' and a scalar
nonnegative numeric.
Data Types: double

Properties
Volatility — Volatility value
nonnegative numeric

Volatility value, returned as a scalar nonnegative numeric.
Data Types: double

Examples

Use Normal Model and Normal Pricer to Price Cap Instrument

This example shows the workflow to price a Cap instrument when you use a Normal model and a
Normal pricing method.

Create Cap Instrument Object

Use fininstrument to create a Cap instrument object.

CapOpt = fininstrument("Cap",'Strike',0.51,'Maturity',datetime(2019,6,25),'Reset',4,'Principal',100,'Basis',8,'Name',"cap_option")

CapOpt = 
  Cap with properties:

                      Strike: 0.5100
                    Maturity: 25-Jun-2019
                 ResetOffset: 0
                       Reset: 4
                       Basis: 8
                   Principal: 100
             ProjectionCurve: [0x0 ratecurve]
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                        Name: "cap_option"

Create Normal Model Object

Use finmodel to create a Normal model object.

NormalModel = finmodel("normal",'Volatility',0.063)
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NormalModel = 
  Normal with properties:

    Volatility: 0.0630

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Normal Pricer Object

Use finpricer to create a Normal pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'Model',NormalModel,'DiscountCurve',myRC)

outPricer = 
  Normal with properties:

    DiscountCurve: [1x1 ratecurve]
            Shift: 0
            Model: [1x1 finmodel.Normal]

Price Cap Instrument

Use price to compute the price for the Cap instrument.

Price = price(outPricer,CapOpt)

Price = 9.3325e-30

See Also
Functions
fininstrument | finpricer
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Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53
“Work with Negative Interest Rates Using Objects” on page 2-22

Introduced in R2020a
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Bachelier
Create Bachelier model object for Vanilla, Spread, or Binary instrument

Description
Create and price a Vanilla, Spread, or Binary instrument object with a Bachelier model using
this workflow:

1 Use fininstrument to create a Vanilla, Spread, or Binary instrument object.
2 Use finmodel to specify a Bachelier model object for the Vanilla, Spread, or Binary

instrument object.
3 Use finpricer to specify an AssetMonteCarlo pricing method for the Vanilla, Spread, or

Binary instrument object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available pricing methods for a Vanilla, Spread, or Binary
instrument, see “Choose Instruments, Models, and Pricers” on page 1-53.

Creation
Syntax
BachelierModelObj = finmodel(ModelType,'Volatility',volatility_value)
BachelierModelObj = finmodel(ModelType,Name,Value)

Description

BachelierModelObj = finmodel(ModelType,'Volatility',volatility_value) creates a
Bachelier model object by specifying ModelType and the required name-value pair argument
Volatility to set properties on page 11-2965 using name-value pair arguments. For example,
BachelierModelObj = finmodel("Bachelier",'Volatility',0.063) creates a Bachelier
model object.

BachelierModelObj = finmodel(ModelType,Name,Value) sets optional properties on page
11-2890 using an additional name-value pair argument in addition to the required arguments in the
previous syntax. For example, BachelierModelObj =
finmodel("Bachelier",'Volatility',0.063,'Correlation',Corr) creates a Bachelier
model object with a specified Correlation value.

Input Arguments

ModelType — Model type
string with value "Bachelier" | character vector with value 'Bachelier'

Model type, specified as a string with the value "Bachelier" or a character vector with the value
'Bachelier'.
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Data Types: char | string

Bachelier Name-Value Pair Arguments

Specify required pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: BachelierModelObj =
finmodel("Bachelier",'Volatility',0.063,'Correlation',Corr)

Volatility — Volatility value
nonnegative numeric

Volatility value, specified as the comma-separated pair consisting of 'Volatility' and a scalar
nonnegative numeric.
Data Types: double

Correlation — Correlation for underlying assets
1 (default) | positive semidefinite matrix

Correlation for the underlying assets, specified as the comma-separated pair consisting of
'Correlation' and a positive semidefinite matrix. For more information on creating a positive
semidefinite matrix, see nearcorr.
Data Types: double

Properties
Volatility — Volatility value
nonnegative numeric

Volatility value, returned as a scalar nonnegative numeric.
Data Types: double

Correlation — Correlation for underlying assets
1 (default) | positive semidefinite matrix

Correlation for the underlying assets, returned as a matrix.
Data Types: double

Examples

Use Bachelier Model and Asset Monte-Carlo Pricer to Price American Option for Vanilla
Instrument

This example shows the workflow to price an American option for a Vanilla instrument when you
use a Bachelier model and an AssetMonteCarlo pricing method.
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Create Vanilla Instrument Object

Use fininstrument to create a Vanilla instrument object.

VanillaOpt = fininstrument("Vanilla",'Strike',105,'ExerciseDate',datetime(2022,9,15),'OptionType',"call",'ExerciseStyle',"american",'Name',"vanilla_option")

VanillaOpt = 
  Vanilla with properties:

       OptionType: "call"
    ExerciseStyle: "american"
     ExerciseDate: 15-Sep-2022
           Strike: 105
             Name: "vanilla_option"

Create Bachelier Model Object

Use finmodel to create a Bachelier model object.

BachelierModel = finmodel("Bachelier","Volatility",0.2)

BachelierModel = 
  Bachelier with properties:

     Volatility: 0.2000
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetMonteCarlo Pricer Object

Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("AssetMonteCarlo",'DiscountCurve',myRC,"Model",BachelierModel,'SpotPrice',150,'simulationDates',datetime(2022,9,15))
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outPricer = 
  BachelierMonteCarlo with properties:

      DiscountCurve: [1x1 ratecurve]
          SpotPrice: 150
    SimulationDates: 15-Sep-2022
          NumTrials: 1000
      RandomNumbers: []
              Model: [1x1 finmodel.Bachelier]
       DividendType: "continuous"
      DividendValue: 0

Price Vanilla Instrument

Use price to compute the price and sensitivities for the Vanilla instrument.

[Price, outPR] = price(outPricer,VanillaOpt,"all")

Price = 57.3776

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×7 table
    Price      Delta       Gamma       Lambda     Rho       Theta        Vega    
    ______    _______    __________    ______    ______    _______    ___________

    57.378    0.99107    -1.579e-14    2.5909    291.94    -2.5576    -2.1316e-10

See Also
Functions
fininstrument | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2021a
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Dupire
Create Dupire model object for local volatility for Vanilla instrument

Description
Create and price a Vanilla instrument object with a Dupire model using this workflow:

1 Use fininstrument to create a Vanilla instrument object.
2 Use finmodel to specify a Dupire model object for the Vanilla instrument object.
3 Use finpricer to specify a FiniteDifference pricing method for the Vanilla instrument

object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available pricing methods for a Vanilla instrument, see “Choose
Instruments, Models, and Pricers” on page 1-53.

Creation
Syntax
DupireObj = finmodel(ModelType,'ImpliedVolData',impliedvoldata_value)

Description

DupireObj = finmodel(ModelType,'ImpliedVolData',impliedvoldata_value) creates a
Dupire model object by specifying ModelType and the required name-value pair argument
ImpliedVolData to set properties on page 11-2969 using name-value pair arguments. For example,
DupireObj = finmodel("Dupire",'ImpliedVolData',voldata_table) creates a Dupire
model object.

Input Arguments

ModelType — Model type
string with value "Dupire" | character vector with value 'Dupire'

Model type, specified as the string with the value "Dupire" or the character vector with the value
'Dupire'.
Data Types: char | string

Dupire Name-Value Pair Arguments

Specify required pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
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Example: DupireObj = finmodel("Dupire",'ImpliedVolData',voldata_table)

ImpliedVolData — Table of maturity dates, strike or exercise prices, and corresponding
implied volatilities
table

Table of maturity dates, strike or exercise prices, and their corresponding implied volatilities,
specified as the comma-separated pair consisting of 'ImpliedVolData' and an NVOL-by-3 table.
Data Types: table

Properties
ImpliedVolData — Table of maturity dates, strike or exercise prices, and corresponding
implied volatilities
table

Table of maturity dates, strike or exercise prices, and corresponding implied volatilities, returned as
an NVOL-by-3 table.
Data Types: table

Examples

Use Dupire Model and Finite Difference Pricer to Price Vanilla Instrument

This example shows the workflow to price a Vanilla instrument when you use a Dupire model and
a FiniteDifference pricing method.

Create Vanilla Instrument Object

Use fininstrument to create a Vanilla instrument object.

VanillaOpt = fininstrument("Vanilla",'ExerciseDate',datetime(2020,1,1),'Strike',105,'ExerciseStyle',"american",'Name',"vanilla_option")

VanillaOpt = 
  Vanilla with properties:

       OptionType: "call"
    ExerciseStyle: "american"
     ExerciseDate: 01-Jan-2020
           Strike: 105
             Name: "vanilla_option"

Create Dupire Model Object

Define the implied volatility surface data.

AssetPrice = 590;
Maturity = ["06-Mar-2018" "05-Jun-2018" "12-Sep-2018" "10-Dec-2018" "01-Jan-2019" ...
"02-Jul-2019" "01-Jan-2020" "01-Jan-2021" "01-Jan-2022" "01-Jan-2023"];
Maturity = repmat(Maturity,10,1);
Maturity = Maturity(:);
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ExercisePrice = AssetPrice.*[0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.30 1.40];
ExercisePrice = repmat(ExercisePrice,1,10)';

ImpliedVol = [...
    0.190; 0.168; 0.133; 0.113; 0.102; 0.097; 0.120; 0.142; 0.169; 0.200; ...
    0.177; 0.155; 0.138; 0.125; 0.109; 0.103; 0.100; 0.114; 0.130; 0.150; ...
    0.172; 0.157; 0.144; 0.133; 0.118; 0.104; 0.100; 0.101; 0.108; 0.124; ...
    0.171; 0.159; 0.149; 0.137; 0.127; 0.113; 0.106; 0.103; 0.100; 0.110; ...
    0.171; 0.159; 0.150; 0.138; 0.128; 0.115; 0.107; 0.103; 0.099; 0.108; ...
    0.169; 0.160; 0.151; 0.142; 0.133; 0.124; 0.119; 0.113; 0.107; 0.102; ...
    0.169; 0.161; 0.153; 0.145; 0.137; 0.130; 0.126; 0.119; 0.115; 0.111; ...
    0.168; 0.161; 0.155; 0.149; 0.143; 0.137; 0.133; 0.128; 0.124; 0.123; ...
    0.168; 0.162; 0.157; 0.152; 0.148; 0.143; 0.139; 0.135; 0.130; 0.128; ...
    0.168; 0.164; 0.159; 0.154; 0.151; 0.147; 0.144; 0.140; 0.136; 0.132];

ImpliedVolData = table(Maturity, ExercisePrice, ImpliedVol);

Use finmodel to create a Dupire model object.

DupireModel = finmodel("Dupire",'ImpliedVolData',ImpliedVolData)

DupireModel = 
  Dupire with properties:

    ImpliedVolData: [100x3 table]

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,1,1);
Maturity = datetime(2020,9,1);
Rate = 0.06;
myRC = ratecurve('zero',Settle,Maturity,Rate)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: 01-Sep-2020
                Rates: 0.0600
               Settle: 01-Jan-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create FiniteDifference Pricer Object

Use finpricer to create a FiniteDifference pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("FiniteDifference",'Model',DupireModel,'DiscountCurve',myRC,'SpotPrice',100,'DividendValue',0.0262,'DividendType',"continuous")

outPricer = 
  FiniteDifference with properties:
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     DiscountCurve: [1x1 ratecurve]
             Model: [1x1 finmodel.Dupire]
         SpotPrice: 100
    GridProperties: [1x1 struct]
      DividendType: "continuous"
     DividendValue: 0.0262

Price Vanilla Instrument

Use price to compute the price and sensitivities for the Vanilla instrument.

[Price, outPR] = price(outPricer,VanillaOpt,["all"])

Price = 15.5930

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×7 table
    Price      Delta       Gamma      Lambda     Theta      Rho      Vega 
    ______    _______    _________    ______    _______    ______    _____

    15.593    0.55004    0.0091484    3.5275    -3.3431    78.792    49.33

More About
Local Volatility Model

A local volatility model treats volatility as a function both of the current asset level and of time.

The local volatility can be estimated by using the Dupire formula [2]:

σloc
2 (K, τ) =

σimp
2 + 2τσimp

∂σimp
∂τ + 2(τ − d)Kτσimp

∂σimp
∂K

1 + Kd1 τ
∂σimp
∂K

2
+ K2τσimp

∂2σimp
∂K2 − d1 τ

∂σimp
∂K

2

d1 =
ln(S0/K) + (τ − d) + σimp

2 /2 τ
σimp τ
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Finite-Difference Approach." Journal of Computational Finance. Vol. 1, Number 2, 1997, pp.
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See Also
Functions
fininstrument | finpricer

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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SABR
Create SABR model object for Swaption instrument

Description
Create and price a Swaption instrument object with a SABR model using this workflow:

1 Use fininstrument to create a Swaption instrument object.
2 Use finmodel to specify a SABR model object for the Swaption instrument object.
3 Use finpricer to specify a SABR pricing method for the Swaption instrument object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available pricing methods for a Swaption instrument, see “Choose
Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
SabrModelObj = finmodel(ModelType,'Alpha',alpha_value,'Beta',beta_value,'
Rho',rho_value,'Nu',nu_value)
SabrModelObj = finmodel( ___ ,Name,Value)

Description

SabrModelObj = finmodel(ModelType,'Alpha',alpha_value,'Beta',beta_value,'
Rho',rho_value,'Nu',nu_value) creates a SABR model object by specifying ModelType and
sets the properties on page 11-2975 for the required name-value pair arguments Alpha, Beta, Rho,
and Nu.

SabrModelObj = finmodel( ___ ,Name,Value) sets optional properties on page 11-2975 using
additional name-value pairs in addition to the required arguments in the previous syntax. For
example, SabrModelObj =
finmodel("SABR",'Alpha',0.22,'Beta',0.007,'Rho',0.009,'Nu',0.03,'Shift',0.002
,'VolatilityType',"black") creates a SABR model object. You can specify multiple name-value
pair arguments.

Input Arguments

ModelType — Model type
string with value "SABR" | character vector with value 'SABR'

Model type, specified as a string with the value of "SABR" or a character vector with the value of
'SABR'.
Data Types: char | string
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SABR Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: SabrModelObj =
finmodel("SABR",'Alpha',0.22,'Beta',0.007,'Rho',0.009,'Nu',0.03,'Shift',0.002
,'VolatilityType',"black")

Required SABR Name-Value Pair Arguments

Alpha — Current SABR volatility
scalar numeric

Current SABR volatility, specified as the comma-separated pair consisting of 'Alpha' and a scalar
numeric.
Data Types: double

Beta — SABR constant elasticity of variance (CEV) exponent
scalar numeric

SABR constant elasticity of variance (CEV) exponent, specified as the comma-separated pair
consisting of 'Beta' and a scalar numeric.

Note Set the Beta parameter to 0 to allow a negative ForwardValue and Strike.

Data Types: double

Rho — Correlation between forward value and volatility
scalar numeric

Correlation between the forward value and volatility, specified as the comma-separated pair
consisting of 'Rho' and a scalar numeric.
Data Types: double

Nu — Volatility of volatility
scalar numeric

Volatility of volatility, specified as the comma-separated pair consisting of 'Nu' and a scalar numeric.
Data Types: double

Optional SABR Name-Value Pair Arguments

Shift — Shift in decimals for shifted SABR model
0 (no shift) (default) | scalar positive decimal

Shift in decimals for the shifted SABR model (to be used with the shifted Black model), specified as
the comma-separated pair consisting of 'Shift' and a scalar positive decimal value. For example, a
Shift value of 0.01 is equal to a 1% positive shift.
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Note If you set VolatilityType to 'normal', the Shift value must be 0.

Data Types: double

VolatilityType — Model used by the implied volatility sigma
"black" (default) | string with value "black" or "normal" | character vector with value 'black'
or 'normal'

Model used by the implied volatility sigma, specified as the comma-separated pair consisting of
'VolatilityType' and a scalar string or character vector.

Note The value of VolatilityType affects the interpretation of the implied volatility ("sigma").

• If you set VolatilityType to 'black' (default), “sigma” can be either implied Black (no shift)
or implied shifted Black volatility.

• If you set VolatilityType to 'normal', “sigma” is the implied Normal (Bachelier) volatility and
you must also set Shift to zero.

Data Types: char | string

Properties
Alpha — Current SABR volatility
scalar numeric

Current SABR volatility, returned as a scalar numeric.
Data Types: double

Beta — SABR constant elasticity of variance (CEV) exponent
scalar numeric

SABR constant elasticity of variance (CEV) exponent, returned as a scalar numeric.
Data Types: double

Rho — Correlation between forward value and volatility
scalar numeric

Correlation between forward value and volatility, returned as a scalar numeric.
Data Types: double

Nu — Volatility of volatility
scalar numeric

Volatility of volatility, returned as a scalar numeric.
Data Types: double

Shift — Shift in decimals for shifted SABR model
0 (no shift) (default) | scalar positive decimal
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Shift in decimals for the shifted SABR model (to be used with the Shifted Black model), returned as a
scalar positive decimal value.
Data Types: double

VolatilityType — Model used by the implied volatility sigma
"black" (default) | string with value "black" or "normal"

Model used by the implied volatility sigma, returned as a string with a value of "black" or
"normal".
Data Types: string

Examples

Use SABR Model and SABR Pricer to Price Swaption Instrument

This example shows the workflow to price a Swaption instrument when you use a SABR model and a
SABR pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Swap Instrument Object

Use fininstrument to create the underlying Swap instrument object.

Swap = fininstrument("Swap",'Maturity',datetime(2023,1,30),'LegRate',[0.018 0.24],'LegType',["fixed","float"],'Basis',5,'Notional',1000,'StartDate',datetime(2020,3,30),'DaycountAdjustedCashFlow',true,'BusinessDayConvention',"follow",'ProjectionCurve',myRC,'Name',"swap_instrument")

Swap = 
  Swap with properties:

                     LegRate: [0.0180 0.2400]
                     LegType: ["fixed"    "float"]
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                       Reset: [2 2]
                       Basis: [5 5]
                    Notional: 1000
          LatestFloatingRate: [NaN NaN]
                 ResetOffset: [0 0]
    DaycountAdjustedCashFlow: [1 1]
             ProjectionCurve: [1x2 ratecurve]
       BusinessDayConvention: ["follow"    "follow"]
                    Holidays: NaT
                EndMonthRule: [1 1]
                   StartDate: 30-Mar-2020
                    Maturity: 30-Jan-2023
                        Name: "swap_instrument"

Create Swaption Instrument Object

Use fininstrument to create a Swaption instrument object.

Swaption = fininstrument("swaption",'Strike',0.25,'ExerciseDate',datetime(2021,7,30),'Swap',Swap,'OptionType',"put",'ExerciseStyle',"european",'Name',"swaption_instrument")

Swaption = 
  Swaption with properties:

       OptionType: "put"
    ExerciseStyle: "european"
     ExerciseDate: 30-Jul-2021
           Strike: 0.2500
             Swap: [1x1 fininstrument.Swap]
             Name: "swaption_instrument"

Create SABR Model Object

Use finmodel to create a SABR model object.

SabrModel = finmodel("SABR",'Alpha',0.032,'Beta',0.04, 'Rho', .08, 'Nu', 0.49,'Shift',0.002)

SabrModel = 
  SABR with properties:

             Alpha: 0.0320
              Beta: 0.0400
               Rho: 0.0800
                Nu: 0.4900
             Shift: 0.0020
    VolatilityType: "black"

Create SABR Pricer Object

Use finpricer to create a SABR pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'Model',SabrModel,'DiscountCurve',myRC)

outPricer = 
  SABR with properties:
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    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.SABR]

Price Swaption Instrument

Use price to compute the price for the Swaption instrument.

Price = price(outPricer,Swaption)

Price = 55.8596

See Also
Functions
fininstrument | finpricer

Topics
“Calibrate SABR Model Using Normal (Bachelier) Volatilities with Analytic Pricer” on page 2-178
“Calibrate SABR Model Using Analytic Pricer” on page 2-182
“Price a Swaption Using SABR Model and Analytic Pricer” on page 2-186
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53
“Work with Negative Interest Rates Using Objects” on page 2-22

Introduced in R2020a
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AssetMonteCarlo
Create AssetMonteCarlo pricer object for equity instruments using BlackScholes, Merton,
Heston, or Bates model

Description
Create and price a Vanilla, Barrier, Lookback, PartialLookback, Asian, Spread,
DoubleBarrier, Cliquet, Touch, DoubleTouch, Binary instrument object with a
BlackScholes, Bachelier, Merton, Heston, or Bates model and a AssetMonteCarlo pricing
method using this workflow:

1 Use fininstrument to create a Vanilla, Barrier, Lookback, PartialLookback, Asian,
Spread, DoubleBarrier, Cliquet, Binary, Touch, or DoubleTouch instrument object.

2 Use finmodel to specify a BlackScholes model for the Vanilla, Barrier, Lookback,
PartialLookback, Asian, Spread, DoubleBarrier, Cliquet, Touch, DoubleTouch, or
Binary instrument object.

Use finmodel to specify a Bachelier model for the Vanilla, Spread or Binary instrument
object.

Use finmodel to specify a Merton, Bates, or Heston model for the Vanilla, Barrier,
Lookback, PartialLookback, Asian, DoubleBarrier, Touch, DoubleTouch, Cliquet, or
Binary instrument object.

3 Use finpricer to specify an AssetMonteCarlo pricer object for the Vanilla, Barrier,
Lookback, PartialLookback, Asian, Spread, DoubleBarrier, Cliquet, Touch,
DoubleTouch, or Binary instrument object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available instruments, models, and pricing methods for Vanilla,
Barrier, Lookback, PartialLookback, Asian, Spread, DoubleBarrier, Cliquet, Touch,
DoubleTouch, or Binary instruments, see “Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
AssetMonteCarloPricerObj = finpricer(PricerType,'Model',model,'
DiscountCurve',ratecurve_obj,'SpotPrice',spotprice_value,'
SimulationDates',simulation_dates)
AssetMonteCarloPricerObj = finpricer( ___ ,Name,Value)

Description

AssetMonteCarloPricerObj = finpricer(PricerType,'Model',model,'
DiscountCurve',ratecurve_obj,'SpotPrice',spotprice_value,'
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SimulationDates',simulation_dates) creates a AssetMonteCarlo pricer object by specifying
PricerType and sets the properties on page 11-2982 using the required name-value pair arguments
Model, DiscountCurve, SpotPrice, and SimulationDates.

AssetMonteCarloPricerObj = finpricer( ___ ,Name,Value) sets optional properties on page
11-2982 using additional name-value pairs in addition to the required arguments in the previous
syntax. For example, AssetMonteCarloPricerObj =
finpricer("assetmontecarlo",'Model',BSModel,'DiscountCurve',ratecurve_obj,'Sp
otPrice',1000,'SimulationDates',[datetime(2018,1,30);
datetime(2019,1,30)],'NumTrials',500,'DividendType','continuous','DividendVal
ue',0.3) creates an AssetMonteCarlo pricer object using a BlackScholes model. You can
specify multiple name-value pair arguments.

Input Arguments

PricerType — Pricer type
string with value "AssetMonteCarlo" | character vector with value 'AssetMonteCarlo'

Pricer type, specified as a string with the value "AssetMonteCarlo" or a character vector with the
value 'AssetMonteCarlo'.
Data Types: char | string

AssetMonteCarlo Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: AssetMonteCarloPricerObj =
finpricer("assetmontecarlo",'Model',BSModel,'DiscountCurve',ratecurve_obj,'Sp
otPrice',1000,'SimulationDates',[datetime(2018,1,30);
datetime(2019,1,30)],'NumTrials',500,'DividendType','continuous','DividendVal
ue',0.3)

Required AssetMonteCarlo Name-Value Pair Arguments

Model — Model
BlackScholes object | Merton object | Bates object | Heston object

Model, specified as the comma-separated pair consisting of 'Model' and the name of a previously
created BlackScholes, Merton, Bates, or Heston model object. Create the model object using
finmodel.
Data Types: object

DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, specified as the comma-separated pair consisting of
'DiscountCurve' and the name of a previously created ratecurve object.
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Note Specify a flat ratecurve object for DiscountCurve. If you use a nonflat ratecurve object,
the software uses the rate in the ratecurve object at Maturity and assumes that the value is
constant for the life of the equity option.

Data Types: object

SpotPrice — Current price of underlying asset
nonnegative numeric | positive or negative numeric when using Bachelier model

Current price of the underlying asset, specified as the comma-separated pair consisting of
'SpotPrice' and a scalar nonnegative numeric or scalar positive or negative numeric when using
Bachelier model.

Note If you use a Vanilla, Binary, or Spread instrument with a Bachelier model, the
SpotPrice can be a negative numeric value.

Data Types: double

SimulationDates — Simulation dates
[ ] (default) | serial date number | date character vector | datetime | vector

Simulation dates, specified as the comma-separated pair consisting of 'SimulationDates' and a
scalar serial date number, date character vector, or datetime or a vector of serial date numbers, cell
array of character vectors, string array, or datetime array.
Data Types: double | char | string | cell | datetime

Optional AssetMonteCarlo Name-Value Pair Arguments

NumTrials — Simulation trials
1000 (default) | scalar

Simulation trials, specified as the comma-separated pair consisting of 'NumTrials' and a scalar
number of independent sample paths.
Data Types: double

RandomNumbers — Dependent random variates
[ ] (default) | structure

Dependent random variates, specified as the comma-separated pair consisting of 'RandomNumbers'
and an NSimulationDates-by-NBrownians-by-NTrials 3D time series array. The 3D time series
array has the following fields:

• Z — NSimulationDates-by-NBrownians-by-NTrials 3D time series array of dependent random
variates used to generate the Brownian motion vector (that is, Wiener processes) that drive the
simulation.

• N — NSimulationDates-by-NBrownians-by-NTrials 3D time series array of dependent random
variates used as the number of jumps.

• SizeJ — NSimulationDates-by-NBrownians-by-NTrials 3D time series array of dependent
random variates used as the jump sizes.
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Note BlackScholes and Heston models only require Z field.

Data Types: struct

DividendType — Stock dividend type
"continuous" (default) | string with value "cash" or "continuous" | character vector with value
'cash' or 'continuous'

Stock dividend type, specified as the comma-separated pair consisting of 'DividendType' and a
character vector or string. DividendType must be either "cash" for actual dollar dividends or
"continuous" for a continuous dividend yield.
Data Types: char | string

DividendValue — Dividend yield or dividend schedule for underlying stock
0 (default) | scalar numeric | timetable

Dividend yield for the underlying stock, specified as the comma-separated pair consisting of
'DividendValue' and a scalar numeric for a dividend yield or a timetable for a dividend schedule.

Note Specify a scalar if DividendType is "continuous" and a timetable if DividendType is
"cash".

Data Types: double | timetable

Properties
Model — Model
object

Model, returned as an object.
Data Types: object

DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

This property is read-only.

ratecurve object for discounting cash flows, returned as a ratecurve object.
Data Types: object

SpotPrice — Current price of underlying asset
nonnegative numeric | positive or negative numeric when using Bachelier model

Current price of underlying asset, returned as a scalar nonnegative numeric or a scalar positive or
negative numeric when using Bachelier model.
Data Types: double

SimulationDates — Simulation dates
datetime
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Simulation dates, returned as a datetime array.
Data Types: datetime

NumTrials — Simulation trials
1000 (default) | scalar

Simulation trials, returned as a scalar number of independent sample paths.
Data Types: double

RandomNumbers — Dependent random variates
[ ] (default) | structure

Dependent random variates, returned as an NSimulationDates-by-NBrownians-by-NTrials 3D
time series array.
Data Types: struct

EarlyExerciseFunction — Calculation for early exercise premium
@longstaffschwartz_cubic (default) | function handle

Calculation for the early exercise premium, returned as a scalar function handle. The default
@longstaffschwartz_cubic uses the Longstaff-Schwartz least squares method.
Data Types: function_handle

DividendType — Dividend type
"continuous" (default) | string with value "cash" or "continuous"

This property is read-only.

Dividend type, returned as a string. DividendType is either "cash" for actual dollar dividends or
"continuous" for a continuous dividend yield.
Data Types: string

DividendValue — Dividend yield or dividend schedule for underlying stock
0 (default) | scalar nonnegative numeric | timetable

Dividend yield or dividend schedule for the underlying stock, returned as a scalar numeric for a
dividend yield or a timetable for a dividend schedule.
Data Types: double | timetable

Object Functions
price Compute price for equity instrument with AssetMonteCarlo pricer

Examples

Use Asset Monte-Carlo Pricer and Black-Scholes Model to Price Double Barrier Instrument

This example shows the workflow to price a DoubleBarrier instrument when you use a
BlackScholes model and an AssetMonteCarlo pricing method.
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Create DoubleBarrier Instrument Object

Use fininstrument to create a DoubleBarrier instrument object.

DoubleBarrierOpt = fininstrument("DoubleBarrier",'Strike',100,'ExerciseDate',datetime(2020,8,15),'OptionType',"call",'ExerciseStyle',"american",'BarrierType',"DKO",'BarrierValue',[110 80],'Name',"doublebarrier_option")

DoubleBarrierOpt = 
  DoubleBarrier with properties:

       OptionType: "call"
           Strike: 100
     BarrierValue: [110 80]
    ExerciseStyle: "american"
     ExerciseDate: 15-Aug-2020
      BarrierType: "dko"
           Rebate: [0 0]
             Name: "doublebarrier_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes","Volatility",0.3)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.3000
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2017,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2017
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetMonteCarlo Pricer Object

Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.
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ExerciseDate = datetime(2020,08,15);
Settle = datetime(2017,9,15);
outPricer = finpricer("AssetMonteCarlo","DiscountCurve",myRC,"Model",BlackScholesModel,'SpotPrice',100,'simulationDates', Settle+days(1):days(1):ExerciseDate);

Price DoubleBarrier Instrument

Use price to compute the price and sensitivities for the DoubleBarrier instrument.

[Price, outPR] = price(outPricer,DoubleBarrierOpt,"all")

Price = 6.9667

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: [1x1 struct]

outPR.Results 

ans=1×7 table
    Price      Delta       Gamma      Lambda      Rho      Theta      Vega  
    ______    _______    _________    ______    _______    ______    _______

    6.9667    0.26875    -0.096337    3.8576    0.39855    9.5406    -1.2907

Use Asset Monte-Carlo Pricer and Heston Model to Price Asian Instrument

This example shows the workflow to price a fixed-strike Asian instrument when you use a Heston
model and an AssetMonteCarlo pricing method.

Create Asian Instrument Object

Use fininstrument to create an Asian instrument object.

AsianOpt = fininstrument("Asian",'ExerciseDate',datetime(2022,9,15),'Strike',100,'OptionType',"put",'Name',"asian_option")

AsianOpt = 
  Asian with properties:

          OptionType: "put"
              Strike: 100
         AverageType: "arithmetic"
        AveragePrice: 0
    AverageStartDate: NaT
       ExerciseStyle: "european"
        ExerciseDate: 15-Sep-2022
                Name: "asian_option"

Create Heston Model Object

Use finmodel to create a Heston model object.

HestonModel = finmodel("Heston",'V0',0.032,'ThetaV',0.1,'Kappa',0.003,'SigmaV',0.02,'RhoSV',0.9)
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HestonModel = 
  Heston with properties:

        V0: 0.0320
    ThetaV: 0.1000
     Kappa: 0.0030
    SigmaV: 0.0200
     RhoSV: 0.9000

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetMonteCarlo Pricer Object

Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("AssetMonteCarlo",'DiscountCurve',myRC,"Model",HestonModel,'SpotPrice',80,'simulationDates',Settle+calmonths(1):calmonths(1):datetime(2022,9,15))

outPricer = 
  HestonMonteCarlo with properties:

      DiscountCurve: [1x1 ratecurve]
          SpotPrice: 80
    SimulationDates: [15-Oct-2018    15-Nov-2018    15-Dec-2018    ...    ]
          NumTrials: 1000
      RandomNumbers: []
              Model: [1x1 finmodel.Heston]
       DividendType: "continuous"
      DividendValue: 0

Price Asian Instrument

Use price to compute the price and sensitivities for the Asian instrument.

[Price, outPR] = price(outPricer,AsianOpt,"all")
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Price = 14.7999

outPR = 
  priceresult with properties:

       Results: [1x8 table]
    PricerData: [1x1 struct]

outPR.Results 

ans=1×8 table
    Price     Delta       Gamma      Lambda       Rho       Theta      Vega     VegaLT 
    _____    ________    ________    _______    _______    _______    ______    _______

    14.8     -0.71073    0.023453    -3.8418    -173.12    0.61794    27.992    0.15319

Use Asset Monte-Carlo Pricer and Bachelier Model to Price American Option for Vanilla
Instrument

This example shows the workflow to price an American option for a Vanilla instrument when you
use a Bachelier model and an AssetMonteCarlo pricing method.

Create Vanilla Instrument Object

Use fininstrument to create a Vanilla instrument object.

VanillaOpt = fininstrument("Vanilla",'Strike',105,'ExerciseDate',datetime(2022,9,15),'OptionType',"call",'ExerciseStyle',"american",'Name',"vanilla_option")

VanillaOpt = 
  Vanilla with properties:

       OptionType: "call"
    ExerciseStyle: "american"
     ExerciseDate: 15-Sep-2022
           Strike: 105
             Name: "vanilla_option"

Create Bachelier Model Object

Use finmodel to create a Bachelier model object.

BachelierModel = finmodel("Bachelier","Volatility",0.2)

BachelierModel = 
  Bachelier with properties:

     Volatility: 0.2000
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.
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Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetMonteCarlo Pricer Object

Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("AssetMonteCarlo",'DiscountCurve',myRC,"Model",BachelierModel,'SpotPrice',150,'simulationDates',datetime(2022,9,15))

outPricer = 
  BachelierMonteCarlo with properties:

      DiscountCurve: [1x1 ratecurve]
          SpotPrice: 150
    SimulationDates: 15-Sep-2022
          NumTrials: 1000
      RandomNumbers: []
              Model: [1x1 finmodel.Bachelier]
       DividendType: "continuous"
      DividendValue: 0

Price Vanilla Instrument

Use price to compute the price and sensitivities for the Vanilla instrument.

[Price, outPR] = price(outPricer,VanillaOpt,["all"])

Price = 57.3776

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×7 table
    Price      Delta       Gamma       Lambda     Rho       Theta        Vega    
    ______    _______    __________    ______    ______    _______    ___________
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    57.378    0.99107    -1.579e-14    2.5909    291.94    -2.5576    -2.1316e-10

Use Asset Monte-Carlo Pricer and Bachelier Model to Price Binary Instrument With
Underlying Negative Value

This example shows the workflow to price a Binary instrument with an underlying negatively valued
asset when you use a Bachelier model and an AssetMonteCarlo pricing method.

Create Binary Instrument Object

Use fininstrument to create a Binary instrument object.

BinaryOpt = fininstrument("Binary",'ExerciseDate',datetime(2022,9,15),'Strike',15,'PayoffValue',13,'OptionType',"put",'Name',"binary_option")

BinaryOpt = 
  Binary with properties:

       OptionType: "put"
     ExerciseDate: 15-Sep-2022
           Strike: 15
      PayoffValue: 13
    ExerciseStyle: "european"
             Name: "binary_option"

Create Bachelier Model Object

Use finmodel to create a Bachelier model object.

BachelierModel = finmodel("Bachelier","Volatility",0.2)

BachelierModel = 
  Bachelier with properties:

     Volatility: 0.2000
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
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               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetMonteCarlo Pricer Object

Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument. Note that when using a Bachelier model with a
Vanilla, Binary, or Spread instrument, the SpotPrice can be a positive or negative numeric value.

outPricer = finpricer("AssetMonteCarlo",'DiscountCurve',myRC,"Model",BachelierModel,'SpotPrice',-6,'simulationDates',datetime(2022,9,15))

outPricer = 
  BachelierMonteCarlo with properties:

      DiscountCurve: [1x1 ratecurve]
          SpotPrice: -6
    SimulationDates: 15-Sep-2022
          NumTrials: 1000
      RandomNumbers: []
              Model: [1x1 finmodel.Bachelier]
       DividendType: "continuous"
      DividendValue: 0

Price Binary Instrument

Use price to compute the price and sensitivities for the Binary instrument.

[Price, outPR] = price(outPricer,BinaryOpt,["all"])

Price = 11.3017

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×7 table
    Price     Delta    Gamma    Lambda      Rho       Theta     Vega
    ______    _____    _____    ______    _______    _______    ____

    11.302      0        0        0       -45.198    0.39582     0  

See Also
Functions
fininstrument | finmodel

Topics
“Use Deep Learning to Approximate Barrier Option Prices with Heston Model” on page 3-149
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“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020b

 AssetMonteCarlo

11-2991



HeynenKat
Create HeynenKat pricer object for PartialLookback instrument using BlackScholes model

Description
Create and price a PartialLookback instrument object with a BlackScholes model and a
HeynenKat pricing method using this workflow:

1 Use fininstrument to create a PartialLookback instrument object.
2 Use finmodel to specify a BlackScholes model for the PartialLookback instrument object.
3 Use finpricer to specify a HeynenKat pricer object for the PartialLookback instrument

object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available instruments, models, and pricing methods for an
PartialLookback instrument, see “Choose Instruments, Models, and Pricers” on page 1-53.

Creation
Syntax
HeynenKatPricerObj = finpricer(PricerType,DiscountCurve=ratecurve_obj,
Model=model,SpotPrice=spotprice_value)
HeynenKatPricerObj = finpricer( ___ ,Name=Value)

Description

HeynenKatPricerObj = finpricer(PricerType,DiscountCurve=ratecurve_obj,
Model=model,SpotPrice=spotprice_value) creates a HeynenKat pricer object by specifying
PricerType and sets the properties on page 11-2994 for the required name-value arguments
DiscountCurve, Model, and SpotPrice.

HeynenKatPricerObj = finpricer( ___ ,Name=Value) to set optional properties on page 11-
2994 using additional name-value pairs in addition to the required arguments in the previous syntax.
For example, HeynenKatPricerObj =
finpricer("Analytic",DiscountCurve=ratecurve_obj,Model=BSModel,SpotPrice=1000
,DividendType="continuous",DividendValue=100,PricingMethod="HeynenKat") creates
a HeynenKat pricer object.

Input Arguments

PricerType — Pricer type
string with value "Analytic" | character vector with value 'Analytic'

Pricer type, specified as a string with the value of "Analytic" or a character vector with the value
of 'Analytic'.
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Data Types: char | string

HeynenKat Name-Value Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.
Example: HeynenKatPricerObj =
finpricer("Analytic",DiscountCurve=ratecurve_obj,Model=BSModel,SpotPrice=1000
,DividendType="continuous",DividendValue=100,PricingMethod="HeynenKat")

Required HeynenKat Name-Value Arguments

DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, specified as DiscountCurve and the name of the
previously created ratecurve object.

Note Specify a flat ratecurve object for DiscountCurve. If you use a nonflat ratecurve object,
the software uses the rate in the ratecurve object at Maturity and assumes that the value is
constant for the life of the equity option.

Data Types: object

Model — Model
BlackScholes model object

Model, specified as Model and the name of a previously created BlackScholes model object using
finmodel.
Data Types: object

SpotPrice — Current price of underlying asset
nonnegative numeric

Current price of the underlying asset, specified as SpotPrice and a scalar nonnegative numeric.
Data Types: double

Optional HeynenKat Name-Value Arguments

DividendType — Stock dividend type
"continuous" (default) | string with value "continuous" | character vector with value
'continuous'

Stock dividend type, specified as DividendType and a string or character vector.
Data Types: char | string

DividendValue — Dividend yield for underlying stock
0 (default) | scalar numeric

Dividend yield for the underlying stock, specified as DividendValue and a scalar numeric.
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Data Types: double

PricingMethod — Analytic pricing method
default pricer associated with BlackScholes model (default) | string with value "HeynenKat" |
character vector with value 'HeynenKat'

Analytic pricing method, specified as PricingMethod and a string or character vector.

Note The default pricing method for a BlackScholes model is a BlackScholes pricer.

Data Types: double

Properties
DiscountCurve — ratecurve object for discounting cash flows
object

This property is read-only.

ratecurve object for discounting cash flows, returned as a ratecurve object.
Data Types: object

Model — Model
BlackScholes model object

Model, returned as a BlackScholes model object.
Data Types: object

SpotPrice — Current price of underlying asset
nonnegative numeric

Current price of the underlying asset, returned as a scalar nonnegative numeric.
Data Types: double

DividendType — Stock dividend type
"continuous" (default) | string with value "continuous"

This property is read-only.

Stock dividend type, returned as a string.
Data Types: string

DividendValue — Dividend yield for underlying stock
0 (default) | scalar nonnegative numeric

Dividend yield for the underlying stock, returned as a scalar numeric.
Data Types: double

PricingMethod — Analytic pricing method
default pricer associated with BlackScholes model (default) | string with value "HeynenKat"
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Analytic pricing method, returned as a string.
Data Types: string

Object Functions
price Compute price for interest-rate, equity, or credit derivative instrument with Analytic pricer

Examples

Use Heynen-Kat Pricer and Black-Scholes Model to Price Partial Lookback Instrument

This example shows the workflow to price a PartialLookback instrument when you use a
BlackScholes model and a HeynenKat pricing method.

Create PartialLookback Instrument Object

Use fininstrument to create an PartialLookback instrument object.

PartialLookbackOpt = fininstrument("PartialLookback",ExerciseDate=datetime(2022,9,15),Strike=100,MonitorDate=datetime(2021,9,15),OptionType="put",ExerciseStyle="european",Name="partial_lookback_option")

PartialLookbackOpt = 
  PartialLookback with properties:

      MonitorDate: 15-Sep-2021
     StrikeScaler: 1
       OptionType: "put"
           Strike: 100
      AssetMinMax: NaN
    ExerciseStyle: "european"
     ExerciseDate: 15-Sep-2022
             Name: "partial_lookback_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",Volatility=0.32)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.3200
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,Basis=12)

myRC = 
  ratecurve with properties:
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                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create HeynenKat Pricer Object

Use finpricer to create a HeynenKat pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",Model=BlackScholesModel,DiscountCurve=myRC,SpotPrice=100,DividendType="continuous",DividendValue=0.05,PricingMethod="HeynenKat")

outPricer = 
  HeynenKat with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 100
    DividendValue: 0.0500
     DividendType: "continuous"

Price PartialLookback Instrument

Use price to compute the price and sensitivities for the PartialLookback instrument.

[Price, outPR] = price(outPricer,PartialLookbackOpt,["all"])

Price = 31.4405

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []

outPR.Results 

ans=1×7 table
    Price     Delta        Gamma      Lambda      Vega      Theta       Rho  
    _____    ________    _________    _______    ______    _______    _______

    31.44    -0.37693    0.0042263    -1.1989    76.886    -1.6249    -259.77

See Also
Functions
fininstrument | finmodel | ratecurve
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Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2021b
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IkedaKunitomo
Create IkedaKunitomo pricer object for DoubleBarrier instrument using BlackScholes model

Description
Create and price a DoubleBarrier instrument object with a BlackScholes model and a
IkedaKunitomo pricing method using this workflow:

1 Use fininstrument to create a DoubleBarrier instrument object.
2 Use finmodel to specify a BlackScholes model for the DoubleBarrier instrument object.
3 Use finpricer to specify a IkedaKunitomo pricer object for the DoubleBarrier instrument

object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available instruments, models, and pricing methods for a
DoubleBarrier instrument, see “Choose Instruments, Models, and Pricers” on page 1-53.

Creation
Syntax
IkedaKunitomoPricerObj = finpricer(PricerType,'Model',model,'
DiscountCurve',ratecurve_obj,'SpotPrice',spotprice_value)
IkedaKunitomoPricerObj = finpricer( ___ ,Name,Value)

Description

IkedaKunitomoPricerObj = finpricer(PricerType,'Model',model,'
DiscountCurve',ratecurve_obj,'SpotPrice',spotprice_value) creates a
IkedaKunitomo pricer object by specifying PricerType and sets properties on page 11-3000 using
the required name-value pair arguments Model, DividendType, and SpotPrice.

IkedaKunitomoPricerObj = finpricer( ___ ,Name,Value) sets optional properties on page
11-3000 using additional name-value pairs in addition to the required arguments in the previous
syntax. For example, IkedaKunitomoPricerObj =
finpricer("Analytic",'Model',BSModel,'DiscountCurve',ratecurve_obj,'SpotPrice
',100,'DividendValue',0.025,'PricingMethod',"IkedaKunitomo") creates a
IkedaKunitomo pricer object. You can specify multiple name-value pair arguments.

Input Arguments

PricerType — Pricer type
string with value "Analytic" | character vector with value 'Analytic'

Pricer type, specified as a string with the value "Analytic" or a character vector with the value
'Analytic'.
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Data Types: char | string

IkedaKunitomo Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: IkedaKunitomoPricerObj =
finpricer("Analytic",'Model',BSModel,'DiscountCurve',ratecurve_obj,'SpotPrice
',100,'DividendValue',0.025,'PricingMethod',"IkedaKunitomo")

Required IkedaKunitomo Name-Value Pair Arguments

Model — IkedaKunitomo model object
object

Model object, specified as the comma-separated pair consisting of 'Model' and the name of a
previously created BlackScholes model object using finmodel.
Data Types: object

DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, specified as the comma-separated pair consisting of
'DiscountCurve' and the name of the previously created ratecurve object.

Note Specify a flat ratecurve object for DiscountCurve.

Data Types: object

SpotPrice — Current price of underlying asset
scalar nonnegative numeric

Current price of the underlying asset, specified as the comma-separated pair consisting of
'SpotPrice' and a scalar nonnegative numeric value.
Data Types: double

Optional IkedaKunitomo Name-Value Pair Arguments

DividendValue — Dividend yield
0 (default) | scalar nonnegative numeric

Dividend yield, specified as the comma-separated pair consisting of 'DividendValue' and a scalar
nonnegative numeric value.
Data Types: double

DividendType — Dividend type
"continuous" (default) | string with value "continuous" | character vector with value
'continuous'
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Dividend type, specified as the comma-separated pair consisting of 'DividendType' and string or
character vector.
Data Types: char | string

Curvature — Curvature levels of the upper and lower barriers
[0 0] (default) | vector

Curvature levels of the upper and lower barriers, specified as the comma-separated pair consisting of
'Curvature' and a vector where the first level is the upper barrier curvature (d1) and second level
is the lower barrier curvature (d2). The possible curvature levels are as follows:

• d1 = d2 = 0 corresponds to two flat boundaries.
• d1 < 0 < d2 corresponds to an exponentially growing lower boundary and an exponentially

decaying upper boundary.
• d1 > 0 > d2 corresponds to a convex downward lower boundary and a convex upward upper

boundary.

Data Types: char | string

PricingMethod — Analytic pricing method
default pricer associated with BlackScholes model (default) | string with value "IkedaKunitomo"
| character vector with value 'IkedaKunitomo'

Analytic pricing method, specified as the comma-separated pair consisting of 'PricingMethod' and
a character vector or string.

Note The default pricing method for a BlackScholes model is a BlackScholes pricer.

Data Types: string | char

Properties
Model — Model
model object

Model, returned as a model object.
Data Types: object

DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

This property is read-only.

ratecurve object for discounting cash flows, returned as a ratecurve object.
Data Types: object

SpotPrice — Current price of underlying asset
nonnegative numeric

Current price of the underlying asset, returned as a scalar nonnegative numeric value.
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Data Types: double

DividendValue — Dividend yield
0 (default) | scalar nonnegative numeric

Dividend yield, returned as a scalar nonnegative numeric.
Data Types: double

DividendType — Dividend type
"continuous" (default) | string with value "continuous"

This property is read-only.

Dividend type, returned as a string.
Data Types: string

Curvature — Curvature levels of the upper and lower barriers
[0 0] (default) | vector

Curvature levels of the upper and lower barriers, returned as a vector where the first level is the
upper barrier curvature (d1) and second level is the lower barrier curvature (d2).
Data Types: char | string

PricingMethod — Analytic pricing method
default pricer associated with BlackScholes model (default) | string with value "IkedaKunitomo"

Analytic pricing method, returned as a string.
Data Types: string

Object Functions
price Compute price for interest-rate, equity, or credit derivative instrument with Analytic pricer

Examples

Use Ikeda-Kunitomo Pricer and Black-Scholes Model to Price Double Barrier Instrument

This example shows the workflow to price a DoubleBarrier instrument when you use a
BlackScholes model and an IkedaKunitomo pricing method.

Create DoubleBarrier Instrument Object

Use fininstrument to create a DoubleBarrier instrument object.

DoubleBarrierOpt = fininstrument("DoubleBarrier",'Strike',100,'ExerciseDate',datetime(2020,8,15),'OptionType',"call",'ExerciseStyle',"European",'BarrierType',"DKO",'BarrierValue',[110 80],'Name',"doublebarrier_option")

DoubleBarrierOpt = 
  DoubleBarrier with properties:

       OptionType: "call"
           Strike: 100
     BarrierValue: [110 80]
    ExerciseStyle: "european"
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     ExerciseDate: 15-Aug-2020
      BarrierType: "dko"
           Rebate: [0 0]
             Name: "doublebarrier_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes","Volatility",.3)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.3000
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2017,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2017
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create IkedaKunitomo Pricer Object

Use finpricer to create an IkedaKunitomo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("Analytic","DiscountCurve",myRC,"Model",BlackScholesModel,'SpotPrice',100,'Curvature',[0.03 -0.03],'DividendValue',0.029,"PricingMethod","IkedaKunitomo")

outPricer = 
  IkedaKunitomo with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 100
    DividendValue: 0.0290
     DividendType: "continuous"
        Curvature: [0.0300 -0.0300]

11 Functions

11-3002



Price DoubleBarrier Instrument

Use price to compute the price and sensitivities for the DoubleBarrier instrument.

[Price, outPR] = price(outPricer,DoubleBarrierOpt,["all"])

Price = 5.6848e-04

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []

outPR.Results 

ans=1×7 table
      Price          Delta          Gamma       Lambda       Vega         Theta          Rho    
    __________    ___________    ___________    _______    _________    _________    ___________

    0.00056848    -3.7713e-05    -4.2071e-06    -6.6339    -0.031332    0.0008912    -0.00035113

See Also
Functions
fininstrument | finmodel

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020b
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VannaVolga
Create VannaVolga pricer object for Vanilla, Barrier, DoubleBarrier, Touch, or
DoubleTouch instrument using BlackScholes model

Description
Create and price a Vanilla, Barrier, DoubleBarrier, Touch, or DoubleTouch instrument object
with a BlackScholes model and a VannaVolga pricing method using this workflow:

1 Use fininstrument to create a Vanilla, Barrier, DoubleBarrier, Touch, or DoubleTouch
instrument object.

2 Use finmodel to specify the BlackScholes model for the Vanilla, Barrier,
DoubleBarrier, Touch, or DoubleTouch instrument object.

3 Use finpricer to specify the VannaVolga pricer object for the Vanilla, Barrier,
DoubleBarrier, Touch, or DoubleTouch instrument object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available instruments, models, and pricing methods for a Vanilla,
Barrier, DoubleBarrier, Touch, or DoubleTouch instrument, see “Choose Instruments, Models,
and Pricers” on page 1-53.

Creation

Syntax
VannaVolgaPricerObj = finpricer(PricerType,'DiscountCurve',ratecurve_obj,'
Model',model,'SpotPrice',spot_price,'VolatilityRR',volatilityrr_value,'
VolatilityBF',volatilitybf_value)

Description

VannaVolgaPricerObj = finpricer(PricerType,'DiscountCurve',ratecurve_obj,'
Model',model,'SpotPrice',spot_price,'VolatilityRR',volatilityrr_value,'
VolatilityBF',volatilitybf_value) creates a VannaVolga pricer object by specifying
PricerType and sets properties on page 11-3006 using the required name-value pair arguments
DiscountCurve, Model, SpotPrice, VolatilityRR, and VolatilityBF. For example,
VannaVolgaPricerObj =
finpricer("VannaVolga",'DiscountCurve',ratecurve_obj,'Model',BSModel,'SpotPri
ce',Spot,'VolatilityRR',VolRR,'VolatilityBF',VolBF) creates a VannaVolga pricer
object.

VannaVolgaPricerObj = finpricer( ___ ,Name,Value) sets optional properties on page 11-
3006 using additional name-value pairs in addition to the required arguments in the previous syntax.
For example, VannaVolgaPricerObj =
finpricer("VannaVolga",'DiscountCurve',ratecurve_obj,'Model',BSModel,'SpotPri
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ce',Spot,'VolatilityRR',VolRR,'VolatilityBF',VolBF,'DividendValue',0.0210)
creates a VannaVolga pricer object. You can specify multiple name-value pair arguments.

Input Arguments

PricerType — Pricer type
string with value "VannaVolga" | character vector with value 'VannaVolga'

Pricer type, specified as a string with the value "VannaVolga" or a character vector with the value
'VannaVolga'.
Data Types: char | string

Required VannaVolga Name-Value Pair Arguments

Specify required pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: VannaVolgaPricerObj =
finpricer("VannaVolga",'DiscountCurve',ratecurve_obj,'Model',BSModel,'SpotPri
ce',Spot,'VolatilityRR',VolRR,'VolatilityBF',VolBF,'DividendValue',0.0210)

DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, specified as the comma-separated pair consisting of
'DiscountCurve' and the name of a previously created ratecurve object.
Data Types: object

Model — Model object
BlackScholes model object

Model object, specified as the comma-separated pair consisting of 'Model' and the name of a
previously created BlackScholes model object using finmodel.
Data Types: object

SpotPrice — Current price of underlying asset
numeric

Current price of the underlying asset, specified as the comma-separated pair consisting of
'SpotPrice' and a scalar numeric.
Data Types: double

VolatilityRR — 25-delta risk reversal (RR) volatility
numeric

25-delta risk reversal (RR) volatility, specified as the comma-separated pair consisting of
'VolatilityRR' and a scalar numeric.
Data Types: double

 VannaVolga

11-3005



VolatilityBF — 25-delta butterfly (BF) volatility
numeric

25-delta butterfly (BF) volatility, specified as the comma-separated pair consisting of
'VolatilityBF' and a scalar numeric.
Data Types: double

Optional VannaVolga Name-Value Pair Arguments

DividendType — Dividend type
"continuous" (default) | string with value of "continuous" | character vector with value of
'continuous'

Dividend type, specified as the comma-separated pair consisting of 'DividendType' and a string or
character vector for a continuous dividend yield.
Data Types: char | string

DividendValue — Continuous dividend yield
0 (default) | scalar numeric

Continuous dividend yield, specified as the comma-separated pair consisting of 'DividendValue'
and a scalar numeric.

Note When pricing currency (FX) options, specify the optional input argument 'DividendValue'
as the continuously compounded risk-free interest rate in the foreign country.

Data Types: double

Properties
DiscountCurve — ratecurve object for discounting cash flows
object

ratecurve object for discounting cash flows, returned as a ratecurve object.
Data Types: object

Model — Model
BlackScholes model object

Model, returned as a BlackScholes model object.
Data Types: object

SpotPrice — Current price of underlying asset
numeric

Current price of the underlying asset, returned as a scalar numeric.
Data Types: double

VolatilityRR — 25-delta risk reversal (RR) volatility
numeric
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25-delta risk reversal (RR) volatility, returned as a scalar numeric.
Data Types: double

VolatilityBF — 25-delta butterfly (BF) volatility
numeric

25-delta butterfly (BF) volatility, returned as a scalar numeric.
Data Types: double

DividendType — Dividend type
"continuous" (default) | string with value of "continuous"

This property is read-only.

Dividend type, returned as a string.
Data Types: string

DividendValue — Continuous dividend yield
0 (default) | scalar numeric

Continuous dividend yield, returned as a scalar numeric.
Data Types: double

Object Functions
price Compute price for equity instrument with VannaVolga pricer

Examples

Use Vanna Volga Pricer and Black-Scholes Model to Price Double Barrier Instrument

This example shows the workflow to price a DoubleBarrier instrument when you use a
BlackScholes model and a VannaVolga pricing method.

Create DoubleBarrier Instrument Object

Use fininstrument to create a DoubleBarrier instrument object.

DoubleBarrierOpt = fininstrument("DoubleBarrier",'Strike',100,'ExerciseDate',datetime(2020,8,15),'OptionType',"call",'ExerciseStyle',"European",'BarrierType',"DKO",'BarrierValue',[110 80],'Name',"doublebarrier_option")

DoubleBarrierOpt = 
  DoubleBarrier with properties:

       OptionType: "call"
           Strike: 100
     BarrierValue: [110 80]
    ExerciseStyle: "european"
     ExerciseDate: 15-Aug-2020
      BarrierType: "dko"
           Rebate: [0 0]
             Name: "doublebarrier_option"
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Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes","Volatility",0.02)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.0200
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2019,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create VannaVolga Pricer Object

Use finpricer to create a VannaVolga pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

VolRR = -0.0045;
VolBF = 0.0037;
RateF = 0.0210;
outPricer = finpricer("VannaVolga","DiscountCurve",myRC,"Model",BlackScholesModel,'SpotPrice',100,'DividendValue',RateF,'VolatilityRR',VolRR,'VolatilityBF',VolBF)

outPricer = 
  VannaVolga with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 100
     DividendType: "continuous"
    DividendValue: 0.0210
     VolatilityRR: -0.0045
     VolatilityBF: 0.0037
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Price DoubleBarrier Instrument

Use price to compute the price and sensitivities for the DoubleBarrier instrument.

[Price, outPR] = price(outPricer,DoubleBarrierOpt,["all"])

Price = 1.6450

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: [1x1 struct]

outPR.Results 

ans=1×7 table
    Price     Delta     Gamma     Lambda     Vega      Theta      Rho  
    _____    _______    ______    ______    ______    _______    ______

    1.645    0.82818    75.662    50.346    14.697    -1.3145    74.666

More About
Vanna-Volga Method

The Vanna Volga method is an empirical procedure based on adding an analytically derived correction
to the Black-Scholes price of the instrument.

The Vanna-Volga method consists of adjusting the Black-Scholes theoretical value (BSTV) by the cost
of a portfolio which hedges three main risks associated to the volatility of the option: the Vega, the
Vanna and the Volga.

The general formulation of the Vanna-Volga method suggests that the Vega, Vanna, and Volga values
can be replicated by the weighted sum of at-the-money (ATM), risk-reversal (RR), and butterfly (BF)
strategies.

Xi = ωATMATMi + ωRRRRi + ωBFBFi (i = vega, vanna, volga)

Here, the weights are obtained by solving the system x = Aω

         ATMvega   RRvega    BFvega                ωATM                 Xvega
A =   ATMvanna  RRvanna  BFvanna,      ω =   ωRR,     X =  Xvanna
         ATMvolga  RRvolga   BFvolga               ωBF             Xvolga

Given this replication, the Vanna-Volga method adjusts the Black-Scholes price of the option by the
smile cost of the above weighted sum:

 VannaVolga
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XVV = XBS + ωATM(ATMmkt − ATMBS) + ωRR(RRmkt− RRBS) + ωBF(BFmkt − BFBS)

       = XBS + xT(AT
I

       = XBS + XvegaΩvega + XvannaΩvanna + XvolgaΩvolga

                     ATMmkt ‐  ATMBS      Ωvega          

where  I =    RRmkt    ‐    RRBS   ,    Ωvanna     =   (AT
I 

                    BFmkt    ‐    BFmkt       Ωvolga               

The resulting correction or overhedge turns out to be too large. So, the option value is modified as
follows:

  

XVV = XBS + XvegaΩvega + XvannaΩvanna + XvolgaΩvolga
         

where,  ρvega = 1
2 + 1

2ρ, and ρvolga = 1
2 + 1

2ρ.

ρ is the risk-neutral probability of not hitting the barrier.
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Topics
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page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53
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Heston
Create Heston pricer object for VarianceSwap instrument using Heston model

Description
Create and price a VarianceSwap instrument object with a Heston model and a Heston pricing
method using this workflow:

1 Use fininstrument to create a VarianceSwap instrument object.
2 Use finmodel to specify the Heston model for the VarianceSwap instrument object.
3 Use finpricer to specify the Heston pricer object for the VarianceSwap instrument object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available instruments, models, and pricing methods for a
VarianceSwap instrument, see “Choose Instruments, Models, and Pricers” on page 1-53.

Creation
Syntax
HestonPricerObj = finpricer(PricerType,'DiscountCurve',ratecurve_obj,'
Model',model)

Description

HestonPricerObj = finpricer(PricerType,'DiscountCurve',ratecurve_obj,'
Model',model) creates a Heston pricer object by specifying PricerType and sets properties on
page 11-3012 using the required name-value pair arguments DiscountCurve and Model. For
example, HestonPricerObj =
finpricer("Analytic",'DiscountCurve',ratecurve_obj,'Model',HWModel) creates a
Heston pricer object.

Input Arguments

PricerType — Pricer type
string with value "Analytic" | character vector with value 'Analytic'

Pricer type, specified as a string with the value "Analytic" or a character vector with the value
'Analytic'.
Data Types: char | string

Heston Name-Value Pair Arguments

Specify required pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
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Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: HestonPricerObj =
finpricer("Analytic",'DiscountCurve',ratecurve_obj,'Model',HWModel)

DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, specified as the comma-separated pair consisting of
'DiscountCurve' and the name of a previously created ratecurve object.

Note The software uses the Basis value of the specified ratecurve object to calculate both the
discounting and accrual for the VarianceSwap instrument object.

Data Types: object

Model — Model object
Heston model object

Model object, specified as the comma-separated pair consisting of 'Model' and the name of the
previously created Heston model object using finmodel.
Data Types: object

Properties
DiscountCurve — ratecurve object for discounting cash flows
object

ratecurve object for discounting cash flows, returned as a ratecurve object.
Data Types: object

Model — Model
Heston model object

Model, returned as a Heston model object.
Data Types: object

Object Functions
price Compute price for interest-rate, equity, or credit derivative instrument with Analytic pricer

Examples

Use Heston Pricer and Heston Model to Price Variance Swap Instrument

This example shows the workflow to price a VarianceSwap instrument when you use a Heston
model and a Heston pricing method.

Create VarianceSwap Instrument Object

Use fininstrument to create a VarianceSwap instrument object.
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VarianceSwapInst = fininstrument("VarianceSwap",'Maturity',datetime(2020,9,15),'Notional',100,'StartDate',datetime(2020,6,15),'RealizedVariance',0.02,'Strike',0.1,'Name',"variance_swap_instrument")

VarianceSwapInst = 
  VarianceSwap with properties:

            Notional: 100
    RealizedVariance: 0.0200
              Strike: 0.1000
           StartDate: 15-Jun-2020
            Maturity: 15-Sep-2020
                Name: "variance_swap_instrument"

Create Heston Model Object

Use finmodel to create a Heston model object.

HestonModel = finmodel("Heston",'V0',0.06,'ThetaV',0.1,'Kappa',0.9,'SigmaV',0.7,'RhoSV',-.3)

HestonModel = 
  Heston with properties:

        V0: 0.0600
    ThetaV: 0.1000
     Kappa: 0.9000
    SigmaV: 0.7000
     RhoSV: -0.3000

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2020, 1, 1);
ZeroTimes = calmonths(3);
ZeroRates = 0.05;
ZeroDates = Settle + ZeroTimes;
Basis = 1;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates,'Basis',Basis)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 1
                Dates: 01-Apr-2020
                Rates: 0.0500
               Settle: 01-Jan-2020
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Heston Pricer Object

Use finpricer to create a Heston pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.
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outPricer = finpricer("Analytic",'DiscountCurve',ZeroCurve,'Model',HestonModel)

outPricer = 
  Heston with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.Heston]

Price VarianceSwap Instrument

Use price to compute the price and fair variance for the VarianceSwap instrument.

[Price, outPR] = price(outPricer,VarianceSwapInst,["all"])

Price = 6.0054

outPR = 
  priceresult with properties:

       Results: [1x2 table]
    PricerData: []

outPR.Results

ans=1×2 table
    Price     FairVariance
    ______    ____________

    6.0054      0.07039   

Algorithms
Variance swaps can be priced with the calibrated Heston model by using the following closed-form
expression for the fair variance:

Kvar = 1− e−kT

kT (n0− θ) + θ

Here:

• ν0 is the initial variance of the underlying asset at �� = 0 ν0 > 0.
• θ is the long-term variance level θ > 0.
• k is the mean reversion speed for the variance (k > 0).

Once the fair variance is computed, the actual price paid in the market at time t for the variance
swap with a start date at time 0 is computed as follows:

VarianceSwap(t) = Notional × Disc(t, T) × t
T RealizedVariance(0, t) + T − t

T FairVariance(t, T)

− StrikeVariance

Here:
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• t is the time from the start date of the variance swap to the settle date.
• T is the time from the start date to the maturity date of the variance swap.
• Disc(t,T) is the discount factor from settle to the maturity date.
• RealizedVariance(0,t) is the realized variance from start date to the settle date, in basis points.
• FairVariance(t,T) is the fair variance for the remaining life of the contract as of the settle date, in

basis points.
• StrikeVariance is the strike variance predetermined at inception (start date), in basis points.

See Also
Functions
fininstrument | finmodel | ratecurve

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020b
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ReplicatingVarianceSwap
Create ReplicatingVarianceSwap pricer object for VarianceSwap instrument using ratecurve
object

Description
Create and price a VarianceSwap instrument object with a ratecurve object and a
ReplicatingVarianceSwap pricing method using this workflow:

1 Use fininstrument to create a VarianceSwap instrument object.
2 Use ratecurve to specify a curve model for the VarianceSwap instrument object.
3 Use finpricer to specify a ReplicatingVarianceSwap pricer object for the VarianceSwap

instrument object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available pricing methods for a VarianceSwap instrument, see “Choose
Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
ReplicatingVarianceSwapPricerObj = finpricer(PricerType,'
DiscountCurve',ratecurve_obj,'VolatilitySmile',volatilitysmile_value,'
SpotPrce',spotprice_value)
ReplicatingVarianceSwapPricerObj = finpricer( ___ ,Name,Value)

Description

ReplicatingVarianceSwapPricerObj = finpricer(PricerType,'
DiscountCurve',ratecurve_obj,'VolatilitySmile',volatilitysmile_value,'
SpotPrce',spotprice_value) creates an ReplicatingVarianceSwap pricer object by
specifying PricerType and sets properties on page 11-3018 using the required name-value pair
arguments DiscountCurve, VolatilitySmile, and SpotPrice.

ReplicatingVarianceSwapPricerObj = finpricer( ___ ,Name,Value) sets optional
properties on page 11-3018 using additional name-value pairs in addition to the required arguments
in the previous syntax. For example, ReplicatingVarianceSwapPricerObj =
finpricer("ReplicatingVarianceSwap",'DiscountCurve',ratecurve_obj,'Volatility
Smile',smiletable,'SpotPrice',1000,'CallPutBoundary',"forwardprice",'InterpMe
thod',"cubic") creates a ReplicatingVarianceSwap pricer object. You can specify multiple
name-value pair arguments.
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Input Arguments

PricerType — Pricer type
string with value "ReplicatingVarianceSwap" | character vector with value
'ReplicatingVarianceSwap'

Pricer type, specified as a string with the value "ReplicatingVarianceSwap" or a character
vector with the value 'ReplicatingVarianceSwap'.
Data Types: char | string

ReplicatingVarianceSwap Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: ReplicatingVarianceSwapPricerObj =
finpricer("ReplicatingVarianceSwap",'DiscountCurve',ratecurve_obj,'Volatility
Smile',smiletable,'SpotPrice',1000,'CallPutBoundary',"forwardprice",'InterpMe
thod',"cubic")

Required ReplicatingVarianceSwap Name-Value Pair Arguments

DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

This property is read-only.

ratecurve object for discounting cash flows, specified as the comma-separated pair consisting of
'DiscountCurve' and the name of a ratecurve object.

Note

• Specify a flat ratecurve object for DiscountCurve. If you use a nonflat ratecurve object, the
software uses the rate in the ratecurve object at Maturity and assumes that the value is
constant for the life of the equity option.

• The software uses the Basis value of the specified ratecurve object to calculate both the
discounting and accrual for the VarianceSwap instrument object.

Data Types: object

VolatilitySmile — Volatility smile table
table | matrix

Volatility smile table, specified as the comma-separated pair consisting of 'VolatilitySmile' and
a table with the columns "Strike" and "Volatility" or a NumVols-by-2 matrix where the first
column is the strikes and the second column is the volatilities in decimals.
Data Types: table | double
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SpotPrice — Spot price of underlying asset
nonnegative numeric

Spot price of the underlying asset, specified as the comma-separated pair consisting of 'SpotPrice'
and a scalar nonnegative numeric.

Note SpotPrice must be covered by the range of strikes in VolatilitySmile.

Data Types: double

Optional ReplicatingVarianceSwap Name-Value Pair Arguments

CallPutBoundary — Boundary strike for call and put options
"spotprice" (default) | scalar numeric | character vector with value 'spotprice' or
'forwardprice' | string with value "spotprice" or "forwardprice"

Boundary strike for call and put options, specified as the comma-separated pair consisting of
'CallPutBoundary' and a scalar numeric or one of the following character vectors or strings:

• "spotprice" — The call and put option boundary strike is the spot price.
• "forwardprice" — The call and put option boundary strike is the forward price.

Note CallPutBoundary must be covered by the range of strikes in VolatilitySmile.

Data Types: double | char | string

InterpMethod — Interpolation method for SmileTable
"linear" (default) | string with value "linear", "cubic", "next", "previous", "pchip",
"v5cubic", "makima", or "spline" | character vector with value 'linear', 'cubic', 'next',
'previous', 'pchip', 'v5cubic', 'makima', or 'spline'

Interpolation method for SmileTable, specified as the comma-separated pair consisting of
'InterpMethod' and a scalar string or character vector using a supported value. For more
information on interpolation methods, see interp1.
Data Types: char | string

Properties
DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, returned as the ratecurve object.

Note The software uses the Basis value of the specified ratecurve object to calculate both the
discounting and accrual for the VarianceSwap instrument object.

Data Types: object
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VolatilitySmile — Volatility smile table
table | matrix

Volatility smile table, returned as a table with the columns "Strike" and "Volatility" or a
NumVols-by-2 matrix where the first column is the strikes and the second column is the volatilities in
decimals.
Data Types: table | double

SpotPrice — Strike price of underlying asset
nonnegative numeric

Strike price of the underlying asset, returned as a scalar nonnegative numeric.
Data Types: double

CallPutBoundary — Boundary strike for call and put options
"spotprice" (default) | scalar numeric | string with value "spotprice" or "forwardprice"

Boundary strike for call and put options, returned as a numeric or as a string with the value
"spotprice" or "forwardprice".
Data Types: double | char | string

InterpMethod — Interpolation method
"linear" (default) | string with value "linear", "cubic", "next", "previous", "pchip",
"v5cubic", "makima", or "spline"

Interpolation method, returned as a scalar string.
Data Types: string

Object Functions
price Compute price for equity instrument with ReplicatingVarianceSwap pricer

Examples

Use Replicating Variance Swap Pricer and ratecurve to Price Variance Swap Instrument

This example shows the workflow to price a VarianceSwap instrument when you use a ratecurve
and a ReplicatingVarianceSwap pricing method.

Create VarianceSwap Instrument Object

Use fininstrument to create a VarianceSwap instrument object.

VarianceSwapInst = fininstrument("VarianceSwap",'Maturity',datetime(2021,5,1),'Notional',150,'StartDate',datetime(2020,5,1),'RealizedVariance',0.05,'Strike',0.1,'Name',"variance_swap_instrument")

VarianceSwapInst = 
  VarianceSwap with properties:

            Notional: 150
    RealizedVariance: 0.0500
              Strike: 0.1000
           StartDate: 01-May-2020

 ReplicatingVarianceSwap
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            Maturity: 01-May-2021
                Name: "variance_swap_instrument"

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2020, 9, 15);
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])];
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
Basis = 1;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates,'Basis',Basis)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 1
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2020
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create ReplicatingVarianceSwap Pricer Object

Use finpricer to create a ReplicatingVarianceSwap pricer object and use the ratecurve
object for the 'DiscountCurve' name-value pair argument.

Strike = (50:5:135)';
Volatility = [.49;.45;.42;.38;.34;.31;.28;.25;.23;.21;.2;.21;.21;.22;.23;.24;.25;.26];
VolatilitySmile = table(Strike, Volatility);
SpotPrice = 100;
CallPutBoundary = 100;

outPricer =  finpricer("ReplicatingVarianceSwap",'DiscountCurve', ZeroCurve, 'VolatilitySmile', VolatilitySmile, ...
'SpotPrice', SpotPrice, 'CallPutBoundary', CallPutBoundary)

outPricer = 
  ReplicatingVarianceSwap with properties:

      DiscountCurve: [1x1 ratecurve]
       InterpMethod: "linear"
    VolatilitySmile: [18x2 table]
          SpotPrice: 100
    CallPutBoundary: 100

Price VarianceSwap Instrument

Use price to compute the price and fair variance for the VarianceSwap instrument.

[Price, outPR] = price(outPricer,VarianceSwapInst,["all"])
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Price = 8.1997

outPR = 
  priceresult with properties:

       Results: [1x2 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×2 table
    Price     FairVariance
    ______    ____________

    8.1997      0.21701   

outPR.PricerData.ReplicatingPortfolio

ans=19×6 table
    CallPut    Strike    Volatility      Weight       Value     Contribution
    _______    ______    __________    __________    _______    ____________

    "put"        50         0.49        0.0064038    0.39164      0.002508  
    "put"        55         0.45        0.0052877    0.49353     0.0026097  
    "put"        60         0.42        0.0044402    0.67329     0.0029895  
    "put"        65         0.38        0.0037814    0.80343     0.0030381  
    "put"        70         0.34        0.0032592     0.9419     0.0030698  
    "put"        75         0.31        0.0028382      1.223     0.0034711  
    "put"        80         0.28        0.0024938       1.58     0.0039403  
    "put"        85         0.25        0.0022086     2.0456     0.0045177  
    "put"        90         0.23        0.0019696     2.9221     0.0057554  
    "put"        95         0.21        0.0017675     4.1406     0.0073183  
    "put"       100          0.2       0.00082405     6.1408     0.0050603  
    "call"      100          0.2       0.00077087     6.4715     0.0049887  
    "call"      105         0.21        0.0014465     4.7094     0.0068119  
    "call"      110         0.21        0.0013178     3.1644     0.0041701  
    "call"      115         0.22        0.0012056      2.307     0.0027814  
    "call"      120         0.23        0.0011072     1.7127     0.0018962  
      ⋮

More About
Replicating Variance Swap

A replicating variance swap uses a portfolio of options.

The variance swap replication is accomplished using a portfolio of options with different strikes.

Algorithms
The fair value of the future variance Kvar is approximated in terms of the following portfolio of
options ᴨCP:
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Kvar = 2
T rT −

S0
S*

erT − 1 − log
S*
S0

+ erTπCP

πCP = ∑
i

w(Kip)P(S, Kip) + ∑
i

w(Kic)C(S, Kic)

Here:

• Call option strikes — The call option strike are K0 < K1c < K2c < K3c … < Knc.
• Put option strikes — The put option strikes are Kmp < … < K3p < K2p < K1p < K0 = S*.
• Kvar — is the fair value of future variance
• ᴨCP — is the portfolio of call and put options
• S0 — is the current asset price
• S* — is the boundary between the call and put option strikes (for example, the spot price S0 or

forward price S0erT)
• P(K) — is the current put option price with strike K
• C(K) — is the current call option price with strike K

If the options portfolio ᴨCP has an infinite number of options with continuously varying strikes, it has
the following payoff function at maturity:

f (ST) = 2
T

ST − S*
S*

− log
ST
S*

Since it is not possible to construct such a portfolio with an infinite number of options and
continuously varying strikes, the appropriate weights w(Kip) and w(Kic) for a portfolio with a finite
number of options and discretely varying strikes can be computed by approximating the continuous
payoff function f(ST) in a piecewise linear fashion. Starting with the strike at K0, the first call option
weight can be computed as the slope of the first piecewise linear function:

wc(K0) =
f (K1c)− f (K0)

K1c− K0

The next call option weight with the strike K1c is computed as the slope of the next piece-wise linear
function minus the previous weight:

wc(K1c) =
f (K2c)− f (K1c)

K2c− K1c
−wc(K0)

This procedure is continued for the remaining call option strikes:

wc(Kn, c) =
f (Kn + 1, c)− f (Knc)

Kn + 1, c− Kn, c
− ∑

i = 0

n− 1
wc(Ki, c)

To compute the put option weights, a similar procedure can be used in the opposite direction
(starting from K0):

wp(Km, p) =
f (Km + 1, p)− f (Kmp)

Km, p− Km + 1, p
− ∑

i = 0

m− 1
wp(Ki, p)

Once the fair variance is computed, the actual price paid in the market at time t for the variance
swap with a StartDate at time 0 is computed as follows:
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VarianceSwap(t) = Notional × Disc(t, T) × t
T RealizedVariance(0, t) + T − t

T FairVariance(t, T)

− StrikeVariance

Here:

• t is the time from the start date of the variance swap to the settle date.
• T is the time from the start date to the maturity date of the variance swap.
• Disc(t,T) is the discount factor from settle to the maturity date.
• RealizedVariance(0,t) is the realized variance from start date to the settle date, in basis points.
• FairVariance(t,T) is the fair variance for the remaining life of the contract as of the settle date, in

basis points.
• StrikeVariance is the strike variance predetermined at inception (start date), in basis points.

References
[1] Demeterfi, K., Derman, E., Kamal, M., and J. Zou. “More Than You Ever Wanted To Know About

Volatility Swaps.” Quantitative Strategies Research Notes. Goldman Sachs, 1999.

See Also
Functions
fininstrument | finmodel

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020b
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BjerksundStensland
Create BjerksundStensland pricer object for Vanilla or Spread instrument using
BlackScholes model

Description
Create and price a Vanilla or Spread instrument object with a BlackScholes model and a
BjerksundStensland pricing method using this workflow:

1 Use fininstrument to create a Vanilla or Spread instrument object.
2 Use finmodel to specify a BlackScholes model for the Vanilla or Spread instrument object.
3 Use finpricer to specify a BjerksundStensland pricer object for the Vanilla instrument

(American exercise) or Spread instrument object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available instruments, models, and pricing methods for a Vanilla or
Spread instrument, see “Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
BjerksundStenslandPricerObj = finpricer(PricerType,'Model',model,'
DiscountCurve',ratecurve_obj,'SpotPrice',spotprice_value)
BjerksundStenslandPricerObj = finpricer( ___ ,Name,Value)

Description

BjerksundStenslandPricerObj = finpricer(PricerType,'Model',model,'
DiscountCurve',ratecurve_obj,'SpotPrice',spotprice_value) creates a
BjerksundStensland pricer object by specifying PricerType and sets the properties on page 11-
3026 for the required name-value pair arguments Model, DividendType, and SpotPrice.

BjerksundStenslandPricerObj = finpricer( ___ ,Name,Value) to set optional properties on
page 11-3026 using additional name-value pairs in addition to the required arguments in the previous
syntax. For example, BjerksundStenslandPricerObj =
finpricer("Analytic",'Model',BSModel,'DiscountCurve',ratecurve_obj,'SpotPrice
',[100;105],'DividendValue',[2.5,2.8],'PricingMethod',"BjerksundStensland")
creates a BjerksundStensland pricer object.

Input Arguments

PricerType — Pricer type
string with value "Analytic" | character vector with value 'Analytic'
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Pricer type, specified as a string with the value of "Analytic" or a character vector with the value
of 'Analytic'.
Data Types: char | string

BjerksundStensland Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: BjerksundStenslandPricerObj =
finpricer("Analytic",'Model',BSModel,'DiscountCurve',ratecurve_obj,'SpotPrice
',[100;105],'DividendValue',[2.5,2.8],'PricingMethod',"BjerksundStensland")

Required BjerksundStensland Name-Value Pair Arguments

Model — Model
object

Model, specified as the comma-separated pair consisting of 'Model' and the name of the previously
created BlackScholes model object using finmodel.
Data Types: object

DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, specified as the comma-separated pair consisting of
'DiscountCurve' and the name of the previously created ratecurve object.

Note Specify a flat ratecurve object for DiscountCurve. If you use a nonflat ratecurve object,
the software uses the rate in the ratecurve object at Maturity and assumes that the value is
constant for the life of the equity option.

Data Types: object

SpotPrice — Current price of underlying asset
scalar nonnegative numeric | vector of nonnegative numerics

Current price of the underlying asset, specified as the comma-separated pair consisting of
'SpotPrice' and a scalar or vector of nonnegative numeric values. Use a vector for SpotPrice
when pricing a Spread instrument.
Data Types: double

Optional BjerksundStensland Name-Value Pair Arguments

DividendValue — Dividend yield
[0,0] (default) | scalar nonnegative numeric | vector of nonnegative numerics

Dividend yield, specified as the comma-separated pair consisting of 'DividendValue' and a scalar
or vector of nonnegative numeric values. Use a 1-by-2 vector of nonnegative values for
DividendValue when pricing a Spread instrument.
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Data Types: double

DividendType — Dividend type
"continuous" (default) | string with value "continuous" | character vector with value
'continuous'

Dividend type, specified as the comma-separated pair consisting of 'DividendType' and string or
character vector.
Data Types: char | string

PricingMethod — Analytic pricing method
default pricer associated with BlackScholes model (default) | string with value
"BjerksundStensland" | character vector with value 'BjerksundStensland'

Analytic pricing method, specified as the comma-separated pair consisting of 'PricingMethod' and
a character vector or string.

Note The default pricing method for a BlackScholes model is a BlackScholes pricer.

Data Types: string | char

Properties
Model — Model
object

Model, returned as a model object.
Data Types: object

DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

This property is read-only.

ratecurve object for discounting cash flows, returned as a ratecurve object.
Data Types: object

SpotPrice — Current price of underlying asset
nonnegative numeric | vector of nonnegative numerics

Current price of the underlying asset, returned as a scalar or vector of nonnegative numeric values.
Data Types: double

DividendValue — Dividend yield
scalar nonnegative numeric | vector of nonnegative numerics

Dividend yield, returned as a scalar or vector of nonnegative numeric.
Data Types: double

DividendType — Dividend type
"continuous" (default) | string with value "continuous"
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This property is read-only.

Dividend type, returned as a string.
Data Types: string

PricingMethod — Analytic pricing method
default pricer associated with BlackScholes model (default) | string with value
"BjerksundStensland"

Analytic pricing method, returned as a string.
Data Types: string

Object Functions
price Compute price for interest-rate, equity, or credit derivative instrument with Analytic pricer

Examples

Use Bjerksund-Stensland Pricer and Black-Scholes Model to Price Spread Instrument

This example shows the workflow to price a European exercise Spread instrument when you use a
BlackScholes model and a BjerksundStensland pricing method.

Create Spread Instrument Object

Use fininstrument to create a Spread instrument object.

SpreadOpt = fininstrument("Spread",'Strike',5,'ExerciseDate',datetime(2021,9,15),'OptionType',"put",'ExerciseStyle',"european",'Name',"spread_option")

SpreadOpt = 
  Spread with properties:

       OptionType: "put"
           Strike: 5
    ExerciseStyle: "european"
     ExerciseDate: 15-Sep-2021
             Name: "spread_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',[0.2,0.1])

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: [0.2000 0.1000]
    Correlation: [2x2 double]

Create ratecurve Object

Create a flat ratecurve object using ratecurve.
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Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create BjerksundStensland Pricer Object

Use finpricer to create a BjerksundStensland pricer object and use the ratecurve object for
the 'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'Model',BlackScholesModel,'DiscountCurve',myRC,'SpotPrice',[100,105],'DividendValue',[0.09,0.17],'PricingMethod',"BjerksundStensland")

outPricer = 
  BjerksundStensland with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: [100 105]
    DividendValue: [0.0900 0.1700]
     DividendType: "continuous"

Price Spread Instrument

Use price to compute the price and sensitivities for the Spread instrument.

[Price, outPR] = price(outPricer,SpreadOpt,["all"])

Price = 7.0596

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []

outPR.Results

ans=1×7 table
    Price            Delta                    Gamma                   Lambda                Vega          Theta       Rho  
    ______    ____________________    ______________________    __________________    ________________    ______    _______
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    7.0596    -0.23249     0.27057    0.0069887    0.0055319    -3.2932     3.8327    41.938    18.303    1.1011    -5.6943

Use Bjerksund-Stensland Pricer and Black-Scholes Model to Price an American Exercise
Vanilla Instrument

This example shows the workflow to price an American exercise Vanilla instrument when you use a
BlackScholes model and a BjerksundStensland pricing method.

Create Vanilla Instrument Object

Use fininstrument to create an American exercise Vanilla instrument object.

VanillaObj = fininstrument("Vanilla",'Strike',120,'ExerciseDate',datetime(2019,1,30),'OptionType',"put",'ExerciseStyle',"american",'Name',"vanilla_instrument")

VanillaObj = 
  Vanilla with properties:

       OptionType: "put"
    ExerciseStyle: "american"
     ExerciseDate: 30-Jan-2019
           Strike: 120
             Name: "vanilla_instrument"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',.2)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.2000
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
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    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create BjerksundStensland Pricer Object

Use finpricer to create a BjerksundStensland pricer object and use the ratecurve object for
the 'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'Model',BlackScholesModel,'DiscountCurve',myRC,'SpotPrice',120,'DividendValue',0.05,'PricingMethod',"BjerksundStensland")

outPricer = 
  BjerksundStensland with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 120
    DividendValue: 0.0500
     DividendType: "continuous"

Price Vanilla Instrument

Use price to compute the price and sensitivities for the Vanilla instrument.

[Price, outPR] = price(outPricer,VanillaObj,["all"])

Price = 6.1080

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []

outPR.Results

ans=1×7 table
    Price     Delta       Gamma      Lambda      Vega      Theta       Rho  
    _____    ________    ________    _______    ______    _______    _______

    6.108    -0.48471    0.026611    -9.5227    28.781    -8.3418    -24.115

See Also
Functions
fininstrument | finmodel

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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Black
Create Black pricer object for Cap, Floor, or Swaption instrument using Black model

Description
Create and price a Cap, Floor, or Swaption instrument object with a Black model and a Black
pricing method using this workflow:

1 Use fininstrument to create a Cap, Floor, or Swaption instrument object.
2 Use finmodel to specify a Black model for the Cap, Floor, or Swaption instrument object.
3 Use finpricer to specify a Black pricer object for the Cap, Floor, or Swaption instrument

object.

Note If you do not specify ProjectionCurve when you create a Cap, Floor, or Swaption
instrument with the Black pricer, the ProjectionCurve value defaults to the DiscountCurve
value.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available instruments, models, and pricing methods for a Cap, Floor, or
Swaption instrument, see “Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
BlackPricerObj = finpricer(PricerType,'DiscountCurve',ratecurve_obj,'
Model',model)

Description

BlackPricerObj = finpricer(PricerType,'DiscountCurve',ratecurve_obj,'
Model',model) creates a Black pricer object by specifying PricerType and the required name-
value pair arguments for DiscountCurve and Model to set properties on page 11-3032 using name-
value pairs. For example, BlackPricerObj =
finpricer("Analytic",'DiscountCurve',ratecurve_obj,'Model',BlackModel) creates a
Black pricer object.

Input Arguments

PricerType — Pricer type
string with value "Analytic" | character vector with value 'Analytic'

Pricer type, specified as a string with the value of "Analytic" or a character vector with the value
of 'Analytic'.
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Data Types: char | string

Black Name-Value Pair Arguments

Specify required pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: BlackPricerObj =
finpricer("Analytic",'DiscountCurve',ratecurve_obj,'Model',BlackModel)

DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, specified as the comma-separated pair consisting of
'DiscountCurve' and the name of the previously created ratecurve object.
Data Types: object

Model — Model
Black model object

Model, specified as the comma-separated pair consisting of 'Model' and the name of a previously
created Black model object using finmodel.
Data Types: object

Properties
DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, returned as the ratecurve object
Data Types: object

Model — Model
Black model object

Model, returned as a Black model object.
Data Types: object

Object Functions
price Compute price for interest-rate, equity, or credit derivative instrument with Analytic pricer

Examples

Use Black Pricer and Black Model to Price Cap Instrument

This example shows the workflow to price a Cap instrument when you use a Black model and a
Black pricing method.
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Create Cap Instrument Object

Use fininstrument to create a Cap instrument object.

CapOpt = fininstrument("Cap",'Strike',.02,'Maturity',datetime(2021,12,30),'Reset',4,'Principal',100,'Basis',12,'Name',"cap_option")

CapOpt = 
  Cap with properties:

                      Strike: 0.0200
                    Maturity: 30-Dec-2021
                 ResetOffset: 0
                       Reset: 4
                       Basis: 12
                   Principal: 100
             ProjectionCurve: [0x0 ratecurve]
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                        Name: "cap_option"

Create Black Model Object

Use finmodel to create a Black model object.

BlackModel = finmodel("Black",'Volatility',0.09,'Shift',0.002)

BlackModel = 
  Black with properties:

    Volatility: 0.0900
         Shift: 0.0020

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2020,9,14);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 14-Sep-2020
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
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     LongExtrapMethod: "previous"

Create Black Pricer Object

Use finpricer to create a Black pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'Model',BlackModel,'DiscountCurve',myRC)

outPricer = 
  Black with properties:

            Model: [1x1 finmodel.Black]
    DiscountCurve: [1x1 ratecurve]

Price Cap Instrument

Use price to compute the price for the Cap instrument.

Price = price(outPricer,CapOpt)

Price = 4.6412e-29

See Also
Functions
fininstrument | finmodel | ratecurve

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53
“Work with Negative Interest Rates Using Objects” on page 2-22

Introduced in R2020a
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BlackScholes
Create BlackScholes pricer object for Vanilla, Barrier, Touch, DoubleTouch, or Binary
instrument using BlackScholes model

Description
Create and price a Vanilla, Barrier, Touch, DoubleTouch, or Binary instrument object with a
BlackScholes model and a BlackScholes pricing method using this workflow:

1 Use fininstrument to create a Vanilla, Barrier, DoubleTouch, Binary or , Touch
instrument object.

2 Use finmodel to specify a BlackScholes model for the Vanilla, Barrier, Touch,
DoubleTouch, or Binary instrument object.

3 Use finpricer to specify a BlackScholes pricer object for the Vanilla, Barrier, Touch,
DoubleTouch, or Binary instrument object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available instruments, models, and pricing methods for a Vanilla,
Lookback, Barrier, Asian, Spread, Touch, DoubleTouch, or Binary instrument, see “Choose
Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
BlackScholesPricerObj = finpricer(PricerType,'DiscountCurve',ratecurve_obj,'
Model',model,'SpotPrice',spotprice_value)
BlackScholesPricerObj = finpricer( ___ ,Name,Value)

Description

BlackScholesPricerObj = finpricer(PricerType,'DiscountCurve',ratecurve_obj,'
Model',model,'SpotPrice',spotprice_value) creates a BlackScholes pricer object by
specifying PricerType and sets properties on page 11-3037 using the required name-value pair
arguments DiscountCurve, Model, and SpotPrice.

BlackScholesPricerObj = finpricer( ___ ,Name,Value) sets optional properties on page 11-
3037 using additional name-value pair arguments in addition to the required arguments in the
previous syntax. For example, BlackScholesPricerObj =
finpricer("Analytic",'DiscountCurve',ratecurve_obj,'Model',BSModel,'SpotPrice
',1000,'DividendType',"continuous",'DividendValue',100) creates a BlackScholes
pricer object. You can specify multiple name-value pair arguments.
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Input Arguments

PricerType — Pricer type
string with value "Analytic" | character vector with value 'Analytic'

Pricer type, specified as a string with the value "Analytic" or a character vector with the value
'Analytic'.
Data Types: char | string

BlackScholes Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: BlackScholesPricerObj =
finpricer("Analytic",'DiscountCurve',ratecurve_obj,'Model',BSModel,'SpotPrice
',1000,'DividendType',"continuous",'DividendValue',100)

Required BlackScholes Name-Value Pair Arguments

DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, specified as the comma-separated pair consisting of
'DiscountCurve' and the name of a previously created ratecurve object.

Note Specify a flat ratecurve object for DiscountCurve. If you use a nonflat ratecurve object,
the software uses the rate in the ratecurve object at Maturity and assumes that the value is
constant for the life of the equity option.

Data Types: object

Model — Model object
BlackScholes model object

Model, specified as the comma-separated pair consisting of 'Model' and the name of a previously
created BlackScholes model object using finmodel.
Data Types: object

SpotPrice — Current price of underlying asset
nonnegative numeric

Current price of the underlying asset, specified as the comma-separated pair consisting of
'SpotPrice' and a scalar nonnegative numeric.
Data Types: double
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Optional BlackScholes Name-Value Pair Arguments

DividendType — Stock dividend type
"continuous" (default) | string with value "continuous" | character vector with value
'continuous'

Stock dividend type, specified as the comma-separated pair consisting of 'DividendType' and a
character vector or string.

Note When you price currencies using a Vanilla instrument, DividendType must be
"continuous" and DividendValue is the annualized risk-free interest rate in the foreign country.

Data Types: char | string

DividendValue — Dividend amount or dividend schedule for underlying stock
0 (default) | scalar numeric | timetable

Dividend amount or dividend schedule for the underlying stock, specified as the comma-separated
pair consisting of 'DividendValue' and a scalar numeric for a dividend amount or a timetable for a
dividend schedule.

Note When you price currencies using a Vanilla instrument, the DividendType must be
"continuous" and DividendValue is the annualized risk-free interest rate in the foreign country.

Data Types: double | timetable

Properties
DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, returned as a ratecurve object.
Data Types: object

Model — Model
BlackScholes model object

Model, returned as a BlackScholes model object.
Data Types: object

SpotPrice — Current price of underlying asset
nonnegative numeric

Current price of the underlying asset, returned as a scalar nonnegative numeric.
Data Types: double

DividendType — Stock dividend type
"continuous" (default) | string with value "continuous"

This property is read-only.
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Stock dividend type, returned as a string.
Data Types: string

DividendValue — Dividend amount or dividend schedule for underlying stock
0 (default) | scalar nonnegative numeric | timetable

Dividend amount or dividend schedule for the underlying stock, returned as a scalar numeric for a
dividend amount or a timetable for a dividend schedule.
Data Types: double | timetable

Object Functions
price Compute price for interest-rate, equity, or credit derivative instrument with Analytic pricer

Examples

Price Vanilla Instrument Using Black-Scholes Model and Black-Scholes Pricer

This example shows the workflow to price a Vanilla instrument when you use a BlackScholes
model and a BlackScholes pricing method.

Create Vanilla Instrument Object

Use fininstrument to create a Vanilla instrument object.

VanillaOpt = fininstrument("Vanilla",'ExerciseDate',datetime(2018,5,1),'Strike',29,'OptionType',"put",'ExerciseStyle',"european",'Name',"vanilla_option")

VanillaOpt = 
  Vanilla with properties:

       OptionType: "put"
    ExerciseStyle: "european"
     ExerciseDate: 01-May-2018
           Strike: 29
             Name: "vanilla_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',0.25)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.2500
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,1,1);
Maturity = datetime(2019,1,1);
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Rate = 0.05;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',1)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 1
                Dates: 01-Jan-2019
                Rates: 0.0500
               Settle: 01-Jan-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create BlackScholes Pricer Object

Use finpricer to create a BlackScholes pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'DiscountCurve',myRC,'Model',BlackScholesModel,'SpotPrice',30,'DividendValue',0.045)

outPricer = 
  BlackScholes with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 30
    DividendValue: 0.0450
     DividendType: "continuous"

Price Vanilla Instrument

Use price to compute the price and sensitivities for the Vanilla instrument.

[Price, outPR] = price(outPricer,VanillaOpt,["all"])

Price = 1.2046

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []

outPR.Results

ans=1×7 table
    Price      Delta       Gamma      Lambda      Vega       Rho       Theta 
    ______    ________    ________    _______    ______    _______    _______

    1.2046    -0.36943    0.086269    -9.3396    6.4702    -4.0959    -2.3107
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Use Black-Scholes Pricer and Black-Scholes Model to Price Vanilla Instrument for Foreign
Exchange

This example shows the workflow to price a Vanilla instrument for foreign exchange (FX) when you
use a BlackScholes model and a BlackScholes pricing method. Assume that the current
exchange rate is $0.52 and has a volatility of 12% per year. The annualized continuously compounded
foreign risk-free rate is 8% per year.

Create Vanilla Instrument Object

Use fininstrument to create a Vanilla instrument object.

VanillaOpt = fininstrument("Vanilla",'ExerciseDate',datetime(2022,9,15),'Strike',.50,'OptionType',"put",'ExerciseStyle',"european",'Name',"vanilla_fx_option")

VanillaOpt = 
  Vanilla with properties:

       OptionType: "put"
    ExerciseStyle: "european"
     ExerciseDate: 15-Sep-2022
           Strike: 0.5000
             Name: "vanilla_fx_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

Sigma = .12;
BlackScholesModel = finmodel("BlackScholes",'Volatility',Sigma)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.1200
    Correlation: 1

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
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               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create BlackScholes Pricer Object

Use finpricer to create a BlackScholes pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument. When you price currencies using a Vanilla
instrument, DividendType must be 'continuous' and DividendValue is the annualized risk-free
interest rate in the foreign country.

ForeignRate = 0.08;
outPricer = finpricer("analytic",'DiscountCurve',myRC,'Model',BlackScholesModel,'SpotPrice',.52,'DividendType',"continuous",'DividendValue',ForeignRate)

outPricer = 
  BlackScholes with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 0.5200
    DividendValue: 0.0800
     DividendType: "continuous"

Price Vanilla Instrument

Use price to compute the price and sensitivities for the Vanilla FX instrument.

[Price, outPR] = price(outPricer,VanillaOpt,["all"])

Price = 0.1123

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []

outPR.Results

ans=1×7 table
     Price      Delta      Gamma     Lambda      Vega        Rho        Theta  
    _______    ________    ______    _______    _______    _______    _________

    0.11229    -0.59114    1.5562    -3.7706    0.20212    -1.6799    -0.023676

See Also
Functions
fininstrument | finmodel | timetable | ratecurve

Topics
“Price European Vanilla Call Options Using Black-Scholes Model and Different Equity Pricers” on
page 1-95
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“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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ConzeViswanathan
Create ConzeViswanathan pricer object for Lookback instrument using BlackScholes model

Description
Create and price a Lookback instrument object with a BlackScholes model and a
ConzeViswanathan pricing method using this workflow:

1 Use fininstrument to create a Lookback instrument object.
2 Use finmodel to specify a BlackScholes model for the Lookback instrument object.
3 Use finpricer to specify a ConzeViswanathan pricer object for the Lookback instrument

object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available instruments, models, and pricing methods for a Lookback
instrument, see “Choose Instruments, Models, and Pricers” on page 1-53.

Creation
Syntax
ConzeViswanathanPricerObj = finpricer(PricerType,'
DiscountCurve',ratecurve_obj,'Model',model,'SpotPrice',spotprice_value)
ConzeViswanathanPricerObj = finpricer( ___ ,Name,Value)

Description

ConzeViswanathanPricerObj = finpricer(PricerType,'
DiscountCurve',ratecurve_obj,'Model',model,'SpotPrice',spotprice_value) creates
a ConzeViswanathan pricer object by specifying PricerType and sets the properties on page 11-
3045 for the required name-value pair argument Model, DiscountCurve, and SpotPrice.

ConzeViswanathanPricerObj = finpricer( ___ ,Name,Value) to set optional properties on
page 11-3045 using additional name-value pairs in addition to the required arguments in the previous
syntax. For example, ConzeViswanathanPricerObj =
finpricer("Analytic",'DiscountCurve',ratecurve_obj,'Model',BSModel,'SpotPrice
',1000,'DividendType',"continuous",'DividendValue',100,'PricingMethod',"Conze
Viswanathan") creates a ConzeViswanathan pricer object.

Input Arguments

PricerType — Pricer type
string with value "Analytic" | character vector with value 'Analytic'

Pricer type, specified as a string with the value of "Analytic" or a character vector with the value
of 'Analytic'.
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Data Types: char | string

ConzeViswanathan Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Specify required and optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes. You can
specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: ConzeViswanathanPricerObj =
finpricer("Analytic",'DiscountCurve',ratecurve_obj,'Model',BSModel,'SpotPrice
',1000,'DividendType',"continuous",'DividendValue',100,'PricingMethod',"Conze
Viswanathan")

Required ConzeViswanathan Name-Value Pair Arguments

DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, specified as the comma-separated pair consisting of
'DiscountCurve' and the name of the previously created ratecurve object.

Note Specify a flat ratecurve object for DiscountCurve. If you use a nonflat ratecurve object,
the software uses the rate in the ratecurve object at Maturity and assumes that the value is
constant for the life of the equity option.

Data Types: object

Model — Model
BlackScholes model object

Model, specified as the comma-separated pair consisting of 'Model' and the name of a previously
created BlackScholes model object using finmodel.
Data Types: object

SpotPrice — Current price of underlying asset
nonnegative numeric

Current price of the underlying asset, specified as the comma-separated pair consisting of
'SpotPrice' and a scalar nonnegative numeric.
Data Types: double

Optional ConzeViswanathan Name-Value Pair Arguments

DividendType — Stock dividend type
"continuous" (default) | string with value "cash" or "continuous" | character vector with value
'cash' or 'continuous'
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Stock dividend type, specified as the comma-separated pair consisting of 'DividendType' and
character vector or string. DividendType must be "cash" for actual dollar dividends or
"continuous" for a continuous dividend yield.
Data Types: char | string

DividendValue — Dividend amount or dividend schedule for underlying stock
0 (default) | scalar numeric | timetable

Dividend amount for the underlying stock, specified as the comma-separated pair consisting of
'DividendValue' and a scalar numeric for a dividend amount or a timetable for a dividend
schedule.

Note Specify a scalar if DividendType is "continuous" and a timetable if DividendType is
"cash".

Data Types: double | timetable

PricingMethod — Analytic pricing method
default pricer associated with BlackScholes model (default) | string with value
"ConzeViswanathan" | character vector with value 'ConzeViswanathan'

Analytic pricing method, specified as the comma-separated pair consisting of 'PricingMethod' and
a string or character vector.

Note The default pricing method for a BlackScholes model is a BlackScholes pricer.

Data Types: double

Properties
DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, returned as the ratecurve object.
Data Types: object

Model — Model
BlackScholes model object

Model, returned as a BlackScholes model object.
Data Types: object

SpotPrice — Current price of underlying asset
nonnegative numeric

Current price of the underlying asset, returned as a scalar nonnegative numeric.
Data Types: double
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DividendType — Stock dividend type
"continuous" (default) | string with value "cash" or "continuous"

This property is read-only.

Stock dividend type, returned as a string. DividendType is "cash" for actual dollar dividends or
"continuous" for a continuous dividend yield.
Data Types: string

DividendValue — Dividend amount or dividend schedule for underlying stock
0 (default) | scalar nonnegative numeric | timetable

Dividend amounts or dividend schedule for underlying stock, returned as a scalar numeric for a
dividend yield or a timetable for a dividend schedule.
Data Types: double | timetable

PricingMethod — Analytic pricing method
default pricer associated with BlackScholes model (default) | string with value
"ConzeViswanathan"

Analytic pricing method, returned as a string.
Data Types: string

Object Functions
price Compute price for interest-rate, equity, or credit derivative instrument with Analytic pricer

Examples

Use Conze-Viswanathan Pricer and Black-Scholes Model to Price Lookback Instrument

This example shows the workflow to price a fixed strike Lookback instrument when you use a
BlackScholes model and a ConzeViswanathan pricing method.

Create Lookback Instrument Object

Use fininstrument to create a fixed strike Lookback instrument object.

LookbackOpt = fininstrument("Lookback",'Strike',90,'ExerciseDate',datetime(2021,9,15),'OptionType',"put",'ExerciseStyle',"european",'Name',"lookback_option")

LookbackOpt = 
  Lookback with properties:

       OptionType: "put"
           Strike: 90
      AssetMinMax: NaN
    ExerciseStyle: "european"
     ExerciseDate: 15-Sep-2021
             Name: "lookback_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.
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BlackScholesModel = finmodel("BlackScholes",'Volatility',.358)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.3580
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create ConzeViswanathan Pricer Object

Use finpricer to create a ConzeViswanathan pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'Model',BlackScholesModel,'DiscountCurve',myRC,'SpotPrice',95,'DividendValue',0.025,'DividendType',"continuous",'PricingMethod',"ConzeViswanathan")

outPricer = 
  ConzeViswanathan with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 95
    DividendValue: 0.0250
     DividendType: "continuous"

Price Lookback Instrument

Use price to compute the price and sensitivities for the Lookback instrument.

[Price, outPR] = price(outPricer,LookbackOpt,["all"])

Price = 29.6209

outPR = 
  priceresult with properties:
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       Results: [1x7 table]
    PricerData: []

outPR.Results

ans=1×7 table
    Price      Delta        Gamma      Lambda      Vega      Theta       Rho  
    ______    ________    _________    _______    ______    _______    _______

    29.621    -0.49834    0.0085048    -1.5983    78.578    -3.4045    -163.55

See Also
Functions
fininstrument | finmodel | timetable | ratecurve

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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Credit
Create Credit pricer object for CDS instrument using defprobcurve

Description
Create and price a CDS instrument object with a defprobcurve and a Credit pricing method using
this workflow:

1 Create a default probability curve object using defprobcurve.
2 Use finpricer to specify a Credit pricer object for the CDS instrument object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available instruments, models, and pricing methods for a CDS
instrument, see “Choose Instruments, Models, and Pricers” on page 1-53.

Creation
Syntax
CreditPricerObj = finpricer(PricerType,'DiscountCurve',ratecurve_obj,'
DefaultProbabilityCurve',defprobcurve_object)

Description

CreditPricerObj = finpricer(PricerType,'DiscountCurve',ratecurve_obj,'
DefaultProbabilityCurve',defprobcurve_object) creates a Credit pricer object by
specifying PricerType and the required name-value pair arguments DiscountCurve and
DefaultProbabilityCurve to set properties on page 11-3050 using name-value pairs. For
example, CreditPricerObj =
finpricer("Credit",'DiscountCurve',ratecurve_obj,'DefaultProbabilityCurve',de
fprobcurve_obj) creates a Credit pricer object.

Input Arguments

PricerType — Pricer type
string with value "Credit" | character vector with value 'Credit'

Pricer type, specified as a string with the value of "Credit" or a character vector with the value of
'Credit'.
Data Types: char | string

Credit Name-Value Pair Arguments

Specify required pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
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Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: CreditPricerObj =
finpricer("Credit",'DiscountCurve',ratecurve_obj,'DefaultProbabilityCurve',de
fprobcurve_obj)

DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, specified as the comma-separated pair consisting of
'DiscountCurve' and the name of the previously created ratecurve object
Data Types: object

DefaultProbabilityCurve — Default probability curve
defprobcurve object

Default probability curve, specified as the comma-separated pair consisting of
'DefaultProbabilityCurve' and the name of a previously created defprobcurve object.
Data Types: object

Properties
DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, returned as the ratecurve object
Data Types: object

DefaultProbabilityCurve — Default probability curve
defprobcurve object

Default probability curve, returned as a defprobcurve object.
Data Types: object

Object Functions
price Compute price for credit derivative instrument with Credit pricer

Examples

Use Credit Pricer and Default Probability Curve to Price CDS Instrument

This example shows the workflow to price a CDS instrument when you use a defprobcurve model
and a Credit pricing method.

Create CDS Instrument Object

Use fininstrument to create a CDS instrument object.

CDS = fininstrument("cds",'Maturity',datetime(2027,9,20),'ContractSpread', 50,'Name',"CDS_instrument")

CDS = 
  CDS with properties:
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           ContractSpread: 50
                 Maturity: 20-Sep-2027
                   Period: 4
                    Basis: 2
             RecoveryRate: 0.4000
    BusinessDayConvention: "actual"
                 Holidays: NaT
        PayAccruedPremium: 1
                 Notional: 10000000
                     Name: "CDS_instrument"

Create defprobcurve Object

Create a defprobcurve object using defprobcurve.

Settle = datetime(2017, 9, 20);
DefProbTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])];
DefaultProbabilities = [0.005 0.007 0.01 0.015 0.026 0.04 0.077 0.093 0.15 0.20]';
ProbDates = Settle + DefProbTimes;
DefaultProbCurve = defprobcurve(Settle,ProbDates,DefaultProbabilities)

DefaultProbCurve = 
  defprobcurve with properties:

                  Settle: 20-Sep-2017
                   Basis: 2
                   Dates: [10x1 datetime]
    DefaultProbabilities: [10x1 double]

Create ratecurve Object

Create a ratecurve object using ratecurve.

ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])];
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 20-Sep-2017
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Credit Pricer Object

Use finpricer to create a Credit pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.
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CDSpricer = finpricer("credit",'DiscountCurve',ZeroCurve,'DefaultProbabilityCurve',DefaultProbCurve)

CDSpricer = 
  Credit with properties:

              DiscountCurve: [1x1 ratecurve]
                   TimeStep: 10
    DefaultProbabilityCurve: [1x1 defprobcurve]

Price CDS Instrument

Use price to compute the price for the CDS instrument.

outPrice = price(CDSpricer, CDS)

outPrice = 6.9363e+04

See Also
Functions
fininstrument | finmodel

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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CDSBlack
Create CDSBlack pricer object for CDSOption instrument using CDSBlack model

Description
Create and price a CDSOption instrument object with a CDSBlack model and a CDSBlack pricing
method using this workflow:

1 Use fininstrument to create the CDSOption instrument object. By default, this creates a
single-name CDS option. You can create a CDS index option by specifying the optional name-
value argument AdjustedForwardSpread.

2 Use finmodel to specify the CDSBlack model for the CDSOption instrument object.
3 Use finpricer to specify the CDSBlack pricer object for the CDSOption instrument object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available instruments, models, and pricing methods for a CDSOption
instrument, see “Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
CDSBlackPricerObj = finpricer(PricerType,'DiscountCurve',ratecurve_obj,'
Model',model,'DefaultProbabilityCurve',defaultprobabilitycurve_obj)

Description

CDSBlackPricerObj = finpricer(PricerType,'DiscountCurve',ratecurve_obj,'
Model',model,'DefaultProbabilityCurve',defaultprobabilitycurve_obj) creates a
CDSBlack pricer object by specifying PricerType and the required name-value pair arguments for
DiscountCurve, Model, and DefaultProbabilityCurve to set properties on page 11-3054 using
name-value pairs. For example, CDSBlackPricerObj =
finpricer("Analytic",'Model',CDSBlack,'DiscountCurve',ratecurve_obj,'DefaultP
robabilityCurve',defaultprobabilitycurve_obj) creates a CDSBlack pricer object.

Input Arguments

PricerType — Pricer type
string with value "Analytic" | character vector with value 'Analytic'

Pricer type, specified as a string with the value of "Analytic" or the character vector with a value
of 'Analytic'.
Data Types: char | string
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CDSBlack Name-Value Pair Arguments

Specify required pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: CDSBlackPricerObj =
finpricer("Analytic",'Model',CDSBlack,'DiscountCurve',ratecurve_obj,'DefaultP
robabilityCurve',defaultprobabilitycurve_obj)

Required CDSBlack Name-Value Pair Arguments

DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, specified as the comma-separated pair consisting of
'DiscountCurve' and the name of the previously created ratecurve object.
Data Types: object

Model — Model
CDSBlack model object

Model object, specified as the comma-separated pair consisting of 'Model' and the name of a
previously created CDSBlack model object using finmodel.
Data Types: object

DefaultProbabilityCurve — Default probability curve
defprobcurve object

Default probability curve, specified as the comma-separated pair consisting of
'DefaultProbabilityCurve' and a name of a previously created defprobcurve.
Data Types: object

Properties
DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, returned as the ratecurve object.
Data Types: object

Model — Model
CDSBlack model object

Model, returned as a CDSBlack model object.
Data Types: object

DefaultProbabilityCurve — Default probability curve
object

Default probability curve, returned as a defprobcurve object.
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Data Types: object

Object Functions
price Compute price for interest-rate, equity, or credit derivative instrument with Analytic pricer

Examples

Use CDS Black Pricer and CDS Black Model to Price CDS Option Instrument

This example shows the workflow to price a CDSOption instrument when you use a CDSBlack model
and a CDSBlack pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2017,9,20);
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])];
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
ZeroCurve = ratecurve("zero", Settle, ZeroDates ,ZeroRates)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 20-Sep-2017
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create defprobcurve Object

Create a defprobcurve object using defprobcurve.

DefProbTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])];
DefaultProbabilities = [0.005 0.007 0.01 0.015 0.026 0.04 0.077 0.093 0.15 0.20]';
ProbDates = Settle + DefProbTimes;
DefaultProbCurve = defprobcurve(Settle, ProbDates, DefaultProbabilities)

DefaultProbCurve = 
  defprobcurve with properties:

                  Settle: 20-Sep-2017
                   Basis: 2
                   Dates: [10x1 datetime]
    DefaultProbabilities: [10x1 double]
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Create CDS Instrument Object

Use fininstrument to create an underlying CDS instrument object.

ContractSpreadBP = 0; % Contractual spread is determined on ExerciseDate
CDS = fininstrument("CDS",'Maturity',datetime(2027,9,20),'ContractSpread',ContractSpreadBP)

CDS = 
  CDS with properties:

           ContractSpread: 0
                 Maturity: 20-Sep-2027
                   Period: 4
                    Basis: 2
             RecoveryRate: 0.4000
    BusinessDayConvention: "actual"
                 Holidays: NaT
        PayAccruedPremium: 1
                 Notional: 10000000
                     Name: ""

Create CDSOption Instrument Object

Use fininstrument to create a CDSOption instrument object.

ExerciseDate = datetime(2017, 12, 20);
Strike = 50;
CDSOption = fininstrument("CDSOption",'Strike',Strike,'ExerciseDate',ExerciseDate,'OptionType',"put",'CDS',CDS)

CDSOption = 
  CDSOption with properties:

               OptionType: "put"
                   Strike: 50
                 Knockout: 0
    AdjustedForwardSpread: NaN
             ExerciseDate: 20-Dec-2017
                      CDS: [1x1 fininstrument.CDS]
                     Name: ""

Create CDSBlack Model Object

Use finmodel to create a CDSBlack model object.

SpreadVolatility = 0.3;
CDSOptionModel = finmodel("CDSBlack",'SpreadVolatility',SpreadVolatility)

CDSOptionModel = 
  CDSBlack with properties:

    SpreadVolatility: 0.3000

Create CDSBlack Pricer Object

Use finpricer to create a CDSBlack pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.
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CDSOptionpricer = finpricer("analytic",'Model',CDSOptionModel,'DiscountCurve',ZeroCurve,'DefaultProbabilityCurve',DefaultProbCurve)

CDSOptionpricer = 
  CDSBlack with properties:

                      Model: [1x1 finmodel.CDSBlack]
              DiscountCurve: [1x1 ratecurve]
    DefaultProbabilityCurve: [1x1 defprobcurve]

Price CDSOption Instrument

Use price to compute the price for the CDSOption instrument.

outPrice = price(CDSOptionpricer,CDSOption)

outPrice = 6.5054

Use CDS Black Pricer and CDS Black Model to Price CDS Index Options

This example shows the workflow to use a CDSOption instrument to price CDS index options when
you use a CDSBlack model and a CDSBlack pricing method.

Set Up Data for CDS Index

% CDS index and option data
Recovery = .4;
Basis = 2;
Period = 4;
CDSMaturity = datetime(2017, 6, 20);
ContractSpread = 100;
IndexSpread = 140;
BusDayConvention = 'follow';
Settle = datetime(2012, 4, 13);
OptionMaturity = datetime(2012, 6, 20);
OptionStrike = 140;
SpreadVolatility = .69;

Create ratecurve Object for Zero Curve Using irbootstrap

Create ratecurve object for a zero curve using irbootstrap.

% Zero curve data
DepRates = [0.004111 0.00563 0.00757 0.01053]';
DepTimes = calmonths([1 2 3 6]');
DepDates = Settle + DepTimes;
nDeposits = length(DepTimes);

SwapRates = [0.01387 0.01035 0.01145 0.01318 0.01508 0.01700 0.01868 ...
    0.02012 0.02132 0.02237 0.02408 0.02564 0.02612 0.02524]';
SwapTimes = calyears([1 2 3 4 5 6 7 8 9 10 12 15 20 30]');
SwapDates = Settle + SwapTimes;
nSwaps = length(SwapTimes);

nInst = nDeposits + nSwaps;

BootInstruments(nInst,1) = fininstrument.FinInstrument;
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for ii=1:length(DepDates)
    BootInstruments(ii) = fininstrument("deposit","Maturity",DepDates(ii),"Rate",DepRates(ii));
end

for ii=1:length(SwapDates)
    BootInstruments(ii+nDeposits) = fininstrument("swap","Maturity",SwapDates(ii),"LegRate",[SwapRates(ii) 0]);
end

ZeroCurve = irbootstrap(BootInstruments,Settle)

ZeroCurve = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [18x1 datetime]
                Rates: [18x1 double]
               Settle: 13-Apr-2012
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Bootstrap Default Probability Curve

Use defprobstrip to bootstrap default probability curve assuming a flat index spread.

ProbDates = datemnth(OptionMaturity,(0:5*12)');
MarketCDSInstruments = fininstrument("cds", ...
    'ContractSpread', ContractSpread, 'Maturity', CDSMaturity);
DefaultProbCurve = defprobstrip(ZeroCurve, MarketCDSInstruments, IndexSpread, 'ProbDates', ProbDates)

DefaultProbCurve = 
  defprobcurve with properties:

                  Settle: 13-Apr-2012
                   Basis: 2
                   Dates: [61x1 datetime]
    DefaultProbabilities: [61x1 double]

Compute Spot and Forward RPV01s

Compute the spot and forward RPV01s using cdsrpv01.

ProbData = [datenum(DefaultProbCurve.Dates) DefaultProbCurve.DefaultProbabilities];

% RPV01(t,T)
RPV01_CDSMaturity = cdsrpv01(ZeroCurve,ProbData,Settle,CDSMaturity)

RPV01_CDSMaturity = 4.7853

% RPV01(t,t_E,T)
RPV01_OptionExpiryForward = cdsrpv01(ZeroCurve,ProbData,Settle,CDSMaturity,...
    'StartDate',OptionMaturity)

RPV01_OptionExpiryForward = 4.5972
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% RPV01(t,t_E) = RPV01(t,T) - RPV01(t,t_E,T)
RPV01_OptionExpiry = RPV01_CDSMaturity - RPV01_OptionExpiryForward

RPV01_OptionExpiry = 0.1882

Compute Spot Spreads

Compute the spot spreads using cdsspread.

% S(t,t_E)
Spread_OptionExpiry = cdsspread(ZeroCurve,ProbData,Settle,OptionMaturity,...
    'Period',Period,'Basis',Basis,'BusDayConvention',BusDayConvention,...
    'PayAccruedPremium',true,'recoveryrate',Recovery)

Spread_OptionExpiry = 139.8995

% S(t,T)
Spread_CDSMaturity = cdsspread(ZeroCurve,ProbData,Settle,CDSMaturity,...
    'Period',Period,'Basis',Basis,'BusDayConvention',BusDayConvention,...
    'PayAccruedPremium',true,'recoveryrate',Recovery)

Spread_CDSMaturity = 139.9999

Compute Forward Spread

Compute the forward spread using the spot spreads and RPV01s.

% F = S(t,t_E,T)
ForwardSpread = (Spread_CDSMaturity.*RPV01_CDSMaturity - Spread_OptionExpiry.*RPV01_OptionExpiry)./RPV01_OptionExpiryForward

ForwardSpread = 140.0040

Compute Front-End Protection

Compute the front-end protection (FEP).

FEP = 10000*(1-Recovery)*ZeroCurve.discountfactors(OptionMaturity)*DefaultProbCurve.DefaultProbabilities(1)

FEP = 26.3108

Compute Adjusted Forward Spread

Compute the adjusted forward spread to use when creating an CDSOption instrument.

AdjustedForwardSpread = ForwardSpread + FEP./RPV01_OptionExpiryForward

AdjustedForwardSpread = 145.7273

Compute CDS Option Prices with Adjusted Forward Spread

Use fininstrument to create a CDSOption instrument for a single-name CDS option.

CDS = fininstrument("cds",'ContractSpread', ContractSpread, 'Maturity', CDSMaturity)

CDS = 
  CDS with properties:

           ContractSpread: 100

 CDSBlack

11-3059



                 Maturity: 20-Jun-2017
                   Period: 4
                    Basis: 2
             RecoveryRate: 0.4000
    BusinessDayConvention: "actual"
                 Holidays: NaT
        PayAccruedPremium: 1
                 Notional: 10000000
                     Name: ""

Use fininstrument to create a CDSOption instrument for two CDS index option instruments.

CDSCallOption = fininstrument("cdsoption", 'Strike', OptionStrike, ...
    'ExerciseDate', OptionMaturity, 'OptionType', 'call', 'CDS', CDS, ...
    'Knockout',true, 'AdjustedForwardSpread', AdjustedForwardSpread)

CDSCallOption = 
  CDSOption with properties:

               OptionType: "call"
                   Strike: 140
                 Knockout: 1
    AdjustedForwardSpread: 145.7273
             ExerciseDate: 20-Jun-2012
                      CDS: [1x1 fininstrument.CDS]
                     Name: ""

CDSPutOption = fininstrument("cdsoption", 'Strike', OptionStrike, ...
    'ExerciseDate', OptionMaturity, 'OptionType', 'put', 'CDS', CDS, ...
    'Knockout',true, 'AdjustedForwardSpread', AdjustedForwardSpread)

CDSPutOption = 
  CDSOption with properties:

               OptionType: "put"
                   Strike: 140
                 Knockout: 1
    AdjustedForwardSpread: 145.7273
             ExerciseDate: 20-Jun-2012
                      CDS: [1x1 fininstrument.CDS]
                     Name: ""

Create CDSBlack Model Object

Use finmodel to create a CDSBlack model object.

CDSOptionModel = finmodel("cdsblack",'SpreadVolatility',SpreadVolatility)

CDSOptionModel = 
  CDSBlack with properties:

    SpreadVolatility: 0.6900
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Create CDSBlack Pricer Object

Use finpricer to create a CDSBlack pricer object and use the ratecurve object for the zero curve
for the 'DiscountCurve' name-value pair argument.

CDSOptionpricer = finpricer("analytic",'Model',CDSOptionModel,'DiscountCurve',ZeroCurve,'DefaultProbabilityCurve',DefaultProbCurve)

CDSOptionpricer = 
  CDSBlack with properties:

                      Model: [1x1 finmodel.CDSBlack]
              DiscountCurve: [1x1 ratecurve]
    DefaultProbabilityCurve: [1x1 defprobcurve]

Price CDS Index Options

Use price to compute the price for the CDS index options.

outPrice = price(CDSOptionpricer, [CDSCallOption;CDSPutOption]);
fprintf('    Payer: %.0f   Receiver: %.0f  \n',outPrice(1),outPrice(2));

    Payer: 92   Receiver: 66  

See Also
Functions
fininstrument | finmodel

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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NumericalIntegration
Create NumericalIntegration pricer object for Vanilla instrument using Heston, Bates, or
Merton model

Description
Create and price a Vanilla instrument object with a Heston, Bates, or Merton model and a
NumericalIntegration pricing method using this workflow:

1 Use fininstrument to create a Vanilla instrument object.
2 Use finmodel to specify a Heston, Bates, or Merton model for the Vanilla instrument

object.
3 Use finpricer to specify a NumericalIntegration pricer object for the Vanilla instrument

object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available pricing methods for a Vanilla instrument, see “Choose
Instruments, Models, and Pricers” on page 1-53.

Creation
Syntax
NumericalIntegrationPricerObj = finpricer(PricerType,'Model',model,'
DiscountCurve',ratecurve_obj,'SpotPrice',spotprice_value)
NumericalIntegrationPricerObj = finpricer( ___ ,Name,Value)

Description

NumericalIntegrationPricerObj = finpricer(PricerType,'Model',model,'
DiscountCurve',ratecurve_obj,'SpotPrice',spotprice_value) creates a
NumericalIntegration pricer object by specifying PricerType and sets the properties on page
11-3065 for the required name-value pair arguments Model, DiscountCurve, and SpotPrice.

NumericalIntegrationPricerObj = finpricer( ___ ,Name,Value) sets optional properties
on page 11-3065 using additional name-value pairs in addition to the required arguments in the
previous syntax. For example, NumericalIntegrationPricerObj =
finpricer("NumericalIntegration",'Model',NIModel,'DiscountCurve',ratecurve_ob
j,'SpotPrice',1000,'DividendValue',100,'VolRiskPremium',0.9) creates a
NumericalIntegration pricer object. You can specify multiple name-value pair arguments.

Input Arguments

PricerType — Pricer type
string with value "NumericalIntegration" | character vector with value
'NumericalIntegration'
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Pricer type, specified as a string with the value of "NumericalIntegration" or a character vector
with the value of 'NumericalIntegration'.
Data Types: char | string

NumericalIntegration Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: NumericalIntegrationPricerObj =
finpricer("NumericalIntegration",'Model',NIModel,'DiscountCurve',ratecurve_ob
j,'SpotPrice',1000,'DividendValue',100,'VolRiskPremium',0.9)

Required NumericalIntegration Name-Value Pair Arguments

Model — Model
model object

Model, specified as the comma-separated pair consisting of 'Model' and the name of a previously
created Merton, Bates, or Heston model object using finmodel.
Data Types: object

DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

This property is read-only.

ratecurve object for discounting cash flows, specified as the comma-separated pair consisting of
'DiscountCurve' and the name of a ratecurve object.

Note Specify a flat ratecurve object for DiscountCurve. If you use a nonflat ratecurve object,
the software uses the rate in the ratecurve object at Maturity and assumes that the value is
constant for the life of the equity option.

Data Types: object

SpotPrice — Current price of underlying asset
nonnegative numeric

Current price of the underlying asset, specified as the comma-separated pair consisting of
'SpotPrice' and a scalar nonnegative numeric.
Data Types: double

Optional NumericalIntegration Name-Value Pair Arguments

DividendValue — Dividend yield
0 (default) | scalar numeric

Dividend yield, specified as the comma-separated pair consisting of 'DividendValue' and a scalar
numeric.
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Data Types: double

VolRiskPremium — Volatility risk premium
0 (default) | numeric

Volatility risk premium, specified as the comma-separated pair consisting of 'VolRiskPremium' and
a scalar numeric value.
Data Types: double

LittleTrap — Flag indicating Little Heston Trap formulation
true (default) | logical with values true or false

Flag indicating Little Heston Trap formulation by Albrecher et al., specified as the comma-separated
pair consisting of 'LittleTrap' and a logical:

• true — Use the Albrecher et al. formulation.

For more information on the LittleTrap, see [1] and also the Little Trap formulation is defined
by Cj and Dj, see “Heston Stochastic Volatility Model” on page 11-3068 and “Bates Stochastic
Volatility Jump Diffusion Model” on page 11-3070.

• false — Use the original Heston formation.

Note LittleTrap is supported only for Heston and Bates models.

Data Types: logical

AbsTol — Absolute error tolerance for numerical integration
1e-10 (default) | numeric

Absolute error tolerance for numerical integration, specified as the comma-separated pair consisting
of 'AbsTol' and a scalar numeric value.
Data Types: double

RelTol — Relative error tolerance for numerical integration
1e-6 (default) | numeric

Relative error tolerance for numerical integration, specified as the comma-separated pair consisting
of 'RelTol' and a scalar numeric value.
Data Types: double

IntegrationRange — Numerical integration range used to approximate continuous integral
over [0 Inf]
[1e-9 Inf] (default) | vector

Numerical integration range used to approximate the continuous integral over [0 Inf], specified as
the comma-separated pair consisting of 'IntegrationRange' and a 1-by-2 vector representing
[LowerLimit UpperLimit].
Data Types: double
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Framework — Framework for computing option prices and sensitivities using numerical
integration of models
"heston1993" (default) | string with values "heston1993" or "lewis2001" | character vector
with values 'heston1993' or 'lewis2001'

Framework for computing option prices and sensitivities using the numerical integration of models,
specified as the comma-separated pair consisting of 'Framework' and a scalar string or character
vector with the following values:

• "heston1993" or 'heston1993' — Method used in Heston (1993)
• "lewis2001" or 'lewis2001' — Method used in Lewis (2001)

Data Types: char | string

Properties
Model — Model
model object

Model, returned as a model object.
Data Types: object

DiscountCurve — ratecurve object for discounting cash flows
object

ratecurve object for discounting cash flows, returned as a ratecurve object.
Data Types: object

SpotPrice — Current price of underlying asset
nonnegative numeric

Current price of the underlying asset, returned as a scalar nonnegative numeric.
Data Types: double

DividendValue — Dividend yield
0 (default) | scalar numeric

Dividend yield, returned as a scalar numeric.
Data Types: double

VolRiskPremium — Volatility risk premium
0 (default) | numeric

Volatility risk premium, returned as a scalar numeric value.
Data Types: double

LittleTrap — Flag indicating Little Heston Trap formulation
true (default) | logical with value true or false

Flag indicating Little Heston Trap formulation by Albrecher et al., returned as a logical.
Data Types: logical
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AbsTol — Absolute error tolerance for numerical integration
1e-10 (default) | numeric

Absolute error tolerance for numerical integration, returned as a scalar numeric value.
Data Types: double

RelTol — Relative error tolerance for numerical integration
1e-6 (default) | numeric

Relative error tolerance for numerical integration, returned as a scalar numeric value.
Data Types: double

IntegrationRange — Numerical integration range used to approximate continuous integral
over [0 Inf]
[1e-9 Inf] (default) | vector

Numerical integration range used to approximate the continuous integral over [0 Inf], returned as
a 1-by-2 vector representing [LowerLimit UpperLimit].
Data Types: double

Framework — Framework for computing option prices and sensitivities using numerical
integration of models
"heston1993" (default) | string with value "heston1993" or "lewis2001"

Framework for computing option prices and sensitivities using the numerical integration of models,
returned as a scalar string.
Data Types: string

Object Functions
price Compute price for equity instrument with NumericalIntegration pricer

Examples

Use Numerical Integration Pricer and Merton Model to Price Vanilla Instrument

This example shows the workflow to price a Vanilla instrument when you use a Merton model and
a NumericalIntegration pricing method.

Create Vanilla Instrument Object

Use fininstrument to create a Vanilla instrument object.

VanillaOpt = fininstrument("Vanilla",'ExerciseDate',datetime(2020,3,15),'ExerciseStyle',"european",'Strike',105,'Name',"vanilla_option")

VanillaOpt = 
  Vanilla with properties:

       OptionType: "call"
    ExerciseStyle: "european"
     ExerciseDate: 15-Mar-2020
           Strike: 105
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             Name: "vanilla_option"

Create Merton Model Object

Use finmodel to create a Merton model object.

MertonModel = finmodel("Merton",'Volatility',0.45,'MeanJ',0.02,'JumpVol',0.07,'JumpFreq',0.09)

MertonModel = 
  Merton with properties:

    Volatility: 0.4500
         MeanJ: 0.0200
       JumpVol: 0.0700
      JumpFreq: 0.0900

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

myRC = ratecurve('zero',datetime(2019,9,15),datetime(2020,3,15),0.02)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: 15-Mar-2020
                Rates: 0.0200
               Settle: 15-Sep-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create NumericalIntegration Pricer Object

Use finpricer to create a NumericalIntegration pricer object and use the ratecurve object
for the 'DiscountCurve'name-value pair argument.

outPricer = finpricer("numericalintegration",'Model',MertonModel,'DiscountCurve',myRC,'SpotPrice',100,'DividendValue',.01,'VolRiskPremium',0.9,'LittleTrap',false,'AbsTol',0.5,'RelTol',0.4,'Framework',"lewis2001")

outPricer = 
  NumericalIntegration with properties:

                Model: [1x1 finmodel.Merton]
        DiscountCurve: [1x1 ratecurve]
            SpotPrice: 100
         DividendType: "continuous"
        DividendValue: 0.0100
               AbsTol: 0.5000
               RelTol: 0.4000
     IntegrationRange: [1.0000e-09 Inf]
    CharacteristicFcn: @characteristicFcnMerton76
            Framework: "lewis2001"
       VolRiskPremium: 0.9000
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           LittleTrap: 0

Price Vanilla Instrument

Use price to compute the price and sensitivities for the Vanilla instrument.

[Price, outPR] = price(outPricer,VanillaOpt,["all"])

Price = 10.7325

outPR = 
  priceresult with properties:

       Results: [1x6 table]
    PricerData: []

outPR.Results

ans=1×6 table
    Price     Delta      Gamma       Theta      Rho       Vega 
    ______    ______    ________    _______    ______    ______

    10.732    0.5058    0.012492    -12.969    19.815    27.954

More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

Here:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.

Heston Stochastic Volatility Model

The Heston model is an extension of the Black-Scholes model, where the volatility (square root of
variance) is no longer assumed to be constant, and the variance now follows a stochastic (CIR)
process. This allows modeling the implied volatility smiles observed in the market.

The stochastic differential equation is
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dSt = (r − q)Stdt + vtStdWt

dvt = κ(θ− vt)dt + σv vtdWt
v

E dWtdWt
v = pdt

Here:

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

vt is the asset price variance at time t.

v0 is the initial variance of the asset price at t = 0 for (v0 > 0).

θ is the long-term variance level for (θ > 0).

κ is the mean reversion speed for the variance for (κ > 0).

σv is the volatility of the variance for (σv > 0).

p is the correlation between the Weiner processes Wt and Wv
t for (-1 ≤ p ≤ 1).

The characteristic function fHeston j(ϕ) for j = 1 (asset price measure) and j = 2 (risk-neutral measure)
is

fHeston j(ϕ) = exp(C j + D jv0 + iϕlnSt)

C j = (r − q)iϕτ + κθ
σv

2 b j− pσviϕ + d j τ − 2ln
1− g je

djτ

1− g j

D j =
b j− pσviϕ + d j

σv
2

1− edjτ

1− g je
djτ

g j =
b j− pσviϕ + d j
b j− pσviϕ− d j

d j = b j− pσviϕ
2− σv

2 2u jiϕ− ϕ2

where for  j = 1, 2:

u1 = 1
2, u2 = − 1

2, b1 = κ + λVolRisk− pσv, b2 = κ + λVolRisk

Here:

ϕ is the characteristic function variable.

ƛVolRisk is the volatility risk premium.

τ is the time to maturity (τ = T - t).

i is the unit imaginary number (i2 = -1).

 NumericalIntegration

11-3069



The definitions for Cj and Dj for the Little Heston Trap by Albrecher et al. (2007) are

C j = (r − q)iϕτ + κθ
σv2 b j− pσviϕ− d j τ − 2ln

1− ε je
−djτ

1− ε j

D j =
b j− pσviϕ− d j

σv
2

1− e−djτ

1− ε je
−djτ

ε j =
b j− pσviϕ− d j
b j− pσviϕ + d j

Bates Stochastic Volatility Jump Diffusion Model

The Bates model (Bates 1996) is an extension of the Heston model where, in addition to stochastic
volatility, the jump diffusion parameters similar to Merton (1976) are also added to model sudden
asset price movements.

The stochastic differential equation is

dSt = (r − q− λpμJ)Stdt + vtStdWt + JStdPt

dvt = κ(θ− vt)dt + σv vtdWt

E dWtdWt
v = pdt

prob(dPt = 1) = λpdt

Here:

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

vt is the asset price variance at time t.

J is the random percentage jump size conditional on the jump occurring, where ln(1+J) is normally

distributed with mean ln(1 + μJ)−
δ2

2  and the standard deviation δ, and (1+J) has a lognormal
distribution:

1
(1 + J)δ 2πexp

− ln(1 + J)− ln(1 + μJ −
δ2
2

2δ2

2

v0 is the initial variance of the asset price at t = 0 (v0> 0).

θ is the long-term variance level for (θ > 0).

κ is the mean reversion speed for (κ > 0).

σv is the volatility of variance for (σv > 0).
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p is the correlation between the Weiner processes Wt and Wt
v for (-1 ≤ p ≤ 1).

μJ is the mean of J for (μJ > -1).

δ is the standard deviation of ln(1+J) for (δ ≥ 0).

λp is the annual frequency (intensity) of Poisson process Pt for (λp ≥ 0).

The characteristic function fBates j(ϕ) for j = 1 (asset price mean measure) and j = 2 (risk-neutral
measure) is

fBates(ϕ) = exp(C j + D jv0 + iϕlnSt)exp λpτ(1 + μJ
mj + 1

2 (1 + μ j)iϕeδ2(mjiϕ + (iϕ)2
2 )− 1 − λpτμJiϕ)

m j =
m1 = 1

2

m2 = − 1
2

C j = (r − q)iϕτ + κθ
σv2 b j− pσviϕ + d j τ − 2ln

1− g je
djτ

1− g j

D j =
b j− pσviϕ + d j

σv
2

1− edjτ

1− g je
djτ

g j =
b j− pσviϕ + d j
b j− pσviϕ− d j

d j = b j− pσviϕ
2− σv

2 2u jiϕ− ϕ2

where for  j = 1, 2:

u1 = 1
2, u2 = − 1

2, b1 = κ + λVolRisk− pσv, b2 = κ + λVolRisk

Here:

ϕ is the characteristic function variable.

ƛVolRisk is the volatility risk premium.

τ is the time to maturity for (τ = T - t).

i is the unit imaginary number for (i2= -1).

The definitions for Cj and Dj for the Little Heston Trap by Albrecher et al. (2007) are

C j = (r − q)iϕτ + κθ
σv2 b j− pσviϕ− d j τ − 2ln

1− ε je
−djτ

1− ε j

D j =
b j− pσviϕ− d j

σv
2

1− e−djτ

1− ε je
−djτ

ε j =
b j− pσviϕ− d j
b j− pσviϕ + d j
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Merton Jump Diffusion Model

The Merton jump diffusion model (Merton 1976) is an extension of the Black-Scholes model, where
sudden asset price movements (both up and down) are modeled by adding the jump diffusion
parameters with the Poisson process.

The stochastic differential equation is

dSt = (r − q− λpμ j)Stdt + σStdWt + JStdPt
prob(dPt = 1) = λpdt

Here:

r is the continuous risk-free rate.

q is the continuous dividend yield.

Wt is the Weiner process.

J is the random percentage jump size conditional on the jump occurring, where ln(1+J) is normally

distributed with mean ln(1 + μJ)−
δ2

2  and the standard deviation δ, and (1+J) has a lognormal
distribution

1
(1 + J)δ 2πexp

− ln(1 + J)− ln(1 + μJ −
δ2
2

2δ2

2

μJ is the mean of J for (μJ > -1).

δ is the standard deviation of ln(1+J) for (δ≥ 0).

ƛp is the annual frequency (intensity) of Poisson process Ptfor (ƛp ≥ 0).

σ is the volatility of the asset price for (σ > 0).

The characteristic function fMerton76 j(ϕ) for j = 1 (asset prices measure) and j = 2 (risk-neutral
measure) is

fMerton76 j = fBSjexp λpτ 1 + μ j
mj + 1

2 1 + μ j
iϕeδ2 mjiϕ + (iϕ)2

2 − 1 − λpτμ jiϕ

where for  j = 1, 2:

fBS1(ϕ) =
fBS2 ϕ− i
fBS2 −i

fBS2(ϕ) = exp iϕ lnSt + r − q− σ2

2 τ − ϕ2σ2

2 τ

m1 = 1
2, m2 = − 1

2

Here:
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ϕ is the characteristic function variable

τ is the time to maturity (τ = T- t).

i is the unit imaginary number ( i2 = -1).

Numerical Integration Method Under Heston (1993) Framework

Numerical integration is used to evaluate the continuous integral for the inverse Fourier transform.

The numerical integration method under the Heston (1993) framework is based on the following
expressions

Call(K) = Ste−qτP1− Ke−rτP2

Put(K) = Call(K) + Ke−rτ − Ste−qτ

P j = 1
2 + 1

π ∫
0

∞
Re

e−iϕln(K)f j(ϕ)
iϕ dϕ

Here:

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

K is the strike.

τ is time to maturity (τ = T-t).

Call(K) is the call price at strike K.

Put(K) is the put price at strike K.

i is a unit imaginary number (i2= -1).

ϕ is the characteristic function variable.

fj(ϕ) is the characteristic function for Pj(j = 1,2).

P1 is the probability of St > K under the asset price measure for the model.

P2 is the probability of St > K under the risk-neutral measure for the model.

Where j = 1,2 so that f1(ϕ) and f2(ϕ) are the characteristic functions for probabilities P1 and P2,
respectively.

Choose this framework by specifying the default value "Heston1993" for the Framework name-
value pair argument.

Numerical Integration Method Under Lewis Framework

Numerical integration is used to evaluate the continuous integral for the inverse Fourier transform.
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The numerical integration method under the Lewis (2001) framework is based on the following
expressions:

Call(k) = Ste−qτ − Ke−τt

π ∫
0

∞
Re K−iuf2 ϕ = u− i

2
1

u2 + 1
4

du

Put(K) = Call(K) = Ke−τt − Ste−qτ

Here

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

K is the strike.

τ is time to maturity (τ = T-t).

Call(K) is the call price at strike K.

Put(K) is the put price at strike K.

i is a unit imaginary number (i2= -1).

ϕ is the characteristic function variable.

u is the characteristic function variable for integration, where ϕ = u− i
2 .

f2(ϕ) is the characteristic function for P2.

P2 is the probability of St > K under the risk-neutral measure for the model.

Choose this framework by specifying the value "Lewis2001" for the Framework name-value pair
argument.

References
[1] Albrecher, H., P. Mayer, W. Schoutens, and J. Tistaert. “The Little Heston Trap.” Working Paper,

Linz and Graz University of Technology, K.U. Leuven, ING Financial Markets, 2006.

See Also
Functions
fininstrument | finmodel | timetable

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53
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Introduced in R2020a
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Discount
Create Discount pricer object for Deposit, FRA, Swap, FixedBond, FloatBond, OISFuture,
STIRFuture, and OvernightIndexedSwap using ratecurve object

Description
Create and price a Deposit, FRA, Swap, FixedBond, FloatBond, OISFuture, STIRFuture, and
OvernightIndexedSwap instrument object with a ratecurve and a Discount pricing method
using this workflow:

1 Create an interest-rate curve object using ratecurve.
2 Use finpricer to specify a Discount pricer object for the Deposit, FRA, Swap, FixedBond,

FloatBond, STIRFuture, OISFuture, or OvernightIndexedSwap instrument object.

Note If you do not specify ProjectionCurve when you create a Swap or FloatBond
instrument with the Discount pricer, the ProjectionCurve value defaults to the
DiscountCurve value.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available instruments, models, and pricing methods for a Deposit, FRA,
Swap, FixedBond, or FloatBond instrument, see “Choose Instruments, Models, and Pricers” on
page 1-53.

Creation

Syntax
DiscountPricerObj = finpricer(PricerType,'DiscountCurve',ratecurve_object)

Description

DiscountPricerObj = finpricer(PricerType,'DiscountCurve',ratecurve_object)
creates a Discount pricer object by specifying PricerType and the required name-value pair
argument DiscountCurve to set properties on page 11-3077 using name-value pairs. For example,
DiscountPricerObj = finpricer("Discount",'DiscountCurve',ratecurve_obj) creates
a Discount pricer object.

Input Arguments

PricerType — Pricer type
string with value "Discount" | character vector with value 'Discount'

Pricer type, specified as a string with the value of "Discount" or a character vector with the value
of 'Discount'.
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Data Types: char | string

Discount Name-Value Pair Arguments

Specify required pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: DiscountPricerObj =
finpricer("Discount",'DiscountCurve',ratecurve_obj)

DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, specified as the comma-separated pair consisting of
'DiscountCurve' and the name of a previously created ratecurve object
Data Types: object

Properties
DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, returned as the ratecurve object.
Data Types: object

Object Functions
price Compute price for interest-rate instrument with Discount pricer

Examples

Use Discount Pricer and ratecurve to Price Swap Instrument

This example shows the workflow to price a Swap instrument when using a ratecurve and a
Discount pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve for the underlying interest-rate curve for the Swap
instrument.

Settle = datetime(2022,1,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:
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                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Jan-2022
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Swap Instrument Object

Use fininstrument to create a Swap instrument object.

SwapOpt = fininstrument("Swap",'Maturity',datetime(2027,1,15),'LegRate',[0.024 0.015],'LegType',["fixed","float"],'ProjectionCurve',myRC,'Name',"swap_instrument")

SwapOpt = 
  Swap with properties:

                     LegRate: [0.0240 0.0150]
                     LegType: ["fixed"    "float"]
                       Reset: [2 2]
                       Basis: [0 0]
                    Notional: 100
          LatestFloatingRate: [NaN NaN]
                 ResetOffset: [0 0]
    DaycountAdjustedCashFlow: [0 0]
             ProjectionCurve: [1x2 ratecurve]
       BusinessDayConvention: ["actual"    "actual"]
                    Holidays: NaT
                EndMonthRule: [1 1]
                   StartDate: NaT
                    Maturity: 15-Jan-2027
                        Name: "swap_instrument"

Create Discount Pricer Object

Use finpricer to create a Discount pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("Discount", 'DiscountCurve',myRC)

outPricer = 
  Discount with properties:

    DiscountCurve: [1x1 ratecurve]

Price Swap Instrument

Use price to compute the price and sensitivities for the Swap instrument.

[Price, outPR] = price(outPricer, SwapOpt,["all"])

Price = -1.3834
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outPR = 
  priceresult with properties:

       Results: [1x2 table]
    PricerData: []

outPR.Results

ans=1×2 table
     Price       DV01  
    _______    ________

    -1.3834    0.048336

See Also
Functions
fininstrument | finmodel | ratecurve

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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Future
Create Future pricer object for BondFuture, CommodityFuture, EquityIndexFuture, and
FXFuture using ratecurve object

Description
Create and price a BondFuture, CommodityFuture, EquityIndexFuture, and FXFuture
instrument object with a ratecurve object and a Future pricing method using this workflow:

1 Create an interest-rate curve object using ratecurve.
2 Use fininstrument to create a BondFuture, CommodityFuture, FXFuture, or

EquityIndexFuture instrument object.
3 Use finpricer to specify a Future pricer object for the BondFuture, CommodityFuture,

FXFuture, or EquityIndexFuture instrument object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available instruments, models, and pricing methods for a BondFuture,
CommodityFuture, EquityIncomeFuture, or FXFuture instrument, see “Choose Instruments,
Models, and Pricers” on page 1-53.

Creation

Syntax
FuturePricerObj = finpricer(PricerType,DiscountCurve=ratecurve_object,
SpotPrice=spot_price)

Description

FuturePricerObj = finpricer(PricerType,DiscountCurve=ratecurve_object,
SpotPrice=spot_price) creates a Future pricer object by specifying PricerType and the
required name-value arguments for DiscountCurve and SpotPrice to set properties on page 11-
3081. For example, FuturePricerObj =
finpricer("Future",DiscountCurve=ratecurve_obj,SpotPrice=125) creates a Future
pricer object.

Input Arguments

PricerType — Pricer type
string with value "Future" | character vector with value 'Future'

Pricer type, specified as a string with the value of "Future" or a character vector with the value of
'Future'.
Data Types: char | string
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Future Name-Value Pair Arguments

Specify required pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: FuturePricerObj =
finpricer("Future",DiscountCurve=ratecurve_obj,SpotPrice=125)

DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, specified as DiscountCurve and the name of a
previously created ratecurve object
Data Types: object

SpotPrice — Quoted spot price for underlying asset to be delivered
numeric

Quoted spot price for underlying asset to be delivered, specified as SpotPrice and a numeric value
that depends on the type of future instrument being priced:

• BondFuture instrument — Clean spot price quoted for $100 face value of underlying bond
• CommodityFuture instrument — Spot price for underlying commodity quantity specified in

contract
• EquityIndexFuture instrument — Spot equity index value
• FXFuture instrument — Spot price quoted in domestic currency for one unit of foreign currency

Data Types: double

Properties
DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, returned as the ratecurve object.
Data Types: object

SpotPrice — Quoted spot price for underlying asset to be delivered
numeric

Quoted spot price for underlying asset to be delivered, returned as a numeric value that depends on
the type of future instrument being priced.
Data Types: double

Object Functions
price Compute price for interest-rate instrument with Future pricer

Examples
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Use Future Pricer and ratecurve to Price BondFuture Instrument

This example shows the workflow to price a BondFuture instrument when you use a ratecurve
object and a Future pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2022,3,1);
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])];
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates,Compounding=2);

Create Underlying FixedBond Instrument Object

Use fininstrument to create a FixedBond instrument object.

FixB = fininstrument("FixedBond",Maturity=datetime(2032,9,1),CouponRate=0.05,Name="fixed_bond_instrument")

FixB = 
  FixedBond with properties:

                  CouponRate: 0.0500
                      Period: 2
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 01-Sep-2032
                        Name: "fixed_bond_instrument"

Create BondFuture Instrument Object

Use fininstrument to create a BondFuture instrument object.

BondFut = fininstrument("BondFuture",Maturity=datetime(2022,9,1),QuotedPrice=86,Bond=FixB,ConversionFactor=1.43,Name="bondfuture_instrument")

BondFut = 
  BondFuture with properties:

            Maturity: 01-Sep-2022
         QuotedPrice: 86
                Bond: [1x1 fininstrument.FixedBond]
    ConversionFactor: 1.4300
            Notional: 100000
                Name: "bondfuture_instrument"
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Create Future Pricer Object

Use finpricer to create a Future pricer object and use the ratecurve object with the
DiscountCurve name-value argument.

outPricer = finpricer("Future",DiscountCurve=ZeroCurve,SpotPrice=125)

outPricer = 
  Future with properties:

    DiscountCurve: [1x1 ratecurve]
        SpotPrice: 125

Price BondFuture Instrument

Use price to compute the price and price result for the BondFuture instrument.

[Price,outPR] = price(outPricer,BondFut)

Price = -151.9270

outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: []

outPR.Results

ans=1×4 table
     Price     FairDeliveryPrice    FairFuturePrice    AccruedInterest
    _______    _________________    _______________    _______________

    -151.93       1.2283e+05            85.893                0       

See Also
Functions
fininstrument | finmodel | ratecurve | fairdelivery | cashsettle

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2022a
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FFT
Create FFT pricer object for Vanilla instrument using Merton, Heston, or Bates model

Description
Create and price a Vanilla instrument object with a Heston, Bates, or Merton model and an FFT
pricing method using this workflow:

1 Use fininstrument to create a Vanilla instrument object.
2 Use finmodel to specify a Heston, Bates, or Merton model for the Vanilla instrument

object.
3 Use finpricer to specify an FFT pricer object for the Vanilla instrument object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available pricing methods for a Vanilla instrument, see “Choose
Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
FFTPricerObj = finpricer(PricerType,'Model',model,'
DiscountCurve',ratecurve_obj)
FFTPricerObj = finpricer( ___ ,Name,Value)

Description

FFTPricerObj = finpricer(PricerType,'Model',model,'
DiscountCurve',ratecurve_obj) creates an FFT pricer object by specifying PricerType and
sets the properties on page 11-3087 for the required name-value pair arguments Model and
DiscountCurve.

FFTPricerObj = finpricer( ___ ,Name,Value) sets optional properties on page 11-3087 using
additional name-value pairs in addition to the required arguments in the previous syntax. For
example, FFTPricerObj = finpricer("FFT",'Model',FFTModel,
'DiscountCurve',ratecurve_obj,'SpotPrice',1000,'DividendValue',0.01,'VolRiskP
remium',0.9) creates an FFT pricer object. You can specify multiple name-value pair arguments.

Input Arguments

PricerType — Pricer type
string with value "FFT" | character vector with value 'FFT'

Pricer type, specified as a string with the value of "FFT" or a character vector with the value of
'FFT'.
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Data Types: char | string

FFT Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: FFTPricerObj = finpricer("FFT",'Model',FFTModel,
'DiscountCurve',ratecurve_obj,'SpotPrice',1000,'DividendValue',0.01,'VolRiskP
remium',0.9)

Required FFT Name-Value Pair Arguments

Model — Model
model object

Model, specified as the comma-separated pair consisting of 'Model' and the name of the previously
created Merton, Bates, or Heston model object using finmodel.
Data Types: object

DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

This property is read-only.

ratecurve object for discounting cash flows, specified as the comma-separated pair consisting of
'DiscountCurve' and the name of the ratecurve object.

Note Specify a flat ratecurve object for DiscountCurve. If you use a nonflat ratecurve object,
the software uses the rate in the ratecurve object at Maturity and assumes that the value is
constant for the life of the equity option.

Data Types: object

SpotPrice — Current price of underlying asset
nonnegative numeric

Current price of the underlying asset, specified as the comma-separated pair consisting of
'SpotPrice' and a scalar nonnegative numeric.
Data Types: double

Optional FFT Name-Value Pair Arguments

DividendValue — Dividend yield
0 (default) | scalar nonnegative numeric

Dividend yield, specified as the comma-separated pair consisting of 'DividendValue' and a scalar
nonnegative numeric in decimals.
Data Types: double
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VolRiskPremium — Volatility risk premium
0 (default) | numeric

Volatility risk premium, specified as the comma-separated pair consisting of 'VolRiskPremium' and
a scalar numeric value.
Data Types: double

LittleTrap — Flag indicating Little Heston Trap formulation
true (default) | logical with value true or false

Flag indicating Little Heston Trap formulation by Albrecher et al., specified as the comma-separated
pair consisting of 'LittleTrap' and a logical:

• true — Use the Albrecher et al. formulation.

For more information on the LittleTrap, see [1] and also the Little Trap formulation is defined
by Cj and Dj in “Heston Stochastic Volatility Model” on page 11-3091 and “Bates Stochastic
Volatility Jump Diffusion Model” on page 11-3092.

• false — Use the original Heston formation.

Note LittleTrap is supported only for Heston and Bates models.

Data Types: logical

NumFFT — Number of grid points in characteristic function variable
4096 (default) | numeric

Number of grid points in the characteristic function variable and in each column of the log-strike
grid, specified as the comma-separated pair consisting of 'NumFFT' and a scalar numeric value.
Data Types: double

CharacteristicFcnStep — Characteristic function variable grid spacing
0.01 (default) | numeric

Characteristic function variable grid spacing, specified as the comma-separated pair consisting of
'CharacteristicFcnStep' and a scalar numeric value.
Data Types: double

LogStrikeStep — Log-strike grid spacing
2*pi/NumFFT/CharacteristicFcnStep (default) | numeric

Log-strike grid spacing, specified as the comma-separated pair consisting of 'LogStrikeStep' and
a scalar numeric value.

Note If (LogStrikeStep*CharacteristicFcnStep) is 2*pi/NumFFT, FFT is used. Otherwise,
FRFT is used.

Data Types: double
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DampingFactor — Damping factor for Carr-Madan formulation
1.5 (default) | numeric

Damping factor for the Carr-Madan formulation, specified as the comma-separated pair consisting of
'DampingFactor' and a scalar numeric value.
Data Types: double

Quadrature — Type of quadrature
"simpson" (default) | string with value "simpson" or "trapezoidal" | character vector with value
'simpson' or 'trapezoidal'

Type of quadrature, specified as the comma-separated pair consisting of 'Quadrature' and a scalar
string or character vector.
Data Types: char | string

Properties
Model — Model
model object

Model, returned as a model object.
Data Types: object

SpotPrice — Current price of underlying asset
nonnegative numeric

Current price of the underlying asset, returned as a scalar nonnegative numeric.
Data Types: double

DividendValue — Dividend yield
0 (default) | scalar nonnegative numeric

Dividend yield, returned as a scalar nonnegative numeric in decimals.
Data Types: double

VolRiskPremium — Volatility risk premium
0 (default) | numeric

Volatility risk premium, returned as a scalar numeric value.
Data Types: double

LittleTrap — Flag indicating Little Heston Trap formulation
true (default) | logical with value true or false

Flag indicating Little Heston Trap formulation by Albrecher et al., returned as a logical.
Data Types: logical

NumFFT — Number of grid points in the characteristic function variable
4096 (default) | numeric
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Number of grid points in the characteristic function variable and in each column of the log-strike
grid, returned as a scalar numeric value.
Data Types: double

CharacteristicFcnStep — Characteristic function variable grid spacing
0.01 (default) | numeric

Characteristic function variable grid spacing, returned as a scalar numeric value.
Data Types: double

LogStrikeStep — Log-strike grid spacing
2*pi/NumFFT/CharacteristicFcnStep (default) | numeric

Log-strike grid spacing, returned as a scalar numeric value.
Data Types: double

DampingFactor — Damping factor for Carr-Madan formulation
1.5 (default) | numeric

Damping factor for the Carr-Madan formulation, returned as a scalar numeric value.
Data Types: double

Quadrature — Type of quadrature
"simpson" (default) | string with value "simpson" or "trapezoidal"

Type of quadrature, returned as a string.
Data Types: string

Object Functions
price Compute price for equity instrument with FFT pricer

Examples

Use FFT Pricer and Heston Model to Price Vanilla Instrument

This example shows the workflow to price a Vanilla instrument when you use a Heston model and
an FFT pricing method.

Create Vanilla Instrument Object

Use fininstrument to create a Vanilla instrument object.

VanillaOpt = fininstrument("Vanilla",'ExerciseDate',datetime(2022,9,15),'Strike',105,'ExerciseStyle',"european",'Name',"vanilla_option")

VanillaOpt = 
  Vanilla with properties:

       OptionType: "call"
    ExerciseStyle: "european"
     ExerciseDate: 15-Sep-2022
           Strike: 105
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             Name: "vanilla_option"

Create Heston Model Object

Use finmodel to create a Heston model object.

HestonModel = finmodel("Heston",'V0',0.032,'ThetaV',0.1,'Kappa',0.003,'SigmaV',0.2,'RhoSV',0.9)

HestonModel = 
  Heston with properties:

        V0: 0.0320
    ThetaV: 0.1000
     Kappa: 0.0030
    SigmaV: 0.2000
     RhoSV: 0.9000

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create FFT Pricer Object

Use finpricer to create an FFT pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("fft",'DiscountCurve',myRC,'Model',HestonModel,'SpotPrice',100,'CharacteristicFcnStep', 0.2,'NumFFT',2^13)

outPricer = 
  FFT with properties:

                    Model: [1x1 finmodel.Heston]
            DiscountCurve: [1x1 ratecurve]
                SpotPrice: 100
             DividendType: "continuous"
            DividendValue: 0
                   NumFFT: 8192
    CharacteristicFcnStep: 0.2000

 FFT

11-3089



            LogStrikeStep: 0.0038
        CharacteristicFcn: @characteristicFcnHeston
            DampingFactor: 1.5000
               Quadrature: "simpson"
           VolRiskPremium: 0
               LittleTrap: 1

Price Vanilla Instrument

Use price to compute the price and sensitivities for the Vanilla instrument.

[Price, outPR] = price(outPricer,VanillaOpt,["all"])

Price = 14.7545

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []

outPR.Results

ans=1×7 table
    Price      Delta      Gamma       Theta       Rho       Vega     VegaLT
    ______    _______    ________    ________    ______    ______    ______

    14.754    0.44868    0.021649    -0.20891    120.45    88.192    1.3248

More About
Vanilla Option

A vanilla option is a category of options that includes only the most standard components.

A vanilla option has an expiration date and straightforward strike price. American-style options and
European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max(St − K, 0)
• For a put: max(K − St, 0)

Here:

St is the price of the underlying asset at time t.

K is the strike price.

For more information, see “Vanilla Option” on page 3-27.
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Heston Stochastic Volatility Model

The Heston model is an extension of the Black-Scholes model, where the volatility (the square root of
the variance) is no longer assumed to be constant, and the variance now follows a stochastic (CIR)
process. This process allows modeling the implied volatility smiles observed in the market.

The stochastic differential equation is

dSt = (r − q)Stdt + vtStdWt

dvt = κ(θ− vt)dt + σv vtdWt
v

E dWtdWt
v = pdt

Here:

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

vt is the asset price variance at time t.

v0 is the initial variance of the asset price at t = 0 for (v0 > 0).

θ is the long-term variance level for (θ > 0).

κ is the mean reversion speed for the variance for (κ > 0).

σv is the volatility of the variance for (σv > 0).

p is the correlation between the Weiner processes Wt and Wv
t for (-1 ≤ p ≤ 1).

The characteristic function fHeston j(ϕ) for j = 1 (asset price measure) and j = 2 (risk-neutral measure)
is

fHeston j(ϕ) = exp(C j + D jv0 + iϕlnSt)

C j = (r − q)iϕτ + κθ
σv

2 b j− pσviϕ + d j τ − 2ln
1− g je

djτ

1− g j

D j =
b j− pσviϕ + d j

σv
2

1− edjτ

1− g je
djτ

g j =
b j− pσviϕ + d j
b j− pσviϕ− d j

d j = b j− pσviϕ
2− σv

2 2u jiϕ− ϕ2

where for  j = 1, 2:

u1 = 1
2, u2 = − 1

2, b1 = κ + λVolRisk− pσv, b2 = κ + λVolRisk

Here:
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ϕ is the characteristic function variable.

ƛVolRisk is the volatility risk premium.

τ is the time to maturity (τ = T - t).

i is the unit imaginary number (i2 = -1).

The definitions for Cj and Dj in the Little Heston Trap by Albrecher et al. (2007) are

C j = (r − q)iϕτ + κθ
σv2 b j− pσviϕ− d j τ − 2ln

1− ε je
−djτ

1− ε j

D j =
b j− pσviϕ− d j

σv
2

1− e−djτ

1− ε je
−djτ

ε j =
b j− pσviϕ− d j
b j− pσviϕ + d j

Bates Stochastic Volatility Jump Diffusion Model

The Bates model (Bates 1996) is an extension of the Heston model where, in addition to stochastic
volatility, the jump diffusion parameters similar to Merton (1976) are also added to model sudden
asset price movements.

The stochastic differential equation is

dSt = (r − q− λpμJ)Stdt + vtStdWt + JStdPt

dvt = κ(θ− vt)dt + σv vtdWt

E dWtdWt
v = pdt

prob(dPt = 1) = λpdt

Here:

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

vt is the asset price variance at time t.

J is the random percentage jump size conditional on the jump occurring, where ln(1+J) is normally

distributed with mean ln(1 + μJ)−
δ2

2  and the standard deviation δ, and (1+J) has a lognormal
distribution:

1
(1 + J)δ 2πexp

− ln(1 + J)− ln(1 + μJ −
δ2
2

2δ2

2
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Here:

v0 is the initial variance of the asset price at t = 0 (v0> 0).

θ is the long-term variance level for (θ > 0).

κ is the mean reversion speed for (κ > 0).

σv is the volatility of variance for (σv > 0).

p is the correlation between the Weiner processes Wt and Wt
v for (-1 ≤ p ≤ 1).

μJ is the mean of J for (μJ > -1).

δ is the standard deviation of ln(1+J) for (δ ≥ 0).

λp is the annual frequency (intensity) of Poisson process Pt for (λp ≥ 0).

The characteristic function fBates j(ϕ) for j = 1 (asset price mean measure) and j = 2 (risk-neutral
measure) is

fBates(ϕ) = exp(C j + D jv0 + iϕlnSt)exp λpτ(1 + μJ
mj + 1

2 (1 + μ j)iϕeδ2(mjiϕ + (iϕ)2
2 )− 1 − λpτμJiϕ)

m j =
m1 = 1

2

m2 = − 1
2

C j = (r − q)iϕτ + κθ
σv2 b j− pσviϕ + d j τ − 2ln

1− g je
djτ

1− g j

D j =
b j− pσviϕ + d j

σv
2

1− edjτ

1− g je
djτ

g j =
b j− pσviϕ + d j
b j− pσviϕ− d j

d j = b j− pσviϕ
2− σv

2 2u jiϕ− ϕ2

where for  j = 1, 2:

u1 = 1
2, u2 = − 1

2, b1 = κ + λVolRisk− pσv, b2 = κ + λVolRisk

Here:

ϕ is the characteristic function variable.

ƛVolRisk is the volatility risk premium.

τ is the time to maturity for (τ = T - t).

i is the unit imaginary number for (i2= -1).

The definitions for Cj and Dj in the Little Heston Trap by Albrecher et al. (2007) are
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C j = (r − q)iϕτ + κθ
σv2 b j− pσviϕ− d j τ − 2ln

1− ε je
−djτ

1− ε j

D j =
b j− pσviϕ− d j

σv
2

1− e−djτ

1− ε je
−djτ

ε j =
b j− pσviϕ− d j
b j− pσviϕ + d j

Merton Jump Diffusion Model

The Merton jump diffusion model (Merton 1976) is an extension of the Black-Scholes model, where
sudden asset price movements (both up and down) are modeled by adding the jump diffusion
parameters with the Poisson process.

The stochastic differential equation is

dSt = (r − q− λpμ j)Stdt + σStdWt + JStdPt
prob(dPt = 1) = λpdt

Here:

r is the continuous risk-free rate.

q is the continuous dividend yield.

Wt is the Weiner process.

J is the random percentage jump size conditional on the jump occurring, where ln(1+J) is normally

distributed with mean ln(1 + μJ)−
δ2

2  and the standard deviation δ, and (1+J) has a lognormal
distribution:

1
(1 + J)δ 2πexp

− ln(1 + J)− ln(1 + μJ −
δ2
2

2δ2

2

Here:

μJ is the mean of J for (μJ > -1).

δ is the standard deviation of ln(1+J) for (δ≥ 0).

ƛp is the annual frequency (intensity) of the Poisson process Ptfor (ƛp ≥ 0).

σ is the volatility of the asset price for (σ > 0).

The characteristic function fMerton76 j(ϕ) for j = 1 (asset price measure) and j = 2 (risk-neutral
measure) is
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fMerton76 j = fBSjexp λpτ 1 + μ j
mj + 1

2 1 + μ j
iϕeδ2 mjiϕ + (iϕ)2

2 − 1 − λpτμ jiϕ

where for  j = 1, 2:

fBS1(ϕ) =
fBS2 ϕ− i
fBS2 −i

fBS2(ϕ) = exp iϕ lnSt + r − q− σ2

2 τ − ϕ2σ2

2 τ

m1 = 1
2, m2 = − 1

2

Here:

ϕ is the characteristic function variable.

τ is the time to maturity (τ = T- t).

i is the unit imaginary number ( i2 = -1).

Carr-Madan Formulation

The Carr-Madan (1999) formulation is a popular modified implementation of Heston (1993)
framework.

Rather than computing the probabilities P1 and P2 as intermediate steps, Carr and Madan developed
an alternative expression so that taking its inverse Fourier transform gives the option price itself
directly.

Call(k) = e−αk

π ∫0 ∞Re e−iukψ(u) du

ψ(u) =
e−rτf2(ϕ = (u− (α + 1)i))
α2 + α− u2 + iu(2α + 1)

Put(K) = Call(K) + Ke−rτ − Ste−qτ

Here:

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

τ is time to maturity (τ = T-t).

Call(K) is the call price at strike K.

Put(K) is the put price at strike K

i is a unit imaginary number (i2= -1)

ϕ is the characteristic function variable.
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α is the damping factor.

u is the characteristic function variable for integration, where ϕ = (u - (α+1)i).

f2(ϕ) is the characteristic function for P2.

P2 is the probability of St > K under the risk-neutral measure for the model.

To apply FFT or FRFT to this formulation, the characteristic function variable for integration u is
discretized into NumFFT(N) points with the step size CharacteristicFcnStep (Δu), and the log-
strike k is discretized into N points with the step size LogStrikeStep(Δk).

The discretized characteristic function variable for integration uj(for j = 1,2,3,…,N) has a minimum
value of 0 and a maximum value of (N-1) (Δu), and it approximates the continuous integration range
from 0 to infinity.

The discretized log-strike grid kn(for n = 1, 2, 3, N) is approximately centered around ln(St), with a
minimum value of

ln(St)−
N
2 Δk

and a maximum value of

ln(St) + N
2 − 1 Δk

Where the minimum allowable strike is

Stexp −N
2 Δk

and the maximum allowable strike is

Stexp N
2 − 1 Δk

As a result of the discretization, the expression for the call option becomes

Call(kn) = Δue−αkn

π ∑
j = 1

N
Re e−iΔkΔu( j− 1)(n− 1)eiu j NΔk

2 − ln(St) ψ(u j) w j

Here:

Δu is the step size of the discretized characteristic function variable for integration.

Δk is the step size of the discretized log strike.

N is the number of FFT or FRFT points.

wj is the weights for quadrature used for approximating the integral.

FFT is used to evaluate the above expression if Δk and Δu are subject to the following constraint:

ΔkΔu = 2π
N
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Otherwise, the functions use the FRFT method described in Chourdakis (2005).

References
[1] Albrecher, H., P. Mayer, W. Schoutens, and J. Tistaert. “The Little Heston Trap.” Working Paper,

Linz and Graz University of Technology, K.U. Leuven, ING Financial Markets, 2006.
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GoldmanSosinGatto
Create GoldmanSosinGatto pricer object for Lookback instrument using BlackScholes model

Description
Create and price a Lookback instrument object with a BlackScholes model and a
GoldmanSosinGatto pricing method using this workflow:

1 Use fininstrument to create a Lookback instrument object.
2 Use finmodel to specify a BlackScholes model for the Lookback instrument object.
3 Use finpricer to specify a GoldmanSosinGatto pricer object for the Lookback instrument

object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available instruments, models, and pricing methods for a Lookback
instrument, see “Choose Instruments, Models, and Pricers” on page 1-53.

Creation
Syntax
GoldmanSosinGattoPricerObj = finpricer(PricerType,'
DiscountCurve,ratecurve_obj,'Model,model,'SpotPrice',spotprice_value)
GoldmanSosinGattoPricerObj = finpricer( ___ ,Name,Value)

Description

GoldmanSosinGattoPricerObj = finpricer(PricerType,'
DiscountCurve,ratecurve_obj,'Model,model,'SpotPrice',spotprice_value) creates a
GoldmanSosinGatto pricer object by specifying PricerType and sets the properties on page 11-
3100 for the required name-value pair arguments DiscountCurve, Model, and SpotPrice.

GoldmanSosinGattoPricerObj = finpricer( ___ ,Name,Value) to set optional properties on
page 11-3100 using additional name-value pairs in addition to the required arguments in the previous
syntax. For example, GoldmanSosinGattoPricerObj =
finpricer("Analytic",'DiscountCurve',ratecurve_obj,'Model',BSModel,'SpotPrice
',1000,'DividendType',"continuous",'DividendValue',500,'PricingMethod',"Goldm
anSosinGatto") creates a GoldmanSosinGatto pricer object.

Input Arguments

PricerType — Pricer type
string with value "Analytic" | character vector with value 'Analytic'

Pricer type, specified as a string with the value of "Analytic" or a character vector with the value
of 'Analytic'.
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Data Types: char | string

GoldmanSosinGatto Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: GoldmanSosinGattoPricerObj =
finpricer("Analytic",'DiscountCurve',ratecurve_obj,'Model',BSModel,'SpotPrice
',1000,'DividendType',"continuous",'DividendValue',500,'PricingMethod',"Goldm
anSosinGatto")

Required GoldmanSosinGatto Name-Value Pair Arguments

DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, specified as the comma-separated pair consisting of
'DiscountCurve' and the name of the previously created ratecurve object.

Note Specify a flat ratecurve object for DiscountCurve. If you use a nonflat ratecurve object,
the software uses the rate in the ratecurve object at Maturity and assumes that the value is
constant for the life of the equity option.

Data Types: object

Model — Model
BlackScholes model object

Model, specified as the comma-separated pair consisting of 'Model' and the name of a previously
created BlackScholes model object using finmodel.
Data Types: object

SpotPrice — Current price of underlying asset
nonnegative numeric

Current price of the underlying asset, specified as the comma-separated pair consisting of
'SpotPrice' and a scalar nonnegative numeric.
Data Types: double

Optional GoldmanSosinGatto Name-Value Pair Arguments

DividendType — Stock dividend type
"continuous" (default) | string with value "cash" or "continuous" | character vector with value
'cash' or 'continuous'

Stock dividend type, specified as the comma-separated pair consisting of 'DividendType' and a
character vector or string. DividendType must be "cash" for actual dollar dividends or
"continuous" for a continuous dividend yield.
Data Types: char | string
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DividendValue — Dividend amount or dividend schedule for underlying stock
0 (default) | scalar numeric | timetable

Dividend amount for underlying stock, specified as the comma-separated pair consisting of
'DividendValue' and a scalar numeric for a dividend amount or a timetable for a dividend
schedule.

Note Specify a scalar if DividendType is "continuous" and a timetable if DividendType is
"cash".

Data Types: double | timetable

PricingMethod — Analytic pricing method
default pricer associated with BlackScholes model (default) | string with value
"GoldmanSosinGatto" | character vector with value 'GoldmanSosinGatto'

Analytic pricing method, specified as the comma-separated pair consisting of 'PricingMethod' and
a character vector or string.

Note The default pricing method for a BlackScholes model is a BlackScholes pricer.

Data Types: double

Properties
DiscountCurve — ratecurve object for discounting cash flows
object

ratecurve object for discounting cash flows, returned as a ratecurve object.
Data Types: object

Model — Model
BlackScholes model object

Model, returned as a BlackScholes model object.
Data Types: object

SpotPrice — Current price of underlying asset
nonnegative numeric

Current price of the underlying asset, returned as a scalar nonnegative numeric.
Data Types: double

DividendType — Stock dividend type
"continuous" (default) | string with value "cash" or "continuous"

This property is read-only.

Stock dividend type, returned as a string. DividendType is either "cash" for actual dollar dividends
or "continuous" for a continuous dividend yield.
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Data Types: string

DividendValue — Dividend amount or dividend schedule for underlying stock
0 (default) | scalar nonnegative numeric | timetable

Dividend amount or dividend schedule for the underlying stock, returned as a scalar numeric for a
dividend amount or a timetable for a dividend schedule.
Data Types: double | timetable

PricingMethod — Analytic pricing method
default pricer associated with BlackScholes model (default) | string with value
"GoldmanSosinGatto"

Analytic pricing method, returned as a string.
Data Types: string

Object Functions
price Compute price for interest-rate, equity, or credit derivative instrument with Analytic pricer

Examples

Use Goldman-Sosin-Gatto Pricer and Black-Scholes Model to Price Lookback Instrument

This example shows the workflow to price a floating-strike Lookback instrument when you use a
BlackScholes model and a GoldmanSosinGatto pricing method.

Create Lookback Instrument Object

Use fininstrument to create a floating-strike Lookback instrument object where the Strike
argument is specified as NaN.

LookbackOpt = fininstrument("lookback",'Strike',NaN,'ExerciseDate',datetime(2021,9,15),'OptionType',"put",'ExerciseStyle',"european",'Name',"lookback_option")

LookbackOpt = 
  Lookback with properties:

       OptionType: "put"
           Strike: NaN
      AssetMinMax: NaN
    ExerciseStyle: "european"
     ExerciseDate: 15-Sep-2021
             Name: "lookback_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',.358)

BlackScholesModel = 
  BlackScholes with properties:
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     Volatility: 0.3580
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create GoldmanSosinGatto Pricer Object

Use finpricer to create a GoldmanSosinGatto pricer object and use the ratecurve object for
the 'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'Model',BlackScholesModel,'DiscountCurve',myRC,'SpotPrice',100,'DividendValue',0.025,'DividendType',"continuous",'PricingMethod',"GoldmanSosinGatto")

outPricer = 
  GoldmanSosinGatto with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 100
    DividendValue: 0.0250
     DividendType: "continuous"

Price Lookback Instrument

Use price to compute the price and sensitivities for the floating-strike Lookback instrument.

[Price, outPR] = price(outPricer,LookbackOpt,["all"])

Price = 53.3720

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []

outPR.Results
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ans=1×7 table
    Price      Delta        Gamma       Lambda     Vega      Theta       Rho  
    ______    _______    ___________    ______    ______    _______    _______

    53.372    0.53372    -1.4211e-06      1       181.36    -8.7793    -213.01

See Also
Functions
fininstrument | finmodel | timetable | ratecurve

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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HullWhite
Create HullWhite pricer object for Cap, Floor, or Swaption instrument using HullWhite model

Description
Create and price a Cap, Floor, or Swaption instrument object with a HullWhite model and a
HullWhite pricing method using this workflow:

1 Use fininstrument to create a Cap, Floor, or Swaption instrument object.
2 Use finmodel to specify the HullWhite model for the Cap, Floor, or Swaption instrument

object.
3 Use finpricer to specify the HullWhite pricer object for the Cap, Floor, or Swaption

instrument object.

Note If you do not specify ProjectionCurve when you create a Cap, Floor, or Swaption
instrument with the HullWhite pricer, the ProjectionCurve value defaults to the
DiscountCurve value.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available instruments, models, and pricing methods for a Cap, Floor, or
Swaption instrument, see “Choose Instruments, Models, and Pricers” on page 1-53.

Creation
Syntax
HullWhitePricerObj = finpricer(PricerType,'DiscountCurve',ratecurve_obj,'
Model',model)

Description

HullWhitePricerObj = finpricer(PricerType,'DiscountCurve',ratecurve_obj,'
Model',model) creates a HullWhite pricer object by specifying PricerType and the required
name-value pair arguments DiscountCurve and Model to set properties on page 11-3105 using
name-value pairs. For example, HullWhitePricerObj =
finpricer("Analytic",'DiscountCurve',ratecurve_obj,'Model',HWModel) creates a
HullWhite pricer object.

Input Arguments

PricerType — Pricer type
string with value "Analytic" | character vector with value 'Analytic'

Pricer type, specified as a string with the value of "Analytic" or a character vector with the value
of 'Analytic'.

11 Functions

11-3104



Data Types: char | string

HullWhite Name-Value Pair Arguments

Specify required pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: HullWhitePricerObj =
finpricer("Analytic",'DiscountCurve',ratecurve_obj,'Model',HWModel)

DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, specified as the comma-separated pair consisting of
'DiscountCurve' and the name of a previously created ratecurve object.
Data Types: object

Model — Model
HullWhite model object

Model object, specified as the comma-separated pair consisting of 'Model' and the name of the
previously created HullWhite model object using finmodel.
Data Types: object

Properties
DiscountCurve — ratecurve object for discounting cash flows
object

ratecurve object for discounting cash flows, returned as a ratecurve object.
Data Types: object

Model — Model
HullWhite model object

Model, returned as a HullWhite model object.
Data Types: object

Object Functions
price Compute price for interest-rate, equity, or credit derivative instrument with Analytic pricer

Examples

Use Hull-White Pricer and Hull-White Model to Price a Floor Instrument

This example shows the workflow to price a Floor instrument when you use a HullWhite model and
a HullWhite pricing method.
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Create Floor Instrument Object

Use fininstrument to create a Floor instrument object.

FloorOpt = fininstrument("Floor",'Strike',0.02,'Maturity',datetime(2019,1,30),'Reset',4,'Principal',100,'Basis',8,'Name',"floor_option")

FloorOpt = 
  Floor with properties:

                      Strike: 0.0200
                    Maturity: 30-Jan-2019
                 ResetOffset: 0
                       Reset: 4
                       Basis: 8
                   Principal: 100
             ProjectionCurve: [0x0 ratecurve]
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                        Name: "floor_option"

Create HullWhite Model Object

Use finmodel to create a HullWhite model object.

HullWhiteModel = finmodel("HullWhite",'Alpha',0.032,'Sigma',0.04)

HullWhiteModel = 
  HullWhite with properties:

    Alpha: 0.0320
    Sigma: 0.0400

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Type = "zero";
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
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     LongExtrapMethod: "previous"

Create HullWhite Pricer Object

Use finpricer to create a HullWhite pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'Model',HullWhiteModel,'DiscountCurve',myRC)

outPricer = 
  HullWhite with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.HullWhite]

Price Floor Instrument

Use price to compute the price for the Floor instrument.

Price = price(outPricer,FloorOpt)

Price = 0.5809

See Also
Functions
fininstrument | finmodel | ratecurve

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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IRMonteCarlo
Create IRMonteCarlo pricer object for interest-rate instruments using HullWhite,
BraceGatarekMusiela, or LinearGaussian2F model

Description
Create and price a Cap, Floor, Swap, Swaption, FloatBond, FixedBond, FixedBondOption,
FloatBondOption, OptionEmbeddedFixedBond, or OptionEmbeddedFloatBond instrument
object with a HullWhite, BraceGatarekMusiela, SABRBraceGatarekMusiela, or
LinearGaussian2F model and a IRMonteCarlo pricing method using this workflow:

1 Use fininstrument to create a FixedBond, FloatBond, Cap, Floor, Swap, Swaption,
FixedBondOption, FloatBondOption, OptionEmbeddedFixedBond, or
OptionEmbeddedFloatBond instrument object.

2 Use finmodel to specify a HullWhite or LinearGaussian2F model for the Cap, Floor, Swap,
Swaption, FloatBond, FixedBond, FixedBondOption, FloatBondOption,
OptionEmbeddedFixedBond, or OptionEmbeddedFloatBond instrument object.

Use finmodel to specify a BraceGatarekMusiela or SABRBraceGatarekMusiela model for
the Cap, Floor, FloatBond, FixedBond, FixedBondOption, FloatBondOption,
OptionEmbeddedFixedBond, or OptionEmbeddedFloatBond instrument object.

3 When using a HullWhite or LinearGaussian2F model, use finpricer to specify an
IRMonteCarlo pricer object for the Cap, Floor, Swap, Swaption, FloatBond, FixedBond,
FixedBondOption, FloatBondOption, OptionEmbeddedFixedBond, or
OptionEmbeddedFloatBond instrument object.

When using a BraceGatarekMusiela or SABRBraceGatarekMusiela model, use finpricer
to specify an IRMonteCarlo pricer object for the Cap, Floor, FloatBond, FixedBond,
FixedBondOption, FloatBondOption, OptionEmbeddedFixedBond, or
OptionEmbeddedFloatBond instrument object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available instruments, models, and pricing methods for Cap, Floor,
Swap, Swaption, FloatBond, FixedBond, FixedBondOption, FloatBondOption,
OptionEmbeddedFixedBond, or OptionEmbeddedFloatBond instruments, see “Choose
Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
IRMonteCarloPricerObj = finpricer(PricerType,Model=model,
DiscountCurve=ratecurve_obj,SimulationDates=simulation_dates)
IRMonteCarloPricerObj = finpricer( ___ ,Name=Value)
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Description

IRMonteCarloPricerObj = finpricer(PricerType,Model=model,
DiscountCurve=ratecurve_obj,SimulationDates=simulation_dates) creates an
IRMonteCarlo pricer object by specifying PricerType and sets the properties on page 11-3110
using the required name-value arguments Model, DiscountCurve, and SimulationDates.

IRMonteCarloPricerObj = finpricer( ___ ,Name=Value) sets optional properties on page 11-
3110 using additional name-value arguments in addition to the required arguments in the previous
syntax. For example, IRMonteCarloPricerObj =
finpricer("irmontecarlo",Model=HWModel,DiscountCurve=ratecurve_obj,Simulation
Dates=[datetime(2018,1,30); datetime(2019,1,30)],NumTrials=500) creates an
IRMonteCarlo pricer object using a HullWhite model. You can specify multiple name-value
arguments.

Input Arguments

PricerType — Pricer type
string with value "IRMonteCarlo" | character vector with value 'IRMonteCarlo'

Pricer type, specified as a string with the value "IRMonteCarlo" or a character vector with the
value 'IRMonteCarlo'.
Data Types: char | string

IRMonteCarlo Name-Value Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.
Example: IRMonteCarloPricerObj =
finpricer("irmontecarlo",Model=HWModel,DiscountCurve=ratecurve_obj,Simulation
Dates=[datetime(2018,1,30); datetime(2019,1,30)],NumTrials=500)

Required IRMonteCarlo Name-Value Arguments

Model — Model object
HullWhite object | LinearGaussian2F object | BraceGatarekMusiela object |
SABRBraceGatarekMusiela object

Model object, specified as Model and the name of a previously created HullWhite,
LinearGaussian2F, BraceGatarekMusiela, or SABRBraceGatarekMusiela model object.
Create the model object using finmodel.
Data Types: object

DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, specified as DiscountCurve and the name of a
previously created ratecurve object.

Note Specify a flat ratecurve object for DiscountCurve. If you use a nonflat ratecurve object,
the software uses the rate in the ratecurve object at Maturity and assumes that the value is
constant for the life of the interest-rate option.
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Data Types: object

SimulationDates — Simulation dates
serial date number | date character vector | datetime | vector

Simulation dates, specified as SimulationDates and a scalar serial date number, date character
vector, or datetime or a vector of serial date numbers, cell array of character vectors, string array, or
datetime array.
Data Types: double | char | string | cell | datetime

Optional IRMonteCarlo Name-Value Arguments

NumTrials — Simulation trials
1000 (default) | scalar

Simulation trials, specified as NumTrials and a scalar number of independent sample paths.
Data Types: double

RandomNumbers — Dependent random variates
[ ] (default) | structure

Dependent random variates, specified as RandomNumbers and an NSimulationDates-by-
NBrownians-by-NTrials 3D time series array. The 3D time series array has the following field:

• Z — NSimulationDates-by-NBrownians-by-NTrials 3D time series array of dependent random
variates used to generate the Brownian motion vector (that is, Wiener processes) that drive the
simulation.

Data Types: struct

Properties
Model — Model object
object

This property is read-only.

Model object, returned as an object.
Data Types: object

DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, returned as a ratecurve object.
Data Types: object

SimulationDates — Simulation dates
datetime

Simulation dates, returned as a datetime array.
Data Types: datetime
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NumTrials — Simulation trials
1000 (default) | scalar

Simulation trials, returned as a scalar number of independent sample paths.
Data Types: double

RandomNumbers — Dependent random variates
[ ] (default) | structure

Dependent random variates, returned as an NSimulationDates-by-NBrownians-by-NTrials 3D
time series array.
Data Types: struct

Object Functions
price Compute price for interest-rate instrument with IRMonteCarlo pricer

Examples

Use IRMonteCarlo Pricer and Hull-White Model to Price Fixed Bond Instrument

This example shows the workflow to price a FixedBond instrument when using a HullWhite model
and an IRMonteCarlo pricing method.

Create FixedBond Instrument Object

Use fininstrument to create a FixedBond instrument object.

FixB = fininstrument("FixedBond",Maturity=datetime(2022,9,15),CouponRate=0.05,Name="fixed_bond")

FixB = 
  FixedBond with properties:

                  CouponRate: 0.0500
                      Period: 2
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 15-Sep-2022
                        Name: "fixed_bond"

Create HullWhite Model Object

Use finmodel to create a HullWhite model object.

HullWhiteModel = finmodel("HullWhite",Alpha=0.32,Sigma=0.49)
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HullWhiteModel = 
  HullWhite with properties:

    Alpha: 0.3200
    Sigma: 0.4900

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2019,1,1);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 01-Jan-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create IRMonteCarlo Pricer Object

Use finpricer to create an IRMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("IRMonteCarlo",Model=HullWhiteModel,DiscountCurve=myRC,SimulationDates=ZeroDates)

outPricer = 
  HWMonteCarlo with properties:

          NumTrials: 1000
      RandomNumbers: []
      DiscountCurve: [1x1 ratecurve]
    SimulationDates: [01-Jul-2019    01-Jan-2020    01-Jan-2021    ...    ]
              Model: [1x1 finmodel.HullWhite]

Price FixedBond Instrument

Use price to compute the price for the FixedBond instrument.

[Price,outPR] = price(outPricer,FixB,["all"])

Price = 115.0303

outPR = 
  priceresult with properties:
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       Results: [1x4 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×4 table
    Price      Delta     Gamma     Vega
    ______    _______    ______    ____

    115.03    -397.13    1430.4     0  

Use IRMonteCarlo Pricer and LinearGaussian2F Model to Price Cap Instrument

This example shows the workflow to price a Cap instrument when using a LinearGaussian2F model
and an IRMonteCarlo pricing method.

Create Cap Instrument Object

Use fininstrument to create a Cap instrument object.

CapOpt = fininstrument("Cap",Maturity=datetime(2022,9,15),Strike=0.01,Reset=2,Name="cap_option")

CapOpt = 
  Cap with properties:

                      Strike: 0.0100
                    Maturity: 15-Sep-2022
                 ResetOffset: 0
                       Reset: 2
                       Basis: 0
                   Principal: 100
             ProjectionCurve: [0x0 ratecurve]
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                        Name: "cap_option"

Create LinearGaussian2F Model Object

Use finmodel to create a LinearGaussian2F model object.

LinearGaussian2FModel = finmodel("LinearGaussian2F",Alpha1=0.07,Sigma1=0.01,Alpha2=0.5,Sigma2=0.006,Correlation=-0.7)

LinearGaussian2FModel = 
  LinearGaussian2F with properties:

         Alpha1: 0.0700
         Sigma1: 0.0100
         Alpha2: 0.5000
         Sigma2: 0.0060
    Correlation: -0.7000
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Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2019,1,1);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 01-Jan-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create IRMonteCarlo Pricer Object

Use finpricer to create an IRMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("IRMonteCarlo",Model=LinearGaussian2FModel,DiscountCurve=myRC,SimulationDates=ZeroDates)

outPricer = 
  G2PPMonteCarlo with properties:

          NumTrials: 1000
      RandomNumbers: []
      DiscountCurve: [1x1 ratecurve]
    SimulationDates: [01-Jul-2019    01-Jan-2020    01-Jan-2021    ...    ]
              Model: [1x1 finmodel.LinearGaussian2F]

Price Cap Instrument

Use price to compute the price and sensitivities for the Cap instrument.

[Price,outPR] = price(outPricer,CapOpt,["all"])

Price = 1.2156

outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: [1x1 struct]

outPR.Results
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ans=1×4 table
    Price     Delta     Gamma          Vega      
    ______    ______    _____    ________________

    1.2156    131.37    11048    126.5    -157.38

Use IRMonteCarlo Pricer and BraceGatarekMusiela Model to Price Floor Instrument

This example shows the workflow to price a Floor instrument when using a BraceGatarekMusiela
model and an IRMonteCarlo pricing method.

Create Floor Instrument Object

Use fininstrument to create a Floor instrument object.

FloorOpt = fininstrument("Floor",Maturity=datetime(2022,9,15),Strike=0.05,Reset=1,Name="floor_option")

FloorOpt = 
  Floor with properties:

                      Strike: 0.0500
                    Maturity: 15-Sep-2022
                 ResetOffset: 0
                       Reset: 1
                       Basis: 0
                   Principal: 100
             ProjectionCurve: [0x0 ratecurve]
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                        Name: "floor_option"

Create BraceGatarekMusiela Model Object

Use finmodel to create a BraceGatarekMusiela model object.

BGMVolFunc = @(a,t) (a(1)*t + a(2)).*exp(-a(3)*t) + a(4);
BGMVolParams = [.3 -.02 .7 .14];
numRates = 20;
VolFunc(1:numRates-1) = {@(t) BGMVolFunc(BGMVolParams,t)};
Beta = .08;
CorrFunc = @(i,j,Beta) exp(-Beta*abs(i-j));
Correlation = CorrFunc(meshgrid(1:numRates-1)',meshgrid(1:numRates-1),Beta);
BGM = finmodel("BraceGatarekMusiela",Volatility=VolFunc,Correlation=Correlation,Period=1);

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2019,1,1);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293]';
ZeroDates = Settle + ZeroTimes;
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myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [9x1 datetime]
                Rates: [9x1 double]
               Settle: 01-Jan-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create IRMonteCarlo Pricer Object

Use finpricer to create an IRMonteCarlo pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("IRMonteCarlo",Model=BGM,DiscountCurve=myRC,SimulationDates=ZeroDates)

outPricer = 
  BGMMonteCarlo with properties:

          NumTrials: 1000
      RandomNumbers: []
      DiscountCurve: [1x1 ratecurve]
    SimulationDates: [01-Jul-2019    01-Jan-2020    01-Jan-2021    ...    ]
              Model: [1x1 finmodel.BraceGatarekMusiela]

Price Floor Instrument

Use price to compute the price and sensitivities for the Floor instrument.

[Price,outPR] = price(outPricer,FloorOpt,["all"])

Price = 14.7975

outPR = 
  priceresult with properties:

       Results: [1x3 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×3 table
    Price      Delta     Gamma 
    ______    _______    ______
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    14.797    -398.43    1399.5

See Also
Functions
fininstrument | finmodel

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2021b

 IRMonteCarlo
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IRTree
Create IRTree pricer object for Cap, Floor, Swap, Swaption, FloatBond, FixedBond,
FixedBondOption, FloatBondOption, OptionEmbeddedFixedBond, or
OptionEmbeddedFloatBond instrument

Description
Create and price a Cap, Floor, Swap, Swaption, FloatBond, FixedBond, FixedBondOption,
FloatBondOption, OptionEmbeddedFixedBond, or OptionEmbeddedFloatBond instrument
object with a HullWhite or BlackKarasinski model and an IRTree pricing method using this
workflow:

1 Use fininstrument to create a Cap, Floor, Swaption, Swap, FloatBond, FixedBond,
FixedBondOption, FloatBondOption, OptionEmbeddedFixedBond, or
OptionEmbeddedFloatBond instrument object.

2 Use finmodel to specify a HullWhite or BlackKarasinski model for the Cap, Floor,
Swaption, Swap, FixedBond, FloatBond, FixedBondOption, FloatBondOption,
OptionEmbeddedFixedBond, or OptionEmbeddedFloatBond instrument object.

3 Use finpricer to specify an IRTree pricer object for a BK or HW trinomial tree model for the
Cap, Floor, Swaption, Swap, FixedBond, FloatBond, FixedBondOption,
FloatBondOption, OptionEmbeddedFixedBond, or OptionEmbeddedFloatBond instrument
object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available instruments, models, and pricing methods for a Cap, Floor,
Swaption, Swap, FixedBond, FloatBond, FloatBondOption, OptionEmbeddedFixedBond, or
OptionEmbeddedFloatBond instrument, see “Choose Instruments, Models, and Pricers” on page 1-
53.

Creation
Syntax
IRTreePricerObj = finpricer(PricerType,'Model',model_type,'
DiscountCurve',ratecurve_obj,'TreeDates',tree_dates)

Description

IRTreePricerObj = finpricer(PricerType,'Model',model_type,'
DiscountCurve',ratecurve_obj,'TreeDates',tree_dates) creates a IRTree pricer object
by specifying PricerType and the required name-value pair arguments for Model, DiscountCurve,
and TreeDates to set properties on page 11-3120 using name-value pair arguments. For example,
IRTreePricerObj =
finpricer("IRTree",'Model',HullWhite,'DiscountCurve',ratecure_obj,'TreeDates'
,['jan-30-2018';'jan-30-2019']) creates an IRTree pricer object.
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Input Arguments

PricerType — Pricer type
string with value "IRTree" | character vector with value 'IRTree'

Pricer type, specified as a string with the value of "IRTree" or a character vector with the value of
'IRTree'.
Data Types: char | string

IRTree Name-Value Pair Arguments

Specify required pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: IRTreePricerObj =
finpricer("IRTree",'Model',HullWhite,'DiscountCurve',ratecure_obj,'TreeDates'
,['jan-30-2018';'jan-30-2019'])

Model — Model type
HullWhite object | BlackKarasinski object

Model type, specified as the comma-separated pair consisting of 'Model' and the name of a
previously created HullWhite or BlackKarasinski model object. Create the model object using
finmodel.

Note When you use a HullWhite model, the IRTree pricer uses the HW2000 algorithm [1].

Data Types: object

DiscountCurve — ratecurve object for creating IRTree and discounting cash flows
ratecurve object

This property is read-only.

ratecurve object for creating IRTree and discounting cash flows, specified as the comma-separated
pair consisting of 'DiscountCurve' and the name of a ratecurve object.
Data Types: object

TreeDates — Dates marking the cash flow dates of the tree
vector

Dates marking the cash flow dates of the tree, specified as the comma-separated pair consisting of
'TreeDates' and an NLEVELS-by-1 vector of dates. Cash flows with these dates will fall on tree
nodes. The TreeDates argument determines the number of levels, or depth, of the tree. List dates in
increasing order.
Data Types: double | cell | datetime
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Properties
Tree — HW or BK trinomial tree
struct for HW or BK tree

HW or BK trinomial tree, returned as a struct with the following properties:

• tObs contains the time factor of each level of the tree.
• dObs contains the date of each level of the tree.
• Probs contains a cell array of 3-by-N numeric arrays with the up, mid, down probabilities of each

node of the tree except for the last level. The cells in the cell array are ordered from root node.
The arrays are 3-by-N with the first row corresponding to an up move, the mid row to a mid-move,
and so on. Each column of the array represents a node starting from the top node of a given level.

• CFlowT is a cell array with as many elements as levels of the tree. Each cell array element
contains the time factors (tObs) corresponding to its level of the tree and those levels ahead of it.

• Probs contains the probability arrays. Each element of the cell array contains the up, middle, and
down transition probabilities for each node of the level.

• Connect contains a cell array with connectivity information for each node of the tree. The
arrangement is similar to Probs, with the exception that it has only one row in each cell. The
number represents the node in the next level to which the middle branch connects to. The top
branch connects to the value above (minus one) and the lower branch connects to the value below
(plus one).

• FwdTree contains the forward spot rate from one node to the next. The forward spot rate is
defined as the inverse of the discount factor.

• RateTree contains the interest rate from one node to the next.

Data Types: struct

TreeDates — Tree dates
datetime

Tree dates, returned as a scalar datetime or datetime array.
Data Types: datetime

Model — Model type
HullWhite object or BlackKarasinski object

Model type, returned as an object.
Data Types: object

DiscountCurve — ratecurve object for creating IRTree and discounting cash flows
ratecurve object

This property is read-only.

ratecurve object for creating the IRTree object and discounting cash flows, returned as a
ratecurve object.
Data Types: object

11 Functions

11-3120



Object Functions
price Compute price for interest-rate instrument with IRTree pricer

Examples

Use Hull-White Tree Pricer and Hull-White Model to Price FixedBondOption Instrument

This example shows the workflow to price a FixedBondOption instrument when you use a
HullWhite model and an IRTree pricing method.

Create FixedBond Instrument Object

Use fininstrument to create a FixedBond instrument object as the underlying bond.

BondInst = fininstrument("FixedBond",'Maturity',datetime(2029,9,15),'CouponRate',0.025,'Period', 1,'Name',"fixed_bond_instrument")

BondInst = 
  FixedBond with properties:

                  CouponRate: 0.0250
                      Period: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 15-Sep-2029
                        Name: "fixed_bond_instrument"

Create FixedBondOption Instrument Object

Use fininstrument to create a FixedBondOption instrument object.

FixedBOption = fininstrument("FixedBondOption",'ExerciseDate',datetime(2025,9,15),'Strike',98,'Bond',BondInst,'Name',"fixed_bond_option_instrument")

FixedBOption = 
  FixedBondOption with properties:

       OptionType: "call"
    ExerciseStyle: "european"
     ExerciseDate: 15-Sep-2025
           Strike: 98
             Bond: [1x1 fininstrument.FixedBond]
             Name: "fixed_bond_option_instrument"

Create ratecurve Object

Create a ratecurve object using ratecurve.
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Settle = datetime(2019,9,15);
Type = 'zero';
ZeroTimes = [calyears([1:10])]';
ZeroRates = [0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307 0.0310]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create HullWhite Model Object

Use finmodel to create a HullWhite model object.

HullWhiteModel = finmodel("HullWhite",'Alpha',0.01,'Sigma',0.05)

HullWhiteModel = 
  HullWhite with properties:

    Alpha: 0.0100
    Sigma: 0.0500

Create IRTree Pricer Object

Use finpricer to create an IRTree pricer object and use the ratecurve object with the
'DiscountCurve' name-value pair argument.

HWTreePricer = finpricer("irtree",'Model',HullWhiteModel,'DiscountCurve',myRC,'TreeDates',ZeroDates)

HWTreePricer = 
  HWBKTree with properties:

             Tree: [1x1 struct]
        TreeDates: [10x1 datetime]
            Model: [1x1 finmodel.HullWhite]
    DiscountCurve: [1x1 ratecurve]

HWTreePricer.Tree

ans = struct with fields:
        tObs: [0 1 1.9973 2.9945 3.9918 4.9918 5.9891 6.9863 7.9836 8.9836]
        dObs: [15-Sep-2019    15-Sep-2020    15-Sep-2021    ...    ]
      CFlowT: {1x10 cell}
       Probs: {1x9 cell}
     Connect: {1x9 cell}
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     FwdTree: {1x10 cell}
    RateTree: {1x10 cell}

Price FixedBondOption Instrument

Use price to compute the price and sensitivities for the FixedBondOption instrument.

[Price, outPR] = price(HWTreePricer,FixedBOption,["all"])

Price = 11.1739

outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×4 table
    Price      Vega     Gamma      Delta 
    ______    ______    ______    _______

    11.174    243.09    3667.6    -272.19

Use Black-Karasinski Tree Pricer and Black-Karasinski Model to Price FixedBondOption
Instrument

This example shows the workflow to price a FixedBondOption instrument when you use a
BlackKarasinski model and an IRTree pricing method.

Create FixedBond Instrument Object

Use fininstrument to create a FixedBond instrument object as the underlying bond.

BondInst = fininstrument("FixedBond",'Maturity',datetime(2029,9,15),'CouponRate',0.025,'Period',1,'Name',"fixed_bond_instrument")

BondInst = 
  FixedBond with properties:

                  CouponRate: 0.0250
                      Period: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 15-Sep-2029
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                        Name: "fixed_bond_instrument"

Create FixedBondOption Instrument Object

Use fininstrument to create a FixedBondOption instrument object.

FixedBOption = fininstrument("FixedBondOption",'ExerciseDate',datetime(2025,9,15),'Strike',100,'Bond',BondInst,'Name',"fixed_bond_option")

FixedBOption = 
  FixedBondOption with properties:

       OptionType: "call"
    ExerciseStyle: "european"
     ExerciseDate: 15-Sep-2025
           Strike: 100
             Bond: [1x1 fininstrument.FixedBond]
             Name: "fixed_bond_option"

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2019,9,15);
Type = 'zero';
ZeroTimes = [calyears([1:10])]';
ZeroRates = [0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307 0.0310]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create BlackKarasinski Model Object

Use finmodel to create a BlackKarasinski model object.

BlackKarasinskiModel = finmodel("BlackKarasinski",'Alpha',0.02,'Sigma',0.34)

BlackKarasinskiModel = 
  BlackKarasinski with properties:

    Alpha: 0.0200
    Sigma: 0.3400
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Create IRTree Pricer Object

Use finpricer to create an IRTree pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

BKTreePricer = finpricer("IRTree",'Model',BlackKarasinskiModel,'DiscountCurve',myRC,'TreeDates',ZeroDates)

BKTreePricer = 
  HWBKTree with properties:

             Tree: [1x1 struct]
        TreeDates: [10x1 datetime]
            Model: [1x1 finmodel.BlackKarasinski]
    DiscountCurve: [1x1 ratecurve]

BKTreePricer.Tree

ans = struct with fields:
        tObs: [0 1 1.9973 2.9945 3.9918 4.9918 5.9891 6.9863 7.9836 8.9836]
        dObs: [15-Sep-2019    15-Sep-2020    15-Sep-2021    ...    ]
      CFlowT: {1x10 cell}
       Probs: {1x9 cell}
     Connect: {1x9 cell}
     FwdTree: {1x10 cell}
    RateTree: {1x10 cell}

Price FixedBondOption Instrument

Use price to compute the price and sensitivities for the FixedBondOption instrument.

[Price, outPR] = price(BKTreePricer,FixedBOption,["all"])

Price = 0.5814

outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×4 table
     Price     Vega     Gamma      Delta 
    _______    _____    ______    _______

    0.58143    2.793    45.702    -15.842

Use Hull-White Tree Pricer and Hull-White Model to Price Vanilla FixedBond Instrument

This example shows the workflow to price a vanilla FixedBond instrument when you use a
HullWhite model and an IRTree pricing method.
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Create FixedBond Instrument Object

Use fininstrument to create a FixedBond instrument object.

Maturity = datetime(2024,1,1);
Period = 1;
VBond = fininstrument("FixedBond",'Maturity', Maturity,'CouponRate', 0.025,'Period',Period) 

VBond = 
  FixedBond with properties:

                  CouponRate: 0.0250
                      Period: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 01-Jan-2024
                        Name: ""

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,1,1);
ZeroTimes = calyears(1:10)';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
Compounding = 1;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates, "Compounding",Compounding);

Create HullWhite Model Object

Use finmodel to create a HullWhite model object.

VolCurve = 0.01;
AlphaCurve = 0.1;

HWModel = finmodel("HullWhite",'alpha',AlphaCurve,'sigma',VolCurve);

Create IRTree Pricer Object

Use finpricer to create an IRTree pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

HWTreePricer = finpricer("IRTree",'Model',HWModel,'DiscountCurve',ZeroCurve,'TreeDates',ZeroDates)

HWTreePricer = 
  HWBKTree with properties:

             Tree: [1x1 struct]
        TreeDates: [10x1 datetime]
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            Model: [1x1 finmodel.HullWhite]
    DiscountCurve: [1x1 ratecurve]

Price FixedBond Instrument

Use price to compute the price and sensitivities for the vanilla FixedBond instrument.

[Price, outPR] = price(HWTreePricer, VBond,["all"])

Price = 107.7023

outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×4 table
    Price    Vega    Gamma      Delta 
    _____    ____    ______    _______

    107.7     0      4086.4    -602.56

Use Hull-White Tree Pricer and Hull-White Model to Price Vanilla FloatBond Instrument

This example shows the workflow to price a vanilla FloatBond instrument when you use a
HullWhite model and an IRTree pricing method.

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,1,1);
ZeroTimes = calyears(1:10)';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
Compounding = 1;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates, "Compounding",Compounding);

Create FloatBond Instrument Object

Use fininstrument to create a vanilla FloatBond instrument object.

Spread = 0.03;
Reset = 1;
Maturity = datetime(2024,1,1);
Period = 1;
Float = fininstrument("FloatBond",'Maturity',Maturity,'Spread',Spread,'Reset',Reset,'ProjectionCurve',ZeroCurve)

Float = 
  FloatBond with properties:
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                      Spread: 0.0300
             ProjectionCurve: [1x1 ratecurve]
                 ResetOffset: 0
                       Reset: 1
                       Basis: 0
                EndMonthRule: 1
                   Principal: 100
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
          LatestFloatingRate: NaN
                    Holidays: NaT
                   IssueDate: NaT
             FirstCouponDate: NaT
              LastCouponDate: NaT
                   StartDate: NaT
                    Maturity: 01-Jan-2024
                        Name: ""

Create HullWhite Model Object

Use finmodel to create a HullWhite model object.

VolCurve = 0.01;
AlphaCurve = 0.1;

HWModel = finmodel("HullWhite",'alpha',AlphaCurve,'sigma',VolCurve);

Create IRTree Pricer Object

Use finpricer to create an IRTree pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

HWTreePricer = finpricer("IRTree",'Model',HWModel,'DiscountCurve',ZeroCurve,'TreeDates',ZeroDates)

HWTreePricer = 
  HWBKTree with properties:

             Tree: [1x1 struct]
        TreeDates: [10x1 datetime]
            Model: [1x1 finmodel.HullWhite]
    DiscountCurve: [1x1 ratecurve]

Price FloatBond Instrument

Use price to compute the price and sensitivities for the vanilla FloatBond instrument.

[Price, outPR] = price(HWTreePricer,Float,["all"])

Price = 117.4686

outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: [1x1 struct]

outPR.Results
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ans=1×4 table
    Price     Vega    Gamma      Delta 
    ______    ____    ______    _______

    117.47     0      315.09    -60.007

References
[1] Hull, John, and Alan White. “The General Hull–White Model and Supercalibration.” Financial

Analysts Journal, vol. 57, no. 6, Nov. 2001, pp. 34–43.
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page 1-22
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AssetTree
Create AssetTree pricer object for Vanilla, Barrier, Asian, or Lookback instrument

Description
Create and price a Vanilla, Barrier, Asian, or Lookback instrument object with a
BlackScholes model and an AssetTree pricing method using this workflow:

1 Use fininstrument to create a Vanilla, Lookback, Barrier, or Asian instrument object.
2 Use finmodel to specify a BlackScholes model for the Vanilla, Barrier, Asian, or

Lookback instrument object.
3 Use finpricer to specify an AssetTree pricer object for a Cox-Ross-Rubinstein (CRR), equal-

probability (EQP), Leisen-Reimer (LR), or Standard Trinomial (ST) lattice tree model for the
Vanilla, Barrier, Asian, or Lookback instrument object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available instruments, models, and pricing methods for a Vanilla,
Barrier, Asian, or Lookback instrument, see “Choose Instruments, Models, and Pricers” on page
1-53.

Creation

Syntax
AssetTreePricerObj = finpricer(PricerType,'Model',model_type,'
DiscountCurve',ratecurve_obj,'SpotPrice',spot_price)
AssetTreePricerObj = finpricer( ___ ,Name,Value)

Description

AssetTreePricerObj = finpricer(PricerType,'Model',model_type,'
DiscountCurve',ratecurve_obj,'SpotPrice',spot_price) creates an AssetTree pricer
object by specifying PricerType and the required name-value pair arguments for Model,
DiscountCurve, and SpotPrice.

AssetTreePricerObj = finpricer( ___ ,Name,Value) sets optional properties on page 11-
3133 using additional name-value pair arguments in addition to the required arguments in the
previous syntax. For example, AssetTreePricerObj =
finpricer("AssetTree",'Model',BlackScholes,'DiscountCurve',ratecure_obj,'Spot
Price',1000) creates an AssetTree pricer object.

Input Arguments

PricerType — Pricer type
string with value "AssetTree" | character vector with value 'AssetTree'
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Pricer type, specified as a string with the value of "AssetTree" or a character vector with the value
of 'AssetTree'.
Data Types: char | string

AssetTree Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: AssetTreePricerObj =
finpricer("AssetTree",'Model',BlackScholes,'DiscountCurve',ratecure_obj,'Spot
Price',1000)

Model — Model
BlackScholes object

Model, specified as the comma-separated pair consisting of 'Model' and the name of the previously
created BlackScholes model object using finmodel.
Data Types: object

DiscountCurve — ratecurve object for creating AssetTree object and discounting cash
flows
ratecurve object

This property is read-only.

ratecurve object for creating the AssetTree object and discounting cash flows, specified as the
comma-separated pair consisting of 'DiscountCurve' and the name of a ratecurve object.
Data Types: object

SpotPrice — Underlying spot price
scalar numeric

Underlying spot price, specified as the comma-separated pair consisting of 'SpotPrice' and a
scalar numeric.
Data Types: double

Optional AssetTree Name-Value Pair Arguments

PricingMethod — Asset pricing method
"CoxRossRubinstein" (default) | string with value "CoxRossRubinstein",
"EqualProbability", "LeisenReimer", or "StandardTrinomial" | character vector with value
'CoxRossRubinstein', 'EqualProbability', 'LeisenReimer', or "StandardTrinomial"

Asset pricing method, specified as the comma-separated pair consisting of 'PricingMethod' and a
string or character vector.
Data Types: char | string

Maturity — Maturity date
datetime | serial date number | date character vector | date string
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Maturity date, specified as the comma-separated pair consisting of 'Maturity' and a scalar
datetime, serial date number, date character vector, or date string.

If you use a date character vector or date string, the format must be recognizable by datetime
because the Maturity property is stored as a datetime.
Data Types: double | char | string | datetime

NumPeriods — Number of levels or time steps of the tree
10 (default) | numeric

Number of levels or time steps of the tree, specified as the comma-separated pair consisting of
'NumPeriods' and a scalar.
Data Types: double

DividendType — Stock dividend type
"continuous" (default) | string with value "cash" or "continuous" | character vector with value
'cash' or 'continuous'

Stock dividend type, specified as the comma-separated pair consisting of 'DividendType' and a
string or character vector. DividendType must be "cash" for actual dollar dividends or
"continuous" for a continuous dividend yield.
Data Types: char | string

DividendValue — Dividend amount or dividend schedule for underlying stock
0 (default) | scalar numeric | timetable

Dividend amount or dividend schedule for the underlying stock, specified as the comma-separated
pair consisting of 'DividendValue' and a scalar numeric for a dividend amount or a timetable for a
dividend schedule.

Note DividendValue must be a scalar for a "continuous" DividendType or a timetable for
"cash" DividendType.

Data Types: double | timetable

Strike — Option strike used with Leisen-Reimer pricing method
SpotPrice (default) | nonnegative numeric

Option strike used with the Leisen-Reimer pricing method, specified as the comma-separated pair
consisting of 'Strike' and a scalar nonnegative numeric.
Data Types: double

InversionMethod — Inversion method for Leisen-Reimer pricing method
'PP1' (default) | string with value "PP1" or "PP2" | character vector with value 'PP1' or 'PP2'

Inversion method for the Leisen-Reimer pricing method, specified as the comma-separated pair
consisting of 'InversionMethod' and a string or character vector.

• 'PP1' — Peizer-Pratt method 1 inversion
• 'PP2' — Peizer-Pratt method 2 inversion
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Data Types: string | char

Properties
InversionMethod — Inversion method for Leisen-Reimer pricing method
'PP1' (default) | string with value "PP1" or "PP2"

Inversion method for the Leisen-Reimer pricing method, returned as a string.
Data Types: string

Strike — Option strike used with Leisen-Reimer pricing method
SpotPrice (default) | nonnegative numeric

Option strike used with the Leisen-Reimer pricing method, returned as a nonnegative numeric.
Data Types: double

Tree — CRR, EQP, LR binomial tree or STT trinomial tree
structure

CRR, EQP, LR binomial tree or STT trinomial tree, returned as a structure with the following
properties:

• Probs contains a 2-by-NumLevels numeric array with the up and down probabilities that apply to
each level of the tree except for the last one. All nodes in a given level share the same up and
down probabilities. The columns of the Probs array are ordered from the root node. The first row
of the array corresponds to the probability of an up move, while the second row corresponds to a
down move.

• ATree contains the price tree for the underlying asset.
• dObs contains the date of each level of the tree.
• tObs contains the time factor of each level of the tree.

Data Types: struct

NumPeriods — Number of levels or time steps of the tree
numeric

Number of levels or time steps of the tree, returned as a numeric.
Data Types: datetime

Model — Model type
object

Model type, returned as an object.
Data Types: object

DiscountCurve — ratecurve object for creating AssetTree object and discounting cash
flows
ratecurve object

This property is read-only.
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ratecurve object for creating the AssetTree object and discounting cash flows, returned as a
ratecurve object.
Data Types: object

SpotPrice — Current price of underlying asset
nonnegative numeric

Current price of the underlying asset, returned as a scalar nonnegative numeric.
Data Types: double

DividendType — Stock dividend type
"continuous" (default) | string with value "cash" or "continuous"

This property is read-only.

Stock dividend type, returned as a string. DividendType is either "cash" for actual dollar dividends
or "continuous" for a continuous dividend yield.
Data Types: string

DividendValue — Dividend amount or dividend schedule for underlying stock
0 (default) | scalar nonnegative numeric | timetable

Dividend amount or dividend schedule for the underlying stock, returned as a scalar nonnegative
numeric for a dividend yield or a timetable for a dividend schedule.
Data Types: double | timetable

TreeDates — Tree dates
datetime

Tree dates, returned as a scalar datetime or datetime array.
Data Types: datetime

Object Functions
price Compute price for equity instrument with AssetTree pricer

Examples

Use Leisen-Reimer Tree Pricer and Black-Scholes Model to Price Vanilla Instrument

This example shows the workflow to price a Vanilla instrument when you use a BlackScholes
model and an AssetTree pricing method.

Create Vanilla Instrument Object

Use fininstrument to create a Vanilla instrument object.

VanillaOpt = fininstrument("Vanilla",'ExerciseDate',datetime(2019,5,1),'Strike',29,'OptionType',"put",'ExerciseStyle',"european",'Name',"vanilla_option")

VanillaOpt = 
  Vanilla with properties:
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       OptionType: "put"
    ExerciseStyle: "european"
     ExerciseDate: 01-May-2019
           Strike: 29
             Name: "vanilla_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',0.25)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.2500
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,1,1);
Maturity = datetime(2020,1,1);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',1)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 1
                Dates: 01-Jan-2020
                Rates: 0.0350
               Settle: 01-Jan-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetTree Pricer Object

Use finpricer to create an AssetTree pricer object for an LR equity tree and use the ratecurve
object for the 'DiscountCurve' name-value pair argument.

LRPricer = finpricer("AssetTree",'DiscountCurve',myRC,'Model',BlackScholesModel,'SpotPrice',30,'PricingMethod',"LeisenReimer",'Maturity',datetime(2019,5,1),'NumPeriods',15)

LRPricer = 
  LRTree with properties:

    InversionMethod: PP1
             Strike: 30
               Tree: [1x1 struct]
         NumPeriods: 15
              Model: [1x1 finmodel.BlackScholes]
      DiscountCurve: [1x1 ratecurve]
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          SpotPrice: 30
       DividendType: "continuous"
      DividendValue: 0
          TreeDates: [02-Feb-2018 08:00:00    06-Mar-2018 16:00:00    ...    ]

Price Vanilla Instrument

Use price to compute the price and sensitivities for the Vanilla instrument.

[Price, outPR] = price(LRPricer,VanillaOpt,"all")

Price = 2.2542

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×7 table
    Price      Delta       Gamma       Vega     Lambda      Rho       Theta  
    ______    ________    ________    ______    ______    _______    ________

    2.2542    -0.33628    0.044039    12.724    -4.469    -16.433    -0.76073

Use Standard Trinomial Tree Pricer and Black-Scholes Model to Price Vanilla Instrument

This example shows the workflow to price a Vanilla instrument when you use a BlackScholes
model and an AssetTree pricing method for a Standard Trinomial (STT) tree.

Create Vanilla Instrument Object

Use fininstrument to create a Vanilla instrument object.

VanillaOpt = fininstrument("Vanilla",'ExerciseDate',datetime(2019,5,1),'Strike',29,'OptionType',"put",'ExerciseStyle',"european",'Name',"vanilla_option")

VanillaOpt = 
  Vanilla with properties:

       OptionType: "put"
    ExerciseStyle: "european"
     ExerciseDate: 01-May-2019
           Strike: 29
             Name: "vanilla_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',0.25)
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BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.2500
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,1,1);
Maturity = datetime(2020,1,1);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',1)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 1
                Dates: 01-Jan-2020
                Rates: 0.0350
               Settle: 01-Jan-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetTree Pricer Object

Use finpricer to create an AssetTree pricer object for an Standard Trinomial equity tree and use
the ratecurve object for the 'DiscountCurve' name-value pair argument.

STTPricer = finpricer("AssetTree",'DiscountCurve',myRC,'Model',BlackScholesModel,'SpotPrice',30,'PricingMethod',"StandardTrinomial",'Maturity',datetime(2019,5,1),'NumPeriods',15)

STTPricer = 
  STTree with properties:

             Tree: [1x1 struct]
       NumPeriods: 15
            Model: [1x1 finmodel.BlackScholes]
    DiscountCurve: [1x1 ratecurve]
        SpotPrice: 30
     DividendType: "continuous"
    DividendValue: 0
        TreeDates: [02-Feb-2018 08:00:00    06-Mar-2018 16:00:00    ...    ]

Price Vanilla Instrument

Use price to compute the price and sensitivities for the Vanilla instrument.

[Price, outPR] = price(STTPricer,VanillaOpt,"all")

Price = 2.2826

outPR = 
  priceresult with properties:
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       Results: [1x7 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×7 table
    Price      Delta      Gamma      Vega     Lambda       Rho       Theta  
    ______    _______    ________    _____    _______    _______    ________

    2.2826    -0.2592    0.030949    12.51    -3.8981    -16.516    -0.73845

References
[1] Hull, John, and Alan White. “The General Hull–White Model and Supercalibration.” Financial

Analysts Journal, 57, no. 6, (November 2001): 34–43.
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KemnaVorst
Create KemnaVorst pricer object for Asian instrument using BlackScholes model

Description
Create and price a Asian instrument object with a BlackScholes model and a KemnaVorst pricing
method using this workflow:

1 Use fininstrument to create an Asian instrument object.
2 Use finmodel to specify a BlackScholes model for the Asian instrument object.
3 Use finpricer to specify a KemnaVorst pricer object for the Asian instrument object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available instruments, models, and pricing methods for an Asian
instrument, see “Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
KemnaVorstPricerObj = finpricer(PricerType,'DiscountCurve',ratecurve_obj,'
Model',model,'SpotPrice',spotprice_value)
KemnaVorstPricerObj = finpricer( ___ ,Name,Value)

Description

KemnaVorstPricerObj = finpricer(PricerType,'DiscountCurve',ratecurve_obj,'
Model',model,'SpotPrice',spotprice_value) creates a KemnaVorst pricer object by
specifying PricerType and sets the properties on page 11-3141 for the required name-value pair
arguments DiscountCurve, Model, and SpotPrice.

KemnaVorstPricerObj = finpricer( ___ ,Name,Value) to set optional properties on page 11-
3141 using additional name-value pairs in addition to the required arguments in the previous syntax.
For example, KemnaVorstPricerObj =
finpricer("Analytic",'DiscountCurve',ratecurve_obj,'Model',BSModel,'SpotPrice
',1000,'DividendType',"continuous",'DividendValue',100,'PricingMethod',"Kemna
Vorst") creates a KemnaVorst pricer object.

Input Arguments

PricerType — Pricer type
string with value "Analytic" | character vector with value 'Analytic'

Pricer type, specified as a string with the value of "Analytic" or a character vector with the value
of 'Analytic'.
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Data Types: char | string

KemnaVorst Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: KemnaVorstPricerObj =
finpricer("Analytic",'DiscountCurve',ratecurve_obj,'Model',BSModel,'SpotPrice
',1000,'DividendType',"continuous",'DividendValue',100,'PricingMethod',"Kemna
Vorst")

Required KemnaVorst Name-Value Pair Arguments

DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, specified as the comma-separated pair consisting of
'DiscountCurve' and the name of the previously created ratecurve object.

Note Specify a flat ratecurve object for DiscountCurve. If you use a nonflat ratecurve object,
the software uses the rate in the ratecurve object at Maturity and assumes that the value is
constant for the life of the equity option.

Data Types: object

Model — Model
BlackScholes model object

Model, specified as the comma-separated pair consisting of 'Model' and the name of a previously
created BlackScholes model object using finmodel.
Data Types: object

SpotPrice — Current price of underlying asset
nonnegative numeric

Current price of the underlying asset, specified as the comma-separated pair consisting of
'SpotPrice' and a scalar nonnegative numeric.
Data Types: double

Optional KemnaVorst Name-Value Pair Arguments

DividendType — Stock dividend type
"continuous" (default) | string with value "cash" or "continuous" | character vector with value
'cash' or 'continuous'

Stock dividend type, specified as the comma-separated pair consisting of 'DividendType' and a
string or character vector. DividendType must be "cash" for actual dollar dividends or
"continuous" for a continuous dividend yield.
Data Types: char | string
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DividendValue — Dividend amount or dividend schedule for underlying stock
0 (default) | scalar numeric | timetable

Dividend amount for the underlying stock, specified as the comma-separated pair consisting of
'DividendValue' and a scalar numeric for a dividend amount or a timetable for a dividend
schedule.

Note DividendValue must be a scalar for a "continuous" DividendType or a timetable for
"cash" DividendType.

Data Types: double | timetable

PricingMethod — Analytic pricing method
default pricer associated with BlackScholes model (default) | string with value "KemnaVorst" |
character vector with value 'KemnaVorst'

Analytic pricing method, specified as the comma-separated pair consisting of 'PricingMethod' and
a string or character vector.

Note The default pricing method for a BlackScholes model is a BlackScholes pricer.

Data Types: double

Properties
DiscountCurve — ratecurve object for discounting cash flows
object

This property is read-only.

ratecurve object for discounting cash flows, returned as a ratecurve object.
Data Types: object

Model — Model
BlackScholes model object

Model, returned as a BlackScholes model object.
Data Types: object

SpotPrice — Current price of underlying asset
nonnegative numeric

Current price of the underlying asset, returned as a scalar nonnegative numeric.
Data Types: double

DividendType — Stock dividend type
"continuous" (default) | string with value "cash" or "continuous"

This property is read-only.
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Stock dividend type, returned as a string. DividendType is either "cash" for actual dollar dividends
or "continuous" for a continuous dividend yield.
Data Types: string

DividendValue — Dividend amount or dividend schedule for underlying stock
0 (default) | scalar nonnegative numeric | timetable

Dividend amount or dividend schedule for the underlying stock, returned as a scalar numeric for a
dividend yield or a timetable for a dividend schedule.
Data Types: double | timetable

PricingMethod — Analytic pricing method
default pricer associated with BlackScholes model (default) | string with value "KemnaVorst"

Analytic pricing method, returned as a string.
Data Types: string

Object Functions
price Compute price for interest-rate, equity, or credit derivative instrument with Analytic pricer

Examples

Use Kemna-Vorst Pricer and Black-Scholes Model to Price Asian Instrument

This example shows the workflow to price an Asian instrument when you use a BlackScholes
model and a KemnaVorst pricing method.

Create Asian Instrument Object

Use fininstrument to create an Asian instrument object.

AsianOpt = fininstrument("Asian",'ExerciseDate',datetime(2022,9,15),'Strike',105,'OptionType',"put",'ExerciseStyle',"european",'AverageType',"geometric",'Name',"asian_option")

AsianOpt = 
  Asian with properties:

          OptionType: "put"
              Strike: 105
         AverageType: "geometric"
        AveragePrice: 0
    AverageStartDate: NaT
       ExerciseStyle: "european"
        ExerciseDate: 15-Sep-2022
                Name: "asian_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',0.32)

BlackScholesModel = 
  BlackScholes with properties:
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     Volatility: 0.3200
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create KemnaVorst Pricer Object

Use finpricer to create a KemnaVorst pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'Model',BlackScholesModel,'DiscountCurve',myRC,'SpotPrice',100,'DividendType',"continuous",'DividendValue',.05,'PricingMethod',"KemnaVorst")

outPricer = 
  KemnaVorst with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 100
    DividendValue: 0.0500
     DividendType: "continuous"

Price Asian Instrument

Use price to compute the price and sensitivities for the Asian instrument.

[Price, outPR] = price(outPricer,AsianOpt,["all"])

Price = 18.1186

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []
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outPR.Results 

ans=1×7 table
    Price      Delta        Gamma      Lambda     Vega       Rho       Theta 
    ______    ________    _________    ______    ______    _______    _______

    18.119    -0.44689    0.0087391    -3.025    64.582    -251.23    -1.5738

See Also
Functions
fininstrument | finmodel | timetable | ratecurve

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a

11 Functions

11-3144



Kirk
Create Kirk pricer object for Spread instrument using BlackScholes model

Description
Create and price a Spread instrument object with a BlackScholes model and a Kirk pricing
method using this workflow:

1 Use fininstrument to create a Spread instrument object.
2 Use finmodel to specify a BlackScholes model for the Spread instrument object.
3 Use finpricer to specify a Kirk pricer object for the Spread instrument object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available instruments, models, and pricing methods for a Spread
instrument, see “Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
KirkPricerObj = finpricer(PricerType,'DiscountCurve',ratecurve_obj,'
Model',model,'SpotPrice',spotprice_value)
KirkPricerObj = finpricer( ___ ,Name,Value)

Description

KirkPricerObj = finpricer(PricerType,'DiscountCurve',ratecurve_obj,'
Model',model,'SpotPrice',spotprice_value) creates a Kirk pricer object by specifying
PricerType and sets the properties on page 11-3147 for the required name-value pair arguments
DiscountCurve, Model, and SpotPrice.

KirkPricerObj = finpricer( ___ ,Name,Value) to set optional properties on page 11-3147
using additional name-value pairs in addition to the required arguments in the previous syntax. For
example, KirkPricerObj =
finpricer("Analytic",'DiscountCurve',ratecurve_obj,'Model',BSModel,'SpotPrice
',[100;105],'DividendValue',[2.5,2.8],'PricingMethod',"Kirk") creates a Kirk
pricer object.

Input Arguments

PricerType — Pricer type
string with value "Analytic" | character vector with value 'Analytic'

Pricer type, specified as a string with the value of "Analytic" or a character vector with the value
of 'Analytic'.
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Data Types: char | string

Kirk Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: KirkPricerObj =
finpricer("Analytic",'DiscountCurve',ratecurve_obj,'Model',BSModel,'SpotPrice
',[100;105],'DividendValue',[2.5,2.8],'PricingMethod',"Kirk")

Required Kirk Name-Value Pair Arguments

DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, specified as the comma-separated pair consisting of
'DiscountCurve' and the name of a previously created ratecurve object.

Note Specify a flat ratecurve object for DiscountCurve. If you use a nonflat ratecurve object,
the software uses the rate in the ratecurve object at Maturity and assumes that the value is
constant for the life of the equity option.

Data Types: object

Model — Model
BlackScholes model object

Model object, specified as the comma-separated pair consisting of 'Model' and the name of a
previously created BlackScholes model object using finmodel.
Data Types: object

SpotPrice — Current price of underlying asset
scalar nonnegative numeric | cell array of nonnegative numerics

Current price of the underlying asset, specified as the comma-separated pair consisting of
'SpotPrice' and a scalar or cell array of nonnegative numerics.
Data Types: double

Optional Kirk Name-Value Pair Arguments

DividendType — Dividend type
"continuous" (default) | string with value "continuous" | character vector with value
'continuous'

Dividend type, specified as the comma-separated pair consisting of 'DividendType' and a string or
character vector for a continuous dividend yield.
Data Types: char | string
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DividendValue — Dividend yield for underlying asset
[0,0] (default) | scalar nonnegative numeric | vector of nonnegative numerics

Dividend yield for the underlying asset, specified as the comma-separated pair consisting of
'DividendValue' and a scalar or a vector of nonnegative numerics. Use a vector of nonnegative
values for DividendValue when pricing a Spread instrument.
Data Types: double

PricingMethod — Analytic pricing method
default pricer associated with BlackScholes model (default) | string with value "Kirk" | character
vector with value 'Kirk'

Analytic pricing method, specified as the comma-separated pair consisting of 'PricingMethod' and
a string or character vector.

Note The default pricing method for a BlackScholes model is a BlackScholes pricer.

Data Types: double

Properties
DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

This property is read-only.

ratecurve object for discounting cash flows, returned as a ratecurve object.
Data Types: object

Model — Model
BlackScholes model object

Model, returned as a BlackScholes model object.
Data Types: object

SpotPrice — Current price of underlying asset
required input (default) | scalar nonnegative numeric | vector of nonnegative numerics

Current price of the underlying asset, returned as a scalar or vector of nonnegative numeric values.
Data Types: double

DividendType — Dividend type
"continuous" (default) | string with value "continuous"

This property is read-only.

Dividend type, returned as a string.
Data Types: string

DividendValue — Dividend yield for underlying stock
[0,0] (default) | scalar nonnegative numeric | vector of nonnegative numerics
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Dividend yield for the underlying stock, returned as a scalar or vector of nonnegative numerics.
Data Types: double

PricingMethod — Analytic pricing method
default pricer associated with BlackScholes model (default) | string with value "Kirk"

Analytic pricing method, returned as a string.
Data Types: string

Object Functions
price Compute price for interest-rate, equity, or credit derivative instrument with Analytic pricer

Examples

Use Kirk Pricer and Black-Scholes Model to Price Spread Instrument

This example shows the workflow to price a Spread instrument when you use a BlackScholes
model and a Kirk pricing method.

Create Spread Instrument Object

Use fininstrument to create a Spread instrument object.

SpreadOpt = fininstrument("Spread",'Strike',5,'ExerciseDate',datetime(2021,9,15),'OptionType',"put",'ExerciseStyle',"european",'Name',"spread_option")

SpreadOpt = 
  Spread with properties:

       OptionType: "put"
           Strike: 5
    ExerciseStyle: "european"
     ExerciseDate: 15-Sep-2021
             Name: "spread_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',[0.2 , 0.1])

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: [0.2000 0.1000]
    Correlation: [2x2 double]

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
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Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Kirk Pricer Object

Use finpricer to create a Kirk pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'Model',BlackScholesModel,'DiscountCurve',myRC,'SpotPrice',[103,105],'DividendValue',[0.025 , 0.028],'PricingMethod',"Kirk")

outPricer = 
  Kirk with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: [103 105]
    DividendValue: [0.0250 0.0280]
     DividendType: "continuous"

Price Spread Instrument

Use price to compute the price and sensitivities for the Spread instrument.

[Price, outPR] = price(outPricer,SpreadOpt,["all"])

Price = 17.8614

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []

outPR.Results

ans=1×7 table
    Price            Delta                    Gamma                   Lambda                Vega           Theta       Rho  
    ______    ____________________    ______________________    __________________    ________________    _______    _______
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    17.861    -0.44663     0.58229    0.0093493     0.008195    -2.5756     3.3578    59.518    27.176    -1.7801    -8.1715

See Also
Functions
fininstrument | finmodel | timetable | ratecurve

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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Levy
Create Levy pricer object for Asian instrument using BlackScholes model

Description
Create and price a Asian instrument object with a BlackScholes model and a Levy pricing method
using this workflow:

1 Use fininstrument to create an Asian instrument object.
2 Use finmodel to specify a BlackScholes model for the Asian instrument object.
3 Use finpricer to specify a Levy pricer object for the Asian instrument object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available instruments, models, and pricing methods for an Asian
instrument, see “Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
LevyPricerObj = finpricer(PricerType,'DiscountCurve',ratecurve_obj,'
Model',model,'SpotPrice',spotprice_value)
LevyPricerObj = finpricer( ___ ,Name,Value)

Description

LevyPricerObj = finpricer(PricerType,'DiscountCurve',ratecurve_obj,'
Model',model,'SpotPrice',spotprice_value) creates a Levy pricer object by specifying
PricerType and sets the properties on page 11-3153 for the required name-value pair arguments
DiscountCurve, Model, and SpotPrice.

LevyPricerObj = finpricer( ___ ,Name,Value) to set optional properties on page 11-3153
using additional name-value pairs in addition to the required arguments in the previous syntax. For
example, LevyPricerObj =
finpricer("Analytic",'DiscountCurve',ratecurve_obj,'Model',BSModel,'SpotPrice
',1000,'DividendType',"continuous",'DividendValue',100,'PricingMethod',"Levy"
) creates a Levy pricer object.

Input Arguments

PricerType — Pricer type
string with value "Analytic" | character vector with value 'Analytic'

Pricer type, specified as a string with the value of "Analytic" or a character vector with the value
of 'Analytic'.
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Data Types: char | string

Levy Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: LevyPricerObj =
finpricer("Analytic",'DiscountCurve',ratecurve_obj,'Model',BSModel,'SpotPrice
',1000,'DividendType',"continuous",'DividendValue',100,'PricingMethod',"Levy"
)

Required Levy Name-Value Pair Arguments

DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, specified as the comma-separated pair consisting of
'DiscountCurve' and the name of a previously created ratecurve object.

Note Specify a flat ratecurve object for DiscountCurve. If you use a nonflat ratecurve object,
the software uses the rate in the ratecurve object at Maturity and assumes that the value is
constant for the life of the equity option.

Data Types: object

Model — Model
BlackScholes model object

Model, specified as the comma-separated pair consisting of 'Model' and the name of a previously
created BlackScholes model object using finmodel.
Data Types: object

SpotPrice — Current price of underlying asset
nonnegative numeric

Current price of the underlying asset, specified as the comma-separated pair consisting of
'SpotPrice' and a scalar nonnegative numeric.
Data Types: double

Optional Levy Name-Value Pair Arguments

DividendType — Dividend type
"continuous" (default) | string with value of "continuous" | character vector with value of
'continuous'

Dividend type, specified as the comma-separated pair consisting of 'DividendType' and a string or
character vector for a continuous dividend yield.
Data Types: char | string
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DividendValue — Dividend yield or dividend schedule for underlying stock
0 (default) | scalar numeric | timetable

Dividend yield for the underlying stock, specified as the comma-separated pair consisting of
'DividendValue' and a scalar numeric for a dividend yield or a timetable for a dividend schedule.

Note Specify a scalar if DividendType is "continuous" and a timetable if DividendType is
"cash".

Data Types: double | timetable

PricingMethod — Analytic pricing method
default pricer associated with BlackScholes model (default) | string with value "Levy" | character
vector with value 'Levy'

Analytic pricing method, specified as the comma-separated pair consisting of 'PricingMethod' and
a character vector or string.

Note The default pricing method for a BlackScholes model is a BlackScholes pricer.

Data Types: double

Properties
DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, returned as a ratecurve object.
Data Types: object

Model — Model
BlackScholes model object

Model, returned as a BlackScholes model object.
Data Types: object

SpotPrice — Current price of underlying asset
nonnegative numeric

Current price of the underlying asset, returned as a scalar nonnegative numeric.
Data Types: double

DividendType — Dividend type
"continuous" (default) | string with value of "continuous"

This property is read-only.

Dividend type, returned as a string.
Data Types: string
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DividendValue — Dividend yield or dividend schedule for underlying stock
0 (default) | scalar nonnegative numeric | timetable

Dividend yield or dividend schedule for the underlying stock, returned as a scalar numeric for a
dividend yield or a timetable for a dividend schedule.
Data Types: double | timetable

PricingMethod — Analytic pricing method
default pricer associated with BlackScholes model (default) | string with value "Levy"

Analytic pricing method, returned as a string.
Data Types: string

Object Functions
price Compute price for interest-rate, equity, or credit derivative instrument with Analytic pricer

Examples

Use Levy Pricer and Black-Scholes Model to Price Asian Instrument

This example shows the workflow to price an Asian instrument when you use a BlackScholes
model and a Levy pricing method.

Create Asian Instrument Object

Use fininstrument to create an Asian instrument object.

AsianOpt = fininstrument("Asian",'ExerciseDate',datetime(2022,9,15),'Strike',105,'OptionType',"put",'ExerciseStyle',"european",'Name',"asian_option")

AsianOpt = 
  Asian with properties:

          OptionType: "put"
              Strike: 105
         AverageType: "arithmetic"
        AveragePrice: 0
    AverageStartDate: NaT
       ExerciseStyle: "european"
        ExerciseDate: 15-Sep-2022
                Name: "asian_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',0.32)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.3200
    Correlation: 1
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Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Levy Pricer Object

Use finpricer to create a Levy pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'Model',BlackScholesModel,'DiscountCurve',myRC,'SpotPrice',100,'PricingMethod',"Levy")

outPricer = 
  Levy with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 100
    DividendValue: 0
     DividendType: "continuous"

Price Asian Instrument

Use price to compute the price and sensitivities for the Asian instrument.

[Price, outPR] = price(outPricer,AsianOpt,["all"])

Price = 13.0014

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []

outPR.Results 

ans=1×7 table
    Price      Delta       Gamma      Lambda      Vega      Theta        Rho  
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    ______    _______    _________    _______    ______    ________    _______

    13.001    -0.3749    0.0094403    -2.8836    44.586    -0.71607    -121.97

Use Levy Pricer and Black-Scholes Model to Price Asian Instrument for Foreign Exchange

This example shows the workflow to price an Asian instrument for an arithmetic average currency
option when you use a BlackScholes model and a Levy pricing method. Assume that the current
exchange rate is $0.52 and has a volatility of 12% per annum. The annualized continuously
compounded foreign risk-free rate is 8% per annum.

Create Asian Instrument Object

Use fininstrument to create an Asian instrument object.

AsianOpt = fininstrument("Asian",'ExerciseDate',datetime(2022,9,15),'Strike',.50,'OptionType',"put",'ExerciseStyle',"european",'Name',"asian_fx_option")

AsianOpt = 
  Asian with properties:

          OptionType: "put"
              Strike: 0.5000
         AverageType: "arithmetic"
        AveragePrice: 0
    AverageStartDate: NaT
       ExerciseStyle: "european"
        ExerciseDate: 15-Sep-2022
                Name: "asian_fx_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

Sigma = .12;
BlackScholesModel = finmodel("BlackScholes",'Volatility',Sigma)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.1200
    Correlation: 1

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)
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myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Levy Pricer Object

Use finpricer to create a Levy pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument. When you price currencies using a Asian instrument
for an arithmetic average currency option, DividendType must be "continuous" and
DividendValue is the annualized risk-free interest rate in the foreign country.

ForeignRate = 0.08;
outPricer = finpricer("analytic",'Model',BlackScholesModel,'DiscountCurve',myRC,'SpotPrice',.52,'DividendType',"continuous",'DividendValue',ForeignRate,'PricingMethod',"Levy")

outPricer = 
  Levy with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 0.5200
    DividendValue: 0.0800
     DividendType: "continuous"

Price Asian FX Instrument

Use price to compute the price and sensitivities for the Asian FX instrument.

[Price, outPR] = price(outPricer,AsianOpt,["all"])

Price = 0.0535

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []

outPR.Results 

ans=1×7 table
     Price       Delta      Gamma     Lambda      Vega        Theta        Rho   
    ________    ________    ______    _______    _______    _________    ________
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    0.053516    -0.62792    3.8371    -6.1014    0.15613    -0.010917    -0.82694

See Also
Functions
fininstrument | finmodel | timetable | ratecurve

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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Normal
Create Normal pricer object for Cap, Floor, or Swaption instrument using Normal model

Description
Create and price a Cap, Floor, or Swaption instrument object with a Normal model and a Normal
pricing method using this workflow:

1 Use fininstrument to create a Cap, Floor, or Swaption instrument object.
2 Use finmodel to specify a Normal model for the Cap, Floor, or Swaption instrument object.
3 Use finpricer to specify a Normal pricer object for the Cap, Floor, or Swaption instrument

object.

Note If you do not specify ProjectionCurve when you create a Cap, Floor, or Swaption
instrument with the HullWhite pricer, the ProjectionCurve value defaults to the
DiscountCurve value.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available instruments, models, and pricing methods for a Cap, Floor, or
Swaption instrument, see “Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
NormalPricerObj = finpricer(PricerType,'DiscountCurve',ratecurve_obj,'
Model',model)

Description

NormalPricerObj = finpricer(PricerType,'DiscountCurve',ratecurve_obj,'
Model',model) creates a Normal pricer object by specifying PricerType and the required name-
value pair arguments DiscountCurve and Model to set properties on page 11-3160 using name-
value pair arguments. For example, NormalPricerObj =
finpricer("Analytic",'DiscountCurve',ratecurve_obj,'Model',NormModel) creates a
Normal pricer object.

Input Arguments

PricerType — Pricer type
string with value "Analytic" | character vector with value 'Analytic'

Pricer type, specified as a string with the value of "Analytic" or a character vector with the value
of 'Analytic'.
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Data Types: char | string

Normal Name-Value Pair Arguments

Specify required pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: NormalPricerObj =
finpricer("Analytic",'DiscountCurve',ratecurve_obj,'Model',NormModel)

DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, specified as the comma-separated pair consisting of
'DiscountCurve' and the name of a previously created ratecurve object.
Data Types: object

Model — Model
Normal model object

Model, specified as the comma-separated pair consisting of 'Model' and the name of a previously
created Normal model object using finmodel.
Data Types: object

Properties
DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, returned as a ratecurve object.
Data Types: object

Model — Model
Normal model object

Model, returned as a Normal model object.
Data Types: object

Object Functions
price Compute price for interest-rate, equity, or credit derivative instrument with Analytic pricer

Examples

Use Normal Pricer and Normal Model to Price Cap Instrument

This example shows the workflow to price a Cap instrument when you use a Normal model and a
Normal pricing method.
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Create Cap Instrument Object

Use fininstrument to create a Cap instrument object.

CapOpt = fininstrument("Cap",'Strike',0.02,'Maturity',datetime(2019,6,25),'Reset',4,'Principal',100,'Basis',8,'Name',"cap_option")

CapOpt = 
  Cap with properties:

                      Strike: 0.0200
                    Maturity: 25-Jun-2019
                 ResetOffset: 0
                       Reset: 4
                       Basis: 8
                   Principal: 100
             ProjectionCurve: [0x0 ratecurve]
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                        Name: "cap_option"

Create Normal Model Object

Use finmodel to create a Normal model object.

NormalModel = finmodel("Normal",'Volatility',0.063)

NormalModel = 
  Normal with properties:

    Volatility: 0.0630

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"
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Create Normal Pricer Object

Use finpricer to create a Normal pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'Model',NormalModel,'DiscountCurve',myRC)

outPricer = 
  Normal with properties:

    DiscountCurve: [1x1 ratecurve]
            Shift: 0
            Model: [1x1 finmodel.Normal]

Price Cap Instrument

Use price to compute the price for the Cap instrument.

Price = price(outPricer,CapOpt)

Price = 0.4828

See Also
Functions
fininstrument | finmodel | ratecurve

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53
“Work with Negative Interest Rates Using Objects” on page 2-22

Introduced in R2020a
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RollGeskeWhaley
Create RollGeskeWhaley pricer object for American exercise Vanilla instrument using
BlackScholes model

Description
Create and price a Vanilla instrument object with a BlackScholes model and a
RollGeskeWhaley pricing method using this workflow:

1 Use fininstrument to create a Vanilla instrument object.
2 Use finmodel to specify a BlackScholes model for the Vanilla instrument object.
3 Use finpricer to specify a RollGeskeWhaley pricer object for the Vanilla instrument object

(American exercise).

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available instruments, models, and pricing methods for a Vanilla
instrument, see “Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
RollGeskeWhaleyPricerObj = finpricer(PricerType,'Model',model,'
DiscountCurve',ratecurve_obj,'SpotPrice',spotrate_value,'
DividendType',dividendtype,'DividendValue',dividendvalue)
RollGeskeWhaleyPricerObj = finpricer( ___ ,Name,Value)

Description

RollGeskeWhaleyPricerObj = finpricer(PricerType,'Model',model,'
DiscountCurve',ratecurve_obj,'SpotPrice',spotrate_value,'
DividendType',dividendtype,'DividendValue',dividendvalue) creates a
RollGeskeWhaley pricer object by specifying PricerType and sets the properties on page 11-3165
for the required name-value pair arguments Model, DiscountCurve, and SpotPrice.

RollGeskeWhaleyPricerObj = finpricer( ___ ,Name,Value) to set optional properties on
page 11-3165 using additional name-value pairs in addition to the required arguments in the previous
syntax. For example, RollGeskeWhaleyPricerObj =
finpricer("Analytic",'Model',BSModel,'DiscountCurve',ratecurve_obj,'SpotPrice
',1000,'DividendValue',timetable(datetime(2021,6,15),2.5),'DividendType',"cas
h",'PricingMethod',"RollGeskeWhaley") creates a RollGeskeWhaley pricer object. You can
specify multiple name-value pair arguments.
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Input Arguments

PricerType — Pricer type
string with value "Analytic" | character vector with value 'Analytic'

Pricer type, specified as a string with the value of "Analytic" or a character vector with the value
of 'Analytic'.
Data Types: char | string

RollGeskeWhaley Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: RollGeskeWhaleyPricerObj =
finpricer("Analytic",'Model',BSModel,'DiscountCurve',ratecurve_obj,'SpotPrice
',1000,'DividendValue',timetable(datetime(2021,6,15),2.5),'DividendType',"cas
h",'PricingMethod',"RollGeskeWhaley")

Required RollGeskeWhaley Name-Value Pair Arguments

Model — Model
BlackScholes model object

Model, specified as the comma-separated pair consisting of 'Model' and the name of a previously
created BlackScholes model object using finmodel.
Data Types: object

DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, specified as the comma-separated pair consisting of
'DiscountCurve' and the name of a previously created ratecurve object.

Note Specify a flat ratecurve object for DiscountCurve. If you use a nonflat ratecurve object,
the software uses the rate in the ratecurve object at Maturity and assumes that the value is
constant for the life of the equity option.

Data Types: object

SpotPrice — Current price of underlying asset
nonnegative numeric

Current price of the underlying asset, specified as the comma-separated pair consisting of
'SpotPrice' and a scalar nonnegative numeric.
Data Types: double

DividendValue — Cash dividend for underlying stock
timetable
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Cash dividend for the underlying stock, specified as the comma-separated pair consisting of
'DividendValue' and a timetable.
Data Types: timetable

Optional RollGeskeWhaley Name-Value Pair Arguments

DividendType — Stock dividend type
"cash" (default) | string with value "cash" | character vector with value 'cash'

Stock dividend type, specified as the comma-separated pair consisting of 'DividendType' and a
string or character vector.
Data Types: char | string

PricingMethod — Analytic pricing method
default pricer associated with BlackScholes model (default) | string with value
"RollGeskeWhaley" | character vector with value 'RollGeskeWhaley'

Analytic pricing method, specified as the comma-separated pair consisting of 'PricingMethod' and
a string or character vector.

Note The default pricing method for a BlackScholes model is a BlackScholes pricer.

Data Types: double

Properties
Model — Model
BlackScholes model object

Model, returned as a BlackScholes model object.
Data Types: object

DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, returned as a ratecurve object
Data Types: object

SpotPrice — Current price of underlying asset
nonnegative numeric

Current price of the underlying asset, returned as a scalar nonnegative numeric.
Data Types: double

DividendValue — Cash dividend for underlying stock
timetable

Cash dividend for the underlying stock, returned as a timetable.
Data Types: timetable

 RollGeskeWhaley

11-3165



DividendType — Stock dividend type
"cash" (default) | string with value "cash"

Stock dividend type, returned as a string.
Data Types: char | string

PricingMethod — Analytic pricing method
default pricer associated with BlackScholes model (default) | string with value
"RollGeskeWhaley"

Analytic pricing method, returned as a string.
Data Types: string

Object Functions
price Compute price for interest-rate, equity, or credit derivative instrument with Analytic pricer

Examples

Use a Roll-Geske-Whaley Pricer and Black-Scholes Model to Price Vanilla Instrument

This example shows the workflow to price an American exercise Vanilla instrument when you use a
BlackScholes model and a RollGeskeWhaley pricing method.

Create Vanilla Instrument Object

Use fininstrument to create a Vanilla instrument object.

VanillaOpt = fininstrument("Vanilla",'ExerciseDate',datetime(2022,9,15),'Strike',105,'ExerciseStyle',"american",'Name',"vanilla_american_instrument")

VanillaOpt = 
  Vanilla with properties:

       OptionType: "call"
    ExerciseStyle: "american"
     ExerciseDate: 15-Sep-2022
           Strike: 105
             Name: "vanilla_american_instrument"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',0.07)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.0700
    Correlation: 1
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Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
myRC = ratecurve("zero",Settle,datetime(2023,9,15),.05,'Basis',12);

Create RollGeskeWhaley Pricer Object

Use finpricer to create a RollGeskeWhaley pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'Model',BlackScholesModel,'DiscountCurve',myRC,'SpotPrice',100,"DividendValue",timetable(datetime(2021,6,15),0.25),'PricingMethod',"RollGeskeWhaley")

outPricer = 
  RollGeskeWhaley with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 100
    DividendValue: [1x1 timetable]
     DividendType: "cash"

Price Vanilla Instrument

Use price to compute the price and sensitivities for the Vanilla instrument.

[Price, outPR] = price(outPricer,VanillaOpt,["all"])

Price = 14.9582

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []

outPR.Results

ans=1×7 table
    Price      Delta      Gamma     Lambda     Vega      Theta      Rho 
    ______    _______    _______    ______    ______    _______    _____

    14.958    0.87494    0.01471    5.8493    41.184    -3.9873    290.2

See Also
Functions
fininstrument | finmodel

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53
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Introduced in R2020a
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SABR
Create SABR pricer object for Swaption instrument using SABR model

Description
Create and price a Swaption instrument object with a SABR model and a SABR pricing method using
this workflow:

1 Use fininstrument to create a Swaption instrument object.
2 Use finmodel to specify a SABR model for the Swaption instrument object.
3 Use finpricer to specify a SABR pricer object for the Swaption instrument object.

Note If you do not specify ProjectionCurve when you create a Swaption instrument with the
SABR pricer, the ProjectionCurve value defaults to the DiscountCurve value.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available instruments, models, and pricing methods for a Swaption
instrument, see “Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
SABRPricerObj = finpricer(PricerType,'DiscountCurve',ratecurve_obj,'
Model',model)

Description

SABRPricerObj = finpricer(PricerType,'DiscountCurve',ratecurve_obj,'
Model',model) creates a SABR pricer object by specifying PricerType and the required name-
value pair argument Model to set properties on page 11-3170 using name-value pairs. For example,
SABRPricerObj =
finpricer("Analytic",'DiscountCurve',ratecurve_obj,'Model',SABRModel) creates a
SABR pricer object.

Input Arguments

PricerType — Pricer type
string with value "Analytic" | character vector with value 'Analytic'

Pricer type, specified as a string with the value of "Analytic" or a character vector with the value
of 'Analytic'.
Data Types: char | string
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SABR Name-Value Pair Arguments

Specify required pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: SABRPricerObj =
finpricer("Analytic",'DiscountCurve',ratecurve_obj,'Model',SABRModel)

DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, specified as the comma-separated pair consisting of
'DiscountCurve' and the name of a previously created ratecurve object.
Data Types: object

Model — Model
SABR model object

Model, specified as the comma-separated pair consisting of 'Model' and the name of a previously
created SABR model object using finmodel.
Data Types: object

Properties
DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, returned as a ratecurve object
Data Types: object

Model — Model object
SABR model object

Model, returned as a SABR model object.
Data Types: object

Object Functions
price Compute price for interest-rate, equity, or credit derivative instrument with Analytic

pricer
volatilities Compute implied volatilities when using SABR pricer

Examples

Use SABR Pricer and SABR Model to Price Swaption Instrument

This example shows the workflow to price a Swaption instrument when you use a SABR model and a
SABR pricing method.
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Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create Swap Instrument Object

Use fininstrument to create the underlying Swap instrument object.

Swap = fininstrument("Swap",'Maturity',datetime(2023,1,30),'LegRate',[0.018 0.24],'LegType',["fixed","float"],'Basis',1,'Notional',100,'StartDate',datetime(2020,3,30),'ProjectionCurve',myRC,'Name',"swap_instrument")

Swap = 
  Swap with properties:

                     LegRate: [0.0180 0.2400]
                     LegType: ["fixed"    "float"]
                       Reset: [2 2]
                       Basis: [1 1]
                    Notional: 100
          LatestFloatingRate: [NaN NaN]
                 ResetOffset: [0 0]
    DaycountAdjustedCashFlow: [0 0]
             ProjectionCurve: [1x2 ratecurve]
       BusinessDayConvention: ["actual"    "actual"]
                    Holidays: NaT
                EndMonthRule: [1 1]
                   StartDate: 30-Mar-2020
                    Maturity: 30-Jan-2023
                        Name: "swap_instrument"

Create Swaption Instrument Object

Use fininstrument to create a Swaption instrument object.

Swaption = fininstrument("Swaption",'Strike',0.275,'ExerciseDate',datetime(2021,7,30),'Swap',Swap,'OptionType',"put",'ExerciseStyle',"european",'Name',"swaption_instrument")

Swaption = 
  Swaption with properties:
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       OptionType: "put"
    ExerciseStyle: "european"
     ExerciseDate: 30-Jul-2021
           Strike: 0.2750
             Swap: [1x1 fininstrument.Swap]
             Name: "swaption_instrument"

Create SABR Model Object

Use finmodel to create a SABR model object.

SABRModel = finmodel("SABR",'Alpha',0.032,'Beta',0.04,'Rho',.08,'Nu',0.49,'Shift',0.002)

SABRModel = 
  SABR with properties:

             Alpha: 0.0320
              Beta: 0.0400
               Rho: 0.0800
                Nu: 0.4900
             Shift: 0.0020
    VolatilityType: "black"

Create SABR Pricer Object

Use finpricer to create a SABR pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'Model',SABRModel,'DiscountCurve',myRC)

outPricer = 
  SABR with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.SABR]

Price Swaption Instrument

Use price to compute the price for the Swaption instrument.

Price = price(outPricer,Swaption)

Price = 10.3771

See Also
Functions
fininstrument | finmodel

Topics
“Calibrate Shifted SABR Model Parameters for Swaption Instrument” on page 2-168
“Calibrate SABR Model Using Normal (Bachelier) Volatilities with Analytic Pricer” on page 2-178
“Calibrate SABR Model Using Analytic Pricer” on page 2-182
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“Price a Swaption Using SABR Model and Analytic Pricer” on page 2-186
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53
“Work with Negative Interest Rates Using Objects” on page 2-22

Introduced in R2020a
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FiniteDifference
Create FiniteDifference pricer object for Barrier, DoubleBarrier, or Vanilla instrument
using a BlackScholes, Heston, Merton, or Bates model

Description
Create and price a Vanilla, Barrier, or DoubleBarrier instrument object with a BlackScholes,
Heston, Bates, Merton, or Dupire model and a FiniteDifference pricing method using this
workflow:

1 Use fininstrument to create the Barrier, DoubleBarrier, or Vanilla instrument object.
2 Use finmodel to specify the BlackScholes model for a Barrier or DoubleBarrier

instrument or a Heston, Bates, Dupire, or Merton model for the Vanilla instrument object.
3 Use finpricer to specify the FiniteDifference pricer object for the Barrier,

DoubleBarrier, or Vanilla instrument object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available pricing methods for a Vanilla, Barrier, or DoubleBarrier
instrument, see “Choose Instruments, Models, and Pricers” on page 1-53.

Creation
Syntax
FiniteDifferencePricerObj = finpricer(PricerType,'Model',model,'
DiscountCurve',ratecurve_obj,'SpotPrice',spotprice_value)
FiniteDifferencePricerObj = finpricer( ___ ,Name,Value)

Description

FiniteDifferencePricerObj = finpricer(PricerType,'Model',model,'
DiscountCurve',ratecurve_obj,'SpotPrice',spotprice_value) creates a
FiniteDifference pricer object by specifying PricerType and sets the properties on page 11-
3177 for the required name-value pair arguments Model, DiscountCurve, and SpotPrice.

FiniteDifferencePricerObj = finpricer( ___ ,Name,Value) sets optional properties on
page 11-3177 using additional name-value pairs in addition to the required arguments in the previous
syntax. For example, FiniteDifferencePricerObj =
finpricer("FiniteDifference",'Model',BSModel,'DiscountCurve',ratecurve_obj,'S
potPrice',100,'DividendValue',.025,'DividendType',"cash") creates a
FiniteDifference pricer object. You can specify multiple name-value pair arguments.

Input Arguments

PricerType — Pricer type
string with value "FiniteDifference" | character vector with value 'FiniteDifference'
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Pricer type, specified as a string with the value of "FiniteDifference" or the character vector
with a value of 'FiniteDifference'.
Data Types: char | string

FiniteDifference Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: FiniteDifferencePricerObj =
finpricer("FiniteDifference",'Model',BSModel,'DiscountCurve',ratecurve_obj,'S
potPrice',100,'DividendValue',.025,'DividendType',"cash")

Required FiniteDifference Name-Value Pair Arguments

Model — Model object
object

Model object, specified as the comma-separated pair consisting of 'Model' and the name of the
previously created Merton, Bates, or Heston model object using finmodel.
Data Types: object

DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

This property is read-only.

ratecurve object for discounting cash flows, specified as the comma-separated pair consisting of
'DiscountCurve' and the name of the ratecurve object.

Note Specify a flat ratecurve object for DiscountCurve. If you use a nonflat ratecurve object,
the software uses the rate in the ratecurve object at Maturity and assumes that the value is
constant for the life of the equity option.

Data Types: object

SpotPrice — Current price of underlying asset
nonnegative numeric

Current price of the underlying asset, specified as the comma-separated pair consisting of
'SpotPrice' and a scalar nonnegative numeric.
Data Types: double

Optional FiniteDifference Name-Value Pair Arguments

DividendValue — Dividend yield or dividend schedule
0 (default) | scalar | timetable

Dividend yield or dividend schedule, specified as the comma-separated pair consisting of
'DividendValue' and a scalar for a dividend yield or a timetable for a dividend schedule.
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Data Types: double | timetable

DividendType — Dividend type
"continuous" (default) | string with value "cash" or "continuous" | character vector with value
'cash' or 'continuous'

Dividend type, specified as the comma-separated pair consisting of 'DividendType' and a
character vector or string. DividendType must be "cash" for actual dollar dividends or
"continuous" for a continuous dividend yield.

Note When you use a Barrier instrument, you must set DividendType to "cash".

Data Types: char | string

SpotGridSize — Size of spot grid for finite difference grid
400 (default) | scalar numeric

Size of the spot grid for the finite difference grid, specified as the comma-separated pair consisting of
'SpotGridSize' and a scalar numeric.
Data Types: double

SpotPriceMax — Maximum price for price grid boundary
if unspecified, SpotPrice values are calculated using asset distributions at maturity (default) |
positive scalar

Maximum price for the price grid boundary, specified as the comma-separated pair consisting of
'SpotPriceMax' and a positive scalar.
Data Types: single | double

VarianceGridSize — Number of nodes of variance grid for finite difference grid
200 (default) | scalar numeric

Number of nodes of the variance grid for the finite difference grid, specified as the comma-separated
pair consisting of 'VarianceGridSize' and a scalar numeric.

Note VarianceGridSize is supported only when you use a Heston or Bates model.

Data Types: double

VarianceMax — Maximum variance for variance grid boundary
1.0 (default) | scalar numeric

Maximum variance for the variance grid boundary, specified as the comma-separated pair consisting
of 'VarianceMax' as a scalar numeric.

Note VarianceMax is supported only when you use a Heston or Bates model.

Data Types: double
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TimeGridSize — Number of nodes of time grid for finite difference grid
100 (default) | positive numeric scalar

Number of nodes of the time grid for the finite difference grid, specified as the comma-separated pair
consisting of 'TimeGridSize' and a positive numeric scalar.
Data Types: double

InterpMethod — Method of interpolation for estimating the implied volatility surface from
ImpliedVolData
'linear' (default) | string with value "linear", "makima", "spline", or "tpaps" | character
vector with value 'linear', 'makima', 'spline', or 'tpaps'

Method of interpolation for estimating the implied volatility surface from ImpliedVolData for use
only with a Dupire model, specified as the comma-separated pair consisting of 'InterpMethod'
and a string or character vector with one of the following values:

• 'linear' — Linear interpolation
• 'makima' — Modified Akima cubic Hermite interpolation
• 'spline' — Cubic spline interpolation
• 'tpaps' — Thin-plate smoothing spline interpolation

Note The 'tpaps' method uses the thin-plate smoothing spline functionality from Curve Fitting
Toolbox.

The 'makima' and 'spline' methods work only for gridded data. For scattered data, use the
'linear' or 'tpaps' methods.

For more information on gridded or scattered data and details on interpolation methods, see
“Gridded and Scattered Sample Data” and “Interpolating Gridded Data”.
Data Types: char | string

Properties
Model — Model
object

Model, returned as a model object.
Data Types: object

DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

This property is read-only.

ratecurve object for discounting cash flows, returned as the ratecurve object.
Data Types: object

SpotPrice — Current price of underlying asset
nonnegative numeric
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Current price of the underlying asset, returned as a scalar nonnegative numeric.
Data Types: double

DividendValue — Dividend yield or dividend schedule
0 (default) | scalar | timetable

Dividend yield or dividend schedule, returned as a scalar for a dividend yield or a timetable for a
dividend schedule.
Data Types: double | timetable

DividendType — Dividend type
"continuous" (default) | string with value "cash" or "continuous"

This property is read-only.

Dividend type, returned as a string. The DividendType is either "cash" for actual dollar dividends
or "continuous" for a continuous dividend yield.
Data Types: string

GridProperties — Grid properties
400 (default) | scalar numeric

Grid properties, returned as a struct.

For a Dupire model, GridProperties contains the following fields:

• SpotGridSize — Size of the spot grid for the finite difference grid, returned as a scalar numeric.
• SpotPriceMax — Maximum price for price grid boundary, returned as a positive scalar.
• TimeGridSize — Number of nodes of the time grid for the finite difference grid, returned as a

positive numeric scalar.
• InterpMethod — Method of interpolation for estimating the implied volatility surface, returned

as a string.

For a Heston or Bates model, GridProperties contains the following fields:

• VarianceGridSize — Size of the variance grid for the finite difference grid, returned as a scalar
numeric.

• VarianceMax — Maximum variance for the variance grid boundary, returned as a scalar numeric.

Data Types: struct

Object Functions
price Compute price for equity instrument with FiniteDifference pricer

Examples

Use Finite Difference Pricer and Black-Scholes Model to Price Barrier Instrument

This example shows the workflow to price a Barrier instrument when you use a BlackScholes
model and a FiniteDifference pricing method.
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Create Barrier Instrument Object

Use fininstrument to create a Barrier instrument object.

BarrierOpt = fininstrument("Barrier",'Strike',105,'ExerciseDate',datetime(2019,1,1),'OptionType',"call",'ExerciseStyle',"american",'BarrierType',"DO",'BarrierValue',40,'Name',"barrier_option")

BarrierOpt = 
  Barrier with properties:

       OptionType: "call"
           Strike: 105
      BarrierType: "do"
     BarrierValue: 40
           Rebate: 0
    ExerciseStyle: "american"
     ExerciseDate: 01-Jan-2019
             Name: "barrier_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',0.30)

BlackScholesModel = 
  BlackScholes with properties:

     Volatility: 0.3000
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,1,1);
Maturity = datetime(2023,1,1);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',1)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 1
                Dates: 01-Jan-2023
                Rates: 0.0350
               Settle: 01-Jan-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create FiniteDifference Pricer Object

Use finpricer to create a FiniteDifference pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.
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outPricer = finpricer("FiniteDifference",'Model',BlackScholesModel,'DiscountCurve',myRC,'SpotPrice',100)

outPricer = 
  FiniteDifference with properties:

     DiscountCurve: [1x1 ratecurve]
             Model: [1x1 finmodel.BlackScholes]
         SpotPrice: 100
    GridProperties: [1x1 struct]
      DividendType: "continuous"
     DividendValue: 0

Price Barrier Instrument

Use price to compute the price and sensitivities for the Barrier instrument.

[Price, outPR] = price(outPricer,BarrierOpt,["all"])

Price = 11.3230

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: [1x1 struct]

outPR.Results

ans=1×7 table
    Price      Delta     Gamma     Lambda     Theta      Rho       Vega 
    ______    _______    ______    ______    _______    ______    ______

    11.323    0.54126    0.0132    4.7802    -7.4408    42.766    39.627

See Also
Functions
fininstrument | finmodel | timetable

Topics
“Price European Vanilla Call Options Using Black-Scholes Model and Different Equity Pricers” on
page 1-95
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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TurnbullWakeman
Create TurnbullWakeman pricer object for Asian instrument using BlackScholes model

Description
Create and price a Asian instrument object with a BlackScholes model and a TurnbullWakeman
pricing method using this workflow:

1 Use fininstrument to create an Asian instrument object.
2 Use finmodel to specify a BlackScholes model for the Asian instrument object.
3 Use finpricer to specify a TurnbullWakeman pricer object for the Asian instrument object.

For more information on this workflow, see “Get Started with Workflows Using Object-Based
Framework for Pricing Financial Instruments” on page 1-22.

For more information on the available instruments, models, and pricing methods for an Asian
instrument, see “Choose Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
TurnbullWakemanPricerObj = finpricer(PricerType,'
DiscountCurve',ratecurve_obj,'Model',model,'SpotPrice',spotprice_value)
TurnbullWakemanPricerObj = finpricer( ___ ,Name,Value)

Description

TurnbullWakemanPricerObj = finpricer(PricerType,'
DiscountCurve',ratecurve_obj,'Model',model,'SpotPrice',spotprice_value) creates
a TurnbullWakeman pricer object by specifying PricerType and sets the properties on page 11-
3183 for the required name-value pair arguments DiscountCurve, Model, and SpotPrice.

TurnbullWakemanPricerObj = finpricer( ___ ,Name,Value) to set optional properties on
page 11-3183 using additional name-value pairs in addition to the required arguments in the previous
syntax. For example, TurnbullWakemanPricerObj =
finpricer("Analytic",'DiscountCurve',ratecurve_obj,'Model',BSModel,'SpotPrice
',1000,'DividendType',"continuous",'DividendValue',100) creates a
TurnbullWakeman pricer object.

Input Arguments

PricerType — Pricer type
string with value "Analytic" | character vector with value 'Analytic'

Pricer type, specified as a string with the value of "Analytic" or a character vector with the value
of 'Analytic'.
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Data Types: char | string

TurnbullWakeman Name-Value Pair Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: TurnbullWakemanPricerObj =
finpricer("Analytic",'DiscountCurve',ratecurve_obj,'Model',BSModel,'SpotPrice
',1000,'DividendType',"continuous",'DividendValue',100,'PricingMethod','Turnb
ullWakeman')

Required TurnbullWakeman Name-Value Pair Arguments

DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, specified as the comma-separated pair consisting of
'DiscountCurve' and the name of a previously created ratecurve object.

Specify a flat ratecurve object for DiscountCurve. If you use a nonflat ratecurve object, the
software uses the rate in the ratecurve object at Maturity and assumes that the value is constant
for the life of the equity option.

Data Types: object

Model — Model
BlackScholes model object

Model, specified as the comma-separated pair consisting of 'Model' and the name of a previously
created BlackScholes model object using finmodel.
Data Types: object

SpotPrice — Current price of underlying asset
nonnegative numeric

Current price of the underlying asset, specified as the comma-separated pair consisting of
'SpotPrice' and a scalar nonnegative numeric.
Data Types: double

Optional TurnbullWakeman Name-Value Pair Arguments

DividendType — Stock dividend type
"continuous" (default) | string with value "cash" or "continuous" | character vector with value
'cash' or 'continuous'

Stock dividend type, specified as the comma-separated pair consisting of 'DividendType' and a
character vector or string. DividendType must be "cash" for actual dollar dividends or
"continuous" for a continuous dividend yield.
Data Types: char | string
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DividendValue — Dividend yield or dividend schedule for underlying stock
0 (default) | scalar numeric | timetable

Dividend yield for the underlying stock, specified as the comma-separated pair consisting of
'DividendValue' and a scalar numeric for a dividend yield or a timetable for a dividend schedule.

Note DividendValue must be a scalar for a "continuous" DividendType or a timetable for a
"cash" DividendType.

Data Types: double | timetable

PricingMethod — Analytic pricing method
default pricer associated with BlackScholes model (default) | string with value
"TurnbullWakeman" | character vector with value 'TurnbullWakeman'

Analytic pricing method, specified as the comma-separated pair consisting of 'PricingMethod' and
a string or character vector.

Note The default pricing method for a BlackScholes model is a BlackScholes pricer.

Data Types: double

Properties
DiscountCurve — ratecurve object for discounting cash flows
ratecurve object

ratecurve object for discounting cash flows, returned as a ratecurve object.
Data Types: object

Model — Model
BlackScholes model object

Model, returned as a BlackScholes model object.
Data Types: object

SpotPrice — Current price of underlying asset
nonnegative numeric

Current price of the underlying asset, returned as a scalar nonnegative numeric.
Data Types: double

DividendType — Stock dividend type
'continuous' (default) | string with value "cash" or "continuous"

This property is read-only.

Stock dividend type, returned as a string. DividendType is either "cash" for actual dollar dividends
or "continuous" for a continuous dividend yield.
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Data Types: string

DividendValue — Dividend yield or dividend schedule for underlying stock
0 (default) | scalar nonnegative numeric | timetable

Dividend yield or dividend schedule for the underlying stock, returned as a scalar nonnegative
numeric for a dividend yield or a timetable for a dividend schedule.
Data Types: double | timetable

PricingMethod — Analytic pricing method
default pricer associated with BlackScholes model (default) | string with value
"TurnbullWakeman"

Analytic pricing method, returned as a string.
Data Types: string

Object Functions
price Compute price for interest-rate, equity, or credit derivative instrument with Analytic pricer

Examples

Use Turnbull-Wakeman Pricer and Black-Scholes Model to Price Asian Instrument

This example shows the workflow to price an Asian instrument when you use a BlackScholes
model and a TurnbullWakeman pricing method.

Create Asian Instrument Object

Use fininstrument to create an Asian instrument object.

AsianOpt = fininstrument("Asian",'ExerciseDate',datetime(2022,9,15),'Strike',105,'OptionType',"put",'ExerciseStyle',"european",'Name',"asian_option")

AsianOpt = 
  Asian with properties:

          OptionType: "put"
              Strike: 105
         AverageType: "arithmetic"
        AveragePrice: 0
    AverageStartDate: NaT
       ExerciseStyle: "european"
        ExerciseDate: 15-Sep-2022
                Name: "asian_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',0.35)

BlackScholesModel = 
  BlackScholes with properties:
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     Volatility: 0.3500
    Correlation: 1

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)

myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create TurnbullWakeman Pricer Object

Use finpricer to create a TurnbulllWakeman pricer object and use the ratecurve object for the
'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'Model',BlackScholesModel,'DiscountCurve',myRC,'SpotPrice',100,'PricingMethod',"TurnbullWakeman")

outPricer = 
  TurnbullWakeman with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: 100
    DividendValue: 0
     DividendType: "continuous"

Price Asian Instrument

Use price to compute the price and sensitivities for the Asian instrument.

[Price, outPR] = price(outPricer,AsianOpt,["all"])

Price = 14.3431

outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []
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outPR.Results 

ans=1×7 table
    Price      Delta        Gamma      Lambda      Vega      Theta        Rho  
    ______    ________    _________    _______    ______    ________    _______

    14.343    -0.37004    0.0085706    -2.5799    44.864    -0.86257    -125.73

See Also
Functions
fininstrument | finmodel | timetable | ratecurve

Topics
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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defprobcurve
Create defprobcurve object for credit instrument

Description
Create a defprobcurve object for a credit instrument.

After creating a defprobcurve object, you can use the associated functions survprobs,
hazardrates, and defprobstrip.

To price a CDS instrument, you must create a defprobcurve object and then create a Credit pricer
object.

For more information on the available instruments, models, and pricing methods, see “Choose
Instruments, Models, and Pricers” on page 1-53.

Creation

Syntax
DefaultProbCurve = defprobcurve(Settle,ProbDates,DefaultProbabilities)
DefaultProbCurve = defprobcurve( ___ ,Name,Value)

Description

DefaultProbCurve = defprobcurve(Settle,ProbDates,DefaultProbabilities) creates a
defprobcurve object.

DefaultProbCurve = defprobcurve( ___ ,Name,Value) sets properties on page 11-3189 using
name-value pairs and any of the arguments in the previous syntax. For example, DefaultProbCurve
= defprobcurve(datetime(2017,1,30),[datetime(2018,1,30);datetime(2019,1,30)],
[0.005 0.007],'Basis',2) creates a default probability curve object. You can specify multiple
name-value pair arguments.

Input Arguments

Settle — Settle date for curve
serial date number | date character vector | date string | datetime

Settle date for curve, specified as a scalar serial date number, date character vector, date string, or
datetime.

If you use a date character vector or date string, the format must be recognizable by datetime
because the Settle property is stored as a datetime.
Data Types: char | string | double | datetime

ProbDates — Dates corresponding to DefaultProbabilities
serial date number | cell array of date character vectors | date string | datetime
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Dates corresponding to DefaultProbabilities, specified as an NPOINTS-by-1 vector of serial date
numbers, cell array of date character vectors, string array, or datetime array.

If you use a date character vector or date string, the format must be recognizable by datetime
because the ProbDates property is stored as a datetime.
Data Types: string | datetime | double | char | cell

DefaultProbabilities — Default probability data for the curve
vector

Default probability data for the curve, specified as a numeric vector.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: defprobcurve = defprobcurve(datetime(2017,1,30),
[datetime(2018,1,30);datetime(2019,1,30)],[0.005 0.007],'Basis',2)

Basis — Day count basis
2 (actual/360) (default) | integer from 0 to 13

Day count basis, specified as the comma-separated pair consisting of 'Basis' and a scalar integer.

• 0 — actual/actual
• 1 — 30/360 (SIA)
• 2 — actual/360
• 3 — actual/365
• 4 — 30/360 (PSA)
• 5 — 30/360 (ISDA)
• 6 — 30/360 (European)
• 7 — actual/365 (Japanese)
• 8 — actual/actual (ICMA)
• 9 — actual/360 (ICMA)
• 10 — actual/365 (ICMA)
• 11 — 30/360E (ICMA)
• 12 — actual/365 (ISDA)
• 13 — BUS/252

For more information, see “Basis” on page 2-229.
Data Types: double
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Properties
Settle — Settlement date
datetime

Settlement date, returned as a datetime.
Data Types: datetime

Basis — Day count basis
2 (actual/360) (default) | integer from 0 to 13

This property is read-only.

Day count basis of the instrument, returned as a scalar integer.
Data Types: double

Dates — Dates corresponding to rate data
datetime

Dates corresponding to the rate data, returned as a datetime.
Data Types: datetime

DefaultProbabilities — Default probabilities for the curve
vector

Default probabilities for the curve, returned as a vector.
Data Types: double

Object Functions
survprobs Compute survival probability based on default probability curve
hazardrates Compute hazard rates based on default probability curve
defprobstrip Bootstrap defprobcurve object from market CDS instruments

Examples

Create defprobcurve Object

Create a defprobcurve object using defprobcurve.

Settle = datetime(2017,9,20);
DefProbTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])];
DefaultProbabilities = [0.005 0.007 0.01 0.015 0.026 0.04 0.077 0.093 0.15 0.20]';
ProbDates = Settle + DefProbTimes;

DefaultProbCurve = defprobcurve(Settle,ProbDates,DefaultProbabilities,'Basis',2)

DefaultProbCurve = 
  defprobcurve with properties:

                  Settle: 20-Sep-2017
                   Basis: 2
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                   Dates: [10x1 datetime]
    DefaultProbabilities: [10x1 double]

See Also
Functions
ratecurve

Topics
“Bootstrapping a Default Probability Curve from Credit Default Swaps” on page 8-42
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Workflow for Creating and Analyzing a defprobcurve” on page 1-51
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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survprobs
Compute survival probability based on default probability curve

Syntax
outSurvProbs = survprobs(obj,inDates)

Description
outSurvProbs = survprobs(obj,inDates) computes the survival probability based on the
default probability curve object.

Examples

Calculate Survival Probability Based on Default Probability Curve

Create a defprobcurve object using defprobcurve and then use survprobs to calculate the
survival probability.

Settle = datetime(2017,9,20);
DefProbTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])];
DefaultProbabilities = [0.005 0.007 0.01 0.015 0.026 0.04 0.077 0.093 0.15 0.20]';
DefProbDates = Settle + DefProbTimes;
 
DefaultProbCurve = defprobcurve(Settle,DefProbDates,DefaultProbabilities,'Basis',5)

DefaultProbCurve = 
  defprobcurve with properties:

                  Settle: 20-Sep-2017
                   Basis: 5
                   Dates: [10x1 datetime]
    DefaultProbabilities: [10x1 double]

SurvProbTimes = [calmonths([6 12 18])];
SurvProbDates = Settle + SurvProbTimes;
outSurvProb = survprobs(DefaultProbCurve, SurvProbDates)

outSurvProb = 3×1

    0.9950
    0.9930
    0.9915

Input Arguments
obj — defprobcurve object
defprobcurve object
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defprobcurve object, specified as a previously created defprobcurve object.
Data Types: object

inDates — Survival probability dates
datetime | serial date number | date character vector | date string

Survival probability dates, specified as a scalar datetime, serial date number, date character vector,
or date string.
Data Types: double | char | string | datetime

Output Arguments
outSurvProbs — Survival probability
numeric

Survival probability, returned as a numeric.

See Also
hazardrates | defprobstrip

Topics
“Bootstrapping a Default Probability Curve from Credit Default Swaps” on page 8-42
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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hazardrates
Compute hazard rates based on default probability curve

Syntax
OutRates = hazardrates(obj)

Description
OutRates = hazardrates(obj) computes hazard rates based on a defprobcurve object.

Examples

Calculate Hazard Rates Based on Default Probability Curve

Create a defprobcurve object using defprobcurve and then use hazardrates to calculate the
hazard rates.

Settle = datetime(2017,9,20);
DefProbTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])];
DefaultProbabilities = [0.005 0.007 0.01 0.015 0.026 0.04 0.077 0.093 0.15 0.20]';
ProbDates = Settle + DefProbTimes;

DefaultProbCurve = defprobcurve(Settle,ProbDates,DefaultProbabilities,'Basis',5)

DefaultProbCurve = 
  defprobcurve with properties:

                  Settle: 20-Sep-2017
                   Basis: 5
                   Dates: [10x1 datetime]
    DefaultProbabilities: [10x1 double]

hazardrates(DefaultProbCurve)

ans = 10×1

    0.0100
    0.0040
    0.0030
    0.0051
    0.0112
    0.0145
    0.0197
    0.0058
    0.0065
    0.0061
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Input Arguments
obj — defprobcurve object
defprobcurve object

defprobcurve object, specified as a previously created defprobcurve object.
Data Types: object

Output Arguments
OutRates — Hazard rates
numeric

Hazard rates, returned as a numeric.

See Also
survprobs | defprobstrip

Topics
“Bootstrapping a Default Probability Curve from Credit Default Swaps” on page 8-42
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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defprobstrip
Bootstrap defprobcurve object from market CDS instruments

Syntax
OutCurve = defprobstrip(ZeroCurve,MarketInstruments,MarketQuotes)
OutCurve = defprobstrip( ___ ,Name,Value)

Description
OutCurve = defprobstrip(ZeroCurve,MarketInstruments,MarketQuotes) bootstraps a
defprobcurve object from market CDS instruments.

OutCurve = defprobstrip( ___ ,Name,Value) specifies options using one or more name-value
pair arguments in addition to any of the input argument combinations in the previous syntax.

Examples

Bootstrap Default Probability Curve from Market CDS Instruments

This example shows how to use defprobstrip to bootstrap a defprobcurve object based on
market CDS instruments.

Create ratecurve Object for Zero-Rate Curve

Create a ratecurve object using ratecurve.

Settle = datetime(2017,9,15);
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])];
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates);

Market CDS Spreads and Vector of Market CDS Instruments

Define the market CDS spreads and use fininstrument to create a vector of market CDS
instrument objects.

SpreadTimes = [1 2 3 4 5 7 10 20 30]';
Spread = [140 175 210 265 310 360 410 460 490]';
MarketDates = datemnth(Settle,12*SpreadTimes);
  
NumMarketInst = length(MarketDates);
ContractSpreadBP = zeros(NumMarketInst,1);
  
MarketCDSInstruments(NumMarketInst,1) = fininstrument("cds", ...
      'ContractSpread', ContractSpreadBP(end), 'Maturity', MarketDates(end));
  for k = 1:NumMarketInst
      MarketCDSInstruments(k,1) = fininstrument("cds", ...
          'ContractSpread', ContractSpreadBP(k), 'Maturity', MarketDates(k));
  end
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Use defprobstrip to create a defprobcurve object.

DefaultProbCurve = defprobstrip(ZeroCurve,MarketCDSInstruments, Spread)

DefaultProbCurve = 
  defprobcurve with properties:

                  Settle: 15-Sep-2017
                   Basis: 2
                   Dates: [9x1 datetime]
    DefaultProbabilities: [9x1 double]

Input Arguments
ZeroCurve — Zero-rate curve
ratecurve object

Zero-rate curve, specified by a previously created ratecurve.
Data Types: object

MarketInstruments — Market CDS instruments
vector

Market CDS instruments, specified as an NINST-by-1 vector.
Data Types: double

MarketQuotes — Market spread
vector

Market quotes, specified as an NINST-by-1 vector.
Data Types: double

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: DefaultProbCurve = defprobstrip(ZeroCurve, MarketInstruments,
MarketQuotes,'QuoteType',"upfront")

QuoteType — Market quote type
"fairspread" (default) | string with value of "fairspread" or "upfront" | character vector with
value of 'fairspread' or 'upfront'

Frequency of payments per year, specified as the comma-separated pair consisting of 'QuoteType'
and a scalar character vector or string.

• "fairspread" — CDS break-even spread for zero upfront price
• "upfront" — CDS upfront price for a given contractual spread
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Data Types: char | string

ProbDates — Dates for probability data
NINST-by-1 vector of maturity dates in MarketInstruments input (default) | serial date number |
date character vector | datetime

Dates for probability data, specified as the comma-separated pair consisting of 'ProbDates' and a
P-by-1 vector of dates for the output defprobcurve object, given as serial date numbers, date
character vectors, or datetimes.
Data Types: datetime | double | char

Output Arguments
OutCurve — Default probability curve
defprobcurve object

Default probability curve, returned as a defprobcurve object with the following properties:

• Settle
• Basis
• Dates
• DefaultProbabilities

See Also
survprobs | hazardrates

Topics
“Bootstrapping a Default Probability Curve from Credit Default Swaps” on page 8-42
“Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments” on
page 1-22
“Choose Instruments, Models, and Pricers” on page 1-53

Introduced in R2020a
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Pricing Options Structure
In this section...
“Introduction” on page A-2
“Default Structure” on page A-2
“Customizing the Structure” on page A-3

Introduction
The MATLAB Options structure provides additional input to most pricing functions. The Options
structure

• Tells pricing functions how to use the interest-rate tree to calculate instrument prices.
• Determines what additional information the Command Window displays along with instrument

prices.
• Tells pricing functions which method to use in pricing barrier options.

The pricing options structure is primarily used in the pricing of interest-rate-based financial
derivatives. However, the BarrierMethod field in the structure allows you to use it in pricing equity
barrier options as well.

You provide pricing options in an optional Options argument passed to a pricing function. (See, for
example, bondbyhjm, bdtprice, barrierbycrr, barrierbyeqp, or barrierbyitt.)

Default Structure
If you do not specify the Options argument in the call to a pricing function, the function uses a
default structure. To observe the default structure, use derivset without any arguments.

Options = derivset
 

Options = 
 
    Diagnostics: 'off'
       Warnings: 'on'
      ConstRate: 'on'
  BarrierMethod: 'unenhanced'

The Options structure has four fields: Diagnostics on page A-2, Warnings on page A-2,
ConstRate on page A-3, and BarrierMethod on page A-3.

Diagnostics Field

Diagnostics indicates whether additional information is displayed if the tree is modified. The
default value for this option is 'off'. If Diagnostics is set to 'on' and ConstRate is set to
'off', the pricing functions display information such as the number of nodes in the last level of the
tree generated for pricing purposes.

Warnings Field

Warnings indicates whether to display warning messages when the input tree is not adequate for
accurately pricing the instruments. The default value for this option is 'on'. If both ConstRate and
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Warnings are 'on', a warning is displayed if any of the instruments in the input portfolio have a
cash flow date between tree dates. If ConstRate is 'off', and Warnings is 'on', a warning is
displayed if the tree is modified to match the cash flow dates on the instruments in the portfolio.

ConstRate Field

ConstRate indicates whether the interest rates should be assumed constant between tree dates. By
default this option is 'on', which is not an arbitrage-free assumption. So the pricing functions return
an approximate price for instruments featuring cash flows between tree dates. Instruments featuring
cash flows only on tree nodes are not affected by this option and return exact (arbitrage-free) prices.
When ConstRate is 'off', the pricing function finds the cash flow dates for all instruments in the
portfolio. If these cash flows do not align exactly with the tree dates, a new tree is generated and
used for pricing. This new tree features the same volatility and initial rate specifications of the input
tree but contains tree nodes for each date in which at least one instrument in the portfolio has a cash
flow. Keep in mind that the number of nodes in a tree grows exponentially with the number of tree
dates. So, setting ConstRate 'off' dramatically increases the memory and processor demands on
the computer.

BarrierMethod Field

When using binomial trees to price barrier options, this may require many tree steps to achieve an
accurate result when tree nodes do not align with the barrier level. With the BarrierMethod field,
the toolbox provides an enhancement method that improves the accuracy of the results without
having to use large trees.

The BarrierMethod field can be set to 'unenhanced' (default) or 'interp'. If you specify
'unenhanced', no correction calculation is used. Otherwise, if you specify 'interp', the toolbox
provides an enhanced valuation by interpolating between nodes on barrier boundaries.

You specify the barrier method in the last input argument, Options, of the functions barrierbycrr,
barrierbyeqp, barrierbyitt, crrprice, eqpprice, ittprice, crrsens, eqpsens, or
ittsens. Options is a structure that you create with the function derivset. Using derivset, you
specify whether to use the enhanced or the unenhanced method.

For more information about this algorithm, see Derman, E., I. Kani, D. Ergener and I. Bardhan,
“Enhanced Numerical Methods for Options with Barriers,” Financial Analysts Journal, (Nov. -
 Dec. 1995), pp. 65–74.

Customizing the Structure
Customize the Options structure by passing property name/property value pairs to the derivset
function.

As an example, consider an Options structure with ConstRate 'off' and Diagnostics 'on'.

Options = derivset('ConstRate', 'off', 'Diagnostics', 'on')

Options = 

  Diagnostics: 'on'
     Warnings: 'on'
    ConstRate: 'off'
BarrierMethod: 'unenhanced'

To obtain the value of a specific property from the Options structure, use derivget.

 Pricing Options Structure

A-3



CR = derivget(Options, 'ConstRate')

CR =
Off

Note Use derivset and derivget to construct the Options structure. These functions are
guaranteed to remain unchanged, while the implementation of the structure itself may be modified in
the future.

Now observe the effects of setting ConstRate 'off'. Obtain the tree dates from the HJM tree.

TreeDates = [HJMTree.TimeSpec.ValuationDate;... 
HJMTree.TimeSpec.Maturity]

TreeDates =

     730486
     730852
     731217
     731582
     731947

datedisp(TreeDates)

01-Jan-2000 
01-Jan-2001 
01-Jan-2002 
01-Jan-2003 
01-Jan-2004 

All instruments in HJMInstSet settle on January 1, 2000, and all have cash flows once a year, except
for the second bond, which features a period of 2. This bond has cash flows twice a year, with every
other cash flow consequently falling between tree dates. You can extract this bond from the portfolio
to compare how its price differs by setting ConstRate to 'on' and 'off'.

BondPort = instselect(HJMInstSet, 'Index', 2);

instdisp(BondPort)

Index Type CouponRate Settle      Maturity     Period Basis... 
1     Bond 0.04       01-Jan-2000 01-Jan-2004  2      NaN...

First price the bond with ConstRate 'on' (default).
format long
[BondPrice, BondPriceTree] = hjmprice(HJMTree, BondPort)

Warning: Not all cash flows are aligned with the tree. Result will 
be approximated.

BondPrice =

  97.52801411736377

BondPriceTree = 
FinObj: 'HJMPriceTree'
 PBush: {1x5 cell}

A Pricing Options Structure

A-4



AIBush: {[0]  [1x1x2 double] ... [1x4x2 double]  [1x8 double]}
  tObs: [0 1 2 3 4]

Now recalculate the price of the bond setting ConstRate 'off'.
OptionsNoCR = derivset('ConstR', 'off')

OptionsNoCR = 

Diagnostics: 'off'
   Warnings: 'on'
  ConstRate: 'off'

[BondPriceNoCR, BondPriceTreeNoCR] = hjmprice(HJMTree,... 
BondPort, OptionsNoCR)

Warning: Not all cash flows are aligned with the tree. Rebuilding 
tree.

BondPriceNoCR =

  97.53342361674437

BondPriceTreeNoCR = 

FinObj: 'HJMPriceTree'
 PBush: {1x9 cell}
AIBush: {1x9 cell}
  tObs: [0 0.5000 1 1.5000 2 2.5000 3 3.5000 4]

As indicated in the last warning, because the cash flows of the bond did not align with the tree dates,
a new tree was generated for pricing the bond. This pricing method returns more accurate results
since it guarantees that the process is arbitrage-free. It also takes longer to calculate and requires
more memory. The tObs field of the price tree structure indicates the increased memory usage.
BondPriceTree.tObs has only five elements, while BondPriceTreeNoCR.tObs has nine. While
this may not seem like a large difference, it has a dramatic effect on the number of states in the last
node.

size(BondPriceTree.PBush{end})

ans =

     1 8

size(BondPriceTreeNoCR.PBush{end})

ans =

     1 128

The differences become more obvious by examining the price trees with treeviewer.

treeviewer(BondPriceTree, BondPort)
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treeviewer(BondPriceTreeNoCR, BondPort)

All = [Delta ./ Price, Gamma ./ Price, Vega ./ Price, Price]

All =

         -2.76         10.43          0.00         98.72
         -3.56         16.64         -0.00         97.53
       -166.18      13235.59        700.96          0.05
         -2.76         10.43          0.00         98.72
         -0.01          0.03             0        100.55
         46.95       1090.63         14.91          6.28
       -969.85     173969.77       1926.72          0.05
        -76.39        287.00          0.00          3.690
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See Also
instasian | instbarrier | instcompound | instlookback | instoptstock

Related Examples
• “Pricing Equity Derivatives Using Trees” on page 3-64
• “Pricing Options Structure” on page A-2
• “Pricing European Call Options Using Different Equity Models” on page 3-88
• “Pricing Using the Black-Scholes Model” on page 3-82
• “Compute Option Prices on a Forward” on page 11-1497
• “Compute Forward Option Prices and Delta Sensitivities” on page 11-1554
• “Compute the Option Price on a Future” on page 11-1498
• “Pricing Asian Options” on page 3-110

More About
• “Supported Interest-Rate Instrument Functions” on page 2-3
• “Supported Equity Derivative Functions” on page 3-19
• “Supported Energy Derivative Functions” on page 3-34
• “Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects” on

page 1-73
• “Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument

Objects” on page 1-82
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[6] Cox, J. C., S. A. Ross, and M. Rubinstein. “Option Pricing: A Simplified Approach.” Journal of
Financial Economics. Number 7, 1979, pp. 229–263.

B Bibliography

B-2



Implied Trinomial Tree (ITT) Modeling
To learn about the Implied Trinomial Tree model, see:

[7] Chriss, Neil A., E. Derman, and I. Kani. “Implied trinomial trees of the volatility smile.” Journal of
Derivatives. 1996.

Leisen-Reimer Tree (LR) Modeling
To learn about the Leisen-Reimer model, see:

[8] Leisen D.P., M. Reimer. “Binomial Models for Option Valuation – Examining and Improving
Convergence.” Applied Mathematical Finance. Number 3, 1996, pp. 319–346.

Equal Probabilities Tree (EQP) Modeling
To learn about the Equal Probabilities model, see:

[9] Chriss, Neil A. Black Scholes and Beyond: Option Pricing Models. McGraw-Hill, 1996, ISBN
0-7863-1025-1.

Closed-Form Solutions Modeling
To learn about the Bjerksund-Stensland 2002 model, see:

[10] Bjerksund, P. and G. Stensland. “Closed-Form Approximation of American Options.” Scandinavian
Journal of Management. Vol. 9, 1993, Suppl., pp. S88–S99.

[11] Bjerksund, P. and G. Stensland. “Closed Form Valuation of American Options.”, Discussion paper,
2002.

Financial Derivatives
You can find information on the creation of financial derivatives and their role in the marketplace in
numerous sources. Among those consulted in the development of Financial Instruments Toolbox
software are:

[12] Chance, Don. M. An Introduction to Derivatives. The Dryden Press, 1998, ISBN 0-030-024483-8.

[13] Fabozzi, Frank J. Treasury Securities and Derivatives. Frank J. Fabozzi Associates, 1998, ISBN
1-883249-23-6.

[14] Wilmott, Paul. Derivatives: The Theory and Practice of Financial Engineering. John Wiley and
Sons, 1998, ISBN 0-471-983-89-6.

Fitting Interest-Rate Curve Functions
[15] Nelson, C.R., Siegel, A.F. "Parsimonious modelling of yield curves." Journal of Business. Number
60, 1987, pp 473–89.

[16] Svensson, L.E.O. "Estimating and interpreting forward interest rates: Sweden 1992-4."
International Monetary Fund, IMF Working Paper, 1994, p. 114.

 Bibliography

B-3



[17] Fisher, M., Nychka, D., Zervos, D. "Fitting the term structure of interest rates with smoothing
splines.” Board of Governors of the Federal Reserve System, Federal Reserve Board Working Paper,
1995.

[18] Anderson, N., Sleath, J. "New estimates of the UK real and nominal yield curves." Bank of
England Quarterly Bulletin. November, 1999, pp 384–92.

[19] Waggoner, D. "Spline Methods for Extracting Interest Rate Curves from Coupon Bond Prices,"
Federal Reserve Board Working Paper, 1997, p. 10.

[20] "Zero-coupon yield curves: technical documentation." BIS Papers, Bank for International
Settlements, Number 25, October, 2005.

[21] Bolder, D.J., Gusba,S. "Exponentials, Polynomials, and Fourier Series: More Yield Curve
Modelling at the Bank of Canada." Working Papers. Bank of Canada, 2002, p. 29.

[22] Bolder, D.J., Streliski, D. "Yield Curve Modelling at the Bank of Canada." Technical Reports.
Number 84, 1999, Bank of Canada.

Interest-Rate Modeling Using Monte Carlo Simulation
[23] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice with Smile, Inflation and
Credit. Springer Finance, 2006.

[24] Andersen, L. and V. Piterbarg. Interest Rate Modeling. Atlantic Financial Press. 2010.

[25] Hull, J, Options, Futures, and Other Derivatives. Springer Finance, 2003.

[26] Glasserman, P. Monte Carlo Methods in Financial Engineering. Prentice Hall, 2008.

[27] Rebonato, R., K. McKay, and R. White. The Sabr/Libor Market Model: Pricing, Calibration and
Hedging for Complex Interest-Rate Derivatives. John Wiley & Sons, 2010.

Bootstrapping a Swap Curve
[28] Hagan, P., West, G. "Interpolation Methods for Curve Construction." Applied Mathematical
Finance. Vol. 13, Number 2, 2006.

[29] Ron, Uri. "A Practical Guide to Swap Curve Construction." Working Papers. Bank of Canada,
2000, p. 17.

Bond Futures
[30] Burghardt, G., T. Belton, M. Lane, and J. Papa. The Treasury Bond Basis. McGraw-Hill, 2005.

[31] Krgin, Dragomir. Handbook of Global Fixed Income Calculations. John Wiley & Sons, 2002.

Credit Derivatives
[32] Beumee, J., D. Brigo, D. Schiemert, and G. Stoyle. “Charting a Course Through the CDS Big
Bang.” Fitch Solutions, Quantitative Research. Global Special Report. April 7, 2009.

B Bibliography

B-4



[33] Hull, J., and A. White. “Valuing Credit Default Swaps I: No Counterparty Default Risk.” Journal of
Derivatives. Vol. 8, pp. 29–40.

[34] O'Kane, D. and S. Turnbull. “Valuation of Credit Default Swaps.” Lehman Brothers, Fixed Income
Quantitative Credit Research. April, 2003.

[35] O'Kane, D. Modelling Single-name and Multi-name Credit Derivatives. Wiley Finance, 2008, pp.
156–169.

Convertible Bonds
[36] Tsiveriotis, K., and C. Fernandes. “Valuing Convertible Bonds with Credit Risk.” Journal of Fixed
Income. Vol. 8, 1998, pp. 95–102.

[37] Hull, J. Options, Futures and Other Derivatives. Fourth Edition. Prentice Hall, 2000, pp. 646–649.

 Bibliography

B-5




	Getting Started
	Financial Instruments Toolbox Product Description
	Interest-Rate-Based Derivatives
	Equity-Based Derivatives
	Expected Users
	Portfolio Creation Using Functions
	Introduction
	Interest-Rate-Based Derivatives
	Equity Derivatives

	Adding Instruments to an Existing Portfolio Using Functions
	Pricing a Portfolio Using the Black-Derman-Toy Model
	Instrument Construction and Portfolio Management Using Functions
	Instrument Constructors
	Creating Instruments or Properties
	Searching or Subsetting a Portfolio

	Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments
	Workflow to Price an Interest-Rate Instrument
	Price Vanilla Fixed Bond Instrument Using ratecurve and Discount Pricer

	Workflow to Price an Inflation Instrument
	Analyze Inflation-Indexed Instruments

	Workflow to Price an Equity, Commodity, or FX Instrument
	Price Vanilla Instrument Using Black-Scholes Model and Black-Scholes Pricer

	Workflow to Price a Credit Derivative Instrument
	Price CDS Instrument Using Default Probability Curve and Credit Pricer

	Workflow to Create and Price a Portfolio of Instruments
	Create and Price Portfolio of Instruments

	Workflow for Creating and Analyzing a ratecurve and parametercurve
	Convert RateSpec to a ratecurve Object

	Workflow for Creating and Analyzing a defprobcurve
	Choose Instruments, Models, and Pricers
	Interest-Rate Instruments with Associated Models and Pricers
	Equity, Commodity, FX, and Energy Instruments with Associated Models and Pricers
	Inflation Instruments with Associated Models and Pricers
	Credit Derivative Instruments with Associated Models and Pricers

	Supported Exercise Styles
	Mapping Financial Instruments Toolbox Functions to Object-Based Framework for Instruments, Models, and Pricers
	Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects
	Mapping Financial Instruments Toolbox Functions for Equity, Commodity, FX Instrument Objects
	Mapping Financial Instruments Toolbox Functions for Credit Derivative Instrument Objects
	Mapping Financial Instruments Toolbox Curve Functions to Object-Based Framework
	Price European Vanilla Call Options Using Black-Scholes Model and Different Equity Pricers

	Interest-Rate Derivatives
	Supported Interest-Rate Instrument Functions
	Bond
	Convertible Bond
	Stepped Coupon Bonds
	Sinking Fund Bonds
	Bonds with an Amortization Schedule
	Bond Options
	Bond with Embedded Options
	Stepped Coupon Bonds with Calls and Puts
	Sinking Fund Bonds with an Embedded Option
	Amortizing Callable or Puttable Bond
	Fixed-Rate Note
	Floating-Rate Note
	Floating-Rate Note with an Amortization Schedule
	Floating-Rate Note with Caps, Collars, and Floors
	Floating-Rate Note Options
	Floating-Rate Note with Embedded Options
	Cap
	Floor
	Range Note
	Swap
	Swap with an Amortization Schedule
	Forward Swap
	Swaption
	Bond Futures

	Work with Negative Interest Rates Using Functions
	Interest-Rate Modeling Options for Negative Rates
	Modeling Negative Rates

	Work with Negative Interest Rates Using Objects
	Interest-Rate Modeling Options for Negative Rates
	Modeling Negative Rates

	Price Swaptions with Negative Strikes Using the Shifted SABR Model
	Calibrate the SABR Model
	Load Market Implied Black Volatility Data
	Method 1: Calibrate Alpha, Rho, and Nu Directly
	Method 2: Calibrate Rho and Nu by Implying Alpha from At-The-Money Volatility
	Use the Calibrated Models
	References

	Price a Swaption Using the SABR Model
	Overview of Interest-Rate Tree Models
	Interest-Rate Modeling
	Rate and Price Trees
	Viewing Rate or Price Movement

	Understanding the Interest-Rate Term Structure
	Introduction
	Interest Rates Versus Discount Factors

	Interest-Rate Term Conversions
	Spot Curve to Forward Curve Conversion
	Alternative Syntax (ratetimes)

	Modeling the Interest-Rate Term Structure
	Creating or Modifying (intenvset)
	Obtaining Specific Properties (intenvget)

	Pricing Using Interest-Rate Term Structure
	Introduction
	Computing Instrument Prices
	Computing Instrument Sensitivities
	OAS for Callable and Puttable Bonds
	Agency OAS

	Understanding Interest-Rate Tree Models
	Introduction
	Building a Tree of Forward Rates
	Specifying the Volatility Model (VolSpec)
	Specifying the Interest-Rate Term Structure (RateSpec)
	Specifying the Time Structure (TimeSpec)
	Creating Trees
	Examining Trees

	Pricing Using Interest-Rate Tree Models
	Introduction
	Computing Instrument Prices

	Computing Instrument Sensitivities
	HJM Sensitivities Example
	BDT Sensitivities Example

	Calibrating Hull-White Model Using Market Data
	Hull-White Model Calibration Example

	Interest-Rate Derivatives Using Closed-Form Solutions
	Pricing Caps and Floors Using the Black Option Model

	Price Swaptions with Interest-Rate Models Using Simulation
	Introduction
	Construct a Zero Curve
	Define Swaption Parameters
	Compute the Black Model and the Swaption Volatility Matrix
	Select Calibration Instruments
	Compute Swaption Prices Using Black's Model
	Define Simulation Parameters
	Simulate Interest-Rate Paths Using the Hull-White One-Factor Model
	Simulate Interest-Rate Paths Using the Linear Gaussian Two-Factor Model
	Simulate Interest-Rate Paths Using the LIBOR Market Model
	Compare Interest-Rate Modeling Results
	References

	Pricing Bermudan Swaptions with Monte Carlo Simulation
	Managing Interest-Rate Risk with Bond Futures
	Analyze Inflation-Indexed Instruments
	Bootstrapping a Swap Curve
	Fitting Interest-Rate Curve Functions
	Fitting the Diebold Li Model
	Calibrating Caplets Using the Normal (Bachelier) Model
	Calibrating Floorlets Using the Normal (Bachelier) Model
	Calibrate the SABR Model Using Normal (Bachelier) Volatilities with Negative Strikes
	Calibrate Shifted SABR Model Parameters for Swaption Instrument
	Price Portfolio of Bond and Bond Option Instruments
	Calibrate SABR Model Using Normal (Bachelier) Volatilities with Analytic Pricer
	Calibrate SABR Model Using Analytic Pricer
	Price a Swaption Using SABR Model and Analytic Pricer
	Compute LIBOR Fallback
	Use treeviewer to Examine HWTree and PriceTree When Pricing European Callable Bond
	Select Cheapest-to-Deliver Bond Using BondFuture Instrument
	Graphical Representation of Trees
	Introduction
	Observing Interest Rates
	Observing Instrument Prices

	Basis

	Equity Derivatives
	Understanding Equity Trees
	Introduction
	Building Equity Binary Trees
	Building Implied Trinomial Trees
	Building Standard Trinomial Trees
	Examining Equity Trees
	Differences Between CRR and EQP Tree Structures

	Supported Equity Derivative Functions
	Asian Option
	Barrier Option
	Double Barrier Option
	Basket Option
	Chooser Option
	Compound Option
	Convertible Bond
	Lookback Option
	Digital Option
	Rainbow Option
	Vanilla Option
	Spread Option
	One-Touch and Double One-Touch Options
	Forwards Option
	Futures Option

	Supported Energy Derivative Functions
	Asian Option
	Barrier Option
	Double Barrier Option
	Vanilla Option
	Spread Option
	Lookback Option
	Forwards Option
	Futures Option

	Pricing Swing Options Using the Longstaff-Schwartz Method
	Simulating Electricity Prices with Mean-Reversion and Jump-Diffusion
	Pricing Equity Derivatives Using Trees
	Computing Instrument Prices
	Computing Prices Using CRR
	Computing Prices Using EQP
	Computing Prices Using ITT
	Computing Prices Using STT
	Examining Output from the Pricing Functions
	Graphical Representation of Equity Derivative Trees

	Computing Equity Instrument Sensitivities
	CRR Sensitivities Example
	ITT Sensitivities Example

	Equity Derivatives Using Closed-Form Solutions
	Introduction
	Black-Scholes Model
	Black Model
	Roll-Geske-Whaley Model
	Bjerksund-Stensland 2002 Model
	Barone-Adesi-Whaley Model
	Pricing Using the Black-Scholes Model
	Pricing Using the Black Model
	Pricing Using the Roll-Geske-Whaley Model
	Pricing Using the Bjerksund-Stensland Model
	Compute American Option Prices Using the Barone-Adesi and Whaley Option Pricing Model

	Pricing European Call Options Using Different Equity Models
	Compute the Option Price on a Future
	Pricing European and American Spread Options
	Pricing Asian Options
	Price Spread Instrument for a Commodity Using Black-Scholes Model and Analytic Pricers
	Price Vanilla Instrument Using Heston Model and Multiple Different Pricers
	Create and Price Portfolio of Instruments
	Use Black-Scholes Model to Price Asian Options with Several Equity Pricers
	Calibrate Option Pricing Model Using Heston Model
	Use Deep Learning to Approximate Barrier Option Prices with Heston Model

	Hedging Portfolios
	Hedging
	Hedging Functions
	Introduction
	Hedging with hedgeopt
	Self-Financing Hedges with hedgeslf

	Pricing and Hedging a Portfolio Using the Black-Karasinski Model
	Specifying Constraints with ConSet
	Introduction
	Setting Constraints
	Portfolio Rebalancing

	Hedging with Constrained Portfolios
	Overview
	Example: Fully Hedged Portfolio
	Example: Minimize Portfolio Sensitivities
	Example: Under-Determined System
	Example: Portfolio Constraints with hedgeslf

	Hedging Strategies Using Spread Options

	Mortgage-Backed Securities
	What Are Mortgage-Backed Securities?
	Fixed-Rate Mortgage Pool
	Introduction
	Inputs to Functions
	Generating Prepayment Vectors
	Mortgage Prepayments
	Risk Measurement
	Mortgage Pool Valuation

	Computing Option-Adjusted Spread
	Prepayments with Fewer Than 360 Months Remaining
	Pools with Different Numbers of Coupons Remaining
	Summary of Prepayment Data Vector Representation

	Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model
	Pricing Mortgage Backed Securities Using the Black-Derman-Toy Model
	Using Collateralized Mortgage Obligations (CMOs)
	What Are CMOs?

	Prepayment Risk
	Sequential Tranches Without a Z-Bond
	Sequential Tranches with a Z-Bond
	PAC Tranches
	TAC Tranches

	CMO Workflow
	Calculate Underlying Mortgage Cash Flows
	Define CMO Tranches
	If Using a PAC or TAC CMO, Calculate Principal Schedule
	Calculate Cash Flows for Each Tranche
	Analyze CMO by Computing Price, Yield, and Spread of CMO Cash Flows

	Create PAC and Sequential CMO

	Debt Instruments
	Agency Option-Adjusted Spreads
	Computing the Agency OAS for Bonds

	Using Zero-Coupon Bonds
	Introduction
	Measuring Zero-Coupon Bond Function Quality
	Pricing Treasury Notes
	Pricing Corporate Bonds

	Stepped-Coupon Bonds
	Introduction
	Cash Flows from Stepped-Coupon Bonds
	Price and Yield of Stepped-Coupon Bonds

	Term Structure Calculations
	Introduction
	Computing Spot and Forward Curves
	Computing Spreads


	Derivative Securities
	Interest Rate Swaps
	Swap Pricing Assumptions
	Swap Pricing Example
	Portfolio Hedging

	Bond Futures
	Analysis of Bond Futures
	Calculating Bond Conversion Factors
	Calculating Implied Repo Rates to Find the CTD Bond
	Pricing Bond Futures Using the Term Implied Repo Rate

	Managing Present Value with Bond Futures
	Fitting the Diebold Li Model

	Credit Derivatives
	Counterparty Credit Risk and CVA
	First-to-Default Swaps
	Credit Default Swap Option
	References

	Pricing a Single-Name CDS Option
	Pricing a CDS Index Option
	Wrong Way Risk with Copulas
	Bootstrapping a Default Probability Curve from Credit Default Swaps
	Bootstrap Default Probability Curve from Market CDS Instruments
	Price Multiple CDS Option Instruments Using CDS Black Model and CDS Black Pricer

	Interest-Rate Curve Objects
	Interest-Rate Curve Objects and Workflow
	Class Structure
	Workflow Using Interest-Rate Curve Objects

	Creating Interest-Rate Curve Objects
	Creating an IRDataCurve Object
	Use IRDataCurve with Dates and Data
	Bootstrap IRDataCurve Based on Market Instruments

	Dual Curve Bootstrapping
	Creating an IRFunctionCurve Object
	Fitting IRFunctionCurve Object Using a Function Handle
	Fitting IRFunctionCurve Object Using Nelson-Siegel Method
	Fitting IRFunctionCurve Object Using Svensson Method
	Fitting IRFunctionCurve Object Using Smoothing Spline Method
	Using fitFunction to Create Custom Fitting Function

	Fitting Interest-Rate Curve Functions
	Converting an IRDataCurve or IRFunctionCurve Object
	Introduction
	Using the toRateSpec Function
	Using Vector of Dates and Data


	Numerix Workflows
	Working with Simple Numerix Trades
	Working with Advanced Numerix Trades
	Use Numerix to Price Cash Deposits
	Use Numerix for Interest-Rate Risk Assessment
	Numerix CROSSASSET Interface Workflow Example Using Matrix, Data, and Call Objects

	Functions
	Calibrate Pricing Model
	asianbycrr
	asianbyeqp
	asianbyitt
	asianbyls
	asianbystt
	asiansensbyls
	asianbykv
	asiansensbykv
	asianbylevy
	asiansensbylevy
	asianbyhhm
	asiansensbyhhm
	asianbytw
	asiansensbytw
	assetbybls
	assetsensbybls
	barrierbycrr
	barrierbyeqp
	barrierbyfd
	barriersensbyfd
	dblbarrierbyfd
	dblbarriersensbyfd
	barrierbyls
	barriersensbyls
	barrierbybls
	barriersensbybls
	dblbarrierbybls
	dblbarriersensbybls
	barrierbyitt
	barrierbystt
	basketbyju
	basketbyls
	basketsensbyju
	basketsensbyls
	basketstockspec
	bdtprice
	bdtsens
	bdttimespec
	bdttree
	bdtvolspec
	bkprice
	bksens
	bktimespec
	bktree
	bkvolspec
	bondbybdt
	blackvolbyrebonato
	blackvolbysabr
	bondbybk
	bondbyhjm
	bondbyhw
	bondbycir
	bondbyzero
	bushpath
	bushshape
	capbybdt
	capbybk
	capbyblk
	capbycir
	capbyhjm
	capbyhw
	capbylg2f
	capbynormal
	capvolstrip
	cashbybls
	cashsensbybls
	cbondbycrr
	cbondbyeqp
	cbondbyitt
	cbondbystt
	cfbybdt
	cfbybk
	cfbycir
	cfbyhjm
	cfbyhw
	cfbyzero
	chooserbybls
	cirprice
	cirsens
	classfin
	cirtimespec
	cirvolspec
	cirtree
	compoundbycrr
	compoundbyeqp
	compoundbyitt
	compoundbystt
	crrprice
	crrsens
	crrtimespec
	crrtree
	cvtree
	date2time
	datedisp
	derivget
	derivset
	disc2rate
	eqpprice
	eqpsens
	eqptimespec
	eqptree
	fixedbybdt
	fixedbybk
	fixedbycir
	fixedbyhjm
	fixedbyhw
	fixedbyzero
	floatbybdt
	floatbybk
	floatbycir
	floatbyhjm
	floatbyhw
	floatbyzero
	floorbybdt
	floorbybk
	floorbycir
	floorbyblk
	floorbyhjm
	floorbyhw
	floorbylg2f
	floorbynormal
	floorvolstrip
	gapbybls
	gapsensbybls
	hedgeopt
	hedgeslf
	hjmprice
	hjmsens
	hjmtimespec
	hjmtree
	hjmvolspec
	HullWhite1F
	simTermStructs
	hwcalbycap
	hwcalbyfloor
	hwprice
	hwsens
	hwtimespec
	hwtree
	hwvolspec
	impvbybaw
	impvbybjs
	impvbyblk
	impvbybls
	impvbyrgw
	instadd
	instaddfield
	instasian
	instbarrier
	instbond
	instcap
	instcbond
	instcf
	instcompound
	instdelete
	instdisp
	instfields
	instfind
	instfixed
	instfloat
	instfloor
	instget
	instgetcell
	instlength
	instlookback
	instoptbnd
	instoptembnd
	instoptfloat
	instoptemfloat
	instoptstock
	instrangefloat
	instselect
	instsetfield
	instswap
	instswaption
	insttypes
	intenvget
	intenvprice
	intenvsens
	intenvset
	isafin
	ittprice
	ittsens
	itttimespec
	itttree
	LiborMarketModel
	simTermStructs
	LinearGaussian2F
	simTermStructs
	lookbackbycrr
	lookbackbycvgsg
	lookbacksensbycvgsg
	lookbackbyeqp
	lookbackbyitt
	lookbackbyls
	lookbacksensbyls
	lookbackbystt
	lrtimespec
	lrtree
	maxassetbystulz
	maxassetsensbystulz
	minassetbystulz
	minassetsensbystulz
	mkbush
	mktree
	mktrintree
	mmktbybdt
	mmktbyhjm
	normalvolbysabr
	numerix
	numerixCrossAsset
	numerixCrossAsset.applicationCall
	numerixCrossAsset.applicationData
	numerixCrossAsset.applicationMatrix
	numerixCrossAsset.close
	numerixCrossAsset.getdata
	numerix.parseResults
	oasbybdt
	oasbybk
	oasbycir
	oasbyhjm
	oasbyhw
	optbndbybdt
	optbndbybk
	optbndbycir
	optbndbyhjm
	optbndbyhw
	optByBatesFD
	optSensByBatesFD
	optByBatesFFT
	optSensByBatesFFT
	optByBatesNI
	optSensByBatesNI
	optByHestonFD
	optSensByHestonFD
	optByHestonFFT
	optSensByHestonFFT
	optByHestonNI
	optSensByHestonNI
	optByLocalVolFD
	optSensByLocalVolFD
	optByMertonFD
	optSensByMertonFD
	optByMertonFFT
	optSensByMertonFFT
	optByMertonNI
	optSensByMertonNI
	optembndbybdt
	optembndbybk
	optembndbycir
	optembndbyhjm
	optembndbyhw
	optemfloatbybdt
	optemfloatbybk
	optemfloatbycir
	optemfloatbyhjm
	optemfloatbyhw
	optfloatbybdt
	optfloatbybk
	optfloatbycir
	optfloatbyhjm
	optfloatbyhw
	optsensbysabr
	optstockbybaw
	optstocksensbybaw
	optstockbybjs
	optstockbyblk
	optstockbybls
	optstockbycrr
	optstockbyeqp
	optstockbyfd
	optstocksensbyfd
	optstockbyitt
	optstockbylr
	optstockbyls
	optstocksensbyls
	optstockbyrgw
	optstocksensbybjs
	optstocksensbyblk
	optstocksensbybls
	optstocksensbylr
	optstocksensbyrgw
	optstockbystt
	optpricebysim
	rangefloatbybdt
	rangefloatbybk
	rangefloatbycir
	rangefloatbyhjm
	rangefloatbyhw
	rate2disc
	ratetimes
	spreadbykirk
	spreadbybjs
	spreadbyfd
	spreadbyls
	spreadsensbykirk
	spreadsensbybjs
	spreadsensbyls
	spreadsensbyfd
	stockoptspec
	stockspec
	sttprice
	sttsens
	stttimespec
	stttree
	supersharebybls
	supersharesensbybls
	swapbybdt
	swapbybk
	swapbycir
	swapbyhjm
	swapbyhw
	swapbyzero
	swaptionbybdt
	swaptionbybk
	swaptionbycir
	swaptionbyblk
	swaptionbyhjm
	swaptionbyhw
	swaptionbylg2f
	swaptionbynormal
	time2date
	treepath
	treeshape
	treeviewer
	trintreepath
	trintreeshape
	agencyoas
	agencyprice
	bkcall
	bkcaplet
	bkfloorlet
	bkput
	bndfutimprepo
	bndfutprice
	bootstrap
	cdsoptprice
	cmosched
	cmoschedcf
	cmoseqcf
	convfactor
	fitFunction
	fitNelsonSiegel
	fitSmoothingSpline
	fitSvensson
	getDiscountFactors
	getDiscountFactors
	getForwardRates
	getForwardRates
	getParYields
	getParYields
	getZeroRates
	getZeroRates
	IRBootstrapOptions
	IRDataCurve
	IRFitOptions
	IRFunctionCurve
	liborduration
	liborfloat2fixed
	liborprice
	mbscfamounts
	mbsconvp
	mbsconvy
	mbsdurp
	mbsdury
	mbsnoprepay
	mbsoas2price
	mbsoas2yield
	mbspassthrough
	mbsprice
	mbsprice2oas
	mbsprice2speed
	mbswal
	mbsyield
	mbsyield2oas
	mbsyield2speed
	psaspeed2default
	psaspeed2rate
	stepcpncfamounts
	stepcpnprice
	stepcpnyield
	tfutbyprice
	tfutbyyield
	tfutimprepo
	tfutpricebyrepo
	tfutyieldbyrepo
	toRateSpec
	toRateSpec
	zeroprice
	zeroyield
	touchbybls
	touchsensbybls
	dbltouchbybls
	dbltouchsensbybls
	fininstrument
	finmodel
	finpricer
	irbootstrap
	fitNelsonSiegel
	price
	price
	price
	price
	price
	price
	price
	price
	price
	price
	price
	price
	price
	pricePortfolio
	addInstrument
	removeInstrument
	setPricer
	cashflows
	cashsettle
	fairdelivery
	setCallExercisePolicy
	setPutExercisePolicy
	setExercisePolicy
	parswaprate
	volatilities
	fitSvensson
	discountfactors
	forwardrates
	zerorates
	discountfactors
	forwardrates
	zerorates
	finportfolio
	ratecurve
	inflationcurve
	indexvalues
	inflationbuild
	price
	inflationCashflows
	inflationCashflows
	inflationCashflows
	OISFuture
	STIRFuture
	Cliquet
	OvernightIndexedSwap
	PartialLookback
	ConvertibleBond
	InflationBond
	YearYearInflationSwap
	ZeroCouponInflationSwap
	Inflation
	Rubinstein
	parametercurve
	Asian
	Barrier
	DoubleBarrier
	Touch
	DoubleTouch
	Binary
	Cap
	CDS
	CDSOption
	FixedBond
	FixedBondOption
	FloatBond
	FloatBondOption
	Floor
	FRA
	Lookback
	OptionEmbeddedFixedBond
	OptionEmbeddedFloatBond
	Spread
	Swap
	VarianceSwap
	Swaption
	Vanilla
	Deposit
	BondFuture
	CommodityFuture
	EquityIndexFuture
	FXFuture
	Bates
	Black
	CDSBlack
	BlackScholes
	BraceGatarekMusiela
	SABRBraceGatarekMusiela
	LinearGaussian2F
	BlackKarasinski
	Heston
	HullWhite
	Merton
	Normal
	Bachelier
	Dupire
	SABR
	AssetMonteCarlo
	HeynenKat
	IkedaKunitomo
	VannaVolga
	Heston
	ReplicatingVarianceSwap
	BjerksundStensland
	Black
	BlackScholes
	ConzeViswanathan
	Credit
	CDSBlack
	NumericalIntegration
	Discount
	Future
	FFT
	GoldmanSosinGatto
	HullWhite
	IRMonteCarlo
	IRTree
	AssetTree
	KemnaVorst
	Kirk
	Levy
	Normal
	RollGeskeWhaley
	SABR
	FiniteDifference
	TurnbullWakeman
	defprobcurve
	survprobs
	hazardrates
	defprobstrip

	Derivatives Pricing Options
	Pricing Options Structure
	Introduction
	Default Structure
	Customizing the Structure


	Bibliography
	Bibliography
	Black-Derman-Toy (BDT) Modeling
	Heath-Jarrow-Morton (HJM) Modeling
	Hull-White (HW) and Black-Karasinski (BK) Modeling
	Cox-Ross-Rubinstein (CRR) Modeling
	Implied Trinomial Tree (ITT) Modeling
	Leisen-Reimer Tree (LR) Modeling
	Equal Probabilities Tree (EQP) Modeling
	Closed-Form Solutions Modeling
	Financial Derivatives
	Fitting Interest-Rate Curve Functions
	Interest-Rate Modeling Using Monte Carlo Simulation
	Bootstrapping a Swap Curve
	Bond Futures
	Credit Derivatives
	Convertible Bonds



